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Chapter 2

Optimal Channel-Sensing Scheme for

Cognitive Radio Systems Based on

Fuzzy Q-Learning

2.1 Introduction

Energy detection is the most common approach to channel sensing [58]. This

is because of its low implementation complexity. One of the main drawbacks of

energy detectors is that they need a large amount of data in order to be able to

detect the signals at very low SNR values. This makes the sensing duration very long

to guarantee sufficiently low detection error probability [59], [60]. Typically, in the

periodic sensing strategy (where CR periodically senses the channel to monitor the

PU activity) (e.g., [58], [61], and [62]), after each sensing period 𝑇 , the energy detector

provides a real-valued test statistic as the result of energy detection. CR can make a

hard decision on the state of the PU (active or not) by comparing this test statistic

with a certain threshold. Thus, period 𝑇 must be long enough that PU activity can be

reliably detected and the final decision of PU activity is correct. Since the CR is not

allowed to transmit any data during a sensing period, a long sensing duration results in

low channel utilization and QoS for the CR network. Moreover, according to [10], [61],

and [63] in some environments, very short spectrum opportunities (spectrum holes)
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caused by fast PU state variations are available for the CR to exploit. Therefore,

the CR should frequently perform channel sensing in much shorter time intervals

to catch the fast variations in the PU state and consequently exploit these short

spectrum opportunities. On the other hand, because of the short sensing period, it

is difficult for the CR to make an accurate decision on the PU activity only from

the single test statistic (provided by the energy detector) over the sensing result.

Furthermore, since such sensing results are noisy, the CR has to combine multiple

factors (i.e. multiple sensing results) to provide reliable information regarding the

PU state after each sensing period and takes the test statistic into account only as a

soft “sensing result.”

Sequential decision-making is the cognitive process leading to the selection of

actions among variations at consecutive decision epochs (see Fig. 2.1). One-way

to automate the decision making process is to provide a model of dynamics for the

domain in which a machine will make decisions. A reward structure can be used

to motivate immediate decision that will maximize the future reward. The aim of

the decision-making algorithm is to maximize channel utilization for the CR while

restricting interference to the PU. To design the optimal algorithm that achieves such

goal, we use POMDP framework [64]. POMDP is an aid in the automated decision-

making. POMDP policy informs the CR what action to be executed. It can be a

function or a mapping and typically depends upon the channel state.

In summary, in each short sensing interval, the CR uses the energy detection

method to obtain knowledge about PU state. However, the CR does not rely only

on this knowledge and combines more soft sensing results to enhance adaptability

and adaptive decisions at the sequential decision epochs are made by the optimal

decision-making algorithm, which was designed by using the POMDP framework.

Indeed, a POMDP is equivalent to a MDP with a continuous state space [65], [66].

In this chapter, we formulate the channel sensing in the CR network as a POMDP

problem. This statistical-based sensing model uses a probabilistic, rather than deter-

ministic approach to design the optimal decision-making algorithm. In the POMDP

model decision, an agent (i.e. CR) tries to maximize some reward function in the
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face of limited and noisy information about its surrounding environment (i.e. PU).

Although POMDP has emerged as a powerful framework for modeling and optimizing

sequential decision making problems under uncertainty, achieving an optimal policy is

computationally very challenging [65], [67]. As mentioned before, POMDP is equiv-

alent to MDP with a continuous state space 𝑏, called belief state. Thus, a POMDP

policy is a mapping from a region in belief state space to an action. Not surprisingly

this is extremely difficult to construct and whilst some works make use of POMDP

framwork (e.g., [62], and [63]), they do not present solution algorithms for POMDP, or

their solutions do not scale to problems with continuous state space and multi-agent

domains. RL has now established itself as a major and powerful scheme to address

adaptive optimal control of uncertain systems and learn the optimal policy [17]. On

the other hand, fuzzy expert systems also have been extensively used in intelligent

control problems where mostly traditional methods have poor performance. With the

utilization of fuzzy theory in RL, we can enhance learning with more adaptation of

RL for continuous and multi-agent domains and speedup learning process [26]. In this

chapter, a FIS is also employed for generalizing a continuous belief space POMDP. We

propose a FIS-based RL controller with a FQL implementation to solve the POMDP

problem. FQL is an approach to learn a set of fuzzy rules by reinforcement. It is an

extension of the popular QL algorithm [68]. Learning fuzzy-rules makes it possible to

face problems where inputs are described by real-valued variables (continuous state

spaces), matched by fuzzy sets. Fuzzy sets play the role of the ordinal values used in

QL, thus making possible an analogous learning approach, but overcoming the limita-

tions due to the interval-based approximation needed by QL to face the same type of

problems. We will present the simulation results that show how the proposed scheme

for channel sensing achieves significant performance in terms of channel utilization

while restricting interference to the PU.

27



2.2 System Model

2.2.1 Model Description

Consider a frequency channel that the PU is licensed to use. The CR network

can access the channel whenever it is not occupied by the PU. A collision happens

if the CR network sends data on the channel currently being used by the PU. We

consider a small-scale network such as the wireless personal area network with a

“master node (MN)” in its center and “slave nodes (SNs)” attached to the MN, and

assume that all of them are adjusted to the same frequency channel, called “operating

channel,”. It should be noted that we do not consider the PU activities on frequency

channels other than the operating channel, because they are needed only for frequency

channel selection, to which we do not pay attention in this chapter. The MN performs

channel sensing on the operating channel when it is necessary (not periodically) and

the channel sensing process is monitored only by the MN, whereas the SNs do not. If

the PU is detected, then the MN switches the operating channel to another channel

and directs the SNs to move to the new operating channel [63]. Clearly, based on

the sensing results, the MN chooses the next appropriate action at each decision

epoch, and it informs the SNs from the chosen action by sending a control signal.

As soon as receiving the control signal, the SNs follow the order in it. Indeed, the

MN senses the operating channel and provides the SNs with information about the

PU activity, while user data are exchanged only by the SNs. To see the fundamental

performance of the proposed method and for simplicity of exposition, we ignore fading

and shadowing. It should be noted that in real communication environments, fading

and shadowing can deteriorate the spectrum sensing performance of the CR user and

cause interference to the PU, consequently. To solve this problem, cooperative sensing

method (multi-agent scenario) is usually introduced that can be considered as future

work.

2.2.2 System Structure

As stated, the MN chooses the next proper action at each decision epoch, which

occurs at the end of each action. The decision epoch is indexed by 𝑡(= 1, · · · ). The
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Fig. 2.1. A CR can make channel-sensing decisions over short time intervals

MN selects the appropriate action among “data transmission”, “stop data transmis-

sion”, and “channel switching”. In Section 2.3, we explain how this action is selected

by the MN. In the following we explain the operating modes of the CR network when

each decision is made by the MN.

1) Data Transmission: whenever the MN is convinced that the operating channel

is not occupied by the PU, it selects data transmission for the SNs. The SNs will be

aware of the MN’s decision upon receiving the control signal sent by the MN. Then

SNs immediately start to exchange user data by using the time-division multiple-

access (TDMA) approach. The SNs perform data transmission during a period 𝑇

(same as the sensing period for the MN) allocated by the MN in the received control

signal. During this period the MN will be quiet.

2) Stop Data Transmission: if the MN is not sure about the PU existence over

the operating channel, then it prefers to select stop data transmission. This decision

is clearly made to avoid from a probable collision with the PU. Similar to the case

which the selected action by the MN is data transmission, a control signal containing

the selected action and the allocated time interval is sent to the SNs, and thus the

SNs stop data transmission as soon as receiving the control signal and the MN starts

to do channel sensing for another 𝑇 period.

3) Channel Switching: when the MN realizes the PU existence with a high cer-

tainty, it selects channel switching and sends a control signal that orders the SNs to

switch the operating channel. We assume that it takes 𝑇𝑐 to complete the channel-

switching process and be ready to choose another action, since the CR nodes should

tune their frequency band and perform a synchronization process.
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2.3 Decision-Making Configuration

2.3.1 POMDP Formulation

In this section, we formulate the adaptive sensing, in the CR network as a POMDP

to design the optimal decision-making algorithm. A POMDP framework has been

investigated in [63], [64]. In [61], [62] it is shown that the PU activity can be modeled

as a Markov process with two states as 𝑠𝑡 ∈ {0, 1} where 𝑠𝑡 represents the state of

the operating channel (see Fig. 2.2). Empirical measurements taken in the 928-948

MHz paging band [69] and in 802.11b based wireless Local Area Network (WLAN)

([70], [71]) have also validated a Markovian pattern in the spectrum occupancy of

the PU. 𝑠𝑡 is 0 if the operating channel is vacant at 𝑡th decision epoch and 1 if the

operating channel is occupied by the PU at 𝑡th decision epoch. However, the CR

network does not know the true state of the PU and only infers it from noisy sensing

results. In such environments where the CR network’s information about the PU

activity is incomplete, the theory of POMDP will be the best candidate for modeling

the situation [64], [72]. To choose the appropriate action at each decision epoch,

“belief state” is calculated. Belief state is a probability distribution over the PU

state, which is prepared by the MN. In [64], it is shown that the belief state contains

all the necessary information for making an optimal decision. As depicted in Fig. 2.1,

at each decision epoch having this belief state, the MN selects an action among the

possible actions: data transmission, stop data transmission, and channel switching.

The belief state at each decision epoch is denoted by b𝑡 = (𝜋0,𝑡, 𝜋1,𝑡), where 𝜋𝑖,𝑡 is the

probability of state 𝑖 ( 𝑖 ∈ {0, 1}) at 𝑡th decision epoch. Note that the MN performs

channel sensing (using energy detection method) on the operating channel during a

period of which the length is 𝑇 and presents its obtained result as the observation

probability 𝑌𝑖,𝑒 in the belief state formula. We define 𝑌𝑖,𝑒 as the probability that the

MN receives 𝑒 as the observation in channel state 𝑖. The output of energy detector

with the sensing period 𝑇 immediately after the 𝑡th decision epoch is expressed as
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Fig. 2.2. The state-transition diagram of the PU

follows:

𝐸𝑡 =
1

𝑁0/2

𝑊𝑇∑︁
𝑗=1

|𝑦𝑗,𝑡|2 (2.1)

where 𝑦𝑗,𝑡 denotes the 𝑗th signal sample in the sensing period 𝑇 after the 𝑡th decision

epoch, and 𝑁0 is the noise spectral density used for normalization and assumed to

be known from the MN viewpoint. 𝑊 is the bandwidth of the frequency channel.

