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Abstract

The best solution to the spectrum saturation and bandwidth availability problems
in wireless networks is to adopt technologies that make the most efficient use of
existing spectrum through frequency reuse schemes. For example, in universal
frequency reuse schemes, the existing spectrum can be aggressively and effectively
reused by all of the coexisting users in the network. This will lead to higher spatial
spectrum utilization and network usage capacity at the expense of an increased
possibility of interference among network users and of a reduced quality of service
(QoS). In other words, interference is increasingly becoming a major performance-
limiting factor, and hence, interference modeling, management and avoidance are the
primary focus of interest for both the industry and academic communities. This
dissertation is concerned with providing mechanisms on interference modeling,
management and avoidance to improve performance on both user and network scales.
In particular, we will explore and provide solutions to challenges due to interference

in different scenarios and networks, namely in cognitive radio (CR) networks,
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heterogeneous cellular networks, and multiple-input multiple-output (MIMO)
interference channels (ICs).

Chapter 1 presents an introduction to the interference issue of different wireless
communication environments, appropriate solutions and troubleshooting procedures
of eliminating interference to improve the user experiences and QoS. The chapter
ends with the scope and contributions of this dissertation.

Chapter 2 studies the interference management issue in CR networks. In a CR
network, the channel sensing scheme used to detect the existence of a primary user
(PU) directly affects the performances of both CR and PU. However, in practical
systems, the CR is prone to sensing errors due to the inefficiency of the sensing
scheme. This may yield PU interference and low system performance. We present a
learning-based scheme for channel sensing in CR networks. Specifically, we formulate
the channel-sensing problem as a partially observable Markov decision process
(POMDP), where the most likely channel state is derived by a learning process
called fuzzy Q-learning (FQL). The optimal policy is derived by solving the problem.
Using our proposed sensing scheme, the CR-enabled user can significantly improve
its own spectral efficiency and reduce the probability of interfering with the PU.

Chapter 3 deals with the interference challenges in heterogeneous cellular
networks. We present a CR based statistical framework for a two-tier heterogeneous
cellular network (femto-macro network) to model the outage probability at any
arbitrary secondary (femto) and primary (macro) user. A system model based on
stochastic geometry (utilizing the spatial Poisson point process (PPP) theory) is
applied to model the random locations and network topology of both secondary and
primary users. A considerable performance improvement can be generally achieved
by mitigating interference in result of applying the CR idea over the above model.
Novel closed-form expressions are then derived for the downlink outage probability of
any typical femto and macro user considering the Rayleigh fading for the desired and
interfering links. Some important design factors that their role and importance in the
determination of outage and interference cannot be ignored will be also studied.

Simulations are conducted to validate our analytical results and evaluate the
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proposed schemes in terms of outage probability for different values of signal-to-
interference-plus-noise-ratio (SINR) target.

In Chapter 4, we similarly present a CR based statistical framework for a femto-
macro network to model the outage probability at any arbitrary secondary and
primary user. A system model based on stochastic geometry utilizing the spatial PPP
theory is applied to model the random locations and network topology of both
secondary and primary users. Unlike the previous chapter that Rayleigh fading
assumption is used to relax the difficulty of addressing a closed-form expression for
the outage probability, in this chapter novel closed-form expressions are derived for
the outage probability of any typical femto and macro user considering the
Nakagami-m fading for each desired and interference links. We also study some
important design factors, which their important role in the determination of outage
and interference cannot be ignored. We conduct simulations to validate our
analytical results and evaluate the proposed schemes in terms of outage probability
for different values of SINR target.

Chapter 5 focuses on the interference avoidance in MIMO ICs. Interference
alignment (IA) has emerged as a viable transmission technique towards mitigating
interference that can result in sum-rates that scale linearly with the number of users
in the system for high signal-to-noise power ratio (SNR). We present three iterative
IA algorithms for the problem of joint power allocation and transmit/receive filter
design in a K-user MIMO IC. The optimality criterion is based on the achievable
sum-rate and the average per user multiplexing gain in the MIMO IC. By allowing
channel state information (CSI) exchanged between base stations (BSs) and a central
unit (CU), we design a feedback topology where CU collects local CSIs from all BSs,
computes all transmit and receive filters and sends them to corresponding user-BS
pairs. Note that the local CSIs at BSs are obtained from the estimation of the
channel states during the so-called uplink-training phase. At the CU, we propose
iterative algorithms utilizing alternating optimization strategy to design the filters.
In most of the studies on the MIMO IC, choice of equal transmit power for all user-
BS pairs ignores the essential need to search for the optimal power allocation policy;

they do not take the full advantage of the system’s total power. Thus, how to
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allocate power among all the user-BS pairs in the network based on the sum-rate
maximization strategy and under a sum power constraint is another key to this
chapter.

Finally, Chapter 6 summarizes the conclusions and possible venues for future

research of this work.
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Chapter 1

Introduction

1.1 Background

With the great development of telecommunications industry, the radio
spectrum shortage has become a more serious problem. However, while reuse of
spectral resources, as a key solution of the insufficiency of the electromagnetic
spectrum (EMS), yields a spectral capacity increase in the network, it gives rise to
co-channel interference. Co-channel interference is considered as one of the main
sources of performance degradation in wireless communications, such as the
decrease of signal-to-interference-plus-noise-ratio (SINR) or signal-to-interference
ratio (SIR) and the increase of bit error rate (BER). In particular, under severe
interference conditions, interference power will reach the threshold causing the
blockage of the wireless channel and consequently a waste of the frequency
spectrum. Therefore, appropriate techniques of interference evaluation are the basis
of the interference managements and they should be considered in the design and
deployment of any wireless networks. Effective interference evaluation methods
provide a scientific basis for scheming out the communication jamming and
keeping availability, reliability, maintainability, safety and security of the

communication networks, both in civil and military communications fields. Indeed,



the interference phenomenon takes place at the physical layer (PHY) (i.e., PHY
interference) of the receiver terminal, as an unwanted (undesired) interfering signal
disturbing the reception of a given desired signal. However, the properties of the
radio interfering signal and its disturbance effects can be explored and determined
by features of the interfering transmission at various layers or domains [1].
According to the analytical assessments and based on the purpose of the
interference evaluation at different layers of the wireless networks, the interference
evaluation can be classified into two aspects [1]: (i) the evaluation of the
characteristics of the interference signal itself, and (ii) evaluation of the impacts of
the interference on the networks performance. The focus of the first group is on the
parameters of the PHY, such as the probability density function (pdf) of the
interference, SIR or SINR, BER, outage probability, and so on. In the second
aspects, emphasis is given to the network performance, which is affected by
interference and is related to higher layer and the quality of service (QoS) or the
quality of experience (QoE) of the networks. In this dissertation, the main focus
regarding the evaluation of interference is to provide solutions to interference
modeling, coordination, and avoidance issues arising in different wireless
communication environments to improve performance on both user and network
scales. In particular, we will explore and provide solutions to challenges due to
interference in different scenarios and networks, namely in cognitive radio (CR)
networks, heterogeneous cellular networks, and multiple-input multiple-output
(MIMO) interference channels (ICs).

This chapter is organized as follows: Section 1.2 introduces the cognitive
strategies for interference avoidance in CR systems with machine-learning
techniques. Section 1.3 presents an introduction to an interference modeling
approach to the case of a HetNet. Section 1.4 gives an introduction to an iterative
interference management scheme in MIMO networks called “Interference
Alignment (IA)”. Finally, Section 1.5 provides a summary of the contributions and
scope of this dissertation, including the dissertation configuration, an outline
chapter by chapter of the research topics, and relation of each chapter to existing

research.



1.2 Machine-learning Based Techniques in Cognitive

Radios

The term CR refers to a radio device that is capable of learning, being aware of
its surroundings and adapting to its environment [2], [3]. Cognition is a term
referring to a process involved in gaining knowledge and comprehension.
This process includes thinking, knowing, remembering, judging and problem-
solving [4]. Ome of the key aspects of any CR device is the capability of self-
programming and the ability to learn autonomously [5]. In facts, CRs are brain-
empowered wireless devices aimed at improving the optimal use of the EMS. A CR
is assumed to use the methodology of understanding-by-building and is aimed
toward the fulfillment of two primary objectives: Permanent reliable
communication in which communication takes place as smoothly as possible and no
interference occurs, and efficient utilization of the radio spectrum resources [6].
This definition and interpretation of CRs has started a new era, focusing on
dynamic spectrum sharing (DSS) techniques to improve the radio frequency (RF)
spectrum utilization [6]-[8]. This led to study on different aspects and areas of
signal processing and communication theory required for dynamic spectrum access
(DSA) networks. These included underlay, overlay and interweave paradigms for
spectrum co-existence by secondary CRs in licensed spectrum bands [8]. To
perform its cognitive task properly, a CR must have the ability to
become aware if its RF environment. In other words, it should have the ability to
sense its surrounding radio environment and detect all types of RF activities. Thus,
spectrum sensing for the purpose of identifying various types of RF activities was
considered as a major ingredient in CRs [6]. A number of spectrum sensing
methods have been proposed in literature over the last decade based on matched
filter [9], energy detection [10], cyclostationary feature detection [11], detection
using wavelet [12] and covariance based detection [13]. A review of the spectrum
sensing techniques for CRs is provided in [14]. Surveys on the DSA techniques and

the medium access control (MAC) layer operations for the CRs can be found in



[15], [16]. In addition to being aware of its surrounding environment and current
situation, a CR should be equipped with learning and reasoning abilities and
mechanisms to utilize the acquired information [2], [3]. These capabilities are
embedded into a cognitive engine (CE), which is the cognition core of the CR. The
CE helps to coordinate the actions of the CR by making use of machine-learning
techniques. At the CE, learning schemes can be used to allow efficient adaption of
the CRs to their surrounding environment, yet without the full knowledge of the
dependence among parameters [17]. For instance, a threshold-learning algorithms
was proposed in [17] to allow CR to reconfigure its spectrum sensing process under
uncertain RF environment. In heterogeneous CR networks, the problem becomes
even more complex. In the case of heterogeneous CR networks, the CR not only
has to adapt to the RF environment and uncertainty conditions, but also it has to
coordinate its actions with respect to the other radios or nodes available in the
network. When there is only a limited cooperation between nodes, and
consequently a limited amount of information exchange among them, a CR, in
order to select its proper actions, needs to determine and estimate the behavior of
other nodes. For instance, in the context of DSA, CRs try to access idle primary
channels for communications while avoiding collisions with both licensed and other
secondary cognitive users [18]. In addition, conventional solutions to the decision
process (i.e. Dynamic Programming in the case of Markov Decision Processes
(MDPs) [19]), when CRs are operating in unknown RF environments, may not be
feasible since they require full knowledge of the system. On the other hand, specific
learning algorithms such as the reinforcement learning (RL) [17], [18], make it
possible to arrive at the best possible solutions to the MDP, without the
presumed knowledge of the transition probabilities of the Markov model. Thus,
given the re-configurability requirements of wireless systems and the need for
autonomous operation in heterogeneous and unknown RF environment, CRs may
use learning algorithms as tools for coordination with peer radio devices and
adaptation to the RF radio environment. Moreover, by applying low-complexity
learning algorithms to CRs a reduced system complexity can be always expected.

A literature review on CRs shows that both supervised and unsupervised learning



methods have been used and applied to different learning tasks. The authors in [20],
[21] have used supervised learning based on support vector machines (SVMs) and
neural networks for CR applications. On the other side, unsupervised learning,
such as RL, has been used in [22], [23] for DSS applications. QL algorithm, a form
of RL, has been shown to be effective in some particular CR applications. For
example, in [24], Q-learning (QL) is used by the CRs to improve detection and
classification performance of primary signals. Although the RL algorithms (such as
QL) may provide a suitable framework for autonomous unsupervised learning, their
performance can become unsatisfactory in partially observable non-Markovian and
multi-agent systems [24], [25]. On the other hand, most research done in the field
of QL has focused on discrete domains, although the environment in which the
agent must interact is usually continuous. For instance, the major drawback of the
QL algorithm is that the original algorithm cannot deal with continuous and multi-
agent domains. In the situations that we deal with a continuous state and also
when the input state space dimension is large, the classical approaches such as QL
for solving RL problem are not so practical, and are usually intractable to
represent since they require mainly large memory tables as “look-up tables”. These
kinds of problems are called curse of dimensionality and will be treated by means
of more advanced RL techniques and generalization approaches over the input
state [26], [27]. Generalization techniques allow compact representation of the
learned knowledge instead of using look-up tables. In short, as the name suggests
they use the concept of generalizing and extending the learned skills over similar
situations, states and actions. Generalization methods are based on function
approximation techniques from the machine-learning field. One of the
generalization techniques that is more accurate and powerful is fuzzy logic. To
address the aforementioned difficulties (N-dimensional real-valued domains), in
Chapter 2, we propose to employ a fuzzy Q-learning (FQL) algorithm that
combines fuzzy logic with the QL algorithm [27], [28]. In summary, the utilization
of fuzzy theory in RL is to improve learning with more adaptation of RL for
continuous and multi-agent domains and to accelerate the learning process. In the

FQL algorithm, the controlled system is presented as a fuzzy inference system



(FIS). The proposed FIS structure is made up of several extended rules. It has
been shown that this combination results in an FIS that can learn through its
experience without experts’ knowledge. As in this way, we can build an FIS (or an
agent) that can learn to solve the given problem by itself through the interaction
with the given problem, that is through its experience like an animal. Moreover,
the proposed structure can resolve the continuous environment problem in QL by
virtue of an FIS. Our unique and timely approach of designing advanced machine-
learning and computational modeling techniques with CR research can bring about
a paradigm shift in the way a CR device to operate efficiently for performance

enhancement, rather than just being functional.

Since our proposed technique (FQL) in Chapter 2 is constructed based on the
QL algorithm, we now explain the basic idea of QL algorithm and its problems in
more details.

The basic idea of QL is that we have a representation of the environmental
states s (i.e., primary user (PU)’s states), and possible actions a to choose for
those states, and we learn the value of each of those actions for each of those
states. This value, q, is referred to as the state-action value. We start by setting
all state-action values to 0, and then we go around and explore the state-action
space. After an action is tried out by the agent for the observed state, the outcome
is evaluated. If it has led to an undesirable outcome, the g-value of that action for
that state is reduced so that other actions will have a greater value and therefore a
higher chance to be chosen instead the next time we observe that state. Similarly,
if the agent is rewarded for taking a particular action, the weight of that action for
that state is increased, so the agent is more likely to choose it again the next time
we observe the same state. Note that, when q is updated, we are actually updating
it for the previous state-action combination, and q will be updated only after we
have seen the outcome. Now this system, as is, gives us no foresight further than
one time step, and therefore it cannot be useful. To make this more useful we can
include a look-ahead value. The look-ahead works as follows. When a

given q value is updated for a particular state-action combination the agent just



experienced, we do a search over all the g-values for that observed state. For that
observed state, we find the maximum state-action value, and incorporate that into
the update equation of the g-value representing the state-action combination the
agent just experienced. Specifically, we update the previous state-action value in a
simple way using q(s,a) < q(s,a) + k(r(s,a) + ymax(q(s")) — q(s,a))
where s is the previous state, a is the previous action, s’ is the current state, k is
a learning rate and y is the discount factor. The details of this expression will be
discussed later in Chapter 2. In QL at its simplest, state-action values are stored in
a look-up table. So, we have a giant table, which is size N X M, where N is the
number of different possible states, and M is the number of different possible
actions. At the decision time, the agent simply goes to that table, look up the
corresponding action values for the observed state, and chooses the maximum.
There exist some other issues that we need to consider. First, we need to cover
the case where there are several actions that all have the same value. For this case,
the agent has to randomly choose one of them. This helps the agent out of that
situation, but now if we ever happen upon a decent action, the agent will always
choose that one in the future, even if there is a way better action available. To
tackle this problem, we need to introduce an exploration phase by defining the
additional term, &. More detailed information about the exploration phase will be
given later in Chapter 2. The other problem now is that even after we have
explored all the possible actions and the best action, the agent still sometimes
choose a random action, i.e., the exploration phase does not turn off. To overcome
this issue, we gradually reduce the value of €, so that it explores less and less as
time passes and the best actions for the majority of situations have been learned.
As mentioned, QL at its simplest uses tables to store data. This very quickly
loses viability with increasing sizes of state/action space of the system. In other
words, QL suffers from what is called the curse of dimensionality, meaning that its
computational requirements grow exponentially with the number of state/action
variables. In QL, it is assumed that the domain is discrete, or discretized.
Therefore, to deal with a continuous/multi agent domain, QL needs some

discretization approaches [17]. To discretize a continuous state and action space is



a challenge, since if a discretization is too rough (i.e., when the look-up table size is
chosen to be very small), it will be impossible to find the optimal policy which
results in a very low performance; if a grid is too fine (i.e., when the look-up table
size is chosen to be large) the generalization will be lost, i.e., the time to converge
and time per iteration increases rapidly making this problem computationally
intractable. It should be noted that to be able to compare the QL method with
other proposed methods in terms of performance (not convergence speed), in this
thesis, we will consider the second option i.e., a large g-table.

Thus, more generally, QL can be combined with function approximation
techniques (such as fuzzy). This makes it possible to apply the algorithm to larger
problems, even when the state space is continuous (therefore, infinitely large), as it
is in our case. Furthermore, it may speed up learning, due to the fact that the

algorithm can generalize earlier experiences to previously unseen states.

1.3 Modelling and Analysis of Multi-tier and Cognitive
Cellular Networks Based on Stochastic Geometry

The number of users using the wireless cellular infrastructure for Internet
connectivity as well as the traffic demand per user is increasing dramatically. It has
been said that by 2020 there will be more than 50 billion connected devices around
the world, makes it necessary to develop the existing cellular infrastructure [29].
The traditional homogenous network expansion techniques relies on cell splitting
which are less efficient and proven not to keep up with the rapid increase of user
population, and the deployment process is complex and iterative. Moreover, site
acquisition for macro base stations (BSs) with towers becomes more challenging
especially in dense urban areas. In response to the capacity and cost challenges,
new solutions and more flexible deployment models to improve broadband user
experience and to accommodate the increased capacity demand, should be

developed by the operators. For example, small cells including femtocells have been
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added to the 3G, LTE and WiMAX standards, and many cellular service providers
have already commercially launched their small cell equipment and services. Small
cells are low-powered, low cost radio access nodes that operate in licensed and
unlicensed spectrum having a range of 10 meters to 1 or 2 kilometers while a
typical mobile macrocell may have a range of a few tens of kilometers. Small cells
may encompass femtocells, picocells and microcells [30]. Small cell is viewed as an
offload technique (especially in 3G networks) [31]. In other words, small cells are
traffic offloading spots in the radio access network to decrease the congestion in
macrocells, leading to a higher QoS experience and an increase of the overall
system capacity. A multi-tier network (referred to as the coexistence of different
networks) where small cells are overlaid on traditional macrocells is referred to as a
heterogeneous network (HetNet). As mentioned earlier, due to the scarce wireless
spectrum along with the increased capacity demand, the ability to re-use
frequencies [32] across the coexisting network tiers to increase both coverage and
capacity has become the key characteristic of multi-tier cellular networks. Due to
aggressive spectrum reuse among the coexisting network tiers, the increase in
spatial spectrum efficiency and network capacity however comes at the expense of
increased interference. In multi-tier cellular networks, interference is increasingly
becoming a major performance-limiting factor, and hence, interference modeling,
coordination, and avoidance are the primary focus of interest for both the industry
and academic communities. As explained in the previous sub-section, applying the
CR technology in multi-tier cellular networks to be aware of and adapt to
communication environments, some of the above challenges can be tackled. In fact,
CR is the key enabling technology for interference management and avoidance in
multi-tier cellular networks. However, the aggregate interference environment is
more complicated to model (i.e., interference modeling is a challenging issue), and
evaluating the performance of communication techniques in the presence of
heterogeneous interference is challenging. For interference characterization, if the
BSs of the cellular network follow a regular grid (e.g., the traditional hexagonal
grid model [33]), then the SINR characterization will be either intractable [34], [35]

or inaccurate due to unrealistic assumptions [36]. Moreover, as urban areas are



built out, the BS infrastructure is becoming less like points on a hexagonal lattice
and more random. Hence, the use of a hexagonal grid to model the BS locations is
violated and is considered too idealized [37]. Furthermore, according to [34], [35]
and [37] for snapshots of a cellular network at different locations, the positions of
the BSs with respect to each other follow random patterns due to the size and
unpredictability of the BSs in these kinds of networks. Therefore, the need for a
powerful mathematical and statistical tool for modeling, analysis, and design of
wireless networks with random topologies is quite obvious. A new modeling
approach called “stochastic geometry” has been recently applied to the analysis of
multi-tier cellular networks due to its ability to capture the topological randomness
in the network and its aim at deriving accurate and tractable expressions for
different network metrics [34], [36] (e.g., outage probability, as one of the
interference evaluation metrics). Stochastic geometry stems from applied
probability and has a wide range of applications in the analysis and design of
wireless networks in particular for modeling and analyzing systems with random
channel access (e.g., ALOHA [38], [39] and carrier sensing multiple access (CSMA)
[40]), single and multi-tier cellular networks [37], and networks with cognitive
abilities [38], [41]. Chapter 3 discusses this new theoretical model to provide a
better understanding of the heterogeneous cellular networks of tomorrow and their
challenges (interference modeling, coordination, and avoidance) that must be

tackled in order for these networks to reach their potential.

1.4 Interference Alignment (IA)-Based Networks

As we already explained, interference is a major limiting factor in achieving
permanent reliable communication in multi-user wireless networks. Thus,
developing effective interference management schemes is always the primary focus
of interest for both the industry and academic communities. Traditionally, the
interferences can be handled often by granting each user exclusive access to a
fraction of the wireless communication resources. For example, frequency-division

multiple-access (FDMA) [42] and time-division multiple-access (TDMA) [43] are
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two well-known channel access techniques. In FDMA, the bandwidth is divided
among users, i.e., non-overlapping frequency bands are allocated to different users
on a continuous time basis (i.e., signals assigned to different users are clearly
orthogonal, at least ideally); while in TDMA, users take turns to solely use the
whole bandwidth for data transmission periodically. In the terminology of wireless
interference networks, these solutions correspond to the “cake-cutting”
interpretation of spectrum allocation as each user can utilize part of wireless
resources free of interference. The performance of these orthogonal access schemes
is far from the capacity of interference networks. IA, which is a recently emerging
idea for wireless networks, is an effective approach to manage interference and it is
known to be a degrees of freedom (DoFs) optimal approach, which means that it
can reach the capacity of interference networks at very high signal-to-noise power
ratio (SNR). The key idea of TA, as a linear precoding technique, is to align
multiple interfering signals in time [44], frequency [45], or space [46] (the IA in
space dimension is seen in majority of the more practically oriented studies due to
the wide applications of MIMO technique nowadays) in order to reduce the
effective interference while still allowing the desired signals to be discerned. The
promising performance of TA in interference management has resulted in the
development of many IA schemes for different kinds of wireless network topologies
[47]-[50]. However, to be able to leverage IA in more practical scenarios and
realistic settings, some issues and challenges exist that should be solved, e.g., the
global and accurate channel state information (CSI) that are difficult to obtain
must be available at each node to calculate the solutions of IA [51], [52]. In
addition, the closed-form solutions of the IA problem are generally difficult to
obtain, especially when the number of users in the network is larger than 3 [53],
[54]. Thus, it is necessary to resort to iterative algorithms where the IA solutions
are optimized progressively. Moreover, when SNR becomes lower, IA will fall short
of the theoretical maximum [55]. In other words, the observed SINR may decrease
in TA-based networks, and thus the minimum requirement of QoS of the systems
cannot be satisfied. The SINR decrease is considered as one of the most challenging

issues among those mentioned above, because it will directly affect both the QoS
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and sum-rate of the network. When using IA, the sum-rate over IC can approach
the channel’s sum capacity at very high SNR. However, the sum-rates resulting
from IA may fall short of the theoretical maximum, particularly at low and
moderate SNRs. This is because IA mainly concentrates on mitigating the
interference, without paying attention at the quality of the resulting equivalent
channel and the desired signal [56]. Many studies have been conducted to improve
the sum-rate or QoS of IA-based networks at low SNR through quality
enhancement of desired signal. For example, Max-SINR [56] algorithm trades
interference mitigation and desired signal enhancement. A Max-SINR algorithm for
IA is defined to maximize the SINR of the received signal, which can consequently
improve the sum-rate of interference networks especially at low SNR. However, its
advantage tends to be lost when SNR becomes larger. Recently, iterative
optimizations using the maximum sum-rate criterion have become more favorable
for the implementation of IA. As we explain in Chapter 5, it is necessary to design
iterative algorithms that directly or indirectly aim at maximizing the achievable
sum-rate for users rather than seeking a perfect TA solution and meeting the TA
feasibility conditions. Many researchers believe that IA, as a technique that
maximizes spectrum efficiency of the network to optimize the performance, can be
considered as a promising candidate for interference management into the future

generations of wireless technologies.

1.5 Scope and Contributions of the Dissertation

This dissertation consists of six chapters. In Chapters 2, 3, 4 and 5 novel
techniques and approaches in different wireless networks are presented to address
various problems related to interference management such as interference modeling,
coordination and avoidance. Each chapter contains the particular problem
description, the relevant existing literature, the proposed methods and their
evaluation. The outline of this dissertation is summarized in Fig. 1.1. Content of
this thesis is distributed along Chapter 2 that considers the interference

management issue in CR networks, Chapters 3 and 4 that deal with the
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interference challenges in heterogeneous cellular networks, and Chapter 5 that
focuses on the interference management issue in MIMO ICs. The problems in
Chapters 3 and 4 are tightly related, they both deal with interference modeling and
avoidance in HetNets by presenting a CR based statistical framework for a two-tier
heterogeneous cellular network on the basis of the stochastic geometry, and the
goal is to find a closed-form expression for outage probability (as an important
performance metric for wireless networks) of any typical user in the network. The
main difference in both scenarios is that unlike Chapter 3 that uses some
assumptions on the channel links to relax the difficulty of addressing a closed-form
expression for the outage probability, in Chapter 4 novel closed-form expressions
are derived for the outage probability over general Nakagami-m fading channels.
Finally, Chapter 6 contains the conclusions of this dissertation. The relation among
chapters of this dissertation can be found in Fig. 1.2. The relation among the
solutions in each chapter and existing research is presented in separate figures. Figs.
1.3, 1.4 and 1.5 respectively contain the relationship of Chapter 2, Chapters 3 and
4, and Chapter 5 with existing research and our contributions.

As mentioned, Fig. 1.2 shows the relation among chapters of this dissertation.
The future wireless networks are likely to be heterogeneous, i.e., a mixture of
overlaid networks with different features such as density, transmit power,
spectrum, coverage, complexity, and hardware requirements. The main priority is
to improve the performance and increase the throughput of tiered networks with
resource/interference management methods. Due to the expensive and scarce
spectrum resource, CR communication can be an efficient technique to enhance the
spectrum efficiency in the context of coexistence of HetNets. In HetNet, the
traditional macrocell system can be considered as primary and the small cell
system as secondary system. The secondary system should be self-optimized and
the interference generated from the secondary system to the primary system should
be suppressed as much as possible. Current network configurations use traditional
macrocell nodes, and the deployment of new small cells need additional bandwidth,
which is scarce and expensive to acquire, as mentioned. In this context, dense

cellular networks (i.e., small cells) have to coexist with traditional macrocells to
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utilize the existing spectrum resources efficiently. This requirement has led to the
concept of CR which allows for the coexistence of two systems, primary and
secondary, over the same spectrum. The most common cognitive technique in the
literature is the spectrum sensing technique. With the spectrum sensing technique,
secondary users will be able to transmit whenever PUs do not use that specific
band, or they can have transmission as long as they meet the interference
constraint of the PUs. Motivated by this insight, in Chapter 2, we have
comprehensively studied the concept of CR on the basis of a learning technique.
To see the fundamental performance of the proposed CR scheme in Chapter 2, we
consider a simple small-scale network such as wireless personal area network.
However, the final goal is to provide an insight into the role of CR in the large-
scale and dense networks, i.e., HetNets.

