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Chapter 1

Introduction

1.1 Background

In this dissertation, we consider a two-dimensional motion of a liquid film of a viscous and
incompressible fluid flowing down an inclined plane under the influence of the gravity and
the surface tension on the interface. The motion can be mathematically formulated as a free

boundary problem for the incompressible Navier—Stokes equations.

Y

Figure 1.1: Sketch of a thin liquid film flowing down an inclined plane

We assume that the domain Q(t) occupied by the liquid at time ¢ > 0, the liquid surface
['(t), and the rigid plane 3 are of the forms

Qt) = {(z,y) €eR* | 0 <y < ho +n(x,1)},
U(t) = {(z,y) € R* | y = ho +n(z,1)},
¥ = {(z,y) € R?| y = 0},

where hg is the mean thickness of the liquid film and 7n(z,t) is the amplitude of the liquid
surface. Here we choose a coordinate system (z,y) so that z axis is down and y axis is



normal to the plane. The motion of the liquid is described by the velocity u = (u,v)T and
the pressure p satisfying the Navier-Stokes equations

(1.1.1)

p(ut + (u - V)u) =V P+ pg(sina,—cosa)l in Q(t), t >0,
V-u=0 in Q(t), t >0,

where
P=—pl+2uD

is the stress tensor,
1
D= 5(Du + (Du)")

is the deformation tensor, Du is the Jacobian matrix of w, I is the unit matrix, p is a constant
density of the liquid, g is the acceleration of the gravity, « is the angle of inclination, and u
is the shear viscosity coefficient. The dynamical and kinematic boundary conditions on the

liquid surface are

(11.2) { Pn=—-pm+oHn on I(t), t>0,

e+ un, —v=0 on I['(t), t>0,
where n is the unit outward normal vector to the liquid surface, that is,

1
—_./,U7]'T’
S

Do is a constant atmospheric pressure, o is the surface tension coefficient, and H is the mean

n —

curvature of the liquid surface, that is,

H— (77_> |
VIitm/a
The boundary condition on the rigid plane is the non-slip condition

(1.1.3) u=0 on X, t>0.

(1.1.1)—(1.1.3) have a laminar steady solution of the form

_ pgsina

1.1.4 — 0
(1.1.4) n =0, o

(2hoy —y?), v=0, p=po— pgcosa(y— ho),

which is called the Nusselt flat film solution (see [24]). Throughout this dissertation, we
assume that the flow is downward [yp-periodic or approaches asymptotically this flat film
solution at spacial infinity.

Concerning the instability of this laminar flow, there are vast research literatures from
the physical and engineering points of view. The first investigation of the wave motion
of thin film including the effect of the surface tension was provided by Kapitza [16]. In
particular, he considered the case where the liquid film flows down a vertical wall, that is,



the case o = 7. Yih [40] first formulated the linear stability problem of the laminar flow

of the liquid film flowing down an inclined plane as an eigenvalue problem for the complex
phase velocity, more specifically, the Orr-Sommerfeld problem although he neglected the
effect of the surface tension. Benjamin [4] took into account the effect of the surface tension

and showed that the critical Reynolds number REemamin = 3L by expanding the normal

mode solution in powers of y. Later, Yih [41] showed the same condition by expanding the
normal mode solution in powers of the aspect ratio of the film which will be denoted by
0 in this dissertation. An approach taking into account the nonlinearity was first given by
Mei [21] and Benney [5]. While Mei considered the gravity waves, Benney considered the
capillary-gravity waves and he recovered Benjamin’s and Yih’s linear stability theories.
Using the mean thickness of the liquid Ay, the characteristic scale of the streamwise
direction [y, and the typical amplitude of the liquid surface ay, Benney introduced two non-
dimensional parameters
ho )
d=—, e=—.
lo ho
It is to be noted that we do not determine a characteristic scale [y in x a priori because
lp is a typical wavelength of a nontrivial wave pattern which arises as a consequence of
a destabilization and [, itself is an object of scientific interest. While the destabilization
appears theoretically as a long wave instability in the case 6 — 0, which corresponds to
the case [y — o0, [y is often determined experimentally by observing waves generated by an
external vibrator. As for more details of the long wave instability, see [31]. Benney derived

the following single nonlinear evolution equation

(L15) e =AM + 6 (B(0)1ea +C(n)12)
+ 0> (D(M)Nawa + EE ) NaTza + €7 F(n)13)
+ 6% (G Mazn + EH (NNanaws + €L ()02, + 2T (0)12000 + €K (n)03)
+0(Y),



where

(

A(n) = =2(1 +en)?,

8
B(n) = ——R(1 + en)° 1+en)?
(1) 15R( + en) +3tana( +en)?,
16
- 1 5 1 2
C(n) 5R( +en) _'_—tanoz( +en)?,

2 40 R
I D) = ~2(1 -+ en)t = TR en) 4 o (L e,

63 63 tan o
Br) = =2 (14 en)? — DR +em) + S (1 e
F(n) = —14(1 +en)? — %R%l +en)® + 6—;%(1 +¢en)3,
2
\G<O) - _gsi\fa a 15i67R a %tarioz + iiggg tia a ;3;?7’22?{3

by using a perturbation expansion of the solution (u, v, p) with respect to ¢ under the thin
film regime 0 < 1. Here, R is the Reynolds number, W is the Weber Number.

Thereafter, several authors have followed Benney’s approach. We note that if W = O(1),
then the effect of the surface tension does not appear up to the term of O(6%) in (1.1.5). Since
Benney considered the case W = O(1) and calculated the terms up to O(6?), the effect of the
surface tension was omitted in his stability analysis. Consequently, his results showed that
linearly unstable waves grow more rapidly in the nonlinear range. Nakaya [22] computed
the terms up to O(6®) and showed that the surface tension has a stabilization effect in the
development of the monochromatic waves. On the other hand, Gjevik [13] incorporated
the effect of the surface tension into the equation by assuming the condition W = O(62)
and investigated the growth of an initially unstable periodic surface perturbation and its
nonlinear interaction with the higher harmonics. Their results imply that the surface tension
plays an important role in investigating the stability of surface waves, which have already
been pointed out by Kapitza [16]. We remark that the condition W = O(§72) holds for many
kinds of fluid such as water and alcohol at normal temperature. Moreover, several authors
extended Benney’s results to the three-dimensional case. Roskes [27] calculated the terms up
to O(6%) and investigated the interactions between two-dimensional and three-dimensional
weakly nonlinear waves on the liquid film under the condition W = O(1), which implies that
he did not consider the effect of the surface tension. Atherton and Homsy [2] and Lin and
Krishna [19] calculated the terms up to O(d) and O(8?), respectively, under the condition
W = O(672), namely, they took the effect of the surface tension in the equation in three-
dimensional case. Furthermore, while the case where R — R, = O(1) had been considered,
Topper and Kawahara [36] derived approximate equations under the conditions W = O(62)
and R — R, = O(d). More details or a list of useful references about a physical aspect of the
thin film approximation can be found in [1, 8, 9, 10, 11, 15, 18, 20, 25].

Concerning a mathematical analysis of the problem, Teramoto [33] showed that the initial

7



value problem to the Navier—Stokes equations (1.1.1)—(1.1.3) has a unique solution globally
in time under the assumptions that the Reynolds number and the initial data are sufficiently
small (see also [34]). Nishida, Teramoto, and Win [23] showed the exponential stability of the
Nusselt flat film solution under the assumptions that the angle of inclination is sufficiently
small and the flow is downward periodic in addition to the assumptions in [33]. Furthermore,
Uecker [37] studied the asymptotic behavior of the solution as ¢ — oo in the case of = €
R and showed that the perturbation of the Nusselt flat film solution decays like the self-
similar solution of the Burgers equation under the assumptions that the initial data are
sufficiently small and R < R.. However, they did not consider the § scaling because they

non-dimensionalized x and y components by using the same unit length hy.

1.2 Aim of the present study

Under the weekly nonlinear regime, we rewrite (1.1.5) as

8

2
+ 0285(77779036 + 77926) + 3 W 537733$(E:L‘ = O<53 + 625 —+ 6(52),
3sin o

(1.2.1) ne + 2(1 4 en)*n,

where R, is the critical Reynolds number defined by

501
‘" 4tana
and C] and C5 are the constants defined by
32 40 R
=-D(0)=2+—-R>*— —
@ O =2+ &0~ Bhana
16 2
Cy=-C(0)=—R - :
2 (0) ) tan o

Here, R. differs from Benjamin’s critical Reynolds number RZeamin hecause Benney [5]
defined Reynolds number by using the speed of the Nusselt flat film solution on the liquid
surface, whereas Benjamin [4] used the average speed of the solution. In what follows, we
adopt this constant R, according to Benney. Many approximate equations are obtained
from (1.2.1) by assuming that parameters €, W, and R have appropriate orders in §. In the
following, we assume R < R, unless we note in particular. Moreover, let us set

(1.2.2) n(x,t) = ((z — 2t, et).

1. Burgers equation
Assuming W; < W < §7'W, in (1.2.1), we have

8
N + 2n, + denn, — 1_5(Rc — R)ne = 0(52>-



Plugging (1.2.2) in the above equation and passing to the limit e = 6 — 0, we obtain

I1. Burgers equation with a fourth order dissipation term
Assuming W = §72W, in (1.2.1), we have

2
8 R, — R)0nuy + = —— We

_ 2
15( 3sina OMazzz = O(07).

N + 21y + 4enm, —

Plugging (1.2.2) in the above equation and passing to the limit e = 6 — 0, we obtain

8 2 W
I1I. Burgers equation with dlspersion and nonlinear terms
Assuming W; < W < Wy in (1.2.1), we have

8
M+ 20, + 4enne — —(Re — R)0Mue + C16Nawa + Co20 (e + 02) + 26200, = O(6%).

15
Plugging (1.2.2) in the above equation, assuming € = ¢, and neglecting the terms of O(4%),
we obtain
(1.2.5) G+ 40 — (R — R)Cow + 6{C1Craw + C2(Claw + C2) +2¢%¢,} = 0.

IV. Burgers equation with fourth order dissipation, dispersion, and nonlinear
terms

Assuming W = §~'W, in (1.2.1), we have

8

+ 015277xxx + C256<7]771$ + 77;3) + 28 77 Nz + 5

N + 21y + 4enm, —

3 sin
Plugging (1.2.2) in the above equation, assuming ¢ = ¢, and neglecting the terms of O(5%),
we obtain
8

sin o

We remark that (1.2.5) and (1.2.6) are higher order approximate equations to the Burgers
equation (1.2.3). If R > R, then (1.2.4) is the Kuramoto—Sivashinsky equation (see [17],
29], and [30]). If R.—R = 6R > 0, then we obtain the é-independent KdV-Burgers equation
(see [14])

(1.2.7) ¢ +4¢¢, — %gm + C1Cowzr =0



by plugging (1.2.2) in (1.2.1) and passing to the limit ¢ = §> — 0 under the assumption
W, < W < W,. Moreover if R, — R = R < 0, we obtain the d-independent KdV-

Kuramoto—Sivashinsky equation (see [36])

SR 2 W

. CQ?ZECEQT
3 sin o

by plugging (1.2.2) in (1.2.1) and passing to the limit ¢ = 62 — 0 under the assumption

=0

W = 6§ 'W,. Moreover, by assuming € = 1, that is, the strongly nonlinear case and W =
6 >W and neglecting the terms of O(6?), we obtain the so-called Benney equation (see [13])

SR oW
(1+1n)*n, (14 n)°n, (1 +n)377mH :

2
1.2. = | —Z(1+n)? S— —

3 Jtan «

Our aim is to give a mathematically rigorous justification of these thin film approximations
by establishing error estimates between the solution of the Navier-Stokes equations (1.1.1)-
(1.1.3) and those of the approximate equations (1.2.3)—(1.2.6), which will be performed in
Chapter 4. More specifically, we will estimate a norm of the difference between the solution
n° of Navier—Stokes equations and the solution n*P of approximate equations (1.2.3)—(1.2.6)
and show that a norm goes to 0 as 6 — 0. To our knowledge, this is the first rigorous
justification of a thin film approximation in the sense of comparing the solution of the
Navier—Stokes equations with those of the approximate equations. We remark that Bresch
and Noble [7] justified the shallow water model by proving that remainder terms converge
to 0 as 0 — 0 (see also [6]). Moreover, Giacomelli and Otto [12] justified a lubrication
approximation in the sense that an equilibrium contact angle is preserved throughout the
evolution for a Darcy flow. As for more details of the lubrication approximation, see [25, 26].
Furthermore, Shih and Shen [28] and Sun and Shen [32] justified a thin film approximation
for linear equations with analytic initial data.

In order to carry out the justification, the most difficult task is to derive a uniform
estimate for the solution of the Navier—Stokes equations with respect to  in the thin film
regime § < 1. In Chapter 3, we derive a uniform estimate for the solution with respect to
0 when the Reynolds number, the angle of inclination, and the initial date are sufficiently
small under the conditions O(1) < W < O(§7?), « = O(1), and z € T or R. We remark
that Bresch and Noble [7] have already derived a uniform estimate for the solution with
respect to § by assuming W = O(672), R = O(8), a = O(\/9), # € T, and that initial
data are sufficiently small. Their assumptions on R and « are too restrictive when we
consider the asymptotic behavior of the solution as 6 — 0. Moreover, they assumed ¢ = 9
and excluded the case of ¢ = 1, so that their uniform estimate cannot be applied to the
justification for the Benney equation (1.2.9). Therefore, our results are not included in their
works. We note that we cannot just yet justify the Kuramoto—Sivashinsky equation, the -
independent KdV-Burgers equation (1.2.7), and the KdV-Kuramoto—Sivashinsky equation
(1.2.8) because without the assumption R < R. we have not yet obtain a uniform estimate
in ¢ for the solution.

10



1.3 Preliminaries
1.3.1 Notations

We put
Q=G x(0,1), I'=Gx{y=1},

where G is the flat torus T = R/Z or R. For a Banach space X, we denote by || - ||x the
norms in X. For 1 < p < oo, we put

[ullr = llullr@y,  llull = llullz; fuler = lul Dllzre),  ulo = JulLe.

We denote by (-, -)o and (-, -)p the inner products of L*(Q2) and L?(T'), respectively. For s > 0,
we denote by H*(Q2) and H*(T") the L? Sobolev spaces of order s on 2 and T', respectively.
The norms of these spaces are denoted by || - ||s and | - |s. For a function u = u(x,y) on 2, a

Fourier multiplier P(D,) (D, = —i0,) is defined by

Z P(n)i,(y)e*™* in the case G =T,

(P(Do)u)(w,y) = 3"
/ P(&)a(€, y)e*™emd¢ in the case G =R,

R

where )
ﬁn(y) = / U(JT, y)e—27rinx dﬂ?, a(g’ y) — / U(l’, y)e—27ri§:cdx
0 R

are the Fourier coefficient and the Fourier transform in x, respectively. We put
Vs = (00,,0,)", As=Vs-Vs.
For operators A and B, we denote by

[A,B] = AB — BA

07 f () = /fxz

f < g means that there exists a non-essential positive constant C' such that f < Cg holds.

the commutator. We put

1.3.2 Basic inequalities
We will prove the following lemmas in Appendix.

Lemma 1.3.1. (Korn’s inequality) There exists a constant K independent of § such that for
any 0 <6 <1 and u = (u,v)T satisfying

Uy +v, =0 in
u=v=0 on X,

11



we have

// (0%l + up + 002 + 6°v2)dady < K // (26%u + (uy + 6%v,)* + 20%07 ) dady.
Q Q

Remark 1.3.2. Teramoto and Tomoeda [35] proved that the best constant of K is 3. Note

that in the case of § = 1, this inequality is well-known.

Lemma 1.3.3. (Trace theorem) For 0 < 0 < 1, we have

1
|FIo + 011Dl 2 F15 S NI+ 03[ fall? + 11 £yl
Remark 1.3.4. This trace theorem is also well-known in the case of 6 = 1.

Lemma 1.3.5. If f(z,0) =0, then we have

[fllzee S WAl =+ (1 fzyl-

Lemma 1.3.6. For any integer k > 0, we have

10z (af)Il < Nlallz 105 £ + (l0zall + 105ay DAL+ [1£:1),
10z (ab ) S Nallzo 1Bl o 95 I + 1Bl o= (105 all + 10Ray D LFI + Il fel)
+ llallze (0700l + 1025y DAL+ 1121)-

Lemma 1.3.7. For any integer k > 1, we have

0z, al Il < llawll <110z~ £Il + (10zall + l10zay DAL + 1£21D)-

12



Chapter 2

Main results

In this chapter, we rewrite the problem in a non-dimensional form, transform the problem in
a time dependent domain to a problem in a time independent domain by using an appropriate

diffeomorphism, and give our main theorems in this dissertation.

2.1 Reformulation of the problem
2.1.1 Nondimensional form

We seek a stationary solution (u, v, p,7) to the system (1.1.1)—(1.1.3) of the following form

v="0(y), uw=u(y), p=0ply), n=0.

Plugging these into (1.1.1)—(1.1.3), we have

y

Ly, = pUU, — pgsin o in 0<y<hy,
Uyy — Dy + pUT, = pgcosa in 0 <y < hy,
v, =0 in 0<y<hy,
u, =0 on y = hyg,
P — 210, = po on y=hy,

| u=0v=0 on y=0.

Solving the above boundary value problem, we obtain the Nusselt flat film solution (1.1.4).
We proceed to consider fluctuations on a laminar stationary motion. We use prime sign

to represent fluctuations, that is,
u=u+tu, v=v+v, p=p+p, n=1o
and rewrite (1.1.1)—(1.1.3) as

plug + (0 + w)uy + v(ly + uy)) + pe = plee +uyy) in Q), t>0,
(2.1.1) p(vr + (T + w)vg +vvy) + py = (Ve + Vyy) in Q(t), t>0,
Uy +v, =0 in Q(t), t>0,

13



(
(P = 2413 ) 110 + 1Ty + 1y + o)
= pgcosa(y —hg)n, — ——— on ['(t), t>0,
(1 +mn3)?
(2.1.2) —p(y + wy + vy — p + 200,
= —pgcosaly — hy) + Plaa -~ on I'(t), t>0,
(1+n2)2
k17t+(ﬂ+u)77;,;—v:() on I'(t), t>0,
(2.1.3) u=v=0 on X, t>0

where the prime sign is dropped in the notation.
We proceed to rewrite (2.1.1)—(2.1.3) in a non-dimensional form. We rescale the indepen-

dent and dependent variables by
T = lela Yy = hoy/7 = tUtla
n=aoy, u=clou, v=clpr', p=chy,

where

h? si h )
2%7 Vo= U, to=r

I = o =2y —y? Py,=pghosina.
Putting these into (2.1.1)—(2.1.3) and dropping the prime sign in the notation, we obtain

Uo
oud + ((u+eu’) - Vi) ud + (ul - Vi)u

2 1
(2.1.4) T2 Vep— A’ =0 in Q.(1), 1>0,

Vs ul=0 in Q.(t), t >0,

(Ds(eu’ + @) — epI)n®

1 62W -
(2.1.5) _ <_ en+ 2 il 3)n5 on T.(t), t>0,
tan o sina (1 + (em,)?)2
n+ (1= (en)® +eu)n, —v =0 on T.(t), t >0,
(2.1.6) =0 on X, t>0,
where

u’ = (u, 5U)T, u = (ﬂ,O)T, u=2y— y2,

Dif = {Vsl) + (ValFM)") m? = (~edn )T,

and

14



are the Reynolds number and the Weber number. In this scaling, the liquid domain €Q.(t)
and the liquid surface [';(¢) are of the forms

Q.(t) ={(z,y) eR?* |0 <y < 1+en(zt)},
Te(t) ={(v,y) €R? |y =1+ en(z,t)}.

2.1.2 Properties of a diffeomorphism

Next, we transform the problem in the moving domain €2.(¢) to a problem in the fixed domain
Q2 by using an appropriate diffeomorphism & : 2 — Q_(¢) defined by

(2.1.7) ®(z,y,t) = (z,y(1 +en(z,y, 1)),

where 77 is an extension of 1 to {2. We need to choose the extension 7 carefully and in this
dissertation we adopt the following extension. For ¢ € H*(I'), we define its extension b to
Q by

~

< Z 1+ ((5nzb1n— y)y)4e2ﬁm in the case G =T,
/ 1+ (65((15) y)y)4627ri£$d§ in the case G = R.
R J—

By the definition, it is easy to see that
(2.1.9) Fd(x,1) = 0ld(x,0)=0  for j=1,2,3.

