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Part 1. Introduction

1. Introduction

In this thesis, we define and study two objects, a generalization of Kamano’s finite

multiple zeta values of Mordell–Tornheim type [Kam] and a finite sum analogue of multiple

polylogarithms. More precisely, in the first half of this thesis, we introduce a combinatorial

object, which we call a 2-colored rooted tree, and finite multiple zeta values associated

to a 2-colored rooted tree. These values contain Kaneko–Zagier’s classical finite multiple

zeta values [KZ] and Kamano’s finite multiple zeta values of Mordell–Tornheim type. We

prove that with a certain assumption, finite multiple zeta values associated to a 2-colored

rooted tree can be written explicitly as Z-linear combinations of classical finite multiple

zeta values. As a corollary, we give a new proof of the shuffle relation among classical finite

multiple zeta values, which was first proved by Kaneko–Zagier [KZ]. In the second half

of this thesis, we introduce a finite analogue of multiple polylogarithms in an analogous

framework of Kaneko–Zagier’s finite multiple zeta values, and we prove a “shuffle-like”

relation among finite multiple polylogarithms. Using this relation, we give examples of

the products of finite multiple polylogarithms with low depth which can be described in

terms of sums of finite multiple polylogarithms.

At first, we will survey the history of multiple zeta values, in particular, of finite

multiple zeta values and finite polylogarithms.

1.1. Multiple zeta values. Multiple zeta values are real numbers defined by

ζ(k1, . . . , kr) =
∑

0<n1<···<nr

1

nk1
1 · · ·nkr

r

.

Here, r is a non-negative integer and k1, . . . , kr are positive integers. For the convergence,

we assume that kr is larger than 1. For an index k = (k1, . . . , kr) ∈ Zr
≥1 we let wt(k) :=

k1+ · · ·+kr be the weight of k and dep(k) := r be the depth of k. Double zeta values were

first studied by Euler [Eul]. The study of multiple zeta values with general depth was

started by Hoffman [Hof2] and Zagier [Zag] independently in the 1990’s. In particular,

Zagier showed that multiple zeta values appear in many areas of mathematics. The theory

of multiple zeta values has been rapidly developed after the Zagier’s work.

In [Zag], Zagier conjectured the dimension of Q-vector spaces ZR,k generated by all

the multiple zeta values of weight k for all non-negative integers k. Let {dk}k≥0 be the
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sequence of positive integers defined by
⎧
⎨

⎩
d0 = 1, d1 = 0, d2 = 1,

dk = dk−2 + dk−3.

Then, Zagier conjectured the following equality:

dimQ ZR,k = dk.

This conjecture has not yet been proved. Deligne–Goncharov [DG] and Terasoma [Ter],

however, proved the following inequality

dimQ ZR,k ≤ dk

for all non-negative integers k. This result means that there exist many Q-linear relations

among multiple zeta values. The reverse direction of this inequality has not been proved.

This problem seems to be very difficult for us because this problem contains the algebraic

independence of multiple zeta values over Q.

1.2. Finite multiple zeta values. There exist many variants of multiple zeta values, for

example, the q-analogue, the p-adic version and the analogue for function field over a finite

field. Hoffman [Hof2] and Zhao [Zha] considered independently the following truncated

version of multiple zeta values for each prime p:

ζ(p)(k1, . . . , kr) :=
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

mod p ∈ Fp.

We call this value mod p multiple zeta value in this thesis.

After the pioneering work of Hoffman and Zhao, Kaneko–Zagier [KZ] proposed a new

“adélic” framework for mod p multiple zeta values. In their framework, they considered

mod p multiple zeta values as elements in the following ring:

A :=

(
∏

p

Fp

)/(
⊕

p

Fp

)
.

Here, p runs through all the rational primes. Thus, an element of A is represented by

a family (ap)p of elements ap ∈ Fp, and two families (ap)p and (bp)p represent the same

element of A if and only if ap = bp for all but finitely many primes p. Note that A is a

Q-algebra.

Finite multiple zeta values are mod p multiple zeta values considered as elements in A:

ζA(k1, . . . , kr) := (ζ(p)(k1, . . . , kr))p =

(
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

mod p

)

p

.
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In the following, we often denote an element (ap)p in A simply by ap omitting ( )p if there

is no fear of confusion. For example, the above definition is written as

ζA(k1, . . . , kr) =
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

.

There exist many researches of finite multiple zeta values, for example, [Mur], [Oy],

[SS], [SW1], [SW2]. One of the main topics for the study of finite multiple zeta values is

obtaining all the algebraic relations over Q among finite multiple zeta values. For example,

finite single zeta values are 0 (see Proposition 3.15). Moreover, finite double zeta values

can be written explicitly by using Bernoulli numbers:

ζA(k1, k2) = (−1)k2
(
k1 + k2

k2

)
Bp−(k1+k2)

k1 + k2
.(1.1)

See Proposition 3.16.

Finite multiple zeta values satisfy many algebraic relations over Q. For example, finite

multiple zeta values satisfy the shuffle relation and the stuffle relation. To state these

relations precisely, we introduce the algebraic setup of finite multiple zeta values due to

Hoffman [Hof1].

Let H be the noncommutative polynomial ring Q⟨x, y⟩ in the variables x and y over

Q, and we set H1 := Q + yH. Note that H1 is generated by zk := yxk−1 (k = 1, 2, . . .) as

a Q-algebra. For an index k = (k1, . . . , kr), we write zk := zk1 · · · zkr . We define the map

ZA : H1 → A by sending zk to ζA(k) and extend it Q-linearly.

We define the shuffle product x : H × H → H on H by the following rule and Q-

bilinearity.

(i) w x 1 = 1x w = w for all w ∈ H.

(ii) (w1u1)x (w2u2) = (w1 xw2u2)u1 + (w1u1 xw2)u2 for all w1, w2 ∈ H and u1, u2 ∈
{x, y}.

For instance, we have

z2 x z2 = yxx yx = 2yxyx+ 4y2x2 = 2z2z2 + 4z1z3.

It is known that (H,x) is a commutative Q-algebra [Reu, p.24].

We define the stuffle product ∗ : H1 × H1 → H1 on H1 by the following rule and

Q-bilinearity.

(i) w ∗ 1 = 1 ∗ w = w for all w ∈ H1.

(ii) (w1zk) ∗ (w2zl) = (w1 ∗w2zl)zk + (w1zk ∗w2)zl + (w1 ∗w2)zk+l for all w1, w2 ∈ H1

and k, l ∈ Z≥1.
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For instance, we have

z2 ∗ z3 = z2z3 + z3z2 + z5.

It is also known that (H1, ∗) is a commutative Q-algebra [Hof1, Theorem 2.1].

The shuffle relation and the stuffle relation among finite multiple zeta values are stated

as follows. For positive integers r, s and elements w1 := zk1 · · · zkr , w2 := zl1 · · · zls in H1,

we have

(1.2) ZA(w1 x w2) = (−1)l1+···+lsZA(zk1 · · · zkrzls · · · zl1),

(1.3) ZA(w1 ∗ w2) = ZA(w1)ZA(w2).

See the first proof of Theorem 2.15. These equalities give many algebraic relations over

Q among finite multiple zeta values. Indeed, it is conjectured by Kaneko-Zagier that all

the algebraic relations over Q among finite multiple zeta values can be deduced from the

shuffle relation and the stuffle relation.

Similar to the case of the multiple zeta values, Zagier conjectured the dimension of

the Q-vector space ZA,k generated by all the finite multiple zeta values of weight k for all

non-negative integers k. For example, ZA,0 = Q,ZA,1 = 0. Then, Zagier conjectured the

following identity for all non-negative integers k:

dimQ ZA,k = dk−3.

Recently, Yasuda announced that dimQ ZA,k ≤ dk−3 for all the non-negative integers k

by using Akagi–Hirose–Yasuda’s results and Jarrosay’s results. Therefore, there also exist

many linear relations over Q among finite multiple zeta values.

Moreover, Kaneko and Zagier conjectured a mysterious relation between finite mul-

tiple zeta values and the classical multiple zeta values. Set Z• :=
⊕

k≥0 Z•,k for • ∈
{R,A}. Kaneko and Zagier conjectured that there exists the well-defined map sending

ζA(k1, . . . , kr) to ζS(k1, . . . , kr) which gives the isomorphism between ZA and ZR/ζ(2)ZR

as Q-algebras. Here ζS(k1, . . . , kr) is called symmetric multiple zeta values. Symmetric

multiple zeta values are defined for positive integers k1, . . . , kr, by using the regularized

values of divergent multiple zeta values. We do not state the precise definition of symmet-

ric multiple zeta values in this thesis. If we believe Kaneko and Zagier’s conjecture, then

the finite and symmetric multiple zeta values satisfy the same algebraic relations over Q.

Through Kaneko and Zagier’s conjectural isomorphism, the study of finite multiple zeta

values becomes more important.
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1.3. Multiple zeta values of Mordell–Tornheim type. For non-negative integer r

and positive integers k1, . . . , kr, kr+1, Multiple zeta values of Mordell-Tornheim type are

defined as follows:

(1.4) ζMT (k1, . . . , kr; kr+1) :=
∑

m1,...,mr≥1

1

mk1
1 · · ·mkr

r (m1 + · · ·+mr)kr+1
∈ R.

The sum of these types of multiple zeta values were studied first by Tornheim [Tor] and

Mordell [Mor] in the case r = 2. Mordell proved [Mor, Theorem III] that ζMT (2k, 2k; 2k) is

a rational multiple of π6k for a positive integer k. Bradley–Zhou [BZ, Theorem 1.1] proved

that Multiple zeta values of Mordell–Tornheim type can be written as a Z-linear combina-

tion of the classical multiple zeta values. Tornheim proved [Tor] that ζMT (k1, k2; k3) can

be written as a Q-linear combination of products of Riemann zeta values. Tsumura [Tsu,

Theorem 1.1] generalized Tornheim’s result to the case of general depth, that is, Tsumura

proved that if the parities of r and k1 + · · · + kr+1 are different, Multiple zeta values

ζMT (k1, . . . , kr; kr+1) of Mordell–Tornheim type can be written as a Q-linear combination

of products of Multiple zeta values of Mordell–Tornheim type with the smaller depth than

r. Matsumoto studied (1.4) as a complex function of (r + 1)-variables, and proved [Mat,

Theorem 5] that (1.4) can be meromorphically continued as a complex function to the

whole space Cr+1.

1.4. Finite multiple zeta values of Mordell–Tornheim type. Kamano [Kam] de-

fined a finite analogue of multiple zeta values of Mordell–Tornheim type as an element in

A as follows:

ζMT
A (k1, . . . , kr; kr+1) :=

∑

m1,...,mr≥1
m1+···+mr≤p−1

1

mk1
1 · · ·mkr

r (m1 + · · ·+mr)kr+1
.

We call this sum in this thesis the finite multiple zeta values of Mordell–Tornheim type.

Similar to the case of the classical finite multiple zeta values, we call k1 + · · ·+ kr+1 and

r the weight and the depth of the finite multiple zeta values of Mordell–Tornheim type,

respectively. Note that Kuba considered finite Mordell–Tornheim double zeta values be-

fore Kamano defined, and Kuba [Kub, Theorem 5] obtained the explicit formula of finite

Mordell–Tornheim double zeta values by using binomial coefficients and Bernoulli num-

bers. This result is a Mordell–Tornheim type analogue of (1.1). Kamano [Kam, Theorem

1.2] gave an explicit formula of the finite multiple zeta values of Mordell–Tornheim type

to write them as a Z-linear combination of the classical finite multiple zeta values by us-

ing the language of the Hoffman algebra. By using this formula, Kamano obtained many

Q-linear relations among the finite multiple zeta values as corollaries [Kam, Theorem 3.2,
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Proposition 3.4]. Moreover, Kamano’s method can be applied to the case of the classical

multiple zeta values. Kamano also obtained an explicit formula of the multiple zeta values

of Mordell–Tornheim type to write them as a Z-linear combination of the classical multi-

ple zeta values, which can be regarded as a refinement of a result obtained previously by

Bradley–Zhou [Kam, Remark 2.2].

1.5. Main result on finite multiple zeta values associated to 2-colored rooted

trees. In order to obtain his main result in [Kam], Kamano only used the following partial

fraction decomposition:

(1.5)
1

X1 · · ·Xs
=

1

X1 + · · ·+Xs

s∑

i=1

1

X1 · · ·Xs︸ ︷︷ ︸
remove i-th

.

Here, s is a positive integer and X1, . . . , Xs are indeterminates. Therefore, there is a

natural question how we can generalize Kamano’s results to elements in A defined by

more general finite sums. For example, consider the following element in A:

(1.6)
∑

m1,m2,m3≥1
m1+m2+m3≤p−1

1

mk1
1 mk2

2 mk3
3 (m1 +m2)l2(m1 +m2 +m3)l3

.

Here, k1, k2, k3, l2, l3 are all non-negative integers. Note that this element coincides with

ζMT
A (k1, k2, k3; l3) if k1, k2, k3, l3 are positive and l2 = 0. Furthermore, if k1 = k2 = k3 =

l2 = 1, we can easily prove the following expression of (1.6) as a Z-linear combination of

the classical finite multiple zeta values by using 3 times the partial fraction decomposition

(1.5):

∑

m1,m2,m3≥1
m1+m2+m3≤p−1

1

m1m2m3(m1 +m2)(m1 +m2 +m3)l3
= 2ζA(1, 2, l3+1)+6ζA(1, 1, l3+2).