As mentioned, in HetNet, due to spectrum scarcity and the massive use of
wireless devices, frequency/time resources are reused and concurrent transmissions
are merely separated in space. With multiple concurrent transmissions in HetNets,
interference will become one of the main performance-limiting factors. Interference
is largely governed by the geometry of the interferers. Due to the critical role of
interference in evaluating the network performance in HetNet, the metric of
interest has to be SINR or the SIR when network performs in an interference-
limited regime. Nevertheless, the statistical characteristics of interference and the
SINR have to be analyzed to deepen the understanding of system behavior and
network performance. The traditional hexagonal grid based model is rigid, not
scalable to a HetNet and highly idealized. However, the stochastic counterpart
leads to scalable and tractable solutions for HetNets. Furthermore, for snapshots of
a cellular network at different locations, the positions of the BSs with respect to
each other follow random patterns due to the size and unpredictability of the BSs
in these kinds of networks. Therefore, to accurately assess and analyze the
performance of HetNets, there is a vital need for probabilistic models that describe
the randomness of the network nodes. This has motivated us to study, in Chapters
3 and 4, the stochastic modeling of the spatial distribution of HetNet nodes based

on the rich mathematical toolset of stochastic geometry, which allows us to
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capture realistic distributions of users as well as deployment scenarios for BSs. It
should be noted that the concept of CR technique, presented in Chapter 2, is also
applied in Chapters 3 and 4 for the purpose of interference mitigation in HetNets.

As mentioned earlier, in the context of HetNets, secondary users are allowed to
transmit whenever PUs do not use that specific band, or in underlay techniques,
SUs are allowed to transmit as long as they meet the interference constraint of the
PUs. When the strength of secondary interference to the primary is comparable to
the desired signal, treating as noise (which is generally non-capacity achieving) is
not an option because of interference constraints while decoding and canceling also
requires complex primary receivers with their own security issues. In addition, in
HetNet, classical resource management techniques based on frequency/space reuse
and power control are not able to cope with the additional interference. Thus, an
efficient interference management technique is critical for the successful
deployment of HetNets. In this context, A as an interference management
technique tool has received important attention recently in the CR research
community. In this direction, in Chapter 5 of this dissertation, we also investigate
the concept of TA in MIMO multi-user systems. It should be noted that the
coexistence of cognitive small cells and macrocells equipped with TA enabled
MIMO transceivers will not be studied in this dissertation. However, for the future
work, TA technique can be exploited in HetNets to mitigate the interference of
cognitive transmitters towards the primary receivers.

Fig 1.3 contains the relationship of Chapter 2 with existing research and our
contributions. As mentioned before, a reliable communication with little or no
interference, and efficient utilization of the radio spectrum are the two main goals
to achieve in cognitive wireless networks. In an effort to meet these goals, any CR
needs some tools and strategies. Firstly, it should have the ability to sense the
surrounding radio environment and detect all types of RF activities.
Various spectrum sensing methods have been proposed in the literature based on
matched filter, energy detection, cyclostationary feature detection, detection using
wavelet and covariance based detection [9]-[13]. Energy detection, which detects

the presence/absence of a signal just by measuring the received signal power, is the
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most common approach to spectrum sensing. This is because of its low
implementation complexity. It is therefore used as the main sensing method in
Chapter 2. Secondly, CR should decide on the best frequency band (of all bands
available) to meet QoS requirements, and make proper decisions in the decision-
making process; therefore, spectrum management/control functions are required for
CRs. When CRs are operating in unknown and uncertain RF environments, MDP
based spectrum management schemes [19], as the conventional decision-making
units, may not be feasible. Therefore, in Chapter 2, we instead use a partially
observable Markov decision process (POMDP) based framework. Lastly, the CR
needs to be equipped with learning and reasoning abilities embedded into a CE.
The learning algorithms can be divided in two main categories: supervised [20], [21]
(e.g., SVMs) and unsupervised learning methods [22]-[24] (e.g., RL), as mentioned
earlier. When we deal with uncertainty and unknown situations, RL methods are
the best candidates to be used at the CE. Among the conventional RL methods,
QL ([24]) has shown an unsatisfactory performance in continuous, partially
observable and multi-agent environments. To improve learning with more
adaptation of RL for continuous, unknown and multi-agent domains and to
accelerate the learning process, we propose FQL. Thus, in Chapter 2, based on the
energy detection and POMDP, a novel FQL based sensing scheme is presented.

Fiig 1.4 contains the relationship of Chapters 3 and 4 with existing research and
our contributions in the HetNets. As mentioned earlier, the ever increasing
number of users, the increased capacity demand and cost challenges, makes it
necessary to develop the existing cellular infrastructure [29] (i.e., the traditional
homogenous macrocell network deployments). New solutions and more flexible
deployment models such as the low powered/cost small cells [30], [31] (small cells
may encompass femtocells, picocells and microcells [30]) should be lunched by the
network operators to improve user experience and to accommodate the increased
capacity demand. Small cells are overlaid on the traditional macrocells. The
resulting network is referred to as a HetNet. In these kinds of networks, the ability
to re-use frequencies across the coexisting network tiers to increase both coverage

and capacity has become the key characteristic. However, due to aggressive
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spectrum reuse among the coexisting network tiers, the increase in network
capacity comes at the expense of increased interference. Hence, interference
management and modeling techniques are the primary focus of interest. In
Chapters 3 and 4, cognitive HetNet is a proposed solution for the interference
management issue. Most of the existing interference management techniques are
developed in idealized and simplified interference network settings (e.g., the grid
model/setting [33]). In other words, the existing interference management
techniques are mostly considered in settings with a particular number of
cooperative transmit-and-receiver pairs, ignoring any potential interference from
outside of the cooperative set. The fundamental challenge is to re-evaluate the
gains obtained with the interference management techniques using models that can
accurately reproduce and capture the impact of the random spatial structure of
wireless transmit-and-receiver locations and channel characteristics. As mentioned
earlier, the possible direction is to use analytical models for large-scale interference
networks via stochastic geometry [34], [36]. This modeling approach facilitates
compact and closed-form expressions of outage probability (as the main
performance metric used in Chapters 3 and 4) and spatially averaged spectral
efficiency of in networks with the effects of out of cell interference and different
channel distributions. Based on this modeling approach, closed-form expressions
are therefore obtained for any typical user in HetNet considering the Raleigh (in
Chapter 3) and Nakagami-m (in Chapter 4) fading assumptions.

Fig 1.5 contains the relationship of Chapter 5 with existing research and our
contributions. This figure emphasizes the fact that interference is a fundamental
phenomenon in multi-user MIMO communication networks. As mentioned earlier,
uncoordinated interference reduces wireless network throughput. As a result, it is
essential to understand and manage interference to achieve the highest network
performance. Orthogonal access schemes (avoiding interference through
orthogonalization of the shared time/frequency resource) has been considered as a
conventional approach to deal with interference. It should be noted that treating
other transmitters’ signals as noise, or decoding interference can be also considered

as conventional interference management schemes. FDMA and TDMA, the two
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main orthogonal access schemes, have been studied extensively and adapted to
contemporary wireless systems [42], [43]. Although these conventional approaches
control interference without system overhead, it turns out that they are not
optimal in most of the network configurations, except in certain special cases
because of their inefficient usage of the spectrum. Recently, a new paradigm for
interference management techniques has emerged: interference shaping. This
technique has shown to offer a better performance in the interference-limited
communication regime than traditionally thought possible. The idea behind the
concept of interference shaping is to create a certain interference pattern when
transmitting nodes propagate signals so that the aggregated interference effect is
dramatically reduced or eliminated at each receiver. TA is a representative
interference shaping technique. IA can align multiple interfering signals in time,
frequency, or space domains [44]-[46]. However, the TA in space dimension is seen
in majority of the more practically oriented studies due to the wide applications of
MIMO technique nowadays. As mentioned before, to be able to leverage IA in
more practical scenarios and realistic settings, some challenges exist that should be
solved, e.g., the global and accurate CSI. Most of the existing studies are based on
the assumption that the global and accurate CSI is available at each wireless node
in the network [51], [52]. However, in Chapter 5, a central coordinator along with a
channel estimation phase are applied to the network to avoid making such
unrealistic assumptions. Regarding the existing IA solutions, closed-form solution
of the IA problem is a possible candidate [53], [54]. However, in general, it is
difficult to obtain closed-form TA solutions, especially when the number of users in
the network is quite large. We therefore resort to iterative algorithms where the TA
solutions are optimized progressively. We propose iterative IA algorithms based on
different criteria such as the conventional leakage minimization and Max-SINR [56],
and a newly proposed criterion called the maximum sum-rate [57]. Indeed, as
shown in Fig. 1.5, our proposed TA algorithms solve the problem of joint power
allocation and transmit/receive filter design in a K-user MIMO IC. Equal power

allocation has been considered in most of the related studies (e.g., [56], [57]).
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Chapter 2

Optimal Channel-Sensing Scheme for
Cognitive Radio Systems Based on

Fuzzy Q-Learning

2.1 Introduction

Energy detection is the most common approach to channel sensing [58]. This
is because of its low implementation complexity. One of the main drawbacks of
energy detectors is that they need a large amount of data in order to be able to
detect the signals at very low SNR values. This makes the sensing duration very long
to guarantee sufficiently low detection error probability [59|, [60]. Typically, in the
periodic sensing strategy (where CR periodically senses the channel to monitor the
PU activity) (e.g., [58], [61], and [62]), after each sensing period T, the energy detector
provides a real-valued test statistic as the result of energy detection. CR can make a
hard decision on the state of the PU (active or not) by comparing this test statistic
with a certain threshold. Thus, period 7" must be long enough that PU activity can be
reliably detected and the final decision of PU activity is correct. Since the CR is not
allowed to transmit any data during a sensing period, a long sensing duration results in
low channel utilization and QoS for the CR network. Moreover, according to [10], [61],

and [63] in some environments, very short spectrum opportunities (spectrum holes)
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caused by fast PU state variations are available for the CR to exploit. Therefore,
the CR should frequently perform channel sensing in much shorter time intervals
to catch the fast variations in the PU state and consequently exploit these short
spectrum opportunities. On the other hand, because of the short sensing period, it
is difficult for the CR to make an accurate decision on the PU activity only from
the single test statistic (provided by the energy detector) over the sensing result.
Furthermore, since such sensing results are noisy, the CR has to combine multiple
factors (i.e. multiple sensing results) to provide reliable information regarding the
PU state after each sensing period and takes the test statistic into account only as a

soft “sensing result.”

Sequential decision-making is the cognitive process leading to the selection of
actions among variations at consecutive decision epochs (see Fig. 2.1). One-way
to automate the decision making process is to provide a model of dynamics for the
domain in which a machine will make decisions. A reward structure can be used
to motivate immediate decision that will maximize the future reward. The aim of
the decision-making algorithm is to maximize channel utilization for the CR while
restricting interference to the PU. To design the optimal algorithm that achieves such
goal, we use POMDP framework [64]. POMDP is an aid in the automated decision-
making. POMDP policy informs the CR what action to be executed. It can be a

function or a mapping and typically depends upon the channel state.

In summary, in each short sensing interval, the CR uses the energy detection
method to obtain knowledge about PU state. However, the CR does not rely only
on this knowledge and combines more soft sensing results to enhance adaptability
and adaptive decisions at the sequential decision epochs are made by the optimal
decision-making algorithm, which was designed by using the POMDP framework.
Indeed, a POMDP is equivalent to a MDP with a continuous state space [65], [66].
In this chapter, we formulate the channel sensing in the CR network as a POMDP
problem. This statistical-based sensing model uses a probabilistic, rather than deter-
ministic approach to design the optimal decision-making algorithm. In the POMDP

model decision, an agent (i.e. CR) tries to maximize some reward function in the
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face of limited and noisy information about its surrounding environment (i.e. PU).
Although POMDP has emerged as a powerful framework for modeling and optimizing
sequential decision making problems under uncertainty, achieving an optimal policy is
computationally very challenging [65], [67]. As mentioned before, POMDP is equiv-
alent to MDP with a continuous state space b, called belief state. Thus, a POMDP
policy is a mapping from a region in belief state space to an action. Not surprisingly
this is extremely difficult to construct and whilst some works make use of POMDP
framwork (e.g., [62], and [63]), they do not present solution algorithms for POMDP, or
their solutions do not scale to problems with continuous state space and multi-agent
domains. RL has now established itself as a major and powerful scheme to address
adaptive optimal control of uncertain systems and learn the optimal policy [17]. On
the other hand, fuzzy expert systems also have been extensively used in intelligent
control problems where mostly traditional methods have poor performance. With the
utilization of fuzzy theory in RL, we can enhance learning with more adaptation of
RL for continuous and multi-agent domains and speedup learning process [26]. In this
chapter, a FIS is also employed for generalizing a continuous belief space POMDP. We
propose a FIS-based RL controller with a FQL implementation to solve the POMDP
problem. FQL is an approach to learn a set of fuzzy rules by reinforcement. It is an
extension of the popular QL algorithm [68]. Learning fuzzy-rules makes it possible to
face problems where inputs are described by real-valued variables (continuous state
spaces), matched by fuzzy sets. Fuzzy sets play the role of the ordinal values used in
QL, thus making possible an analogous learning approach, but overcoming the limita-
tions due to the interval-based approximation needed by QL to face the same type of
problems. We will present the simulation results that show how the proposed scheme
for channel sensing achieves significant performance in terms of channel utilization

while restricting interference to the PU.
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2.2 System Model

2.2.1 Model Description

Consider a frequency channel that the PU is licensed to use. The CR network
can access the channel whenever it is not occupied by the PU. A collision happens
if the CR network sends data on the channel currently being used by the PU. We
consider a small-scale network such as the wireless personal area network with a
“master node (MN)” in its center and “slave nodes (SNs)” attached to the MN, and
assume that all of them are adjusted to the same frequency channel, called “operating
channel,”. It should be noted that we do not consider the PU activities on frequency
channels other than the operating channel, because they are needed only for frequency
channel selection, to which we do not pay attention in this chapter. The MN performs
channel sensing on the operating channel when it is necessary (not periodically) and
the channel sensing process is monitored only by the MN, whereas the SNs do not. If
the PU is detected, then the MN switches the operating channel to another channel
and directs the SNs to move to the new operating channel [63]. Clearly, based on
the sensing results, the MN chooses the next appropriate action at each decision
epoch, and it informs the SNs from the chosen action by sending a control signal.
As soon as receiving the control signal, the SNs follow the order in it. Indeed, the
MN senses the operating channel and provides the SNs with information about the
PU activity, while user data are exchanged only by the SNs. To see the fundamental
performance of the proposed method and for simplicity of exposition, we ignore fading
and shadowing. It should be noted that in real communication environments, fading
and shadowing can deteriorate the spectrum sensing performance of the CR user and
cause interference to the PU, consequently. To solve this problem, cooperative sensing
method (multi-agent scenario) is usually introduced that can be considered as future

work.

2.2.2 System Structure
As stated, the MN chooses the next proper action at each decision epoch, which

occurs at the end of each action. The decision epoch is indexed by t(=1,---). The
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MN selects the appropriate action among “data transmission”, “stop data transmis-
sion”, and “channel switching”. In Section 2.3, we explain how this action is selected
by the MN. In the following we explain the operating modes of the CR network when
each decision is made by the MN.

1) Data Transmission: whenever the MN is convinced that the operating channel
is not occupied by the PU, it selects data transmission for the SNs. The SNs will be
aware of the MN’s decision upon receiving the control signal sent by the MN. Then
SNs immediately start to exchange user data by using the time-division multiple-
access (TDMA) approach. The SNs perform data transmission during a period T
(same as the sensing period for the MN) allocated by the MN in the received control
signal. During this period the MN will be quiet.

2) Stop Data Transmission: if the MN is not sure about the PU existence over
the operating channel, then it prefers to select stop data transmission. This decision
is clearly made to avoid from a probable collision with the PU. Similar to the case
which the selected action by the MN is data transmission, a control signal containing
the selected action and the allocated time interval is sent to the SNs, and thus the
SNs stop data transmission as soon as receiving the control signal and the MN starts

to do channel sensing for another T" period.

3) Channel Switching: when the MN realizes the PU existence with a high cer-
tainty, it selects channel switching and sends a control signal that orders the SNs to
switch the operating channel. We assume that it takes 7. to complete the channel-
switching process and be ready to choose another action, since the CR nodes should

tune their frequency band and perform a synchronization process.
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2.3 Decision-Making Configuration

2.3.1 POMDP Formulation

In this section, we formulate the adaptive sensing, in the CR network as a POMDP
to design the optimal decision-making algorithm. A POMDP framework has been
investigated in [63], [64]. In [61], [62] it is shown that the PU activity can be modeled
as a Markov process with two states as s, € {0,1} where s, represents the state of
the operating channel (see Fig. 2.2). Empirical measurements taken in the 928-948
MHz paging band [69] and in 802.11b based wireless Local Area Network (WLAN)
(|70], [71]) have also validated a Markovian pattern in the spectrum occupancy of
the PU. s; is 0 if the operating channel is vacant at tth decision epoch and 1 if the
operating channel is occupied by the PU at tth decision epoch. However, the CR
network does not know the true state of the PU and only infers it from noisy sensing
results. In such environments where the CR network’s information about the PU
activity is incomplete, the theory of POMDP will be the best candidate for modeling
the situation [64], [72]. To choose the appropriate action at each decision epoch,
“belief state” is calculated. Belief state is a probability distribution over the PU
state, which is prepared by the MN. In [64], it is shown that the belief state contains
all the necessary information for making an optimal decision. As depicted in Fig. 2.1,
at each decision epoch having this belief state, the MN selects an action among the
possible actions: data transmission, stop data transmission, and channel switching.
The belief state at each decision epoch is denoted by bf = (7% 71t), where 7% is the
probability of state i (i € {0, 1}) at ¢th decision epoch. Note that the MN performs
channel sensing (using energy detection method) on the operating channel during a
period of which the length is 7" and presents its obtained result as the observation
probability Y; . in the belief state formula. We define Y; . as the probability that the
MN receives e as the observation in channel state . The output of energy detector

with the sensing period 7" immediately after the tth decision epoch is expressed as

30



Py

Fig. 2.2. The state-transition diagram of the PU

follows:

E, = N/2 Z|%t| (2~1)

where y;; denotes the jth signal sample in the sensing period 7" after the tth decision
epoch, and Ny is the noise spectral density used for normalization and assumed to
be known from the MN viewpoint. W is the bandwidth of the frequency channel.
According to [10], [63] the sensing result obtained by the energy detection method
follows the chi-square distribution with 2WT degrees of freedom if the PU is inac-
tive. If the PU is active, then the sensing result follows the non-central chi-square
distribution with the same degrees of freedom as that of the case that PU is inactive
and the non-central parameter of 2PT /Ny, where P is the power of the received PU
signal. Fig. 2.3 shows the probability mass functions (pmf’s) of the simulation sens-
ing results when the PU is inactive and active. Therefore, the observation probability
denoted by Y; . can be easily calculated from the pmf’s of the sensing results. Besides
the observation probability that is a soft sensing result, the other factor in the belief
state formula is the state transition probability of the PU. Let P,; (i,j € {0,1})
be the state transition probability of the PU from state i to state 5. We may first
assume that the MN is aware of the state transition probability as in [62] and [63].
In practice, this may not be achievable. The problem then becomes one of POMDP
with unknown transition probability. In Section 2.5, we completely explain how the
state transition probability of the PU is estimated. We also assume that the PU’s
state can change only once during each 7' period.

From now on, we will explain how the belief state is calculated. As mentioned before,
the belief state b’ is inferred by the MN at the tth decision epoch on the basis of the

previous actions and observations. After the tth decision epoch, the decision-making
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algorithm updates b’ to b'*! on the basis of the selected action at the tth decision
epoch and the received observation during the period T after the ¢th decision epoch.
If the selected action is data transmission, then the SNs exchange the user data for
the T period and the MN will be quiet in this period and receives a null observation
(no sensing result). In this case, the belief state formula evolves according to the
state transition probability. That is, the algorithm updates the belief state based on

the assumed Markovian evolution as follows:
1 1
(Z P@(ﬂTi, Z .PZ"17Ti> . (22)
i=0 i=0

If the selected action is stop data transmission, then the SNs stop transmitting
data for the T' period, and the MN performs sensing (energy detection) during this
period. Therefore, besides the state transition, the sensing result of energy detection
in the form of the observation probability is also taken into account by using Bayes’

theorem as follows:

YvO,e Zz‘l:() Pz',(]ﬂ-i Yl,e 22‘1:0 Pi,lﬂ'i (2 3)
f ’ f

1 1
f=Yoe) Piom+ Yiey Par' (2.4)
i=0 i=0

From (2.3) and (2.4) and Fig. 2.3, we can see that for example, the belief that
the state of PU is 1 (i.e., 7'') increases as the quantized value of the sensing result
increases. This corresponds to the fact that a high value of the sensing result indicates
a high probability that the channel is occupied (clearly, a low probability that the
channel is idle). Thus, the soft sensing result (energy detection result) is well taken
into account in updating the belief vector and has an important role in making the
final decision. The goodness of the POMDP framework is that even in the case of a
sensing error observed in the energy detection result, the decision making algorithm

can still make a reliable decision (relying on the other soft sensing results) compared
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to the case when this energy detection result is used as the only available information
in making the final decision. However, it is clear that a better performance of the
energy detection method, results in more accurate decisions for the CR. If the action
is channel switching, then the CR network moves to the next channel. In this case, the
probability distribution over the PU state (belief state) converges to the stationary
probability 7. The proposed approach is easily applicable to multi-agent POMDP
domains (with two or more MNs) wherein each MN maintains a belief simultaneously
and communicates it to a central FIS (it can be via communication by wire) at each
decision epoch, which forms a fuzzy mapping of the belief space of the underlying
multi-agent POMDP. This fuzzy belief mapping is then used to solve a sequence of
Bayesian games to generate an approximate optimal joint policy which is executed
by each agent (i.e. MN). Under this joint action, each MN updates his own belief
and the whole system receives a signal that indicates the goodness of executing the
joint action (joint reward). This signal is then used to tune g-values to reflect the

consequence of taking that joint action as per standard QL.

2.3.2 Solution to POMDP

We define the total discounted reward of the MN as > .2, 7' r*, where r* is con-
sidered as the reward of the MN at tth decision epoch and v € (0,1) is a discount
factor. In the discounted reward model, we are given a discount factor v, and the
goal is to maximize total discounted reward collected, where reward for an action
taken at decision epoch t is discounted by ~*. The discount rate has two roles: (i)
it. determines the present value of future rewards: a reward received t time steps in
the future is worth only 4% times what it would be worth if it were received immedi-
ately (i.e., discounting to prefer earlier rewards), (ii) it keeps the total reward finite
which is useful for infinite horizon problems. This modeling approach is motivated
by an approximation to a planning problem in the MDP framework under the com-
monly employed infinite horizon (the number of decision epochs indicates the horizon
length) discounted reward optimality criterion [17]. In other words, to encourage

the agent to perform the tasks that we want, and to do so in a timely manner, a
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commonly employed aggregate reward objective function is the infinite horizon dis-
counted reward. The approximation arises from a need to deal with exponentially
large state spaces (i.e., large number of decision epochs). As stated before, to enable
an appropriate action by the MN, belief state is calculated at each decision epoch.
Each MN’s action which is based on the belief state is determined by a “policy”. A
policy is a mapping between state and action (where state can be belief state as our
case). Among the policies, we should exploit the optimal policy that maximizes the
total discounted reward. The fact is that actions taken by the MN do not affect
the evolution of the channel state. Thus, in finding the optimal policy, no recursive
procedures are required. According to the aforementioned references, a POMDP can
be seen as a continuous-space “belief MDP” as the MN’s belief is encoded through a
continuous “belief state”. We may solve this belief MDP using dynamic programming
(DP) algorithm such as value iteration to extract the optimal policy over a continuous
state space [73]. However, it is too difficult to solve the continuous space MDPs with
this algorithm. Unfortunately, DP updates cannot be carried out, because there are a
huge number of belief states. One cannot enumerate every equation of value function.
The QL algorithm, one of the approaches to RL [17], [68] is capable of learning the
optimal policy that maps belief state to an action. The major drawback of the QL
algorithm is that the original algorithm cannot deal with continuous and multi-agent

domains [27].

In the situations that we deal with a continuous state and also when the input state
space dimension is large, the classical approaches such as QL for solving RL problem
are not so practical, and are usually intractable to represent since they require mainly
large memory tables as “look-up tables”. These kinds of problems are called curse of
dimensionality and will be treated by means of more advanced RL techniques and
generalization approaches over the input state [26], [27]. Generalization techniques
allow compact representation of learned knowledge instead of using look-up tables.
In short as the name suggests they use the concept of generalizing and extending the
learned skills over similar situations, states and actions. Generalization methods are

based on function approximation techniques from machine-learning field. One of the
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Fig. 2.3. The obtained pmf’s for the simulation sensing results when the PU is
inactive and active. W =1 MHz, T'= 0.1 ms, and the SNR of the PU signal is -10
dB

generalization techniques that is more accurate and powerful is fuzzy logic. To address
the aforementioned difficulties (N-dimensional real-valued domains), we propose to
employ the FQL algorithm that combines fuzzy logic with the QL algorithm [27], [28].
In summary, the utilization of fuzzy theory in RL is to improve learning with more
adaptation of RL for continuous and multi-agent domains and to accelerate learning

process. In the FQL algorithm, the controlled system is presented as a FIS.

2.3.3 Fuzzy Q-Learning (FQL) Design

Fuzzy approximation architecture plays a crucial role in our approach. It domi-
nates the computational complexity of the FQL, as well as the accuracy of the method.
There exist two systems for fuzzy inference, which are denoted as: Takagi-Sugeno type
FIS and Mamdani type FIS. A Takagi-Sugeno type FIS has fuzzy inputs and a crisp
ouput (i.e., linear combination of the inputs). Mamdani type FIS has fuzzy inputs
and a fuzzy output. This study would apply the Takagi-Sugeno type inference to
predict the action type taken by the MN. In this chapter, we will refer to zero-order
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Takagi-Sugeno FISs, since the other type (first-order) calls for a lot more computa-
tional cost than zero-order, besides adding more complexity [74]. In the FQL, the
FIS is presented by a set of rules R with a rule 5 € R defined as:

IF (by is L}) ... AND (b, is L) ... AND (by is L)) THEN o; with ¢(L;,0;).

L7 is the linguistic label (fuzzy label) of the input variable b, (nth component of
an N-dimensional belief state vector b = [by, ..., b,,...,by]) participating in the jth
rule. o; is an possible output action of the jth rule while ¢(L;,0;) denotes its cor-
responding g-value. We build the FIS with competing actions o; for each rule. A
schematic diagram for the FQL architecture and its interaction with the environment
can be observed in Fig. 2.4. The learning agent has to find the best conclusion for
each rule, i.e. the action with the best g-value among the possible discrete actions for
each rule. The g-values are zeroed initially and are not significant in the first stages
of the learning process. In order to explore the set of possible actions and acquire
experience through the reinforcement signals (rewards), the actions for each rule are
selected using an exploration exploitation policy (EEP) as [17]. The e-greedy method
is used as the EEP policy for choosing the actions:

oj=argmax q(L;, oy) :with probability 1 — ¢
keA (2.5)
0; :rarkld:l)m (ox) with probability €
€

where ¢ determines the tradeoff between exploration and exploitation, and A is the
set of all possible actions for each rule or for each component b,, of the input belief
state vector b. As stated above, the rule j is defined by the intersection (with respect
to a T-Norm) of fuzzy sets along each dimension L}, ceey Lj-v with the truth degrees
LLL.}(bl), S N (bn) (where ML]l(bl) and ,uLév(bN) are the membership functions, re-
spectively defined on the first and the last component of the input belief state vector
b in rule j) and the T-Norm is implemented by product. Hence, the degree of truth

in the fuzzy logic terminology (or the membership of the vector b) for rule j can be
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written as follows:
N
a; (b) = HML; (bn). (2.6)
n=1
Furthermore, the following normalization condition should be satisfied:

> aj(b)=1. (2.7)
jER
Next, the relation between the inferred action (the output action of the FIS that will
be executed at the decision epoch) for an input belief state vector b, and the applied

rule actions o;, is derived as:

a(b) = a;(b)o; (2.8)

jER
where the summation is performed over all rules. For the obtained inferred action
a(b), a Q-function is also approximated by the FIS output, which is inferred from the
quality (q-value) of the local discrete actions that constitute the global continuous
action a(b). Under the same assumptions used for generation of a(b), the Q-function

is calculated as:
Q(b,a(b)) = > "a; (b) q(Lj,0;). (2.9)
jER
We use the value function for the input belief state vector b defined here as:
V)= 3 b) (Lo (210)
JE

In order to update the g-values, AQ is defined as the variation of the quality Q (b, a(b)),
in other words, the difference between the old and new values of Q(b, a(b)). Denote
by ¢ the new input belief state vector after taking the action a(b) for the input belief
state vector b, and receiving the reward r from the environment (the natural reward

for RL methods in CR tasks such as spectrum sensing, is related to the CR user’s
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Fig. 2.4. Interaction between the FQL module and the environment (“Environment”
is a term that is used to refer to anything outside the sensing device. Here, the
received reward is related to the CR user’s throughput)

throughput. This information may be easily obtained during the online operation of

the CR system). AQ is calculated by:
AQ =1 +~V (c) — Q(b,a(b)). (2.11)

Now, the update equation for the g-values is given by (2.12). The symbol ¢ is added
to highlight the time dependency in the update equation.

