

モデルベース開発におけるシステム同定に関する研究 －同定入力選定と評価指標の提案－

2017 年度

室井秀夫

主 論 文 要 旨

No.1

報告番号	① 甲 第 号	氏 名	室井 秀夫
主 論 文 題 名 :			
モデルベース開発におけるシステム同定に関する研究 —同定入力選定と評価指標の提案—			
(内容の要旨)			
<p>モデルベース開発とは、制御対象を表現するプラントモデルと制御装置を表現するコントローラモデルを用いた、組込みソフトウェア開発の方法論である。プラントモデルは物理モデルを用いるケースが多いが、分布定数系など複雑なモデルを扱う場合、計算に時間がかかる問題がある。この場合、モデルの低次元化手段としてシステム同定が利用される。システム同定をおこなうとき、特に同定入力設計やモデルの妥当性検証に注意が必要である。同定入力設計では、可同定性を満たす入力を印加しなければならない。しかし、制御対象が多入力システムである場合、可同定性に関する研究は少なく、同定入力設計が課題となる。また、モデルの妥当性評価では、同定されたモデルと物理モデルに対し、それぞれの出力波形を比較する。この比較を行うとき、適合率と呼ばれる指標がよく用いられる。しかし、適合率は負値を取る、低振幅波形に高い値を示す、といった課題がある。そこで、本論文では、多入力 1 出力システム（共通極システム）に対する同定入力としての M 系列設計法と、同定結果の評価に用いる指標について述べる。</p>			
第 1 章では、本論文の目的について述べる。本論文の目的は、前述の同定入力設計とモデル妥当性評価に関する課題の解決を図るものである。			
第 2 章では、本論文の背景について述べる。具体的には、本論文の背景となる同定入力設計とモデルの妥当性評価の基礎的な事項および従来研究について述べる。			
第 3 章では、共通極システムに対する入力設計について述べる。まず、共通極システムに対して、巡回シフト M 系列と呼ばれる 1 つの M 系列を巡回シフトして得られる信号を、確定的可同定性を満たすように印加する条件を導く。導いた条件は、従来の条件と異なり、極零相殺を許容するため、実質的には共通極を仮定しなくとも適用できる特徴がある。つぎに、条件に則った入力設計法を提案し、提案法が適切に機能することを数値例によって確認し、導いた条件の妥当性と、設計法の有効性を確認する。			
第 4 章では、システム同定結果の時間領域での評価法について述べる。まず、適合率に代わる指標を提示するために、システム同定分野外で提案された代表的な指標を紹介し、それらの指標をいくつかのカテゴリに分類する。そして、この分類をもとに三角不等式を用いて RMSE (Root Mean Squared Error) を規格化する指標 “Tri ₂ ” を提案する。Tri ₂ は正値のみを取り、低振幅波形に対し高い値を示さないため、適合率の課題を克服している。最後に、Tri ₂ を一般的なシステム同定結果評価に用いることを考慮して、線形回帰モデルに対して Tri ₂ に最良値を与える条件について解析し、予測値と測定値のノルムが一致する条件のもと、その誤差が最小となる解が最良値を与えることを導く。最後に、システム同定の結果評価を想定した出力に平均値が 0 の白色雑音が混入した状況下では、Tri ₂ が与える最良値が真値からバイアスすることを明らかにする。			
第 5 章では、本論文の結論と今後の発展性について述べる。			

Thesis Abstract

No. 1

Registration Number	<input checked="" type="checkbox"/> "KOU" <input type="checkbox"/> "OTSU" No. <small>*Office use only</small>	Name	MUROI, Hideo
<p>Thesis Title</p> <p>Research on system identification for model based development -Proposal for identification input design and criterion for model validation-</p>			
<p>Thesis Summary</p> <p>Model-Based-Development (MBD) is a methodology of embedded software development. MBD uses “plant models”, which express the physical system, and “controller models”, which express the hardware controller. For the plant models, white-box models are often utilized. These models, however, often result in having a complicated structure, which leads to a long calculation time to run the simulations. In order to deal with the model complexity, system identification method can be utilized to simplify the models. In this method, the identification input design and model validation are essential to obtain appropriate results. In the identification input design, an input must satisfy the identifiability conditions. However, when the controlled system is a multi-input system, there are few studies on identifiability. In the model validation, the physical model is compared with the identified model. When making this comparison, a criterion called a “fit ratio” is often used. However, this method often results in yielding negative values and shows a high value for a low amplitude waveform. Therefore, in this paper, we describe an input design method of cyclic shifted M-sequence for system identification of Multi-Input-Single-Output system having common poles (we call “common poles system”), and propose a new model validation criterion for system identification in time domain.</p> <p>In the first chapter, the purpose of this thesis is described. The purpose is to provide solutions to problems that can arise when applying system identification in model-based development.</p> <p>In the second chapter, some mathematical backgrounds of this thesis are given. Specifically, mathematical fundamentals for system identification and the model validation are given. Moreover, some previous studies in this field are surveyed.</p> <p>In the third chapter, an input design problem for system identification of common poles systems, is described. First, a necessary condition and a sufficient condition to identify the common poles system using cyclic shifted M-sequences are derived. It is not required in these conditions that the systems must have common poles. Then, some numerical simulations validate our proposed conditions.</p> <p>In the fourth chapter, the criteria for system identification in time domain, is described. First, we point out several issues of the criteria based on Fit ratio, which is expressed by the root mean squared error (RMSE) divided by the standard deviation of the measured signal. As alternative criteria to the Fit ratio, we introduce some normalized criteria that is inspired from the field of physical geography. More specifically, a new criterion “Tri2” based on the triangle inequality is proposed. Tri2 takes optimal value when a norm of a measured signal is equal to a norm of predicted signal. Then, Tri2 is analyzed with respect to the noise and the wrong dead time for linear models. As a result, it is found that the optimal value for Tri2 is biased from true value for the noise, and may include the true value when model has wrong dead time.</p> <p>In the fifth chapter, this thesis is summarized.</p>			