According to [10], [63] the sensing result obtained by the energy detection method

follows the chi-square distribution with 2𝑊𝑇 degrees of freedom if the PU is inac-

tive. If the PU is active, then the sensing result follows the non-central chi-square

distribution with the same degrees of freedom as that of the case that PU is inactive

and the non-central parameter of 2𝑃𝑇/𝑁0, where 𝑃 is the power of the received PU

signal. Fig. 2.3 shows the probability mass functions (pmf’s) of the simulation sens-

ing results when the PU is inactive and active. Therefore, the observation probability

denoted by 𝑌𝑖,𝑒 can be easily calculated from the pmf’s of the sensing results. Besides

the observation probability that is a soft sensing result, the other factor in the belief

state formula is the state transition probability of the PU. Let 𝑃𝑖,𝑗 (𝑖, 𝑗 ∈ {0, 1})

be the state transition probability of the PU from state 𝑖 to state 𝑗. We may first

assume that the MN is aware of the state transition probability as in [62] and [63].

In practice, this may not be achievable. The problem then becomes one of POMDP

with unknown transition probability. In Section 2.5, we completely explain how the

state transition probability of the PU is estimated. We also assume that the PU’s

state can change only once during each 𝑇 period.

From now on, we will explain how the belief state is calculated. As mentioned before,

the belief state b𝑡 is inferred by the MN at the 𝑡th decision epoch on the basis of the

previous actions and observations. After the 𝑡th decision epoch, the decision-making
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algorithm updates b𝑡 to b𝑡+1 on the basis of the selected action at the 𝑡th decision

epoch and the received observation during the period 𝑇 after the 𝑡th decision epoch.

If the selected action is data transmission, then the SNs exchange the user data for

the 𝑇 period and the MN will be quiet in this period and receives a null observation

(no sensing result). In this case, the belief state formula evolves according to the

state transition probability. That is, the algorithm updates the belief state based on

the assumed Markovian evolution as follows:(︃
1∑︁

𝑖=0

𝑃𝑖,0𝜋
𝑖,

1∑︁
𝑖=0

𝑃𝑖,1𝜋
𝑖

)︃
. (2.2)

If the selected action is stop data transmission, then the SNs stop transmitting

data for the 𝑇 period, and the MN performs sensing (energy detection) during this

period. Therefore, besides the state transition, the sensing result of energy detection

in the form of the observation probability is also taken into account by using Bayes’

theorem as follows:(︃
𝑌0,𝑒

∑︀1
𝑖=0 𝑃𝑖,0𝜋

𝑖

𝑓
,
𝑌1,𝑒

∑︀1
𝑖=0 𝑃𝑖,1𝜋

𝑖

𝑓

)︃
(2.3)

𝑓 = 𝑌0,𝑒

1∑︁
𝑖=0

𝑃𝑖,0𝜋
𝑖 + 𝑌1,𝑒

1∑︁
𝑖=0

𝑃𝑖,1𝜋
𝑖. (2.4)

From (2.3) and (2.4) and Fig. 2.3, we can see that for example, the belief that

the state of PU is 1 (i.e., 𝜋1,𝑡) increases as the quantized value of the sensing result

increases. This corresponds to the fact that a high value of the sensing result indicates

a high probability that the channel is occupied (clearly, a low probability that the

channel is idle). Thus, the soft sensing result (energy detection result) is well taken

into account in updating the belief vector and has an important role in making the

final decision. The goodness of the POMDP framework is that even in the case of a

sensing error observed in the energy detection result, the decision making algorithm

can still make a reliable decision (relying on the other soft sensing results) compared
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to the case when this energy detection result is used as the only available information

in making the final decision. However, it is clear that a better performance of the

energy detection method, results in more accurate decisions for the CR. If the action

is channel switching, then the CR network moves to the next channel. In this case, the

probability distribution over the PU state (belief state) converges to the stationary

probability 𝜂. The proposed approach is easily applicable to multi-agent POMDP

domains (with two or more MNs) wherein each MN maintains a belief simultaneously

and communicates it to a central FIS (it can be via communication by wire) at each

decision epoch, which forms a fuzzy mapping of the belief space of the underlying

multi-agent POMDP. This fuzzy belief mapping is then used to solve a sequence of

Bayesian games to generate an approximate optimal joint policy which is executed

by each agent (i.e. MN). Under this joint action, each MN updates his own belief

and the whole system receives a signal that indicates the goodness of executing the

joint action (joint reward). This signal is then used to tune q-values to reflect the

consequence of taking that joint action as per standard QL.

2.3.2 Solution to POMDP

We define the total discounted reward of the MN as
∑︀∞

𝑡=1 𝛾
𝑡 𝑟𝑡, where 𝑟𝑡 is con-

sidered as the reward of the MN at 𝑡th decision epoch and 𝛾 ∈ (0, 1) is a discount

factor. In the discounted reward model, we are given a discount factor 𝛾, and the

goal is to maximize total discounted reward collected, where reward for an action

taken at decision epoch 𝑡 is discounted by 𝛾𝑡. The discount rate has two roles: (i)

it determines the present value of future rewards: a reward received t time steps in

the future is worth only 𝛾𝑡 times what it would be worth if it were received immedi-

ately (i.e., discounting to prefer earlier rewards), (ii) it keeps the total reward finite

which is useful for infinite horizon problems. This modeling approach is motivated

by an approximation to a planning problem in the MDP framework under the com-

monly employed infinite horizon (the number of decision epochs indicates the horizon

length) discounted reward optimality criterion [17]. In other words, to encourage

the agent to perform the tasks that we want, and to do so in a timely manner, a
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commonly employed aggregate reward objective function is the infinite horizon dis-

counted reward. The approximation arises from a need to deal with exponentially

large state spaces (i.e., large number of decision epochs). As stated before, to enable

an appropriate action by the MN, belief state is calculated at each decision epoch.

Each MN’s action which is based on the belief state is determined by a “policy”. A

policy is a mapping between state and action (where state can be belief state as our

case). Among the policies, we should exploit the optimal policy that maximizes the

total discounted reward. The fact is that actions taken by the MN do not affect

the evolution of the channel state. Thus, in finding the optimal policy, no recursive

procedures are required. According to the aforementioned references, a POMDP can

be seen as a continuous-space “belief MDP” as the MN’s belief is encoded through a

continuous “belief state”. We may solve this belief MDP using dynamic programming

(DP) algorithm such as value iteration to extract the optimal policy over a continuous

state space [73]. However, it is too difficult to solve the continuous space MDPs with

this algorithm. Unfortunately, DP updates cannot be carried out, because there are a

huge number of belief states. One cannot enumerate every equation of value function.

The QL algorithm, one of the approaches to RL [17], [68] is capable of learning the

optimal policy that maps belief state to an action. The major drawback of the QL

algorithm is that the original algorithm cannot deal with continuous and multi-agent

domains [27].

In the situations that we deal with a continuous state and also when the input state

space dimension is large, the classical approaches such as QL for solving RL problem

are not so practical, and are usually intractable to represent since they require mainly

large memory tables as “look-up tables”. These kinds of problems are called curse of

dimensionality and will be treated by means of more advanced RL techniques and

generalization approaches over the input state [26], [27]. Generalization techniques

allow compact representation of learned knowledge instead of using look-up tables.

In short as the name suggests they use the concept of generalizing and extending the

learned skills over similar situations, states and actions. Generalization methods are

based on function approximation techniques from machine-learning field. One of the
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Fig. 2.3. The obtained pmf’s for the simulation sensing results when the PU is
inactive and active. 𝑊 = 1 MHz, 𝑇 = 0.1 ms, and the SNR of the PU signal is -10
dB

generalization techniques that is more accurate and powerful is fuzzy logic. To address

the aforementioned difficulties (𝑁 -dimensional real-valued domains), we propose to

employ the FQL algorithm that combines fuzzy logic with the QL algorithm [27], [28].

In summary, the utilization of fuzzy theory in RL is to improve learning with more

adaptation of RL for continuous and multi-agent domains and to accelerate learning

process. In the FQL algorithm, the controlled system is presented as a FIS.

2.3.3 Fuzzy Q-Learning (FQL) Design

Fuzzy approximation architecture plays a crucial role in our approach. It domi-

nates the computational complexity of the FQL, as well as the accuracy of the method.

There exist two systems for fuzzy inference, which are denoted as: Takagi-Sugeno type

FIS and Mamdani type FIS. A Takagi-Sugeno type FIS has fuzzy inputs and a crisp

ouput (i.e., linear combination of the inputs). Mamdani type FIS has fuzzy inputs

and a fuzzy output. This study would apply the Takagi-Sugeno type inference to

predict the action type taken by the MN. In this chapter, we will refer to zero-order
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Takagi-Sugeno FISs, since the other type (first-order) calls for a lot more computa-

tional cost than zero-order, besides adding more complexity [74]. In the FQL, the

FIS is presented by a set of rules 𝑅 with a rule 𝑗 ∈ 𝑅 defined as:

IF (𝑏1 𝑖𝑠 𝐿1
𝑗) . . . AND (𝑏𝑛 𝑖𝑠 𝐿𝑛

𝑗 ) . . . AND (𝑏𝑁 𝑖𝑠 𝐿𝑁
𝑗 ) THEN 𝑜𝑗 with 𝑞(𝐿𝑗, 𝑜𝑗).