We can also prove that (1.6) can in general be written explicitly as a Z-linear combination

of the classical finite multiple zeta values.

In this thesis, inspired by Yamamoto’s work [Y] on multiple integrals associated to

2-labeled posets, we introduce the finite multiple zeta value associated to a triple X =

(T, rtX , V•) consisting of the following three data, which we call a 2-colored rooted tree.

(i) T = (V,E) is a tree (in the graph theoretic sense) such that #V (= #E+1) < ∞.

(ii) rtX ∈ V is a vertex, called the root of T .

(iii) V• is a subset of V containing all terminals of T .

We set V◦ := V \ V•. Further, for a 2-colored rooted tree X = (T, rtX , V•) and a map

k : E → Z≥0 from the set of edges of the given 2-colored rooted tree to the set of
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non-negative integers, a finite multiple zeta value associated to a 2-colored rooted tree is

defined as an element in A as follows:

ζA(X, k) :=
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

∏

e∈E

Le(rtX , (mv))
−k(e)

Here, for a 2-colored rooted tree (T, rtX , V•) and an edge e of T and (mv) ∈ ZV•
≥1, we set

Le(rtX , (mv)) :=
∑

v∈V• s.t. e∈P (rtX ,v)

mv,

where P (rtX , v) is the path from rtX to v and e ∈ P (rtX , v) denotes that the edge e is

on the path P (rtX , v). The map k is called an index on the 2-colored rooted tree X. For

example, (1.6) is the finite multiple zeta value associated to the following 2-colored rooted

tree and an index:

(1.7)
◦

l2 ◦●
●●

●●
● •

k3◦✇✇
✇✇
✇✇

l3

•

k1
◦
✴✴
✴✴
✴✴
✴ •

k2
◦✎
✎✎
✎✎
✎✎

!

v1 v2

v3

v4

The classical finite multiple zeta values and finite multiple zeta values of Mordell–Tornheim

type are also examples of finite multiple zeta values associated to 2-colored rooted trees.

See Example 2.1.

In the case of the finite multiple zeta values of Mordell–Tornheim type, Kamano ob-

tained the explicit formula of them as a Z-linear combination of the classical finite multiple

zeta values using the language of the Hoffman algebra. Using the above partial fraction

decomposition (1.5), with an assumption on the index on the 2-colored rooted tree, we

can obtain an explicit formula of the finite multiple zeta values associated to 2-colored

rooted trees as a Z-linear combination of the classical finite multiple zeta values. This is

the first main result of this thesis.

Theorem 1.1 ([On, Theorem 1.4]). Let X = (T, rtX , V•) be a 2-colored rooted tree and

k an index on X. Suppose that
∑

e∈P (v,v′) k(e) is positive for any v, v′ ∈ V• with v ̸=
v′. Then, the finite multiple zeta value ζA(X, k) can be written explicitly as a Z-linear
combination of the classical finite multiple zeta values.

8



Note that for a 2-colored rooted tree X giving finite multiple zeta values of Mordell–

Tornheim type, our first main result above coincides with Kamano’s result [Kam, Theorem

1.2].

As a corollary of our first main result, we give a new proof of the shuffle relation among

finite multiple zeta values. This new proof means that the class of the Z-linear relation
among finite multiple zeta values coming from 2-colored rooted trees contains the class

of the shuffle relation among finite multiple zeta values. Moreover, our Z-linear relation
among finite multiple zeta values can be regarded as a simultaneous generalization of both

Kamano’s relation and the shuffle relation among finite multiple zeta values. We should

note that this is very surprising since there were no obvious connections between these

two classes of relations.

1.6. Polylogarithms. From this subsection, we shift our interest to the second main

object, finite multiple polylogarithms. In order to explain the second main result on the

shuffle relation among finite multiple polylogarithms, we first explain the shuffle relation

among usual multiple polylogarithms. The (one variable) multiple polylogarithm is the

following power series

Lik1,...,kr(T ) =
∑

l1,...,lr∈Z≥1

T l1+···+lr

lk11 (l1 + l2)k2 · · · (l1 + · · ·+ lr)kr
.

Here k1, . . . , kr are positive integers. A multiple polylogarithm Lik1,...,kr(T ) converges if

|T | < 1 and limT→1 Lik1,...,kr(T ) = Lik1,...,kr(1) = ζ(k1, . . . , kr) holds if kr > 1. Multiple

polylogarithms are related to many areas including number theory ([Bro], [DG], [Ter]),

topology ([LM]) and quantum theory ([BK], [Dri]), and has been studied by many authors

([BBBL], [Gon], [MPV], [Rac], to name a few examples).

One of the important properties of the multiple polylogarithms is the shuffle relation

(1.8) Lik(T )Lik′(T ) = Likxk′(T ),

where kx k′ denotes the shuffle product of indices k and k′, and Likxk′(T ) is the corre-

sponding finite sum of multiple polylogarithms. That is, kx k′ is a formal sum of indices

corresponding to zkxk′ , and Likxk′(T ) is the formal sum of multiple polylogarithms corre-

sponding to kx k′. For example, since we can calculate z2 x z3 = z(3,2) + 3z(2,3) + 6z(1,4),

the definition of Li(2)x(3)(T ) says that

Li(2)x(3)(T ) = Li(3,2)(T ) + 3Li(2,3)(T ) + 6Li(1,4)(T ).
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The shuffle relation among multiple polylogarithms is proved by using the iterated

integral expression of multiple polylogarithms:

Lik1,...,kr(T ) =

∫ T

0

dt

t
◦ · · · ◦ dt

t
◦ dt

1− t︸ ︷︷ ︸
k1

◦ · · · ◦ dt

t
◦ · · · ◦ dt

t
◦ dt

1− t︸ ︷︷ ︸
kr

.

Komori, Matsumoto and Tsumura [KMT, Theorem 2] gave a different proof of the shuffle

relation among multiple polylogarithms only using the partial fraction decomposition as

follows:

(1.9)
1

XαY β
=

β−1∑

τ=0

(
α− 1 + τ

τ

)
1

(X + Y )α+τY β−τ
+

α−1∑

τ=0

(
β − 1 + τ

τ

)
1

(X + Y )β+τXα−τ
.

Here α and β are positive integers. This is proved by differentiating both hand sides of

the equation in the case α = β = 1 by X at α times and Y at β times [Wei].

1.7. Finite polylogarithms. There is a finite sum analogue of the single polylogarithms,

which was introduced by Kontsevich [Kon] and Elbaz-Vincent and Gangl [EG]. For a

fixed prime p, Kontsevich considered a finite sum analogue of Li1(x) = − log(1 − x) as

a function on Z/pZ, which he called 11
2 -logarithm, and he proved its functional equation

and a cohomological interpretation of this functional equation.

On the other hand, Cathelineau [Cat1] introduced a certain “infinitesimal version” of

dilogarithms, and proved [Cat1, Theorèm 1] that the infinitesimal dilogarithms satisfy a

similar functional equation as that of finite logarithms. Moreover, Cathelineau extended

this result to higher infinitesimal polylogarithms, and as a byproduct Cathelineau [Cat2,

Corollarie 1] obtained the functional equation of an infinitesimal trilogarithm in three

variables, which contains 22-terms.

Kontsevich posed a question how to obtain a functional equation of finite dilogarithms.

Elbaz-Vincent and Gangl [EG, Theorem 5.12] proved that finite dilogarithms satisfy the

same functional equation of infinitesimal trilogarithms via the analogy of finite logarithms

and inifinitesimal dilogarithms.

Fix a prime p. Elbaz-Vincent and Gangl [EG] defined a finite analogue of polyloga-

rithms as follows:

£n(T ) :=
p−1∑

k=1

T k

kn
∈ Fp[T ].

Here n is a positive integer. £1(T ) is Kontsevich’s 11
2 -logarithms. Elbaz-Vincent and

Gangl [EG, PART II, 5] obtained functional equations and distribution relations of finite

polylogarithms £n(T ).
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On the other hand, it is known that Wojtkowiak [Woj, Proposition 4.4] showed that

Coleman’s p-adic polylogarithms [Col] satisfy the same functional equations of classical

polylogarithms. It was hoped that there would exist a variant of p-adic polylogarithms

whose certain derivative coincides with finite polylogarithms. This problem was solved by

Besser [Bes, Theorem 1.1]. Besser proved that the certain special values of the differential

of a certain Q-linear combination of the p-adic polylogarithm coincide with the certain

special values of finite polylogarithm.

1.8. Main result on the shuffle relation among finite multiple polylogarithms.

We have a natural question: how to define a multiple version of finite polylogarithms

satisfying the shuffle relation? In the second part of this thesis, we give an answer to this

question. That is, we define a multiple version of finite polylogarithms lik(T ) and prove

that there exists a finite analogue of the shuffle relation.

As in the case of finite multiple zeta values, we define a finite multiple polylogarithm

as an element in the following adélic ring B:

B :=

(
∏

p

Fp[T ]

)/(
⊕

p

Fp[T ]

)
.

Here, p runs through all the rational primes. Then B becomes a Q-algebra containing A
as a Q-subalgebra.

Next, for a non-negative integer r and an index k = (k1, . . . , kr) ∈ (Z≥1)r, we define a

finite multiple polylogarithm as follows:

lik(T ) = lik1,...,kr(T ) =

⎧
⎪⎨

⎪⎩

∑′

0<l1,...,lr<p

T l1+···+lr

lk11 (l1 + l2)k2 · · · (l1 + · · ·+ lr)kr
(r ≥ 1),

1 (r = 0).

Here,
∑′

denotes the sum over the terms whose denominators are prime to p. We also

denote such an element of B simply by fp omitting ( )p if there is no fear of confusion.

For instance, T p denotes an element of B whose p-component is T p ∈ Fp[T ]. Note that

if r = 1 then the p-component of lik(T ) coincides with the classical finite polylogarithms

£k(T ) ∈ Fp[T ].

Our second main result is the following:

Theorem 1.2 (=Theorem 3.11, [OY, Theorem 1.3]). For non-negative integers r, r′ and

indices k = (k1, . . . , kr) ∈ (Z≥1)r, k′ = (k′
1, . . . , k

′
r′) ∈ (Z≥1)r

′
, set k := k1 + · · ·+ kr, k′ :=

11



k′
1 + · · ·+ k′

r′. Then we have

lik(T )lik′(T ) ≡ likxk′(T ) (mod Rk+k′,k+k′−1).

Moreover, lik(T )lik′(T ) − likxk′(T ) ∈ Rk+k′,k+k′−1 can be calculated explicitly in terms of

lik(T ) and lik′(T ).

Here, likxk′(T ) is the formal sum of finite multiple polylogarithms corresponding to

kx k′, and Ra,b is a certain Q-vector subspace of B defined in Definition 3.9.

Taking the usual complex case into account, I think that the “correct” finite analogue of

multiple polylogarithm should coincide with the finite multiple zeta values at T = 1, and

satisfy the shuffle relation. Unfortunately, since we can prove that lik(1) = 0, our definition

is unsatisfactory. It is important, however, that our finite multiple polylogarithms satisfy

the above approximation of the shuffle relation. We hope that the study in this thesis

would be helpful to find a better definition.

Recently, Sakugawa and Seki introduced other types of finite multiple polylogarithms

with multi-variables [SS, Definition 3.8] as elements in a multi-variable version AZ[T1,...,Tr]

of B which coincides with B in the case of r = 1. Their finite multiple polylogarithms

evaluate the classical finite multiple zeta values when all variables are 1. They obtained

functional equations [SS, §3] of their finite multiple polylogarithms and calculated special

values [SS, §4] of their finite multiple polylogarithms. Moreover, they clarified the relation

between our finite multiple polylogarithms and their finite multiple polylogarithms [SS,

Proposition 3.26] and calculated special values of our finite multiple polylogarithms in

some cases.

The contents of this thesis are as follows. In Part 2, we discuss the finite multiple

zeta values associated to 2-colored rooted trees. In subsection 2.1, we give two examples

and prove some properties of finite multiple zeta values associated to 2-colored rooted

trees. We can see that the classical finite multiple zeta values and the finite multiple zeta

values of Mordell-Tornheim type are special cases of finite multiple zeta values associated

to 2-colored rooted trees. The key concept “harvestable” to prove our first main result

will be introduced in this subsection. In subsection 2.3, we prove our first main result.

In subsection 2.4, we give two proofs of the shuffle relation among finite multiple zeta

values. The first proof is the one given by Kaneko and Zagier, and the second is a new

proof given by our first main result.

In Part 3, we discuss the finite multiple polylogarithms. In subsection 3.1, we introduce

a variant ζ(i)A (k1, . . . , kr) of finite multiple zeta values and prove that ζ(i)A (k1, . . . , kr) is

expressed as a sum of finite multiple zeta values of the same weight. If i = 1, we see

easily that ζ(i)A = ζA, so ζ(i)A is a generalization of the classical finite multiple zeta values

12



in some sense. In subsection 3.2, we prove our second main result. In order to prove our

second result, we give the definition of finite multiple polylogarithms li(λ,µ,ν;T ) ∈ B
of type (λ,µ,ν) for indices λ,µ,ν. This is a common generalization of finite multiple

polylogarithms and a product of two finite multiple polylogarithms. In the subsection

3.3, we give proofs of some known facts on finite multiple zeta values. We use these facts

in the next subsection. In the subsection 3.4, we will give examples of the products of

two finite multiple polylogarithms of low depth. In the final subsection 3.5, we give an

algebraic interpretation of our second main result.

1.9. Terminology from graph theory. We quote terminology on the graph theory

from [Die], which will be used in the next section.