¢ (Ly,05) = ¢' (Lj, 05) + kay (bY) (r' 44V (b™)
—Q'(b", a(b")) (2.12)

where k is a learning rate. We remind that ¢' (L;, 0;) are the g-values associated to
the chosen actions o, in all rules. Here, to summarize the FQL-based channel sensing
process, an iterative procedure is prepared as can be observed as Table 2.1. Moreover,
to clarify the FIS unit structure as well as its rule over the channel sensing process, see
the example drawn in Fig. 2.5 which presents the FIS model for a 2-dimensional belief

state vector b = [by, bo] as the input for the FIS. As mentioned before, the inferred

38



(Low)

M
bl (Medium)
H

(Hiigh)

Inferred
Action

a(b)

L

(Low)
b2
M

{Medium)

H

(High)

FUZZIFICATION | RULES EVALUATIONl RULES | DEFUZZIFICATION
ACTIONS

Fig. 2.5. Structure of the FIS model with 2-dimensional belief state vector

action a(b) is the output of the FIS. Obviously, under the same assumptions used for
generation of a(b), the other output for the FIS (i.e. the Q-function: Q(b,a(b)) can
be obtained. As shown in Fig. 2.5, for a 2-dimensional belief state vector, 9 fuzzy

rules are expected (each color erepresents one rule).

2.4 Simulation Results

2.4.1 FIS Unit Configurations

In this section, we consider a single agent POMDP, including only one MN (and
its associated SNs). Therefore, the input belief state vector for the FIS is b = [b;]. As
mentioned, the simulation results can be easily extended to a multi-agent POMDP
problem with the input belief state vector b = [by, ..., by, ..., by] which requires some
consideration about the type of cooperation between the MNs. As stated, we focus on
a single agent POMDP with b = [b;]. The problem has therefore two states, “0” (the
PU is inactive in the operating channel) and “1” (the PU is active in the operating
channel). Thus, b; = (7%, 7'%), where as mentioned before, 7% is the probability of

state i at tth decision epoch. Since 75t = 1 — 7% we can use only one probability 71!
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Fig. 2.6. Three fuzzy sets for the belief state

to specify b; and the belief state vector is thus specified by b = [b; = 7!f]. The belief
space for the MN is specified by [0 1] (a continuous space). Here, we partition the
belief state b into three fuzzy subsets thereby generating three rules (Note that for
a multi-agent POMDP with b = [by,...,b,,...,by], we have 3V rules). It should be
noted that, more detailed partitions yield exponentially growing state space (rule base
size), elongating the adaptation time, and dramatically increasing the computational
resource demand, while less detailed partitions (containing only a few member fuzzy
sets) could cause less approximation accuracy, or unadaptable situation. Therefore,
there is a tradeoff between the computational complexity and approximation accuracy,

regarding the number of the fuzzy sets.

Linguistic terms for these fuzzy sets are (L, M, H), where L stands for “low”, M is
“medium” and H stands for “high”. As depicted in Fig. 2.6, the membership function
(fuzzy sets) for the belief state b is assumed to be the standard Gaussian membership
function [27]. The use of various types of membership functions (e.g., linear func-
tions, triangular, trapezoidal and smoother functions such as the symmetric Gaussian

function) can affect the performance of the fuzzy logic controller and corresponding
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TABLE 2.1. THE ITERATIVE PROCEDURE ADAPTED FOR FQL—BASED CHANNEL SENSING

*Initialize q(L;, o) for all j € R and k € A.

For each decision epoch t do the following:

*Observe the belief state vector b’.

*Calculate the degree of truth of the belief state

vector a;(b) for all rules ((2.6)).

*For each rule select an action o; using the EEP policy ((2.5)).
*Compute the inferred action a(b’) and its corresponding
quality Q(b’, a(b")) ((2.8) and (2.9), respectively).

*Execute the action a(b’) and observe the new belief

state vector bt

*Receive the reinforcement signal (reward) r’.

*Calculate the degree of truth of the new belief state vector
a;(b'1) for all rules ((2.6)).

*Calculate the value function of the new belief state vector ((2.10)).
*Calculate the variation of the quality AQ ((2.11)).

*Update the elementary quality ¢(L;, 0;) for each rule j € R and
the chosen action oy, k € A ((2.12)).

change in the system output (FQL output, i.e., the inferred action learned by the
MN) when we change the type of the membership function on the same system.
However, the selection of membership function type is out of the scope of this thesis.
As mentioned, in this thesis, we use Gaussian function which is more preferable as
it provides better smoothness and easy to describe the generation of new fuzzy rules
[27]. It should be noted that the inferred action a(b) as the output of the FIS is
applied to the environment by the MN. However, since a(b) is a continuous action,
its value may not be an integer while this value specifying the action’s type (Data
Transmission, Stop Data Transmission or Channel Switching) for the MN, should be
an integer. Thus, we use the round off principle to quantize the value of a(b) to an
integer. A “collision” occurs between the PU and the CR network when the CR nodes
(as the SNs related to the MN in the presented model) transmit data while the oper-
ating channel is occupied by the PU. Reinforcement signal (reward) r penalizes the
CR network whenever a collision occurs between the CR network and the PU. In this
case, the CR network is penalized by a negative fixed value, i.e. —5. Accordingly, if
the CR network performs channel switching whether the PU is active or inactive over

the operating channel, the penalty value is —0.5. Note that if less-frequent channel
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switching is preferred for stability, a more negative value can be chosen. The reward
r should be a positive value when user data are successfully transmitted by the SNs
without collision, i.e. +5. On the other hand, If stop data transmission (regardless
the PU state) is chosen, then the time is consumed without transmitting any data,
and therefore r should be zero. The values of the rewards can be varied to control
the tradeoff between the channel utilization and the collision probability. For exam-
ple, we can reduce the collision probability at the expense of channel utilization by

decreasing the value of r from +5 to +2 [27].

2.4.2 Numerical Evaluations

To show the performance of the FQL algorithm and its supremacy against the
QL algorithm, different figures were depicted. The main goal is that the CR network
has to avoid any collision with the PU and at the same time achieving the maximum
channel utilization. Indeed, the “channel utilization” is defined as the proportion of
time in which the CR networks successfully exchange data without collision with the
PU. In other words, the final purpose is to maximize the total discounted reward.
This value is a figure of merit for the quality of the learned policy, i.e., how much
reward the CR accumulates while following the optimal policy. The parameter values
used in this chapter are Kk = 0.8, v =0.995, ¢ =03, n=0.5,T. =1 ms, T'=0.1 ms
and the SNR of the PU signal is -10 dB (the optimal values of the FQL parameters
can be obtained with the help of a genetic algorithm without any prior information

as in [75]). The transition probability P, ; is also governed by the following matrix:

Poo P 0.98 0.02
L . (2.13)
Py P 0.02 0.98

)

Furthermore, in the EEP strategy, we gradually reduce the value of exploration pa-

rameter € after each decision epoch using the following equation:

e =¢ x 0.995. (2.14)
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Fig. 2.7 shows the reward accumulation results for the FQL and QL algorithms
as well as a random selection method (where the action regarding the MN’s belief
state at each decision epoch is selected randomly). As shown in this figure, the FQL
achieves the highest sum of discounted reward. Clearly, use of the FIS decision unit
allows the agent to quickly and efficiently achieve the optimal policy. Thus, using the
FQL, the CR network can accumulate more reward while following the optimal policy.
Realization of such high performance is an indicator of the quality of learned policy.
Fig. 2.8 illustrates the collision probability between the PU and the CR network. The
“collision probability” is defined as the proportion of time in which the CR network
transmits data when the operating channel is in use by the PU. Results show that
the collision probability when the FQL algorithm is used for discovering the optimal
policy is always lower than that when the QL is used. As it is seen in this figure, at
the beginning of the learning process (at the initial decision epochs), whenever the
PU is in active state or appears in the operating channel, the collision probability
is high, and this is because of the wrong decisions made by the CR network from
lack of experience regarding the PU state. However, as time goes on and the optimal
policy is discovered by the MN (using the RL algorithms), the collision probability
is low even in those times that the PU is active or appears in the operating channel.
Fig. 2.9 (a), (b) and (c) respectively shows the PU activity on the operating channel
(of course, the MN is unaware of the PU activity, but can learn it using the RL),
the instantaneous reward gained by the CR network equipped with the QL and the
instantaneous reward gained by the CR network equipped with the FQL. Indeed,
the instantaneous reward gives more information about the higher performance of
the FQL. The FQL based scheme for the CR network got more rewards and fewer
penalties, since use of FIS allows the CR network to quickly and stably zero-in on the
optimal policy. As a result, higher channel utilization and lower collision probability

are achieved.
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Fig. 2.7. Total discounted reward of different strategies

2.5 Estimation of the State Transition Probabilities

To obtain the simulation results in Figs. 2.7, 2.8 and 2.9, we assumed that the
state transition probabilities (P, ;) of the PU (in the belief state formula) are known
to the CR as in different studies (e.g., [62], and [63]), which is in most cases not
true in the real world. Hence, even though the concept of sensing is valid literally, its
practical application is severely limited |76], [77]. Thus quite realistically, the channel
state transition probabilities are assumed to be unknown. On the other hand, during
the whole operation time, the channel state transition probabilities are assumed to
be constant; and these values are estimated by the CR network. These transition
probabilities can be estimated using the Baum-Welch Algorithm (BWA) [78], which
is basically a derived form of the Expectation Maximization (EM) algorithm for hid-
den Markov models (HMMs) [78]. The concept of an HMM extends directly from
Markov models, with the observation being a probabilistic function of the state. An
HMM is a doubly embedded stochastic process with an underlying process that is
not observable (the hidden state), but can only be observed through another set of

stochastic process that produces the sequence of observations [78]. Though a Markov
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chain is appropriate in modeling the PU’s channel access pattern, the true states of
the PU are never known to the CR at any particular sampling instant. What the
CR network can observe directly is some signal “emitted” from a particular state
(The received PU signal). The received signal fits into a hidden Markov model [79).
The Baum-Welch algorithm can be employed to process input observation sequences
(received at the MN) and generate parameters of HMMs. Training is usually done
offline. The parameters of the HMM are obtained after the training phase and stored
for future use. In other words, the state transition probabilities of the PU (as one of
the HMM’s parameters) are estimated first, and then it will be used in the POMDP
framework, as previously described. The general approach is to train the model
with the observation data using some iterative procedure until its convergence. More
specifically, the parameter set A\ = (A, B, m) would be initialized with appropriate
guesses at first; a set of transition probabilities A = {p, ;}, 7,5 € {0, 1}, B = b;(¥}) is
the observation symbol probability (also called emission probability) distribution in
state i (7 € {0,1}) which can be easily obtained from the pmf’s of the sensing results

(we will use Y; to denote the observation symbol at time ¢), and finally 7 is the initial
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the QL based CR network. (c¢) Instantaneous reward for the FQL based CR network.

state probabilities 7 = {m;}, i € {0,1}. Then a set of re-estimation formula would be
repeatedly used in a number of iterations so that the parameter set could gradually
approach to the ideal values where the occurrence possibility of the observation se-
quence is maximized. Let & (7,7) be the probability of the HMM being in state i at
time ¢ and making a transition to state j at time ¢+41, given the appropriate guesses
of the model A = (A, B, ) and observation sequence Y = {Y7, Y5, ..., Y7} as the
partial observation sequence received at the CR network (The signal received at time
t (observation symbol, Y;) at the CR, is a noisy version of the PU’s actual signal,
ie., Y, = Xy + U; where X; is the PU’s signal, and U; is modeled as additive white

Gaussian noise (AWGN) with mean zero and variance ¢?):
gt (7'7]> =P (St =1, St41 = j‘Y7 /\) : (215)

With the first-order Markov assumption, the received samples in the observation
sequence are conditionally independent given the state sequence. In other words, the
probability distribution of generating current observation symbol depends only on the

current channel state, i.e.,

P(Y[s. ) =], P(Mlse ) (2.16)

46



where s = {s1, S92, ..., sr} denotes the hidden channel state sequence. Using Bayes

law and the independency assumption, (2.15) follows:

(1) pijby (Yegr) Biyr ()
P(Y[A)

(2.17)

o (i) = P (s, =1, YO|N), 8,(i) = P(Y*®W|s, =4, \) and P (Y|)) are forward proba-
bilities, backward probabilities and observation probability (the pmf’s of the observa-
tion sequence Y given the parameter set \), respectively, where Y® = {Y}, ..., Y} is
the partial observation sequence up to time ¢ and Y*® = {Y,,,, ..., Y7}, the partial
time series beyond time t. Therefore, oy (i) is the probability of partial observations
up to time ¢t and in state i at time t. oy (i) is proportional to the likelihood of the

past observations and can be solved recursively according to:

ap (i) = P(Yi;s = i) =mbi(Y1) (2.18)

a (i) = >l () pilbi (V) (2.19)

Jj€{0,1}

for 2 < ¢t < T. In a very similar manner, 3, (i) is the probability of the partial
observation sequence from Y;,; to the end produced by all state sequences that start
at the ith state. By definition, 8, (i) = 1. , (i) is proportional to the likelihood of

the future observations and can be solved recursively according to:

By (i) = > Bryr (4) pighi (Vi) (2.20)

Jj€{0,1}

fort =T —1,T—2,...,1. Finally, the normalization factor P (Y|\) can be calculated

in the following ways:

P(Y[N) = Y ar(i) (2.21)

1€{0,1}
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P(Y[)) = Z mib; (Y1) By (4) (2.22)

1€{0,1}

P(Y) = (i) B (i) (2:23)

i€{0,1}
for any 1 <t < T. Thus the desired probability is simply computed by summing all
the forward and backward products as in (2.23). The recursive computation structure
of the forward probabilities is illustrated in the trellis of Fig. 2.10. We also define
v,(1) as the probability of being in state i at time ¢ given the observation sequence Y

and the model A, then it can be proven:

Ve (i) = P (s¢ = i[Y, \)

P(s; =1, Y|\)
P(Y|))

Ve (1) =

P (sy =i, YOIX) P(Y*O]sy =i, ))

oo (4) By (4)
= —, 2.24
Note that
T-1
Z v, (1) = expected No. of transitions from state i. (2.25)
t=1
T-1
Z & (i,7) = expected No. of transitions from state i to state j. (2.26)
t=1
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v,(7) is shown to be related to & (i, 7) by

(@0 = D& i), (2.27)

With the above definitions, we can outline the Baum-Welch re-estimation formula:

m; = expected frequency in state v at timet = 1

= 7() (2.28)

expected No. of transitions from state i to j

ihj -

expected No. of transitions from state i

_ Sl (L) _ S (1) pigdy (Yier) B (5)

—— R (2.29)
th11 Ve (2) thll o (i) By (4)
i (m) expected No. of times in state i and observing U,,
i\T1 )= X X ;
expected No. of times in state 1
T .
1 vi— 7
_ Zt_L Yi=U,, ¥y (7) (2.30)

ZtT:1 Ve (4)

where U, is the mth symbol in the observation alphabet (here we have two observation
symbols (active and inactive) in alphabet size representing the PU state). Suppose
we have an initial guess of the parameters of the HMM )¢ = (A, Bo, 7o) and several
sequences of observations, then using (2.25) and (2.26), we can calculate the expected
values of transition properties of the Markov Chain (the Expectation step of EM algo-
rithm). Then the maximum likelihood estimation of the model is computed through
the recursive usage of (2.28)-(2.30) (the Maximization step of EM algorithm). Tt can
be proven [80] that after each iteration and gaining a new parameters of the HMM,
the received observation sequences can be better explained by the new model. The A
is iteratively re-estimated until it converges to a limit point. It should be remembered

that the Baum-Welch method leads to a local maximum of A only. In practice, to get
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a good solution, the initial guess )\ is very important. Usually several sets of starting
guesses of \g are used and one with the greatest likelihood value is chosen. Laird
suggested a grid search method [80] which divides the searching domain into small
grids and starts from each of the intersections. Leroux and Puterman argue that the
grid method would generate too many initial points when high dimensional spaces
are involved. They suggest a clustering algorithm and a simple implementation can
be found in [81]. The independence assumption we made was between the symbols
of the single observation sequence Y = {Y7, Y5, ..., Yr}. We consider a short time
window to collect symbols in an observation sequence. Symbols collected within a
short time window on the PU activity have negligible correlation as shown in [81].
Therefore, the independence assumption made between the symbols in an observa-
tion sequence is to facilitate the mathematical computations and it is a reasonable
assumption. However, the major problem with the estimation method is that only
a single observation sequence (from a short time window) to train the model is not
enough [78]. Hence, in order to have sufficient data to make acceptable estimates of
the parameter set A\, we have to use multiple observation sequences. On the other
hand, the most important issue is that for a set of observation sequences in a real and
practical system, one cannot say these observation sequences are independent from
each other [83]. Generally speaking, in real scenarios, these observation sequences
are statistically correlated. A controversy can arise if one assumes the independence
property while these observation sequences are statistically correlated. Now let us

consider a set of observation sequences from a pattern class:
O={YW y® _ y@} (2.31)
where

YO = (v v o yPhi<i<i (2.32)

20



Without loss of generality we have the following expressions

(

P(ON) =P (Y(1)|)\) P (Y(2)|Y(U,>\) o p (Y(L)|Y(L—1) Y(l),)\)
P(ON) =P (Y(2)|)\) P (Y(3)|Y(2),>\) . p (Y(1)|Y(L) Y(g)’)\)

\

P(O|N) =P (Y(L)|)\)p (Y(1)|Y(L), )\) . p (Y(L71)|Y(L)Y(L72) LYW )\)
(2.33)

Based on the above expressions, it is easy to see that the multiple observation sequence

probability can be expressed as a combination of individual observation probabilities,

ie.,
L

P(O]N) => wP (YU} (2.34)

=1

wy =P (YOIYD N L P(YD|YED YD)
1P (YOIYP X)) .. P(YDYD YR X

wr, =1+P(YOIYHP X)) . P(YED YD YE=D YDA
(2.35)

are weights. These weights are conditional probabilities and hence they can char-
acterize the dependence-independence property. Based on the above equations, the
modification of corresponding re-estimation equations in (2.28), (2.29) and (2.30) are

respectively as follows [83]

Y P (YO ()
L DL wP (YO

(2.36)
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TABLE 2.2. TRANSITION PROBABILITIES ESTIMATION AS A FUNCTION OF THE DATA SET FOR
TRAINING MODEL (AT SNR = —2 DB)

Original Parameter P, ; | Test set 1(300 data) | Test set 2(1000 data) | Test set 3(5000 data)

0.02 0.98 0.3415 0.6585 0.2544 0.7456

0.98 0.02 0.7114 0.2886 0.8000 0.2000 0.9300 0.0700
0.0821 0.9179

State 2(0) pobo(Y) @0 pohoTes) @ (0)

° 7
1 S

" Observation, ¢
1 2 3 p OOVEOLE g ) b)) ) Bab(fe)  ma()

(a) (b)
Fig. 2.10. (a) Implementation of Computation of oy (i) in terms of a lattice of obser-
vations t, and states i. (b) Computing the forward probabilities.

Ty —1 . .
S wP(YOR) S ab(i)pigbs (Vi) B ()

P — — 2.37
d S wP(YOR) S, al (1)) (240
[A)Z(m) _ Zle w P (Y(l)p‘) tT]:'L Yi=Up, afﬁ(l)ﬁi (Z) (2.38)

S wiP (YOIN) 0 ad(4)5; (0)

However, in [78] the author assumes that each observation sequence is independent

from every other sequence, i.e.,

L
PO =[P (YY) (2.39)

1=1
Figs. 2.11, 2.12, 2.13 and 2.14 illustrate the following: without any a priori infor-
mation about the channel characteristics, even in a very transient environment, it is

quite possible to achieve reasonable estimates of channel state transition probabilities

with a practical and simple implementation. They show the estimates of the channel
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transition probabilities as a function of the SNR parameter for the observation set
with a length of 1000. It is important to note that the estimates improve by increasing
the SNR values, hence allowing better performance for the proposed sensing method

in the previous sections. We initialized A\g = (A, By, 7o) as follows:

0.85 0.15 10
o= ( ; ,(m0=0.2  7,=0.8))
0.1 09 01
Clearly, the estimates also improve as the data set for the training model increases
(see Table 2.2). As seen in Table 2.2, the parameter of SNR is not the only factor
affecting the accuracy of estimation. Table 2.2 shows the accuracy of the estimates
according to the length of the data set. We can see that the estimates become more
and more accurate as the data set for the training model increases. In this example,
we can get sufficiently accurate estimates from 5,000 training data even at a low SNR,

value of -2dB.

T T T
R L

""""""""""""""""""""" Estimated

— -+ — Actual
05 | | | | ; I I I I

A0 5 0 ] 10 15 20 25 30 3% 40

SNR (dB)

Fig. 2.11. Transition probabilities F, estimation
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2.6 Conclusion

In this chapter, we have proposed a learning based scheme for channel sensing
in partially-sensed CR network. We introduced a novel fuzzy RL control scheme
in the POMDP framework to successfully address time and complexity issues. In
particular, the CR network’s channel sensing scheme is formulated as a POMDP, and
the optimal policy is determined by a powerful approach such as the FQL algorithm.
Using our proposed sensing scheme, the CR network can significantly improve its own
spectral efficiency and reduce the probability of interfering with the PU. Simulation
results show that high spectrum utilization and very low sensing error probability are
achieved via the maximization of the total discounted reward. We have also shown
that without any a priori information about the channel characteristics, even in a very
transient environment, it is quite possible to achieve reasonable estimates of channel

state transition probabilities.
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Chapter 3

Stochastic Geometry Modelling and
Analysis of Cognitive

Heterogeneous Cellular Networks

3.1 Introduction

Most of the existing interference management techniques in the literature
(including the CR technique presented in the previous chapter) are developed in
idealized and simplified interference network settings. In other words, most of the
interference management techniques are usually considered in settings with a
particular number of cooperative transmit-and-receiver pairs, ignoring any
potential interference from outside of the cooperative set. Obviously, there exist
some limitations in translating the performance gains obtained from the advanced
interference management techniques into any practical wireless networks because
of their simplified natures. The fundamental challenge is to re-evaluate the gains
obtained with the interference management techniques using models that can
accurately reproduce and capture the impact of the random spatial structure of
wireless transmit-and-receiver locations and channel characteristics. A possible
direction is to use analytical models for large-scale interference networks via a
new modeling approach called “stochastic geometry”. This modeling approach

facilitates compact and closed-form expressions of outage probability (as the main
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performance metric used in Chapters 3 and 4) and spatially averaged spectral
efficiency of in networks with the effects of out of cell interference and different
channel distributions. Therefore, for example, by adopting the downlink cellular
network model via stochastic geometry [34], it would be possible to analyze the
system-level performance of the recent interference management algorithms
including the CR technique.

The best solution to the spectrum saturation and bandwidth availability
problems in multi-tier cellular networks is to adopt technologies that make the
most efficient use of existing spectrum through frequency reuse schemes [30], [84].
In universal frequency reuse scheme, the existing spectrum can be aggressively
and effectively reused by all of the coexisting network tiers. This will lead to
higher spatial spectrum utilization and network usage capacity at the expense of
an increased possibility of interference among network tiers and of a reduced QoS.
In multi-tier cellular networks, interference is increasingly becoming a major
performance-limiting factor, and hence, interference modeling, coordination, and
avoidance are the primary focus of interest for both the industry and academic
communities. Applying the CR technology in multi-tier cellular networks to be
aware of and adapt to communication environments, some of the above challenges
can be tackled. In fact, CR is the key enabling technology for interference
management and avoidance in multi-tier cellular networks [34], [84]. On the other
hand, the aggregate interference environment is more complicated to model, and
evaluating the performance of communication techniques in the presence of
heterogeneous interference is challenging. For interference characterization, if the
BSs of the cellular network follow a regular grid (e.g., the traditional hexagonal
grid model), then the SINR characterization will be either intractable [34], [35] or
inaccurate due to unrealistic assumptions [36]. Moreover, as urban areas are built
out, the BS infrastructure is becoming less like points on a hexagonal lattice and
more random. Hence, the use of a hexagonal grid to model the BS locations is
violated and is considered too idealized [37]. Furthermore, according to [34], [35]
and [37] for snapshots of a cellular network at different locations, the positions of
the BSs with respect to each other follow random patterns due to the size and
unpredictability of the BSs in these kinds of networks. Therefore, the need for a
powerful mathematical and statistical tool for modeling, analysis, and design of

wireless networks with random topologies is quite obvious.
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As mentioned, stochastic geometry has been recently applied to the analysis of
multi-tier cellular networks due to its ability to capture the topological
randomness in the network and its aim at deriving accurate and tractable
expressions for outage probability [34], [37]. Stochastic geometry stems from
applied probability and has a wide range of applications in the analysis and
design of wireless networks in particular for modeling and analyzing systems with
random channel access (e.g., ALOHA [38], [39] and CSMA [40]), single- and
multi-tier cellular networks [37], and networks with cognitive abilities [38], [41].
Multi-tier cellular networks have been investigated from different perspectives
such as power control [85], [86], spectrum allocation [32], [87], and exploiting CR
techniques [88], [89], and recently, many works have been done based on the
similar concepts to adopt and extend the stochastic geometric approach to
different network models and scenarios (see [90]-[93]). This chapter discusses this
new theoretical model to provide a better understanding of the heterogeneous
cellular networks of tomorrow, and their challenges (interference modeling,
coordination, and avoidance) that must be tackled in order for these networks to
reach their potential. We focus on a two-tier femto-macro network where low-
power and small-coverage local nodes (femto nodes) are distributed in the
coverage of macro nodes. We provide an insight into the role of CR in
interference mitigation in two-tier HetNets. We derive closed-form expressions for
the outage probability of any typical femto and macro user in the network. We
also study the effect of several important design factors which play vital roles in
the determination of outage and interference.

Our main contributions in this chapter which is an extension of [94] are
therefore the following: (i) We analyze the Laplace transforms of all four types of
aggregate interference between macro and CR femto networks (including the
interference between macro nodes among themselves and femto nodes among
themselves, the cross-interference from femto to macro network and vice versa) in
perfect and imperfect spectrum sensing CR based femto networks, considering
simultaneously the PPP model, and some important design factors (such as
spectrum access probability) which can play a major role in determining
interference and outage. (ii) This chapter provides an insight into the role of CR
in interference mitigation in OFDMA two-tier HetNets. (iii) Closed-form

expressions are derived for the outage probability of any typical femto and macro
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user considering the Rayleigh fading assumption for the desired and interfering
links with the possibility of using the CR ability for the femto network. It should
be noted that in most of the available studies in this area none of the network
tiers is equipped with the CR capability and they are mostly based on the
existence of only one macro-BS (along with the macro users and the femto
network) and the effect of considering multiple macro-BSs is ignored in the
analysis of outage probability.