𝐿𝑛
𝑗 is the linguistic label (fuzzy label) of the input variable 𝑏𝑛 (𝑛th component of

an 𝑁 -dimensional belief state vector b = [𝑏1, . . . , 𝑏𝑛, . . . , 𝑏𝑁 ]) participating in the 𝑗th

rule. 𝑜𝑗 is an possible output action of the 𝑗th rule while 𝑞(𝐿𝑗, 𝑜𝑗) denotes its cor-

responding q-value. We build the FIS with competing actions 𝑜𝑗 for each rule. A

schematic diagram for the FQL architecture and its interaction with the environment

can be observed in Fig. 2.4. The learning agent has to find the best conclusion for

each rule, i.e. the action with the best q-value among the possible discrete actions for

each rule. The q-values are zeroed initially and are not significant in the first stages

of the learning process. In order to explore the set of possible actions and acquire

experience through the reinforcement signals (rewards), the actions for each rule are

selected using an exploration exploitation policy (EEP) as [17]. The 𝜀-greedy method

is used as the EEP policy for choosing the actions:⎧⎪⎨⎪⎩
𝑜𝑗 =argmax

𝑘∈𝐴
𝑞(𝐿𝑗, 𝑜𝑘) : 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑜𝑗 =random
𝑘∈𝐴

(𝑜𝑘) : 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀
(2.5)

where 𝜀 determines the tradeoff between exploration and exploitation, and 𝐴 is the

set of all possible actions for each rule or for each component 𝑏𝑛 of the input belief

state vector b. As stated above, the rule 𝑗 is defined by the intersection (with respect

to a T-Norm) of fuzzy sets along each dimension 𝐿1
𝑗 , . . . , 𝐿

𝑁
𝑗 with the truth degrees

𝜇𝐿1
𝑗
(𝑏1), . . . , 𝜇𝐿𝑁

𝑗
(𝑏𝑁) (where 𝜇𝐿1

𝑗
(𝑏1) and 𝜇𝐿𝑁

𝑗
(𝑏𝑁) are the membership functions, re-

spectively defined on the first and the last component of the input belief state vector

b in rule 𝑗) and the T-Norm is implemented by product. Hence, the degree of truth

in the fuzzy logic terminology (or the membership of the vector b) for rule 𝑗 can be
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written as follows:

𝛼𝑗 (b) =
𝑁∏︁

𝑛=1

𝜇𝐿𝑛
𝑗

(𝑏𝑛). (2.6)

Furthermore, the following normalization condition should be satisfied:

∑︁
𝑗∈𝑅

𝛼𝑗 (b) = 1. (2.7)

Next, the relation between the inferred action (the output action of the FIS that will

be executed at the decision epoch) for an input belief state vector b, and the applied

rule actions 𝑜𝑗, is derived as:

𝑎(b) =
∑︁
𝑗∈𝑅

𝛼𝑗 (b) 𝑜𝑗 (2.8)

where the summation is performed over all rules. For the obtained inferred action

𝑎(b), a Q-function is also approximated by the FIS output, which is inferred from the

quality (q-value) of the local discrete actions that constitute the global continuous

action 𝑎(b). Under the same assumptions used for generation of 𝑎(b), the Q-function

is calculated as:

𝑄(b, 𝑎(b)) =
∑︁
𝑗∈𝑅

𝛼𝑗 (b) 𝑞 (𝐿𝑗, 𝑜𝑗) . (2.9)

We use the value function for the input belief state vector b defined here as:

𝑉 (b) =
∑︁
𝑗∈𝑅

𝛼𝑗 (b) max
𝑘∈𝐴

𝑞 (𝐿𝑗, 𝑜𝑘) . (2.10)

In order to update the q-values, ∆𝑄 is defined as the variation of the quality𝑄(b, 𝑎(b)),

in other words, the difference between the old and new values of 𝑄(b, 𝑎(b)). Denote

by 𝑐 the new input belief state vector after taking the action 𝑎(b) for the input belief

state vector b, and receiving the reward 𝑟 from the environment (the natural reward

for RL methods in CR tasks such as spectrum sensing, is related to the CR user’s
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Fig. 2.4. Interaction between the FQL module and the environment (“Environment”
is a term that is used to refer to anything outside the sensing device. Here, the
received reward is related to the CR user’s throughput)

throughput. This information may be easily obtained during the online operation of

the CR system). ∆𝑄 is calculated by:

∆𝑄 = 𝑟 + 𝛾𝑉 (𝑐) −𝑄(b, 𝑎(b)). (2.11)

Now, the update equation for the q-values is given by (2.12). The symbol 𝑡 is added

to highlight the time dependency in the update equation.

𝑞𝑡+1 (𝐿𝑗, 𝑜𝑗) = 𝑞𝑡 (𝐿𝑗, 𝑜𝑗) + 𝜅𝛼𝑗

(︀
b𝑡
)︀

(𝑟𝑡 + 𝛾𝑉 𝑡
(︀
b𝑡+1

)︀
−𝑄𝑡(b𝑡, 𝑎(b𝑡)) (2.12)

where 𝜅 is a learning rate. We remind that 𝑞𝑡 (𝐿𝑗, 𝑜𝑗) are the q-values associated to

the chosen actions 𝑜𝑗 in all rules. Here, to summarize the FQL-based channel sensing

process, an iterative procedure is prepared as can be observed as Table 2.1. Moreover,

to clarify the FIS unit structure as well as its rule over the channel sensing process, see

the example drawn in Fig. 2.5 which presents the FIS model for a 2-dimensional belief

state vector b = [𝑏1, 𝑏2] as the input for the FIS. As mentioned before, the inferred
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Fig. 2.5. Structure of the FIS model with 2-dimensional belief state vector

action 𝑎(b) is the output of the FIS. Obviously, under the same assumptions used for

generation of 𝑎(b), the other output for the FIS (i.e. the Q-function: 𝑄(b, 𝑎(b)) can

be obtained. As shown in Fig. 2.5, for a 2-dimensional belief state vector, 9 fuzzy

rules are expected (each color erepresents one rule).

2.4 Simulation Results

2.4.1 FIS Unit Configurations

In this section, we consider a single agent POMDP, including only one MN (and

its associated SNs). Therefore, the input belief state vector for the FIS is b = [𝑏1]. As

mentioned, the simulation results can be easily extended to a multi-agent POMDP

problem with the input belief state vector b = [𝑏1, . . . , 𝑏𝑛, . . . , 𝑏𝑁 ] which requires some

consideration about the type of cooperation between the MNs. As stated, we focus on

a single agent POMDP with b = [𝑏1]. The problem has therefore two states, “0” (the

PU is inactive in the operating channel) and “1” (the PU is active in the operating

channel). Thus, 𝑏1 = (𝜋0,𝑡, 𝜋1,𝑡), where as mentioned before, 𝜋𝑖,𝑡 is the probability of

state 𝑖 at 𝑡th decision epoch. Since 𝜋1,𝑡 = 1−𝜋0,𝑡 we can use only one probability 𝜋1,𝑡
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Fig. 2.6. Three fuzzy sets for the belief state

to specify 𝑏1 and the belief state vector is thus specified by b = [𝑏1 = 𝜋1,𝑡]. The belief

space for the MN is specified by [0 1] (a continuous space). Here, we partition the

belief state b into three fuzzy subsets thereby generating three rules (Note that for

a multi-agent POMDP with b = [𝑏1, . . . , 𝑏𝑛, . . . , 𝑏𝑁 ], we have 3𝑁 rules). It should be

noted that, more detailed partitions yield exponentially growing state space (rule base

size), elongating the adaptation time, and dramatically increasing the computational

resource demand, while less detailed partitions (containing only a few member fuzzy

sets) could cause less approximation accuracy, or unadaptable situation. Therefore,

there is a tradeoff between the computational complexity and approximation accuracy,

regarding the number of the fuzzy sets.

Linguistic terms for these fuzzy sets are (L, M, H), where L stands for “low”, M is

“medium” and H stands for “high”. As depicted in Fig. 2.6, the membership function

(fuzzy sets) for the belief state b is assumed to be the standard Gaussian membership

function [27]. The use of various types of membership functions (e.g., linear func-

tions, triangular, trapezoidal and smoother functions such as the symmetric Gaussian

function) can affect the performance of the fuzzy logic controller and corresponding
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Table 2.1. The iterative procedure adapted for FQL-based channel sensing

*Initialize 𝑞(𝐿𝑗, 𝑜𝑘) for all 𝑗 ∈ 𝑅 and 𝑘 ∈ 𝐴.
For each decision epoch 𝑡 do the following:
*Observe the belief state vector b𝑡.
*Calculate the degree of truth of the belief state
vector 𝛼𝑗(b

𝑡) for all rules ((2.6)).
*For each rule select an action 𝑜𝑗 using the EEP policy ((2.5)).
*Compute the inferred action 𝑎(b𝑡) and its corresponding
quality 𝑄(b𝑡, 𝑎(b𝑡)) ((2.8) and (2.9), respectively).
*Execute the action 𝑎(b𝑡) and observe the new belief
state vector b𝑡+1.
*Receive the reinforcement signal (reward) 𝑟𝑡.
*Calculate the degree of truth of the new belief state vector
𝛼𝑗(b

𝑡+1) for all rules ((2.6)).
*Calculate the value function of the new belief state vector ((2.10)).
*Calculate the variation of the quality ∆𝑄 ((2.11)).
*Update the elementary quality 𝑞(𝐿𝑗, 𝑜𝑗) for each rule 𝑗 ∈ 𝑅 and
the chosen action 𝑜𝑘, 𝑘 ∈ 𝐴 ((2.12)).

change in the system output (FQL output, i.e., the inferred action learned by the

MN) when we change the type of the membership function on the same system.

However, the selection of membership function type is out of the scope of this thesis.

As mentioned, in this thesis, we use Gaussian function which is more preferable as

it provides better smoothness and easy to describe the generation of new fuzzy rules

[27]. It should be noted that the inferred action 𝑎(b) as the output of the FIS is

applied to the environment by the MN. However, since 𝑎(b) is a continuous action,

its value may not be an integer while this value specifying the action’s type (Data

Transmission, Stop Data Transmission or Channel Switching) for the MN, should be

an integer. Thus, we use the round off principle to quantize the value of 𝑎(b) to an

integer. A “collision” occurs between the PU and the CR network when the CR nodes

(as the SNs related to the MN in the presented model) transmit data while the oper-

ating channel is occupied by the PU. Reinforcement signal (reward) 𝑟 penalizes the

CR network whenever a collision occurs between the CR network and the PU. In this

case, the CR network is penalized by a negative fixed value, i.e. −5. Accordingly, if

the CR network performs channel switching whether the PU is active or inactive over

the operating channel, the penalty value is −0.5. Note that if less-frequent channel
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switching is preferred for stability, a more negative value can be chosen. The reward

𝑟 should be a positive value when user data are successfully transmitted by the SNs

without collision, i.e. +5. On the other hand, If stop data transmission (regardless

the PU state) is chosen, then the time is consumed without transmitting any data,

and therefore 𝑟 should be zero. The values of the rewards can be varied to control

the tradeoff between the channel utilization and the collision probability. For exam-

ple, we can reduce the collision probability at the expense of channel utilization by

decreasing the value of 𝑟 from +5 to +2 [27].

2.4.2 Numerical Evaluations

To show the performance of the FQL algorithm and its supremacy against the

QL algorithm, different figures were depicted. The main goal is that the CR network

has to avoid any collision with the PU and at the same time achieving the maximum

channel utilization. Indeed, the “channel utilization” is defined as the proportion of

time in which the CR networks successfully exchange data without collision with the

PU. In other words, the final purpose is to maximize the total discounted reward.