As usual, this extension operator has a regularizing effect so that ¢ € H st3 (Q2). However, if
we use such a regularizing property, then we need to pay the cost of a power of §. Moreover,

in this extension, d, corresponds to 69,. More precisely, we have the following lemma.

Lemma 2.1.1. Let i and j be non-negative integers such that j < 4. Then, for the extension
(2.1.8) we have

(2.1.10) 18,0501 < 671057 o,
(2.1.11) 105096 L < 0[O @)1

If, in addition, i + j > 1, then

(2.1.12) 100561 < 6772|| Dal T2 ).

Proof. We first prove (2.1.12) in the case G = T. Since di.¢ = di¢, it is sufficient to show
109011* < 621 |D, "~ 2¢|2. Moreover, without loss of generality, we can assume ¢y = 0.
Therefore, we rewrite (2.1.8) as

QZ;(JZ, y) = Z f(én(l - y)y)qgne%rinz»
n#0

15



where f(2) 1= ; we easily obtain

s In view of [f9)(2)] S £

J
|on}’
(1 + Jon(1 —y)y|)i+

Hence, by Parseval’s identity we see that

'—f (on(1 )y)‘S for j=0,1,...,4.

1
- - 1
AP < (WW/ __qy
10001 5 2 on16nF || G Ty = gpato
5 1
S o [ e
n;o o (1+]2]/2)20F
<Y 16nF [P = 85 DL,
n#0
Therefore, (2.1.12) holds.
Moreover, by using
l6n|
Tz 1 |on|
—dz < —
o T+ 25 = 2

in above calculation, we also obtain (2.1.10).
As for (2.1.11), by Schwarz’ inequality and Parseval’s identity, we get

L0, y)| < 87> [ |
n#0

1 1
, 1\’ el 2 : N
<o (S k) (Sweir) soeon
n#0 n#0

which implies the desired inequality. [J

The solenoidal condition on the velocity field is destroyed in general by the transformation.
To keep the condition, following Beale [3], we also change the dependent variables and

introduce new unknown functions (v’,v’,p’) defined in Q by
uW=Juo®), vV=vod—yei(uod), p =pod,

where
J=1+¢e(yn)y
is the Jacobian of the diffeomorphism ®. Putting

ap = —yJ_lgéﬁx, b1 = J_l - 17
1‘|—b1 0 u
A = =Ny +1 0 —
1 <—a1 1) vl (5U’>’

(2.1.13) u’od = Aju’.

we have

16



Here Nj is the nonlinear part of A;. We note that b; is the term which is hard to handle
because it contains the term without ¢ in the coefficient. Then, the second equation in
(2.1.5) is transformed to

(2.1.14) N + 1y — v = hs,

where
h3 = 827727733-

We easily obtain that

(2.1.15) (Vsp) o ® = Ay Vs(¢po ),

(2.1.16) (A50) 0@ = 6%(¢ 0 )y + (1 + by) (¢ 0 ),y + Ps(7), D) (¢ 0 ),
(2.1.17) §(¢ro®) =6(po®), —yJ 'edi (oo ®),,

where

1 ay
Ay = — N, + 1,
2 (o 1+b1> 2

N> is the nonlinear part of As,
by = ai + 2b; + b3,

and Ps(n, D) is a second order differential operator defined by
P5(ﬁ7 D)f = 25a'1fxy + {6a1x + alaly + (]- + bl)bly}fy~

We confirm that solenoidal condition holds. Using integration by parts and (2.1.15), for
all test function ¢ we see that

0://9(”(v5-u5)¢ dxdy:—//ﬂ(t)u‘s-v(;gb dzdy
_ —//Q(u5 6 ) - AyVs(60 ®)J dady
= //Q{w - JAT (u® o ®)}(¢p o ®) dady.

Therefore, thanks to fundamental lemma of calculus of variations we have

Vs - JAT (u’ o @) = 0.

In view of

JAY = AT,
and (2.1.13), we have
(2.1.18) Vs-u = 0.
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2.1.3 Transformation of the system

We begin to transform the equations in (2.1.4). By (2.1.13) and (2.1.17), we obtain
(2.1.19) sul o ® = dAu) + fi,

where
_f1 = 5141{!1/6 — yJ_lg(;ﬁt(Al’U,/é)y.

By (2.1.13) and (2.1.15), we obtain
(2.1.20) {((@+eu) Vs)u' + (- Vs)u}o® = (u- Vs)u” + (u° - Vs)a + fo,
where

f2 = (’l_l, . Va)Nl'U,/(S + (’a . NQV(S)Al'U,I(S + ((V + EAl’U,,E) . AQV5)A1'U,/6
—l— (u’5 . Ngv(g)’l_l, —|— ((Nl’u,/(s) . (AQV(;))’EL —l— ((Aluld) . (AQV(;))V,

v (2eyﬁ - 263/;77 - (63/77)2).

By (2.1.15), we have
(2.1.21) (Vgp) od = A2V5p’.
By (2.1.13) and (2.1.16), we obtain

(2.1.22) (Asu’) o @ = Ay (Pull, + (I + Az)ul) + fs,

A3:b20,
0 0

0
f3=[0°02, AjJu”® + (14 b2) [0, Ar]u” + Ps(ij, D) (Aru”) + A ( ) .

(szl);y

where

Thus combining (2.1.19)—(2.1.22), we transform the first equation in (2.1.4) to

2 1
(2.1.23) 0w + (@ Vo)u + (- V)t + o (I + A)Vap — & (0°ull, + (I + Ay)uy,) = f.

where

(2.1.24) f=-N{(@ Vo)u’ + (u’-Vs)u} + A" <—f1 —fat %{fs),
_ (ygﬁ) —y&&f]m

2.1.25 A=A Ay — T = Y :

(21.25) o (—yaéﬁm T ((y20i)® — (yﬂ?)y))

and N is the nonlinear part of A;'. We remark that f is a collection of nonlinear terms,

which does not contain u?, u/ . Vsp', nor any function of 7 only.

Yy’
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Next, we transform the boundary conditions. By (2.1.13) and (2.1.15), we see that

se(6%), + ), — 21)

{(Ds(ew’ + 1) —epl)n’} o ® = ( ey

) —epn’®+h on T,

where

b — ( e26%n,ul, )
N %525%(52% + uj, — 2n)

+ g{vz?(Nlulé)T + (Vs(Nw)T) ' + NoVs(Aru®) + (NoVs(Ar®)T) '

Taking the inner product of a tangential vector #° = (1,edn,)" with the first equation in
(2.1.5), we obtain

(2.1.26) 5, +u, —2n=hy on T,

where 9
5
hy = —5(62(527795@; +h-t).
On the other hand, taking the inner product of a normal vector n’ with the first equation

in (2.1.5), we obtain

, 12w

)

(2.1.27) P — v New = ho on T,

tan o sin o
where
(2.1.28) hy = e Ms&/ + o —l525n (6%, +u! —2n) +h-n°

o 2T ¢ 1+ (e0n,)2 Y 14 (edn,)2\ 27 70 Y

W 1
‘|’ . ]- - 3 77:1::5

s\ (1 (e, )}
= h271 + 52Wh272

and hy does not contain p’ nor any function of 1 only. Note that the term 6*Why is the
only nonlinear term which contains W. Here, by a straightforward calculation we see that

h -t = e(byu, + hs),

where

L, ar(1 + by) S=ad 2+ s\
bi = —5(e0m.) +{<%(—a§+bl<z+bl)) —ar(1+by) ) }t’

1
hs = —e8*n,ul, — 5(55%)2(621}; —2n)
N d(biu), ${0(—a), — araryu’ + dayv),} L
Ls(—au)), — "+ daqv) — 1+ b))u + 6bo! ’
2{ (—au')y — arag v’ + alvy} ary (14 by)u’ + by y

19



and hs does not contain u,. Thus we can rewrite (2.1.26) as

(2.1.29) &l +ul, — (2+bs)p="hy on T,
where

4b,
2.1.3 by = ————
(2.1.30) L T
2.1.31 hy = ———6% — Zp.vl + hs).
(2.1.31) VS T Ve T T, O e+ hs)

Note that h; does not contain u, p, nor any function of n only.
Summarizing (2.1.14), (2.1.18), (2.1.23), (2.1.27), and (2.1.29) and dropping the prime

sign in the notation, we have

dul + (a - Vi)u® + (u° - Vs)u

2 1 .
(2.1.32) +f_{([ + Ay)Vsp — I—{{52uix + (I + Ag)ugy} =f in Q t>0,
Uy +v, =0 in Q,t>0,
vy +uy, — (2+b3)n =M on I',¢t>0,
1 ?W
(2.1.33) D — 0V, — N+ —"Nw =ho on I',t>0,
tan « sin o
N+ Ne —v=hs on I',t>0,
(2.1.34) u=v=0 on X, t>0.

In the following, we will consider the initial value problem to (2.1.32)—(2.1.34) under the

initial conditions
(2.1.35) Mi—o=m on I', (u,v)"|—o = (uo,v0)" in €.

We denote b3 and h; determined from the initial data by béo) and hgo), respectively.

2.2 Main results

2.2.1 TUniform estimate

For simplicity, we set

E =|(1+ 8| D)ol + [[(1 + [ Da])™ (w0, §00) ™ || + (1 + | D)™ Ds(uo, 6v0) ™ |
+ (1 + | Da])™ D5 (w0, 6v0) || + 6*WI(L + 8| Dl oz 1 + VOW| (1 + [ Do) 6000y |-

We state one of our main results in this dissertation.

Theorem 2.2.1. (H. Ueno, A. Shiraishi, and T. Iguchi [39]) There exist small positive
constants Rg and aq such that the following statement holds: Let m be an integer satisfying
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m>2,0<R; <Rp, 0 <W; < Wy, and 0 < o < . There exist positive constants cg
and T such that if the initial data (ng,ug,ve) and the parameters §, e, R, and W satisfy the

compatibility conditions

Ugg + Voy = 0 m o €D,
e 4 80 — (24 5Oy — p©

oy vor — (24 b3 ) =hy’ on T,
Uy =1v9 =0 on X,

and
EY <, EY < oo,

0<575§17 RISRSROa W1§W§5_2W27

then the initial value problem (2.1.32)—(2.1.35) has a unique solution (n,u,v,p) on the time

interval [0, T /€] and the solution satisfies the estimate

(1401 Da|)*n(0) 7, + 0% [me(®) 5, + " WL + 0] D) *na(t) 7, + 0% mea (8) 7, }
+ (14 D)™ (1 + 81Da )20 (O] + 11+ | Do) g ()1 + 8% [[(1 + [ Da] )™ a7 (8)]*

4 /O {87, + 311 + 8| Da)Emi(7) 2,

+ (W)l (72, + (2W)? {81z (7) |2, + 0| D 2m(7)[2,}

+0]|(1+ [Dal )™l ()2 + 1| (1 + [Da)™ (1 + 6| Do) Vsuad (7)1 + 8| (1 + | Do) Vsua? ()] |2
+ 0|1+ [Da)™ (1 + 8] Dyl (7)]2 + 8] (1 + [ Da]) ™0y po (7)1

+ 87 [(1+ [ Dal)™ (1 + 8| Dul) Vsp(n)|? + 8]l (1 + | Do )™ Ve (7) [P }dr < €

for 0 <t <T/e with a constant C' = C(Ry, W1, Wa, o, M) independent of 6, €, R, and W,
where M s an upper bound of Eﬁg). Moreover, the following uniform estimate holds.

(2:2.1) 08 + 11+ D)™ ()1 + (107 uy (8)
F T+ (D)™ 20()[l1 + |07 vy ()] < C

for 0 <t <T/e. If, in addition, 0 < e < 6, then the solution can be extended for allt > 0
and the above estimates hold for t > 0.

Remark 2.2.2. In the case € ~ 1, this theorem gives a uniform boundedness of the solution
only for a short time interval [0,7]. However, this is essential and we cannot extend this
uniform estimate for all ¢ > 0 in general, because by (1.2.1) we see that the limiting equation

for n as  — 0 becomes a nonlinear hyperbolic conservation law of the form
m+ 21+ en)*ne = 0,

whose solution will have a singularity in finite time in general.
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Remark 2.2.3. In the case where G = T, e < 6, and fol no(x)dz = 0, we also obtain the

following exponential decay in time property of the solution.

(222) |+ 81D n(t) ] + () + SPWHI(L + 81 Dal)*na(8) 5 + 0% mea (£)]7, }
+ L+ [Da )™ (1 + 0] Dal 20 (O + 11 + [Da|) iy (1)
+ 0% [[(1+ [ De )y (1)]|* < Ce™ ",

Remark 2.2.4. In order to derive a uniform estimate in R, the constant C' in the above
estimate is required to depend on a lower bound R; of R for a technical reason. However,
for a justification of the thin film approximation this restriction matters little because we
are interested in the case where R is close enough to R..

2.2.2 Error estimate

Before we state another main result, we set the following assumption for later use.

Assumption 2.2.5. Let Ry, Ry, ag, W1, co, and M be positive constants and m > 2 be an

mnteger.

(1) Conditions for parameters

Parameters R, a, W, 6, and € satisfy
RlSRSRQ, 0<Oé§0(0, W1§W, O0<e=6<1.

(2) Smallness of initial data

Initial data (1o, ug,vo) and parameters W and § satisfy
(14 8] D ])?mol2 + [[(1 + [Da])? (g, o) || + [[(1 + [Da])? Ds(ug, dv0) ||
+ [[(1+ [Da])? D (uo, ) ™ || + 6*WI(L + 8 Dal )0z |3 + VE2W[ (1 + [ Dy ])* 6000y || < co.
(3) Regularity of initial data
Initial data (1o, ug, vo) satisfies
11+ [D2 )™ (o, v0) | m2(0) + 1olimya < M.

(4) Compatibility conditions

Initial data (1o, ug,vo) and parameters 0 and € satisfy

Ugg + Voy = 0 m Q,
2 . 2 _ £33(0)

Ugy + 07V — 2(1 +emg)™no = 6°hy” on T,

Ug=1v9 =0 on .

Remark 2.2.6. Under the assumption that there exist small positive constants Ry, ag, and
¢o such that Assumption 2.2.5 is fulfilled, Theorem 2.2.1 holds.
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Moreover, we define the norm of a difference between the solution (n?,u°,v?,p°) of the
Navier—Stokes equations (2.1.32)—(2.1.35) and the approximate solution ({*PP, u?PP, v?PP p2PP)
as
(2.2.3) D(t; ¢*PP, uPP, 0P, pP) =[n°(t) — C*PP(- — 2t, )2, + (1 + [Do])™ (u” — wPP) ()|

1L+ D) (0 = vPP) ()|
[+ D)™ = p™PP) ()]
Let ¢1, ¢, ¢Mand ¢!V be the solution of (1.2.3)—(1.2.6) under the initial condition (|,—o =

7o, respectively.

Now we are ready to state our main results in this dissertation. Note that the definitions

of the approximate solutions u!,v!, p’,u!!,... appeared in the following statement will be

given in Section 4.3 (see (4.3.1) and (4.3.24)—(4.3.26)).

Theorem 2.2.7. (H. Ueno and T. Iguchi [38]) Let us assume G = T. There exist small
positive constants Ry and ag such that the following statement holds: Let m be an integer
satisfying m > 2, 0 < Ry < Rgp, 0 < Wy < W5, and 0 < a < ag. There exists small positive
constant co such that if the initial data (no, g, vo) and the parameters 6, €, R, and W satisfy
Assumption 2.2.5, then we have the following estimates.

1. Burgers equation

If the parameters 6 and W and the initial data ny and ugy satisfy
(2.2.4) Wi < W <6 "Wy, [1olmar + 6 (14 D)™ Mgy, || < M < oo,
then the following error estimate holds.
(2.2.5) D(t; ¢ ul o pl) < Co%e .

II. Burgers equation with a fourth order dissipation term
If the parameters 6 and W and the initial data ny and uy satisfy

(2.2.6) W =0""Wa,  [nolmriz + 0 [(1+ |D])™ ugy, || < M < oo,
then the following error estimate holds.
(2.2.7) D(t; M ut o pth) < 0%,

III. Burgers equation with dispersion and nonlinear terms
If the parameters 6 and W and the initial data ng and ug satisfy

(22.8) Wi <W < Wy, nofmsas + [ (1+ D)™ (uoyy — 1wy, lemo) | < M < o0,
then the following error estimate holds.

(229) D(t, CII[a uIII7UIII7pIII) S 064e—cst'
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1V. Burgers equation with fourth order dissipation, dispersion, and nonlinear terms
If the parameters 6 and W and the initial data ny and ug satisfy

(2210)  W=3"Wa, [olmarr + 021+ [DL)™ (ttogy — ¥ [ico)]| < M < o0,
then the following error estimate holds.
(2.2.11) D(t; ¢V ulV oV ptV) < Cote .

Here, positive constants C' and ¢ depend on Ry, W1, Wo, «, and M but are independent of 6,
e, R, and W.

Remark 2.2.8. [t follows from the above error estimates that

CI(-—2t,et)?, < CH%e <,

— (- =2t et)|?, < Co%e
C[U(, _ 2t,8t)\72n < Cfteeet,
V(- = 2t,et))?, < Cote .

Remark 2.2.9. The assumptions for ug,, in (2.2.4) and (2.2.6) represent the restriction on
the initial profile of the velocity. Moreover, the assumptions for gy, in (2.2.8) and (2.2.10)
mean that the initial profile of the velocity has to be equal to that of the approximate
solution up to O(4?).

Remark 2.2.10. We see formally that the order of error terms in (1.2.3) is of O(d), which
implies that the error estimates (2.2.5) and (2.2.7) are natural. In a similar way, we see that
the error estimates (2.2.9) and (2.2.11) are natural.

Remark 2.2.11. By introducing the slow time scale 7 = £t, the norm decays exponentially

and uniformly in 7.
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Chapter 3

Uniform estimate for the solution of
the Navier—Stokes equations

In this chapter, we will show Theorem 2.2.1. We remark that an outline of the proof is same
as [23]. The plan of this chapter is as follows. In Section 3.1, we derive energy estimates to
(2.1.32)—(2.1.34). Only by following [23|, we cannot obtain a uniform estimate in ¢ because
it is difficult to control lower order terms just by using energies derived in [23]. Hence, we
introduce an essentially new energy function in order to control lower order terms which is
one of difficulties to obtain a uniform boundedness of the solution in §. Therefore, Section 3.1
is a key section in this chapter and thus this dissertation. In Section 3.2, we give estimates
for the pressure. In order to obtain a uniform estimate in §, we need to carefully estimate
the pressure, while in [23] there was no need to use such an estimate. In Section 3.3, we
estimate carefully nonlinear terms appeared in the right-hand side of the energy inequality
so that we can get a uniform estimate in 0. Finally, combining the estimates obtained in the

last three sections, we derive a uniform estimate for the solution in Section 3.4.

3.1 Energy estimates
3.1.1 Basic energy estimates
The following proposition is a slight modification of the energy estimate obtained in [23].