Authors in [31], [95]-[97] have considered the two-tier HetNets imposing the CR
ability to the femto tier. Different from [95], in our work, we consider both the
perfect and imperfect sensing scenarios for the CR femto-BSs, however authors in
[95] ignore the effect of sensing errors on the opportunistic channel access
probability and consequently the outage probability of each tier. On the other
hand, in our work, the mathematical demonstration of the obtained expressions
(channel access probability and outage probability expressions) is quite different

from the mentioned works.

macro-BS

Fig. 3.1. The heterogeneous model (femto and macro BSs)
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3.2  Downlink System Model

3.2.1 Model Description

We consider infinite spatially collocated macro-BS and femto-BS node HetNets
(see Fig. 3.1). It is assumed that the spatial distribution of the nodes is captured
using two collocated and independent homogenous Poisson point processes
(HPPPs) [37], [38] ie., @y and @, with intensities Ay and Ag, respectively. In
other words, the locations of the macro-BS nodes constitute an HPPP ®,,, where
Ay is the average number of the macro-BS nodes per unit area. Similar statement
can be made for the HPPP formed by the femto-BS nodes @y with intensity Ag.
According to Superposition Theorem [98], the overall node process over the
network formed by both the macro-BS and femto-BS nodes also is an HPPP with
intensity A (A = Az + Ay). Furthermore, the macro and femto users are scattered
about the plane according to some independent PPPs with different densities
compared to Ay and Ap, respectively. However, our interference analysis is
fundamentally concerned with the distribution of the transmitters (BSs).

Since femto-BSs are installed and maintained by the paying home users for
better indoor performance, they are only accessible by their own mobile
subscribers (femto users) (known as closed-access policy). On the other hand,
macro-BSs can be accessed only by unauthorized users (macro users). In practice,
macro network is deployed usually without awareness of the distributed femto
network. To this end, wireless operators can consider giving priority to the macro
users, and the femto network has to be self-optimized to mitigate its interference
to the macro users. Motivated by this insight, the macro-BSs (along with the
macro users) and the CR enabled femto-BSs (along with the femto users) are

analogous to primary and secondary systems in the CR model, respectively.

3.2.2  System Structure

In OFDMA, the spectrum is orthogonally divided into time-frequency resource
blocks (RBs), which increases flexibility in resource allocation, thereby allowing
high spectral efficiency. As shown in Fig. 2, we consider a spectrum of N RBs, out
of which M (M < N) random RBs are idle or unoccupied by the macro users

(primary system). With the CR capability, a femto-BS could actively acquire
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knowledge about its environment and access to the RBs without the aid of a
macrocell in a decentralized fashion (clearly, no synchronization between the
macro and femto network is needed any more) and automatically prevent
disturbing the macro users [84].

1) As shown in Fig. 3.2, each femto-BS’s transmission strategy is divided into
consecutive slots, each having a duration of T. Each slot is divided into two
consecutive stages, i.e., sensing and data transmission, with durations of Tg and
Tp, respectively. Each femto-BS periodically senses the spectrum to identify which
RBs are occupied by the macro network. Indeed, each femto-BS accomplishes
sensing one RB in one unit slot Tggp within Tg. Each femto-BS senses Ng RBs in
sequence which are randomly selected from the N available RBs, and detects its
idle RB set. Clearly, the time required for sensing the Ng RBs is Tg = TggpNs.
Note that the femto-BSs cannot perform data transmission within the sensing
time Ts. We assume that all femto-BSs are perfectly synchronized and have the
same time as the sensing time. Methods for implementing a perfect
synchronization among the femto-BSs are outside the scope of this chapter,
however, a set of possible candidates exist, including GPS synchronization, the
wired backhaul (IEEE 1588), and leveraging synchronization signals broadcasted
by the femto-BSs [99].

2) Each femto-BS senses the received interference power on each RB within the
sensing duration.

— If the received interference power on an RB at a typical femto-BS exceeds a
certain threshold, the RB is identified as being occupied by one or more macro
nodes but not by the femto network since all the femto-BSs have the same
sensing time (It should be noted that if an RB is identified as being occupied at a
typical femto-BS, it does not necessarily mean that it is also seen as an occupied
RB at the other femto-BSs, as this status determination process depends only on
the received interference power level on the RB at each individual femto-BS).
—Otherwise, the RB is unoccupied by the macro network.

3) In the data transmission time (Tp), each femto-BS only allocates an
unoccupied RB sensed in the sensing time to its user (by only utilizing these
unoccupied RBs, cross-tier interference can be consequently avoided). Since the
determination of each individual RB status as busy/idle is subject to (occasional)

error, determined by the probability of (correct) detection of the presence of PUs’
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signals Pq and probability of false alarm Py (probability of falsely declaring an idle
RB as busy), we study the effect of both the ideal detection, i.e., P; =1 and
Pr = 0, and the cases involving imperfect sensing (see [100] and [101]), i.e., Py # 1
and Py # 0 on the outage probabilities of femto and macro users.

In each realization of the point process, each macro and femto user
communicates only with its nearest macro-BS and femto-BS, respectively. As
shown in Fig. 3, the macro users’ exclusion regions with radius D are used to
guarantee that the femto-BSs will, on average, not generate an aggregate
interference leading to the outage of macro (primary) users. We assume that the
macro users can be localized, e.g., based on pilot signals or transmitted
acknowledgments. Therefore, the femto-BSs inside the macro users’ exclusion
regions may be able to detect the macro signals and cease their transmissions. As
shown in the figure, for example, those femto-BSs located in the tagged macro
user’s exclusion region are not allowed to transmit data whether they pick the
same RB as the tagged macro user or a different one. It should be noted that the
tagged macro user is not disturbed by the femto-BSs transmitting on different
RBs (from that of the tagged macro) even if they are inside its exclusion region.
However, we deactivate them to protect the tagged macro user from any harmful
interference as a result of possible errors in their sensing and location detection
processes (we consider this law throughout the chapter even in the case of the
perfect sensing scenario). For instance, if a femto-BS, located at a very close
distance from the tagged macro user, wrongly (the cases involving imperfect
sensing) picks the occupied RB by the tagged macro user, it will cause a severe
interference to the tagged macro user if it is not able to perfectly detect the
location of the tagged macro user (e.g., because of the hidden node problem in CR

systems [102]) to cease its transmission.

................................................................................................

| T |
3 TS TD 3
3 R | 78! | REY ’E |
- Tsrp [Joccupied [ Jidle [ |

Fig. 3.2. The CR femto-BS’s transmission strategy in one time slot
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Fig. 3.3. (a) The bipolar network model. (b) The link gains/distances

3.3 Stochastic Geometry Based Network Configuration

3.3.1 Femto Outage Probability Formulation

We derive the probability of outage for a typical femto user (pgr) in a
downlink heterogeneous cellular network defined as the probability that a
randomly chosen femto user cannot achieve a target SINR 6 (or equivalently as
the average fraction of femto users who do not achieve a target SINR 8, i.e., the
averaged outage probability of all femto users) considering a collocated spectrum

sensing CR based femto network and macro-BSs as follows [37]:

por = 1 — P[SINR > 6] (3.1)

In fact, the outage probability evaluates the CDF of SINR over the entire
network. The experienced SINR by a typical femto user is calculated as
Pphprg™®

SINR = 3.2
0-2+IFB+IMB ( )

where Pr is the transmission power from the nearest femto-BS (tagged femto-BS)
located in the random distance 7z from its tagged femto user (we assume that the

tagged femto user under consideration is located at the origin), and a is the path-
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loss exponent. Iz and Iz are the aggregate interference power at the origin
from the other femto-BSs and macro-BSs, respectively, and ¢ is the noise power.
It should be noted that the transmission power values of all the femto-BSs in the
network are kept constant i.e., Pg.

Let hp~ exp(u) (with mean 1/u) be a random variable accounting for the
random channel gain of the link between the tagged femto user and its

corresponding femto-BS, and then we have

Pohpry™¢
FNFTE >0]

P|[SINR > 6 =P[
[ ] 0%+ Ipg + Iyp

GrF“]

= P[hF > (0% + Ipg + Iyp) 5
F

ol €Xp(—px)] dx
TF
Pp

= EIFB,IMB

‘f(UZHFBHMB)

[ Org“

= Elpius exp [—,u(az + Irg + Iyg) P ” (3.3)
where (+) is derived by rearranging the terms in SINR; (-+) is derived by noting
that hp is an exponential random variable; E;__; _['] is the expectation operator
with respect to the joint distribution of the random variables Irg and Iyp.

Note that due to the assumption of independent PPPs for the femto and macro
networks, the aggregate interference received from the femto-BSs is independent
of the aggregate interference received from the macro-BSs [41], therefore, we can

write
6rp% 5

_ _ 0re® _ 0rE®
P[SINR> 6] =e " Pr° .E, le “pr ’FBl.E,MB [e Hpr ’M‘*l

_ org® o 91,. a 97" a
w o F F
=e FPr L, (,u —) Liyg (u P—> (3.4)
F F

where L. (s) and £;, . (s) are the Laplace transform of random variables Ipg and
a

Iyg evaluated at s (s = ,ue;—F), respectively. Thus, the probability of outage
F

averaged over the plane is derived as

por = 1 — E,..[P[SINR > 6]]
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Por =1— f OO[P[SINR > 0]]. . (rp) dre (3.5)
0

where f..(17) = e AFTTF? 2mAp1r (as mentioned before, 17 is the random distance
between the tagged femto user and its corresponding femto-BS) is the probability
density function (pdf) of 1z [37]. Then, we have

* _ s 2 Org® Orp®
Por = 1-— .[ e_n—}lFrFZ. e # Pf ’ 'LIFB (,Ll —F) 'LIMB (‘u F ) anp)\p dT‘F (36)
0 Pp Pp

Scenario 1
Ideal detection (P; =1 and Pr = 0):

Each secondary node (femto-BS) has perfect knowledge of each primary
(macro-BS) signaling. In other words, sensing at each femto-BS is done perfectly.
Therefore, an RB occupied by a macro-BS is not chosen for data transmission by
the nearby femto-BSs. Under this condition, the tagged femto user, during the
data transmission time, does not experience any interference from the macro-BSs
since it always communicates with its corresponding femto-BS on an idle RB. In
fact, we assume that the received interference power from the macro network
under this scenario can be neglected if it is measured to be less than a specified
threshold (if we do not neglect the received interference power under the
explained condition, then the outage probability formulations will be the same as
in Scenario II except for the RB selection probability expressions, prp, as we
explain later. Similar arguments can be made for the outage probability of the

macro tier as discussed in the next subsection).

_OrEY, a
Therefore, under this assumption, E;, Ie Hpr MB] =1and L, (,u 9;F ) =1,
F

consequently. Then (3.6) is rewritten as follows

QTFa 2

7.0 BrFa
F 'LIFB ‘HP—F .Zﬂrp}\pdrp. (37)

oo
- 2 -
popzl—f e TAFTE”
0
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The Laplace transform of the aggregate interference from all the active femto-
BSs except the tagged femto-BS denoted by fbs, is given as follows (Note: some
of the femto-BSs located in the macro users’ exclusion regions with radius D are

deactivated, therefore, A < Ap (see Fig. 3.3))

LIFB(S) = EIFB [exp(_SIFB)]
= Eop,g,[exD(—5 Ticap \(rbso) PrgiRi ©)]

= Ea, “_[ By [exp(—sPrgiR; )] (38)
1e@r\{fbso}

where R; is the distance of the ith interferer from the tagged femto receiver
captured by the point process @p. The IC gains g; are assumed to be mutually
independent and have identical pdfs. Each of the active interfering femto-BSs
transmits with the same power Pp. Using the definition of the Generating

functional [37] for the PPP, which states for some function f(x) that
E[llxea f ()] = exp(— [pa(1 = f(x))Adx), (3.8) can be rewritten as

L. (s) = exp {—Eg [f::(l - exp(—sPFgR‘“))A,(R)dR]} (3.9

where we flipped the order of integration and expectation. Since the closest
interfering femto-BS is at least at distance 7y from the tagged wuser, the
integration limits are from 7 to co. In other words, interference is encountered
from all the active femto-BSs located in the area R*\b(0,7%) (where b(x,y) is
ball of radius y centered at point x). However, not all the femto-BSs will
contribute towards the aggregate interference, i.e., only those active femto-BSs
located outside the mentioned ball which at minimum satisfy all of the following
conditions qualify as potential contributors.

Before explaining these conditions ((a) and (b)), it is useful to translate the
point process into polar coordinates. Therefore, according to [38] and [98] the

intensity of the HPPP @ is shown as

4(R) = AdR% b, (3.10)
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where R is the distance between an arbitrary femto-BS and the tagged femto
receiver. by is the volume of a unit sphere in R% ( by =

fooo t*"1et dt denotes the standard Gamma function).

(a) Satisfying the aforementioned condition, any active femto-BS contributes
towards the interference at the tagged femto receiver, if it picks the same RB
as the tagged femto-BS to communicate with its user. We show the
probability of picking a same RB from a pool of all RBs as pgg (the

calculation of pgp for this case is derived in Section 3.4, Scenario I, Case 1).

(b) We assume that the CR femto-BSs employ a slotted ALOHA MAC protocol
to schedule their transmission. Therefore, they only transmit with probability

DPix in the current time slot and defer the transmission with probability

1 — Dtx-

Applying both conditions (a) and (b) which are indeed two independent
thinning tools, the thinned point process of @ is formed. In other words, @ is
subjected to two thinning processes each presenting an independent
deletion/retention of each point of @ with a fixed retention probability. We now
formulize this operation, which will in fact result in reducing the number of
interferers and hence lowering the outage probability at the tagged femto user.
First, ®p is reconstructed by pgg-thinning, where each point of @ is retained
with probability pgpp (to accommodate condition (a)), and then it is thinned again
by applying the second independent thinning (to accommodate condition (b)).
Thus, the intensity of the process (the number of interfering CR femto-BSs)

becomes
A (R) = AzdR*  baprpDix (3.11)

Now, (3.9) is rewritten as

exp {—Eg lf (1- exp(—sPFgR_“))A’depRBptded_lde}.
TF
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By using the change of variables R* - x and then xda - y, and doing some

simple calculations, the above expression is simplified as:

d
Ly,,(s) = eTFdbdpRBptxlfv—%deRBPtxl%(MH)ETFdM(G.a) (3.12)
where
4 d d
M6, = £|(9)7 (1 (-2, ng) -1 (-2))| (3.13)

Note that I'(a,x) = fxoo t% le~tdt indicates the incomplete Gamma function.
From (3.7) and (3.12), taking d = 2, then replacing rz* with z, we get the final

formula for the outage probability of the tagged femto user as follows

® ﬂZ(A%PRBPtx—AF)—”—QG ZZ%_ET[I’RBptxA;:‘(M9)§ZM(9,(X)
Por=1— e Pp a .TTAp dz (3.14)
0

in which M(8,a) =E [(g)é (F (—z,ueg) -T (— 2))] . According to [87], the
downlink femtocell networks are assumed to be interference-limited, i.e., the noise
can be neglected as the interference dominates the whole performances of the
system (g2 - 0).

Thus, (3.14) reduces to (3.15) as follows (a = 4)

Ap

, : (3.15)
/ Ar( »)
(Ar = ApPrePec) + T [u6 M (6, 4)

Por =1-—

Similar with the desired link, we consider the Rayleigh fading model for the
femto interfering links as well (Rayleigh fading links with equal parameter p).
Then following the derivation of M(8,a) in Appendix A.1l, por is re-expressed as

follows

A
por =1— il .(3.16)

O — AsPraPer) + VA rspeoi | 50— (1 + k)
F — AFPRBDtx F\PRrBDtx k=01“(k+%)(u+,u6)k+1

68



Scenario I1
Imperfect detection (P4 # 1 and Py # 0):

In this scenario, each secondary node (femto-BS) has imperfect knowledge of
each primary (macro-BS) signaling. In other words, sensing at each femto-BS is
done imperfectly. Therefore, an occupied RB by a macro-BS may also be wrongly
considered idle by the femo-BSs, causing collision between the two networks. Two

cases can take place under the imperfect sensing scenario:

Case 1. The tagged femto-BS transmits data on an idle RB (for this case, the
outage probability formulations can be considered the same as in the

perfect sensing scenario except for the calculation of pgp (see Section 3.4,
Scenario II, Case 1))

Case 2. The tagged femto-BS transmits on an occupied RB (outage probability
formulation in this case is explained as follows and the calculation of pgrp

is presented in Section 3.4, Scenario II, Case 2)

In Case 2, the tagged femto user can experience interference from both the

active femto-BSs (which pick the same occupied RB as the tagged femto-BS) and
macro-BSs. Indeed, the £, _ (,u 9;—Fa) (the Laplace transform of the aggregate
F

interference from the macro-BSs) in (3.6) is not ignored. The Laplace transform of
the aggregate interference power generated by the macro-BSs at the tagged femto

user is given by

LIMB(S) =E; [exp(—siyp)]
= Eay.,]eXp(—$ Yicay, PuGiLi%)]

= Eq,, “_[ Eg, [exp(—sPy G,L7™)] (3.17)
IEDy

where L; is the distance of the ith interfering macro-BS from the tagged femto
receiver captured by the point process @). The IC gains G; are assumed to be
mutually independent and have identical pdfs. Each of the active interfering
macro-BSs transmits with the same power Py,;.

Again, using the definition of the Generating functional for the PPP, we can

write
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L1,15(s) = exp{—Eg[ [, (1 — exp(—sPyGL™®))A,(L)dL]}. (3.18)

The interference is encountered from all the macro-BSs located in the area
R*\b(0,0). It should be noted that not all the macro-BSs in R? will contribute
towards the aggregate interference, i.e., only those macro-BSs which are
transmitting on the same RB as the tagged femto user qualify as potential
interferers. The intensity of the HPPP ®,, process can be therefore written as

follows
A (L) = Ay, dL* b, (3.19)

where L is the distance between an arbitrary macro-BS and the tagged femto
receiver and A}, is the intensity of those macro-BSs transmitting on the same RB
as the tagged femto user at a time.

Now, (3.18) is rewritten as
exp {—EG [ f (1- exp(—sPMGL‘“))A},,Ld‘lbdde‘ldLl}.
0

By using the change of variables and doing some simple calculations, £;, . (s) is

obtained as follows [98]

d
1; d\(P 0\a d
Ly, (s) = e—bdlMF(l_EXlg_ﬁ) 7”Fdl“z[((?)‘?‘]. (3.20)

From (3.6), (3.12) and (3.20), taking d = 2, then replacing 7z* with z, and

assuming 02 - 0, we get the final formula as follows

da

2 Ppud\a
(Ar=2DRBP)+2PREPARUOVEM(O,0) =2 (P422) N ()

V4

.mApdz (3.21)

oo ~—T

P0F=1—f e
0

in which  M(8,a) = E[(g)e (r (~2,u8g) ~1 (- %))] and  N(a)=T(1-
“)E [(G)%].
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Finally, the closed-form expression for the outage probability of the tagged
femto user, under the imperfect sensing scenario for all CR femto-BSs, is obtained

as follows (a = 4)

A

Ap(PRBPtx) Ppu0
(Ap=ApPREPe) + = OM 0,4 + A3 N (4) |~

Por =1-— (3.22)

P

Similar with the desired link, we consider the Rayleigh fading model for the
femto interfering links as well as the macro interfering links (Rayleigh fading links
with equal parameter u for the femto interfering links and p, for the macro
interfering links). Following the derivation of M(6, @) in Appendix A.1, and after
the simplification of N(a) using the definition of expectation and the standard

Gamma function, por is re-expressed as follows (a = 4)

Ar
pop = 1 — — —— (323)
! ! o0 e TAy  |PMH
(A = ApPrePrx) + VTAE (DrEPEIK Zk:oWF(l + k)] t ol Pr

3.3.2 Macro Outage Probability Formulation

We derive the outage probability for a typical macro user (poy) in a downlink
heterogeneous cellular network defined as the probability that a randomly chosen
macro user cannot achieve a target SINR y (or equivalently as the average
fraction of macro users who do not achieve a target SINR y, i.e., the averaged
outage probability of all macro users) considering a collocated spectrum sensing

CR based femto network and macro-BSs as follows:
Pom = 1 — P[SINR > y] (3.24)

The experienced SINR by a typical macro user is calculated as

Py hyry®
SINR = — 214 (3.25)
O-2+IMB+IFB
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where Py, is the transmission power from the nearest macro-BS located in the
random distance 1y, from its tagged macro user located at the origin, and « is the
path-loss exponent. Ipp and Iyp are the aggregate interference power to the
tagged macro user (located at the origin) from the surrounding femto-BSs and
macro-BSs, respectively, and o2 is the noise power. It should be noted that the
transmission power values of all the macro-BSs in the network are kept constant
ie., Py.

Let hy~ exp(u,) (With mean 1/u,) be a random variable accounting for the
random channel gain of the link between the tagged macro user and its
corresponding macro-BS, then the similar approach to obtain the outage
probability of the tagged femto user is used for the outage probability calculation
of the tagged macro user. Therefore, from (3.24) and (3.25) we have

a

i yru® 2 a
_ 2 —u o YTMm YTm
Pom = 1-— L e TAMTM .e P Py . LIFB <Mp ﬁ) . LIMB (‘Ll,p ﬁ) . ZHTM}\M dTM (3-26)

where £;__(s) and L, .(s) are the Laplace transform of random variables Irp and

a
Iyp evaluated at s(s = u, y:fM), respectively.
M

Scenario [
Ideal detection (Pg = 1 and Py = 0):

Each secondary node (femto-BS) has perfect knowledge of each primary
(macro-BS) signaling. In other words, sensing at each femto-BS is done perfectly.
Therefore, an RB occupied by a macro-BS is not chosen for data transmission by
any nearby femto-BS. Under this condition, the tagged macro user, during the
data transmission time, does not experience any interference (or a negligible
interference) from the surrounding femto-BSs, however, those macro-BSs
operating on the same RB as the tagged macro user and located in the area
R*\b(0,7y) make interference to the tagged macro user. Therefore, (3.26)

becomes

a

o _vrm® o r
pom =1 —J ey’ o HPTRy 7 Ly (up Y—M) 2Ty Ay dry (3.27)
0 M
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Taking a similar approach to what we had before, £;, _(s) is obtained as

follows
L,(s) = exp {—Egp l f OO(1 — exp(—sPy ng‘“))/ll(W)dWl} (3.28)

and
AL (W) = 2}, dW1p, (3.29)

in which W is the distance between an arbitrary macro-BS (captured by the point
process @) and the tagged macro receiver and Ay is the intensity of those
macro-BSs transmitting on the same RB as the tagged macro user at a time.
Similarly, the IC gains g, (between the interfering macro-BSs and the tagged
macro user) are assumed to be mutually independent and have identical pdfs.
Each of the active interfering macro-BSs transmits with the same power Pp as for

the tagged macro-BS. Same as before, (3.28) is simplified as

d
L1y, (5) = e bata=gpatin(bpy )TV (r.) (3.30)

From (3.27) and (3.30), and the previous assumptions, the closed-form formula

is expressed as follows

Am

2.,
Am=2y+=2E upyV (v,4)

in which V(y,a) = E [(gp)é (F (—%,,upygp) -T (— z))]

The Rayleigh fading model is also considered for the macro interference links
(Rayleigh fading links with equal parameter u,). The derivation of V(y,a) is
similar to the derivation of M(8,a) in Appendix A.1. Therefore, poy is re-

expressed as follows (a = 4)

73



Am

k
/1M - /1;\/1 + \/E/uvl:up Zloco=0 F(k+l)((l:,]:-)ypy)k+1 F(l + k)
2

Scenario 11
Imperfect detection (Pg # 1 and Py # 0):

In this scenario, each secondary node (femto-BS) has imperfect knowledge of
each primary (macro-BS) signaling. In other words, sensing at each femto-BS is
done imperfectly and subject to (occasional) error. Therefore, an occupied RB by
a macro-BS may also be wrongly considered idle by the femto-BSs. In this
situation, the tagged macro user can experience interference on its RB, from both

yrm®

the femto and macro BSs. Indeed, the L, (up P—) (the Laplace transform of
M

the aggregate interference to the tagged macro user from the surrounding femto-
BSs) in (3.26) is not ignored. Using the same approach as described before,

Ly, (s) is also given by
L. (s) = exp {—EGp l (1- exp(—sPFGpU"“))/l,(U)dUl}. (3.33)
Krm

Since the closest interfering femto-BS is at least at distance Kry, from the
tagged macro user, the integration limits are from Kry to c. In other words,
interference is encountered from all the femto-BSs located in the area R%\
b(0,Kry) (see Fig. 3.3). It should be noted that not all the femto-BSs outside this
ball will contribute towards the aggregate interference, i.e., only those femto-BSs
which are outside the mentioned ball and at minimum satisfy all of the following

conditions are considered as potential contributors

(c) Satisfying the above condition, any arbitrary femto-BS contributes towards
the interference at the tagged macro receiver, if it wrongly picks the same RB
as the tagged macro-BS to communicate with its user. We show the
probability of picking a same RB for data transmission from a pool of all RBs
as pgrg (the calculation of pgp for this case is seen in Section 3.4, Scenario II,
Case 2).
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(d) Same as the condition (b) in Section 3.3.1.

Applying these two independent thinning, the intensity of the process (the

number of the interfering CR femto-BSs at the tagged macro user) becomes
M(U) = 2zdU*  byprppex (3.34)

Taking the similar approach, (3.33) is simplified as follows

d

d ) PF)/ a d
KM apREPtxAF——baDREDtxA (M —) rM*0(y,a)
L .(s)=e *F a PPy (3.35)

d
in which O(y,a) = E [(Gp); <F (_g, #zl:{);l::p) T (_ g))l
From (3.26), (3.30) and (3.35), and the previous assumptions, the closed-form

expression for the outage probability of the tagged macro user is obtained as

follows

Poy =1 — A . (3.36)

JEpYV(v.4) | %O(VA) |
/1M+Afw[%—1]+Af;pRBptxlf—KzJ

Similar with the desired link, the Rayleigh fading model for the femto
interfering links (with equal parameter u) as well as the macro interfering links
(with equal parameter p,,) is considered. Considering Appendix A.1, and after
replacing V(y,4) and 0(y,4) with their expanded versions, pyy can be re-

expressed as follows

Pom =1
()" (e |
a7 l =) HpY I 2 T |y K*Pm _
A = Ay VTl (20 Tk D) i) r1+ k)] + ApDrePexK #\/:F k=0 F(k+l)(u+uppr)k+1 r(l+k)| -1
2 K*Py
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3.4 Resource Block Selection Probability (pgg) Calculations
under Perfect and Imperfect Sensing
In this section, we discuss how the optimal values of the RB selection

probability (prp) for a secondary transmitter (femto-BS) can be determined under

each femto-BS’s perfect and imperfect sensing scenarios.

Scenario 1
Ideal detection for all the CR femto-BSs (P; = 1 and Py = 0) [103], [104]:

® Case 1. The tagged femto-BS assigns the ith idle RB to its femto user.

B prp: The probability that the ith idle RB being selected for data
transmission by any of the other active CR femto-BS [104].

PreIM; = Pidte(Ms). (MS__I) . (i> (3.38)

(i)

(o) Gomie)
()

The first term (p;ge(Ms)) indicates the probability of Mg idle RBs sensed by a

where

Piate(Ms) = (3.39)

femto-BS (during the sensing time, Ts) and the second term is the probability
that the ith idle RB is inside the M; idle RBs, and finally the third term indicates
that the probability of selecting the ith idle RB (out of the My idle RBs) by that
femto-BS is equal to Mis (since each of the idle RBs within the Mg idle RBs has an

equal probability of being chosen). It should be noted that each CR femto-BS
will fail to access when Mg = 0 (the maximum value of My is equal to min{M, Ny}).
Therefore, from (3.38),

1
PrB = PRBI(Ms21) = Mpidle(Ms =1

1
= M(l — Diaie(Ms = 0)). (3.40)
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If the number of RBs sensed by a CR femto-BS (i.e., Ng) is more than or equal
to N —M + 1, then at least we have one idle RB within the Ng detected RBs, i.e.,
Pidgie(Mg = 0) = 0. On the other hand, if Ng is smaller than or equal to N — M,
the CR femto-BS will fail to access when the RBs within the Ng sensed RBs are

all occupied by the macro-BSs. Therefore, we can write

(). if Ny<N—M
Piae(Ms = 0) =4 (3)
0, if Ng=N—M+1.

(3.41)

From (3.40) and (3.41), the probability that a CR femto-BS selects the ith idle

RB for data transmission is obtained as follows

<1—(1(V1’,3V:1;)), if NS N—-M

) if N> N—-M+1.

PrB = (3.42)

|= X|r

Scenario 11
Imperfect detection for all the CR femto-BSs (P; # 1 and Py # 0) [103], [104]:

B Case 1. The tagged femto-BS assigns the ith idle RB to its femto user.