This value is a figure of merit for the quality of the learned policy, i.e., how much

reward the CR accumulates while following the optimal policy. The parameter values

used in this chapter are 𝜅 = 0.8, 𝛾 = 0.995, 𝜀 = 0.3, 𝜂 = 0.5, 𝑇𝑐 = 1 ms, 𝑇 = 0.1 ms

and the SNR of the PU signal is -10 dB (the optimal values of the FQL parameters

can be obtained with the help of a genetic algorithm without any prior information

as in [75]). The transition probability 𝑃𝑖,𝑗 is also governed by the following matrix:

⎛⎝ 𝑃0,0 𝑃0,1

𝑃1,0 𝑃1,1

⎞⎠ =

⎛⎝ 0.98 0.02

0.02 0.98

⎞⎠ . (2.13)

Furthermore, in the EEP strategy, we gradually reduce the value of exploration pa-

rameter 𝜀 after each decision epoch using the following equation:

𝜀 = 𝜀× 0.995. (2.14)
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Fig. 2.7 shows the reward accumulation results for the FQL and QL algorithms

as well as a random selection method (where the action regarding the MN’s belief

state at each decision epoch is selected randomly). As shown in this figure, the FQL

achieves the highest sum of discounted reward. Clearly, use of the FIS decision unit

allows the agent to quickly and efficiently achieve the optimal policy. Thus, using the

FQL, the CR network can accumulate more reward while following the optimal policy.

Realization of such high performance is an indicator of the quality of learned policy.

Fig. 2.8 illustrates the collision probability between the PU and the CR network. The

“collision probability” is defined as the proportion of time in which the CR network

transmits data when the operating channel is in use by the PU. Results show that

the collision probability when the FQL algorithm is used for discovering the optimal

policy is always lower than that when the QL is used. As it is seen in this figure, at

the beginning of the learning process (at the initial decision epochs), whenever the

PU is in active state or appears in the operating channel, the collision probability

is high, and this is because of the wrong decisions made by the CR network from

lack of experience regarding the PU state. However, as time goes on and the optimal

policy is discovered by the MN (using the RL algorithms), the collision probability

is low even in those times that the PU is active or appears in the operating channel.

Fig. 2.9 (a), (b) and (c) respectively shows the PU activity on the operating channel

(of course, the MN is unaware of the PU activity, but can learn it using the RL),

the instantaneous reward gained by the CR network equipped with the QL and the

instantaneous reward gained by the CR network equipped with the FQL. Indeed,

the instantaneous reward gives more information about the higher performance of

the FQL. The FQL based scheme for the CR network got more rewards and fewer

penalties, since use of FIS allows the CR network to quickly and stably zero-in on the

optimal policy. As a result, higher channel utilization and lower collision probability

are achieved.
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Fig. 2.7. Total discounted reward of different strategies

2.5 Estimation of the State Transition Probabilities

To obtain the simulation results in Figs. 2.7, 2.8 and 2.9, we assumed that the

state transition probabilities (𝑃𝑖,𝑗) of the PU (in the belief state formula) are known

to the CR as in different studies (e.g., [62], and [63]), which is in most cases not

true in the real world. Hence, even though the concept of sensing is valid literally, its

practical application is severely limited [76], [77]. Thus quite realistically, the channel

state transition probabilities are assumed to be unknown. On the other hand, during

the whole operation time, the channel state transition probabilities are assumed to

be constant; and these values are estimated by the CR network. These transition

probabilities can be estimated using the Baum-Welch Algorithm (BWA) [78], which

is basically a derived form of the Expectation Maximization (EM) algorithm for hid-

den Markov models (HMMs) [78]. The concept of an HMM extends directly from

Markov models, with the observation being a probabilistic function of the state. An

HMM is a doubly embedded stochastic process with an underlying process that is

not observable (the hidden state), but can only be observed through another set of

stochastic process that produces the sequence of observations [78]. Though a Markov
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Fig. 2.8. The collision probability comparison: FQL vs. QL.

chain is appropriate in modeling the PU’s channel access pattern, the true states of

the PU are never known to the CR at any particular sampling instant. What the

CR network can observe directly is some signal “emitted” from a particular state

(The received PU signal). The received signal fits into a hidden Markov model [79].

The Baum-Welch algorithm can be employed to process input observation sequences

(received at the MN) and generate parameters of HMMs. Training is usually done

offline. The parameters of the HMM are obtained after the training phase and stored

for future use. In other words, the state transition probabilities of the PU (as one of

the HMM’s parameters) are estimated first, and then it will be used in the POMDP

framework, as previously described. The general approach is to train the model

with the observation data using some iterative procedure until its convergence. More

specifically, the parameter set 𝜆 = (𝐴, 𝐵, 𝜋) would be initialized with appropriate

guesses at first; a set of transition probabilities 𝐴 = {𝑝𝑖,𝑗}, 𝑖, 𝑗 ∈ {0, 1}, 𝐵 = 𝑏𝑖(𝑌𝑡) is

the observation symbol probability (also called emission probability) distribution in

state 𝑖 (𝑖 ∈ {0, 1}) which can be easily obtained from the pmf’s of the sensing results

(we will use 𝑌𝑡 to denote the observation symbol at time 𝑡), and finally 𝜋 is the initial
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(a) (b) (c)

Fig. 2.9. (a) The PU activity on the operating channel. (b) Instantaneous reward for
the QL based CR network. (c) Instantaneous reward for the FQL based CR network.

state probabilities 𝜋 = {𝜋𝑖}, 𝑖 ∈ {0, 1}. Then a set of re-estimation formula would be

repeatedly used in a number of iterations so that the parameter set could gradually

approach to the ideal values where the occurrence possibility of the observation se-

quence is maximized. Let 𝜉𝑡 (𝑖, 𝑗) be the probability of the HMM being in state 𝑖 at

time 𝑡 and making a transition to state 𝑗 at time 𝑡+1, given the appropriate guesses

of the model 𝜆 = (𝐴, 𝐵, 𝜋) and observation sequence Y = {𝑌1, 𝑌2, ... , 𝑌𝑇} as the

partial observation sequence received at the CR network (The signal received at time

𝑡 (observation symbol, 𝑌𝑡) at the CR, is a noisy version of the PU’s actual signal,

i.e., 𝑌𝑡 = 𝑠𝑡𝑋𝑡 + 𝑈𝑡 where 𝑋𝑡 is the PU’s signal, and 𝑈𝑡 is modeled as additive white

Gaussian noise (AWGN) with mean zero and variance 𝜎2):

𝜉𝑡 (𝑖, 𝑗) = 𝑃 (𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗|Y, 𝜆) . (2.15)

With the first-order Markov assumption, the received samples in the observation

sequence are conditionally independent given the state sequence. In other words, the

probability distribution of generating current observation symbol depends only on the

current channel state, i.e.,

𝑃 (Y|s, 𝜆) =
∏︁ 𝑇

𝑡=1
𝑃 (𝑌𝑡|𝑠𝑡, 𝜆) (2.16)
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where s = {𝑠1, 𝑠2, ... , 𝑠𝑇} denotes the hidden channel state sequence. Using Bayes

law and the independency assumption, (2.15) follows:

𝛼𝑡 (𝑖) 𝑝𝑖,𝑗𝑏𝑗 (𝑌𝑡+1) 𝛽𝑡+1(𝑗)

𝑃 (Y|𝜆)
(2.17)

𝛼𝑡 (𝑖) = 𝑃
(︀
𝑠𝑡 = 𝑖, Y(𝑡)|𝜆

)︀
, 𝛽𝑡(𝑖) = 𝑃 (Y*(𝑡)|𝑠𝑡 = 𝑖, 𝜆) and 𝑃 (Y|𝜆) are forward proba-

bilities, backward probabilities and observation probability (the pmf’s of the observa-

tion sequenceY given the parameter set 𝜆), respectively, whereY(𝑡) = {𝑌1, ... , 𝑌𝑡} is

the partial observation sequence up to time 𝑡 and Y*(𝑡) = {𝑌𝑡+1, ... , 𝑌𝑇}, the partial

time series beyond time 𝑡. Therefore, 𝛼𝑡 (𝑖) is the probability of partial observations

up to time 𝑡 and in state 𝑖 at time 𝑡. 𝛼𝑡 (𝑖) is proportional to the likelihood of the

past observations and can be solved recursively according to:

𝛼1 (𝑖) = 𝑃 (𝑌1; 𝑠𝑡 = 𝑖) = 𝜋𝑖𝑏𝑖(𝑌1) (2.18)

𝛼𝑡 (𝑖) =
∑︁

𝑗∈{0,1}

[𝛼𝑡−1 (𝑗) 𝑝𝑗,𝑖]𝑏𝑖 (𝑌𝑡) (2.19)

for 2 ≤ 𝑡 ≤ 𝑇 . In a very similar manner, 𝛽𝑡 (𝑖) is the probability of the partial

observation sequence from 𝑌𝑡+1 to the end produced by all state sequences that start

at the 𝑖th state. By definition, 𝛽𝑇 (𝑖) = 1. 𝛽𝑡 (𝑖) is proportional to the likelihood of

the future observations and can be solved recursively according to:

𝛽𝑡 (𝑖) =
∑︁

𝑗∈{0,1}

𝛽𝑡+1 (𝑗) 𝑝𝑖,𝑗𝑏𝑗 (𝑌𝑡+1) (2.20)

for 𝑡 = 𝑇 − 1, 𝑇 − 2, ..., 1. Finally, the normalization factor 𝑃 (Y|𝜆) can be calculated

in the following ways:

𝑃 (Y|𝜆) =
∑︁

𝑖∈{0,1}

𝛼𝑇 (𝑖) (2.21)
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𝑃 (Y|𝜆) =
∑︁

𝑖∈{0,1}

𝜋𝑖𝑏𝑖 (𝑌1) 𝛽1 (𝑖) (2.22)

𝑃 (Y|𝜆) =
∑︁

𝑖∈{0,1}

𝛼𝑡 (𝑖) 𝛽𝑡 (𝑖) (2.23)

for any 1 ≤ 𝑡 ≤ 𝑇 . Thus the desired probability is simply computed by summing all

the forward and backward products as in (2.23). The recursive computation structure

of the forward probabilities is illustrated in the trellis of Fig. 2.10. We also define

𝛾𝑡(𝑖) as the probability of being in state 𝑖 at time 𝑡 given the observation sequence Y

and the model 𝜆, then it can be proven:

𝛾𝑡 (𝑖) = 𝑃 (𝑠𝑡 = 𝑖|Y, 𝜆)

𝛾𝑡 (𝑖) =
𝑃 (𝑠𝑡 = 𝑖,Y|𝜆)

𝑃 (Y|𝜆)

𝛾𝑡 (𝑖) =
𝑃
(︀
𝑠𝑡 = 𝑖,Y(𝑡)|𝜆

)︀
𝑃 (Y*(𝑡)|𝑠𝑡 = 𝑖, 𝜆)

𝑃 (Y|𝜆)

𝛾𝑡 (𝑖) =
𝛼𝑡 (𝑖) 𝛽𝑡 (𝑖)