Proposition 3.1.1. There exists a positive constant Rg such that if 0 < R < Rg, then the
solution (n,u,v,p) of (2.1.32)~(2.1.34) satisfies

0d 2 1 >W 1
1.1 e 9112 = 2 2 4112
sy gl X (¢ o) |+ g Vel
4K 1 2
< 0+ 1and) + & () — 2 (o, 50}

R R
2 1 W
T~ - xzaéh F7 o )
R(tano/7 sino/7 s)r + (B, w')g
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where K is the constant in Korn’s inequality and

bgu
3.1.2 — —A \Y W,
(3.12) — - g+ (")
Proof. Note that Lemma 1.3.1 implies
(3.1.3) IVsu’|* < K[l
where

I = 26wl + lluy + 6021 + 2150, [|*.
Taking the inner product of u® with the first equation in (2.1.32), we have

1
E(Qv(;p — A(;’Ll,(s7 U(S)Q = (Fl, ’U,é)Q.

Using the second equation in (2.1.32) and integration by parts in z and y, we see that

(3.1.4) + (u, Uy 0v)q +

(2Vsp — A5U5, Ué)ﬂ
= 2(p, 60)r — (20%Upz + 02 Vay + Uyy, U — (6304 + 200y, + Gtgy, 60)q
= 2(p, 6v)r + 2||6us||* + (0%vs + uy, uy)q — (820, + uy, u)r
+ 2|60, |I> = 2(6vy, 6v)r + (%0, + uy, 6°v,)q
= [l I* + 2(p — 6vy, 6v)r — (8*ve + y, w)r.
By (2.1.33) and integration by parts in z, the boundary terms in the right-hand side of the

above equality are calculated as

1 W
(3.1.5) 2(p — dvy, 6v)r = 2(tana77 ~ ol 5 + 1w — hs))r + 2(ha, 0)r
d 1 52
—5E{tana|m0 |77$|0} + 2(hg, 0v)r
1 52W
= 2 = My, Ohg)r
an « S1n &

and
— (%0, 4wy, u)p = —((2+ bg)n, w)r — (h1, w)r.

Moreover, by the Cauchy—Schwarz and Poincaré’s inequalities we see that
|(u, @ydv)a| < 2|lufl[ldv]] < [Ju’* < Jlugl® < [|V5u’]”

and that

ur| < = el + —!nlo

2 = lolluy | <
RV Molltty —4KR

Here, we used the inequality

[u(-, Do = ful 1) —u(-,0)]o < [luyl|
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thanks to the boundary condition (2.1.34). In the following, we use frequently this type of
inequality without any comment. Thus we can rewrite (3.1.4) as

S [y 2L . W 1 5o
s I+ 2 (ol S ) |+ g V]

2

4K 1
< Vs |I” + F(W% + |bsnlg) + ﬁ(hl,u)F - ];_{(h27 ov)r
2 1 5*W
— — vzs OR F,u’)g,
R<tanoz77 sino/7 3)F +( LU )Q

where we used Korn’s inequality (3.1.3). Therefore, taking Ry sufficiently small so that
AKRy <1,

for 0 < R < Ry we obtain the desired energy estimate. [J

Note that we can take the tangential and time derivatives of the boundary conditions.
Applying 69, 6202, and §0; to (2.1.32)—(2.1.34) and using the above proposition, we obtain

1d [, s 2 | 2 Loy o, W, 2 2
310) g P R (et + ) b oVl
4K 1 2
S F(5|77:c|0 + 5|(b377) | ) + §6<hlz’ux)l“ - ﬁ(s(hh:a 5U$)F
2 1 5°W s
+ ﬁ(5< ananx - Sinanzmta 5h3a¢)1" + 6(Flz’ u;p)fh
1df 2 Iy 52W 4 3 2
317) g0+ (et + oo} 4 e ITsu]
4K 1 2
S ?(53‘nxa:|0 + 53|(b37])mz| ) + ]E_{(sg(hlzmv u:px)F - 1:_{53(h2mr7 (vax)I’
2 1 W
_53 T Mex — T M|rxxxx 5h T 53 sz 0
+ R (tanan Sinan y 3 )F + ( 1 7ux:p)Q7
1d [, 2 I oo o, W, 2
(3.1.5) 55{6 I+ 3 (ol + el |+ o]
4 1 2
(5\77t|o + 6] (bsn):l5) + Ef;(hu, Ut)r — f—{5(h2t, 6v;)r
2 1 W
P_{(S(tanam T Sino e Ohst)r

2 1
+5(fr,ud)o — §5((A4V5P)t7uf)n + ﬁ&(bzuyy)uuth

2
For later use, we will compute —ﬁé (OF (A4V5p) Okul)q for a nonnegative integer k. Ap-

A

plying §0; to the first equation in (2.1.32), we have

2 2
(3.1.9) RTE —E—{é(l + Ag)Vsp — ﬁ5A4tv5p + 0 Fy,,

27



where

1
(3.1.10) Fy = —(@- Vs)u' — (u - Vs)a + ¢ (up, + (1 + Ag)uy, ) + f.

Moreover, we can rewrite (2.1.32) as
2

(3.1.11) =

A4V5p = —514511/? + A5F3,

where

As = Ay(T + Ay~

Note that As is a symmetric matrix due to the symmetry of Ay (see (2.1.25)). Applying
§0%9; to the above equation, we have

2
];—{5@];(144V§p)t = —(52A58§U?t — 523£(A5tuf) — (52 [85, A5]'U;ft + 58§(A5F3)t
This together with (3.1.9) yields
2 k k,, o 1d 2 k, 6 ok, ¢
(3112) —E5(@$(A4V5p)t,8wut)g = 5&5 (Ag,@zut,azut)g

1
+ 5(3§{§5A5tuf — (A5 F3)i}, 05u))a + 6(Gy, 03wy,
where

2 2 1
(3.1.13) G, = [0, A5]{ — ﬁ(I + Ay)Vspr — §A4Nap + FSt} + 55[357 Asi]us.

In particular, in the case of kK = 0, we have
= ligﬂ

1
= 5 dt <A5’U,f, ’U,f)g + 5(551457511,? — (A5F3)t, US)Q

2
—§5((A4V5p)t, ul)o

By substituting this into (3.1.8), we get

(3.1.14) %%{52((1 — A5)ud ud)g + % (ﬁaﬂmg + :;?Z(52’77tx‘3> } - ﬁduvguguz
< S0+ 01 )+ 50 e — (0, i)
+ %5(tajlant B ;S;\Zntm’ Shar)r + 8(Fy, up)o
where
(3.1.15) Fy=fi+ %{ ((bQ%”y)t) + %5A5tuf (AP,

Note that I — Aj is positive definite for small solutions.
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3.1.2 Modified energy estimate

The lowest order energy obtained in (3.1.1) is not appropriate in order to get the uniform
estimate in 9§, which is our goal in this chapter. We thereby need to modify the lowest energy
estimate. Now it follows from the first and second equations in (2.1.32) that

2
- _5vyy = f17

1
—5(52% + Uy )y R

_ 2
v, + udv, + —Dy — R

R

where
2
(3116) fl = (f — EA4V5]?) - e

and ey = (0, 1)T. Taking the inner product of dv with the above equation, we obtain

2
2 o)z - (p, 50, )0+ =(6%0, + 1y, 00, )0 + = 52||vy||2 = (0 = 0y, 60)r = (f1, 0v)q.

2dt R R
Thus using the second equation in (2.1.32) and mtegratlon by parts in x, we have

(3.117) 20 Sl + 20— Gy, 00+ 6%l + 2,
2
= P—{((pr, U)Q + P—{((Suxy, 5"0)9 + (fl, 52})9.

Lemma 3.1.2. The following inequality holds.

2 1 252 (52W)2 1
ﬁ(fspx, u)o + ﬁ(tanga *1nald oo el + = 7 52|77m:|(2)> + E52||8y "pa)?
<L+ 1+ I,

where )

2
-[1 - _ﬁ(éay_lpwa (2 + b3)n)ﬂu

2
Iy = == (00, Py =002, 1) + B+ 0 gy — 20p:))n

1
|15 = }_{(254|um|3 + 20%| how [§ + 30%(|0; *pay 1)
Proof. By the first equation in (2.1.33) and (2.1.34), we see that

2 2 2
(3.1.18) §(5pm, u)g = —ﬁ(ﬁy_lépx, Uy)a = —ﬁ(ay_lcpr, uy (-, 1) + 8y_luyy)g
2

— 80, (1, 1)+ hy + 28;151% + 8;1(uyy —20p))a
4 _
= g0, Pl + I + I,

On the other hand, it follows from the second equations in (2.1.32) and (2.1.33) that

1 W _1
= —dug(z, 1) + ol T smgllee Tha (9, "py)(x,y).
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Thus applying 5R_%8y_ 19, to the above equation, we obtain

— 2

tan o sin o

-1 0
(8;1p1>(x7 Z/) + yR (62u:mc(x7 1) - 5h2:1:) - g(a;%%y)(ﬂf, y)

1
2

Squaring both sides of the above equation and integrating the resulting equality on €2, we
have

(0°W)?

sin? o

1 1 202W
( P2+ —2W g By

3
R 52 TTT : < _52 a_l x 2 ]
3R \ tan? a tan asin a [ |0) =R 10, " pel|” + I,

where we used integration by parts in x. This and (3.1.18) lead to the desired inequality.
O

This lemma together with (3.1.5) and (3.1.17) implies that

1d 2 1 52W 1
1.20) =— L2 lP+ = ——1n|2+ —Z1|n, |2 (53 249 2 —1, 2
32.20) G ol + & (a4 o) bt Ol + 2010, P + 0105 0]
1/ 1 ,  28°W
+§< 0|melp +

§2W 2
0| aalf + %ﬂ%mlg)
sin” o
3(1 W
R taunoz?7

tan? o tan asin o

2 1
< — g (b2, 0)r + £ 0(tay, v)a + (f1,0)0 +

+ 0L+ L+ 1),

- . Nex, hB)F
S1n v

The first three terms in the right-hand side are estimated as

2 1 1 1, _
— 2 (o, 0)r + 0y, V) + (fiy v < 0Nyl + = (207 ald + Oy IP) + RS

and the first term in the right-hand side can be absorbed in the left-hand side of (3.1.20). We
proceed to estimate Iy, I5, and I3. By (3.1.19) and integration by parts in x, I; is rewritten

as

2 1 *W 1
(3121) ]1 = —P—{((Say ( — 5UI(, 1) + tanozn - SinOéT/xx + hQ + 8y py)m, (2 + bs)n)ﬂ

— I4 + ]57
where

2 _
L= £ ((y = 1)(=0us(, 1) + h2) + 0, °py, 6((2 + bs)n) )
1, 1 W

3.1.22 I, =—= — eas 0(D31) )1
( ) > R(’camrjz?7 s.ina77 (bsn)=)r

Here we used identities (7,7, )r = (Mzz, e)r = 0. We estimate Io, I3, and I, as follows.
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Lemma 3.1.3. There exists a positive constant C' independent of 6, R, W, and « such that
the following estimates hold.
1 _ 1
1] < 5020105 pell? + CL 2 (@0 + 1+ 6% )
+ ROy [I* + 0wl + 6% vy [I* + HszZ)},

1
13 < C{E(54|lumxy||2 + 52|h2x|(2) + 58””9&9&1‘”2 + 54||U$yy||2)
+ ROl + 0%l + 0% a2

1
[14] < m(52|7h|g + 0% (b3n)3)

tan? «
(52”“173;”2 + 56||Uw||2 + 52”%1/”2 + |h2|(2))

+C{
+ Rtan® a(0%|vy || + 64||v.)? +—H11H2>}>

where

2bs 1

— == Sp, —
1+b2)p 1+ by

1
(3.1.23) fo = b2 @m+w%+%&——&m>—m f,

_1+bQ R
fs=(f— %A4V5p) ey, and e; = (1,0)T.

Proof. We can easily estimate I3 and I by using the second component of the first equation
in (2.1.32) so as to eliminate p,. As for I, by the first component of the first equation in
(2.1.32), we have

1 2 1 i i 1, 1
1:—{ (uyy — mépx) = 11 b2 (5Ut + uéum + uy&) — Ed um) — mfg

Substituting the above equation into 5, we easily obtain the desired estimate. [J

Combining (3.1.20), (3.1.21), and Lemma 3.1.3, we obtain

1d 2/ 1 52W 1 |
3.1.24 i 20 2 = 52 1:2 Sl = Zslot i 2
a2 e dehl 2 (B S ) | g (ol + 5010,
1/ 1 20°W (52W)?
3R 0 xg 0 xx2 ——5—0 xaca:Q
+3R(2tan2a U |0+tanasina Mz fo + sin? « [Maaslo

1
< O (1 + tan® )0 Vsul | + 6% Vul, |
+ 07 hfg + (1 + tan® a)d ™ halg + d]hasl5)
+R(6]|Vsul||* + (1 + tan® a)d|| Vsul|?
(1 tan? )0 | fi 2+ 6 Ll + 8L fre?) }

26°W 1
— S|(b3m) |2+ 07
R sin « 6R tan? v [(bsm)alo + &

5! | (nmv 5h3)F| +
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where we used the second equation in (2.1.32) and (9, h3)r = (1,e°1n°n,)r = 0. Here the
constant C does not depend on 4, R, W, nor a. This is the modified energy estimate. In

I

the left-hand side, we have a new term o ||8; Lp.|I?, which plays an important role in this

chapter.

3.1.3 Energy estimate

In view of the energy estimates obtained in this section, we define an energy function Ey, a
dissipation function Fjy, and a collection of the nonlinear terms Ny by

2/ 1 *W
3.1.25 E N =8Yv|2+ = ——|n|? .
3125) Bl w’) = PolP + g (ol + Sl

2( 1 W
52 412 = 52 12 52 a:ac2
+ ou] S+ (ol + Sl
2( 1 W
54 5 12 “ 54 mIQ 54 zmmZ
# B B 4 2 (o 0 e

2 *W
R | ) R )

1
(3.1.26)  Fy(n,u’,p) = 2R<(5Hu 1* + 5!\6 prQ)

1 26°W (6°W)?
* 6R (2 tan? o Inelo + tan asin o« o sin? o I |o)

1
+ 55 B0l Vsl + 820 Voug, | + Bsd || Vsu |,

(3.1.27) No(Z) = 6 |hulg + 6~ [halg + lh1alg + Slhasld
+ 61hs|3 + 0% hael§ + 6% B lg + 0°|haaal
+ 0| Do |2 il + 0| D |2 gl + 6] (s, )| + 6 (o, 60 )r |
+0[(ban)alg + [ (bam)awlo + 01(bsm)elg + 1(n, (bam)a)r|
+ W0 (Nw, Shs + 6(b3n)2)r| + 6| (Nowas Ohzea)r| + 6 (Nuwt, Shae)r |}
+ O AP+ 07 ol + 6l fre )
+ 0|(Fia, u))al + 6| (Fius, u, )l + 0| (F2, u))al,
where Z = (n,u’, hy, ha, hs, bsn, f1, f2, Fi, Fy) and we will determine the constants 3;, Bs,
and (3 later. Note that the terms |(n, (b3n).)r| and (62°W)d | (9ze, 0(b3n).)r| come from I;.

Summarizing our energy estimates, we obtain the following proposition.

Proposition 3.1.4. Let W, be a positive constant. There exists a positive constant cg such
that if 0 < Ry < R < Ro, Wy < W, and 0 < a < ap, then the solution (n,u,v,p) of

(2.1.32)(2.1.34) satisfies

d
—FEy+ Fy < CyN,
1 o+ ro < CalNg,
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where Rq is the constant in Proposition 3.1.1 and the constant Co(Ry, W1, @) is independent
of 6, R, and W.

Proof. Multiplying (3.1.6), (3.1.7), and (3.1.14) by 1, B2, and (3, respectively, and adding
these and (3.1.24), we see that

d
T Fo+2F < L+ C(N + No),

where

4K 1 + tan® o 12K
L= S G+ 300l + a0l + {00 (R0 )

o 2 s oVl

+ SL Vs, I+ CURO + tan? o) Ve,
N = 8|(hues ua)r| + 8|(hae, §02)r| + 8 (1, Ohge o] + | ((5°W)6 21, 6% 2Bz )|
+ 0% (M e )| + 6% (P2, 0z )r| + 6°| (N Gl v | + 0| (e, Ohae)r| + 67" |1,
and C' is a positive constant which is depend on Ry, Wy, «, 81, 2, and 3. Here we used
Melo < [nalo + luayll + [hso,

which comes from the second equation in (2.1.32), the third equation in (2.1.33), and
Poincaré’s inequality. Moreover, it is easy to see that for any € > 0 there exists a con-
stant C. > 0 such that N < eFy + C.Ny. Therefore, if we take (31, 52, f3) so that

(4K 1 4K W
(51 +383) < 12R tan? o’ fﬁQ < 3Rtanasina’
1+ tan® 12K 61 Ch Ba
3.1.28 - - i -1
(3.1.28) Ol( R +R) B <SKR R “SKR’
\C’lR(l + tan? a) < %,

and if we choose ¢ > 0 sufficiently small, then we obtain L + CN < Fj 4+ C.Ny. Here taking
(517 527 /83) as

Bo:=16KCy, fs:=16KC1R{(1+tan’ ), 1 :=16K{Ci(1+ tan*a + Rj) + 12K 35},
we see that (3.1.28) is equivalent to
48K (By +3Bs) tan*ar < 1, 12K tanasina < Wi,

Thus there exists a small constant «g which depends on W; such that (3.1.28) is fulfilled
and we obtain the desired energy inequality. [

Hereafter, m is an integer satisfying m > 2. We define a higher order energy and a

dissipation functions F,, and F;, and a collection of the nonlinear terms N,, by

(3.1.29) ZEO (87, O ul) ZFO (8, OFud, Fp),
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m

(3.1.30) N =Y No(032) + ) (8(G, d5ul)al + [(95n, D5hs)r]).
k=1

k=0
Here, we note that 6|(G}, 9%ul)q| is the term appearing in (3.1.12) and that (n, h3)r = 0.
Under an appropriate assumption of the solution, we have the following equivalence uniformly
in 9.
B = |(1+ 01D, Pl + il + WL+ 6D, Py + S,
£ (Dl el + S0+ D™ (14 81Dl 4 62 (1 + Dl P
=~ (1l + 02 {1 (e me) o0 + 11+ [Da)™ (0, 10, ) |1}
+ 0| (s i) o+ 1L A (D)™ (v U, ) [P} 0° (1 + [ D) 0|
+ Wl + 81 (Mo 1) 3+ 6wzl

Fr 22 01l + (0 W)O| sl + (6°W)?0 11l + O[1(1 + | D)™ 0, o1
+0[[(1 4+ [Da) g |I* + (1 + [Da])™ (1 + 8| Da ) Vsug|[* + 8| (1 + | Do) Vsug ||
o 3 {1l + (1 + D)™ (v, e, sy, ey, 0 pa) |1}
+ (L A+ | Dal)™ (0, Vays Vs s Uiy i) |1
+ 8| (1+ [ D)™ (Vaw, Vo Vs ) | + 0711+ | D)™ v ||
+ (82W)8 e, + (82W) 28| 7,
Applying 9% to (2.1.32)—(2.1.34), using Proposition 3.1.4, and adding the resulting inequal-
ities for 0 < k < m, we obtain a higher order energy estimate

(3.1.31) %Em + Fyy < Cy Ny,

3.2 Estimate for the pressure

We will use an elliptic estimate for the pressure p. First, we derive an equation for p.
Applying V- to the first equation in (2.1.4) and using the second equation in (2.1.4), we

have
= Bgp = —{el0ua)? + 2070, (e, + 1) +<(00,)%)
= —5’1tr(V5(€u5 + ’lI)T)2 =: f.
We transform this by the diffeomorphism ¢ introduced by (2.1.7) and obtain
(3.2.1) Vs - AgVsp' = %RJ(f °o®) =

where p’ = po ® and Ag = JAT A;. On the other hand, by the definition of f and (2.1.13),
we have

Fod = e (AT )eAw 1 )T
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where u” is defined by (2.1.13) and @' = (#/,0)T := @ o ®. Here we see that
(5835 + alf)y
J~10,

ayJ ! —a?
Fo= (" —2 171 ’
J —a1J

[ 6(eJ )y +ear(J M)y ed(—aru’ 4 0v'), — araryu’ + €dayv),
U\ eI+ I —eJ  an ! + 26T, '

(A2V5) (e A" +a')" = ( ) (eJ ' + ', —earu + edv') = e Fyuy, + P,

where

Here, in the above calculation, we used the identity du;, + a;u; = 0. It follows from F2=0
that

1
(322) g = —§RJ{tr(F1F2 + FQFl)U; + 571tr<F22)},

where I} and F, do not contain u;

Next, as for the boundary condition on I', by the second equation in (2.1.33), we obtain

W
tan o sin o
Moreover, as for the boundary condition on >, taking the trace of the second component of
the first equation in (2.1.4) on ¥, we obtain (p + tu,), = 0 on X. In view of (2.1.13) and
(2.1.15), this is transformed into

(3.2.3) p = —dul, + Nez +hoe=:¢  on T.