® prp: The probability that the ith idle RB being selected for data

transmission by any of the other active CR femto-BS [104].

We show the detection result indicator of the nth RBs by D,, (n € {1,2,...,N}).
If D, = 1, the nth RB is detected as idle RB, otherwise, D,, = 0. The probability
of one idle RB detected with no false alarm is 1 — Pr and the probability for an
occupied RB detected as an idle RB is 1 — P;. In other words,

Vo=1-Ff, if nth RB is idle

4
Vi =1-P,, if nth RB is busy (3.43)

Pr(D, = 1) = {

in which Py is the false alarm probability and can be obtained as follows [58],
[104], [105]
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Pr (1) = (20 + 1071(Py) + \/tfin) (3.44)

Q) = \/% fxoo exp(_th) dt and Py, is the predefined detection probability. T is the
spectrum sensing time, f; the sampling frequency, and n the received interference
power on an RB to each femto-BS).

Indeed, the probability that the ith idle RB is detected with no false alarm by
a CR femto-BS is Pr(D; = 1) = V.

To obtain the probability that the ith idle RB being selected for data
transmission by a CR femto-BS (pgg), first, we calculate the probability that the
ith idle RB is sensed and included in the My idle RBs out of the N sensed RBs in
the sensing period (Ts), and it is expressed as follows

()

Pr(the ith idle RB is sensed | My) = p;g1. (Ms).——= (3.45)

(i)

where

() (i)
()

Conditioning on Mp (see Table 3.1) and Mg, the probability that the ith idle

Diaie(Ms) = (3.46)

RB being detected as idle is obtained as follows

Pr(D; = 1| My, Mp)

= Pr(D; = 1).Pr< Z
n#i,neP

Dn=MD—1|MS>

min{Mp,Ms}

M,—1 mip—1 (1 _ Mg—myp
(.~ ) Womot (= vo) o

L —

[
|
=V, X | mip=max{1,Mp—(Ns—M;)}

(MY raymon(a — vyyimmony
Mop
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in which @ is the set of the detected RBs by a femto-BS (see Table 3.1 for the

definitions of m;p and myp). Replacing myp with Mp — m;p, we have

[ min{Mp,M}

[<71r\l41;_—11) Vo) ™ie (1 = Vo)Hemmip

L — ]

Pr(D; = 11 My, Mp) = | myp=maxtit—(s-y) (3.48)
N.—M
I- ) (M: B m:D) . (V)Mp=mup (1 — |/, )Ns~Ms=Mp+mip]

Having the Mp detected idle RBs (including the ith idle RB), the probability of
a CR femto-BS accessing the ith idle RB is equal to Mi Thus, the probability
D

that the ith idle RB is selected for data transmission by any CR femto-BS (under

imperfect sensing scenario) is obtained as follows
L . 1
Preim M, = Pr(the ith idle RBis sensed | M) X " X Pr(D; =11 M, Mp). (3.49)
D

Finally,

min{Ng,M} N

PrB = z Z PrBIMo M, - (3.50)
Mg=max{1,Ng—(N-M)} Mp=1

B Case 2. The tagged femto-BS assigns the ith busy RB (occupied by the

macro network) to its femto user.

B prg: The probability that the ith busy RB being selected for data

transmission by any of the other active CR femto-BS.

To obtain the probability of the ith busy RB selected for data transmission by
a femto-BS (pgp), first, we calculate the probability that the ith busy RB is
sensed and included in the (Ng — M) busy RBs out of the Ng sensed RBs in the

sensing period, and it is expressed as follows
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Pr(the ith busy RB is sensed | (N; — My))

(weomios) (ot

= . (3.51)

(%)

Conditioning on M and (Ng — My), the probability that the ith busy RB being

detected as idle is obtained as follows

Pr(D; = 1| (N, — M), Mp) = Pr(D; = 1).Pr( Z D, =Mp—1](Ns— MS))
n+i,ned
min{Mp,M}

[ " 1

. 1,5 ) odme (1 = vy |
= | 1p=max{1,Mp—(Ng—Ms)} ID | (3.52)
I |

Ng — Mg
(V. Ymop—1(1 — y,)Ns—Ms—mop
TG RUALERICERA ]

in which @ is the set of the detected RBs by a femto-BS. Again, replacing mgp

with MD — mMm;p, we have

min{MD.Ms}

M, ]

[, ) Woymm (1 = vgys=mo |
D —max{lMD (NS M)} Mip |(3.53)
|

|
Pr(D; = 1| (N — M), Mp) = |
Il ) (V)Mp=mup (1 — |, )Ns=Ms=Mp+mip]

m
(MD mip —

Having the Mp detected idle RBs (including the ith busy RB), the probability
of a CR femto-BS accessing the ith busy RB is Mi Thus, the probability that the
D

ith busy RB is selected for data transmission by any CR femto-BS (under

imperfect sensing scenario) is obtained as follows

1
Dre|(N,~Mo)mp = Pr(the ithidle RB is sensed | (Ng — M,)) xM—
D

X Pr(D; = 1| (Ns — Mg, Mp). (3.54)

Finally,
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min{Ng,M} Ny

Prp = Z 2 PRrBI(Ng—M),Mp - (3.55)

Mg=max{1,Ns—(N-M)} Mp=1

Table 3.1. Symbols used in Section 3.4
N: Number of RBs
M: Number of idle RBs
N;: Number of sensed RBs
M;: Number of idle RBs within the Ny sensed RBs
Mp: Number of RBs detected as idle within the Ny sensed
RBs.
myp: Number of idle RBs (out of the Mp detected idle RBs)
detected correctly.
(m;p € [max{1, M - (N; - Mp)}, min{M,, M}])
mpp: Number of busy RBs (out of the M, detected idle RBs)
detected as idle.
(mop = Mp —myp)

3.5  Simulation Results and Discussions

Before we present the obtained results, a brief discussion on the outage
probability (as the main performance metric in both Chapters 3 and 4), the
spatial distribution of the BSs, and the macro exclusion regions is conducted as
follows.

Outage probability is considered as a QoS metric to meet a specific connection
data rate requirement, or it can be utilized as a performance measure to evaluate
the level of meeting the total demands of users in highly dense networks such as
the heterogeneous cellular networks. By obtaining an exact closed-form expression
for the system outage probability, we will be able to take a finer look at the
system performance with the end goal of better understanding system design

principles for the heterogeneous cellular networks.
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Outage probability is affected by many parameters that have impact on the
system performance. As mentioned before, cognition can be a potential solution
for dynamic spectrum allocation which will adapt to the network geometry, solve
the interference management issue and reduce the outage probability. Therefore,
the primary motivations for the femto-BSs to employ this cognition and hence the
Prp and p;,, parameters in the cellular network are to provide beneficial coverage
improvements for different types of users. In practical heterogeneous cellular
networks such as LTE, these parameters are network-specific and not user-specific,
thus there needs to be some optimization techniques, which can be
considered as future work, used to select parameters that can provide acceptable
QoS for the majority of users and to meet the existing outage constraints.

On the other hand, outage probability is significantly affected by the
performance of the spectrum sensing. The performance of the spectrum sensing
and the determination of each individual RB as busy/idle is determined by two
important parameters mentioned before, namely the probability of (correct)
detection (P4) and probability of false alarm (Pf). Considering the fact that pgp is
a direct function of Pr and Py in the practical scenarios (see Section 3.4), a
spectrum sensing with high Pr and low Py results in a lower corresponding QoS
and a higher observable outage probability. The ideal sensing procedure is the one
with Pr = 0 and P; = 1. In practice, however, Py and Pf are related to each other
through a receiver operating characteristic (ROC) curve [90], which is a
fundamental attribute of each spectrum sensing system.

We will see later that the outage probability is also an increasing function of
the SINR threshold as theoretically can be proved. The SINR threshold 6 is
generally under the control of the system designer and should be chosen
reasonably. Clearly, setting a high value for € maintains the signal quality but
increases the outage probability and reduces the network utilization. Therefore,
an upper bound of this threshold can be considered [91] in order to guarantee
that outage probability is kept below a maximum value. On the other hand,
lowering 6 is desirable for better resource utilization. However, small 8 allows
more users to be admitted per RB which can make the system infeasible if the

number of admitted users per RB exceeds a certain limit.
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Talking about the femto outage probability, each femto user suffers from two
sources of interference, i.e., macro and femto networks. For the macro network,
the aggregate interference results from all macro-BSs that use the same RB as the
tagged femto user (i.e., we define a homogenous PPP with intensity Ay). For the
femto network, the aggregate interference results only from the other femto-BSs
that (i) pick the same RB as the tagged femto, (ii) are allowed to transmit in the
current time slot and (iii) are not inside the macro users’ exclusion regions. Hence,
the interfering femto-BSs do not constitute a homogeneous point process anymore,
and analytical characterization of interference and outage in this case is hard to
characterize (the resulting point process is called Poisson hole process). In the
analysis, to keep the modeling tractable, we ignored the possible correlation
between the locations of the interfering femto-BSs and approximated the spatial
distribution of them by a homogeneous PPP of intensity ApprgPiy. Authors in
[41] and [106] use the same approximation approach, where its accuracy is also
justified by simulation in [41]. Similar arguments and approximations were
considered for the macro tier outage probability.

As interferences are experienced at receivers, we centered the macro exclusion
regions around the macro users. The femto-BSs inside these areas may be able to
detect the macro signals and cease their transmissions. The exclusion regions are
usually chosen to be centered at the location of the macro-BSs not the macro
receivers based on the argument that it is easier to detect the macro-BSs than the
macro receivers especially if the receivers are passive like TV receivers. However,
if the macro receivers (users) can be localized, e.g., based on pilot signals or
transmitted acknowledgments, our obtained results directly apply and the
exclusion regions around macro users can make sense. If the macro users cannot
be localized, the exclusion regions have to be formed around the macro-BSs. This
scenario can be evaluated with slight changes in the proposed model. It should be
noted that the location detection of the macro users is outside the scope of this
chapter, however, many schemes have been already proposed. Measuring the
power leakage of local oscillator is a possible way to detect the presence of the
macro passive users (see [14], and [41]). The hidden node problem in CR systems
which makes it difficult to detect the macro users can be also tackled, e.g., by
adding a margin to the RB access detection threshold accounting for shadow

fading, and receiver location uncertainty for worst-case scenarios [102].
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First, the accuracy of our analytical results for the downlink analysis in the
proposed model is validated by simulations, as shown in Figs. 3.4 and 3.5. The
simulations which are built on Matlab platform are carried out to plot the curves
of outage probability versus the SINR threshold for the tagged femto and macro
user, as shown in Figs. 3.4 and 3.5, respectively. The considered scenario is a two-
tier network (exactly following the network model described in Sections 3.2 and
3.3) over an approximately 1 X 1 km square with the locations of different
classes of BSs as realizations of independent PPPs of given densities, and the
tagged users located at the center. To have an estimate of the outage probability
at the tagged users, the simulation results are averaged over both the spatial PPP
(500 different positions) and fading distribution (300 realizations), and are
conducted using the parameters mentioned in the figures’ captions. Analytical
curves are compared with the simulations under both perfect and imperfect
sensing. It is observed that the simulation results closely match our analytical
model and the curves of analytical and simulation results match fairly well, which
confirms our analysis. The plots exhibit slight discrepancies between analytical
results and the corresponding simulation results which are mainly due to the

independence assumption used in Section 3.3.
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Fig. 3.4. Outage probability of the tagged femto user (or any randomly chosen femto user) under
perfect and imperfect sensing scenarios. The system parameters are set as Pr = 22 dBm,
Py=42dBm, a =4, ppp =08, p, =07, u=02, u, =1, K=1, A)y =12, Az =800 and
Ar = 700.
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Fig. 3.5. Outage probability of the tagged macro user (or any randomly chosen macro user) under
perfect and imperfect sensing scenarios for the CR femto-BSs. The system parameters are set as
Pr =22dBm, Py =42dBm, a =4, ppg =08, pr,, =07, u=02, u, =1, K=1, 4 =700,
Ay = 12 and A, = 50.

In Fig. 3.6, the outage probability of the tagged femto user under perfect
and imperfect spectrum sensing abilities for the CR femto-BSs is shown for
different values of the target SINR 6 on the horizontal axis. Our results show
that the outage probability at the tagged femto receiver in the absence of a
perfect spectrum sensing ability is considerably increased. In either the Scenario I,
when all the femto-BSs employ perfect sensing to sense the RBs, or in Scenario 11,
Case 1, the tagged femto user does not experience any interference from the
macro-BSs owing to the correct detection at the tagged femto-BS or choice of idle
RBs for data transmission (RBs not occupied by the macro network). In this case,
the interference seen by the tagged femto user is only the aggregate interference
from the other femto-BSs which are transmitting on the same idle RB as the
tagged femto. Clearly, the lowest outage probability is achieved for this case (see
the red curve). Now, let’s consider the imperfect sensing scenario for the CR
femto-BSs. Obviously, the tagged femto user is now subject to sensing error and
therefore picking an occupied RB for its data transmission period. Under this
condition, it may receive interference not only from the other femto-BSs which

pick the same busy RB (due to the imperfect sensing) as the tagged femto, but
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also from those macro-BSs communicating with their own users on the same RB
as the tagged femto. Therefore, the tagged femto user experiences an interference
larger than before, and consequently a significant increase in the outage
probability. Moreover, the tagged femto user will face an outage with a higher
probability whenever it picks an RB (occupied RB) already used by a larger
number of macro users (a larger 1)) (see Fig. 3.6).

Fig. 3.7 depicts the outage probability of the tagged macro user for different
values of the target SINR y and different situations. Considering the results
obtained in Fig. 3.6, here, we also investigate the effect of employing the two
different sensing scenarios for the CR femto-BSs on the outage probability of the
tagged macro user. In the case of perfect sensing, the tagged macro user does not
experience any interference from the femto-BSs because only those RBs sensed to
be idle (RBs not occupied by the macro network) are always chosen for data

transmission by the femto network.
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Fig. 3.6. Outage probability of the tagged femto user with different values of A. Outage
probability of the tagged femto user (or any randomly chosen femto user) under perfect and
imperfect sensing scenarios with different values of Aj,. The system parameters are set as
Pr =22dBm, Py =42dBm, a =4, ppg = 0.8, p, = 0.7, u =02, u, =1, K =1, Ay =800 and
7 =700.
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In this case, the interference observed at the tagged macro user is only the
aggregate interference received from those macro-BSs transmitting on the same
RB as the tagged macro. Clearly, the lowest outage probability is obtained for
this case (see the red curve). Now, the case of imperfect sensing of the CR femto-
BS nodes is considered when the femto-BSs are subject to sensing error and
therefore the possibility of transmitting on the RB occupied by the tagged macro.
Under this condition, the tagged macro user may receive interference not only
from the other macro-BSs communicating with their own users over the same RB
(due to the lack of RBs) as the tagged macro, but also from those femto-BSs
which pick the same RB. Therefore, the tagged macro user experiences an
interference larger than before and consequently a significant increase in the
outage probability. Moreover, the tagged macro user will face an outage with a
higher probability whenever its own RB is wrongly selected for data transmission

by a larger number of femto-BSs (a larger A).
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Fig. 3.7. Outage probability of the tagged macro user with different values of Ar. Outage
probability of the tagged macro user (or any randomly chosen macro user) under perfect and
imperfect sensing scenarios for the CR femto-BSs with different values of Ar. The system
parameters are set as Pr = 22dBm, Py =42dBm, a =4, pgg = 0.8, p;, = 0.7, u =02, p, = 1,
K =1, Ay =12 and Ay = 50.
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Fig. 3.8 illustrates the effect of K (in D = Kry; ) on the observed outage
probability at the tagged macro user in the presence of both the macro and femto
networks. Considering the previous explanations and Fig. 3.3, let ®f include all
the points (representing the femto-BSs) in ®p except the points inside the
exclusion region D of the tagged macro user. Since ®p c @, the potential
aggregate interference at the tagged macro user, caused by the active (considering
slotted ALOHA) CR femto-BSs is less than that in the case with no D.
Furthermore, as the exclusion region D becomes larger (when K =10, for
example), the probability of outage is significantly reduced. Indeed, the bigger the
value of D, the closer the outage probability curve becomes to the black curve
which represents the outage probability in the case when no overall interference
from the femto network is observed at the tagged macro user due to the perfect
sensing ability of the CR femto-BSs. However, the reduction in the outage

probability can be less when the number of macro-BSs transmitting on the same

RB as the tagged macro is larger (see Fig. 3.8 (b)).
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Fig. 3.8. Effect of D (the defined exclusion region around the tagged macro user) on outage

probability of the tagged macro user in the presence of both the macro and femto-BSs. The
system parameters are set as Pp = 22dBm, Py, = 42dBm, a = 4, ppg = 0.8, pr,, = 0.7, £ = 0.2,
Uy =1, Ay = 50, Ay, = 12 (in (a)) and A}, = 25 (in (b)).

For a commercial network, designers must find a way to achieve a lower
probability of outage for a certain SINR as the minimum quality needed for a
typical femto or macro user to experience an acceptable QoS. A common way to
decrease the outage probability is to reduce the number of interfering BSs
encountered at the users. This can be done through applying both the (a) and (b)
conditions in the perfect sensing scenario (or both the (¢) and (d) in the imperfect
sensing scenario). As shown in Fig. 3.9, under these constraints the outage
probability is significantly reduced at the tagged femto user (note that the
number of interfering macro-BSs at the tagged femto user is considered equal for
all curves in the figure). The goal is to see the effect of both pgp and pg, (these
two parameters are employed at each CR femto-BS) on the outage probability of
the tagged femto user. As can be seen, for the case when ppg =1 and pg, = 1,
outage occurs with higher probability. In other words, when all the existing
femto-BSs (except those who are inside the macro users’ exclusion regions) pick
the same RB as the tagged femto (pgrg = 1) and when they all have data to
transmit in the current time slot (pg, = 1), the tagged femto user will experience
the maximum value for the outage probability derived for different SINR targets.

Clearly, a significant reduction in the outage probability is occurred for the
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smaller values of prg and pg, (see Fig. 3.9) (the smaller the values of prp and pyy,
the closer the outage probability becomes to the outage probability in the case
when the received interference at the tagged femto user is only the aggregate
interference from the macro network). Indeed, this validates that many studies
which do mnot consider these constraints over-estimate the interference

encountered by a typical femto user.
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Fig. 3.9. Effect of pgp and py, on outage probability of the tagged femto user. Effect of prg and
Pex (the defined parameters for the CR femto-BSs) on outage probability of the tagged femto user
in the presence of both the macro and femto-BSs. The system parameters are set as Pr = 22 dBm,
Py =42dBm,a =4, u=02,u, =1, K =1, Ar =800, Az = 700 and 1) = 12.

It can be seen that even for high values of p:, the outage probability is
relatively less than that in the case where there is no constraint on the femto-BS’s
transmission schedule (pg =1). Also, it is obvious that in the presence of
multiple RBs where each RB is picked with probability pgp, the outage
probability is further decreased. Hence, any practical HetNet designed to satisfy
both of the mentioned conditions can reap the benefit of opportunistic
exploitation of spectrum, while possibly causing little or no harmful interference.
The same story exists when the outage probability of the tagged macro user is

investigated. Fig. 3.10 shows the effect of prg and p;, (parameters which are
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related to the CR femto-BSs) on the outage probability of the tagged macro user.
For instance, when all the active femto-BSs select the same RB as the tagged
macro (pgg = 1) and when they all have data to transmit (on this busy RB) in
the current time slot (pg = 1), the tagged macro user will experience the
maximum value for the outage probability. It should be noted that the number of
interfering macro-BSs at the tagged macro is considered equal for all curves in

this figure.
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Fig. 3.10. Effect of pgg and p;, on outage probability of the tagged macro user. Effect of pgg and
Pex (the defined parameters for the CR femto-BSs) on outage probability of the tagged macro user
in the presence of both the macro and femto-BSs. The system parameters are set as Pr = 22 dBm,
Py =42dBm,a=4,u=02,pu,=1K=1, 2 =700, Ay = 50 and Ay = 12.

In Figs. 3.11 and 3.12, we analyze the performance of the authorized links
(femto links) in terms of throughput (achievable with a simple ARQ scheme with
error-free feedback) under both the perfect and imperfect sensing scenarios.
Considering the slotted ALOHA scheme, we define the following terms [107], [108],

Probabilistic link throughput (t) of a femto user:
(i) in the half-duplex (HD) communication scenario: it is defined to be the
success probability of a femto user (i.e., 1 —por) multiplied by the

probability that the corresponding femto-BS actually transmits over a
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specific RB (i.e., prpPsx), and the probability that the femto receiver
actually receives over that RB (i.e., 1 — prpDex)

(ii))  in the full-duplex (FD) communication scenario: it is defined to be the
success probability of a femto user (i.e., 1 —pyr) multiplied by the
probability that the corresponding femto-BS actually transmits over a

specific RB (i.e., PrpPex)-

Femto link throughput (T):
The femto link throughput is defined as the product of the probabilistic link
throughput (7) and the rate of transmission, i.e., T = tlog(1 + ). Therefore, the

femto link throughput for the half and full duplex cases is written as follows

T¢) = p(1 - p)(1 = por) log(1 + 6)
TUWD = p(1 —pyr)log(l + 6) (3.56)

in which p = prpDix-

In Fig. 3.11, the performance of half and full duplex systems are presented for
the femto users. More specifically, the link throughput of any typical femto user
(e.g. the link between the tagged femto user and its corresponding femto-BS)
under perfect and imperfect spectrum sensing abilities for the CR femto-BSs is
shown as a function of the transmission probability over a specific RB (i.e.,
P = PrePex)- 1t can be seen that the throughput achieved by the FD system is
significantly higher, particularly when p is high. Regarding the performance of the
HD system, for both the perfect and imperfect sensing cases, there is a unique
optimal p which achieves the maximum throughput (p = 0.3 for the perfect and
p = 0.35 for the imperfect sensing scenario). However, for high p, both
throughput curves converge to zero due to over many transmissions and
interferences on the RB. Obviously, for both the half and full duplex
communications, a higher per-link throughput is achieved when the CR femto-
BSs employ perfect sensing.

In Fig. 3.12, the performance of half and full duplex systems are presented for
femto users. More specifically, the link throughput of any typical femto user (e.g.
the link between the tagged femto user and its corresponding femto-BS) under

perfect and imperfect spectrum sensing abilities for the CR femto-BSs is shown as
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a function of the target SINR 6. It can be seen that the per-link throughput
achieved by the FD system, for both the perfect and imperfect sensing scenarios,
is significantly higher than the HD one. As it is seen, the link throughput curves
are concave and there is an optimal point in each curve. With a high target SINR,
we can transmit the user data with high spectral efficiency; however, the outage
probability of this transmission is high, too. In contrast, with a low target SINR,
we can send many packets that include little information. In other words, a high
reliable transmission can be experienced at low target SINRs, while the minimum

requirements for the transmission rate cannot be met.
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Fig. 3.11. The femto link throughput of half and full duplex systems as a function of the

transmission probability. The femto link throughput of half and full duplex systems under perfect

and imperfect sensing scenarios as a function of the transmission probability over a specific RB
(p). The system parameters are set as Pp = 22 dBm, Py, =42dBm, a =4, u=0.2, u, =1, K =1,
w =12, Az = 800 and Az = 700, and 8 = 11dB.
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Fig. 3.12. The femto link throughput of half and full duplex systems as a function of the target
SINR. The femto link throughput of half and full duplex systems under perfect and imperfect
sensing scenarios as a function of the target SINR. The system parameters are set as Pr = 22 dBm,
Py =42dBm, a =4, u=02, u, =1, K =1, )y =12, A =800 and Ay = 700, and for each

curve the optimal value of p obtained in Fig. 3.11 is applied.

3.6 Conclusion

In this Chapter, utilizing the spatial PPP theory, we presented a tractable
model to derive the outage probability of a typical femto and macro user in a
two-tier HetNet which provides insight into system design guidelines. In other
words, for the case of the node locations modeled by a PPP and the desired and
interfering channels are subject to Rayleigh fading, we demonstrated the use of
the CR based framework to evaluate the outage probability at any arbitrary user.
Exact closed-form expressions were obtained as a result. In addition, we observed
that in the downlink analysis, the outage probability is a function of the network
topology and several important system design parameters such as SINR target,
exclusion regions, MAC mechanisms such as ALOHA (p;), and the RB selection

constraint (pgp) which is controlled by the spectrum sensing measurements.
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Chapter 4

Analytical Modelling of Cognitive
Heterogeneous Cellular Networks over

Nakagami-m Fading

4.1 Introduction

The problems in Chapters 3 and 4 are tightly related, they both deal with
interference modeling and avoidance in HetNets by presenting a CR based
statistical framework for a two-tier heterogeneous cellular network on the basis of
the stochastic geometry, and the goal is to find a closed-form expression for the
outage probability (as an important performance metric for wireless networks) of
any typical user in the network. The main difference in both scenarios is that
unlike Chapter 3 that uses the Rayleigh assumptions on the channel links to relax
the difficulty of addressing a closed-form expression for the outage probability, in
Chapter 4, novel closed-form expressions are derived for the outage probability
over general Nakagami-m fading channels. Thus, in an effort to generalize all
previously mentioned analysis in Chapter 3, in this chapter, we extend the
proposed model by characterizing the fading for all the communication links
(desired and interference links) as Nakagami-m fading. Nakagami-m distribution
has gained a lot of attention. It is a very versatile fading model, which by varying

the values of the fading parameter “m”; it can be modeled as either as Rayleigh

model or Rician model. In other words, it is able to model a wider class of fading
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channel conditions and fit well the empirical data in a more convenient way.
Obviously, a closed-form expression for the outage probability under this fading
model will be more and more difficult to obtain.

The main contributions of this chapter are therefore the following: (i) Similarly,
we analyze the Laplace transforms of all four types of aggregate interference
between macro and CR femto networks (including the interference between macro
nodes among themselves and femto nodes among themselves, the cross-
interference from femto to macro network and vice versa) in perfect and imperfect
spectrum sensing CR based femto networks, considering simultaneously the
Nakagami fading, the PPP model, and some important design factors which play
vital roles in determination and mitigation of outage and interference. (ii) As in
the previous chapter, this chapter also provides an insight into the role of CR in
interference mitigation in OFDMA two-tier HetNets. (iii) Tight closed-form
expressions are derived for the outage probability of any typical femto and macro
user considering the Nakagami fading (as mentioned, Rayleigh fading assumption
is used in many studies to relax the difficulty of addressing a closed-form
expression for the outage probability (see, e.g., [39] and [40])) for all the
communication links (desired and interference links) with the possibility of using
the CR ability for the femto network.

To the best of our knowledge, no closed-form expressions for the outage
probability of the femto and macro users exist in the current literature without
imposing the Rayleigh fading assumption. On the other hand, most of the
available studies in this area are based on the existence of only one macro-BS
(along with the macro users and the femto network) and the effect of considering

multiple macro-BSs is ignored in the analysis of outage probability.

4.2 System Model

As mentioned earlier, the contributions of this chapter are constructed based
on the same model description and structure argued in Chapter 3. In an effort to
generalize all previously mentioned analysis in Chapter 3, in this chapter, we
extend the previously proposed model by characterizing the fading for all the

communication links as Nakagami-m fading. Next section gives a complete
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explanation of the detailed procedure. We refer the reader to the previous chapter

where the details of the system model are given.

4.3 Stochastic Geometry Based Network Configuration

4.3.1 Femto Outage Probability

In this subsection, similarly, we derive the probability of outage for a typical
femto user (por). For that, we need to remember the definition of the outage
probability (see (3.1)) and expression given for the experienced SINR by a typical
femto user (see (3.2)) in the previous chapter. When the fading distribution is
Nakagami-mg r for the communication channel between the tagged femto user
and its corresponding femto-BS, the pdf of the power fading coefficient x = hg is

as follows

my Fmd,p ) _‘”;d,Fx
. (x)MaF~te “ar (4.1)
d,Fmd'F F(mgr)

p(x) = 0

where mgy  describes the severity of the fading for the desired link, and £, is
the average SNR. By changing myr, we can get a variety of fading conditions.
For example, if myr = 1, then the desired link suffers from Rayleigh fading, and
mgp = o means that there is no fading. Note that we will represent the
Nakagami fading parameters for each communication link, separately (see Fig. 3.3.
(b)). Even though the fading power gain distributions are identical, we will still
use different symbols to distinguish all the existing links for the sake of analytical

convenience.