𝑃 (Y|𝜆)
. (2.24)

Note that

𝑇−1∑︁
𝑡=1

𝛾𝑡 (𝑖) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖. (2.25)

𝑇−1∑︁
𝑡=1

𝜉𝑡 (𝑖, 𝑗) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗. (2.26)

48



𝛾𝑡(𝑖) is shown to be related to 𝜉𝑡 (𝑖, 𝑗) by

𝛾𝑡 (𝑖) =
2∑︁

𝑗=1

𝜉𝑡 (𝑖, 𝑗) . (2.27)

With the above definitions, we can outline the Baum-Welch re-estimation formula:

𝜋̂𝑖 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 1

= 𝛾1 (𝑖) (2.28)

𝑃𝑖,𝑗 =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑗

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖

=

∑︀𝑇−1
𝑡=1 𝜉𝑡 (𝑖, 𝑗)∑︀𝑇−1
𝑡=1 𝛾𝑡 (𝑖)

=

∑︀𝑇−1
𝑡=1 𝛼𝑡 (𝑖) 𝑝𝑖,𝑗𝑏𝑗 (𝑌𝑡+1) 𝛽𝑡+1(𝑗)∑︀𝑇−1

𝑡=1 𝛼𝑡 (𝑖) 𝛽𝑡 (𝑖)
(2.29)

𝑏̂𝑖(𝑚)=
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑈𝑚

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖

=

∑︀𝑇
𝑡=1, 𝑌𝑡=𝑈𝑚

𝛾𝑡 (𝑖)∑︀𝑇
𝑡=1 𝛾𝑡 (𝑖)

(2.30)

where 𝑈𝑚 is the𝑚th symbol in the observation alphabet (here we have two observation

symbols (active and inactive) in alphabet size representing the PU state). Suppose

we have an initial guess of the parameters of the HMM 𝜆0 = (𝐴0, 𝐵0, 𝜋0) and several

sequences of observations, then using (2.25) and (2.26), we can calculate the expected

values of transition properties of the Markov Chain (the Expectation step of EM algo-

rithm). Then the maximum likelihood estimation of the model is computed through

the recursive usage of (2.28)-(2.30) (the Maximization step of EM algorithm). It can

be proven [80] that after each iteration and gaining a new parameters of the HMM,

the received observation sequences can be better explained by the new model. The 𝜆

is iteratively re-estimated until it converges to a limit point. It should be remembered

that the Baum-Welch method leads to a local maximum of 𝜆 only. In practice, to get
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a good solution, the initial guess 𝜆0 is very important. Usually several sets of starting

guesses of 𝜆0 are used and one with the greatest likelihood value is chosen. Laird

suggested a grid search method [80] which divides the searching domain into small

grids and starts from each of the intersections. Leroux and Puterman argue that the

grid method would generate too many initial points when high dimensional spaces

are involved. They suggest a clustering algorithm and a simple implementation can

be found in [81]. The independence assumption we made was between the symbols

of the single observation sequence Y = {𝑌1, 𝑌2, ... , 𝑌𝑇}. We consider a short time

window to collect symbols in an observation sequence. Symbols collected within a

short time window on the PU activity have negligible correlation as shown in [81].

Therefore, the independence assumption made between the symbols in an observa-

tion sequence is to facilitate the mathematical computations and it is a reasonable

assumption. However, the major problem with the estimation method is that only

a single observation sequence (from a short time window) to train the model is not

enough [78]. Hence, in order to have sufficient data to make acceptable estimates of

the parameter set 𝜆, we have to use multiple observation sequences. On the other

hand, the most important issue is that for a set of observation sequences in a real and

practical system, one cannot say these observation sequences are independent from

each other [83]. Generally speaking, in real scenarios, these observation sequences

are statistically correlated. A controversy can arise if one assumes the independence

property while these observation sequences are statistically correlated. Now let us

consider a set of observation sequences from a pattern class:

O = {Y(1 ),Y(2 ), ... ,Y(L)} (2.31)

where

Y(𝑙) = {𝑌 (𝑙)
1 , 𝑌

(𝑙)
2 , ... , 𝑌

(𝑙)
𝑇 }, 1 ≤ 𝑙 ≤ 𝐿 (2.32)
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Without loss of generality we have the following expressions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑃 (O|𝜆) = 𝑃
(︀
Y(1)|𝜆

)︀
𝑃
(︀
Y(2)|Y(1), 𝜆

)︀
... 𝑃

(︀
Y(𝐿)|Y(𝐿−1) ... Y(1), 𝜆

)︀
𝑃 (O|𝜆) = 𝑃

(︀
Y(2)|𝜆

)︀
𝑃
(︀
Y(3)|Y(2), 𝜆

)︀
... 𝑃

(︀
Y(1)|Y(𝐿) ... Y(2), 𝜆

)︀
...

𝑃 (O|𝜆) = 𝑃
(︀
Y(𝐿)|𝜆

)︀
𝑃
(︀
Y(1)|Y(𝐿), 𝜆

)︀
... 𝑃

(︀
Y(𝐿−1)|Y(𝐿)Y(𝐿−2) ... Y(1), 𝜆

)︀
(2.33)

Based on the above expressions, it is easy to see that the multiple observation sequence

probability can be expressed as a combination of individual observation probabilities,

i.e.,

𝑃 (O|𝜆) =
𝐿∑︁
𝑙=1

𝑤𝑙𝑃
(︀
Y(𝑙)|𝜆

)︀
(2.34)

in which,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑤1 = 1
𝐿
𝑃
(︀
Y(2)|Y(1), 𝜆

)︀
... 𝑃

(︀
Y(𝐿)|Y(𝐿−1) ... Y(1), 𝜆

)︀
𝑤2 = 1

𝐿
𝑃
(︀
Y(3)|Y(2), 𝜆

)︀
... 𝑃

(︀
Y(1)|Y(𝐿) ... Y(2), 𝜆

)︀
...

𝑤𝐿 = 1
𝐿
𝑃
(︀
Y(1)|Y(𝐿), 𝜆

)︀
... 𝑃

(︀
Y(𝐿−1)|Y(𝐿)Y(𝐿−2) ... Y(1), 𝜆

)︀
(2.35)

are weights. These weights are conditional probabilities and hence they can char-

acterize the dependence-independence property. Based on the above equations, the

modification of corresponding re-estimation equations in (2.28), (2.29) and (2.30) are

respectively as follows [83]

𝜋̂𝑖 =

∑︀𝐿
𝑙=1𝑤𝑙𝑃

(︀
Y(𝑙)|𝜆

)︀
𝛾𝑙
1(𝑖)∑︀𝐿

𝑙=1 𝑤𝑙𝑃 (Y(𝑙)|𝜆)
(2.36)
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Table 2.2. Transition probabilities estimation as a function of the data set for
training model (at SNR = −2 dB)

Original Parameter 𝑃𝑖,𝑗 Test set 1(300 data) Test set 2(1000 data) Test set 3(5000 data)(︂
0.98 0.02
0.02 0.98

)︂ (︂
0.7114 0.2886
0.3415 0.6585

)︂ (︂
0.8000 0.2000
0.2544 0.7456

)︂ (︂
0.9300 0.0700
0.0821 0.9179

)︂

(a) (b)

Fig. 2.10. (a) Implementation of Computation of 𝛼𝑡(𝑖) in terms of a lattice of obser-
vations 𝑡, and states 𝑖. (b) Computing the forward probabilities.

𝑃𝑖,𝑗 =
∑︀𝐿

𝑙=1 𝑤𝑙𝑃(Y(𝑙)|𝜆)
∑︀𝑇𝑙−1

𝑡=1 𝛼𝑙
𝑡(𝑖)𝑝𝑖,𝑗𝑏𝑗

(︁
𝑌

(𝑙)
𝑡+1

)︁
𝛽𝑙
𝑡+1(𝑗)∑︀𝐿

𝑙=1 𝑤𝑙𝑃(Y(𝑙)|𝜆)
∑︀𝑇𝑙−1

𝑡=1 𝛼𝑙
𝑡(𝑖)𝛽

𝑙
𝑡(𝑖)

(2.37)

𝑏̂𝑖(𝑚) =

∑︀𝐿
𝑙=1𝑤𝑙𝑃

(︀
Y(𝑙)|𝜆

)︀∑︀𝑇𝑙

𝑡=1, 𝑌𝑡=𝑈𝑚
𝛼𝑙
𝑡(𝑖)𝛽

𝑙
𝑡 (𝑖)∑︀𝐿

𝑙=1𝑤𝑙𝑃 (Y(𝑙)|𝜆)
∑︀𝑇𝑙

𝑡=1 𝛼
𝑙
𝑡(𝑖)𝛽

𝑙
𝑡 (𝑖)

(2.38)

However, in [78] the author assumes that each observation sequence is independent

from every other sequence, i.e.,

𝑃 (O|𝜆) =
𝐿∏︁
𝑙=1

𝑃
(︀
Y(𝑙)|𝜆

)︀
(2.39)

Figs. 2.11, 2.12, 2.13 and 2.14 illustrate the following: without any a priori infor-

mation about the channel characteristics, even in a very transient environment, it is

quite possible to achieve reasonable estimates of channel state transition probabilities

with a practical and simple implementation. They show the estimates of the channel
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transition probabilities as a function of the SNR parameter for the observation set

with a length of 1000. It is important to note that the estimates improve by increasing

the SNR values, hence allowing better performance for the proposed sensing method

in the previous sections. We initialized 𝜆0 = (𝐴0, 𝐵0, 𝜋0) as follows:

𝜆0 =(

⎛⎝ 0.85 0.15

0.1 0.9

⎞⎠ ,

⎛⎝ 1 0

0 1

⎞⎠ , (𝜋0 =0.2 𝜋1 =0.8))

Clearly, the estimates also improve as the data set for the training model increases

(see Table 2.2). As seen in Table 2.2, the parameter of SNR is not the only factor

affecting the accuracy of estimation. Table 2.2 shows the accuracy of the estimates

according to the length of the data set. We can see that the estimates become more

and more accurate as the data set for the training model increases. In this example,

we can get sufficiently accurate estimates from 5,000 training data even at a low SNR

value of -2dB.

Fig. 2.11. Transition probabilities 𝑃0,0 estimation
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Fig. 2.12. Transition probabilities 𝑃0,1 estimation

Fig. 2.13. Transition probabilities 𝑃1,0 estimation
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Fig. 2.14. Transition probabilities 𝑃1,1 estimation

2.6 Conclusion

In this chapter, we have proposed a learning based scheme for channel sensing

in partially-sensed CR network. We introduced a novel fuzzy RL control scheme

in the POMDP framework to successfully address time and complexity issues. In

particular, the CR network’s channel sensing scheme is formulated as a POMDP, and

the optimal policy is determined by a powerful approach such as the FQL algorithm.