77_

) 1
J_l{p/ + §(J_1U/)x + §a1(J_lu’)y} =0 on .
y

Recalling a; = —yJ'edn,, J = 1+ &(yn),, and (2.1.9), we have a1|,—o = 0, aiyyl,—0 = 0,
and J,|,—o = 0, so that we obtain (a;(J'u'),),ly=0 = (J tay,u')y|y=0. Therefore we have

(3.2.4) @ +g0)y=0 on X,
where

1
(3.2.5) go = 5{(5(J_1u')x + J  agu'}.

Summarizing (3.2.1), (3.2.3), and (3.2.4), we have
V(s : A6V5p =g in Q,
(3.2.6) p=20¢ on I,
(p+9go)y=0 on X.
Here we dropped the prime sign in the notation.
We proceed to derive an elliptic estimate for p. To this end, we will consider the following
boundary value problem
Asg=g+Vs-g in Q
(3.2.7) q=1 on I,
qy =0 on X,

and show the following lemma.
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Lemma 3.2.1. For any g,g € L2(Q) and ¢, € Hz(T), there exists a unique solution
q € H Q) of (3.2.7) satisfying

1
IVsall® < Nlgll* + llgll* + ol D245
Proof. First, we will construct a solution of the following equation
(3.2.8) As¢1=9g+Vs-g in €.

We extend g and ¢, := g - e; as even and 4-periodic functions in y satisfying f04 g(z,y)dy =
f04 g1(z,y)dy = 0 and g5 := g - ey as an odd and 4-periodic function. By these extension and
Fourier series expansion in z and y, we can construct a solution of (3.2.8) satisfying

(3.2.9) q1y(z,0) =0,

(3.2.10) laall* +1IVsal® < gl + llgl*.

Next, let us seek the solution of (3.2.7) in the form ¢ = ¢ + ¢2, where ¢y should be the
solution of the following boundary value problem

Asqga =0 in €,
@ =1y on I,
G2y =0 on X,

where ¢, = 11 — q1|,=1 and we used (3.2.9). By Fourier series expansion in z, we easily
construct a solution of the above problem satisfying

1
(3.2.11) IVsqal® < 6| Dal 2403

Here, Lemma 1.3.3 yields 6||D,|2q1] < |lq]|? + [ Vsq1]|?, which together with (3.2.10) and
(3.2.11) implies the desired estimate. The uniqueness of the solution is well-known, so that
the proof is complete. [

Now, we rewrite (3.2.6) as

Asq =g+ Vs (Vsgo— NeVsp) in €,
(3.2.12) qg=9o+ g on I
qy =10 on X,

where ¢ = p + go and Ng is a nonlinear part of Ag, that is, Ag = I + Ng. Applying Lemma
3.2.1 to the above boundary value problem, we have

1
(3.2.13) IVspll® < Ngll” + llgoll® + [ Vagoll* + |N6Vspl* + 01| Dal 2 65,

where we used 8|| D, |2 o/ < [l90l|24|Vsg0]|* which comes from Lemma 1.3.3. Differentiating
(3.2.12) in x and ¢, likewise we deduce

81 Vspal® S 6119217 + 6l gox I + 611 Vsgou|I* + Il (NsVsp)al? + 62| Dal2 603,

(3.2.14)
SVspell? < 8)lgell? + 8]l gocI? + 8] Vsgoell> + 81| (NeVsp)il|® + 62| | Da2 64 2.
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Here, for the same reason as the modification of the lowest order energy, we need to modify
(3.2.13), that is, we estimate 6 !||Vsp||? in a different way. As for §~!||p,||?, by using the

second component of the first equation in (2.1.32), we see that
(3.2.15) 0 Ipyll* S Fo+ 0 Al

where f; is defined by (3.1.16). To estimate d||p,||* in terms of the dissipation function Fy,

we use the term 6]|0; 'p,|* in the following way. We compute

ool =3 [[ o) (5 [ oot 230z Jasay
- —5//mey(m,y) </Dypr(x,z)dz)dxdy+5/Olpx(x,l)(/Olpx(x,z)dz>da:

< lpayll (ol + 110, pall) + Slpzlollpz|l,
so that we have
(3.2.16) 8||pal® S Ollpayll® + 0118, ' pell* + 6lpalg.

Here, it follows from the second equation in (2.1.33) that &|p,|3 < Fo+0|he,|3. This together
with (3.2.15) and (3.2.16) yields

0 IVspll* S Fo+ 6llpayll® + 0lhaal + 07 LA

This is the modified estimate of 61| Vspl|*.
By differentiating (3.2.12) with respect to x and applying the above argument and (3.2.14),
we obtain the following lemma.

Lemma 3.2.2. For 0 <k <m and1 <[ <m, we have

(3.2.17) 3 H[Vs05pl? S v + 0]105payll? + 005 ha |3 + 67|05 £1] 1,
(3.2.18) 01V 505pall* < 0110%g. 1 + 6110% gosl|* + 01| V502 goo |

+ 8|08 (N6 Vsp)al® + 6% | Dol 2 6,2,
(3.2.19) 3|V pell? < 6105 gell? + 81105 g1 + 61V 505 g1

+ O[|OL Y (N Vsp)e||? + 62| Dol 2 ]2

3.3 Estimate for nonlinear terms

We modify the energy and the dissipation functions E,, and F,, defined by (3.1.29) as

(3.3.1) B = Em + |[(1+ [Da)™ul® + [[(1+ [ Da])™uy |1%,
(3.3.2) By = Fp + 0|(1+ 8| D)) 22, + (62°W)20%|| Dy |22,
+ 6 (L + | D)™ (1 + 8| Do) Vspl® + 8]l (1 + | D)™ V]|
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We also introduce another energy function D,, by

(3.3.3)
Dy =[(1461D:)*n[2, + (14 [ D)™ u’|I* + [|(1 + | Do) ™ Dsu ||
+ (|14 [Do )™ Dl ||? + (82W)2[(1 + 8] D )11 g1 + (W) (|(L + [ D) ™0y |1,

m

which does not include any time derivatives. Moreover, we have the following equivalence

uniformly in 9.

Do 2 ]2, + [1(1+ [Da])™ (u, 1y, )|
+ 02 {0, 4 11+ [Da])™ (0, 0y, i, Uy, vyy ) ||}
+ 0 el + (14 [ D)™ (v, Vs ) 1P}
+ 8% Maaal % + 1(1+ [ D)™ 00| }
+ W [nal2, + 0% Naalm + 6 Maaalz + 6L+ [ Do) vy |1*}
+ (82W) {12, + 0% a2 } -

Since the proof of nonlinear estimates derived in this section is particularly long, we give
a guiding principle of the proof. A goal of Section 3.3 is to estimate the nonlinear terms
in terms of Egﬁm, FQEm, and Dy D,,. As for Egﬁm, by using a smallness of the energy this
term can be absorbed in the right-hand side of the energy inequality (3.1.31). As for EE,,,
using a boundedness of fot Fy(7)d7 and a standard Gronwall’s inequality we can estimate
this term. As for DyD,,, we use this estimate in order to estimate an initial energy E(0).
Here, what we should be careful is that if we use the Sobolev embedding theorem in €2, that
is, ||u|lpe S ||ul|g2 and Poincaré’s inequality for n, that is, |n|L~ < |72]o, we cannot obtain

uniform estimates in . Therefore, we have to estimate nonlinear terms carefully.

Throughout this section, we assume that

(3.3.4) Ey(t) <c¢; for tel0,T/e],

where T" and ¢; will be determine later. We also assume that (n,u,v,p) is a solution of
(2.1.32)(2.1.34), 0 < 6,e <1, W; < W < §2W,, k and [ are integers satisfying 0 < k < m
and 1 <1 <m.

3.3.1 Notations

We put
Dif = {00, 02 f iy + iz = i}.
We denote smooth functions of f by the same symbol ® = &(f) and P is such a function

satisfying ®¢(0) = 0. We denote a function ®y depending also on y € [0, 1] by ®o(f;y), that
is, ®o(0;y) = 0.
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3.3.2 Auxiliary lemmas
We prepare several lemmas to proceed nonlinear estimates.
Lemma 3.3.1. The following estimates hold.
(3.35)  |1l2 S min{Ey, Dy},  ||Diqjl|2e < min{6%Ey, 62Dy, 6F,}  for 1<i<4,
(3.3.6)  8*W| Djilal[F + 0"WI| Do | S min{Ey, Do, 6Fy}  for i=0,1,
105w 7 S min{Ey, Do}, 605ull|fe +0]05ufllie S Fo for i=0,1,

(3.3.7) e
54||“M||L°° ~ mm{E% D2}a

(3 3 8) ||ﬁt”%oo 5 min{E27-D2}7 6||ﬁt||%°° S F27
||Dfs77t||%oo N min{Esz,(SﬁE} Jor i=1,2, ||D57]tHLoo ~ 5F27
(33.9) 8| Diiiull3~ S By, for i=0,1.
In particular, we have
||(77] ﬁtaD(SﬁtaDgﬁtau(saug)H%oo 5 min{E27D2}7

(3.3.10) ) T
1(Dsi, D3, Dii) |70 < 6 min{Ey, Do}

Remark 3.3.2. Using (3.3.5) and taking ¢, sufficiently small, we see that J = 1 + £(y7),
and I — Ajy are positive definite.

Proof. By (2.1.11) in Lemma 2.1.1, we have

17717 < I} S min{E,, Do}
| D)2 < 6%|00n)? < min{62Ey, 62Dy, 0F,} for 1<i<4.

Thus (3.3.5) holds. Similarly, we obtain (3.3.6). (3.3.7) is obtained from Lemma 1.3.5
and the second equation in (2.1.32). By the second equation in (2.1.32), we have |v|; <
(1 + |Da])vyll = (1 + | Dz|)ug]|. In view of the assumption (3.3.4), we have

|02hslo S [nli< 107 nlo S 107 nlo for j > 0.
Therefore, by (2.1.11) in Lemma 2.1.1 and the third equation in (2.1.33), we see that

el zoe S Imelr S vl + 19elr + [Raly S {1+ [De])ue || + 921,
| Dt e < 6°10%mely S 6" (10501 + |05 )1 + 105hs]1) S 6°([(1 + | D] )05 ull + 04 ).

These estimates give (3.3.8). Similarly, we see that

7t l oo S Ml S velt + ey + [hsely ST+ [Da| )t || + |72,
| Dl zoe S 610umuely S 0(100ve]y + [02mely + 10chael1) S 6([(L 4 |Dal)Optisa || + |1hial2 + [72]2)-

Here, we used |n|p < |||z~ < v/ Ey and the assumption (3.3.4). Thus (3.3.9) holds. The
proof is complete. [
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Lemma 3.3.3. The following estimates hold.
(3.3.11)  ||0%7|)* < min{E,,, D)}, 105 Dif||> < min{E,,, Dy, 6F,}  for i=1,2,3,
(3.3.12)  8*W||0FDin,||? < min{E,,, Dy} for i=1,2
(33.13) (|05 D3il|)* < 6Fw,
(3.3.14)  6%||0¥Dii||? < min{Ey,, Dy, 0F,,}  for i=0,1,2,  0||0FDin|* < B,
(3.3.15)  8%|OFDii||? < Ey, for i=0,1.
Proof. By (2.1.10) and (2.1.12) in Lemma 2.1.1, we have

195 Dl < 6|95 nlo for @ >0,

|05 D3l S 621 Dal** 2o,

which give (3.3.11) and (3.3.13), respectively. Similarly, we obtain (3.3.12). By (2.1.10) in
Lemma 2.1.1 and a similar argument in the proof of Lemma 3.3.1, we see that

10 Diiiell < 6105 1elo S 0" (10l + 105 o)
S O (I + D) o5 ull + 105 nlm).-

By (2.1.12) in Lemma 2.1.1, Lemma 1.3.3, Poincaré’s inequality, and the estimate
5 7 7

(3.3.16) 1D2"2hslo S 10, ma)[2oe [ Dl 20lo S |1 D2]** 210,

we see that

- 5 1 5 1 1 1
|08 D37 || < 63| |Da 205200 < 62 (|| Dal 2054200 + || D205 200 + || Dl 20542 )
< 0|0 || + 821050y || + 53] Dal*E ]
S PN+ [ Do) ™ gl + 82 (1 + | D) ™0y || + 6% || D2 1)

These estimates give (3.3.14). It is easy to see that
00hailo S €2 (1nl70< 102 nelo + [l oo me 2 05 l0) S 105  melo + 102+l for 5 > 0.
Therefore, by (2.1.10) in Lemma 2.1.1 and the third equation in (2.1.33), we see that

10573l S 105mlo S 111+ D)™ wsallo + 19talm + [Patlm
S H(l + |Dz’)mut:c”0 + |77t:c‘m + ’77:3|m

Similarly, by (2.1.12) in Lemma 2.1.1 we obtain

~ 1 1 1 1 1 1
185 Dsijeel| < 02| Dol 20 mislo S 82 (|| Dal2050e]o + || Dl 205+ o + || Dl 205 halo)
< 8105 vsal| + 105 0sy || + 6105 Taelo + |05 n1alo + 6105 hgelo + [0 hselo
SO+ Do) 00| + 1L+ [Da )™ iy | + 6zl + | (s D 7)o

These estimates give (3.3.15). The proof is complete. [
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Lemma 3.3.4. The following estimates hold.

( ) (52i+1HDx]i+%7)|fn S min{Erm Do}, 52i+2’|Dr|i+%7)x‘72n S Fm Jor i=0,1,2,
( ) 53W||Dw‘%nw|2n S min{Ema Dp}, 52i+4W||Dm|H%nm‘2n S Fm Jor i=0,1,
(3.3.19) Olu’l?,, Smin{Eu, D}, Olugl 1 Smin{Du, 0Fn},  0lug, ) 1 S 0Fn,
( ) W, <min{E,, D}, 6%0iu’)?, <OF, for i=1,2,
( )

2
m

Proof. By an interpolation inequality, we have §2+1|| D, 2n|2, < 6%(0in|2, + 62+2|8in,|2

m?

which gives the first estimate in (3.3.17). Similarly, we can show the second estimate in
(3.3.17) for i = 0,1, and the case 7 = 2 follows directly from the definition of F,,. Likewise,
we obtain (3.3.18). By Lemma 1.3.3 and Poincaré’s inequality, we see that

52i+l’a;u6|72n+% < 52i+1|8;u5]3 +52i+1”Dx’%a£1+iu6|(2)
S R T A [k

for i > 0, which leads to (3.3.19). Similarly, we can show (3.3.21). Poincaré’s inequality and
the second equation in (2.1.32) yield (3.3.20). The proof is complete. [

In view of Lemmas 3.3.1 and 3.3.3 and the inequality ||0%®o(f;9)|| < C(||£]lz=)]|0% F]l,
we obtain the following lemma.

Lemma 3.3.5. For j = 0,1, the following estimates hold.

(3.3.22) || ®o(77, Dsi1, D21, D3, 67, 6 Dsiite, 6 D21y, u®, 61, 030,503 9) || 200 < min{ By, Dy},
(3.3.23)  ||05® (77, Dsit, D27, D37, 67y, 6 Dyly, 0 D213y, ul, 6ul, 620003 ) |)? < min{ E,,, Dy},
(3.3.24)  [|050] o (77, Dsil, D37, 67, 6 Dy, u’, 6055 y) |* S min{ By, Dy }

(3.3.25)  0]|0L0i®0(7, Dsfl, D371, D37, 67, 6 Doy, 6 D3y, w’, 6l y) || S Fin.

Remark 3.3.6. As for (3.3.25), if &y does not contain 7 and wu, then § appearing in the

coefficient of the term [|0.0]®o[|* is unnecessary and we can replace [ with k.
This lemma together with Lemma 1.3.3 gives the following lemma.

Lemma 3.3.7. The following estimates hold.

(3.3.26) Do (1, 01, 02N, U |1, 6202 |1) |2 00 < min{ By, Dy},
(3.3.27) 8| Do (1, O, %1, U1, (52U$|F)|3n+% < min{Em, D},
(3.3.28) Do (1), 1, 62N, w1, %04 |1) |2, < min{Em, Dy}

By (3.3.6) in Lemma 3.3.1, (3.3.12) in Lemma 3.3.3 and Lemma 1.3.3, we obtain the

following lemma.
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Lemma 3.3.8. The following estimates hold.

(3.3.29) W[ P0(67, 0%102)|20e < min{Ey, Dy},
(3.3.30) SW | Do (61, 6%10z) fn+; < min{E,,, D,,},
(3.3.31) W (Do (072, 6%102) |2, < min{ E,,, Dy, }.

We set
(3.3.32) (w1,...,wy) = (Dgsit, D7, 67, 0 Dsiiy, D37, § D31y, dul).
Lemma 3.3.9. For j = 0,1, the following estimates hold.
(3.3.33) S Y w2 < min{dEy, Fy}  for 1<A<T,
(3.3.34) s ok wA|I* < Fo for 1<A<T,
(3.3.35) 02|05 0wy |® S By for 1<A<A

Proof. (3.3.33) and (3.3.34) follow from Lemmas 3.3.1 and 3.3.5, respectively. In the same
way as the proof of Lemma 3.3.5, we can show (3.3.35). [

3.3.3 Estimate for nonlinear terms in boundary conditions

We begin to estimate the nonlinear terms. First, we will estimate hy, ho, hg, and bsn. By
the explicit form of hy defined by (2.1.31), h; is consist of terms in the form

o (en, edny, eul|p)dio! for i=1,2,
(3.3.36) o(en, edn r)8'0;n
@0(87778577:;:)51‘2&-

Although ho; contains ®(en, £dn,)edn,u, in addition to the above terms (see (2.1.28)), by
using the boundary condition u, = —§%v, + (2+ b3)n + hy on I', we can reduce the estimate
of hy; to that of hy. Moreover, we note that §?Why s is of the form 6*W®q(£25212) 1.

Lemma 3.3.10. For any € > 0 there exists a positive constant C. such that we have
3.3.37) 0 Y (ha, ho)|2 + 0| (hug, hoo) |2, S EoFy + FoEp,
3.3.38 62| (h1z, how)

(

( ) EH% S EyFp + B,
(3.3.39) 5‘1|(h1,h2)|i%% <
( )

( )

E2Ema
3.3.40 5|h2|3ﬂ_‘_1 5 D2Dm7
2

3.3.41 5|(0Fhay, OFug)p| + 8|(0%har, 60% 0 )| < €Fyy 4+ C(EyE,, + FyEy),

8|hs|2, + 8| (haw, hat) 2, + 0% hawa|?, S oLy + FoEh,

(3.3.42) ! > B
56W|(al;nxa:xz7 a;l;hiSasx)F‘ < el + CEEQFm,

8](b3m)al?, + 8% (b3)aw |2, + 0| (b3m)e |2 S By + Fo By,
(3.3.43) |(0Fn, OF(bsn).)r| + |(0Fn, OFhs)r| + 6*W|(0F 14y, OFhs + 0% (bsn) )1
+(54W’(a£7’]mz, 3’;h3t)p| S EFm + C€<E2Fm + FQEm + € EQEm)
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Moreover, if e < 6§, then we have

(3.3.44) [(9%m, 0% (bsn) )| + [(O5n, OEhs)r| + *W(9e s, O hy + O (bsn))r]
+ 54W|(8];77txa:7 8§h3t)f‘| S 61%171 + CE(E2Fm + FQEm)

Remark 3.3.11. Concerning the terms in the left-hand side of (3.3.43), in the case where
£ is not dominated by 8, we cannot estimate these terms by using F, because the power
of § of these terms is not enough. These are the only terms which prevent from deriving a
uniform estimate for the solution for all time.

Proof. Since ¢ is the nonlinear parameter, that is, € measures the nonlinearity, it is sufficient
to show the estimates in the case ¢ = 1 except the last estimate (3.3.44). Therefore, we will
assume that € = 1 in the following.