A graph is a pair G = (V,E) such that V is a finite set and E is a subset of the set of

2-element subsets of V . The elements of V are called vertices of G and the elements of E

are called edges of G. The set of vertices of a graph G is denoted by V (G), and the set of

edges set by E(G).

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. An edge {x, y}
is usually written as xy or yx. The set of all the edges in E at a vertex v is denoted by

E(v).

The degree deg(v) of a vertex v of G is the number #E(v) of edges at v. A branched

point is a vertex whose degree is larger than or equal to 3.

For a graph G = (V,E) and distinct vertices v0, . . . , vn (n ∈ Z≥1), a path P (v0, vn)

from v0 to vn is a subset

P (v0, vn) := {v0v1, v1v2, . . . , vn−1vn}

of E(G), and a cycle C is a subset

C := {v0v1, v1v2, . . . , vn−1vn, vnv0}

consisting of n+ 1 distinct edges of E(G).

A non-empty graph G = (V,E) is called connected if for any distinct two vertices of

V (G) there exists a path from one to another. A tree is a connected graph not containing

any cycles. Note that for any pair of vertices u and v in a tree, the path P (u, v) from u

to v is uniquely determined. The vertices of degree 1 in a tree are its terminals.

A pair X = (T, rtX) consisting of a tree T = (V,E) and a vertex rtX ∈ V is called a

rooted tree and we call the distinguished vertex rtX a root.

For a rooted tree X = (T, rtX) and vertices v, v′ ∈ V (T ), v is a child of v′ if vv′ ∈ E(T )

and the path P (rtX , v) contains the edge vv′.

13



Let e = xy be an edge of G = (V,E). By G/e we denote the graph obtained from

G by contracting the edge e into a new vertex ve, which becomes adjacent to all the

former neighbours of x and y. Formally, G/e is a graph (V ′, E ′) with vertex set V ′ :=

(V \ {x, y}) ∪ {ve} and edge set

E ′ := {vw ∈ E | {v, w} ∩ {x, y} = ∅} ∪ {vew | xw ∈ E \ {e} or yw ∈ E \ {e}}.

Here, ve is the new vertex.

Using these terminology, for a certain edge of a given 2-colored rooted tree, we define

the edge contraction of a 2-colored rooted tree.

Definition 1.3. For a 2-colored rooted tree X = (T, rtX , V•) and an edge e = v1v2 ∈ E

of T with v2 ∈ V◦, let T := T/e be the tree obtained from T by contracting e. Consider

the triple X := (T , rtX , V •) consisting of T ,

rtX :=

⎧
⎨

⎩
rtX if rtX ̸= v1 and v2,

ve if rtX = v1 or v2,

and

V • :=

⎧
⎨

⎩
V• if v1 ̸∈ V•,

(V• \ {v1}) ∪ {ve} if v1 ∈ V•.

Then X is a 2-colored rooted tree. X is called in this thesis the 2-colored rooted tree

obtained from X by contracting an edge e.

14



Part 2. On finite multiple zeta values

2. Finite multiple zeta value associated to 2-colored rooted trees

2.1. Finite multiple zeta value associated to 2-colored rooted trees. In this sub-

section, we will give two examples of 2-colored rooted trees and finite multiple zeta values

associated to them. These examples show that the finite multiple zeta value associated

to a 2-colored rooted tree is a generalization of the usual finite multiple zeta value and

the finite multiple zeta value of Mordell-Tornheim type. Next, we prove the three basic

properties of the finite multiple zeta values associated to 2-colored rooted trees. The first

and second properties are about contracting certain edges of 2-colored rooted trees and

the third is about changing the roots of the given 2-colored rooted trees. Using these

properties, we define the notion “harvestable” for a pair consisting of a 2-colored rooted

tree and an index on it. The proof of our first main theorem will be reduced to the case

when the pair is harvestable.

Example 2.1. We use diagrams to indicate 2-colored rooted trees X = (T, rtX , V•),

with symbols ◦ and • corresponding to the vertices in V◦ or V• which are not the root,

respectively, and we use the symbols " or ! whether the root is in V◦ or V•.

(i) Let X = (T, rtX , V•) be a 2-colored rooted tree and k an index on X as follows.

•
k1

•

•
kr

!

v1

v2

vr

vr+1

Here, ki := k(ei) and ei ∈ E is an edge of T and rtX = vr+1. If we set mi :=

mvi (1 ≤ i ≤ r + 1), since Lei(rtX , (mv)) = m1 + · · ·+mi (1 ≤ i ≤ r), we obtain

ζA(X, k) =
∑

m1,...,mr+1≥1
m1+···+mr+1=p

(m1 + · · ·+mr)
−kr · · · (m1 +m2)

−k2m−k1
1

=
∑

m1,...,mr≥1
m1+···+mr≤p−1

1

mk1
1 (m1 +m2)k2 · · · (m1 + · · ·+mr)kr

=
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

=ζA(k1, . . . , kr).
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Thus, the usual finite multiple zeta value coincides with the finite multiple zeta

value associated to the above 2-colored rooted tree.

(ii) Next, consider the following 2-colored rooted tree X = (T, rtX , V•) and the index

k on X.

•

k1
◦
✾✾

✾✾
✾✾

✾✾
•

k2

◦
✯✯
✯✯
✯✯
✯✯ •

kr
◦✆✆
✆✆
✆✆
✆✆

kr+1

!

v1

v2

vr

vr+1

Assume that rtX = vr+1 and ki ≥ 1(1 ≤ i ≤ r). Since Lei(rtX , (mv)) = mi (1 ≤
i ≤ r) and Ler+1(rtX , (mv)) = m1 + · · ·+mr, we obtain

ζA(X, k) =
∑

m1,...,mr+1≥1
m1+···+mr+1=p

m−k1
1 · · ·m−kr

r (m1 + · · ·+mr)
−kr+1

=
∑

m1,...,mr≥1
m1+···+mr≤p−1

1

mk1
1 · · ·mkr

r (m1 + · · ·+mr)kr+1

=ζMT
A (k1, . . . , kr; kr+1).

Thus we see that the finite multiple zeta value of Mordell-Tornheim type is a

special case of the finite multiple zeta value associated to the 2-colored rooted

trees.

Proposition 2.2. Let X = (T, rtX , V•) be a 2-colored rooted tree and k be an index on

X. Assume that there exists an edge e = v1v2 ∈ E satisfying that v2 is in V◦ and k(e) = 0.

Let X = (T , rtX , V •) be the 2-colored rooted tree obtained from X contracting e defined

in Definition 1.3. These situations can be written as the following figures.

!"#$%&'(T1
!"#$%&'(T2

❄⑧ ◦k(e)=0 contract e−−−−−→ !"#$%&'(T1
!"#$%&'(T2⑧❄

Let k : E → Z≥0 be the index on X defined by k(f) := k(f) for f ∈ E. Then we have

ζA(X, k) = ζA(X, k).
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Proof. Since k(e) = 0, we have

ζA(X, k) =
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

Le(rtX , (mv))
−k(e)

∏

f∈E\{e}

Lf (rtX , (mv))
−k(f)

=
∑

(mv)∈ZV •
≥1 s.t.∑

v∈V • mv=p

∏

f∈E

Lf (rtX , (mv))
−k(f)

=ζA(X, k),

which completes the proof. "

Proposition 2.3. Let X = (T, rtX , V•) be a 2-colored rooted tree and k an index on X.

Assume that there exist edges e = v1v2, f = v2v3 ∈ E satisfying that e and f are incident

at a vertex v2 ∈ V◦ with deg(v2) = 2. Let X = (T , rtX , V •) be the 2-colored rooted tree

obtained from X by contracting f defined in Definition 1.3. Let k : E → Z≥0 be the index

on X defined by, for g ∈ E,

k(g) :=

⎧
⎨

⎩
k(e) + k(f) if g = e,

k(g) otherwise.

These situations can be also written as the following figures.

!"#$%&'(T1
!"#$%&'(T2

❄⑧ ◦ ❄⑧
k(e) k(f) contract f−−−−−→ !"#$%&'(T1

!"#$%&'(T2
❄⑧ ❄⑧
k(e)+k(f)

Then we have

ζA(X, k) = ζA(X, k).

Proof. Since v is a vertex in V◦, we have

{v ∈ V• | e ∈ P (rtX , v)} = {v ∈ V• | e′ ∈ P (rtX , v)}.
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Therefore, we obtain

ζA(X, k) =
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

∏

e∈E

Le(rtX , (mv))
−k(e)

=
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

Le(rtX , (mv))
−(k(e)+k(f))

∏

g∈E\{e,f}

Lg(rtX , (mv))
−k(g)

=
∑

(mv)∈ZV •
≥1 s.t.∑

v∈V • mv=p

Le(rtX , (mv))
−k(e)

∏

g∈E\{e}

Lg(rtX , (mv))
−k(g)

=ζA(X, k),

which completes the proof. "

The following proposition, which is a generalization of [Kam, Lemma 3.1], is a key in

obtaining non-trivial relations among the classical finite multiple zeta values.

Proposition 2.4. For a tree T = (V,E), vertices v1, v2 ∈ V and a subset V• of V , let X1

(resp. X2) be the 2-colored rooted tree consisting of T , rtX1 = v1 (resp. rtX2 = v2) and

V•. Then we have

ζA(X1, k) = (−1)k(P (v1,v2))ζA(X2, k)

for an index k on X. Here, we set k(P (v1, v2)) :=
∑

e∈P (v1,v2)
k(e).

Proof. Consider the path P (v1, v2) from v1 to v2. If e ∈ P (v1, v2), V• is divided into two

subsets as follows:

V• = {v ∈ V• | e ∈ P (v1, v)} 1 {v ∈ V• | e ∈ P (v2, v)}.

Therefore, we have Le(v1, (mv)) = p− Le(v2, (mv)) for e ∈ P (v1, v2). On the other hand,

if e ̸∈ P (v1, v2), we see that

{v ∈ V• | e ∈ P (v1, v)} = {v ∈ V• | e ∈ P (v2, v)}.
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Thus, we have Le(v1, (mv)) = Le(v2, (mv)) for e ̸∈ P (v1, v2). Therefore, we obtain

ζA(X1, k)

=
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

∏

e∈P (v1,v2)

1

(p− Le(v2, (mv)))k(e)

∏

e ̸∈P (v1,v2)

1

Le(v2, (mv))k(e)

=(−1)
∑

e∈P (v1,v2)
k(e)

∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

∏

e∈P (v1,v2)

1

Le(v2, (mv))k(e)

∏

e ̸∈P (v1,v2)

1

Le(v2, (mv))k(e)

=(−1)k(P (v1,v2))ζA(X2, k),

which completes the proof. "

Example 2.5. Consider the 2-colored rooted tree X and the index k in Example 2.1

(ii) with rtX = vr+1. Then ζA(X, k) coincides with ζMT
A (k1, . . . , kr; kr+1). Let Y be the

2-colored rooted tree whose root is v1. Then we have ζA(Y, k) = ζMT
A (kr+1, k2, . . . , kr; k1).

Therefore, by Proposition 2.4, we have

ζMT
A (k1, . . . , kr; kr+1) = ζA(

′, k) = (−1)k(P (vr+1,v1))ζA(Y, k)

= (−1)k1+kr+1ζMT
A (kr+1, k2, . . . , kr; k1),

which is Kamano’s result [Kam, Lemma 3.1].

For the proof of our main theorem, we need the following definitions that the pair

consisting of a 2-colored rooted tree and an index on it is harvestable and that an index

on a 2-colored rooted tree is essentially positive.

Definition 2.6. Let X = (T, rtX , V•) be a 2-colored rooted tree and k an index on X.

We say that the pair (X, k) is harvestable if the following conditions on (X, k) hold.

(H1): The root rtX is a terminal of T . In particular, rtX is in V•.

(H2): deg(v) ≤ 2 for all v in V• and deg(v) ≥ 3 for all v in V◦.

(H3): If an edge e connects a branched point v in V◦ and a child of v in V•, k(e) is

positive.

Definition 2.7. For a 2-colored rooted tree X = (T, rtX , V•), an index k on X is essen-

tially positive if k(P (v, v′)) is positive for any vertices v ̸= v′ in V•.

Remark 2.8. If we delete the edges of 2-colored rooted trees which connect the branched

point nearest to the root, the 2-colored rooted tree decomposes into many parts. We take

the upper part, and the parts under the branched point again become 2-colored rooted
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trees satisfying the conditions (H1), (H2) and (H3) after adding new roots to each part.

We call this operation of taking the upper part as “harvest”, and this is the reason why

we call 2-colored rooted trees satisfying (H1), (H2) and (H3) as being harvestable.

By using Propositions 2.2, 2.3 and 2.4, we see in Proposition 2.9 that for a pair con-

sisting of a 2-colored rooted tree and an essentially positive index on it, there exists a

harvestable pair such that finite multiple zeta values associated to them coincides up to

sign.

Proposition 2.9. Let X = (T, rtX , V•) be a 2-colored rooted tree and k an essentially

positive index on X. Then, there exists a harvestable pair (Xh, kh) of the 2-colored rooted

tree Xh = (Th = (V (Xh), E(Xh)), rtXh
, V•(Xh)) and the index kh on Xh satisfying

(2.1) ζA(X, k) = (−1)kh(P (rtX ,rtXh
))ζA(Xh, kh).

We understand kh(P (rtX , rtXh
)) = 0 if rtX = rtXh

.