Using our proposed sensing scheme, the CR network can significantly improve its own

spectral efficiency and reduce the probability of interfering with the PU. Simulation

results show that high spectrum utilization and very low sensing error probability are

achieved via the maximization of the total discounted reward. We have also shown

that without any a priori information about the channel characteristics, even in a very

transient environment, it is quite possible to achieve reasonable estimates of channel

state transition probabilities.
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𝑃𝑑 𝑃𝑓

𝑃𝑑 = 1

𝑃𝑓 = 0 𝑃𝑑 ≠ 1

𝑃𝑓 ≠ 0

𝐷



 
 

 

𝑝𝑂𝐹

𝜃

𝜃

𝑝𝑂𝐹 = 1 − 𝑃[SINR > 𝜃]                                                        (3.1) 

SINR =
𝑃𝐹ℎ𝐹𝑟𝐹

−𝛼

𝜎2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵
                                                          (3.2) 

𝑃𝐹

𝑟𝐹

𝛼



 
 

 

 𝐼𝐹𝐵 𝐼𝑀𝐵  

𝜎2

𝑃𝐹

ℎ𝐹~ exp (𝜇)  1/𝜇

𝑃[SINR > 𝜃] = 𝑃 [
𝑃𝐹ℎ𝐹𝑟𝐹

−𝛼

𝜎2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵
> 𝜃]                                                

=̈ 𝑃 [ℎ𝐹 > (𝜎2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵)
𝜃𝑟𝐹

𝛼

𝑃𝐹
]        

                     =⃛ E𝐼𝐹𝐵,𝐼𝑀𝐵
[∫ [𝜇 exp(−𝜇𝑥)]

∞

(𝜎2+𝐼𝐹𝐵+𝐼𝑀𝐵)
𝜃𝑟𝐹

𝛼

𝑃𝐹

d𝑥]       

                = E𝐼𝐹𝐵,𝐼𝑀𝐵
[exp [−𝜇(𝜎2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵)

𝜃𝑟𝐹
𝛼

𝑃𝐹
]]                     (3.3)   

∙∙ ∙∙∙

ℎ𝐹 E𝐼𝐹𝐵,𝐼𝑀𝐵
[∙]

𝐼𝐹𝐵 𝐼𝑀𝐵

 𝑃[SINR > 𝜃] = 𝑒
−𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
𝜎2

. E𝐼𝐹𝐵
[𝑒

−𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹
𝐼𝐹𝐵

] . E𝐼𝑀𝐵
[𝑒

−𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹
𝐼𝑀𝐵

]   

 = 𝑒
−𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
𝜎2

. ℒ𝐼𝐹𝐵
(𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
) . ℒ𝐼𝑀𝐵

(𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹
)                        (3.4) 

ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠) 𝐼𝐹𝐵

𝐼𝑀𝐵 𝑠 𝑠 = 𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹

𝑝𝑂𝐹 = 1 − E𝑟𝐹
[𝑃[SINR > 𝜃]]        



 
 

 

𝑝𝑂𝐹 = 1 − ∫ [𝑃[SINR > 𝜃]]. 𝑓𝑟𝐹
(𝑟𝐹)

∞

0

d𝑟𝐹                               (3.5) 

𝑓𝑟𝐹
(𝑟𝐹) = 𝑒−λ𝐹𝜋𝑟𝐹

2
2𝜋λ𝐹𝑟𝐹 𝑟𝐹

𝑟𝐹

𝑝𝑂𝐹 = 1 − ∫ 𝑒−𝜋λ𝐹𝑟𝐹
2
.

∞

0

𝑒
−𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
𝜎2

. ℒ𝐼𝐹𝐵
(𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
) . ℒ𝐼𝑀𝐵

(𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹
) . 2𝜋𝑟𝐹λ𝐹 d𝑟𝐹    (3.6) 

𝑃𝑑 = 1 𝑃𝑓 = 0 :

𝑝𝑅𝐵

E𝐼𝑀𝐵
[𝑒

−𝜇
𝜃𝑟𝐹

𝛼

𝑃𝐹
𝐼𝑀𝐵

] = 1 ℒ𝐼𝑀𝐵
(𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
) = 1

𝑝𝑂𝐹 = 1 − ∫ 𝑒−𝜋λ𝐹𝑟𝐹
2
.

∞

0

𝑒
−𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
𝜎2

. ℒ𝐼𝐹𝐵
(𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
) . 2𝜋𝑟𝐹λ𝐹 d𝑟𝐹 .                 (3.7) 



 
 

 

𝑓𝑏𝑠0

𝐷

𝜆𝐹
′ ≤ λ𝐹

    ℒ𝐼𝐹𝐵
(𝑠) = E𝐼𝐹𝐵

[exp(−𝑠𝐼𝐹𝐵)]                                                          

 = EΦ𝐹,𝑔𝑖
[exp(−𝑠 ∑ 𝑃𝐹𝑔𝑖𝑅𝑖

−𝛼
𝑖∈Φ𝐹 \{𝑓𝑏𝑠0} )]  

= EΦ𝐹
[∏ E𝑔𝑖

[exp(−𝑠𝑃𝐹𝑔𝑖𝑅𝑖
−𝛼)]

𝑖∈Φ𝐹\{𝑓𝑏𝑠0}
]                       (3.8) 

𝑅𝑖 𝑖

Φ𝐹 𝑔𝑖

𝑃𝐹

𝑓(𝑥)

E[∏ 𝑓(𝑥)]𝑥∈Φ = exp (− ∫ (1 − 𝑓(𝑥))λ d𝑥
ℝ𝑑 )

ℒ𝐼𝐹𝐵
(𝑠) = exp {−E𝑔 [∫ (1 − exp(−𝑠𝑃𝐹𝑔𝑅−𝛼))𝜆𝐼(𝑅)d𝑅

∞

𝑟𝐹
]}                    (3.9)  

𝑟𝐹

𝑟𝐹 ∞

ℝ𝑑\𝑏(0, 𝑟𝐹) 𝑏(𝑥, 𝑦)

y 𝑥

Φ𝐹

𝜆𝐼(𝑅) = 𝜆𝐹
′ 𝑑𝑅𝑑−1𝑏𝑑                                                      (3.10) 



 
 

 

𝑅

𝑏𝑑 ℝ𝑑 𝑏𝑑 =
√𝜋𝑑

Г(1+𝑑
2⁄ )

, Г(𝑥) =

∫ 𝑡𝑥−1𝑒−𝑡 d𝑡
∞

0

 

𝑝𝑅𝐵

𝑝𝑅𝐵

 

𝑝𝑡𝑥

1 − 𝑝𝑡𝑥

Φ𝐹 Φ𝐹

Φ𝐹

Φ𝐹 𝑝𝑅𝐵 Φ𝐹

𝑝𝑅𝐵

𝜆𝐼(𝑅) = 𝜆𝐹
′ 𝑑𝑅𝑑−1𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥                                                     (3.11) 

          exp {−𝐸𝑔 [∫ (1 − exp(−𝑠𝑃𝐹𝑔𝑅−𝛼))𝜆𝐹
′ 𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝑑𝑅𝑑−1𝑑𝑅

∞

𝑟𝐹

]} . 

 



 
 

 

𝑅𝑑 → 𝑥 𝑥
𝛼

𝑑 → 𝑦

ℒ𝐼𝐹𝐵
(𝑠) = 𝑒𝑟𝐹

𝑑𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹
′ −

𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (𝜇𝜃)
𝑑
𝛼𝑟𝐹

𝑑𝑀(𝜃,𝛼)                          (3.12) 

𝑀(𝜃, 𝛼) = E [(𝑔)
𝑑

𝛼 (Г (−
𝑑

𝛼
, 𝜇𝜃𝑔) − Г (−

𝑑

𝛼
))]                                    (3.13)

Г(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡 d𝑡
∞

𝑥

𝑑 = 2 𝑟𝐹
2 𝑧

𝑝𝑂𝐹 = 1 − ∫ 𝑒
𝜋𝑧(𝜆𝐹

′ 𝑝𝑅𝐵𝑝𝑡𝑥−λ𝐹)−
𝜇𝜃

𝑃𝐹
𝜎2𝑧

𝛼
2−

2

𝛼
𝜋𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (𝜇𝜃)
2
𝛼𝑧𝑀(𝜃,𝛼)

.
∞

0

𝜋λ𝐹 d𝑧        (3.14)

𝑀(𝜃, 𝛼) = E [(𝑔)
2

𝛼 (Г (−
2

𝛼
, 𝜇𝜃𝑔) − Г (−

2

𝛼
))]

𝜎2 → 0

𝛼 = 4

𝑝𝑂𝐹 = 1 −
λ𝐹

(λ𝐹 − 𝜆𝐹
′ 𝑝𝑅𝐵𝑝𝑡𝑥) +

𝜆𝐹
′ (𝑝𝑅𝐵𝑝𝑡𝑥)

2
√𝜇𝜃𝑀(𝜃, 4)

.                        (3.15)

𝜇

𝑀(𝜃, 𝛼) 𝑝𝑂𝐹

𝑝𝑂𝐹 = 1 −
λ𝐹

(λ𝐹 − 𝜆𝐹
′ 𝑝𝑅𝐵𝑝𝑡𝑥) + √𝜋𝜆𝐹

′ (𝑝𝑅𝐵𝑝𝑡𝑥)𝜇 [∑
(𝜇𝜃)𝑘

Г(𝑘+
1

2
)(𝜇+𝜇𝜃)𝑘+1

∞
𝑘=0 Г(1 + 𝑘)]

. (3.16)



 
 

 

𝑃𝑑 ≠ 1 𝑃𝑓 ≠ 0 :

𝑝𝑅𝐵

𝑝𝑅𝐵

ℒ𝐼𝑀𝐵
(𝜇

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

ℒ𝐼𝑀𝐵
(𝑠) = E𝐼𝑀𝐵

[exp(−𝑠𝐼𝑀𝐵)]                                               

= EΦ𝑀,𝐺𝑖
[exp(−𝑠 ∑ 𝑃𝑀𝐺𝑖𝐿𝑖

−𝛼
𝑖∈Φ𝑀 )]     

= EΦ𝑀
[∏ E𝐺𝑖

[exp(−𝑠𝑃𝑀𝐺𝑖𝐿𝑖
−𝛼)]

𝑖∈Φ𝑀

]                           (3.17)

𝐿𝑖 𝑖th

Φ𝑀 𝐺𝑖

𝑃𝑀



 
 

 

ℒ𝐼𝑀𝐵
(𝑠) = exp{−E𝐺[∫ (1 − exp(−𝑠𝑃𝑀𝐺𝐿−𝛼))𝜆𝐼(𝐿)d𝐿

∞

0
]}.                      (3.18)

ℝ𝑑\𝑏(0, 0) ℝ𝑑

Φ𝑀

𝜆𝐼(𝐿) = 𝜆𝑀
′  𝑑𝐿𝑑−1𝑏𝑑                                                        (3.19)

𝐿

𝜆𝑀
′

exp {−E𝐺 [∫ (1 − exp(−𝑠𝑃𝑀𝐺𝐿−𝛼))𝜆𝑀
′ 𝐿𝑑−1𝑏𝑑𝑑𝐿𝑑−1d𝐿

∞

0

]} .