As for (3.3.37), it suffices to estimate

Jy = 6 DLoin|?, for i=1,2,3,
Jo = 02 DLoiul |2, for i=1,2,
Jy = H WA ®20in,, |2, for i=0,1,

where ®f = ®o(n, s, 0*Nes, 0|, 6%0,|r) and B2 = Py(6n,, 0?7, ). Note that we included
the term 0%v,|p in ®} for later use, although we can drop it. In the following we use the
inequality

(3.3.45) [fgls S 1flreelgls + gl f]s-

By (3.3.45), (3.3.5) in Lemma 3.3.1, and (3.3.26) and (3.3.28) in Lemma 3.3.7, we obtain
Ji < ByE,, + FyE,,. By (3.3.45), the second inequality in (3.3.7) in Lemma 3.3.1, (3.3.26)
and (3.3.28) in Lemma 3.3.7, and the second inequality in (3.3.20) in Lemma 3.3.4, we obtain
Jy < EoFp4 FyE,,. By (3.3.45), (3.3.6) in Lemma 3.3.1, and (3.3.29) and (3.3.31) in Lemma
3.3.8, we obtain J3 < EyF, + FyE,,. Thus (3.3.37) holds.

As for (3.3.38), it suffices to estimate

Jy = 52i|¢(1)8;77|3n+1 for i=1,2,3,

Js = 52i|c1>58;u5|;+% for i=1,2,

Jg = 52”4W2|<I>(2)8;17m|fn+1 for i=0,1.

2

By (3.3.45), (3.3.5) in Lemma 3.3.1, the second inequality in (3.3.17) in Lemma 3.3.4, and
(3.3.26) and (3.3.27) in Lemma 3.3.7, we obtain J; < EyF,, + FyE,,. By (3.3.45), the second
inequality in (3.3.7) in Lemma 3.3.1, the second and third inequalities in (3.3.19) in Lemma
3.3.4, and (3.3.26) and (3.3.27) in Lemma 3.3.7 we obtain J; < FyF,, + FyE,,. By (3.3.45),

(3.3.6) in Lemma 3.3.1, the second inequality in (3.3.18) in Lemma 3.3.4, and (3.3.29) and
(3.3.30) in Lemma 3.3.8, we obtain Jg < EyE,, + FyE,,. Thus (3.3.38) holds.
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As for (3.3.39), it suffices to estimate

Jr = 02Dy, |2 1 for i=0,1,
2
Js = 6|<D(1]ui|3n_lv
2

Jo := 63W2|(1)(2)77a:a:|2n_%

By (3.3.45), (3.3.5) in Lemma 3.3.1, the first inequality in (3.3.17) in Lemma 3.3.4, and
(3.3.26) and (3.3.28) in Lemma 3.3.7, we obtain J; < EyE,,. By (3.3.45), (3.3.7) in Lemma
3.3.1, the first inequality in (3.3.19) in Lemma 3.3.4, and (3.3.26) and (3.3.28) in Lemma
3.3.7, we obtain Jy < FyE,,. By (3.3.45), (3.3.6) in Lemma 3.3.1, the first inequality in
(3.3.18) in Lemma 3.3.4, and (3.3.29) and (3.3.31) in Lemma 3.3.8, we obtain Jy < E,E,,.
Thus (3.3.39) holds.

As for (3.3.40), it suffices to estimate

Jip = 52i+1\®38;n\3n+% for 1=1,2,
53] Plegd |2
JH =0 |<I>Oux]m+%,

Jig 1= 55W2|q)(2)nxx|?n+% :

By (3.3.45), (3.3.5) in Lemma 3.3.1, the first inequality in (3.3.17) in Lemma 3.3.4, and
(3.3.26) and (3.3.27) in Lemma 3.3.7, we obtain Jig < DoD,,,. By (3.3.45), (3.3.7) in Lemma
3.3.1, the first inequality in (3.3.19) in Lemma 3.3.4, and (3.3.26) and (3.3.27) in Lemma
3.3.7, we obtain Ji; < DoD,,. By (3.3.45), (3.3.6) in Lemma 3.3.1, the first inequality in
(3.3.18) in Lemma 3.3.4, and (3.3.29) and (3.3.30) in Lemma 3.3.8, we obtain Jio < DoD,,.
Thus (3.3.40) holds.

We proceed to estimate (3.3.41). By the third equation in (2.1.33), we can reduce the
estimates of the terms which contain 7, except the terms which accompany W to those of
Ji, Jo, and Jy. Thus it suffices to estimate

( J13 = 59W2|(D377:57755x77t:v|72na
Jia = WP 020 |7,

— 1,,0|2
J15 = 5|(I)Out ms

J16 = 52|<8£(©%u?$)’ 85“?)F|7

\

where ®3 = ®(dn,), ®5 = Po(n,dn,) and we used hoo = Po(0*92)Nee = P(612)0* N N0
Taking into account that 6W? < 6°) by the third equation in (2.1.33), we can reduce the
estimates of J13 and Jy4 to those of Jy, Jo, and Jy. By (3.3.45), the second inequality in (3.3.7)
in Lemma 3.3.1, (3.3.26) and (3.3.28) in Lemma 3.3.7, and d|uf|?, < d[(1 + |Dg|)™uy, ||* <
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F,,, we obtain Jis S FEyF,, + ELE, .. By Lemma 1.3.3, we see that
Jio = 6% (O {(Pouy)e — Po,ur}, Oyug)r|
< 8| Da| 205 (@) o] | D |2 ak tlo + 0% (95 (®p,uy), Oyug)r|
< (0l 05w I + 0710y, |1* + 0Oy I1?) + Ce (0% @pug7, 1 + 0°| Do, g7,
Here, we can reduce the estimate of §3|®, ul|?, to that of Jg. By (3.3.45), the second

inequality in (3.3.7) in Lemma 3.3.1, (3.3.21) in Lemma 3.3.4, and (3.3.26) and (3.3.27) in
Lemma 3.3.7, we obtain 52’@éuf‘i+; < EyF, + FyE,,. We thereby deduce Jig < ek, +
2

C.(EyF, + FyE,,). Thus (3.3.41) holds.
As for (3.3.42), since hz = n’n, is contained in the first term in (3.3.36), we have already
checked that the first inequality holds. As for the second inequality, we have
"W (DM, Ohsea)r| < WD, |* 35+ CE"WI| D, |2 R

Here, (3.3.16) leads to 56W||D$|k+%h3|(2) < FEyF,,. Therefore, we get the second inequality.

As for (3.3.43), taking into account that we can write b3 as ®3 (see (2.1.30)), we obtain the
first inequality in the same reason as the last estimate. Concerning the term |(9%n, 9% (bsn). )r|
in the second inequality, there exist rational functions b3 ; and bs o such that bsn = b3 1(n) +
bs.2(n, 0nz)0n, and by 2(0) = 0. Since the term bs (7, 1, )dn, can be treated in the same way
as before, it suffices to estimate

Jiz = |00, O b3 1 (n))r ).

Here we can assume that k£ > 1 because we have (1, bs1(n).)r = 0 in the case k = 0. We see
that Jiz < [(0%n, by (m) st n)r| + [(05n, [0F, by 1 (1)]n.)r)|, where by integration by parts we
have |(95n, b 1 ()05 n)r| = 51(9%n, b5 s (mme0in)r| S vV Ealielr, 1. In view of

e 53,1( Nnelo < Cllnle) (1 + e o) el 22105 0o,
we also have |(9Fn, [0, b5, (n)]na)r| S V Ea|n.|?_y. Therefore, Jiz < v/ Eymin{E,,, 61 F,},

so that we obtain

|(9in, %

xT

(bs1)2)r| < €E + C(EyEy, + FyE,y,) + Oy By min{ E,,, 071 F,,}.

As for the the term 6*W|(0nspe, 0% hst)r|, integration by parts in z leads to
64W|(8£ntm7 aIaih?nf)l“| < 54W| (357%:”7 8£(n2ntx))F| + 54W| (357715303:, 5§(27777t77x))r|

< S WOk e, M Oimia)r| + 0 W (051, (105, 717 ) )|

+ 54W’(a§77m, al;;(Znntnz)x)ﬂ
= Jlg + J19 + JQOO

Here, it follows from the third equation in (2.1.33) that 6*W|9%n;,|3 < 62(|05n..]3 + [0Fv, |3+
|8’;h3x|0) N 1f  and W0k, 2 < E,, so that we have

(3.3.46) SW([0F 0. )? < min{E,,, 67 F), }.
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By (3.3.5) in Lemma 3.3.1 and (3.3.46), we have Jig < Eymin{E,,, 6 'F,,}. By the estimate

(105, 7 ]nta)alo S [0l 0ol |05nea| + 10| | o |00 ] + 1] 0w | o |9,

(3.3.5), (3.3.6), and (3.3.8) in Lemma 3.3.1, and (3.3.46), we easily obtain Jig < €F, +
C.FyE,, + CEymin{E,,, 0'F,}. By (3.3.45) and (3.3.5), (3.3.6), and (3.3.8) in Lemma
3.3.1, and (3.3.46), we have Jy < €F,, + C.EyF,, +CE, min{Em, (5*1}~7m}. Therefore, we get
the third inequality. Thus far, we have assumed that e = 1. Now, for general ¢ € (0, 1] it
follows easily from the above estimate that

1(0Fn, 0% (bsn) o )r| < €Eyy + €2Co( By Fyy + FyE,,) + C\/ By min{eE,,, e6 ' F,, }.

The term |(0%n,d%h3)r| is of the form Ji7, so that it also satisfies the above estimate.
Moreover, by taking into account that dv/W|n.|r~ < vV Ey and 02°W|n.|2, | < [m.%,, S

~ m—1 ~ ~

min{E,,, 0~ F,,}, the term 6*W|(9*1,,., 0%hs 4 0% (bsn), )r| also satisfies the above estimate.
Similarly, we obtain

54W|(al;7]th, 8§h3t)r| S EFm + €2O€(E2Fm + FQEm> + OEQ IIliIl{€Em, E(S_IFm}.

Therefore, the second inequalities in (3.3.43) and (3.3.44) hold. The proof is complete. [

3.3.4 Estimate for nonlinear terms in equations

Next, we will estimate f, fo, Fi, F», and Gj. By the explicit form of f (see (2.1.24)), we
see that this is consist of terms in the form

(

@ (7, D51, u’; y) D,

Do(1), Dy y)0' 0, 0pu for (i,7) =(2,0),(1,1),
(71, Dsij, u’, y)wyu, for 1< \<3,

@ (71, Dsij, D27, u®, y)wyud for 1< )\<A4,

(I)0<77> D5ﬁ> Dgﬁa 5ﬁt7 ué; y)(Sufc,

\

where w), is defined by (3.3.32). Thus by the explicit forms of f; and fy (see (3.1.16) and
(3.1.23)), we see that these contain the above terms, ®o(7, Ds7; y)Vsp, and $o(77, Dsiy; y)duy
(see also (2.1.25)). In addition to these terms, Fj contains also @y (7, Ds7; y)uy, (see (3.1.2)).

Lemma 3.3.12. For any € > 0 there exists a positive constant C, such that the following
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estimates hold.

(3.347)  STHIOEAIP + 60N f2ll* + 0110% frall?

+ 0[(05 Fia, O5ud)o| + 6° (05 Frze, 050l )a| < €Fyy + Co(BoFry + FyEy),
( ) 5O SIS ErE,
( ) (0 AuVsp + (bauyy, 0)7}, 0Ll )o| < (e + CeBs) Ep,
(3.3.50) (05 fII°P S DD,
( ) (05 F, Ofu))a| < €Fy + Co( By + FyE),
( ) (G, O ud)q| < €F,, + C(EyF, 4+ FyE,).

Proof. As for (3.3.47), the definition of F; and integration by parts in x imply
0°(05 Fraw, Oy ug,)al < €0°]|05ug,, | + Cdl| 05 (f — @o(77, Dsii) Vsp)a
+ 8%/ (95 (@0 (77, Dsi)ttyy ), Oy ug,)al-

Taking this into account, it suffices to estimate

(

Ky = 071 |0k(#3D37) | for 1<i<4,

Ky == 07| 0x (@507 1%,

Ky = 0104 (0305, or =12,

Ky = 07|05 (D5 wx0lu)||? for 1<A<7,j=0,1,
Ky = 07108 (240 | for =123

Ky 1= 85105 (@uy,), 05 )| for = 1,2,

| K7 = §2| OF(DIV 5p) || for i=0,1,

where

(1)5 - (I)(ﬁ7 D57~77 D?ﬁ? 577157 6D5ﬁt7 ué; y)u
(I)ﬁ = (I)<ﬁ7D5ﬁ7D§ﬁa Dgﬁ»6777575D5ﬁta5D§ﬁtau675ui;y>a
®7 = (7], Dsij; y)-

In the following we will use the well-known inequality

(3.3.53) oz (fDI S Nl 105gll + gl 0% f1

By this, (3.3.5) in Lemma 3.3.1, (3.3.11) and (3.3.13) in Lemma 3.3.3, and (3.3.22) and
(3.3.23) in Lemma 3.3.5, we obtain K; < EyF+F,E,,. Similarly, we get Ky < EoF+FyE,,.
By Lemma 1.3.6, we have

K3 S (1901700105 uy |1 + (05 D511 + 110505, )6~ (104 uy I* + 10y 1),
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which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K3 < EyE,, + E, F,. By
Lemma 1.3.6, we have

Ky S| @706~ wall7 10505 ull?
+ 07 Jwallz (105271 + 52512 (N1 35ul® + 1105 *)
+ (1@ L0 0 (105 wall* + (|07 w0y 1) (101 + |02 ]*),
which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 and (3.3.33) and (3.3.34) in Lemma

3.3.9 gives Ky < EyFE,, + FYE,,. As for K5, it suffices to consider the case of kK > 1 since we
can easily treat the case of k = 0. By Lemma 1.3.6, we have

K5 S [190] 700" |05 w |2 + 6|05 @311* + (10525, 1)V (10,0 |1* + || 05wz |?),

which together with (3.3.22) and (3.3.25) in Lemma 3.3.5 gives K5 < FyF),. As for Kg, we
will consider the case ¢ = 2 only, because the case where i = 1 can be treated in a similar
but easier way. Using integration by parts in x and y and Lemma 1.3.3, we have

Ko = 8*(05{(DFuy ) ey — (9,10} OFu, )
< 0P| (E(PFuy)aws OEul, o] + 63| D] 2 0F (BT ) o] | D] 2 0, |

Ty Y ray

+ 0°(0 (DG, 1y ), Oty )

Ty Yx rxxx

< eFy + O (005 (@Guy )| + 81105 (@5 1y ) |I® + 0% D285 (@511, ) [5) -

Here we can reduce the estimate of 0%(|0F(®fuy)ea|® + 61|05 (B, uy):[|* to those of K3 and
K. Furthermore, using the first equation in (2.1.33) to eliminate u,|r, we can reduce the
estimate of §2||Dy|20%(®u,),|2 to those of .J, and J;. Thus combining these estimates, we
obtain Ky < ¢F,, + CE(E~’2F’m + F2E~’m) By Lemma 1.3.6, we have

Ko S (| @517 0" V505 plI* + 0% (105 @oll* + 11077 @5, [1)d~ (I Vspll* + [ Vspal?).

which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K; < EyE, + E,,F,. Thus
(3.3.47) holds.
As for (3.3.48), it suffices to estimate

(

Ky := 0720 (25 D3) |12,

Ky = [0, (Dguay) 1%,

Ko := 62|05 H(@Pw )| for 1< A<4, j=0,1,
Ky o= 64|01 (@500 ul)]|? for i=0,1.

\

By (2.1.10) in Lemma 2.1.1, we have 62|01 D37||* < §4|0Ln..]3. Therefore, by (3.3.53),
(3.3.10) in Lemma 3.3.1, and (3.3.22) and (3.3.23) in Lemma 3.3.5, we obtain Ky < E,E,,.
By Lemma 1.3.6, we have

Ky < 10517 102y I* + (105 @51 + 1057 @5, 1) Ul I* + 1ty ),
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which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives Ky < FyE,,. By Lemma
1.3.6, we have
K19 S 19°] 7002 Jwa ]| 7001105 D00’
+ 072 w7 (105197 + |0, @3 1) (107’12 + [|05ul||?)
+ ([ PO[|7 62 (104 wall® + 1105 oy [12) (1050”7 + (|02l [1?),

which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 and (3.3.33) and (3.3.35) in Lemma
3.3.9 gives K9 S FyE,,. By Lemma 1.3.6, we have

Kui S | @g]17 0% 1057wl + (10,7 @51 + 11057105, 1) 0% (105w |I* + |04 1)

which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K11 < EyE,,. Thus (3.3.48)
holds.

We proceed to estimate (3.3.49). With the aid of (3.1.11), we can express A4Vsp in terms
of the product of ®f and derivatives of u’ in addition to ®§f. Taking this into account and
using (3.3.48), it suffices to estimate

Ky = 52”89[[;(‘1)(7)“?)”2,
Kis := |(0L(®ful,), Obu’)ql.

By Lemma 1.3.6, we have
Kz S [|95]178%105uc]* + (1059017 + (10520, )02 (eI + lug, |1?).

which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K1y < EyE,,. Integration
by parts in y implies

Kus = |(0L{(@Fus), — 8], s}, dhud)ol
< 8L (DTl |0l || + (DL (DFasd), )| + [|OL (@F ud) ||| |

< eBn + Ce(/10,(@Gug)lI? + [10,(@5,up) %) + (3, (Rgu;), du’)rl.

Here the estimates of [|0L(®ful)||* and |8 (®F,u))|* are reduced to that of [|0L(Pfus)||?.

By Lemma 1.3.6, we have
105 (@5uy)I* < 19517 105wy |1* + (10,2511 + 19,25, 1) (e [I* + llug, [1%).

which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives [|94(®fud)|* < E,E,,. Con-
cerning the boundary integral, by the first equation in (2.1.33) and the second equation in
(2.1.32), we can replace u, and dv, by hy + (2 + bs)n — 6%v, and by —du,, respectively, so
that we obtain

(05 (®guy), 0w’ )r| < 1PG(2 + s)lm 6’ [ + (| PGP |y + 01 DG |1 0”1

These terms can be treated by the estimate of Js and (3.3.19) and (3.3.20) in Lemma 3.3.4.
Therefore, we obtain K3 < (e 4+ CGE’Z)Em. Thus (3.3.49) holds.

49



As for (3.3.50), it suffices to estimate
Ky o= [0 (@051,
K5 = 6%[|0F(D30L0Iu)||> for 0<i+j<2, j#2.

By (3.3.53), (3.3.10) in Lemma 3.3.1, (3.3.11) in Lemma 3.3.3, and (3.3.22) and (3.3.23) in
Lemma 3.3.5, we obtain K14 < DsyD,,. By Lemma 1.3.6, we have

Kis S ||1@G]1 70105 0’ |2 + (05 D311 + 1955, 1%)0% ([10:05u’ | + 110,0us 1),
which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K5 < Dy D,,,. Thus (3.3.50)
holds.

As for (3.3.51), by the definition of F5 (see (3.1.15)) and using the third equation in
(2.1.33), it suffices to estimate

(

Ky = 0]|05 (23 Djite) || for i=1,2,3,

Kug := 0[]0 (®5us) 1%,

Kis := 0]|05 (2 uguy )|,

Ko := 02| 0% (D80 ul) || for i=0,1,

Ky := 0°[|05(P° Dl O ) || for (i,5) = (0,0),(1,0),(0,1),

Ky := 0%||0%(° Diijyeud) |12,
Koy := 62 |(OF (RO DI, Okul)o| for (i,5) = (1,0),(0,1),
| Koz 1= O] (OF(DFuyy ), OFud)ql.