Proof. By using Propositions 2.2 and 2.3 to contract the edges one of whose end points

is in V◦ and k(e) = 0, and the edges connecting v′ ∈ V◦ with deg(v′) = 2, and again

using Proposition 2.2 to insert edges e′ with k(e′) = 0 and vertices in V◦ into vertices in

V• whose degree is greater than or equal to 3, we obtain a pair (X ′, k′) of a 2-colored

rooted tree X ′ and an index k′ on X ′ satisfying the conditions (H2), (H3) and that finite

multiple zeta values associated to them coincides. Further, by using Proposition 2.4 to

move the root rtX to a terminal, we obtain a desired harvestable pair (Xh, kh) satisfying

ζA(X, k) = (−1)kh(P (rtX ,rtXh
))ζA(Xh, kh), which completes the proof. "

Definition 2.10. For a 2-colored rooted tree X and an essentially positive index k on X,

we define a harvestable form of the pair (X, k) as the harvestable pair (Xh, kh) satisfying

Proposition 2.9.

Remark 2.11. For a 2-colored rooted tree X and an essentially positive index k on X,

a harvestable pair (Xh, kh) of (X, k) is not unique. For example, consider the following

2-colored rooted tree X = (T, rtX , V•) and an essentially positive index k on X.

• •!v1 rtX
v2

k1 k2
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Then, we can take the following two 2-colored rooted trees X1 = (T1, rtX1 , V•(X1)), X2 =

(T2, rtX2 , V•(X2)) and indices as harvestable forms of (X, k).

• •!
rtX1

v1 v2

k1 k2

•

◦❁
❁❁

❁❁
❁❁

❁ •

✂✂
✂✂
✂✂
✂✂

!

v1

rtX2

v2

k1 k2

0

2.2. First main result. In this subsection, we will prove our first main theorem (The-

orem 1.1). If the pair (X, k) consisting of a 2-colored rooted tree X and an essentially

positive index k on X is harvestable, our first main theorem will be proved by induction

on the sum of the index at the edges in paths from the branched point nearest to the root

to all terminals (Proposition 2.12). The general case will be deduced to the harvestable

case by using Proposition 2.9.

The next proposition is the harvestable case of our first main theorem.

Proposition 2.12. Let X = (T, rtX , V•) be a 2-colored rooted tree and k be an essentially

positive index on X. Assume that the pair (X, k) is harvestable. Then ζA(X, k) coincides

with the image ZA(w) of w ∈ H1 constructed by the following inductive method.

First, if (X, k) has no branched point, (X, k) coincides with the 2-colored rooted tree

in Example. In this case, take

w := zk1 · · · zkr .

Next, assume that (X, k) has n branched point (n ∈ Z≥1). Since (X, k) is a harvestable

pair, (X, k) has the following shape.)*+,-./0T1

)*+,-./0Tj )*+,-./0Ts

l1

lj

✫
✫
✫
✫
✫
✫

ls◦
k′

•
k1

•

•
kr

!

v′

v1

v2

vr

rtX

Here, r and s are positive integers and ki := k(ei) (1 ≤ i ≤ r), lj := k(fj) (1 ≤ j ≤
s), k′ := k(e′) for edges ei, fj and e′ of T and T1, . . . , Ts are subtrees of T . Then we take

w :=
( s
X
j=1

wj

)
xk′zk1 · · · zkr .
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Here, wj ∈ H1 (1 ≤ j ≤ s) are elements corresponding to the following harvestable pair

(Xj, k(j)). !"#$%&'(Tj

lj

!
uj

Note that since (X, k) is harvestable and k is essentially positive, (Xj, k(j)) is harvestable

and k(j) is essentially positive for any 1 ≤ j ≤ s. Further, since X has n branched points,

Xj has n− 1 branched points.

Proof. Let v′ ∈ V be the branched point nearest to the root rtX in all the branched points.

As (X, k) is harvestable, v′ is an element in V◦. Set S = S(X, k) :=
∑

e k(e), where e

runs through edges in paths from v′ to all terminals. If there exists no branched point,

we set S = 0. We prove the statement by the induction on S ≥ 0. If S = 0, as (X, k) is

harvestable, we see that ζA(X, k) coincides with that associated to the following 2-colored

rooted tree and the index on it with the root vr+1:

•
k1

•

•
kr

!

v1

v2

vr

vr+1

Therefore, from Example 2.1 (i), we have ζA(X, k) = ζA(k1, . . . , kr) = ZA(zk1 · · · zkr),
which completes the proof of the case S = 0. Next, assume that S > 0 and the statement

holds for all the non-negative integers less than S. The assumption S > 0 means that there

exists at least one branched point. Then the given 2-colored rooted tree X = (T, rtX , V•)

and the index k on X can be written as follows:)*+,-./0T1

)*+,-./0Tj )*+,-./0Ts

l1

lj

✫
✫
✫
✫
✫
✫

ls◦
k′

•
k1

•

•
kr

!

v′

v1

v2

vr

rtX
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Then, if we set

Mj :=
∑

v∈V• s.t.
fj∈P (rtX ,v)

mv = Lfj(rtX , (mv))

for 1 ≤ j ≤ s, by definition we have

ζA(X, k) =
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

r∏

i=1

1

Lei(rtX , (mv))ki
× 1

Le′(rtX , (mv))k
′

×
s∏

j=1

∏

e∈E(Tj)

1

Le(rtX , (mv))k(e)
× 1

M l1
1 · · ·M ls

s

.

By (1.5), we have

1

M l1
1 · · ·M ls

s

=
1

M1 + · · ·+Ms

(
1

M l1−1
1 M l2

2 · · ·M ls
s

+ · · ·+ 1

M l1
1 · · ·M ls−1

s−1 M
ls−1
s

)
.

Therefore, since Le′(rtX , (mv)) = M1 + · · ·+Ms, we obtain

ζA(X, k) =
s∑

j=1

ζA(X,αj).

Here, αj is an index on X defined by

αj(e) =

⎧
⎪⎪⎨

⎪⎪⎩

lj − 1 if e = fj,

k′ + 1 if e = e′,

k(e) otherwise,

and

ζA(X,αj) =
∑

(mv)∈ZV•
≥1 s.t.∑

v∈V• mv=p

r∏

i=1

1

Lei(rtX , (mv))ki
× 1

Le′(rtX , (mv))k
′+1

×
s∏

j=1

∏

e∈E(Tj)

1

Le(rtX , (mv))k(e)
× 1

M l1
1 · · ·M lj−1

j · · ·M ls
s

.

To use the induction hypotheses, we need to consider two cases whether (X,αj) is

harvestable or not.
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(i) First, consider the case that the pair (X,αj) is harvestable. This is the case when

lj > 1 or the child of v′ incident to fj is in V◦. In this case, the pair (X,αj) has

the following shape. )*+,-./0T1

)*+,-./0Tj )*+,-./0Ts

l1

lj−1

✫
✫
✫
✫
✫
✫

ls◦
k′+1

•
k1

•

•
kr

!

v′

v1

v2

vr

rtX

Since S(X,αj) = S(X, k)− 1 < S(X, k), by the induction hypotheses, we obtain

ζA(X,αj) = ZA

(( s
X
a=1
a̸=j

wa x w′
j

)
xk′+1zk1 · · · zkr

)
.

Here w′
j is the element of H1 corresponding to the following harvestable pair

(Xj, βj). !"#$%&'(Tj

lj−1

!
uj

Note that wj = w′
jx in this case.

(ii) Next, consider the case that the pair (X,αj) is not harvestable. This is the case

when lj = 1 and the child of v′ incident to fj is in V• because αj(fj) = lj − 1 = 0.

By using Proposition 2.2 to contract fj and insert edges e′ with αj(e′) = 0, we

obtain a harvestable form (Xh,αj,h) of (X,αj) as follows.)*+,-./0T1

)*+,-./0Tj )*+,-./0Ts

l1

lj−1

✫
✫
✫
✫
✫
✫

ls◦
0
•

k′+1
•

k1
•

•
kr

!

v′′

v′

v1

v2

rtX
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Since S(X,αj) = S(Xh,αj,h) = S(X, k)− 1 < S(X, k), by the induction hypothe-

ses, we obtain

ζA(X,αj) = ζA(Xh,αj,h) = ZA

(( s
X
a=1
a̸=j

wa x w′
j

)
x0zk′+1zk1 · · · zkr

)

= ZA

(( s
X
a=1
a̸=j

wa x w′
j

)
yxk′zk1 · · · zkr

)
.

Here w′
j is the element of H1 corresponding to the following harvestable pair

(X ′
j, βj). !"#$%&'(Tj

◦
0

!
uj

Note also that wj = w′
jy in this case.

Therefore, by the definition of the shuffle product, we obtain

ζA(X, k) =
s∑

j=1

ζA(X,αj) = ZA

(( s
X
j=1

wj

)
xk′zk1 · · · zkr

)
.

Therefore, w := (Xs
j=1 wj)xk′zk1 · · · zkr is the desired element in H1. "

Proof of Theorem 1.1. By Proposition 2.9, for a given pair (X, k) consisting of a 2-colored

rooted tree X and an essentially positive index k on X, there exists a harvestable pair

(Xh, kh) satisfying (2.1). Since the pair (Xh, kh) is harvestable, by Proposition 2.12,

the right hand side of (2.1) can be written explicitly as a Z-linear combination of the

usual finite multiple zeta values, so can ζA(X, k). This completes the proof of our main

theorem. "

Example 2.13. (i) For 1 ≤ i ≤ r, consider the following 2-colored rooted tree X

and the essentially positive index k on X.

•
k1 ◦❖

❖❖❖
❖❖ •

ki◦♦♦♦
♦♦♦

li
•

•
lr
!

v1 vi

vi+1

vr

vr+1
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Set rtX = vr+1. Since k is essentially positive, kj (1 ≤ j ≤ i) and lj (i+1 ≤ j ≤ r)

are positive. Then we have

ζA(X, k) =
∑

m1,...,mr≥1
m1+···+mr≤p−1

1

mk1
1 · · ·mki

i (m1 + · · ·+mi)li · · · (m1 + · · ·+mr)lr

=ZA((zk1 x · · ·x zki)x
lizli+1 · · · zlr),

which is Kamano’s result [Kam, Theorem 2.1]. In particular, if i = r, then we

obtain the case of finite multiple zeta values of Mordell-Tornheim type

ζA(X, k) =
∑

m1,...,mr≥1
m1+···+mr≤p−1

1

mk1
1 · · ·mkr

r (m1 + · · ·+mr)lr+1

=ZA((zk1 x · · ·x zkr)x
lr+1),

which is also Kamano’s result [Kam, Theorem 1.2].

(ii) Consider the following 2-colored tree X and the essentially positive index k on

X.

•
p1

•

••
pa−1

•

v1

v2

va−1

va

pa
❯❯❯❯

❯❯❯❯

•
q1

•

••
qb−1

•

v′1

v′2

v′b−1

v′b
qb✐✐✐✐
✐✐✐✐

•
r1

••

••
rc

!

v′′1

v′′2

v′′c

v′′c+1

Here, a, b and c are non-negative integers. Set rtX = v′′c+1. Since k is essentially

positive, px (1 ≤ x ≤ a), qy (1 ≤ y ≤ b) and rz (1 ≤ z ≤ c) are all positive. Then

we have

ζA(X, k) =
∑

0<l1<···<la
0<m1<···<mb

la+mb<n1<···<nc<p

1

lp11 · · · lpaa mq1
1 · · ·mqb

b n
r1
1 · · ·nrc

c

=ZA((zp1 · · · zpaxzq1 · · · zqb)zr1 · · · zrc),

which is a finite analogue of a result of Komori, Matsumoto and Tsumura [KMT,

Theorem 1].
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Remark 2.14. Since the only tool used to prove Proposition 2.12 is the partial fraction

decomposition (1.5), the analogous statement of Proposition 2.12 for the MZVs holds.

For example, we obtain a result

(2.2)
∑

0<l1<···<la
0<m1<···<mb

la+mb<n1<···<nc

1

lp11 · · · lpaa mq1
1 · · ·mqb

b n
r1
1 · · ·nrc

c

= Z((zp1 · · · zpa x zq1 · · · zqb)zr1 · · · zrc)

of Komori-Matsumoto-Tsumura [KMT, Theorem 1] by using our method. Here,

Z : H0 := Q+ yHx → R ; zk1 · · · zkr 2→ ζ(k1, . . . , kr)

is a Q-linear map. The left hand side of (2.2) can be regarded as a special value of the

multiple zeta function ζ(s;Ar) of the root system of type Ar

ζ(s;Ar) :=
∑

m1,...,mr≥1

∏

1≤i<j≤r+1

(mi + · · ·+mj−1)
−sij ,

which was first defined by Matsumoto and Tsumura in [MT]. Indeed, we have

∑

0<l1<···<la
0<m1<···<mb

la+mb<n1<···<nc

1

lp11 · · · lpaa mq1
1 · · ·mqb

b n
r1
1 · · ·nrc

c

=Z((zp1 · · · zpa x zq1 · · · zqb)zr1 · · · zrc)

=ζ((ki,j);Ar)

for

kij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pj−1 i = 1, 2 ≤ j ≤ a+ 1,

qj−(a+1) i = a+ 1, a+ 2 ≤ j ≤ a+ b+ 1,

rj−(a+b+1) i = 1, a+ b+ 2 ≤ j ≤ a+ b+ c+ 1,

0 otherwise.

2.3. Applications for shuffle relations among finite multiple zeta values. In this

subsection, using Theorem 1.1 and Proposition 2.4, we give another proof of the shuffle

relation among finite multiple zeta values, which was first proved by Kaneko and Zagier

in [KZ].