Here, we derive the complementary CDF (CCDF) of SINR as follows

Pohprr™¢
FNETE >9]

P[SINR > 0 =P[
[ ] 62 + Ipg + Iyp

=P [hF > (6% + Ipp + Iyp) 6;1;“]
6 a
= E, P[hF > (1) =F ]] (4.2)
Pp
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Considering the pdf of the power fading coefficient hy and the incomplete

Gamma function (Note that I'(a,x) = fxoo t*le~tdt indicates the incomplete

Gamma function), we have

p(x) dx

P|he i
B D

[ mar 075" |
—Mg p"eF (—1)MaF" 1|Flmdp' ”df( PF (D)h
(—mar)" " [ [(mar) J

(4.3)

where I = 62 + Irg + Iyp.

We know that [W(L;:L)y e~my ym- 1T -V y* (mis a positive integer). Therefore,
a
P [hF > (I - is simplified as follows
F
[ mar—1 (md,p Org > ]
m orp®
|e_ns'§( PI; )I z QqF Pr Ikl
I k! I
| J

From the above expression and (4.2) we have

k
mgr—1 (md‘FGrp“>

cof _MmaF(0rp®
P[SINR > 9] = J e -Qd,F( Pp )I § 04 FPF
0

o 1% £, () di. (4.4)
k=0

Finally, the CCDF of SINR when the fading distribution is Nakagami-mg r for
the communication channel between the tagged femto user and its corresponding

femto-BS is given by

mqgr—1

k k
P[SINR > 6] = Z (S) (-1 e L) (4.5)

dsk
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mgq pOrp®
where I = 6% + Ipg + Iyyp and s = 22—
24q,rPF

Proot: See Appendix B.1.

Note that due to the assumption of independent PPPs for the femto and macro
networks, the aggregate interference received from the femto-BSs is independent
of the aggregate interference received from the macro-BSs [41], therefore, we can

write

L;(s) = F(s) = E[e™]
— E[e‘S(GZHFB“MB)]
= E[e‘S’FB]E[e‘S’MB]E[e‘S‘"’Z]

= Ly () L1, (s)e ™ (4.6)

where L;..(s) and £, _(s) are the Laplace transform of random variables Ipg and

Iyp evaluated at s (s = ng‘F—H;F‘Z), respectively. Therefore, (4.5) can be rewritten
d,FCF
as follows
mgr-1 2
s)k d*(L;.. (s)L;, . (s)e e
P[SINR > 0] = () (=1)k (L1pg () Lipp ()€™ ) . 4.7)

k! dsk

k=0

4.3.1.1 Computation of £, _(s) and £, _(s) at the Tagged Femto

User

We now calculate the closed-form expressions for £, (s) and £;, . (s) (at

_ md,perp"‘)

) Based on the information given in the previous chapter (Section
dFFF

3.3.1), the Laplace transform of the aggregate interference (from all the active

femto-BSs except the tagged femto-BS) is given as follows

d
d mgr,\a
TFdbdPRBptx/'lfr—;deRBPtx/ﬁ:(mG) rr?M(0,) (4.8)

LIFB (S) Szmd'FGrF“ =e€
2q,FPF
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where

_ a d Mmar d
M6, a) = E [(g)a <r (‘E' oy 9g> _r (— E))] (4.9)

Similar with the desired link, we consider the Nakagami power fading model
for the femto interfering links as well (Nakagami fading links with equal
parameters m;r and ;). Then following the derivations in Appendix B.2,

M(0, @) is expressed as

M@0, a) =

F(me+ k)| (4.10)

d

_r(_ﬂ)mIsz,p(md.Fe)_E (md,FB)k( 21,r2q,F )m"F+k

a 24 F ye 2qF mF2q,F+21Fmg,ro
021 ™ET(my F) k=0 F(k+1—%)

Using the similar approach, the Laplace transform of the aggregate interference
generated by the macro-BSs at the tagged femto user is obtained and expressed

as follows

ma,F

N T “ 4
—baApT(1-5) P erE[(G)a]

(4.11)

LIMB(S)lszmd,FGTF“ =e
QaqF PF

Same as the desired link, we consider the Nakagami power fading model for the

macro interfering links as well (Nakagami fading links with equal parameters m; y
d
and ;). Below, E [(G)E] is obtained using the definition of expectation and the

standard Gamma function

d
. [(G)g] _ 1 Dy & "M r (E +m ) (4.12)
QI’MmI,M m F(mI,M) p M- .
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4.3.1.2 Closed-Form Femto Outage Probability Expression

Finally, from the outage probability definition (see (3.1), (4.7), (4.8), and
(4.11)) and by replacing z = 1%, the closed-form expression for the outage

probability of the tagged femto user is obtained as follows

P[SINR>0]
& @r, L (ep()
z d*(exp(l(z
—1_ M 1k
por =1 o -1 1 (4.13)
k=0
where
d m, 062
A Q_L
exp(1(2)) = M 2P and z = 1% (4.14)

and A is given by (4.15).

Note: mgy p is constrained to take integer values only, while m;r and m;, can
take any value (bigger than 0.5). The restriction on myp is because of mgyp — 1,
as an upper limit for the summation in (4.13). However, for non-integer my , by
using the infinite series representation of incomplete gamma function, we also
obtain an exact but infinite summation expression for the outage probability of

the tagged femto user as in Appendix B.3.

The probability of outage averaged over the plane is derived as

Por = 1 — E,.[P[SINR > 6]]

oo

m;=1—f [P[SINR > 6]]f, (1) drz (4.16)
0

where f. (1) = e AFTTF? 2mAgry is the pdf of r.
Here, for example, we present the pgor in closed-form expressions for three

different values of my p:

mep=1a=4 Por =1+ (4.17)
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=p A +—b A Z dF mIF dF+-QIFmdF T Tk
dPrBPtx/AF T DaPRBPtx/\F 0 FmIFF(mIF) |[ - k+ 1 —;) (myp )Jl

ISYESY

dy (P 7!’2‘:5 0 1 Q1 m g+mI'M my "M d
—b; A, F(l ——) : . _— F( + ) 4.15
a’‘*mM a PF QI,MmI'M (mI,M> (F(m, M) > mpm ( )

Az
Sk ke sk sk sk sk sk skosk sk skesk sk skosk sk skosk sk sk sk skosk skeskosk skskosk skeskosk skeskosk skosk sk sk skeoskosk skeskoskoskeskosk skeskosk skeskoske skok sk skosk sk skokeosk skok skoskosk sk

ApT[(A-Apm)+5T(2,0)]
(A-Apm)?

md,F = 2,a = 4. Por = 1 + (4‘18)

myp=3,a=4:
AR[(A = Apm)® + 22 0(2,0)(A — Aem)* +2-T(3,0) (A — Apm)?]

Por =1+ AT .(4.19)

It should be noted that in all the above expressions (A — Azm) < 0, and 6% - 0
(operating in an interference-limited regime). For myr = 4, obtaining por is also
quite easy due to the fact that exp(l(z)) is a factor common to every term of the

all derivatives of exp(l(z)).

4.3.2 Macro Outage Probability

We now derive the outage probability for a typical macro user (pgy) defined as
the probability that a randomly chosen macro user cannot achieve a target SINR
y. When the fading distribution is Nakagami-mg p, for the communication channel
between the tagged macro user and its corresponding macro-BS, the pdf of the

power fading coefficient y = hy is as follows

m mg,mY
md M d,M _

— ’ Mam—1le Lam 4.2
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where mg y (a positive integer) is the fading parameter for the desired link, and
N4y is the average SNR. Next, the similar approach to obtain the outage
probability of the tagged femto user is used for the outage probability calculation
of the tagged macro user. Therefore, from the expressions given for the outage
probability (see (3.24)) and SINR (see (3.25)) we have

mgam—

' k k —s62
P[SINR > y] = (s) x4 (‘CIFB (8)Lyy,5(s)e )

T D sk

(4.21)
k=0

where £;_(s) and L, .(s) are the Laplace transform of random variables Igg and

Mg m )’TM“)

, respectively. We now calculate the closed-form
Nam Pum

Iyp evaluated at s (s =

Mg m YTM“)

expressions for L .(s) and £L;, .(s) (at s = o
d,M M

4.3.2.1 Computation of £;, _(s) and £, (s) at the Tagged Macro

User

Taking a similar approach to what we had before, £;, (s) is obtained as
follows

d
d mgm_ \a
TMdbdMVI—gbdl;vr(nd—W/) MV (y,@)

(4.22)

LIMB(S)ls=md,MYrMa =e
Qam Pm

in which V(y,a) = E [(gp)g (F (—%,j:—:ﬂ’:ygp) -T (— %))l

The Nakagami power fading model is also considered for the interference links
(Nakagami fading links with equal parameters m;y and ;). The derivation of
V(y,a) is similar to the derivation of M(6,a) in Appendix B.2. Therefore,

V(y, a) is expressed as follows

-T (— —) 1My 4y M ( . y)_ [ e (my)k (M)m’“”‘ 1
V(]/ a) _ a LM Qqm |Z Qq,m mym2am+2MmMamyY F(m 4 k) | (4 23)
T 1M . .
.Q]’MmI.MF(mI,M) lkzo r (k +1-— g) J
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Based on the same approach as described before, £, (s) is also given by

Q

d.. d ;_d /md,MPFV)E d
KErm bapRrBPEX AR adeRBPmﬂF(ﬁgzja; ryM“T(y,a)

Lip(s) =e (4.24)

d m—M)/PFG
in which T(y,@) = E|(Gp)a| T (—1,”‘”4—” -r(-%)

The Nakagami power fading model is also applied to the interference links
(Nakagami fading links with equal parameters m;p and 2;p ). The
mathematical derivation of T(y,a) is quite similar to the derivation of M(8, a)

and V(y, a) (see Appendix B.2). Hence, T(y, a) is expressed as follows

k
M
M, p my ptk
Qam”F KEPy2g M2LF LF
KaPy mypQqMKEPp+mg p 2 FPFY
ZOO
k=0

r(k+1-2)

[l

(-4 mpp(__MdM _\"
F( a)m"F “\ag kP!

2, MFT(my F)

T(y,a) = T(my e +k)|. (4.25)

I I
| |

4.3.2.2 Closed-Form Macro Outage Probability Expression

Finally, from the outage probability definition (see (3.24), (4.21), (4.22), and
(4.24)) and by replacing z = ry®, the closed-form expression for the outage

probability of the tagged macro user is obtained as follows

@ o)
. z)* L a"(expll(z
Pou = 1 (D (426)
k=0
where
d m 2
Blza— dMYyse
exp(1(2)) = e[ e BamPn” and z = ry“ (4.27)

and B is given by (4.28).
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The probability of outage averaged over the plane can also be derived as
Pom = 1 —E,,[P[SINR > y]]
(o]
Do = 1— f [P[SINR > y1]. f;.,, (ras) dry (4.29)
0

where f,. (ry) = e"AM”rMZZHAMTM is the pdf of ;. Such as before, poy can be
M

easily obtained for different integer values of mg y.

4.3.3 Outage Probability Formulation under Perfect and

Imperfect Sensing

We now study the effect of both the ideal detection, i.e., Py =1 and Pr =0,
and the cases involving imperfect sensing, i.e., Py # 1 and Pr # 0 on the outage

probabilities of femto and macro users.

Scenario 1
Ideal detection (Pg = 1 and Py = 0):

(femto and macro outage probabilities)

Each secondary node (femto-BS) has perfect knowledge of each primary
(macro-BS) signaling. In other words, sensing at each femto-BS is done perfectly.
Therefore, RBs occupied by the macro network are not chosen by any femo-BS
for data transmission. In this case, the tagged femto user does not experience any

interference from the macro-BSs. This assumption (P; =1 and P, =0) is
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reasonable in the scenarios where interference from other systems is assumed to
be negligible.

Therefore, under this assumption, E[e™*'™8] =1 and £;, .(s) =1 (in (4.6)),
consequently. Then for the outage probability of the tagged femto user in (4.13),
A is only equal to A; (see (4.15)). It should be noted that the calculation of ppp
for this case was presented in the previous chapter: Section 3.4, Scenario I, Case 1.

Clearly, under this scenario, and considering the above explanations, the
tagged macro user does not experience any interference from the surrounding
femto-BSs. Therefore, for the outage probability of the tagged macro user in
(4.26), B is only equal to B, (see (4.28)).

Scenario I1
Imperfect detection (Py # 1 and Pf # 0):

(femto and macro outage probabilities)

In this scenario, each secondary node (femto-BS) has imperfect knowledge of
each primary (macro-BS) signaling. In other words, sensing at each femto-BS is
done imperfectly and subject to (occasional) error. Therefore, RBs occupied by
the macro network may be wrongly chosen by the femo-BSs, as well. Two cases

can take place under the imperfect sensing scenario:

Case 1. The tagged femto-BS transmits data on an idle RB (in this case, the
outage probability formulations (for both the tagged femto and macro
users) are the same as in the perfect sensing scenario except for the

calculation of prp (see Chapter 3: Section 3.4, Scenario II, Case 1))

Case 2. The tagged femto-BS transmits on an occupied RB (in this case, the
outage probability formulations for both the tagged femto and macro
users are explained as follows and the calculation of pgp was presented in

the previous chapter: Section 3.4, Scenario II, Case 2)
In Case 2, the tagged femto user can experience interference from both the

active femto-BSs (which pick the same occupied RB as the tagged femto-BS) and
macro-BSs. Then for the outage probability of the tagged femto user in (4.13), A

107



is equal to A; + A, (see (4.15)). Clearly, under this scenario, and in Case 2, the
tagged macro user can experience interference on its RB, from both the femto-BSs
and macro-BSs. Indeed, for the outage probability of the tagged macro user in

(4.26), B is equal to By + B,.

4.4 Simulation Results and Discussions

Before we present the obtained results, we should note that the discussions
regarding the outage probability, spatial distribution of the BSs and the macro
exclusion regions in the previous chapter apply here as well.

First, the accuracy of our analytical results for the downlink analysis in the
proposed model is validated by simulations, as shown in Figs. 4.1 and 4.2. As
before, the simulations which are built on Matlab platform are carried out to plot
the curves of outage probability versus the SINR threshold for the tagged femto
and macro user, as shown in Figs. 4.1 and 4.2, respectively. The considered
scenario is a two-tier network (exactly following the network model described in
the previous chapter) over an approximately 1 X 1 km square with the locations
of different classes of BSs as realizations of independent PPPs of given densities,
and the tagged users located at the center. To have an estimate of the outage
probability at the tagged users, the simulation results are averaged over both the
spatial PPP (500 different positions) and fading distribution (300 realizations),
and are conducted using the parameters mentioned in the figures’ captions (note
that the parameters applied here are slightly different from those seen in the
previous chapter). In the same way as in Chapter 3, the analytical curves are
compared with the simulations under both perfect and imperfect sensing. It is
observed that the simulation results again closely match our analytical model and
the curves of analytical and simulation results match fairly well, which confirms
our analysis in this chapter as well. The plots exhibit slight discrepancies between
analytical results and the corresponding simulation results which are mainly due

to the boundary effect and the independence assumption discussed in Section 4.3.

108



—»— Scenario | (A = A,) (simulation)

09y —B— Scenario | (A= A,) (analysis)

0.8 —¢— Scenario Il (A= A1+A2} (simulation)

o7l —o&— Scenario Il (A = A +A,) (analysis)

0.6

0.5

0.4

Outage Frobability

0.3

SINR Threshold &(dB)

Fig. 4.1. Outage probability of the tagged femto user (or any randomly chosen femto user) under
perfect and imperfect sensing scenarios. The system parameters are set as Pp = 23 dBm,
Py =43dBm, a =4, myp=myp=myy =1, pgg =08, p;, = 0.7, K=1, A}, =10, A = 800
and Ay = 700.

—u#— Scenario | (B = B1} (simulation)

031 —&— Scenario | (B = B,) (analysis) 1

0.8H —— Scenario Il (B = B1+BZ} (simulation) 3

o7l —— Scenario Il (B = B1+BZ} (analysis) _]
=

Z 06F B
]
E

& 05r B
@
T

=< 04r B
Lo

0.3r B

02r B

01r- B

1 1 1 Il 1
-15 -10 -5 0 5 10 15

SINR Threshald 7(dB)

Fig. 4.2. Outage probability of the tagged macro user (or any randomly chosen macro user) under

perfect and imperfect sensing scenarios for the CR femto-BSs. The system parameters are set as

Pp=23dBm, Py=43dBm, a=4, mgy=myy=myp=1, ppg =08, p,, =07, K=1,
7 =700, Ay =10 and A, = 50.

In Fig. 4.3, the outage probability of the tagged femto user under perfect
and imperfect spectrum sensing abilities for the CR femto-BSs is shown for
different values of the target SINR 6 on the horizontal axis. The results show

that the outage probability at the tagged femto receiver in the absence of a
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perfect spectrum sensing ability is considerably increased. In either the Scenario I,
when all the femto-BSs employ perfect sensing to sense the RBs, or in Scenario II,
Case 1, the tagged femto user does not experience any interference from the
macro-BSs owing to the correct detection at the tagged femto-BS or choice of idle
RBs for data transmission. In this case, the interference seen by the tagged femto
user is only the aggregate interference from the other femto-BSs which are
transmitting on the same idle RB as the tagged femto. Clearly, the lowest outage
probability is for the case of perfect sensing (A = A; in (4.15)). Now, let’s consider
the imperfect sensing scenario for the CR femto-BSs. Obviously, the tagged femto
user is now subject to sensing error and therefore picking an occupied RB for its
data transmission period. Under this condition, it may receive interference not
only from the other femto-BSs which pick the same busy RB (due to the
imperfect sensing), but also from those macro-BSs communicating with their own
users on the same RB as the tagged femto. Therefore, the tagged femto user
experiences an interference larger than before, and consequently a significant
increase in the outage probability. Moreover, the tagged femto user will face an
outage with a higher probability whenever it picks an RB (occupied RB) already

used by a larger number of macro users (a larger 4),) (see Fig. 4.3).
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Fig. 4.3. Outage probability of the tagged femto user with different values of Aj,. Outage
probability of the tagged femto user (or any randomly chosen femto user) under perfect and
imperfect sensing scenarios with different values of Ay,. The system parameters are set as
Pr=23dBm, Py=43dBm, a=4, myp=myp=my=1, ppp =08, p, =07, K=1,
Ar = 800 and Az = 700.
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Fig. 4.4. Outage probability of the tagged macro user with different values of 1. Outage
probability of the tagged macro user (or any randomly chosen macro user) under perfect and
imperfect sensing scenarios for the CR femto-BSs with different values of Ap. The system
parameters are set as Pp = 23dBm, Py =43dBm, a =4, mgy =myy =myp =1, prg = 0.8,
Pex = 0.7, K=1, 2}, = 10 and Ay, = 50.

Fig. 4.4 depicts the outage probability of the tagged macro user for different
values of the target SINR y and different situations. Considering the results
obtained in Fig. 4.3, here, we also investigate the effect of employing the two
different sensing scenarios for the CR femto-BSs on the outage probability of the
tagged macro user. In the case of perfect sensing, the tagged macro user does not
experience any interference from the femto-BSs because only those RBs sensed to
be idle (RBs not occupied by the macro network) are always chosen for data
transmission by the femto network. In this case, the interference observed at the
tagged macro user is only the aggregate interference received from those macro-
BSs transmitting on the same RB as the tagged macro. Clearly, the lowest outage
probability is obtained for this case (B = B, in (4.28)). Now, the case of imperfect
spectrum sensing of the CR femto-BS nodes is considered, when the femto-BSs
are subject to sensing error and therefore the possibility of transmitting on the
RB occupied by the tagged macro. Under this condition, the tagged macro user
may receive interference not only from the other macro-BSs communicating with
their own users over the same RB (due to the lack of RBs) as the tagged macro,
but also from those femto-BSs which pick the same RB. Therefore, the tagged

macro user experiences an interference larger than before and consequently a
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significant increase in the outage probability. Moreover, the tagged macro user
will face an outage with a higher probability whenever its own RB is wrongly
selected for data transmission by a larger number of femto-BSs (a larger Ay).

Fig. 4.5 illustrates the effect of K (in D =Kry ) on the observed outage
probability at the tagged macro user in the presence of both the macro and femto
networks. Considering the previous explanations in Chapter 3, and since
@, c dp, the potential aggregate interference at the tagged macro user, caused
by the active (considering slotted ALOHA) CR femto-BSs is less than that in the

case with no D.
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Fig. 4.5. Effect of D (D = Kry, the defined exclusion region around the tagged macro user) on
outage probability of the tagged macro user in the presence of both the macro and femto-BSs. The
system parameters are set as Pr=23dBm, P, =43dBm, a=4, mgy=m;y=mr=1,

Pre = 0.8, prxy = 0.7, Ay = 50, A}y = 10 in (a) and Ay = 25 in (b).
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Furthermore, as the exclusion region D becomes larger, the probability of
outage is significantly reduced. Indeed, the bigger the value of D, the closer the
outage probability curve becomes to the black curve which represents the outage
probability in the case when no overall interference from the femto network is
observed at the tagged macro user due to the perfect sensing ability of the CR
femto-BSs. However, the reduction in the outage probability can be less when the
number of macro-BSs transmitting on the same RB as the tagged macro is larger
(see Fig. 4.5 (b)).

Same as before, to decrease the outage probability and experience an
acceptable QoS, we need to reduce the number of interfering BSs encountered at
the users. This can be done through applying the pgpg and p;, constraints. As
shown in Fig. 4.6, under these constraints the outage probability is significantly
reduced at the tagged femto user (note that the number of interfering macro-BSs
at the tagged femto user is considered equal for all the curves in the figure). The
goal is to see the effect of both prp and p;, on the outage probability of the
tagged femto user. As can be seen, for the case when pgrg = 1 and py, = 1, outage
occurs with higher probability. In other words, when all the existing femto-BSs
(except those who are inside the macro users’ exclusion regions) pick the same RB
as the tagged femto (prp = 1) and when they all have data to transmit in the
current time slot (pg, = 1), the tagged femto user will experience the maximum
value for the outage probability derived for different SINR targets. Clearly, a
significant reduction in the outage probability is occurred for the smaller values of
Prp and pgy (see Fig. 4.6) (the smaller the values of pgrp and py, the closer the
outage probability curve becomes to the black curve which represents the outage
probability in the case when the received interference at the tagged femto user is
only the aggregate interference from the macro network). It can be seen that even
for high values of pyy, the outage probability is relatively less than that in the
case where there is no constraint on the femto-BS’s transmission schedule
(pex = 1). Also, it is obvious that in the presence of multiple RBs where each RB
is picked with probability pgg, the outage probability is further decreased.

113



0.9 -
—a— =10, 0, =07 e

0.8 —&— Dgg=0.5. 0, =0.7

07 ——Ppz=02,p, =03
—e— pg=0.1,p, =0.1

0.6

——macro (A= A,)

05F

04

Outage Probability

03F

0.2F

01

SINR Threshold &(dB)

Fig. 4.6. Effect of pgg and p., on outage probability of the tagged femto user. Effect of pgp and
Pex (the defined parameters for the CR femto-BSs) on outage probability of the tagged femto user
in the presence of both the macro and femto-BSs. The system parameters are set as Pr = 23 dBm,

PM =43 dBl'n7 a = 4’7 md,F = m“: = mI,M = 17 K= 1, }\F = 8007 A’F =700 and A;w =10.

=
w

—— =10, p, =07

=
@

—&— prg=0.5, p, =0.7

—r—pp=0.2.p, =03

=
)

—e— pg~0.1,p, =0.1

=
@

—— macro (Scenario |, B = B,)

=
.
T

Outage Probability
o
o

=
[}
T

=
P
T

01F

SINR Threshold 7(dB)

Fig. 4.7. Effect of pgg and p;, on outage probability of the tagged macro user. Effect of prg and
Pex (the defined parameters for the CR femto-BSs) on outage probability of the tagged macro user
in the presence of both the macro and femto-BSs. The system parameters are set as Pr = 23 dBm,

PM =43 dBm, a=47 md’p =m1‘F =m1’M = 17 K= 1,AIF = 7007 }\M =50 and A, =10.

The same story exists when the outage probability of the tagged macro user is
investigated. Fig. 4.7 shows the effect of prp and p;, on the outage probability of
the tagged macro user. For instance, when all the active femto-BSs select the
same RB as the tagged macro (pgg = 1) and when they all have data to transmit

(on this busy RB) in the current time slot (pg, = 1), the tagged macro user will
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experience the maximum value for the outage probability. It should be noted that
the number of interfering macro-BSs at the tagged macro is considered equal for
all curves in this figure.

Fig. 4.8 plots the outage probability versus the SINR threshold 6 for the
tagged femto user. As mgp = m; increases, the outage probability of the tagged
femto user decreases. This is because as the fading becomes less severe (the bigger
the Nakagami-m parameter, the smaller fading) for both the desired and
interfering links of the femto network, the received power at the tagged femto
user from its corresponding femto-BS increases more compared to the total
received power from all the interfering femto-BSs. It should be noted that

_ 2aF Qg m Q1M

Qr1F .
= = — and = = —== (the scale parameters) are fixed for all the
ﬁF md,F mjpr BM md,M mpm ( p ) X

curves. The interference links between the interfering macro-BSs and the tagged
femto user are more likely to be severe in terms of fading compared to the femto
network’s desired and interfering links. In other words, the interfering signals
received at the tagged femto user originated by the macro-BSs suffer more serious
fading than the received signals from the femto-BSs, in particular when we talk
about indoor femto users. Similar arguments and statements can also be made

about the outage probability of the tagged macro user observed in Fig. 4.9.
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Fig. 4.8. Impact of Nakagami parameter of m on outage probability of the tagged femto user in
the presence of both the macro and femto-BSs. The system parameters are set as Pr = 23 dBm,
Py =43dBm, a = 4, prg = 0.8, p, = 0.7, K= 1, 1z =800, A = 700, Ay, = 50 and 1}, = 10.
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In Figs. 4.10 and 4.11, we analyze the performance of the authorized links (femto
links) in terms of throughput (achievable with a simple ARQ scheme with error-
free feedback) under both the perfect and imperfect sensing scenarios. The slotted
ALOHA scheme, and the definitions for the probabilistic link throughput () of a
femto user and the femto link throughput (T) apply here as well (see Chapter 3
for more details).

In Fig. 4.10, the performance of half and full duplex systems are presented for
the femto users. More specifically, the link throughput of any typical femto user
(e.g. the link between the tagged femto user and its corresponding femto-BS)
under perfect and imperfect spectrum sensing abilities for the CR femto-BSs is
shown as a function of the transmission probability over a specific RB (i.e.,
P = PrePex)- It can be seen that same as before the throughput achieved by the
FD system is significantly higher, particularly when p is high. Regarding the
performance of the HD system, for both the perfect and imperfect sensing cases,
there is a unique optimal p which achieves the maximum throughput (p = 0.3 for
the perfect and p = 0.35 for the imperfect sensing scenario). However, for high p,
both throughput curves converge to zero due to over many transmissions and
interferences on the RB. Obviously, for both the half and full duplex
communications, a higher per-link throughput is achieved when the CR femto-

BSs employ perfect sensing.
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Fig. 4.10. The femto link throughput of half and full duplex systems as a function of the
transmission probability. The femto link throughput of half and full duplex systems under perfect
and imperfect sensing scenarios as a function of the transmission probability over a specific RB
(p). The system parameters are set as Pr = 23dBm, Py =43 dBm, a =4, myp = m;p = m;y =
1,K=1, 2} =10, Az = 800 and Ay = 700, and 6 = 11 dB.

In Fig. 4.11, the performance of half and full duplex systems are presented for
femto users. More specifically, the link throughput of any typical femto user
under perfect and imperfect spectrum sensing abilities for the CR femto-BSs is
shown as a function of the target SINR 8. It can be seen again that the per-link
throughput achieved by the FD system, for both the perfect and imperfect
sensing scenarios, is significantly higher than the HD one. As it is seen, the link
throughput curves are concave and there is an optimal point in each curve. With
a high target SINR, we can transmit the user data with high spectral efficiency;
however, the outage probability of this transmission is high, too. In contrast, with
a low target SINR, we can send many packets that include little information. In
other words, a high reliable transmission can be experienced at low target SINRs,

while the minimum requirements for the transmission rate cannot be met.
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Fig. 4.11. The femto link throughput of half and full duplex systems as a function of the target
SINR. The femto link throughput of half and full duplex systems under perfect and imperfect
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each curve the obtained optimal p in Fig. 4.10 is applied.