Here we did not list the terms which we have already estimated as K, Ks,..., K5. By
(3.3.53), (3.3.8) in Lemma 3.3.1, (3.3.14) in Lemma 3.3.3, and (3.3.22) and (3.3.23) in Lemma
3.3.5, we obtain K4 < EoF), + FoF,,. By Lemma 1.3.6, we have

K S 1901700l 05 ey |* + (105R5I1* + 10505, 1) (lutey I* + [y 1),
which together with (3.3.22) and (3.3.24) in Lemma 3.3.5 gives K17 < EyF), + E,,F5. By
Lemma 1.3.6, we have

Kis S 119717 0lwg o0 |05y 1 + 01 7o (105@° 1 + 105 @GN ety I + [y |I)

+ P20 (105w |1* + 195, 1) (luay I + lluay ),
which together with the second inequality in (3.3.7) in Lemma 3.3.1 and (3.3.22) and (3.3.24)
in Lemma 3.3.5 gives K13 < EpFy + EqxF,. By (3.3.53), the second inequality in (3.3.7) in
Lemma 3.3.1 and (3.3.22) and (3.3.23) in Lemma 3.3.5, we obtain K9 < EoF), + FyE,,. As

for Ky, we will consider the case (7,j) = (0,1) only, because the other cases can be treated
more easily. By Lemma 1.3.6, we have

Koo S 1197 (|70 0% el Lo 1011y 1 + 6% et | Zow (1105 D7 [1* + 10522 () ([l I + Nl )
+ 1R 8% (1107 et 1 + 1107 Teey 1) (g [ + Ny 1),
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which together with (3.3.9) in Lemma 3.3.1 and (3.3.22) and (3.3.24) in Lemma 3.3.5 gives
Ky < EyE,, + FyE,,. Similarly, we obtain Ky < EyE,, + FyE,,. As for Ko, integration by

parts in x yields

Koy = 6?05 {(®{0L0Iu)) s — F,0L00u7 }, Okug)q

0x~x™y

< 0"7((0(250,0)uy), Oy, el + 072 |(95 (@0, 0,05 uy), Oy el

O0x~z™y

< eFy + Ce (0% |05 (@GO, D5 up)|1* + 6% 2|01 (@0, 0505 ) |1P).

Ox~x™y 2t

Since the estimate of the right-hand side of the above inequality is reduced to those of K7
and Ko, we obtain Ky < €k, + CE(EQFm + FgEm) As for Ko, integration by parts in y
yields

Kas = 6|(8§{(@guy)y - @gyuy}t, 85%?)9’

< 0|05 (PGuy)r, Ousg, ol + 01(05 (Rquy e, Oy )r| + 81(95 (PG, wy )i, Oy ol

< eFp+ O (01195 (@guy )il* + 01195 (@, uy)el|?) + 61(95(PGuy )i, Dyug)rl-
Here we can reduce the estimate of 6[|0F (®fuy):||* + 8|95 (@, uy):[|* to those of Ky and K.
Moreover, by the first equation in (2.1.33), we can estimate the term |(9¥(®fuy,);, OFul)r
in the same way as the proof of (3.3.41) in Lemma 3.3.10. We thereby obtain Ky <
€F,, + C(EyF,, + F,E,,). Thus (3.3.51) holds.

As for (3.3.52), by the definition of Gy (see (3.1.13)) we see that

O(Gr, Oyuf)al < eF + C[[07, As]{ (I + Ag) Vispe + AuVsp} |
+ Coll[0y, Asdug|* + 61([07, As] Fie, 5uy)ol
=: EFm + Koy + Kos + Kog.
Here we can assume k > 1. By the fact that A, and As are of the form ®7 (see (2.1.25) and
(3.1.11)), Lemma 1.3.7, (3.3.5) in Lemma 3.3.1, and (3.3.22) and (3.3.24) in Lemma 3.3.5,

we obtain
Ko < C{ B (019,05 pull? + [ V505 p]2)
+ En (0| Vspel* + 6l Vspial* + [ Vopll* + [ Vopa*) }
which gives Koy < Cg(Ezﬁm%—Emﬁg). The estimate for Kos is reduced to that of Ky9. Taking

into account the explicit form of Fy (see (3.1.10)), we can estimate Ky in the same way as
the proof of (3.3.51). Therefore the proof is complete. [

By Lemmas 3.3.10 and 3.3.12, for the nonlinear term N, defined by (3.1.30), we obtain
the following proposition.

Proposition 3.3.13. For any € > 0 there exists a positive constants C¢ such that the fol-

lowing estimate holds.

Nm < Eﬁm + CE(EQFm + FgEm + g\ EgEm)
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Moreover, if e < 6§, then we have
Nm S GFm + CE<E2Fm + FQEm)

Finally, we estimate the terms appearing in the right-hand side of (3.2.18) and (3.2.19) in
Lemma 3.2.2. By the explicit form of g (see (3.2.2)), this consists of the terms in the form

®(77, Dsip, Dy, u’, y)wrdu for AN=1,2, j=0,1,
o (7, Dsij, D3, u’, 0l y)ous.
Lemma 3.3.14. The following estimates hold.

(3.3.54) 8|05 gal1? + 611Dk gos]” + 61|V 50k gos
+ 6105 (N6 Vsp)a® + 0| Dal 26,8 S Fon + FoE,
(3.3.55) 105911 + 105 g0lI* + V50 gol? + 105 (NsVsp) |12 + 6| D2 613
< (14 Dy) Dy, + Eo[|V505p|* + min{ B, Do }(IVspll® + | Vapzl®),
(3.3.56) 8110y gell” + 8110, goull* + 611 V50, gor |1
+ 6105 (NsVap)el® + 8| Dal "2 4[5 S Frn + FaEin.
Proof. By Lemma 1.3.6, we have
O Fo/ CoaR T T 1 [ 80 7o 8 S
+ 0% [ |70 (105D + [[05R5*) ([ly 1* + [y )
+ (| @070 6 (052, 1 + (10500 [12) (g 1 + ey 1),

which together with the second inequality in (3.3.7) in Lemma 3.3.1 and (3.3.22) and (3.3.24)
in Lemma 3.3.5, we obtain

8|0k (5wl u)||* S FoEy, + E B

It follows from (3.3.10) in Lemma 3.3.1 that ||t ||30%]|0Fusy,||? < EaF),. Therefore, in the
same way as the above estimate, we obtain

0|05 (P uguay )|I* S FoE + FnE.

These together with the estimates of K3, K, and Kj yield 6/0kg,||* < FyWE,, + EyF,,. Tt
follows from the explicit form of gy (see (3.2.5)) that 8(|0*goe||2 4 6] V50 goa||? < Fin + FoEn,
where we used the estimates for K, K, ..., K5. By Lemma 1.3.6, we have
8|05 (NeVsp) I < (| Nol|7 01105 Vspl|?
+ 02 (|05 NG 1 + 1105 Noy DS (IVspll* + 1Vspe1?)-
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Since Ng is the nonlinear part of Ag, which is defined by (3.2.1), we see that Nj is of the
form ®]. Thus by (3.3.22) and (3.3.24) in Lemma 3.3.5, we obtain

(3.3.57) 8|05 Y (NeVsp)||? < EoFyy + Ep .

The definition of ¢ (see (3.2.3)), Lemma 1.3.3, and (3.3.38) in Lemma 3.3.10 imply
82| Dyt 29,2 < Fy + FyE,,. Combining the above estimates, we obtain (3.3.54).

By Lemma 1.3.6, (3.3.10) in Lemma 3.3.1 and (3.3.22), and (3.3.24) in Lemma 3.3.5, we
obtain

5|05 ( D uduy)|1* S (|77 00 6 (|0l || 1050y ||
+ 8| ud || 7o ([|05D°|1% + (105213 (g 1> + Ilesay 1)
+ |9°]7 o 6* (05l |1” + (105wl 1) (g I + [y 1)
< Do(1 4 D).
By (3.3.53), (3.3.10) in Lemma 3.3.1, and (3.3.22) and (3.3.23) in Lemma 3.3.5, we get
5| oF ((I>5(u5x)2) 1> < Dy(1+ D,,). These together with the estimate of K5 yield ||0%g[]? <

Ds(1 + D,,). By the estimate for K15, we obtain [|0%gol|? + [[Vs0% 90> < (1 + Do) D,,. In
the same way as the proof of (3.3.57), we obtain

105 (NeVsp)II* < EnllVs0pl|* + min{Ep, Dy} (IVspll* + | Vspa|?).

Lemma 1.3.3 and (3.3.40) in Lemma 3.3.10 lead to 5||Dm|k+%¢|g < (14 D3)D,,. Combining
the above estimates implies (3.3.55).
By Lemma 1.3.6, we have

17 C SR AT | [l 1 [t (7 8 oY
+ 0% | oo (1057 @21 + 110 @I (luy 1* + [y 1)
1PN Ny I + Ny )07 (10 |1 + 1|0y ),
which together with the second inequality in (3.3.7) in Lemma 3.3.1 and (3.3.22) and (3.3.24)
in Lemma 3.3.5 gives 6°||05 1 (®%ul u,)|? < EoFy + FyE,,. In a similar way, we get
5|0 (DOuluy,)|? S EoF,, + FyE,. Thus, in the same way as the proof of (3.3.54),
we obtain (3.3.56). The proof is complete. O

3.4 Uniform estimate

Summarizing the estimates in the last sections, we will prove the following proposition.

Proposition 3.4.1. Let m be an integer satisfying m > 2, 0 < Ry < Rg, 0 < W; < Wy,
and 0 < a < g, where Rg and oy are constants in Propositions 3.1.1 and 3.1.4. There exist
positive constants ¢y, Cs, Cg, and C7 such that if the solution (n,u,v,p) of (2.1.32)—(2.1.34)
and the parameters 0, €, R, and W satisfy

E2<t) Scla 0<67€§17 Rl SRSR(M Wl §W§6_2W2a
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then we have
(3.4.1) Ey(t) < C7E5(0)e%t,  E,.(t) + /0 t E(7)dT < CrE,(0) exp(Cs By (0)e“ + Cyet).
Moreover, if € < 0, then we have

Ey(t) < C7F5(0),  En(t) + /Ot E(7)dr < C7E(0) exp(Cs E5(0)).

In order to prove the above proposition, we prepare the following lemma.

Lemma 3.4.2. Under the same assumptions of Proposition 3.4.1, for any integer k satisfying
0 < k <m, the following estimates hold.

(3.4.2) B S B,
(3.4.3) i S P+ Py,
(3.4.4) (1 + D))" Vspl® < (14 D2)* Dy

Proof. As for (3.4.2), by the definition of E,, (see (3.3.1)) and Poincaré’s inequality, it
suffices to show that for any € > 0 there exists a positive constant C, such that

(3.4.5) 10w, || < €Ep 4 Co( B + EyEy,).

Applying 0% to (2.1.32)—(2.1.34) and using the argument in the proof of Proposition 3.1.1,

we obtain
2

1 k_ 512 k_ 5 ) 1 k k 5 W k k
i < — -
4KHVa@gcu |* < {Ré(éxu LO0huy)g + 2 tanaé(am,@xm)r + Sina&%%ﬁmz)r
+ 4K (105015 + 105 (bsn)[5) + (Ohha, Oyu)r — 2(05ha, 605v)r
1 52W
+2( .
tan o Sin
+ RO £, 0Fu) g + (OF{—2A,Vsp + (bauyy, 0)T}, 0Ful)q.

8577 - aﬁnzxa(saihS)F

Here we consider the case £ > 1 only, because the case k = 0 can be treated more easily.
Then, by Lemma 1.3.3 we obtain

V505w * S B+ bsnl, + 07 (b ho) 2,y + 6% hafy, + 6721057 £

2
+ |(0£{—2A4V5p + (bzuyy, O)T}, 0§u5)9|
It is easy to see that |bsn|?, +0%|hs|?, < E,,. Combining these, (3.3.39) in Lemma 3.3.10, and
(3.3.48) and (3.3.49) in Lemma 3.3.12, we obtain (3.4.5). Then, taking € and ¢; sufficiently
small we get (3.4.2).
As for (3.4.3), in view of the definition of F, (see (3.3.2)), it suffices to show
(3.4.6) 0 Vs05pl1? + 011V s05pa | + 011 Vs0;  pul?
+ 0N D3l + 01 + 0| Do) 20} S Fin + ExFop + Fa .

o4



Combining Lemma 3.2.2, (3.3.37) in Lemma 3.3.10, (3.3.47) in Lemma 3.3.12, and (3.3.54)
and (3.3.56) in Lemma 3.3.14, we obtain

(3.4.7) SV 05|12 + 6| Vs0kpe || + 0| V0L pe||? S Foy 4 By Ey + FL B,

We proceed to estimate (62W)262||D,|¥*2n|2. Applying —6|D,|*2 to the second equation
in (2.1.33) and taking the inner product of (§*W)d |D,|**2n with the resulting equality, we

have

1 k+3 0*W k+3 2 k+7
0| Dz |""2n + ———0[D.[" 21, (0°W)J| D, |*"21m)p
tan o sin o

= (3| D45 (p — v, — ha), (62W)3| Dyl 2m)r,

(

which together with Lemma 1.3.3 and the second equation in (2.1.32) leads to
(8 W26 | De|* 21

S 0| Dal 205 (s + Ote — hae) [

S 31105p.1” + 81105V spa* + 0% 0t |” + 105 Visttye || + 8[| D2 s 3.
Combining this, (3.3.38) in Lemma 3.3.10, and (3.4.7), we obtain the estimate for
(02W)262|| D,|¥+2n|2. Finally, the estimate for 6|(1 + 8|D,|)28%n,|? follows casily from the
third equation in (2.1.33) and the estimate for 6||D,|*+25|2. Thus, we obtain (3.4.6). Then,
taking ¢; sufficiently small we get (3.4.3).

As for (3.4.4), using (3.2.13) and (3.3.55) in Lemma 3.3.14 and taking ¢; sufficiently small,

we have
IVs0ipl” S (14 D3) Dy + min{ By, Do} (IVspIP + [ Vispe?).

Considering the case m = 2 and k£ = 0,1 in the above inequality and taking c; sufficiently
small yield ||Vspl]? + || Vspe||? < (1 + D3) Do, which together with the above estimates gives
(3.4.4). The proof is complete. [

Proof of Proposition 3.4.1. Combining (3.1.31), Proposition 3.3.13, and (3.4.2) and (3.4.3)
in Lemma 3.4.2 and taking € and ¢; sufficiently small, we have

CB(t) + Fult) < Co(Bo(t) +2) En)

for a positive constant Cy independent of §. Note that if € < §, then we can drop the term

(3.4.8)

CseE,,(t) from the above inequality. Now, let us consider the case where m = 2. By taking
c; sufficiently small, we have

d ~

gEg(t) + Fg(t) S CﬁgEQ(t)

for a positive constant Cs independent of 0. Thus, Gronwall’s inequality yields

(3.4.9) Eq(t) + /t exp (Cge(t — 7‘))]5’2(7')(17‘ < E,(0)e%.

99



In particular, we have fot Fy(1)dr < E5(0)e%<t. By this, (3.4.8), and Gronwall’s inequality,

we see that

E,.(t) —l—/o E,(7)dr < E,(0) exp (05/0 (Fy(T) + 6)d7’>
< E,,(0) exp (6’5}772(0)606“ + Cset).

This together with (3.4.9) and (3.4.2) in Lemma 3.4.2 gives the desired estimates in Propo-
sition 3.4.1. The proof is complete. [

Proof of Theorem 2.2.1. Since the existence theorem of the solution locally in time is now
classical, for example see [33, 23], it is sufficient to give a priori estimate of the solution. The
first equation in (2.1.32) leads to

0|05y |I* S 1105w |I* + Va5 |2 + | As0pul | + [ V505p]1* + (107 £ 1.

Thus, by (3.3.50) in Lemma 3.3.12 and (3.4.4) in Lemma 3.4.2, we have 6%||0%u?|*> < (1 +
D5)?D,,. By this, the third equation in (2.1.33), and the definitions of E,, and D,, (see
(3.1.29) and (3.3.3)), we obtain

(3.4.10) E(0) < Cs(1 4 Dy(0))D,y,(0)

for a positive constant Cy independent of 9. Thus considering the case of m = 2 in the
above inequality, taking D»(0) and 7' sufficiently small so that 2C7Cs (1 + DQ(O))2D2(O> <c
and e“sT < 2, and using the first inequality in (3.4.1) in Proposition 3.4.1, we see that the
solution satisfies

Ey(t)<¢  for 0<t<T)e.

Thus, using the second inequality in (3.4.1) in Proposition 3.4.1 together with (3.4.10), we
obtain

(3.4.11) En(t) + /t E(t)dr < C,

where the constant C' depends on Ry, Wi, Wy, a;, and M but not on ¢, €, R, nor W. By the
first equation in (2.1.32), we easily obtain 6=||(1 4| D)™ (1 4 8| Dy|)uy,||? < Fn. Therefore,
we obtain the desired estimate in Theorem 2.2.1. In view of the explicit form of E,,, using
the second equation in (2.1.32) and Poincaré’s inequality, we easily obtain (2.2.1). Moreover,
in the case where G = T, e < §, and fol no(z)dx = 0, it follows from Poincaré’s inequality
that 0F,,(t) < Fp,(t), which yields (2.2.2). The proof is complete. [
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Chapter 4

Mathematical justification for a thin
film approximation

In this chapter, we will show Theorem 2.2.7. The plan of this chapter is as follows. In Section
4.1, we construct an approximate solution of the Navier—Stokes equations by using Benney’s
method. We first fix n = n(x,t) arbitrarily and let (u,v,p) be a solution of (2.1.4)—(2.1.6)

except the kinematic boundary condition
ne+ (1= (en)® +eu)n, —v = 0.
Expanding the solution with respect to the small parameter ¢§ as

u = () + dugry + 0%ug) + -,
v = V) + 51}(1) + 521}(2) + -
p = Do) + 0pa)y + 6*pa) + -

and substituting these into (2.1.4)-(2.1.6) except the kinematic boundary condition, we
obtain ordinary differential equations in y together with boundary conditions for each order
of 9. Solving the boundary value problems, we determine coefficients in the above expansion.
Then, neglecting higher order terms in ¢, we obtain an approximate solution of the Navier—
Stokes equations for the arbitrary function 7. We note that the approximate solution is
just a polynomial in y whose coefficients depend on 7 and its derivatives. Substituting
the approximate solution into the above kinematic boundary condition, we can recover the
approximate equation for 7 given in Section 1.2. In Section 4.2, we derive an energy estimate
for a difference between the solution of the Navier—Stokes equations and the approximate
solution constructed in Section 4.1. Since the approximate solution satisfies the Navier—
Stokes equations approximately, the difference satisfies linearized Navier—Stokes equations
with non-homogeneous terms. Therefore, we apply the energy estimate for the solution of
Navier—Stokes equations obtained in Section 3.1 to the difference. In Chapter 2, this energy
estimate was the most important and essential step in order to derive the uniform estimate
in ¢ for the solution of the Navier—Stokes equations. This energy structure allows us to derive
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the desired error estimates and hence Section 4.2 is the main part in this chapter. Finally,
in Section 4.3 we complete error estimates. That is, we specify the arbitrary function n as
the solution of each approximate equation and estimate nonlinear terms appearing in the
right-hand side of the energy inequality in terms of energy functions, where we use essentially
Theorem 2.2.1, that is, the uniform estimate for the solution of the Navier—Stokes equations.
We remark that calculations performed in nonlinear estimates are technical because we need
to carefully treat the dependence of § in the estimates.

4.1 Approximate solution of the Navier—Stokes equations

In this section, following Benney’s perturbation method [5] we will construct an approximate
solution of the Navier—Stokes equations. Hereafter, we assume € = §. By a straightforward
calculation and 7 = 1 + O(d1), we can rewrite (2.1.32)—(2.1.34) as follows.

;

2 1
d(ug + Guy + uyv) + P—{(pr — P—{(52um + Uyy)
2
= —5§nuyy + 02 1(2) + 03 1(3) in Q,t>0,
2 1
(4.1.1) (v + ) + 5Py = 500 00e + vy)
2 )
= dgpy + SfP 488 o t>o0,
[ Uy + vy, =0 in Q,t>0,
820, + 1, — 2(1 + 6n)2n = §3ASY on I, t>0,
P 0vy = tana | | sima 0?5 +6°h5) on T, t>0,
(4.1.3) u=v=0 on X, t>0,
(4.1.4) M+ Ne —v= (52h§2) on I',t>0,
where
(2 _ 1 2 2
N7 = g By = 20pe + 2ympy) + M+ ymy + yPneu
+2y(y — D — y*(y — 2)neuy — uty — vy +2(2y — Lo,
(4.1.5)

1
£ = P—{( — 20%py + 205Uy + 21Uy,

(18 = 20m0 + nov + g,
f1(3), f2(3), h§3), hég), and th) are functions of O(1).
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We proceed to construct an approximate solution of the Navier—Stokes equations following
Benney [5]. Let n = n(z,t) be an arbitrary function. For any ¢ € (0, 1], let (u,v,p) be a
solution of (4.1.1)—(4.1.3) and we expand (u,v,p) as

= u() + (5U(1) + 5QU(2) + -y
(4.1.6) v = V(o) + 0v(1y + 6%vg) + -
P = Do) + 0pa) + 0°p2) +

and substitute this into (4.1.1)—(4.1.3), we obtain a sequence of equations for each order of
. By assuming W = O(1), the O(1), O(d), and O(4?) problems are as follows.