Corollary 2.15. ([KZ]) For positive integers k1, . . . , kr, l1, . . . , ls and elements w :=

zk1 · · · zkr , w′ := zl1 · · · zls ∈ H1, we have

ZA(w x w′) = (−1)l1+···+lsZA(zk1 · · · zkrzls · · · zl1).
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First, we give the proof of the shuffle relation due to Kaneko-Zagier. We introduce a

notation. If we are given a power series

f(T ) =
∞∑

n=0

anT
n,

we denote the coefficient of f at the degree k by

Coeff[f(T );T k] := ak.

Proof. Denote indices corresponding to words w = zk1 · · · zkr , w′ = zl1 · · · zls by k =

(k1, . . . , kr), l = (l1, . . . , ls). Note that
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

=
∑

0<i<p

Coeff[Lik(z); z
i]

and multiple polylogarithms satisfy the shuffle relation (1.8). Then we obtain

ZA(w x w′)

=
∑

0<n<p

Coeff[Lik(z)Lil(z); z
n]

=
∑

0<i,j<p
i+j<p

Coeff[Lik(z); z
i]Coeff[Lil(z); z

j]

=
∑

0<i,j<p
i+j<p

(
∑

0<m1<···<mr<0

1

mk1
1 · · ·mkr−1

r−1 i
kr

)⎛

⎝
∑

0<n1<···<ns−1<j

1

nl1
1 · · ·nls−1

s−1 j
ls

⎞

⎠

=
∑

0<i,j<p
i+j<p

(
∑

0<m1<···<mr<0

1

mk1
1 · · ·mkr−1

r−1 i
kr

)

×

⎛

⎝
∑

0<n1<···<ns−1<j

(−1)l1+···+ls

(p− n1)l1 · · · (p− ns−1)ls−1(p− j)ls

⎞

⎠

=
∑

0<i,j<p
i+j<p

(
∑

0<m1<···<mr<0

1

mk1
1 · · ·mkr−1

r−1 i
kr

)⎛

⎝
∑

j<ns−1<···<n1<p

(−1)l1+···+ls

jlsnls−1
s−1 · · ·nl1

1

⎞

⎠

=
∑

0<m1<···<mr−1<i<j<n2<···<ns<p

(−1)l1+···+ls

mk1
1 · · ·mkr−1

r−1 i
krjlsnls−1

s−1 · · ·nl1
1

=(−1)l1+···+lsZA(zk1 · · · zkrzls · · · zl1),

which completes the proof of the shuffle relation. "
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Next, we give a proof of the shuffle relation using Theorem 1.1.

Proof. Consider the following two 2-colored rooted trees X,X ′, whose roots are v and v′1,

and index k on X and X ′.

•
k1

•

•
kr−1

•

v1

v2

vr−1

vr

kr •▲
▲▲

▲▲
▲▲

•
l1

•

•
ls−1

•

!

v′1

v′2

v′s−1

v′s

ls22
22
22
2

v

•
k1

•

•
kr−1

•

v1

v2

vr−1

vr

kr •▲
▲▲

▲▲
▲▲

•
l1

•

•
ls−1

•

! v′1

v′2

v′s−1

v′s

ls22
22
22
2

v

Then, by Proposition 2.4, we have

(2.3) ζA(X, k) = (−1)k(P (v,v′1))ζA(X
′, k).

By Theorem 1.1, the left hand side of (2.3) coincides with

ZA(w x w′).

On the other hand, by Proposition 2.12, the right hand side of (2.3) coincides with

(−1)l1+···+lsZA(zk1 · · · zkrzls · · · zl1).

Therefore, we obtain the shuffle relation among finite multiple zeta values. "

Remark 2.16. The case r = s = 1, k1 = 1 and l1 = k− 1 for k > 1, the Proposition 2.15

says that

(2.4) ZA(z1 x zk−1) = −ZA(zk−1z1).

The right hand side of (2.4) is −ζA(k − 1, 1), which is equal to Bp−k by Hoffman’s result

[Hof2, Theorem 6.1]. Here Bp−k := (Bp−k)p ∈ A and Bn is the n-th Bernoulli number.

On the other hand, since

z1 x zk−1 = z1zk−1 +
∑

k1,k2≥1
k1+k2=k

zk1zk2 ,

the left hand side of (2.4) is equal to

ζA(1, k − 1) +
∑

k1,k2≥1
k1+k2=k

ζA(k1, k2).
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Therefore, by [Hof2, Theorem 4.4], we have
∑

k1,k2≥1
k1+k2=k

ζA(k1, k2) = −(ζA(k − 1, 1) + ζA(1, k − 1)) = 0.

This equality is equivalent to the sum formula for double finite multiple zeta values [SW1,

Theorem 1.4]. Indeed, by [SW1, Theorem 1.4] and [Hof2, Theorem 6.1], we have

∑

k1,k2≥1,ki≥2
k1+k2=k

ζA(k1, k2) = (−1)k+iBp−k =

⎧
⎨

⎩
−ζA(1, k − 1) if i = 1,

−ζA(k − 1, 1) if i = 2.
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Part 3. On finite multiple polylogarithms

3. Finite multiple polylogarithms

For non-negative integers a, b, c and l1, . . . , la,m1, . . . ,mb, n1, . . . , nc, we set

(3.1)

⎧
⎪⎪⎨

⎪⎪⎩

Li := l1 + · · ·+ li (0 ≤ i ≤ a),

Mj := m1 + · · ·+mj (0 ≤ j ≤ b),

Nk := n1 + · · ·+ nk (0 ≤ k ≤ c).

3.1. A variant of finite multiple zeta values. In this subsection, we define a variant

ζ(i)A of finite multiple zeta values. This variant turns out to be a sum of finite multiple

zeta values (Proposition 3.4), and will play an important role in the proof of our second

main theorem.

Definition 3.1. For an index k = (k1, . . . , kr) and 1 ≤ i ≤ r, we define a variant of finite

multiple zeta values as an element in A by

ζ(i)A (k) :=
∑′

0<l1,...,lr<p
(i−1)p<Lr<ip

1

Lk1
1 · · ·Lkr

r

.

Here, we set Lj := l1 + · · ·+ lj for 1 ≤ j ≤ r.

Note that ζ(1)A (k) coincides with ζA(k) by definition.

Remark 3.2. By setting l′i := p− li, we see that ζ(r+1−i)
A (k) = (−1)wt(k)ζ(i)A (k).

To explain that ζ(i)A can be expressed as a sum of ζA’s, we introduce more notation.

For a positive integer r, we set [r] := {1, . . . , r}. For positive integers r and s, set

Xr := {(l1, . . . , lr) ∈ [p− 1]r | (L1, p) = (L2, p) = · · · = (Lr, p) = 1},

Φr :=
r⊔

s=1

Φr,s, Φr,s := {φ : [r] → [s] : surjective | φ(a) ̸= φ(a+ 1) for all a ∈ [r − 1]},

Ys := {(A1, . . . , As) ∈ [p− 1]s | 0 < A1 < · · · < As < p}
and we define an integer δφ(i) by

(3.2) δφ(i) := #{a ∈ [i− 1] | φ(a) > φ(a+ 1)} (1 ≤ i ≤ r)

for φ ∈ Φr. Next, for x = (l1, . . . , lr) ∈ Xr, there exist

s ∈ [r], φ = φx ∈ Φr,s, (A1, . . . , As) ∈ Ys

uniquely satisfying that Li = l1 + · · · + li ≡ Aφ(i) (mod p) for i = 1, . . . , r. Indeed, s is

the number of distinct remainders of L1, . . . , Lr modulo p, A1, . . . , As is those remainders,
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and φ is the map defined by Li ≡ Aφ(i) (mod p) for i = 1, . . . , r. Moreover, using s,φ and

(A1, . . . , As) above, we define the map f : Xr →
⊔r

s=1(Φr,s × Ys) by sending x ∈ Xr to

(φ, (A1, . . . , As)).

Lemma 3.3. f is a bijection.

Proof. We construct the inverse map of f . For any φ ∈ Φr,s, (A1, . . . , As) ∈ Ys and i ∈ [r],

we define an integer li as follows:

(3.3) li :=

⎧
⎨

⎩
Aφ(1) (i = 1),

(Aφ(i) + δφ(i)p)− (Aφ(i−1) + δφ(i− 1)p) (2 ≤ i ≤ r).

Since

(3.4) δφ(i)− δφ(i− 1) =

⎧
⎨

⎩
0 if φ(i− 1) < φ(i),

1 if φ(i− 1) > φ(i),

we have 0 < li < p for all i. Indeed, if i = 1, by l1 = Aφ(1) and 0 < Aφ(1) < p, we have

0 < l1 < p. If 2 ≤ i ≤ p and φ(i) > φ(i−1), by (3.4) and 0 < Aφ(i−1) < Aφ(i) < p, we have

0 < li = Aφ(i) − Aφ(i−1) < p. If φ(i) < φ(i − 1), by (3.4) and 0 < Aφ(i) < Aφ(i−1) < p,we

have 0 < li = Aφ(i) − Aφ(i−1) + p < p. Moreover, since

l1 + · · ·+ li =Aφ(1) + (Aφ(2) + δφ(2)p)− Aφ(1)

+ (Aφ(3) + δφ(3)p)− (Aφ(2) + δφ(2)p)

+ · · ·+ (Aφ(i) + δφ(i)p)− (Aφ(i−1) + δφ(i− 1)p)

=Aφ(i) + δφ(i)p,(3.5)

the remainder of l1 + · · · + li modulo p is Aφ(i) and l1 + · · · + li is prime to p. Thus we

obtain a map g :
⊔r

s=1(Φr,s × Ys) → Xr by g(φ, (A1, . . . , As)) = (l1, . . . , lr).

We prove that g is the inverse of f . First, we prove g◦f = id. For any (l1, . . . , lr) ∈ Xr,

set

(φ, (A1, . . . , As)) := f(l1, . . . , lr) ∈ Φr,s × Ys

and

(l′1, . . . , l
′
r) := g(φ, (A1, . . . , As)) ∈ Xr.

By the definition of g, we have l′1+· · ·+l′i ≡ Aφ(i) (mod p) for i = 1, . . . , r. We prove l′i = li
for i = 1, . . . , r by induction on i. For i = 1, by the definition of g, we have l′1 = Aφ(1).

Since 0 < l1, Aφ(1) < p, we obtain l′1 = Aφ(1) = l1. Suppose that l′1 = l1, . . . , l′i−1 = li−1. By

(3.5), we see that l′1+ · · ·+ l′i ≡ Aφ(1) ≡ l1+ · · ·+ li (mod p). By the induction hypothesis

and 0 < li, l′i < p, we have l′i = li.
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Next, we prove f ◦ g = id. For any (φ, (A1, . . . , As)) ∈ Φr,s × Ys, set

(l1, . . . , lr) := g(φ, (A1, . . . , As)) ∈ Xr

and

(φ′, (A′
1, . . . , A

′
s)) := f(l1, . . . , lr) ∈ Φr,s × Ys.

By the definition of g, we have A′
φ(i) ≡ l1 + · · · + li = Aφ(i) (mod p). Then we have

(A′
1, . . . , A

′
s) = (A1, . . . , As). Therefore, by the definition of g, we have φ′ = φ. "

Next we define two maps

α : Xr → [r], β : Φr → [r]

as follows:

α(l1, . . . , lr) is defined to be the unique integer n satisfying (n− 1)p < l1 + · · ·+ lr < np,

β(φ) := δφ(r) + 1.

Using α and β, for 1 ≤ i ≤ r, we set

X i
r := α−1(i), Φi

r := β−1(i),

and Xφ := {x ∈ Xr | φx = φ} for φ ∈ Φr. Then we have

(3.6) X i
r =

⊔

φ∈Φi
r

Xφ

for 1 ≤ i ≤ r. Further, for φ ∈ Φi
r,s := Φi

r ∩ Φr,s, the composition

(3.7) Xφ
f−→ {φ}× Ys

pr2−−→ Ys

is a bijection.

The following is the main result in this subsection.

Proposition 3.4. For 1 ≤ i ≤ r and an index k = (k1, . . . , kr) in Ir, we have

ζ(i)A (k) =
∑

φ∈Φi
r

ζA

⎛

⎝
∑

φ(j)=1

kj, . . . ,
∑

φ(j)=s

kj

⎞

⎠ .
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Proof. By the definition of X i
r, (3.6) and (3.7), we obtain

ζ(i)A (k1, . . . , kr) =
∑

(l1,...,lr)∈Xi
r

1

lk11 (l1 + l2)k2 · · · (l1 + · · ·+ lr)kr
(definition of X i

r)

=
∑

φ∈Φi
r

∑

(l1,...,lr)∈Xφ

1

lk11 (l1 + l2)k2 · · · (l1 + · · ·+ lr)kr
(by (3.6))

=
∑

φ∈Φi
r

∑

0<A1<···<As<p

1

Ak1
φ(1) · · ·A

kr
φ(r)

(by (3.7))

=
∑

φ∈Φi
r

∑

0<A1<···<As<p

1

A
∑

φ(j)=1 kj
1 · · ·A

∑
φ(j)=s kj

s

=
∑

φ∈Φi
r

ζA

⎛

⎝
∑

φ(j)=1

kj, . . . ,
∑

φ(j)=s

kj

⎞

⎠ . "

Remark 3.5. By Proposition 3.4, we see that ζ(i)A (k) is a sum of finite multiple zeta values

of weight wt(k). If we denote the reverse index k := (kr, . . . , k1) of k = (k1, . . . , kr), using

Remark 3.2 and (−1)wt(k)ζA(k) = ζA(k), we see that ζ(r+1−i)
A (k) = (−1)wt(k)ζ(i)A (k) =

ζ(i)A (k).