ℒ𝐼𝑀𝐵
(𝑠)

ℒ𝐼𝑀𝐵
(𝑠) = 𝑒

−𝑏𝑑𝜆𝑀
′ Г(1−

𝑑

𝛼
)(

𝑃𝑀𝜇𝜃

𝑃𝐹
)

𝑑
𝛼

𝑟𝐹
𝑑E[(𝐺)

𝑑
𝛼]

.                                    (3.20)

𝑑 = 2 𝑟𝐹
2 𝑧

𝜎2 → 0

𝑝𝑂𝐹 = 1 − ∫ 𝑒
−𝜋[(λ𝐹−𝜆𝐹

′ 𝑝𝑅𝐵𝑝𝑡𝑥)+
2

𝛼
𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (𝜇𝜃)
2
𝛼𝑀(𝜃,𝛼)−𝜆𝑀

′ (
𝑃𝑀𝜇𝜃

𝑃𝐹
)

𝑑
𝛼

𝑁(𝛼)]𝑧

.
∞

0

𝜋λ𝐹 d𝑧 (3.21)

𝑀(𝜃, 𝛼) = E [(𝑔)
2

𝛼 (Г (−
2

𝛼
, 𝜇𝜃𝑔) − Г (−

2

𝛼
))] 𝑁(𝛼) = Г (1 −

𝑑

𝛼
) E [(𝐺)

𝑑

𝛼]



 
 

 

𝛼 = 4

𝑝𝑂𝐹 = 1 −
𝜆𝐹

(𝜆𝐹−𝜆𝐹
′ 𝑝𝑅𝐵𝑝𝑡𝑥)+

𝜆𝐹
′ (𝑝𝑅𝐵𝑝𝑡𝑥)

2
√𝜇𝜃𝑀(𝜃,4)+𝜆𝑀

′ 𝑁(4)√
𝑃𝑀𝜇𝜃

𝑃𝐹

.                           (3.22)

𝜇 𝜇𝑝

𝑀(𝜃, 𝛼)

𝑁(𝛼)

𝑝𝑂𝐹 𝛼 = 4

𝑝𝑂𝐹 = 1 −
𝜆𝐹

(𝜆𝐹 − 𝜆𝐹
′ 𝑝𝑅𝐵𝑝𝑡𝑥) + √𝜋𝜆𝐹

′ (𝑝𝑅𝐵𝑝𝑡𝑥)𝜇 [∑
(𝜇𝜃)𝑘

Г(𝑘+
1

2
)(𝜇+𝜇𝜃)𝑘+1

∞
𝑘=0 Г(1 + 𝑘)] +

𝜋𝜆𝑀
′

2√𝜇𝑝
√

𝑃𝑀𝜇𝜃

𝑃𝐹

.     (3.23)

𝑝𝑂𝑀

𝛾

𝛾

𝑝𝑂𝑀 = 1 − 𝑃[SINR > 𝛾]                                                      (3.24)

SINR =
𝑃𝑀ℎ𝑀𝑟𝑀

−𝛼

𝜎2 + 𝐼𝑀𝐵 + 𝐼𝐹𝐵
                                                      (3.25)



 
 

 

𝑃𝑀

𝑟𝑀 𝛼

 𝐼𝐹𝐵 𝐼𝑀𝐵 

𝜎2

𝑃𝑀

ℎ𝑀~ exp (𝜇𝑝)  1/𝜇𝑝

𝑝𝑂𝑀 = 1 − ∫ 𝑒−𝜋λ𝑀𝑟𝑀
2
.

∞

0

𝑒
−𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
𝜎2

. ℒ𝐼𝐹𝐵
(𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
) . ℒ𝐼𝑀𝐵

(𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
) . 2𝜋𝑟𝑀λ𝑀 d𝑟𝑀   (3.26)

 ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠) 𝐼𝐹𝐵

𝐼𝑀𝐵 𝑠 𝑠 = 𝜇𝑝
𝛾𝑟𝑀

𝛼

𝑃𝑀

𝑃𝑑 = 1 𝑃𝑓 = 0 :

ℝ𝑑\𝑏(0, 𝑟𝑀)

𝑝𝑂𝑀 = 1 − ∫ 𝑒−𝜋λ𝑀𝑟𝑀
2
.

∞

0

𝑒
−𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
𝜎2

. ℒ𝐼𝑀𝐵
(𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
) . 2𝜋𝑟𝑀λ𝑀 d𝑟𝑀                (3.27)



 
 

 

ℒ𝐼𝑀𝐵
(𝑠)

ℒ𝐼𝑀𝐵
(𝑠) = exp {−E𝑔𝑝

[∫ (1 − exp(−𝑠𝑃𝑀𝑔𝑝𝑊−𝛼))𝜆𝐼(𝑊)d𝑊
∞

𝑟𝑀

]}                    (3.28)

𝜆𝐼(𝑊) = 𝜆𝑀
′  𝑑𝑊𝑑−1𝑏𝑑                                                          (3.29)

𝑊

Φ𝑀 𝜆𝑀
′

𝑔𝑝

𝑃𝑃

ℒ𝐼𝑀𝐵
(𝑠) = 𝑒𝑟𝑀

𝑑𝑏𝑑𝜆𝑀
′ −

𝑑

𝛼
𝑏𝑑𝜆𝑀

′ (𝜇𝑝𝛾)
𝑑
𝛼𝑟𝑀

𝑑𝑉(𝛾,𝛼).                                       (3.30)

𝑝𝑂𝑀 = 1 −
𝜆𝑀

𝜆𝑀−𝜆𝑀
′ +

𝜆𝑀
′

2 √𝜇𝑝𝛾𝑉(𝛾,4)
                                                      (3.31)

𝑉(𝛾, 𝛼) = E [(𝑔𝑝)
2

𝛼 (Г (−
2

𝛼
, 𝜇𝑝𝛾𝑔𝑝) − Г (−

2

𝛼
))]

𝜇𝑝 𝑉(𝛾, 𝛼)

𝑀(𝜃, 𝛼) 𝑝𝑂𝑀

𝛼 = 4



 
 

 

𝑝𝑂𝑀 = 1 −
𝜆𝑀

𝜆𝑀 − 𝜆𝑀
′ + √𝜋𝜆𝑀

′ 𝜇𝑝 [∑
(𝜇𝑝𝛾)

𝑘

Г(𝑘+
1

2
)(𝜇𝑝+𝜇𝑝𝛾)

𝑘+1
∞
𝑘=0 Г(1 + 𝑘)]

           (3.32)

𝑃𝑑 ≠ 1 𝑃𝑓 ≠ 0 :

ℒ𝐼𝐹𝐵
(𝜇𝑝

𝛾𝑟𝑀
𝛼

𝑃𝑀
)

ℒ𝐼𝐹𝐵
(𝑠)

ℒ𝐼𝐹𝐵
(𝑠) = exp {−E𝐺𝑝

[∫ (1 − exp(−𝑠𝑃𝐹𝐺𝑝𝑈−𝛼))𝜆𝐼(𝑈)d𝑈
∞

𝐾𝑟𝑀

]} .                  (3.33)

𝐾𝑟𝑀

𝐾𝑟𝑀 ∞

ℝ𝑑\

𝑏(0, 𝐾𝑟𝑀)

 

𝑝𝑅𝐵 𝑝𝑅𝐵



 
 

 

 

𝜆𝐼(𝑈) = 𝜆𝐹
′ 𝑑𝑈𝑑−1𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥                                                         (3.34)

ℒ𝐼𝐹𝐵
(𝑠) = 𝑒

𝐾𝑑𝑟𝑀
𝑑𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ −
𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (𝜇𝑝
𝑃𝐹𝛾

𝑃𝑀
)

𝑑
𝛼

𝑟𝑀
𝑑𝑂(𝛾,𝛼)

                           (3.35)

𝑂(𝛾, 𝛼) = E [(𝐺𝑝)
𝑑

𝛼 (Г (−
𝑑

𝛼
,
𝜇𝑝𝛾𝑃𝐹𝐺𝑝

𝐾𝛼𝑃𝑀
) − Г (−

𝑑

𝛼
))].

𝑝𝑂𝑀 = 1 −
𝜆𝑀

𝜆𝑀+𝜆𝑀
′ [

√𝜇𝑝𝛾𝑉(𝛾,4)

2
−1]+𝜆𝐹

′ 𝑝𝑅𝐵𝑝𝑡𝑥

[
 
 
 
 √

𝜇𝑝𝛾

𝑃𝑀
𝑂(𝛾,4)

2
−𝐾2

]
 
 
 
 
.                                (3.36)

𝜇

𝜇𝑝

𝑉(𝛾, 4) 𝑂(𝛾, 4) 𝑝𝑂𝑀

𝑝𝑂𝑀 = 1

−
𝜆𝑀

𝜆𝑀 − 𝜆𝑀
′ + √𝜋𝜆𝑀

′ 𝜇𝑝 [∑
(𝜇𝑝𝛾)

𝑘

Г(𝑘+
1

2
)(𝜇𝑝+𝜇𝑝𝛾)

𝑘+1
∞
𝑘=0 Г(1 + 𝑘)] + 𝜆𝐹

′ 𝑝𝑅𝐵𝑝𝑡𝑥𝐾2 [𝜇√
𝜋

𝑃𝐹
[∑

(
𝜇𝑝𝛾𝑃𝐹

𝐾4𝑃𝑀
)

𝑘

Г(𝑘+
1

2
)(𝜇+

𝜇𝑝𝑃𝐹

𝐾4𝑃𝑀
𝛾)

𝑘+1
∞
𝑘=0 Г(1 + 𝑘)] − 1]

.    (3.37)



 
 

 

𝑝𝑅𝐵

𝑝𝑅𝐵

𝑃𝑑 = 1 𝑃𝑓 = 0 :

𝑖th

𝑝𝑅𝐵 𝑖th

𝑝𝑅𝐵∣𝑀𝑠
= 𝑝𝑖𝑑𝑙𝑒(𝑀𝑠).