Uoyy =0, Py =0, U + vy =0 in Q,
1
(4.1.7) Uy = 21, P = tanan on I
(o) = vo) =0 on X,
u(1>yy = R(u(y + 2y — v*)u)e + 2(1 = y)v() + 2p©) + 21U@)yy in Q,
(4.1.8) 2Py = V(oyy T 277]7(0)3,/, U)e + vy =0 in Q,
Uy = 47727 Pa) = —U0)z on F)
(w1 = v =0 on X,
(
U2y = Rluay + 2y — ¥*)u@ye +2(1 — y) v))
+ 2Py + 20Uy — W(O)ax — Rf ( 1, U(0), V(0)> P(0)) in €,
2P(2)y = V(ayyy T 2Py
(4'1'9) - R( ot <2y Y )U(O)m) + RfQ ( 1, U(o), (0),p(0)) in €,
U)z +V2)y = 0 in Q,
U2y = —V(0)z + 2773, P@) = —U1)z + h ( (0)) — W N on F,
v sin o
(U(2) = V() =0 on Y.

Solving the above boundary value problem for the ordinary differential equations, we have

u) = 2yn,

(4.1.10) V(o) = —Y* N,
1

PO = Gana
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(4.1.11)

(4.1.12)

1, 1 1 2
_J)R 2_9 —y* — Zy | R, + 4yn?
Uu <3y y) m+{(y y)tana+(6y 3y) }n+yn,
1
U(1)=<——y + y Rt
_l’_

1 1.1
)t R ¢ New — 44°0M,
{( 3Y +y)tam+( =Y +3y) }77 YA,
1

Py = =L+ Y)a,

( 1 1 5

U(2) (60?J 6.7J + 129) Net
L, 1, 2\ R
oY T 3Y T3y

tan «

1 1 1 101
_ 7 _ _ - 2
+ ( 2537 + —y —123/ 9y + —y> R }nxt
+

180

2 . 1 1 1 2 R
7Y Y +5y =gV’ + v — 2y oy
3 tan o

00/ "15Y "6Y 5
1 121
T E=an o1 vy R2 rx
< 5607 * 315y Y T 630 > }"
4
+2yn3+R(§y3—4’y) nme + {R(y4—4y)+(3y2—6y)
1 1 5
== _— _ I, R2 "
V(2) < 3603/ +24y 243/) Nastt
1. 1, 1,\ R
+{( 60! T 12V 3y>tana
+ _1 _L _|_l _|_i _E RQ
2016 ~315¢ te0Y T 36Y ~360Y laat
Ly, 1s 55 L. g s 1,y R
+{ (63“/ T3 > - (6303“/ o0/ T30Y T 5Y
1, 1 1 121
- AN T AaAn R2 rxx
+<5040y 60" *oo? 1260”) }"
1
—3y* 0?1, + R( — gy“ + 21/2) (Nt + MMtz

1 1
+{R(—gy5+2y2)+( Y +3y) - }(nﬁnnm)

1
tana [ 1T

\



Note that u), v, p), - - - are just polynomials in y whose coefficients depend on 7. Then,
neglecting higher order terms in d, we obtain the following approximate solution of the
Navier—Stokes equations for an arbitrary function 7.

utPP(y;n) = w(oy + 0u(yy + 52%(2),
(4.1.13) VPP (ysm) = V(o) + 6V + (5211(2),

PP (y; ) = po) + 0pa) + 0°pa).-

In order to make the approximate solution satisfy the kinematic boundary condition (4.1.4),

7 is required to satisfy the following equation.

8
M+ 20, + 4enne — —(Re — R)0ue + C16%N0we + Coe0 (e + 02) + 26200, = O(6%),

15
where
32 40 R
Cy =24 —=R?>-— — ,
(4.1_14) 63 63 tan o
Co 16R 2
27 5 tan o

and the above equation is the approximate equation given in Section 1.2. Here, (4.1.14) is
the explicit form of the coefficients appearing in (1.2.1).

Thus far we have assumed W = O(1). Taking into account that W is contained only
in the second equation in (4.1.2) and modifying the O(d) problem under the assumption
W = 0(671), we see that (ul,vl,pl) and (ul,vi, pl), which are defined by

u ; =u ) (% ; = ) ! ; = )
(4.1.15) o(¥; ) ©:  vo(yin) > Poy;m) = o) N

ul(y;n) =uqy, vi(yin) =vay, PLY;N) = D) — S,

are the solutions of the problem. Putting v = v{ + dv! and substituting this into (4.1.4), we

obtain the approximate equation
8
e + 2, + denn, — 1_5(Rc - R)éﬂm = 0(52)

Similarly, modifying the O(1) and O(§) problems under the assumption W = O(6~2) and
putting

( W
uél = U(0), 'Uél = Y(0), p(I)I = Po) ~ sin Oénxx’
W
ut’ = uay — =4 = 29)Nawa
(4.1.16) oW
0°W
U{I — U(l) + Sin o (%y?’ — yQ)nxxxma
\p{l = p(l)’
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we obtain the approximate equation

8 2 W,
M+ 200+ demme — 7= (Re = R)new + 2 ———=01aa = O(57).
Moreover, putting
(
ug” =), v = v, 1y = Py,
oW
u’ =, el =, Py S Pa) © e
oW
(4.1.17) udV = U2) — — (V* = 2Y) N
sin o
W 1
Ugv = U(g) + SiIlOé (§y3 - 92)779655;&5’
wo._
(P2 =Pyt sina >

and v = v}V + dvIV 4 6?01V and substituting this into (4.1.4), we obtain the approximate

equation

8
N + 20y + denm, — 1—5(RC — R)0Mze

2 W
+ C10%Naze + Cogd(Ms + 12) + 26°0° 0, + gsmzé%mm = 0(6%)

under the assumption W = O(671).

4.2 Energy estimate

In this section, we will derive an energy estimate, which is most important step in order
to obtain error estimates. Using the arbitrary function 7 and the approximate solution
(PP, p"0P, pPP) = (P2 (), v (y; ), pP (s ), we dlefine v, v, b1, o, and g by the
following equalities.

i

1 2
Ui(yin) = 5{5(@”’ AP + 1, 0"P) + 0P

1
= L(umr ey — 670 (g, e, p>}

R
. R 1 52 app 750 ,aPP 2 app
Va(y;m) = 5 (0" + uvPP) + R
1
(42.1) — g0+ ope) — 330 (n, up>}
1
$1(n) == 5{5%?" + utPP — 2(1+ 61)*n }y=1,

§2W

N+ —
tan o sin o

1
oulo) = 5 ow = Gy

Nex — 52h52) (na uapp)}

y=1

1
(93(n) = S {m +110 — 0P = 6ha(n)}Hy=1,
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where

2 . 2
(4.2.2) FU = —I—{nuygp +of?, BV = Eﬁpypp +0f7.

Here, 11,19, 01, ¢, and ¢3 measure how much (n, u®PP, v®P p?PP) fails to be the solution

of the Navier—Stokes equations and in the next section we will give explicit forms of these

functions (see (4.3.3)). Then, by (4.2.1) and the definition of the approximate solution

constructed in Section 4.1, it satisfies the following equations.

( O (u? 4+ aulPP + 1, v°PP) + zépapp — l(62ua‘lw + ulPP)
x y R R\ e vy

= 5D (n, utPP, 0?2 pPPPY 1 3 (y; ) in Q, >0,

2 1
(4.2.3) 0% (UfPP 4 WUGPP) + —piPP — —5(57UIRP + vibP)

R R
= 057 (n, w, pP) + 8 s(yim)  in Q>0
\ uiPP + opPP = 0 in Q,t>0,
O*VEPP + ufPP — 2(1 4 0m)*n = 8°p1(n) on T, t>0,

1 ?W
(424 P = szp  tan an + sin anl“x = 52hg2)(77auapp) + 53¢2(’7) on I', >0,
N+ Ne — VPP = §2h3(n) + 5>p3(n) on I',¢t>0,

(4.2.5) u? =0"P =0 on X, t>0.

In other words, the approximate solution satisfies the Navier—Stokes equations approximately
with reminder terms vy, ¥, 1, ¢2, and ¢3. Let (n°,u®,v°, p?) be the solution of (4.1.1)-(4.1.4)
and we set

H = 775 —n, U:= u — u*P, Vo= v° — VPP P o= p(s — p*PP,

Taking the difference between (4.1.1)—(4.1.4) and (4.2.3)-(4.2.5), we have

( 2 1
(U, + aU, + u,V) + ﬁéPx — E((SQU“ +U,y)
= P+ 8P 0l 08, ) — B3 (ysm) in Q, >0,
4.2.6 2 1
( ) (Vi +uaVy,) + ﬁpy — }—{5(52% + Vi)
— FQ + 63 2(3)0767“57”6’])6) - 63¢2(y;n) in Qv t > 07

U, +V, =0 in Q, t>0,
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(( 0%V, + U, — (2+ (1, n))H = 3hP (1 ,ud,0%) — 83¢1(n) on T, ¢ >0,
1 2
P-4V, — H+ 5. WHM
(4.2.7) tan a sin «
=Gy + 53h§3)(775, u®,v%) — 63pa(n) on I',t>0,
\Ht+Hx—V:G3—53¢3(n) on I',t>0,
(4.2.8) U=V =0 on %,t>0,
where
= (A (0", ul 00 pP) — £ (g, uP v?PP peee)),
= 5(f8 (1) — f5V (n, uPP, pP)),
(4.2.9) 25(5(7;5)2 (2 + 577)77 + 0n* + 2n),

Gy = 02 (hS? (i, ul,v%) — hS?) (m, u2PP, v2PP)),
Gy = 0*(h” () —-h§>on)-

\

Note that (4.2.6)—(4.2.8) are linearized Navier—Stokes equations with non-homogeneous terms.

For convenience, we set
U:=(UV)", F:=(F, 5" = 5" =)

We proceed to derive an energy estimate to (4.2.6)—(4.2.8) following Section 3.1. In view
of the energies obtained in Section 3.1 (see (3.1.6)—(3.1.8) and (3.1.24)), we put

2 1 W
<%MU%=WWW+—C——W%+f—W%)

R\ tana
sforioni+ 2 (o wii+ S s |
+ 8o SN0+ 2 (o S )

wod o+ 3 (s + S ) |

Fo(H,U, P) = 6|Uy||* + 01|10, " Pul|* + 0| Ho [ + 0*W| Hag g + 0" W | Hyw g
+ 0| VsUs|I* + 6° | VsUso ||* + 0l VU

Here, (1, B2, and 5 are appropriate positive constants (see (3.1.28)). Integrating by parts
and using the third equation in (4.2.7) and Poincaré’s inequality, we see that for any € > 0
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there exists a positive constant C, such that

P|{F + 8O = 8} an, Usi )| < 0| Usaal|® + CO(| F|* + 8| F]2 + 8°lapa ),

|(H, (bH))r| < ed|H, |5 + Co™(0H ). 5,

52W‘( vy (OH )z )r| < 653W’HM|3 + CJSWW)H)A%,

§°W|(Hyy, Gz — 8°¢3)r| < €0°W|H,,[§ + COW(|Gs g + 6% ¢s]3),

8W|(Heazr, 0 $32a)r| < €0°W?| Hyga|§ + Ce6™|P3002 5,

§*W|(Hoat, G — 0°¢30)r| < €(6"W?| Hyaglf + 0°||Upaa|[5)

+ Ce(1+ W) (|Gl + 0% def5) + 8°(|Gsaaly + 0% D320 ]0)-

Here, we used the inequality [V (-,1)|o = [V (-,1)=V(-,0)|o < ||V, ]| = ||Us|| thanks to the third
equation in (4.2.6) and the second equation in (4.2.8). In the following, we use frequently

this type of inequality without any comment. Taking into account the above inequality and

(3.1.27), we need to estimate the following quantities.

(4.2.10) A (Z1) = (OW + 0~ )| (DH )o[5 + 8°|(0H )l -+ S| (DH )5
4 57 Gal2 + 6|Gonl2 + 62| Dy |2 Ga|? + 6|(Gar, 5Vi)r|
+ OW|Gs[2 + 683Gl + 0°|Gnal2 + 6 W2| G2 + 6°W | ( Hywws Gawa )1
+ 0 Y| F|]* + 8 || Fo||* + 6| (Fy, Uy)al,

(4.2.11) A2 (Za) = 0[RSV + 67 IR 3 + 68| Da 2R3 + 01| (BSY, Ui)r |
+ 0[RSV 3 + 0TIRS) IR + 6% Da| 2hE) 3 + 8% (RS, aVi)r|
+ 8| FEN + 0T £DN? + 81 (£7, Ual,

(4.2.12) A (Zs) = 81 6nl3 + 07| d1alf + 0% Do 2 01a 2 + 67 |6l + 0% @af? + 07| b2
+ 0% Dl dnu 3 + 07|62l + 6" W I3 [2 + 8°| 6343 + 0| S50
+ 07| P30 + OOW2 sl + 0 ([ ]|* + 07 |4pa[|* + 67 (||,

where

7y = (H,U,bH,Gs,G3, F), Zy= (U, 1Y n? £O),  Zy = (¢1, b, b3, ).

For an integer m > 2, we set

(4.2.13) Zé@o OFH,0kU), F(HU,P):=> Fo(0iH, kU, 0kP),
k=0

(4.2.14)  MNHU,Pyn) =Y {M4MNOEZ0) + (05 H,05Gs)r|},

k=0
(4215) AU = A0k Z),
k=0
(4.2.16)  A2(Hin) = > {08 Zs) + (08 H, 6205 )r |}
k=0
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Here, the terms Y " [(OFH, 05G3)r| and Y_)"  [(OFH, 530% ¢3)r| come from (3.1.30). Apply-
ing 9% to (4.2.6)—(4.2.8), using Proposition 3.1.4, and adding the resulting inequalities for
0 < k < m, we obtain the following lemma.

Lemma 4.2.1. There exist a small positive constants Ry and ag such that if 0 < Ry <R <

Ro, W1 < W, and 0 < a < ay, then the solution (H,U,V, P) of (4.2.6)—(4.2.8) satisfies
d
(4.2.17) aé"m + Ty S C(NEF N2 N3,

where the constant C' is independent of 9, R, and W.

For later use, we modify the energy and dissipation functions &,, and .%,, as

(4218)  En(H,U) = Eu(H,U) + |(1+ [D))"U|” + (1 + | D))", |1,

(4.219)  Fu(H,U,P) = Fu(H U, P)+6|(1+ 0| D)2 Hyf2, + (0°W)26%|| D, |2 HI2,
+ 6L+ (D)™ (1 + 8| Do) (Vs P, Uyy) |17
+O[(1+ [ D))" Vs PP

and note that E,, = &,,(n°,u’) and F,, = Z,,(n°, u’, p’). We also introduce another energy
function %, by

(42.20)  Zn(H,U) = |(1+ 8| Da[)* Hp, + 6%||(1 + [ D)™ VI* + 0*[|(1 + [ Do )" U |*
(1 + D)™ DU + (6*W)*[(1 + 0] D) Hal7, 11
+ VOWI|(1+ | Dy )" 0Va, 1%,

which does not include any time derivatives. By using Theorem 2.2.1 and Proposition 3.4.1,
the following uniform estimate holds.

Proposition 4.2.2. There exist a small positive constants Ry and oy such that the following
statement holds: Let m be an integer satisfying m > 2, 0 < Ry < Rgp, 0 < Wy < Wy, and
0 < a < ag. There exists small positive constant co such that if the initial data (1o, ug, vo)
and the parameters §, €, R, and W satisfy Assumption 2.2.5 and W < 6-2W,, then the
solution (n°,u®,v°, p°) of (2.1.32)~(2.1.35) satisfies

E2<t) S Co, sup Em+1 (t) +/ Fm—Q—I (t)dt S C, Em+1(t> < Ce_c‘st.
0

>0 -

Here, positive constants C' and ¢ depend on Ri, W1, Wa, o, and M but are independent of ¢,
e, R, and W.

Moreover, we easily obtain the following lemma.,

Lemma 4.2.3. Let G=T, a >0, 0 < Ry < R < R.. There exists a small positive constant
c1 such that if s > 2 and |nol3 < ci1, then the problems (1.2.3)~(1.2.6) under the initial
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¢ V' respectively, which satisfy

condition |,—o = 1o have unique solutions ¢*, ¢!, , and

suplc!(r)2+ [ I¢Hr)Edr < Cll, I (P < Clnfe™,

7>0 0

Sup\CII(T)|§+/ (G (ME + G (nE)dr < Clolz,  [CT(7)[2 < Clnol2e™
0

720

[e.e]
suplc! () + [ I () dr < Cll, [ () < ClfZe
0

720

7>0

sup [¢"V (7 )\§+/ (167 (DR +0lGy (DE)dr < Clnol2, ¢ (7)[2 < Clnol2e™"
0

Here, R, = # 1s the critical Reynolds number and positive constants C and c are inde-

pendent 0f5 and R.

4.3 Error estimate

We will show (2.2.9) under Assumption 2.2.5 and (2.2.8) by combining the energy estimate
obtained in Section 4.2 and nonlinear estimates which will be performed in this section. We
can show the other claims in Theorem 2.2.7 in the same way as the proof of (2.2.9) and we
will comment about the discrepancy at the end of this section. Now, we specify the arbitrary
function 7 as the solution of the approximate equation. Let (! be the solution of (1.2.5)
under the initial condition ¢'*!|,—y = ny and we put n'/(z,t) := (! (x — 2t,et) and

u'(x,y,t) = PP (y; M (2, 1)),
(4.3.1) v (2, y,t) = 0P (y; " (2, 1)),
p(z,y,t) = pPP(y; ' (, 1)),

where (u*PP, v?PP p?PP) was defined by (4.1.13). Then, we have

8
(4.3.2) nitt = -2+ + 75 (Re — — R)onttl — C16°n!tE
45?7111 II7 52{0 (nlllniif_i_(nifl) )+2(77[II)277£II}.

Using the approximate solution (4.3.1), we define ¥y, ¥, ¢1, ¢2, and ¢3 by (4.2.1). By

using the equality (4.3.2) to eliminate the ¢ derivatives of n’f!, we can rewrite these terms
as follows.

Br(ys) = Coy)OR T+ Cop)o0T -+ ol NI

Goly; 0" T) = Cy ()P + Co(y)80Hy T + - - + Cus ()07 T 4 NI,
(4.3.3) L) = Cre®Pn' T + Crrddi T 4 - 4 Cay 6508y + NI,

o (111T) = CondP T 4 Cagd T 4 - - 4 Cogd*dTy T 4+ NI,

S5 (1'11) = Cord T + CagdPn"T 1 -+ Caod®OTn T + NI,
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where Ci,...,Ci5 are polynomials in y, Cys,...,Cso are constants, and N{H ... NHI are

collections of the nonlinear terms of the form

1
(4.3.4) 5%(577[”, 320", PO y) o (520, 600 y).

Let (n°,u’, v, p°) be the solution of (2.1.32)-(2.1.34) and we set H!/! .= n? — I Ul .=
(u® — ult §(v° — vIH))T, (gn{bu = g"m(H”I, U') and so on. In the following, we use same
notations in Subsection 3.3.1. We prepare several lemmas to proceed the error estimate.
In particular, we estimate nonlinear terms defined by (4.2.14)—(4.2.16) in terms of energy

functions.

Lemma 4.3.1. Under the same assumption as Proposition 4.2.2, for any € > 0 there exists

a positive constant C, such that we have

(4.3.5) N2(UM)(t) < €F(t) + C6* By (t) Epyr (1),

where N ? is the collection of nonlinear terms defined by (4.2.15).