Example 3.6. We present examples of Proposition 3.4 for r = 3, 4. Note that, since

ζ(1)A (k) = ζA(k) and ζ(r+1−i)
A (k) = ζ(i)A (k) (Remark 3.5), we may assume 2 ≤ i ≤ r+1

2 . We

write the terms of the right hand side in lexicographic order.

(i) For r = 3,

ζ(2)A (k1, k2, k3) =ζA(k1, k3, k2) + ζA(k2, k1, k3) + ζA(k2, k3, k1)

+ ζA(k3, k1, k2) + ζA(k1 + k3, k2) + ζA(k2, k1 + k3).

(ii) For r = 4,

ζ(2)A (k1, k2, k3, k4)

=ζA(k1, k2, k4, k3) + ζA(k1, k3, k2, k4) + ζA(k1, k3, k4, k2) + ζA(k1, k4, k2, k3)

+ ζA(k2, k1, k3, k4) + ζA(k2, k3, k1, k4) + ζA(k2, k3, k4, k1) + ζA(k3, k1, k2, k4)

+ ζA(k3, k1, k4, k2) + ζA(k3, k4, k1, k2) + ζA(k4, k1, k2, k3) + ζA(k1, k2 + k4, k3)

+ ζA(k1, k3, k2 + k4) + ζA(k1 + k3, k2, k4) + ζA(k1 + k3, k4, k2) + ζA(k1 + k4, k2, k3)

+ ζA(k2, k1 + k3, k4) + ζA(k2, k3, k1 + k4) + ζA(k3, k1 + k4, k2) + ζA(k3, k1, k2 + k4)

+ ζA(k1 + k3, k2 + k4).
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3.2. Second main result. In this subsection, we define FMPs li(λ,µ,ν;T ) of type

(λ,µ,ν) and prove our second main theorem using a method inspired by Komori, Mat-

sumoto and Tsumura [KMT]. li(λ,µ,ν;T ) is a generalization of both FMPs and products

of two FMPs.

Definition 3.7. For indices λ = (λ1, . . . ,λa),µ = (µ1, . . . , µb) and ν = (ν1, . . . , νc)

(a, b, c ∈ Z≥0), we define a FMP of type (λ,µ,ν) by

li(λ,µ,ν;T ) :=
∑′

0<l1,...,la<p
0<m1,...,mb<p
0<n1,...,nc<p

TLa+Mb+Nc

a∏

x=1

Lλx
x

b∏

y=1

Mµy
y

c∏

z=1

(La +Mb +Nz)
νz

∈ B.

Here we also set Lx := l1 + · · ·+ lx for 1 ≤ x ≤ a, My := m1 + · · ·+my for 1 ≤ y ≤ b and

Nz := n1 + · · ·+ nz for 1 ≤ z ≤ c.

Remark 3.8. By the definition of li(λ,µ,ν;T ), we have

li(λ,µ,ν;T ) = li(µ,λ,ν;T )

for any indices λ,µ,ν and

li(λ, ∅, ∅;T ) = li(∅,λ, ∅;T ) = li(∅, ∅,λ;T ) = liλ(T ),

li(λ, ∅,µ;T ) = li(∅,λ,µ;T ) = liλ•µ(T ), li(λ,µ, ∅;T ) = liλ(T )liµ(T ).

for any indices λ,µ.

To state our second main theorem, we introduce the ZA[T p]-submodule

R :=
∑

k:index

ZA[T
p]lik(T )

of B, and Q-subspaces R ⊃ Ra ⊃ Ra,b as follows.

Definition 3.9. For a non-negative integer a, we define a Q-subspace

Ra := ⟨ζA(k) · (T p)n · lik′(T ) | n ∈ Z≥0,wt(k) + wt(k′) = a⟩Q

of R. Then we have R =
∑∞

a=0 Ra. Moreover, for non-negative integers a and b ∈
{0, . . . , a}, we define a Q-subspace

Ra,b := ⟨ζA(k) · (T p)n · lik′(T ) | n ∈ Z≥0,wt(k) + wt(k′) = a,wt(k′) ≤ b⟩Q

of Ra. Then we have an increasing filtration

Ra,0 ⊂ Ra,1 ⊂ · · · ⊂ Ra,a−1 ⊂ Ra,a = Ra

of Q-vector spaces.
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Remark 3.10. Let P be the Q-vector space generated by the multiple polylogarithms:

P :=
∑

k : index

QLik(T ).

Then the shuffle relation (1.8) implies that P forms a Q-algebra. On the other hand, a

simple computation using (3.13) shows that

li1(T )li(1,1)(T ) = 3li(1,1,1)(T ) + ζA(2, 1)T
p + ζ(2)A (2, 1)T 2p

(See Example 3.24 (i) below). This suggests that the direct analogue
∑

k:index Qlik(T ) of

P is inadequate if we want a subalgebra of B, and that it is more natural to take ZA[T p]

as the coefficient ring. Such a consideration motivates the above definition of R, and in

fact, as we prove below (Corollary 3.14), R forms a ZA[T p]-subalgebra of B.

The second main theorem of this thesis is the following.

Theorem 3.11 ([OY, Theorem 1.3]). For indices k = (k1, . . . , kr),k′ = (k′
1, . . . , k

′
r′) with

k := wt(k) and k′ := wt(k′), we have

lik(T )lik′(T ) ≡ likxk′(T ) (mod Rk+k′,k+k′−1).

Moreover, lik(T )lik′(T ) − likxk′(T ) ∈ Rk+k′,k+k′−1 can be calculated explicitly from lik(T )

and lik′(T ).

To prove Theorem 3.11, we first show the following proposition.

Proposition 3.12. Let λ = (λ1, . . . ,λa), µ = (µ1, . . . , µb) and ν = (ν1, . . . , νc) be indices

(a, b, c ∈ Z≥0). Assume that λ,µ ̸= ∅. Then we have the following equality.

(3.8) li(λ,µ,ν;T )

= f(λ,µ,ν;T ) + f(µ,λ,ν;T )− g(λ,µ,ν;T )− g(µ,λ,ν;T ) + h(λ,µ,ν;T )

Here,

f(λ,µ,ν;T ) =
µb−1∑

τ=0

(
λa − 1 + τ

τ

)
li((λ1, . . . ,λa−1), (µ1, . . . , µb−1, µb − τ), (λa + τ) • ν;T ),

g(λ,µ,ν;T ) =

(
λa + µb − 1

λa

)(
a−1∑

j=1

ζ(j)A (λ1, . . . ,λa−1)(T
p)j

)
li(µ1,...,µb−1)•(λa+µb)•ν(T ),

and

h(λ,µ,ν;T ) = (−1)wt(µ)

(
a+b−1∑

i=1

ζ(i)A (λ ⋆ µ)(T p)i
)
liν(T ).
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Here, λ • µ and λ ⋆ µ are indices defined by

λ • µ := (λ1, . . . ,λa, µ1, . . . , µb), λ ⋆ µ := (λ1, . . . ,λa−1,λa + µb, µb−1, . . . , µ1).

The next lemma plays the most important role in the proof of Proposition 3.12.

Lemma 3.13 ([Wei] equation(2)). For indeterminates X and Y and positive integers α

and β, we have the following partial fraction decomposition:

1

XαY β
=

β−1∑

τ=0

(
α− 1 + τ

τ

)
1

(X + Y )α+τY β−τ
+

α−1∑

τ=0

(
β − 1 + τ

τ

)
1

(X + Y )β+τXα−τ
.

Proof of Proposition 3.12. First, we separate li(λ,µ,ν;T ) into two parts according to

whether La +Mb is prime to p or not:

(3.9) li(λ,µ,ν;T ) =

(
∑′

0<l•,m•,n•<p
p!La+Mb

+
∑′

0<l•,m•,n•<p
p|La+Mb

)
TLa+Mb+Nc

a∏

x=1

Lλx
x

b∏

y=1

Mµy
y

c∏

z=1

(La +Mb +Nz)
νz

.

Here we abbreviate
∑′

0<l1,...,la<p
0<m1,...,mb<p
0<n1,...,nc<p

to
∑′

0<l•,m•,n•<p
. The second term in (3.9) is calcu-

lated as

a+b−1∑

i=1

∑′

0<l•,m•,n•<p
La+Mb=ip

TLa+Mb+Nc

a∏

x=1

Lλx
x

b∏

y=1

Mµy
y

c∏

z=1

(La +Mb +Nz)
νz

=(−1)wt(µ)
a+b−1∑

i=1

(T p)i

×
∑′

0<l•,m•,n•<p
(i−1)p<La+mb+···+m2<ip

TNc

a−1∏

x=1

Lλx
x Lλa+µb

a

b−1∏

y=1

(La +mb + · · ·+my+1)
µy

c∏

z=1

N νz
z

,

by using the congruences La+mb+· · ·+my+1 ≡ −My (mod p) (1 ≤ y ≤ b−1). The reason

why the sum mb + · · · +my+1 has its indices written backwards is that they correspond

to l-terms in increasing index order, that is, if we put la+1 := mb, . . . , la+b−1 := m2, we
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obtain

(−1)wt(µ)
a+b−1∑

i=1

(T p)i

×
∑′

0<l•,m•,n•<p
(i−1)p<La+mb+···+m2<ip

TNc

a−1∏

x=1

Lλx
x Lλa+µb

a

b−1∏

y=1

(La +mb + · · ·+my+1)
µy

c∏

z=1

N νz
z

=(−1)wt(µ)
a+b−1∑

i=1

(T p)i
∑′

0<l1,...,la+b−1<p

TNc

a−1∏

x=1

Lλx
x Lλa+µb

a

b−1∏

y=1

L
µb−y
a+y

∑′

0<n1,...,nc<p

TNc

N ν1
1 · · ·N νc

c

=(−1)wt(µ)

(
a+b−1∑

i=1

ζ(i)A (λ ⋆ µ)(T i)p
)
liν(T )

=h(λ,µ,ν;T ).

Therefore, we see that the second term in (3.9) coincides with h(λ,µ,ν;T ).

Next, using Lemma 3.13 for (X, Y ) = (La,Mb) and (α, β) = (λa, µb), we calculate the

first term in (3.9) as follows:

µb−1∑

τ=0

(
λa − 1 + τ

τ

) ∑′

0<l•,m•,n•<p
p!La

TLa+Mb+Nc

a−1∏

x=1

Lλx
x

b−1∏

y=1

Mµy
y Mµb−τ

b (La +Mb)
λa+τ

c∏

z=1

(La +Mb +Nz)
νz

(3.10)

+
λa−1∑

τ=0

(
µb − 1 + τ

τ

) ∑′

0<l•,m•,n•<p
p!Mb

TLa+Mb+Nc

a−1∏

x=1

Lλx
x Lλa−τ

a

b−1∏

y=1

Mµy
y (La +Mb)

µb+τ
c∏

z=1

(La +Mb +Nz)
νz

.

(3.11)

Here, (3.10) is rewritten as follows:

∑′

0<l•,m•,n•<p
p!La,

=
∑′

0<l•,m•,n•<p

−
∑′

0<l•,m•,n•<p
p|La

.
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The first sum in the right hand side coincides with li((λ1, . . . ,λa−1), (µ1, . . . , µb−1, µb −
τ), (λa + τ) • ν;T ). Therefore, we obtain

µb−1∑

τ=0

(
λa − 1 + τ

τ

) ∑′

0<l•,m•,n•<p

TLa+Mb+Nc

a−1∏

x=1

Lλx
x

b−1∏

y=1

Mµy
y Mµb−τ

b (La +Mb)
λa+τ

c∏

z=1

(La +Mb +Nz)
νz

= f(λ,µ,ν;T ).

The second can be calculated as follows:

a−1∑

j=1

∑′

0<l•,m•,n•<p
La=jp

TLa+Mb+Nc

a−1∏

x=1

Lλx
x

b−1∏

y=1

Mµy
y Mµb−τ

b (La +Mb)
λa+τ

c∏

z=1

(La +Mb +Nz)
νz

(3.12)

=
a−1∑

j=1

(T p)j
∑′

0<l•,m•,n•<p
(j−1)p<La−1<jp

TMb+Nc

a−1∏

x=1

Lλx
x

b−1∏

y=1

Mµy
y Mλa+µb

b

c∏

z=1

(Mb +Nz)
νz

=

(
a−1∑

j=1

ζ(j)A (λ1, . . . ,λa−1)(T
p)j

)
li(µ1,...,µb−1)•(λa+µb)•ν(T ).

Moreover, recall that (1−x)−m =
∑∞

τ=0

(
m−1+τ

τ

)
xτ form ∈ Z≥0. Looking at the coefficients

of xµb − 1 in the product of (1− x)−λa and (1− x)−1, we have

(3.13)
µb−1∑

τ=0

(
λa − 1 + τ

τ

)
=

(
λa + µb − 1

µb − 1

)
=

(
λa + µb − 1

λa

)
.