4.5 Conclusion

In this chapter, utilizing the spatial PPP theory, we presented a tractable
model to derive the outage probability of a typical femto and macro user in a
two-tier HetNet which provides insight into system design guidelines. In other
words, for the case of the node locations modeled by a PPP and Nakagami-m
fading channels, we demonstrated the use of the CR based framework to evaluate
the outage probability at any arbitrary user. Exact closed-form expressions were
obtained as a result. In addition, we observed that in the downlink analysis, the
outage probability is a function of the network topology and several important
system design parameters such as SINR target, exclusion regions, MAC
mechanisms such as ALOHA (p; ), and the resource block (RB) selection

constraint (pgp) which is controlled by the spectrum sensing measurements.
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Chapter 5

Joint Interference Alignment and
Power Allocation for Multi-User
MIMO Interference Channels under
Perfect and Imperfect CSI

5.1 Introduction

Although conventional approaches, such the orthogonal access schemes, power
control, scheduling and antenna beamforming/nulling (and other mentioned
approaches in the previous chapters) to deal with interference in both single and
multi-tier communication systems can control interference without system
overhead, it turns out that they are not optimal in most network configurations
(except in certain special cases) because of their inefficient usage of the spectrum,
and until recently, the sum-rate region of the IC was unknown while it has been
shown in recent studies that the IC can be used in terms of providing linear
scaling of the sum-rates [109]. Recently, a new paradigm for interference
management techniques has emerged: interference shaping. This technique has
shown to offer a better performance in the interference-limited communication
regime than traditionally thought possible. The idea behind the concept of

interference shaping is to create a certain interference pattern when transmitting
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nodes propagate signals so that the aggregated interference effect is dramatically
reduced or totally eliminated at each receiver. TA is considered as a
representative interference shaping technique. IA has emerged as a viable
transmission technique towards mitigating interference that can result in sum-
rates that scale linearly with the number of users in the system for high SNR
[109], [110]. In relation with the previous chapters, the IA, as another interference
management technique, can be applied to the analysis of CR networks and
cognitive cellular networks (or in general, HetNets). For example, in a MIMO
CR system, multiple secondary users can coexist with the PU without generating
any interference by using the TA technology. Or in HetNets, IA can be exploited
to eliminate intra-tier (or inter-tier) and cross-tier interferences. However, in this
chapter, we only introduce this interference management technique in MIMO
systems, and possibly our future studies can cover heterogeneous MIMO CR
wireless networks equipped with the IA technology.

The key idea of IA, as a linear precoding technique, is to align multiple
interfering signals in time, frequency, or space in order to reduce the effective
interference while still allowing the desired signals to be discerned. Thus, the
maximum DoFs of the IC can be achieved. In other words, IA is a DoF's optimal
approach, which means that it can reach the capacity of interference networks at
very high SNR.

Such alignment in a K-user (K user-BS pairs in which each BS wishes to send
d data streams) MIMO IC requires the knowledge of perfect and global CSI at
each transmitting node (i.e., BS). In practice, this will potentially incur a
significant increase in CSI overhead, because each user has to feed back its
obtained CSI to all BSs using the feedback links resulting in overwhelming
feedback overhead even if the quantized CSI is fed back [111]. Therefore, more
efficient approaches and topologies are needed to reduce the requirement of
global CSI as well as the sum feedback overhead for IA.

The design of an optimal feedback topology can be built upon closed-form IA
solutions as in [53] and [112]. In other words, the TA transmit and receive filters
(also respectively called TA precoding and suppression filters) can be designed
through a closed-form solution of IA. However, the optimal IA solution in a

closed-form does not seem trivial and exists only for some specific settings [53],
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[112]. Thus, it is necessary to resort to iterative algorithms where the precoding
and suppression filters are optimized progressively. Even though most of the TA
iterative algorithms in the literature can indeed promise the maximum achievable
DoFs in a MIMO IC, they still look for the perfect alignment solution as an
ultimate objective; however, perfect TA solutions might also be suboptimal,
because of the non-convex behavior of the alignment problem. Therefore, it is
necessary to design iterative algorithms that directly or indirectly aim at
maximizing the achievable sum-rate for users rather than seeking a perfect TA
solution and meeting the IA feasibility conditions (see (5.4) and (5.5)).

As mentioned, iterative optimizations using the maximum sum-rate criterion
have become more favorable for the implementation of IA. Unlike the traditional
optimization schemes on Euclidean space, optimization algorithms on manifolds
benefit from lower computational complexity and faster convergence [113], [114].
Indeed, utilizing the optimization on matrix manifolds makes it possible to design
precoding (or suppression) filters for TA in terms of the sum-rate metric with an
iterative process based on the simple steepest descent (SD) (also called gradient
descent) method that converges to a local maximum due to the non-concavity of
the objective function (sum-rate) [113]. Note that simpler optimization
approaches based on the interference leakage minimization and SINR
maximization criteria can also be used to design the filters.

Another important issue to consider is that unlike most of the studies on the
IA MIMO IC (e.g., [53], and [109]-[112]) in which equal transmit powers are
assumed for all user-BS pairs (ignoring the need for an optimal power allocation
policy), optimal power allocation strategies can be performed to further optimize
the sum-rate of a multi-user-BS network. Good reviews of different power
allocation mechanisms in wireless networks can be found in [115]-[118]. They
mostly formulated optimization problems for power allocation in different
wireless network settings where interference is usually ignored or it is treated as
noise [119]-[124], while in real scenarios where various BSs are operating in the
same frequency band, ignoring interference can be a huge disadvantage in terms
of system throughput.

In this chapter, which is an extension of [125], we propose three iterative TA
algorithms for the problem of joint power allocation and transmit/receive filter

design in a K-user MIMO IC based on three optimization approaches, including
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the interference leakage minimization, max-SINR and sum-rate maximization.
We design a centralized topology, where a CU (see Fig. 5.1) collects local CSI
from all BSs, computes the TA transmit and receive filters, and makes the power
allocation decisions. The information is then sent to the corresponding user-BS
pairs. Note that unlike the conventional approaches in which the IA filters are
designed under the assumption that CSI feedback is error-free (i.e., perfect CSI
at each BS), in this chapter (see Section 5.3.3), we obtain the local CSI at BSs
from the estimation of the channel states during the so-called uplink-training
phase.

As we explain later, the proposed topology will lead to a significant decrease
in CSI overhead compared to the conventional approaches where each user feeds
back its own local CSI to all BSs using the feedback links so that the TA solution
can be computed independently at each BS using the provided global CSI at each
BS [111].

To design the IA filters at the CU, in addition to the well-known
optimization approaches based on the interference leakage minimization and
SINR maximization, we propose a new Riemannian optimization method on
manifolds that solves the sum-rate maximization problem. We utilize the
Riemannian optimization on matrix manifolds to design IA filters in terms of the
sum-rate metric with an iterative process based on the SD method. We consider
two related manifolds: the Stiefel manifold and the Grassmann manifold.

The Riemannian optimization scheme is employed on both the Stiefel and
Grassmann manifolds based on geodesics with a variable step size. In other
related studies (e.g., [126]), the updating rules obtained for the IA filters for the
Grassmann manifold-based optimization greatly differ from the counterparts for
the Stiefel manifold-based optimization. However, here we explain that the
updating formulas given by the Riemannian optimization method on the Stiefel
and Grassmann manifolds actually coincide since the chosen objective function
(sum-rate) for optimization on the Stiefel manifold has a symmetry [113], [127].

We also study and apply a low-complexity iterative power allocation algorithm
for sum-rate maximization over IA ICs under sum power constraint. In terms of
the achievable sum-rate and DoFs, we compare the performance of our proposed
methods with the conventional alternating leakage minimization, max-SINR

(presented in [56]) and the proposed method in [57]. Simulation results show that

123



the proposed algorithms achieve promising sum-rate gains over the existing TA
algorithms particularly at high SNRs and high-dimensional signal spaces.

In the following sections, we use lower case for scalars and upper case for
vectors. We denote matrices with bold font. A*® represents the dth column of
matrix A. We represent a d X d identity matrix by I;. Tr[A] is used to denote
the trace of the matrix A. Finally, A is the conjugate transpose (Hermitian) of

matrix A.
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Fig. 5.1. An example model of the IA for a three-user IC with two antennas at each node (‘CU’ is

® @ ©O<
® ® Oc

a central unit, V and U are respectively the precoding and suppression filters, and ‘L’ and ‘R’
denote the left and right sides)

5.2  System Model

Consider a MIMO IC where K BSs intend to transmit data to K mobile users.
The BSs and the users are respectively equipped with M and N antennas. Each
user is to be associated to exactly one BS, and each BS only serves one user. A
wireless channel links each user to each BS, but a given BS intends to have its
signal decoded by its own specified user only. The transmitted signal vector of

user k (k € {1,2,...,K}) from the associated BS [, is given by
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d *
Xk,lk = Zdil Vk,tlik Sg'lk == Vk,lksk,lk? Vk € {1,2, ,K} (51)

where Sy ;, is the dj X 1 symbol vector to be transmitted by the [ th BS, which
is then beamformed with the corresponding precoding vector of Vi, (an M X dj
unitary matrix). Inter-symbol interference is assumed to be managed perfectly
using an OFDM transmission scheme. Mathematically, the received signal vector

of user k is then given by
Y = 251 piHi, Vi Sip, + Zi, Yk € {1,2, ..., K} (5.2)

where Hy; is the N X M matrix of channel coefficients between BS [; and user k.
Denote by py the power BS [ uses to transmit the data intended for user k. Zj
is the N X 1 circularly symmetric complex additive white Gaussian noise vector
(AWGN) at user k.

Finally, the kth user uses the interference suppression matrix Uy, (an N X dj

unitary matrix) to filter its received signal as follows

v — 11H
Yk - Uk,lkYk
K
= U4, peHi 1, Vi, Sic1, + UE Hy Vi S+ Ul 7 (5.3)
= Uk 1 Pre e 1y Vi 1Pk k,lx Pill,, Vioi, k1 Lk .
. - A
desired signal i=1,i#k noise
interference

Assuming IA is feasible, the alignment is achieved when the precoding and

suppression matrices satisty the following conditions [56]:

Uf He Vi, =0, Vki€e(l,.. K}y i#k (5.4)
rank(U]I;I,lka,lka,lk) = dk' (55)

The aim of TA is to design precoding matrix V and suppression matrix U such
that each user can decode its own desired signal by forcing interfering signals into
a reduced-dimensional subspace of the received space. Therefore, each user can
observe an interference-free desired signal.

In various studies (e.g., [56], [128]), iterative IA solutions have been proposed
and shown to converge. These kinds of algorithms optimize the precoding and the
interference suppression filters to minimize the interference leakage by alternating

between forward and reverse links based on the assumption of channel reciprocity.

125



[terative procedures based on the channel reciprocity assumption have a
number of potential drawbacks. First, iterating over the air can incur a non-
negligible overhead while iterations can be performed off-line at a central entity
eliminating the need for over-the-air signaling. Second, reciprocity cannot be
applied to all IA-based algorithms [43]. On the other hand, even though this
property can be applied to time duplexed systems under the use of tightly
calibrated RF devices, it does not hold in frequency duplexed systems [43], [112].
In this chapter, we utilize the topology of CSI exchange in the network as
illustrated in Fig. 1. BS I (k € {1,2,...,K}) obtains the knowledge of the local
channel coefficients H;; (Vi € {1,2,...,K}) through the estimation of the channel
states during the uplink-training phase explained in Section 5.3.3. Note that most
of the previous studies on IA are based on the impractical assumption that
perfect and global CSI is available at the BS sides. In this topology, as shown in
the figure, CSI is conveyed from each BS to a CU where the optimal precoding
and suppression filters as well as the power allocation decisions are designed
(using our proposed algorithms in Section 5.3) and then sent to the corresponding
user-BS pairs. In order to design the CU topology, we have assumed that each BS
directly exchanges the estimated CSI from the uplink phase with the CU. This
framework is feasible for the nodes that are located close together and linked with
local area networks such as Wi-Fi. Moreover, the uplink coordinated multi-point
(CoMP) system, which provides the high-capacity backhaul links between BSs
can be applicable for this scenario. While a CU topology is an efficient scheme for
the reduction in the CSI overhead, there exist some challenges regarding the
implementation phase. The synchronization and organization of this kind of
networks will be paramount in achieving the gains projected by TA. Moreover,
central entity risks increasing the load on the backhaul network and risks missing
delay constraints due to the transfer of CSI and computation time of IA solution.
As mentioned earlier, our proposed scheme has lower CSI overhead
(particularly for large K) than the conventional approaches where each user feeds
back its estimated local CSI to all BSs using the feedback links. Let’s consider
the scenario of designing the TA precoding filters. In the conventional approaches
(e.g., [128]), a typical user has to feed back its estimated local CSI (Hyy,
(Vvie{1,2,..,K})) by broadcasting KNM complex coefficients to each BS
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assuming no errors. Therefore, the number of coefficients sent by that user to all
BSs is K2NM. The total number of channel coefficients exchanged over the
network (the total CSI overhead) is equal to K3NM (i.e., the CSI overhead
increases as O(K3NM)). Meanwhile, under the same assumption, in the proposed
method, each BS sends KNM complex coefficients to CU. Therefore, the number
of coefficients exchanged by all BSs with CU is K2NM. Then CU broadcasts a
precoding matrix of Md coefficients to each of the BSs. Thus, the total CSI
overhead for the proposed topology is computed as K2NM + KMd (i.e., the CSI
overhead increases as O(K*NM)).

5.3 Iterative Optimization (Mathematical Model)

5.3.1 Optimization Problems

In this section, we present several optimization problems used at the CU to
determine the optimal precoding and suppression filters as well as the optimal
power allocation for all user-BS pairs. We first formulate the optimization
problem for power allocation in the network. The goal is to make power
allocation decisions for sum-rate maximization subject to sum power constraint.
We evaluate the sum power constrained problem (i.e., there is a constraint on
the total power budget available for all BSs denoted by prg) and propose a fixed
point algorithm to solve it to global optima. Therefore, the optimization problem

can be formulated as follows

Optimization I: max-min SINR based Power Allocation

% |Hk,lka,lk|2

max kg}inK SINRy,;, = o >
P ek g HiyVig | + 0,2
S.t.OSkaﬁlk, k:].,...,K,
{l, . lk}=1{1,..,K}, (5.6)

K

> b <
k=1

P = Py - Px)
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The first constraint is individual power constraint per BS. We assume that
each BS can adaptively vary its transmit power depending on the power
allocation decisions and each BS can transmit with a power between 0 and the
assigned power budget p;, . An equal power budget is assumed for all BSs
(P, =P, =" =Dy, = Prg). The other constraint represents the sum power
constraint that indicates the total power resource is constrained. o;2 is the
receive noise power at user k. It has been shown in [129] that the above max-min
SINR problem developed for the power allocation problem in fact provides a
provable approximation ratio to the sum-rate maximization objective.

We now want to solve the above max-min fairness power allocation problem:
one way is to use a binary search strategy as in [130]. However, since the
proposed binary search can be time-consuming, we present a fixed point
algorithm that directly solves the max-min fairness power allocation problem.

Define

) 2
K Pi 2
i=1izk |Hk,liVi,li| + 0%

1
= [Hiet, View,

T(p) £ (Ty(P), ... Tk (P)). (5.7)

Tk(p) = |2

Notice that Ty (p) is the minimum power needed by BS [, to achieve an SINR
value of 1 with fixed pj;,V j # k. The proposed algorithm simply picks a random

positive power vector p(0) and updates the power vector as follows

T(p@®) _
1 P B TB- 5-8
p(t+1) leTi(p(t))p (5.8)
and for user k
pe(t+1) « Ti(p®) (5.9)

K )™

We will next propose our algorithms to obtain the precoding and suppression
filters of each wuser-BS pair through solving different optimization problems
including sum-rate maximization, interference leakage minimization, and SINR
maximization strategies. For example, in the first approach of the proposed

algorithms (see Section 5.3.4), we present an iterative method at the central
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coordinator to find the optimal interference suppression matrices Uy, (k €
{1,2,...,K}) that minimize the leakage interference (from all undesired BSs) at
each user, and compute the optimal precoding matrices Vi, (k € {1,2,...,K})
that maximize the sum mutual information. Thus, for the first approach of our

proposed methods, we have the following optimization problems:

Optimization II: Interference Leakage Minimization
For each user k, we solve the following optimization problem

min I (5.10)

UkvlkU’Ig.lkzldk
where I is the total interference leakage observed at user k (see Section 5.3.4).
In other words, for each user we choose the unitary interference suppression filter
Uy, to minimize the leakage interference due to all undesired BSs (I is the

corresponding BS of user k).

Optimization III: Sum-Rate Maximization

We want to find the best truncated unitary precoding matrices that maximize

the sum-rate. Therefore, we have the following optimization problem

K
max RSle = Z Rk,lk (511)
k=1

Vl,lll---lVK,lK

s.t. Vk,lleI(-I,lk = ldk’ vk € {1,2, ,K}

where Ry, is the mutual information between the BS [ and its dedicated user k,

and is expressed as follows [109], [131]

K Di H H
|I + 2= Hk,liVi.liVi,lin,li|

1, = logy (5.12)

K pi HyH |
|1 + Yiz iz 5 Hiy Viy Vi -Hk,li|

i l,ll

The optimization for the interference suppression matrix U (Optimization II)
can be iteratively solved by obtaining the d; eigenvectors corresponding to the
dj smallest eigenvalues of interference covariance matrix Wy, (see Section 5.3.4)

at each iteration [56]. Thus, the dj columns of Uy, are obtained as follows
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Ui, = va[Wil, d=1,..,d (5.13)

where v4[A] indicates the eigenvector corresponding to the smallest eigenvalue of
A. Tt should be noted that we assume dj, = d for all users.
The sum-rate maximization problem (Optimization III) under the unitary matrix

constraint is addressed in the following subsection.

5.3.2 Riemannian Optimization Method for Sum-Rate Maximization
Problem

In this section, we use the Riemannian optimization method to maximize Ry, .
We obtain the updating rules for the precoding matrices Vy,, , (k € {1,2,...,K})
given by the Riemannian optimization method (on the two well-known manifolds
Stiefel and Grassmann, and based on geodesics), which has been recently used in
different research fields such as pattern recognition, neural networks, and
numerical analysis. A geodesic is defined as a direct extension of a straight line in
the Euclidean space to a manifold (a curved space). The major drawback of the
classical optimization methods with a unitary matrix constraint that operate on
the Euclidean space is that the unitary property of the matrix (here the
precoding matrix V) is lost after every iteration, and it needs to be restored in
each step. In other words, the updated point V does not always remain on the
manifold, while the Riemannian optimization approach updates a point on a
manifold along a geodesic, therefore the updated points always satisfy the
manifold constraint. Another potential drawback of the classical optimization
methods on the Euclidean space is their slow convergence rate [113], [114], [126],
[127].

When the above notations are considered, the updating rule of the precoding
matrices Vi ;, (k € {1,2,...,K}) for the gradient descent method (a Riemannian

optimization method) over the manifold T is described as follows [127]

Vlg:il—kl = ¢T (Vlg,lk' grade‘lk Rsum: .u) (514)

where ¢ is the geodesic expression on manifold T emanating from Vi ; €T in

direction to gradvk'lkRsum. The natural gradient gradyRg,,, of a function Ry, at
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point V on a manifold T is intuitively the steepest direction the function Rgy,,
ascends in T, and u represents the step size. gradyRg,, on Stiefel manifold
(St(M, d)) is defined as follows

St(M.a) p

grad sum — Rsum (V) - VVRsum (V)HV- (515)

The geodesic ¢ on St(M, d) characterized by the matrix exponential maps,
which in fact give geometrically simpler interpretations and expressions and are

easier to analyze, is expressed as follows [113], [127]:

st(m,d
¢St(M,d)(V grady o )Rsum,ll)
= exp(ugrad‘s,t(M’d)RsumVH ) \%

= exp(U[VRsum (VIV? = VR, (V) VVA]) V

= exp(U[VRsym (VIVH — VVR g, (V)] V. (5.16)
For Rs,m(V) where V has complex components, and Rgy, (V) is a real-valued
function, the gradient is defined as VR, (V) = 2 ORsumV) _ =2 (S(Rsum(v))) [132].

sV* 8V
For the user k, VRg,n (V) is derived and expressed as follows [109], [132]:

VRsum Vi, = o ZzpkHllk D H, Vi, — 2 z piHE Y7 Hyy, Vi, (5.17)

i=1,i#k
where
pi H vy H
Xk == I + EHk'liVi'liVirlinvli (518)
i=1
and
Pi
Yk = I + Z EHk'liVll V Hk I; (519)
i=1,i#k

A major advantage of our proposed solution is that the applied updating
strategy and the obtained formulas corresponding to the SD algorithm along the
geodesic give geometrically simpler interpretations and expressions (which are
easier to analyze) making the implementation complexity very low. The update
rules proposed for sum-rate maximization in [57] are shown to obtain higher sum-

rate than the conventional alternating leakage minimization (for all SNR values)
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and the max-SINR (in high SNR regime). However, it requires a series of both
the eigenvalue decompositions and compact singular value decompositions
(SVDs), which can lead to a significant increase in the computational
complexity (the same problem applies to [131]). The authors in [57] propose an
iterative alternating minimization algorithm that aims to find the best TA
solution in terms of sum-rate in which the updating process for the filters (in
contrast to our update formula, the geodesic ¢y, in (5.16)) requires the
calculations of the compact SVD.

For further complexity reduction, the low dimensional Grassmann manifold is
used to derive the corresponding geodesic equation ¢r. Similarly, the natural

gradient gradyRg,,, over the Grassmann manifold is expressed as [113]

gradgr(M’d)Rsum = VRgum (V) — VVH# VR (V). (5.20)

Before obtaining the updating rule of the precoding matrices V given by the
gradient descent method over the Grassmann manifold (Gr(M,d)), we consider

the following important fact that says:

Note:

Our objective function for optimization on the Stiefel manifold has an O(d)-
symmetry (O(d) is the Lie group of unitary matrices)

i.e., Rgym(VE) = Ry (V) (for all Ve St(M,d),E is a d X d unitary matrix, i.e.,
E € 0(d)) [127)].

Notice that it is easy to show that our objective function (sum-rate) satisfies the

above condition. Thus, based on the above fact, it can be proved that [127], [133]

Gr(M,d)R

grady sum = grad‘s,t(M'd)Rsum (5.21)

which finally leads to

Gr(M,d S ,d
¢Gr(M,d) (V: gradvr( )Rsumf .u) = qut(M.d) (Vr gradvt(M )Rsum: /“l)- (5-22)

In other words, the updating rule given by the gradient descent method over
the Stiefel manifold shown in (5.16) coincides with the one over the Grassmann

manifold.
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5.3.3 Uplink-Training Phase

In most of the IA studies that have been made, the IA filters were designed
assuming that perfect knowledge of the channel matrices of all links is available
in the network. However, in practice this assumption is unrealistic. Thus, in this
subsection, we study common channel estimation techniques while employing
reverse-link pilot sequences in a MIMO-OFDM scheme. In other words, we design
an uplink channel-training phase using pilot symbols based on the least-squares

(LS) and minimum mean square error (MMSE) estimators [134]-[137].

5.3.3.1 MIMO-OFDM Systems

Based on MIMO-OFDM systems ([136], [137]) and according to a specified
modulation scheme (for example QAM), the binary information is first grouped
and mapped to finite alphabet symbols. Next, pilot signals are inserted either
into (i) certain subcarriers of each OFDM symbol or (ii) all sub-carriers of
OFDM symbols with a specific period. Each OFDM symbol is then converted
into a time-domain OFDM symbol via inverse discrete Fourier transform (IDFT).
After adding the cyclic prefix (CP) (to eliminate inter-carrier interference and
inter-symbol interference), the time-domain OFDM signal is transmitted through
the transmit antennas (note that the CP inserted at the beginning of each
OFDM symbol is usually equal to or longer than the expected delay spread). The
transmit signals (the sum of complex exponentials, i.e., sine and cosine functions)
are propagated through the MIMO channels. At the receiver, after the removal of
the CP, data are transformed back to the frequency domain OFDM symbols via
the DFT operation to start the next stage, which is the uplink channel

estimation phase. Mathematically, the OFDM received signal can be written as
0 = DFT(IDFT(X) ® G+ N) = HX +N, (5.23)

where 0, X, G, N, and N are matrices respectively representing the received and
transmitted symbols, channel impulse response, noise, and transformed noise.
Furthermore, H = DFT(G) is the channel frequency response, and & represents

circular convolution (note that a @ b =b ® a).
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5.3.3.2 Channel Estimation for MIMO-OFDM Systems

In this subsection, channels are estimated at BSs using the observations of the
pilot signals (pilot observations) in a local window.
We assume that the length of the uplink training period is equal to B (i.e., the
total number of pilot observations in the window is equal to B), and all the users
transmit the respective pilot sequences in the length of B simultaneously during
the training period. We denote Xy, (an N X B matrix) as the uplink pilot signal
of user i. m; is the index of the pilot sequence used by user i (m; € {1,...,B}, i €
{1,..,K}). For simplicity, we have assumed that the maximum number of
available orthogonal pilot sequences in the network is also equal to B.
The received signal (an M X B matrix) at BS [, (I € {1,..,K},k €{1,...,K}) is

expressed as follows

K

0, = z JPidy, (ri)ﬁi,lkxn'i + N, (5.24)

=1

where ﬁi,lk (an M X N matrix) is the channel between user i and BS ;. p; is the
pilot signal power of user i. The vector r; € R? is the geographical position of
user i and d;, (r) is an arbitrary function that accounts for the channel
attenuation (e.g., path loss and shadowing) between BS [, and any user position
r, which is assumed to be constant and known to all BSs. N;, (an M X B matrix)
is i.i.d. noise at BS [ (N;~CN(0,02), o2 is the noise power).

Then, each BS can obtain the channel observation of all the users. Specifically,

for the kth user, the BS [, obtains the uplink channel observation as

Yy, = 0, X2,

kolk

K
= z JPidy, (t)H; X XH + N, XH (5.25)
i=1

Note: X X¥ = B§(a — b) (different pilot signals are assumed to satisfy the

orthogonality condition)

K
YTL'k,lk = Z \/Edlk (ri)Hi,lkBa(ni - nk) + lexgk
i=1
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= z \/Edlk(ri)ﬁi,lkB + N, X7,

1€57,

= ﬁkdzk(l'k)ﬁk,sz + Z \/Edlk(ri)ﬁi,lkB + N X5 (5.26)
i€Smp\(K)

where Sy, is the set of those users using the same pilot as the kth user and “\”

denotes the set subtraction operation.

LS estimate of the uplink channels: (assuming that p; = p, Vi € {1, ..., K} and
le = N, Vlk € {1, ,K})

| Yn'k’lk
Hk,lk ==
B\[pd,, (ry,)
o d, (r;)) — NXH2
_ Hk,lk + lk( 1) . 9% (5.27)

—ZH;;, +——.
e dy, (rx) B./pd,, (rx)

X5, ( o2

VP
—=—— ~CN(0,—=——— =
B\/pdy, (ry) B\/pdy,, (k)

It can be shown that ). Denoting p, =5 as the

1

, m). Therefore, (5.27)

NXH
. o e T ~
uplink training SNR, we then have B/paiD) CN(O

is rewritten as follows

dlk (ri) “— NTL'k

P T .
iESnk\{k}dlk(rk) v \Bpedy, (1)

Pilot Interference

Hy,, = ﬁk,lk + (5.28)

where Ny, ~CN(0,1,) is the normalized additive noise. Finally, we assume that

no users use the same pilot in the uplink-training phase; therefore, (5.28) is
simplified to (5.29)

N
Tk (5.29)

[Bpedy, (v

Hy, = Hy, +
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MMSE estimate of the uplink channels:
Applying the MMSE estimator, we have

l’-\Ik,lk = Rk,leTl'k,lkYTL'k,lk (530)

where

Qi = (Z dzk( k) Bpedzk(rk) )™

i€ S”k

lk (rl)

-1
dy, (rk) o Bp.d,, (rx) )™ (>31)

= (Ryy, +
(€S m\k)

R, (an M x M matrix) is the covariance matrix of the channel between the ith

user and BS [,. Under the same assumption made for (5.28), (5.31) is simplified
o (5.32)

1
= (R — )" 32
QTL'k,lk ( k,lk + Bpedlk(rk) M) (5 3 )

After the estimation of the channels corresponding to the pilot signals, the
channels for the data signals are generated via proper interpolation among pilot
channels. We assume that the uplink and downlink of each link are reciprocal
(fulfilled in TDD mode), i.e., H=HH which in fact indicates that the downlink
channel H (applied at the CU) is equal to the transposition of uplink channel
training H in the coherence time.