Proof. By the explicit forms of f®) hg?’), and hg?’) (see (4.1.5) and Subsection 2.1.3), we

can obtain the desired estimate in the same but more easier way as proving Lemmas 3.3.10
and 3.3.12. g

Lemma 4.3.2. Under the same assumption as Proposition 4.2.2, for any € > 0 there exists
a positive constant C, such that we have

A Hn ) (1) < €F(t) + Ol ()7 112,

where N2 is the collection of nonlinear terms defined by (4.2.16).

Proof. By the well-known inequalities

05 (fDI S N1l l10F gl + gl < OE A1
105 @a(£5 )| < CUIFll=) 10 £

and (4.3.2)—(4.3.4) lead to

m

D AE05Zs) S (L4 0" a2) Ol e
k=0

Moreover, by Poincaré’s inequality and (4.3.4), we see that
(05 H, 6%k ¢a)r| < e8|05 Holg + Ce®|05 sl < € + Ce(1+ [0 |71 12) 8% ns a2

T

These together with Lemma 4.2.3 imply the desired inequality. U
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Lemma 4.3.3. Under the same assumption as Proposition 4.2.2, for any € > 0 there exists

a positive constant C. such that we have
(4.3.6) N HHM gt I gl (1) <(CLEy(t) + ) Z (1) + C. {E (t).Z (1)
+ 8 E () Frgr () + 802" (6)] 7112
+ (En() +8lng" (D12 60 (1)}
where A} is the collection of nonlinear terms defined by (4.2.14).
Proof. In this proof, we omit the symbol I1] appeared in a superscript of solutions for
simplicity. By (4.1.5), (4.2.2), and (4.2.9), we see that F' is consist of terms of the form
(600(1°, 002 y)(V5U,, Vs P) + 6*(1)*(Uyy, P),
0@o(n°, ong, u’s y)(OV, 6U,),
0% (0113, 0y, 6v°1 ) (U, U,),
00y (n, w, Vsu, Vsuy, Vep;y) (6 Hy, 6Hy, U, 0V),
(020" (yy + py) H
and that Gy = 6* {0’ (2H, +Uy,) +mU + (2, +u,) H+ull,}, Gy = 8*{(n°)* Hy+ (0’ +n)n. H},

and bH = 25(6(n°)? + (2 + dn)n° + 6n* + 2n) H. Note that using (4.3.1) and (4.3.2), we can
express the approximate solutions u, Vsu, u,,, and Vsp in terms of n and its = derivatives.

N\

In view of these, by putting

= ®(n’, o, oy, 6*n%,, 6°n,, u, y),

= O(0n2, 6P, %02, 6%, 620l 000, dul, du?, y),
= o1, 012, y),

= ®(n, 0y, ...,01091%, v),

Q1 = (0H,, 6Hy, 8 Hy, 8 Hyy, 6° Hoy, 6V, 86U, 8UL, 6V 5Us, 6V 5Ur, VsUy, VU,
V5P, V5 Py, 0Us|r, 8Uy|r, 0°Usa|r, 67| D, P2U 1),
Q2 = (H,0H,,6H,;,0° Hyp, 6 Hyy, 0 Hopo, U, VU, 0U, Ulr),
it suffices to estimate )
Iy = 8]|95(2Q1) 1%,
I = 0]|95(FQ2) 1%,
I3 = 8|(0F(°Us,), O¥Vi)rl,
Iy = 8(95(2§V5Us ), U)ol
I5 = 6%|(9%(DIV s 1) 0K UL )al,
Is = 0|0k (@1 B2Q5) |12,
I; = 64(OF(®4Hy,), 9" Vi)r |,
Is = OW|(0F H g, 9" G )1
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for 0 <k <m.
By Proposition 4.2.2 and [[(u,v)[lz= S [[(tysv,) ]| + [[(tay, v2,)]| thanks to the boundary

condition u|y—g = v|,—o = 0, we obtain

3.7) |1Pollie S B2y 105 05]I* + 10505, 17 S E
3.8) 1P3M7~ S Foy  N05®EI° + 1050, 117 < F

In the same way as the proof of Lemma 4.3.2, we have
(4.3.9) 0Pl S Olmalminzs (105 Pol* + 102@5, %) < dlnalimine: 10151 < [1lmsae-
On the other hand, it is easy to see that

(4.3.10) [P +11Qul* S F2, 10:Qu]* S F
(4.3.11) HQzHQ + HQQmHZ S &, ”5%22”2 S ém

where we used the trace theorem Lemma 1.3.3 to estimate the term 6°|| D, |3 U|2.

As for Iy, by (4.3.7), (4.3.10), and Lemma 1.3.6, we have I; < Ey%,, + E,.%,. As for
I, by (4.3.8), (4.3.11), and Lemma 1.3.6, we have I, < E,&,. As for I3, by integration by
parts, we have I3 < 0653|775Um|fnf% + 653]%]7271% < O(EyFp + EpnFy) + €%, As for Iy, by
integration by parts in y, we have

Iy < C8* (|05 (R5VsU) 1 + 110525, VU [I)
+8°[(05(D3U1), U )r| + 0% (05 (®Usy ), DU )r| + e[| 05Uy |I?
<Iyq+lyo+Is3+ Ejmv

where

Iy = C* (05 RFVsU I + (105 (5, VsUn)17),

Lip = 0°|(03(P(Ua), 05U )r |,

Iz = 0%|(03(PU), 0r U |-
The estimates for I, ; and I, 5 are reduced to the estimates for I; and I3, respectively. Thus,
taking into account that we can eliminate the term U, |p in I4 3 by the first equation in (4.2.7),
this together with the estimates for I, I3, 63k, and 63¢; yields I, < e, + Ce{Egjm +
En(Fo + 0'Fyir + |02 4120°0:1%012) }- - As for I, it suffices to show the case of k& > 1
because we can treat easily the case of k = 0. Integrating by parts in z, (4.3.7), and Lemma
1.3.6, we have Iy < 83|05 Up, || + C.o||0F(D3VsP)||2 < eZm + C€<E2jm + Emﬁ;g). As
for Is, by (4.3.7), (4.3.9), (4.3.11), and Lemma 1.3.6, we have

Is < 0{115 17 (105 @M 1> + 1052, 1) (1Q21 + (| Q221%)
+ ||| 70 (05 @57 + 10595, 1) (1Q2I* + [|Q2z1?) + |2 [| 700 [R5l 7 105 Q217 }
S (B + |77|?n+12)5|77:c|3n+12£m
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As for I, it suffices to show the case of £ > 1 because we can treat easily the case of £ = 0.
By the third equation in (4.2.7), integration by parts, and the trace theorem, we have
Iy < Cb*|| D, 201 (@4V4)[2 + Cu0® |08 (D Hop + PGt [ + Ceb”[0° 0 oy 2
+ €(8*| Do |2 05 Vi[G + 8% 05 Vi)
<Iii+1Iro+ 173+ €Fm,

where

I = C8*| D205 (VOIS
1772 - 0665’85((133th + (I)éth)‘g,
I 3 = 06(55](538’;¢3t]3.
By Lemma 1.3.3 , the second equation in (4.2.6), and (4.3.9), we have
Iy S |G, 0° Vil + 018G 5000 | De 205~ Vil]
S 120051 0% Ui | + 01 @[ (82105 T |* + 0|05 Vi)
~ |77|m+12‘/2 + 5|nl‘|m+12£m'

Recalling the explicit form of G5, we see that the estimate of I7, is reduced to Is. Taking
into account that we have already estimated I3 in the proof of Lemma 4.3.2, we obtain
I; < Ce {|77’ +12/2 + (E + |77’m+12)6|771 m+12®@ + |77’m+1255’77x|12n+12} + €Z. As for Is,
integration by parts, (4.3.7), and (4.3.9) lead to
O"W(0F Hynaa, 05 Claaa)r| < €(6°W)?8||Ds| 2 HI}, + C6%| Dal 2 G,
< €T + CA (B + 602l i10) G + EsFiny ).

Therefore, by the boundedness of the terms E,, and |52, ,, which comes from Proposition
4.2.2 and Lemma 4.2.3, the proof is complete. O

Lemma 4.3.4. Under the same assumption as Proposition 4.2.2, we have

(4.3.12) (t) < (g;{lll £) +54( Boer () + [T (¢ )72%“2)’
(43.13 FUI0) S FIE) + (Fu®) + ST O, )E 1)

+ 8 B (8) Frnga (8) + 8|0y (0)]7 412,
(4.3.14) SN (1) < 9T (1) 4 62,

Proof. In view of the discrepancy of non-homogeneous terms in the equations, modifying
the proof of (3.4.2) in Lemma 3.4.2, we obtain (4.3.12). Taking into account that we can
eliminate Uy, in .Z/! by using the first equation in (4.2.6), modifying the proof of (3.4.3) in
Lemma 3.4.2, it is not difficult to check that (4.3.13) holds. Moreover, modifying the proof
of (3.4.10), we obtain (4.3.14). O
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Lemma 4.3.5. Under the same assumption as Proposition 4.2.2, we have
D' (0) S 8%

Remark 4.3.6. This lemma together with (4.3.14) yields

(4.3.15) &I0) < 6

Proof. By the second and third equations in the compatibility conditions in Assumption
2.2.5, we see that

(4.3.16) wol@, y) = yugy(z,1) — / ’ / 1 Uoyy (2, w)dwdz

2yn0 + 4ydns + 2yé*n ) + 5y( Ovoe + 52h§0))

/ / Ugyy (T, w)dwdz.

It follows from (2.2.8) and ||(1+4 |D,])"™ " uli—o|| < & (see the explicit form of u'!| that is,
(4.1.10)-(4.1.13) and (4.3.1)) that [|(1 + |D.|)™ " ugy,|| < 8. Thus, by (4.3.16), the explicit
form of u!'?, (2.2.8), and the uniform estimate for 52|h§0)|m+1 (see the proof of Lemma
4.3.1), we obtain ||(1 + |D,|)™ ' Uli—o|| < §. Combining this and the first equation in the
compatibility conditions leads to ||(1+|D.|)™V|i=o|| < 0. Therefore, in view of the definition
of Dy, (see (4.2.20)), using these and H|;—y = 0, we obtain the desired estimate. O

Proof of (2.2.9) in Theorem 2.2.7. By Proposition 4.2.2, Lemmas 4.2.1, 4.3.1-4.3.3, and
(4.3.12) and (4.3.13) in Lemma 4.3.4, if ¢q and € are sufficiently small, then we have

(4.3.17) Cftéaﬂgff() FHLt) < CLpiEL () + B () F51 (1) + 6pa(1)),

where

(4.3.18) 01(t) = Foult) + 6t ()2 010 ©2(t) = En(t) Frsr () + 80" (62410

By considering the case of m = 2 in (4.3.17) and using Gronwall’s inequality and Proposition
4.2.2, if ¢y is sufficiently small, then we have &7/ (t) + [ #41(s)ds < p(t), where
t

(4.319)  os(t) = E1(0) exp (cl / Corls )ds) L ;54902(5) exp (01 /

which leads to

gol(a)da> ds,

(4.3.20) /0 t FH(5)ds < @s3(2).

Note that by Proposition 4.2.2 and Lemma 4.2.3, we have the exponential decay estimate for
B (t) and ' (t)[2 2 13- This together with (4.3.17), Gronwall’s inequality, and &5 <
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Z I which comes from |H|y < |Hylo and ||V < ||V, ]| = ||U.| (see (4.2.13) and (4.2.19))

m

yields
t
a0 < a0 (0 [ eias) + i e
0

where
t B t
(4.3.21) ou(t) = 01/ (F3(s) 4+ 0" F g (s)) exp (Cl/ gpl(a)dU) ds.
0 s
Combining the above inequality and (4.3.12) and (4.3.14) in Lemma 4.3.4, we obtain
(4.3.22) EML(1) < Co (0 + ZE(0) + pa(t))e ™.

Here, recalling the definition n/?!(z,t) = ¢"!(x — 2t,et) and the assumption ¢ = § and
using Lemma 4.2.3, we have [ d[nt/(t)[2dt = 1 [°6|¢I(7)2dr < |mols- By this, the
integrability of F},,; which comes from Proposition 4.2.2, and (4.3.15), we have @3(t) < 64
(see (4.3.18) and (4.3.19)). This together with (4.3.20) leads to @4 (t) < 6 (see (4.3.21)).

Combining this, (4.3.22), and Lemma 4.3.5, we have
(4.3.23) SN (1) < Cyote,

which implies D(t; (IH w1 o pll) < §le=ct (see (2.2.3) and (4.2.18)). Here, we used
VI S IVl = [|Uz|l. Moreover, by taking into account the equality P(x,y,t) = P(x,1,t) —
fyl P,(z,z,t)dz and using the second equation in (4.2.6), the second equation in (4.2.7), and
the uniform estimate (4.3.23), we easily obtain ||(1 + |D.|)™(p° — p"1)(#)|]* < §te*'. Note
that in the case of O(671) < W < O(672) we can estimate the term ngVZ@?Hm which comes
from the second equation in (4.2.7) by &I Therefore, the proof of (2.2.9) in Theorem
2.2.7 is complete. 0

We proceed to prove (2.2.5), (2.2.7), and (2.2.11). Let ¢!, ¢!, and ¢’V be the solution
for (1.2.3), (1.2.4), and (1.2.6), respectively under the initial condition ¢f|,—¢ = ¢(/|,— =
V=o = no. We put nl(z,t) = ¢f(x — 2t,et), n'l(x,t) = Iz — 2t,et), 'V (z,t) =
¢V(x —2t,et) and

u! (z,y,t) == uf(y; n' (2, 1) + dui(y; 0’ (x, 1)),
(4.3.24) ol (x,y,t) == uf(y:n' (x,t)) 4+ ov{ (y; 0 (2, 1)),
p(x,y,t) == piy;n' (2, 1) + opi(y; n' (1)),

u(a,y,t) =g (y; 0! (2, 1)) + ouy (y; ' (1)),

(4.3.25) v (2,y,t) =gl (ys ' (2,1)) + ovi! (y; ' (2, 1)),
H(a,y,t) == pi (y; ™ (x, ) + opi* (y; 0 (2, 1)),
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uV(@,y,t) = ug (g (2, 1) + 0u” (ys ' (2, 1)) + 0%ug (ys ' (2, 1)),
(43.26) o' (z,y, 1) =¥ (y; 0" (2, ) + 0vf¥ (y; 0" (2,1)) + 0%03" (ys 0V (2, 1)),
W,y t) = pe" (y;n' (2, 8)) + op1" (yi ' (z, 1)) + 8*p3" (i 0™V (2, 1)),
where ul, vl pl, ... were defined by (4.1.15)—(4.1.17). In view of this, by applying the same

argument as showing (2.2.9), it is not difficult to check that (2.2.5), (2.2.7), and (2.2.11)
hold. Therefore, the proof of Theorem 2.2.7 is complete. U
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Appendix A

Proofs of lemmas

A.1 Proof of Lemma 1.3.1

Put f := u, + 6%v,. Then it holds that

Uy + v, =0 in €,
uy + 6%, = f  inQ,
u=v=20 on X.

Taking Fourier series expansion with respect to x, we have
intiy, + 0;, = 0,
i, +ind*o, = fo,
n(0) = 0(0) = 0,
which can be written in the following matrix form

~/ ~ r
w, = Ad, + f,

where X
A _. 2
u:(”") fn:<fn)7 A:( 0 —ind >
0 —in 0

Uy,

The solution of this initial value problem is given by

( ’ ) = [ ( =) ) &

Since
At _ ( cos(ndt)  —idsin(not) )
—+sin(ndt)  cos(ndt) 7
we have
N _ v B cos (nd(y — z)) .
(A11) n(Y) /0 n(2) ( —Isin (nd(y — 2)) )d ‘
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Differentiating (A.1.1) with respect to y, we have
A fa(y) / Yoy nosin(nd(y — z))
A1.2 "(y) = — n dz.
( ) @,(y) < 0 . fa(z) —incos (nd(y — z)) :
On the other hand, by Parseval’s identity, inequality (1.3.1) is equivalent to

S [t sty < KX [0+ 22

nez nez
Substituting (A.1.1) and (A.1.2) for the above equality, we see that (1.3.1) is equivalent to

3 / { s /0 ’ in(ndly — N F.()dz| 4 ns /0 " sin(nd(y — 2)) fu(2)de Q}dy

+
ne’l

<KZ/{

nel

n5/ cos(nd(y — 2)) fu(z )dz

Fl P

Therefore, it is sufficient to prove the inequality

(A.1.3) /0 (nd)? /Oy sin (nd(y — 2)) fu(2)dz

1 y . 2 . 2
<& [{wo2| [ costuty = 2 funaz| + [ b
0 0
forn=1,2,3,---, where K is a positive constant independent of 4 and n. By extending fn

defined on (0,1) by zero to R and putting
T

=5 9(y, z) := cos(nd(y — z)) fn(2),
the left hand side of (A.1.3) is evaluated as

ara) [ | [eosfos (9 5) =)t
- 1”@5) / 2z + / " w2z
= :a{ma) [ st 210 }dy+2<n6> [ st
32/01{(n5) o 2)ds }dyﬂn(s/”/““ ) Pddy,

where we used Schwarz’ inequality in the last line. The first term of (A.1.4) is bounded by
the right hand side of (A.1.3) for K = 2. Since

/M/ |dzdy<// 2)[2dyd=
/|f )Pdydz,

the inequality (A.1.3) is satisfied if we take K > ”

2
dy

dy

dy

2

dy
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A.2 Proof of Lemma 1.3.3

First, we consider the case that f(z,y) is 1-periodic in = and it is defined for all y € R.
It is well-known that

1
fa =Y / o) ey where f,(n) = / / F(,y)e O dyde,
R 0 R

neL

Put ¢(z) := f(z,0), then we see that

¢3n=/an(n)dn,

so that
ol = ([t -2an) " ([ s ool + 1hncan )
R R
In view of
2
1+ |né dp = ———
[ bl by =
we have

S+ ) dP £ ( [ ol + rn\>2|fn<n>|2dn) .

neL neZ
Thanks to Parseval’s identity, it is equivalent to

(616 + 011 Da 20" S A + 0N fall® + ILAu 1"

Next, we consider the case that f(x,y) is 1-periodic in x and is defined for all y > 0. We
extend f(z,y) to R as

) flay) for y > 0,
Fla,y) = { f(z,—y) for y < 0.

Using the result of previous case, we have

[f16 + OlD:12 15 S AP + 6 full® + N full*.

Finally, we consider the case that F'(x,y) is 1-periodic in x and is defined for 0 < y < 1.
We introduce cutoff function A(y) € C§°[0, 00) such that

A1) =1,
AMy)=0 forl >y,

and define F(x,y) € HY(T x [0,00)) as

- A x, for 0 <y <1,
Blay) { Mife)  for 0y
ory > 1.
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By the result of previous case, we obtain

[F? +8lIDo |2 F 1P S I FIP + | Eull® + 1 517
SIEI? + N Fll? + INF + AF|*
SIEI + 6% Fall* + 15117,

which gives a desired estimate. [

A.3 Proofs of Lemmas 1.3.5-1.3.7

Proof of Lemma 1.3.5. By the Sobolev embedding theorem, we see that

7y = 1) - ()|

1 1
< / fy(xy)Pdy < / (o) oy + g (o) ey )l
which is the desired inequality. [

Proof of Lemma 1.3.6. By the well-known inequality

105 (@f)Cop)llzz) S lal 9@ 105 ()2 + 1 )ll= @ 105al, )l 2o),
and the Sobolev embedding theorem, we see that
10z (af)I* < /Ol(l\a(',y)H%oo«; 105 f (ol Z2ge) + 1 G e ) 102, )7 ) ) dy
< llallz 1195 F1I? s 107al- Y172 / £ G )i e)
< llallZe 102 £117 + (10zall® + 195ay 1) (LA + [1f1%).

We can prove the second inequality in a similar way. [

Proof of Lemma 1.3.7. In view of the well-known inequality

1105, al F o)l 2y S Nlals v) @105 F o)l 2@ + 1F Cow) @) |05al, v)| 2 ),

the desired inequality follows in a similar way as the proof of Lemma 1.3.6. [
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