Therefore, by (3.12) and (3.13), we obtain

µb−1∑

τ=0

(
λa + µb − 1

λa

) ∑′

0<l•,m•,n•<p
p|La

TLa+Mb+Nc

a−1∏

x=1

Lλx
x

b−1∏

y=1

Mµy
y Mµb−τ

b (La +Mb)
λa+τ

c∏

z=1

(La +Mb +Nz)
νz

= g(λ,µ,ν;T ).
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By the same calculation for (3.11), we obtain

λa−1∑

τ=0

(
λa + µb − 1

µb

) ∑′

0<l•,m•,n•<p
p!La

TLa+Mb+Nc

a−1∏

x=1

Lλx
x Lλa−τ

a (La +Mb)
µb+τ

b−1∏

y=1

Mµy
y

c∏

z=1

(La +Mb +Nz)
νz

= f(µ,λ,ν;T )− g(µ,λ,ν;T ).

Therefore, we obtain the desired formula. "

Proof of Theorem 3.11. By Proposition 3.4, we see that the variant ζ(i)A of finite multiple

zeta value is contained in ZA. Further, note that all terms in (3.8) have total weight

w := wt(λ) + wt(µ) + wt(ν), and all the terms in the 3rd, 4th and 5th sum on the right

hand side in (3.8) belong to Rw,w−1. Hence we have

li(λ,µ,ν;T )(3.14)

≡
µb−1∑

τ=0

(
λa − 1 + τ

τ

)
li((λ1, . . . ,λa−1), (µ1, . . . , µb−1, µb − τ), (λa + τ) • ν;T )

+
λa−1∑

τ=0

(
µb − 1 + τ

τ

)
li((λ1, . . . ,λa−1,λa − τ), (µ1, . . . , µb−1), (µb + τ) • ν;T )

=f(λ,µ,ν;T ) + f(µ,λ,ν;T )(3.15)

in Rw/Rw,w−1. Therefore, the main theorem is obtained from the same argument in

[KMT]. Namely, consider the Q-linear map

ZR : H −→ R; zk 2−→ lik(T ).

Then by equation (17) in [KMT], we have

ZR((zλ x zµ)zν)(3.16)

=
µb−1∑

τ=0

(
λa − 1 + τ

τ

)
ZR((zλ1 · · · zλa−1 x zµ1 · · · zµb−1

zµb−τ )zλa+τzν)

+
λa−1∑

τ=0

(
µb − 1 + τ

τ

)
ZR((zλ1 · · · zλa−1zλa−τ x zµ1 · · · zµb−1

)zµb+τzν).

Starting from ZR(zν) = liν(T ) = li(∅, ∅,ν;T ), we can prove the congruence ZR((zλ x
zµ)zν) ≡ li(λ,µ,ν;T ) in Rw/Rw,w−1 by induction on dep(λ) + dep(µ), by using (3.14)

and (3.16). In particular, we obtain

liλ(T )liµ(T ) = li(λ,µ, ∅;T ) ≡ ZR(zλ x zµ) = liλxµ(T ) (mod Rw,w−1).
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Moreover, since each step in the induction is explicit by (3.8), lik(T )lik′(T ) − likxk′(T )

can be calculated explicitly from lik(T ) and lik′(T ). This completes the proof of Theorem

3.11. "
The following is a corollary of Proposition 3.12.

Corollary 3.14. R forms a ZA[T p]-subalgebra of B.

3.3. Known results on finite multiple zeta values. In this subsection, we give the

proofs of the facts on finite multiple zeta values. These facts will be used in the next

subsection.

Proposition 3.15 ([Hof2, Theorem 4.3], [Zha, Lemma 2.2]). For a positive integer k, we

have ζA(k) = 0.

Proof. This proposition follows from the fact that
p−1∑

n=1

1

nk
≡ 0 mod p

for all primes p satisfying p− 1 ̸ |k. "
For the proof of the following proposition about finite double zeta values, we set

ζ⋆A(k1, . . . , kr) :=
∑

1≤m1≤···≤mr≤p−1

1

mk1
1 · · ·mkr

r

as an element in A and we call this finite multiple zeta star values (FMZSVs) of weight

k1 + · · · + kr and depth r. Note that ζ⋆A(k) can be written as a sum of finite multiple

zeta values and finite multiple zeta values can be written as an alternative sum of finite

multiple zeta star values. That is, it can be seen easily that

(3.17) ζ⋆A(k1, . . . , kr) =
∑

k′

ζA(k
′), ζA(k1, . . . , kr) =

∑

k′

(−1)σ(k
′)ζ⋆A(k

′),

where k′ runs over all indices of the forms

k′ = (k1"k2" · · ·"kr)

in which square will be filled by comma , or plus + and σ(k′) denotes the number of + used

in k′. For example, by Proposition 3.15, we have ζ⋆A(k1, k2) = ζA(k1, k2) + ζA(k1 + k2) =

ζA(k1, k2).

Proposition 3.16 ([Hof2, Theorem 6.1], [Zha, Theorem 3.1]). For positive integers k1, k2,

we have

ζA(k1, k2) = (−1)k2
(
k1 + k2

k1

)
Bp−(k1+k2)

k1 + k2
.
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Proof. We see that

ζ⋆A(k1, k2) =
p−1∑

m2=1

1

mk2
2

m2∑

m1=1

1

mk1
1

≡
p−1∑

m2=1

1

mk2
2

m2∑

m1=1

mp−1−k1
1

=
p−1∑

m2=1

1

mk2
2

1

p− k1

p−1−k1∑

j=0

(
p− k1

j

)
Bjm

p−k1−j
2

=
1

p− k1

p−1−k1∑

j=0

(
p− k1

j

)
Bj

p−1∑

m2=1

mp−k1−k2−j
2 .

Note that the first congruence comes from the Fermat’s little theorem and the second

equality comes from the Faulharber’s formula. Further, if j ̸= p− k1 − k2, then we have

p−1∑

m2=1

mp−k1−k2−j
2 ≡ 0.

Therefore, we obtain

∑

0<m1≤m2<p

1

mk1
1 mk2

2

≡ 1

p− k1

(
p− k1

p− k1 − k2

)
Bp−k1−k2(p− 1).

Furthermore, we see that

p− 1

p− k1

(
p− k1

p− k1 − k2

)
≡ 1

k1

(
p− k1
k2

)

≡ 1

k1

(p− k1)(p− k1 − 1) · · · (p− k1 − k2 + 1)

k2!

≡ 1

k1

(−k1)(−k1 − 1) · · · (−k1 − k2 + 1)

k2!

=(−1)k2
(k1 + 1) · · · (k1 + k2 − 1)

k2!

=
(−1)k2

k1 + k2

(
k1 + k2

k2

)
,

which leads us to the desired formula. "

Proposition 3.17 ([Hof2, Theorem 4.5], [Zha, Lemma 3.3]). If k = (k1, . . . , kr) is an

index, then we have ζA(k) = (−1)wt(k)ζA(k).

42



Proof. By transforming ni → p− ni for each i, we have

ζA(k) =
∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

=
∑

0<p−n1<···<p−nr<p

1

(p− n1)k1 · · · (p− nr)kr

= (−1)k1+···+kr
∑

0<nr<···<n1<p

1

nkr
r · · ·nk1

1

= (−1)wt(k)ζA(k),

which is the desired formula. "

We end this section by proving that finite multiple zeta values with weight 4 are all 0.

Proposition 3.18. If k is an index with weight 4, then we have ζA(k) = ζ⋆A(k) = 0.

To prove this proposition, we need two propositions. The first proposition says that

the summation of finite multiple zeta (star) values over the symmetric group is zero.

Proposition 3.19 ([Hof2, Theorem 4.4]). If k = (k1, . . . , kr) is a non empty index, then

we have
∑

σ∈Sr

ζA(kσ(1), . . . , kσ(r)) =
∑

σ∈Sr

ζ⋆A(kσ(1), . . . , kσ(r)) = 0.

In particular, if k = {k}r for positive integers k, r, we see that ζA({k}r) = ζ⋆A({k}r) = 0.

The second proposition is the duality theorem for FMZSVs. To state this duality

theorem, we need to define the Hoffman dual of indices.

Definition 3.20. The Hoffman dual of an index k of weight k is the index k∨ uniquely

determined by

A(k) 1 A(k∨) = {1, 2, . . . , k − 1}.

Here, A(k) := {k1, k1 + k2, . . . , k1 + · · ·+ kr−1} if k = (k1, . . . , kr). For example, we see

that

{r}∨ = {1}r, (k1, k2)
∨ = ({1}k1−1, 2, {1}k2−1), (k1, {1}k2−1)∨ = ({1}k1−1, k2)

for positive integers k1, k2, r.

Proposition 3.21 ([Hof2, Theorem 4.6]). For an index k, we have ζ⋆A(k) = −ζ⋆A(k
∨).
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Proof of Proposition 3.18. If dep(k) = 1, ζA(k) = ζ⋆A(k) = 0 by Proposition 3.15. If

dep(k) = 4, ζA(k) = ζ⋆A(k) = 0 by Proposition 3.19. If dep(k) = 2, ζA(k) = ζ⋆A(k) = 0

by Proposition 3.16. If dep(k) = 3, ζ⋆A(k) = −ζ⋆A(k
∨) = 0 by Proposition 3.21 and

dep(k∨) = 2. This leads to ζA(k) = 0 for an index k of depth 3. "

3.4. Examples of products of finite multiple polylogarithms. In this subsection,

using Proposition 3.12, we give examples of the products of finite multiple polylogarithms

whose total depth is smaller than or equal to 5.

First, we express the product of two finite polylogarithms by a sum of finite multiple

polylogarithms. In this case, thanks to Proposition 3.15, the variant ζ(i)A of finite multiple

zeta values do not appear. Therefore, this case coincides with the product of two classical

polylogarithms.

Proposition 3.22. For positive integers k and l, we have

lik(T )lil(T ) = li(k)x(l)(T ).

Next, we express the product of a finite polylogarithm and a finite double polyloga-

rithm. In this case, the terms of the variant ζ(i)A of finite multiple zeta values appear in

general.

Proposition 3.23. For positive integers k, l1 and l2, we have

lik(T )li(l1,l2)(T )− li(k)x(l1,l2)(T ) = (−1)l1+l2(ζA(k + l2, l1)T
p + ζ(2)A (k + l2, l1)T

2p).

Note that we see that lik(T )li(l1,l2)(T ) = li(k)x(l1,l2)(T ) if k+ l1 + l2 is even since ζA(k+

l2, l1) = ζA(l1, k + l2) = 0 by Proposition 3.16.

Example 3.24. We describe all the products of a finite polylogarithm and a finite double

polylogarithm whose total weight is 5 as follows.

(i) li1(T )li(1,1)(T )− li(1)x(1,1)(T ) = ζA(2, 1)T p + ζ(2)A (2, 1)T 2p = ζA(2, 1)T p(1− T p).

(ii) li1(T )li(1,2)(T )− li(1)x(1,2)(T ) = 0.

(iii) li1(T )li(2,1)(T )− li(1)x(2,1)(T ) = 0.

(iv) li2(T )li(1,1)(T )− li(2)x(1,1)(T ) = 0.

(v) li3(T )li(1,1)(T )− li(3)x(1,1)(T ) = ζA(4, 1)T p(1− T p).

(vi) li2(T )li(2,1)(T )− li(2)x(2,1)(T ) = −ζA(3, 2)T p(1− T p).

(vii) li2(T )li(1,2)(T )− li(2)x(1,2)(T ) = −ζA(4, 1)T p(1− T p).

(viii) li1(T )li(3,1)(T )− li(1)x(3,1)(T ) = ζA(2, 3)T p(1− T p).

(ix) li1(T )li(2,2)(T )− li(1)x(2,2)(T ) = ζA(3, 2)T p(1− T p).

(x) li1(T )li(1,3)(T )− li(1)x(1,3)(T ) = ζA(4, 1)T p(1− T p).
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Further, we express the product of two finite double polylogarithms.

Proposition 3.25. For positive integers k1, k2, l1, l2, we have

li(k1,k2)(T )li(l1,l2)(T )− li(k1,k2)x(l1,l2)(T )

=(−1)l1+l2(ζA(k1, k2 + l2, l1)T
p + ζ(2)A (k1, k2 + l2, l1)T

2p + ζ(3)A (k1, k2 + l2, l1)T
3p)

+
l2−1∑

τ=0

(
k2 − 1 + τ

τ

)
(−1)l1+l2−τ (ζA(k1 + l2 − τ, l1)T

p + ζ(2)A (k1 + l2 − τ, l1)T
2p)lik2+τ (T )

+
k2−1∑

τ=0

(
l2 − 1 + τ

τ

)
(−1)l1(ζA(k1, k2 − τ + l1)T

p + ζ(2)A (k1, k2 − τ + l1)T
2p)lil2+τ (T ).

Example 3.26. (i) We have

li(1,1)(T )
2 − li(1,1)x(1,1)(T )

=(ζA(1, 2, 1)T
p + ζ(2)A (1, 2, 1)T 2p + ζ(3)A (1, 2, 1)T 3p)

+ (ζA(2, 1)T
p + ζ(2)A (2, 1)T 2p)li1(T )− (ζA(1, 2)T

p + ζ(2)A (1, 2)T 2p)li1(T )

=2ζA(2, 1)T
p(1− T p)li1(T ).

Note that the second equality is due to that ζA(1, 2, 1), ζ
(2)
A (1, 2, 1) and ζ(3)A (1, 2, 1)

are sums of finite multiple zeta values of weight 4 by Example 3.6 (i) and there-

fore they are all zero since finite multiple zeta values with weight 4 vanish by

Proposition 3.18, ζ(2)A (2, 1) = −ζA(2, 1) by Remark 3.2, ζA(1, 2) = −ζA(2, 1) by

Proposition 3.17 and ζ(2)A (1, 2) = −ζA(1, 2) = ζA(2, 1) by Remark 3.2 and Propo-

sition 3.17.