Considering the above explanations, in the following subsection, we explain

the detailed procedures of our three proposed SD-based algorithms for IA.

5.3.3.3 Proposed Algorithms on Different Strategies for TA

Proposed Algorithm-First Approach

At CU (see Fig. 1):
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1. Start with random unitary matrices Vi, (k=1,..,K, and [} € {1,..,K}) at
CU, pick random positive power vector p(0) = (pl(O), ...,pK(O))7 and initialize yu with
0.1.

2. Obtain the interference covariance matrix Wy, for each user [56].

K
p.
W = z ij.liVi,liViI:IliHllz.li

i=1,i+k

3. Calculate the interference suppression filter Uy, for each wuser (k€
{1,2,..,K}) to minimize the leakage interference due to all undesired BSs using (5.13)
(the interference leakage at user k can be obtained as I, = Tr[U,IzlkaUk,lk]).

4. Update the precoding filters Vi ;, (k € {1,2,...,K}) along the geodesic over the

Stiefel (or Grassmann) manifold in the direction given by VR, m:
Vier, = eXp([VRsum Vs, Virr, = Vier, VRsum WE 1 ]) Vier,

where  VRg, (V) was expressed in (5.17).
5. Update power allocation as follows
pi 2
Ii’(=1,i¢k3 |Hy, Vis, | + 032
1 2
” |Hic1, Viee|

T(p) £ (T1(P), -, Tx (D))

Te(p) £

Te(p(®) _
P (t+1) e =——"—"—p
“ K Tpe) ™
6. Update the step size: pu = p X 0.95. Repeat Steps 2-6 until convergence.
7. Distribute all the obtained precoding and suppression filters as well as the

power allocation decisions to the corresponding user-BS pairs.

Proposed Algorithm-Second Approach

At CU (see Fig. 1):

1. Start with random unitary matrices Vi, (k =1,...,K, and [ € {1, ...,K}) at CU,
pick random positive power vector p(0) = (p;(0), ..., pk(0)), and initialize p with 0.1.

2. Obtain the interference covariance matrix Wy for each user (see Step 2 in the
first approach).

3. Calculate the interference suppression filter Uy, for each user using (5.13).
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4, Update the obtained suppression filter Uy ;, (k € {1,2,...,K}) in Step 3 along the
geodesic over the Stiefel (or Grassmann) manifold in the direction given by VRgy,m as

follows
Uk, = EXP(#[VRsum(U)k,lkUglk - Uk,lkVRsum(U)IkI,lkD Ug,1,.

where

K K
VR U =i H;, X;'HZ U _Z H;, Y'HZ U
sum( )k,lk In2 Pk il il Ykl In2 Pk Ll ti il Yk

i=1, i=1,i#k
where
K
— bi n H
X, =1+ EHk,liUi,liUi,lin,li
i=1
and
K
Pi  n H
Y =1+ Z EHk,liUi,liUi,lin,li'
i=1i#k
5. Calculate the interference covariance matrix Wy in the reverse direction (‘R’ to

‘L, see Fig. 1) as follows

K
p.
W, = Z ngini,liUflin,zi

i=1,i#k

6. Calculate the new Vi, (k €{1,2,..,K}) from the Wy obtained in Step 5 as

follows

V]:.‘lik = Vd[wk]a d=1, ""dk'

7. Update the obtained precoding filters Vi ;, in Step 6 along the geodesic over the
Stiefel (or Grassmann) manifold in the direction given by VRg,,, (see Step 4 in the first
approach).

8. Update power allocation (see Step 5 in the first approach).

9. Update the step size (u = p X 0.95). Repeat Steps 2-9 until convergence.

10. Distribute all the obtained precoding and suppression filters as well as the power

allocation decisions to the corresponding user-BS pairs.
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Proposed Algorithm-Third Approach

The third approach is exactly the same as the second one except for the
following steps:

Step 3 in the second approach is replaced with:

The suppression filters are chosen to maximize SINR at the users instead of only
minimizing the leakage interference. Thus, all the suppression filters are obtained

in the following way [56].

(Bis) ™ "Hy 1, Vi,
||(Brs)"1Hy. 1, Vi zk”

xS
Kkl —

where

]

vVriy *dH il P xs HyyxH

E Hy Vi Vin Hk,lj_d_Hklkalkalk Hy,, +1
k

5

Q..l"d

(s stands for the stream number)

Similarly, Step 6 in the second approach is replaced with

(BkS)_lHllglkUl:Slk
||(BkS) Hk Ik klk”

Lo R

Kkl —

where

K J
p] * H p
z ZHkl] i ]g Hy,, — d, HklkUklkUklk Hy,, + L

In [56], two famous algorithms, interference leakage minimization and Max-
SINR, are proposed exploiting the reciprocity nature of channels. In the
interference leakage minimization algorithm, at each iteration, the interference
leakage is minimized at the users in the original network, and then minimized at
the BSs in the reciprocal network. The iterations continue until it converges. This
approach looks for the perfect alignment solution as an ultimate objective;
however, perfect IA solutions might also be suboptimal, because of the non-

convex behavior of the alignment problem. Moreover, this IA based approach will
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fall short of the theoretical maximum at low SNR values, and the SINR of the
received signal will decrease severely due to the inherent property of IA and
channel fading, which is considered to be one of the most challenging issues of TA.
This is because this IA based approach only attempts to eliminate the
interferences, and does not consider the direct channel to maximize the received
power of the desired signal of the users. Similar with the interference leakage
minimization algorithm, the Max-SINR approach is also designed, and the
difference lies in that the SINR of received signal is maximized in each direction
instead of minimizing the interference leakage. By maximizing the SINR, the
performance of MAX-SINR algorithm is better than that of interference leakage
minimization algorithm due to the diversity gain it brings out. A Max-SINR
algorithm for TA is defined to maximize the SINR of the received signal, which
can consequently improve the sum-rate of interference networks especially at low
SNR. However, its advantage tends to be lost in the high SNR regime. Recently,
iterative optimizations using the maximum sum-rate criterion have become more
favorable for the implementation of TA. Therefore, it is necessary to design
iterative algorithms that directly or indirectly aim at maximizing the achievable
sum-rate for users rather than seeking a perfect IA solution. Motivated by this
insight, the first and second approaches of our proposed algorithms were
presented as above to improve the sum-rate performance of the proposed
interference leakage minimization in [56] (we combine both interference leakage
minimization and sum-rate maximization in two different ways). The third

proposed scheme was also presented to improve the sum-rate performance of the
Max-SINR approach in [56].

5.4 Simulation Results

In this section, we evaluate the performance (in terms of the achievable sum-
rate and average per user multiplexing gain) of our proposed schemes vis-a-vis
the interference leakage minimization and max-SINR approaches discussed in [56]
and the proposed method in [57]. Equal power allocation has been considered for
all user-BS pairs in the mentioned studies. We consider a K-user MIMO IC as an
(N x M,d)¥ system (d <min(M,N) and N+ M —d(K + 1) =0, see [138]). In

our evaluation we run simulations for a (6 X 6,d = 1,2,3)3, a (8 X 8,d = 1,3)3,
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and a (8 x8,d =1)7 system. Unless stated otherwise, in the simulations, all
results are averaged over 100 channel realizations where each channel matrix
comprises i.i.d. elements drawn from a complex Gaussian distribution with zero
mean and unit variance. We also set the noise power level to 1.

The parameter u, which represents the step size, is initialized with a relatively
large value at first (the starting point is g = 0.1 for all the proposed schemes). In
each iteration we reduce the amount of the step size. In practice, an optimal
value of the step size is difficult to compute and determine. This parameter
trades off between high convergence speed, which requires a large step size, and
good sum-rate performance, which requires a small step size [113]. In other words,
an optimal parameter g can help us achieve a desired sum-rate in a much smaller
number of iterations. Thus, an adaptive step size is a desirable choice and the
RL-based method developed in our previous work [139] can be considered for this

maftter.
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Fig. 5.2. Sum-rate versus P for a (6 X 6,d = 1,2)3 system

We compare the proposed algorithms presented in Section 5.3 with the other
widely used algorithms for an equal number of iterations (500) unless stated
otherwise, as shown in the following simulation examples. Note that we first
consider perfect CSI in our evaluations, and the performance evaluation of the

channel estimation techniques is presented in Figs. 5.8 and 5.9.
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A. Example 1

In Fig. 5.2, the sum-rate is plotted versus P (where P is the total power
budget over the average noise power) considering a (6 X 6,d = 1,2)3 system. It is
observed that for d = 1, when using the third proposed approach and max-SINR
solution, the rates approximately match for all SNRs. However, the first and
third proposed schemes always offer a better sum-rate performance than the
leakage minimization approach. Our approach to the problem in the second
proposed solution differs from [57] in terms of the update expressions (the
geodesics) for the precoding and suppression filters and in terms of the power
allocation strategy, as mentioned before. As can be seen, the performance of the
second proposed approach closely matches that of the proposed method in [57]
and the leakage minimization approach for all SNR values; however, they all
obtain less sum-rate than the first proposed method and particularly the third
proposed and max-SINR methods. This is because the third proposed method
and max-SINR make extra attempts to maximize the desired signal power within
the desired signal subspace [57].

For d =2 and SNRs up to 30 dB, the max-SINR sum-rate performance
approximately matches the first and third proposed methods while it shows a
higher sum-rate than the second proposed method and the method in [57].
However, as can be seen, there is a growing gap in the achievable sum-rate
between our proposed algorithms (along with the proposed method in [57]) and
the max-SINR approach for the SNRs greater than 30 dB. This is because the
max-SINR cannot provide extra DoF's for only 500 iterations. On the other hand,
the proposed algorithms along with the max-SINR and the proposed method in
[57] always outperform the leakage minimization approach. In comparison with
the leakage minimization approach, the improved sum-rate performance of the
second proposed scheme is also observable from d =1 to d =2. A similar
behavior (as the second proposed scheme) is also observed for the proposed
method in [57]. All our proposed methods always offer (for d = 2) a better sum-

rate performance than the method in [57].

B. Example I1
In Fig. 5.3, we consider a (8 X 8,d = 1,3)3 system. Similar arguments and

statements that we produced for Example I apply here as well.
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Fig. 5.4. Sum-rate versus P for a (8 x 8,d = 1) system

C. Example 111

In a similar manner to that for the second example, we consider a (8 X 8,d =
1)7 system as shown in Fig. 5.4. From this figure, it can be seen that we
observed almost the same trend as that for the (8 X 8,d = 1)3 system for the
SNRs up to 30 dB (the first proposed approach showed a relatively more sum-
rate performance improvement than the other approaches). However, for SNRs

greater than 30 dB we observed sum-rate behavior different from that for the 3-
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user case (for d = 1), and the benefits of our first and third proposed algorithms
become more apparent.

In Figs. 5.5, 5.6, and 5.7, considering a (6 X 6,d = 1,2,3)3 system, we analyze
the explained schemes in terms of multiplexing gain (or DoFs) defined as the
number of interference free signaling dimensions at wuser k (i.e., dj =
rank(U}} Hy 1, Viey, ) — rank(Ug, S5 L Hy Vi ). For d = 1 (see Fig. 5.5), it is
observed that all schemes except the third proposed scheme and max-SINR
achieve exactly d = 1 average per user multiplexing gain for all SNRs. The third
proposed and max-SINR methods represent almost the same behavior and more
adaptive performance, which yields one interference free dimension at the high
SNR values, where the multiplexing gain will become an important factor of the
SINR metric.

1.2 T T T T T T
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Fig. 5.5. Multiplexing gain per user versus P for a (6 X 6,d = 1)3 system, 3000 iterations, and

over 10 channel realizations
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A similar situation applies to the d = 2 case (see Fig. 5.6). Thus, we can say
that when d is smaller than its maximum value ([N + M]/[K + 1]) in a proper
system, all the schemes seem to get the maximum multiplexing gain (at least in
the high SNR regime).

For d = 3 (Fig. 5.7), it is observed that the leakage minimization, our second
proposed scheme, and the method in [57] achieve much more interference free
dimensions than the other approaches, which results in higher achievable per user
multiplexing gain. For this case, our first and third proposed methods along with
the max-SINR perform worse and do not seem to achieve perfect IA even in the
high SNR regime. There exists an oscillating behavior in the curves shown in Fig.
5.7, either because the number of iterations that we have used for d = 3 is
insufficient or the initial value chosen for g might not be proper. Thus, the
existing schemes may not converge to an optimal solution for d = 3.

In Fig. 5.8, we compare the performance of the LS and MMSE estimation
techniques. The estimation mean square error (MSE), which is proportional to
IH — Hpot |2 (squared Frobenius norm error), is performed to evaluate the
performance of both estimators (Hgg is the estimated channel). We depict the
estimation error (in dB) versus the uplink training SNR (p,). It can be seen that
as the uplink-training SNR increases, the remaining additive noise vanishes.
Therefore, the estimation error of both methods decreases, which implies that the

channel estimations tend to be perfect. As shown in this figure, the MMSE
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estimator presents a better performance for all values of the training SNR. Note

that the OFDM based estimation model is operating with 64 subcarriers
(DFT/IDFT size). 16-QAM constellation is used here. The number of pilot

subcarriers per symbol is B = 3, and a CP = 8 is considered for a 6 tap channel.
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Finally, in Fig. 5.9, we show the effect of channel estimation error on the sum-
rate for our proposed methods over a (6 X 6,d = 2)3 system. If we consider the
results shown in Fig. 5.8 and for the uplink-training SNR value of 20 dB, we find
that the proposed methods with the MMSE channel estimator gain a higher sum-
rate than that gained with an LS estimator. Obviously, the maximum sum-rate
value is achieved when perfect CSI is available. It seems that compared with the
first and third proposed approaches the second proposed approach is quite

sensitive to the channel estimation error when the LS estimator is applied.

5.5 Conclusion

In this chapter, we proposed three iterative IA algorithms for the problem of
joint power allocation and transmit/receive filter design in a K-user MIMO IC.
They are based on three optimization approaches: interference leakage
minimization, max-SINR, and sum-rate maximization. A new Riemannian
optimization method based on the Stiefel and Grassmann manifolds was
introduced to solve the sum-rate maximization problem. We also studied and
applied a low complexity iterative power allocation algorithm for sum-rate
maximization over IA ICs under a sum power constraint. An analysis of OFDM
based channel estimation was also carried out, which is required for designing

practical TA systems. In terms of the achievable sum-rate, we compared the
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performance of our proposed methods with the conventional alternating leakage
minimization, max-SINR (presented in [56]) and the proposed method in [57].
Simulation results showed that the proposed algorithms achieve promising sum-
rate gains over the existing [A algorithms particularly at high SNRs and high-

dimensional signal spaces.
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Chapter 6

Conclusions and Future works

The objective of this research has been to improve performance on both user
and network scales by proposing mechanisms and solutions to interference
modeling, management and avoidance issues arising in different wireless
communication environments. Results of this work can be used for several real
world scenarios such as: wireless technologies operating in the industrial science
medical (ISM) bands and maybe in the future in the TV bands by employing the
machine-learning based cognitive short-range devices, the performance analysis of
large wireless networks of future using stochastic geometry, and IA based Device-
to-device (D2D) communication as one of the key technologies for the future 5G
mobile communication systems.

In Chapter 2, we study the interference management issue in CR networks
and propose a learning based scheme for channel sensing in partially-sensed CR
network. In particular, the CR network’s channel sensing scheme is formulated as
a POMDP, and the optimal policy is determined by the FQL algorithm.
Simulations show that the proposed sensing scheme allows the CR network to
significantly improve its own spectral efficiency and reduce the probability of
interfering with the PU. We have also shown, even in a very transient
environment, it is quite possible to achieve reasonable estimates of channel state
transition probabilities. In Chapters 3 and 4, we present a tractable model to
derive the outage probability of a typical femto and macro user in a two-tier
HetNet, which provides insight into system design guidelines. For the case of the
node locations modeled by a PPP and when the desired and interfering

channels are subject to Rayleigh (in Chapter 3) and Nakagami-m fading (in
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Chapter 4), we demonstrate the use of the CR based framework to evaluate the
outage probability at any arbitrary user. As a result, exact closed-form
expressions are obtained. In addition, we discuss that in the downlink analysis,
the outage probability is a function of the network topology and several system
design parameters such as SINR target, exclusion regions, MAC mechanisms such
as ALOHA, and the RB selection constraint controlled by the spectrum sensing
measurements. In these two chapters, we derive a tight closed-form expression of
outage probability for users in the network in order to evaluate the outage
performance of users and as a contribution to define a benchmark to assess our
analysis and future studies. Outage probability is considered an important
performance metric to assess users QoS and due to its huge impact on the
network performance and power consumption. Our derivations can have several
applications in 4G and beyond broadband networks. For example, outage
probability can be considered as a QoS metric to meet a specific connection data
rate requirement, or it can be utilized as a performance measure to evaluate the
level of meeting the total demands of users in a cellular network. Thus, the
availability of accurate analytic expression is of paramount importance for system
analysis and optimization purposes. Another typical example is found in the radio
power control problems, where the powers must be minimized under outage
probability constraints. For the future work, we can think of the possible ways
and directions to expose our analytical results for the implementation purposes.
For example, our analytical expressions can provide useful insights to the network
design and can be adapted to optimize the deployment of BSs, density of BSs,
frequency sharing/partitioning for multi-tier cellular networks, frequency reuse,
transmission rate, etc.

Finally, in Chapter 5, the IA technique, which has been recently used as an
alternative interference management method, is applied to the MIMO IC
networks. In particular, we propose iterative TA algorithms for the problem of
joint power allocation and transmit/receive filter design in a K-user MIMO IC.
They are based on different optimization approaches including: interference
leakage minimization, max-SINR, and sum-rate maximization. A novel
Riemannian optimization method based on the Stiefel and Grassmann manifolds
is introduced to solve the sum-rate maximization problem. We also study a low

complexity iterative power allocation algorithm for sum-rate maximization over
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[A ICs under a sum power constraint. At the end, an analysis of OFDM based
channel estimation is also carried out, which is required for designing practical IA
systems. Simulation results show that the proposed algorithms achieve promising
sum-rate gains over the existing IA algorithms particularly at high SNRs and

high-dimensional signal spaces.

During this work, great effort was made to provide useful techniques and
solutions which would lead to higher data rates and more reliable communications
considering the limiting nature of radio communication resources and the most
challenging phenomena: interference. Now, we will briefly describe some general
but interesting directions for future work aimed at improving and completing our
proposed constructions.

Recently, energy-efficient communication has sparked tremendous interest as
one of the most important design goals of future wireless networks. Thus, a
paradigm shift of current operation from data oriented to energy-efficient oriented
networks is obviously expected. In this context, a green CR (GCR), which is
aware of sustainable development and takes it as an additional constraint in the
decision making engine of the cognitive cycle, can be considered as an interesting
extension for Chapter 2. In other words, the GCR can decide actions which
decrease the total power (energy) consumption in the network while satisfying
QoS constraints. Regarding the Chapters 3 and 4, a green HetNet can be also an
alternative for the proposed model. In the near future, the cellular network is
expected to become increasingly heterogeneous to improve the spectral efficiency.
As a result, the deployment of massive small cells in the macrocells can increase
the total power consumption of the 5G HetNets. Thus, it is important to jointly
manage the power consumption of both macrocells and small cells for more
energy-efficient operation with traffic sharing. Finally, in Chapter 5, power
allocation techniques can be also leveraged to optimize the energy efficiency of the
[A-based network. However, our proposed power allocation algorithm as well as
those seen in the existing IA works focus only on optimizing the sum-rate, i.e.,
spectrum efficiency, instead of energy efficiency, and the energy efficiency issue is
totally ignored. Thus, an adaptive energy-efficient IA algorithm for green IA-

based wireless networks can be considered as an interesting direction, too.
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Appendix A

APPENDIX A.1
DERIVATION OF M(6, a)
Proof: From the expression of M(0, @) in (3.13), we have
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therefore, the above equation is simplified as follows
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Hence, we have
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Appendix B

APPENDIX B.1
PROOF OF EQUATION 4.5
Proof: From (4.4), we have
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In each part, we have to calculate the Laplace transform of (I"f;(i)). We also

know that x™f(x) @ (- —— 4 Lf ©) . Therefore, we have
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APPENDIX B.2
PROOF OF EQUATION 4.10
Proof: From (4.9), we have

oi(r(5 5e)
)

We know that I'(a,x) +y(a,x) =T(a), and y(a,x) = x*T(a)e™ Y10

therefore, the above equation is simplified as follows

M@0,a) = foo

0

mrr mrr9
mpr

mr—lp 21F
mrr 9 g
0T (my )

xk

Ia+k+1)’

d

— k
- (_;) my p"F (mdFH) M mdF9 s (g”Q) k
J (g)mIF 1o -QIF -QdF Z aF
Q™ (my p)

Sr(-S+k+1)

d
a

dg

158



0
_r(-¢ mip (md'F ) * myp mgp6 [(md’F 9) 0
F( (1) mI'F Qg F 0 f (g)m”: 1 g<0111}:+ ﬂcj;: ) 'QdF—g
Q1T (my ) l r (1 B g)
mgqg 1 mqr 2 2
TaF 1 &
(-Qd,F 9) g (-Qd,F 0) 9 ]d

I I e

+

g

_a
(=) mem (ee) © |[ [ (gymrte s ) g
QI,FmI,F[‘(mLF) l 0 r (1 - g)

m m ’]
LF  Md,F )

mgr ! (myp+1)-1 _g<n 2
P ) 9) (g) IF e LF d,F

Oo( d,F
‘) ey

-d 0 m
—F(—g)m mp F(md.Fg) a (md,Fg) ( 21 Fq,F ) LF
a) LF 2qF QqF mypQq p+21Fmg Fo

e

I'(m +
-QI,FmI'FF(mI‘F) F(l—g) ( I'F)
(md,F )1( 21 pQqF )m"F *
2qF my Qg p+0Fmg po
a F(mI'F + 1) +
r(z-3)
a
Hence, we have
M(0, a)
ml,p+k
_r(_i)m my m”e m‘” SLrtar )
_ a) " LF ﬂdp -Qd F ml F24q,F+021rmar6 F(m
— IF
k O F IF]"(mIF) ) P <k+1——)
a

159



APPENDIX B.3
OUTAGE PROBABILITY EXPRESSION FOR NON-INTEGER mgr
Proof: From Section 4.3

For non-integer mg r, by using the infinite series representation of incomplete

Ilax) _ 1— y(a,x)
r(@ r(a)

gamma function presented in Appendix B.2 ( , and y(a,x) =

k
xT(a)e™™ Z,‘Z’:Oﬁ), and following the exact procedure as that in Section

4.3 (from (4.1) to (4.14))) to obtain the closed-form outage probability expression
for the tagged femto user, we obtain an exact but infinite summation expression
for the outage probability. In other words, we use the infinite series
representation of incomplete gamma not only for the interfering links calculations
but also for the desired link to obtain an expression in which the Nakagami-m
parameters of all the communication links (mgr, m;p and m;y) can take any
values (integer or non-integer) bigger than 0.5. Thus, considering the above

explanations we have
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The fractional derivative, the arbitrary order derivative, is used here to simplify
u

the above expression [140] (the notation D*(f(z)) = % denotes the uth

order fractional derivative of the function f(z) where u > 0). According to [140],

D#(z") (where y > —1) is equal to %27’_”, and we also have D”(cf(z)) =

cDH*(f(2)) (c is a constant value). Thus, we can write

o)

(Z)k+md,,:
— _1 k+md,F
Por kZO Mk +mgp+1) =D [

wr(0() 1) HE)-Gomer
01 (0 () = Gk mar) +1)
AT (1 (g) + 1) zl(g)—(kmdf) AT (2 (g) n 1) Zz(g)—(mmw)

1T (1(2) = (k +mge) +1) " r(2(%) - (k+mar)+1)
_|_]

+

and finally,

_ s (Z)k+md_p i had AR r (n (g) + 1) n(ﬂ)—(k+m )
Por = ;F(k Tt ;ﬁr GO -Gim 1)

where A is given by (4.15).
Similar expression can be obtained for the outage probability of the tagged macro

user.
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[2] Fereidoun H. Panahi and T. Ohtsuki, “A Fuzzy Q-Learning Based Sensing
Policy for Cognitive Radio Systems ,” in IEICE. RCS, Fukuoka, October, 2012.

[3] Fereidoun H. Panahi and T. Ohtsuki, “A Reinforcement Learning Based
Sensing Policy for Cognitive Radio Systems,” in IEICE. RCS, Tokyo, Feb.,
2013.

[4] Fereidoun H. Panahi and T. Ohtsuki, “Coverage Probability Analysis of
Cognitive Heterogeneous Cellular Networks Based on Stochastic Geometry,” in
IEICE. RCS, Hamamatsu, July, 2013.

[5] Fereidoun H. Panahi, T. Ohtsuki, W. Jiang, and T. Takatori, “A Riemannian
Optimization Based Interference Alignment for Multi-User MIMO Interference
Channels,” in IEICE. RCS, Hokkaido, June , 2015.

[6] Fereidoun H. Panahi, T. Ohtsuki, W. Jiang, T. Takatori, and K. Uehara, “A
Centralized Interference Alignment (IA) Design for Multi-User MIMO
Interference Channels,” in IEICE-BC'T, Hokkaido, Feb., 2016.

[7] Fereidoun H. Panahi, T. Ohtsuki, W. Jiang, T. Takatori, and K. Uehara,
“Interference Alignment for Multi-User MIMO Interference Channels Based on
Estimated Uplink Channels,” in IEICE-RCS, Tokyo, March, 2016.

[8] Fereidoun H. Panahi, T. Ohtsuki, W. Jiang, T. Takatori, and K. Uehara,
“Joint Interference Alignment Transceiver Filter Design and Power Allocation
for Downlink Multi-User MIMO Interference Channels,” in IEICE-RCS, Tokyo,
March, 2016.

C.4 Awards

[1] IEEE VTS Japan 2015 Young Researchers Encouragement Award (Awarded
paper: Fereidoun H. Panahi and T. Ohtsuki, “Analytical Evaluation of
Coverage Probability in Two-tier Cognitive Femto Networks,” in Proceedings
of the 2015 IEEE Vehicular Technology Conference (VTC2015-Spring), pp. 1-6,
Glasgow, Scotland, May 2015)
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C.5 Others
[1] JSPS Research Fellow (DC2) — JSPS Research Fellowship for Young Scientists

(April 2016 - September 2016)

[2] JSPS Post-doctoral Research Fellow (PD) — JSPS Post-doctoral Research
Fellowship for Young Scientists (September 2016 - March 2018)

[3] PhD Scholarship from Japan’s Ministry of Education and Technology
(Monbukagakusho-MEXT)

[4]  Master Scholarship from JGC-S  Scholarship Foundation (Nikki
Saneyoshi/Daisanshu), Japan

[5] NEC C&C Research Grant 2014 from NEC C&C Foundation (Japan)
[6] NEC C&C Research Grant 2013 from NEC C&C Foundation (Japan)

[7] Graduate School Doctoral Student Grant-in-Aid Program 2015, Keio
University (selection among all graduate schools)

[8] Graduate School Doctoral Student Grant-in-Aid Program 2014, Keio
University (graduate school recommendation)

[9] Keio Graduate School Scholarship 2013 (Administered by the Student Affairs
Center, Keio University)

[10] Keio Graduate School Scholarship 2011 (Administered by the Student Affairs
Center, Keio University)

[11] Research Assistant (RA), Keio University, Japan (December 2013 - March
2014)

[12] Honors Scholarship (JASSO)
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