(ii) We have

li(1,1)(T )li(1,2)(T )− li(1,1)x(1,2)(T )

=− (ζA(1, 3, 1)T
p + ζ(2)A (1, 3, 1)T 2p + ζ(3)A (1, 3, 1)T 3p)

− (ζA(3, 1)T
p + ζ(2)A (3, 1)T 2p))li1(T ) + (ζA(2, 1)T

p + ζ(2)A (2, 1)T 2p)li2(T )

− (ζA(1, 2)T
p + ζ(2)A (1, 2)T 2p)li2(T )

=2ζA(2, 1)T
p(1− T p)li2(T ).

Also note that the second equality comes from ζ(2)A (1, 3, 1) = 2(ζA(1, 1, 3) +

ζA(3, 1, 1)) + (ζA(2, 3) + ζA(3, 2)) by Example 3.6 (i), ζA(1, 3, 1) = ζA(1, 1, 3) +

ζA(3, 1, 1) = ζA(2, 3)+ζA(3, 2) = 0 by Proposition 3.17, ζ(3)(1, 3, 1) = −ζA(1, 3, 1)

and this is 0 by Remark 3.2 and Proposition 3.17, ζA(3, 1) = ζ(2)A (3, 1) = 0
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by Remark 3.2 and Proposition 3.18, ζ(2)A (2, 1) = −ζA(2, 1) by Remark 3.2,

ζA(1, 2) = −ζA(2, 1), ζ(2)(1, 2) = −ζA(1, 2) = ζA(2, 1) by Proposition 3.17 and

Remark 3.2.

(iii) We have

li(1,1)(T )li(2,1)(T )− li(1,1)x(2,1)(T )

=− (ζA(1, 2, 2)T
p + ζ(2)A (1, 2, 2)T 2p + ζ(3)A (1, 2, 2)T 3p)

− (ζA(2, 2)T
p + ζ(2)A (2, 2)T 2p)li1(T )− (ζA(1, 3)T

p + ζ(2)A (1, 3)T 2p)li1(T )

=− ζA(1, 2, 2)T
p(1− T p)(1 + T p).

The second equality also comes from ζ(2)A (1, 2, 2) = 2ζA(2, 1, 2) + (ζA(1, 2, 2) +

ζA(2, 2, 1)) + (ζA(3, 2) + ζA(2, 3)) by Example 3.6 (i), ζA(2, 1, 2) = ζA(1, 2, 2) +

ζA(2, 2, 1) = ζA(3, 2)+ζA(2, 3) = 0 by Proposition 3.17, ζ(3)A (1, 2, 2) = −ζA(1, 2, 2)

by Example 3.6 (i), ζA(2, 2) = ζ(2)A (2, 2) = 0 and ζA(1, 3) = ζ(2)A (1, 3) = 0 by

Proposition 3.18 and Remark 3.2.

At the end of this subsection, we give products of a finite polylogarithm and a finite

triple polylogarithm.

Proposition 3.27. For positive integers k, l1, l2, l3, we have

lik(T )li(l1,l2,l3)(T )− li(k)x(l1,l2,l3)(T )

=(−1)l1+l2+l3(ζA(k + l3, l2, l1)T
p + ζ(2)A (k + l3, l2, l1)T

2p + ζ(3)A (k + l3, l2, l1)T
3p)

+
k−1∑

τ=0

(
l3 − 1 + τ

τ

)
(−1)l1+l2(ζA(k1 − τ + l2, l1)T

p + ζ(2)A (k1 − τ + l2, l1)T
2p)lil3+τ (T )

−
(
k + l3 − 1

l3

)
(ζA(l1, l2)T

p + ζ(2)A (l1, l2)T
2p)lik+l3(T ).

Example 3.28. (i) We have

li1(T )li(1,1,1)(T )− li(1)x(1,1,1)(T )

=− (ζA(2, 1, 1)T
p + ζ(2)A (2, 1, 1)T 2p + ζ(3)A (2, 1, 1)T 3p)

+ (ζA(2, 1)T
p + ζ(2)A (2, 1)T 2p)li1(T )− (ζA(1, 1)T

p + ζ(2)A (1, 1)T 2p)li2(T )

=ζA(2, 1)T
p(1− T p).

The second equality comes from the facts that ζA(2, 1, 1), ζ
(2)
A (2, 1, 1), ζ(3)A (2, 1, 1)

are all zero since they are sums of finite multiple zeta values of weight 4 by
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Example 3.6 (i) and finite multiple zeta values of weight 4 are zero by Proposition

3.18, ζ(2)A (2, 1) = −ζA(2, 1) by Remark 3.2, ζ(2)A (1, 1) = ζA(1, 1) = 0 by Remark

3.2 and Proposition 3.16.

(ii) We have

li1(T )li(1,1,2)(T )− li(1)x(1,1,2)(T )

=ζA(3, 1, 1)T
p + ζ(2)A (3, 1, 1)T 2p + ζ(3)A (3, 1, 1)T 3p

+ (ζA(2, 1)T
p + ζ(2)A (2, 1)T 2p)li2(T )− (ζA(1, 1)T

p + ζ(2)A (1, 1)T 2p)li3(T )

=ζA(2, 1)T
p(1− T p) + ζA(3, 1, 1)T

p(1− T p)(1 + T p).

The second equality is due to ζ(2)A (3, 1, 1) = 2ζA(1, 3, 1)+(ζA(3, 1, 1)+ζA(1, 1, 3))+

(ζA(4, 1) + ζA(1, 4)) by Example 3.6 (i), ζA(1, 3, 1) = ζA(3, 1, 1) + ζA(1, 1, 3) =

ζA(1, 4) + ζA(4, 1) = 0 by Proposition 3.17, ζ(3)A (3, 1, 1) = −ζA(3, 1, 1), ζ
(2)
A (2, 1) =

−ζA(2, 1), ζ
(2)
A (1, 1) = ζA(1, 1) by Remark 3.2, ζA(1, 1) = 0 by Proposition 3.16.

(iii) We have

li1(T )li(1,2,1)(T )− li(1)x(1,2,1)(T )

=(ζA(2, 2, 1)T
p + ζ(2)A (2, 2, 1)T 2p + ζ(3)A (2, 2, 1)T 3p)

+ (ζA(3, 1)T
p + ζ(2)A (3, 1)T 2p)li1(T )− (ζA(1, 2)T

p + ζ(2)A (1, 2)T 2p)li2(T )

=− ζA(1, 2)T
p(1− T p)li2(T ).

The second equality is due to ζ(2)A (2, 2, 1) = 2ζA(2, 1, 2)+(ζA(2, 2, 1)+ζA(1, 2, 2))+

(ζA(3, 2) + ζA(2, 3)) by Example 3.6 (i), ζA(2, 1, 2) = ζA(2, 2, 1) + ζA(1, 2, 2) =

ζA(3, 2) + ζA(2, 3) = 0 by Proposition 3.17, ζ(2)A (3, 1) = ζA(3, 1) = 0 by Remark

3.2 and Proposition 3.18, ζ(2)A (1, 2) = −ζA(1, 2) by Remark 3.2.

(iv) We have

li1(T )li(2,1,1)(T )− li(1)x(2,1,1)(T )

=(ζA(2, 1, 2)T
p + ζ(2)A (2, 1, 2)T 2p + ζ(3)A (2, 1, 2)T 3p)

− (ζA(2, 2)T
p + ζ(2)A (2, 2)T 2p)li1(T )− (ζA(2, 1)T

p + ζ(2)A (2, 1)T 2p)li2(T )

=ζA(2, 1)T
p(1− T p)li2(T ).

The second equality is due to ζA(2, 1, 2) = 0 by Proposition 3.17, ζ(2)A (2, 1, 2) =

2(ζA(2, 2, 1) + ζA(1, 2, 2)) + (ζA(3, 2) + ζA(2, 3)) by Example 3.6 (i), ζA(2, 2, 1) +

ζA(1, 2, 2) = ζA(3, 2)+ζA(2, 3) = 0 by Proposition 3.17, ζ(3)A (2, 1, 2) = −ζA(2, 1, 2)
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and this is 0 by Remark 3.2 and Proposition 3.17, ζA(2, 2) = ζ(2)A (2, 2) = 0 by

Remark 3.2 and Proposition 3.18.

(v) We have

li2(T )li(1,1,1)(T )− li(2)x(1,1,1)(T )

=− (ζA(3, 1, 1)T
p + ζ(2)A (3, 1, 1)T 2p + ζ(3)A (3, 1, 1)T 3p)

+ (ζA(3, 1)T
p + ζ(2)A (3, 1)T 2p)li1(T ) + (ζA(2, 1)T

p + ζ(2)A (2, 1)T 2p)li2(T )

− 2(ζA(1, 1)T
p + ζ(2)A (1, 1)T 2p)li3(T )

=− ζA(3, 1, 1)T
p(1− T p)(1 + T p) + ζA(2, 1)T

p(1− T p)li2(T ).

The second equality is due to ζ(2)A (3, 1, 1) = 2ζA(1, 3, 1)+(ζA(3, 1, 1)+ζA(1, 1, 3))+

(ζA(4, 1) + ζA(1, 4)) by Example 3.6 (i), ζA(1, 3, 1) = ζA(3, 1, 1) + ζA(1, 1, 3) =

ζA(4, 1) + ζA(1, 4) = 0 by Proposition 3.17, ζ(3)A (3, 1, 1) = −ζA(3, 1, 1), ζ
(2)
A (2, 1) =

−ζA(2, 1) by Remark 3.2, ζ(2)A (3, 1) = ζA(3, 1) = 0 by Remark 3.2 and Proposition

3.18, ζ(2)A (1, 1) = ζA(1, 1) = 0 by Remark 3.2 and Proposition 3.16.

3.5. An algebraic interpretation. In this section, we will give an algebraic interpre-

tation of our second main theorem (Theorem 3.11). Note that by Corollary 3.14, we

have

(3.18) Ra1,b1 · Ra2,b2 ⊂ Ra1+a2,b1+b2

for all a1, a2, b1, b2 with a1 ≥ b1 ≥ 0 and a2 ≥ b2 ≥ 0.

Definition 3.29. For non-negative integers a and b ∈ {0, . . . , a}, we define Q-vector

spaces

Ra,b := Ra,b/Ra,b−1

and set

R :=
⊕

a≥b≥0

Ra,b.

Note that R has a natural Q-algebraic structure induced from (3.18).

Definition 3.30. We define a Q-vector space S by

S :=
⊕

k,k′:indices

Qukvk′ .

Here uk and vk′ are indeterminates associated to k and k′. We define the product on S
by the usual product of Q, the stuffle product for uk and the shuffle product for vk′ , i.e.,
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for a, b ∈ Q and indices k1,k2,k′
1,k

′
2,

(auk1vk′
1
) · (buk2vk′

2
) := ab(uk1 ∗ uk2)(vk′

1
x vk′

2
).

Then (S, ·) is a Q-algebra and we call S the shuffle-stuffle algebra over Q.

An algebraic interpretation of our main theorem is as follows.

Corollary 3.31. The Q-linear homomorphism

ϕ : S → R ; ukvk′ 2→ ζA(k)lik′(T )

is a Q-algebra homomorphism.

Proof. Note that finite multiple zeta values satisfy the stuffle relation. For any elements

ζA(k1)(T p)n1 lik′
1
(T ) ∈ Ra1,b1 and ζA(k2)(T p)n2 lik′

2
(T ) in Ra2,b2 (n1, n2, a1, a2, b1, b2 ∈ Z≥0

with a1 ≥ b1 ≥ 0 and a2 ≥ b2 ≥ 0), we have the following equality by Theorem 3.11 and

the stuffle relation of finite multiple zeta values:

ζA(k1)(T
p)n1 lik′

1
(T ) · ζA(k2)(T

p)n2 lik′
2
(T ) =ζA(k1)ζA(k2)(T

p)n1(T p)n2 lik′
1
lik′

2
(T )

=ζA(k1 ∗ k2)(T
p)n1+n2 lik′

1xk′
2
(T )

∈Ra1+a2,b1+b2 .

This completes the proof. "
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Comb. 58 (2008), Article B58d.

[LM] T. Q. T. Le and J. Murakami, Kontsevich’s integral for the Homfly polynomial and relations

between values of the multiple zeta functions, Topology Appl. 62 (1995), 193–206.

51



[Mat] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, Number theory

for the millennium, II (Urbana, IL, 2000), 417–440, A K Peters, Natick, MA, 2002.

[Mor] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33 (1958),

368–371.

[Mur] H. Murahara, Derivation relations for finite multiple zeta values, preprint, arXiv:1512.08696v2.

[MPV] Hoang Ngoc Minh, M. Petitot and J. Van Der Hoeven, Shuffle algebra and polylogarithms,

Discrete Math. 225 (2000), 217–230.

[MT] K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated to semisimple Lie

algebras I, Ann. Inst. Fourier 56 (2006), 1457–1504.

[On] M. Ono, Finite multiple zeta values associated to 2-colored rooted trees, submitted to The

Journal of Number Theory.

[OY] M. Ono and S. Yamamoto, Shuffle product of finite multiple polylogarithms, Manuscripta Math-

ematica, 152 (2017), 153–166.

[Oy] K. Oyama, Ohno’s relation for finite multiple zeta values, preprint, arXiv:1506.00833v1.

[Rac] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l’unité, Publ. Math.
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