( 𝑀−1
𝑀𝑠−1

)

( 𝑀
𝑀𝑠

)
. (

1

𝑀𝑠
)                                             (3.38)

𝑝𝑖𝑑𝑙𝑒(𝑀𝑠) =
( 𝑀

𝑀𝑠
) ( 𝑁−𝑀

𝑁𝑠−𝑀𝑠
)

( 𝑁
𝑁𝑠

)
.                                                         (3.39)

𝑝𝑖𝑑𝑙𝑒(𝑀𝑠) 𝑀𝑠

𝑇𝑆

𝑖th 𝑀𝑠

𝑖th 𝑀𝑠
1

𝑀𝑠
𝑀𝑠

 

𝑀𝑠 = 0 𝑀𝑠 min{𝑀, 𝑁𝑠}

                                               𝑝𝑅𝐵 = 𝑝𝑅𝐵∣(𝑀𝑠≥1) =
1

𝑀
𝑝𝑖𝑑𝑙𝑒(𝑀𝑠 ≥ 1)

=
1

𝑀
(1 − 𝑝𝑖𝑑𝑙𝑒(𝑀𝑠 = 0)).                                             (3.40)



 
 

 

𝑁𝑠

𝑁 − 𝑀 + 1 𝑁𝑠

𝑝𝑖𝑑𝑙𝑒(𝑀𝑠 = 0) = 0 𝑁𝑠 𝑁 − 𝑀

𝑁𝑠

𝑝𝑖𝑑𝑙𝑒(𝑀𝑠 = 0) = {

(𝑁−𝑀
𝑁𝑠

)

( 𝑁
𝑁𝑠

)
,                   𝑖𝑓 𝑁𝑠 ≤ 𝑁 − 𝑀        

0,                            𝑖𝑓 𝑁𝑠 ≥ 𝑁 − 𝑀 + 1.

                         (3.41)

𝑖

𝑝𝑅𝐵 = {

1

𝑀
(1 −

(𝑁−𝑀
𝑁𝑠

)

( 𝑁
𝑁𝑠

)
) ,             𝑖𝑓 𝑁𝑠 ≤ 𝑁 − 𝑀        

1

𝑀
,                                    𝑖𝑓 𝑁𝑠 ≥ 𝑁 − 𝑀 + 1.

                                   (3.42)

𝑃𝑑 ≠ 1 𝑃𝑓 ≠ 0 :

𝑖th

𝑝𝑅𝐵 𝑖th

𝑛th 𝐷𝑛 (𝑛 ∈  {1, 2, … , 𝑁})

𝐷𝑛 = 1 𝑛th 𝐷𝑛 = 0

1 − 𝑃𝑓

1 − 𝑃𝑑

Pr(𝐷𝑛 = 1) = {
𝑉0 = 1 − 𝑃𝑓 ,            if 𝑛th RB is idle

𝑉1 = 1 − 𝑃𝑑 ,          if 𝑛th RB is busy
                             (3.43)

𝑃𝑓



 
 

 

𝑃𝑓(𝜏) = 𝒬(√2𝜂 + 1𝒬−1(𝑃𝑑) + √𝜏𝑓𝑠𝜂)                                        (3.44)

𝒬(𝑥) =
1

√2𝜋
∫ exp (

−𝑡2

2
)

∞

𝑥
d𝑡 𝑃𝑑 𝜏

𝑓𝑠 𝜂

𝑖th

Pr(𝐷𝑖 = 1) = 𝑉0

𝑖th

𝑝𝑅𝐵

𝑖th 𝑀𝑠 𝑁𝑠

𝑇𝑆

Pr(the 𝑖th idle RB is sensed ǀ 𝑀𝑠) = 𝑝𝑖𝑑𝑙𝑒(𝑀𝑠).
( 𝑀−1

𝑀𝑠−1
)

( 𝑀
𝑀𝑠

)
                       (3.45)

𝑝𝑖𝑑𝑙𝑒(𝑀𝑠) =
( 𝑀

𝑀𝑠
) ( 𝑁−𝑀

𝑁𝑠−𝑀𝑠
)

( 𝑁
𝑁𝑠

)
.                                                  (3.46) 

𝑀𝐷 𝑀𝑠 𝑖th

             Pr(𝐷𝑖 = 1 ∣ 𝑀𝑠, 𝑀𝐷)

 

             = Pr(𝐷𝑖 = 1) . Pr ( ∑ 𝐷𝑛 = 𝑀𝐷 − 1 ∣ 𝑀𝑠

𝑛≠𝑖,𝑛∈𝛷

) 

= 𝑉0 ×

[
 
 
 
 
 

∑ [(
𝑀𝑠 − 1

𝑚𝐼𝐷 − 1
) (𝑉0)𝑚𝐼𝐷−1

min{𝑀𝐷,𝑀𝑠}

𝑚𝐼𝐷=max{1,𝑀𝐷−(𝑁𝑠−𝑀𝑠)}

(1 − 𝑉0)𝑀𝑠−𝑚𝐼𝐷

. (
𝑁𝑠 − 𝑀𝑠

𝑚𝑂𝐷
) . (𝑉1)𝑚𝑂𝐷(1 − 𝑉1)𝑁𝑠−𝑀𝑠−𝑚𝑂𝐷]

]
 
 
 
 
 

      (3.47)



 
 

 

 𝛷

𝑚𝐼𝐷 𝑚𝑂𝐷 𝑚𝑂𝐷 𝑀𝐷 − 𝑚𝐼𝐷

Pr(𝐷𝑖 = 1 ∣ 𝑀𝑠, 𝑀𝐷) =

[
 
 
 
 
 

∑ [(
𝑀𝑠 − 1

𝑚𝐼𝐷 − 1
) (𝑉0)𝑚𝐼𝐷

min{𝑀𝐷,𝑀𝑠}

𝑚𝐼𝐷=max{1,𝑀𝐷−(𝑁𝑠−𝑀𝑠)}

(1 − 𝑉0)𝑀𝑠−𝑚𝐼𝐷

. (
𝑁𝑠 − 𝑀𝑠

𝑀𝐷 − 𝑚𝐼𝐷
) . (𝑉1)𝑀𝐷−𝑚𝐼𝐷(1 − 𝑉1)𝑁𝑠−𝑀𝑠−𝑀𝐷+𝑚𝐼𝐷]

]
 
 
 
 
 

  (3.48)

𝑀𝐷 𝑖th

𝑖th
1

𝑀𝐷

𝑖th

𝑝𝑅𝐵∣𝑀𝑠,𝑀𝐷
= Pr(the 𝑖th idle RB is sensed ∣ 𝑀𝑠) ×

1

𝑀𝐷
× Pr(𝐷𝑖 = 1 ∣ 𝑀𝑠, 𝑀𝐷).   (3.49)

𝑝𝑅𝐵 = ∑ ∑ 𝑝𝑅𝐵∣𝑀𝑠,𝑀𝐷

𝑁𝑠

𝑀𝐷=1

min{𝑁𝑠,𝑀}

𝑀𝑠=max{1,𝑁𝑠−(𝑁−𝑀)}

.                                    (3.50)

𝑖th

𝑝𝑅𝐵 𝑖th

𝑖th

𝑝𝑅𝐵 𝑖th

(𝑁𝑠 − 𝑀𝑠) 𝑁𝑠



 
 

 

Pr(the 𝑖th busy RB is sensed ∣ (𝑁𝑠 − 𝑀𝑠))

=
( 𝑁−𝑀−1

𝑁𝑠−𝑀𝑠−1
) ( 𝑀

𝑀𝑠
)

( 𝑁
𝑁𝑠

)
.                                                                       (3.51)

𝑀𝐷 (𝑁𝑠 − 𝑀𝑠) 𝑖th

    Pr(𝐷𝑖 = 1 ∣ (𝑁𝑠 − 𝑀𝑠), 𝑀𝐷) = Pr(𝐷𝑖 = 1) . Pr ( ∑ 𝐷𝑛 = 𝑀𝐷 − 1 ∣ (𝑁𝑠 − 𝑀𝑠

𝑛≠𝑖,𝑛∈𝛷

))

= 𝑉1 ×

[
 
 
 
 
 

∑ [(
𝑀𝑠

𝑚𝐼𝐷
) (𝑉0)𝑚𝐼𝐷

min{𝑀𝐷,𝑀𝑠}

𝑚𝐼𝐷=max{1,𝑀𝐷−(𝑁𝑠−𝑀𝑠)}

(1 − 𝑉0)𝑀𝑠−𝑚𝐼𝐷

. (
𝑁𝑠 − 𝑀𝑠 − 1

𝑚𝑂𝐷 − 1
) . (𝑉1)𝑚𝑂𝐷−1(1 − 𝑉1)𝑁𝑠−𝑀𝑠−𝑚𝑂𝐷]

]
 
 
 
 
 

              (3.52)

 𝛷 𝑚𝑂𝐷

𝑀𝐷 − 𝑚𝐼𝐷

Pr(𝐷𝑖 = 1 ∣ (𝑁𝑠 − 𝑀𝑠), 𝑀𝐷) =

[
 
 
 
 
 

∑ [(
𝑀𝑠

𝑚𝐼𝐷
) (𝑉0)𝑚𝐼𝐷

min{𝑀𝐷,𝑀𝑠}

𝑚𝐼𝐷=max{1,𝑀𝐷−(𝑁𝑠−𝑀𝑠)}

(1 − 𝑉0)𝑀𝑠−𝑚𝐼𝐷

. (
𝑁𝑠 − 𝑀𝑠 − 1

𝑀𝐷 − 𝑚𝐼𝐷 − 1
) . (𝑉1)𝑀𝐷−𝑚𝐼𝐷(1 − 𝑉1)𝑁𝑠−𝑀𝑠−𝑀𝐷+𝑚𝐼𝐷]

]
 
 
 
 
 

(3.53)

𝑀𝐷
1

𝑀𝐷

𝑝𝑅𝐵∣(𝑁𝑠−𝑀𝑠),𝑀𝐷
= Pr(the 𝑖th idle RB is sensed ∣ (𝑁𝑠 − 𝑀𝑠)) ×

1

𝑀𝐷

× Pr(𝐷𝑖 = 1 ∣ (𝑁𝑠 − 𝑀𝑠, 𝑀𝐷).                                                                 (3.54)



 
 

 

𝑝𝑅𝐵 = ∑ ∑ 𝑝𝑅𝐵∣(𝑁𝑠−𝑀𝑠),𝑀𝐷

𝑁𝑠

𝑀𝐷=1

min{𝑁𝑠,𝑀}

𝑀𝑠=max{1,𝑁𝑠−(𝑁−𝑀)}

.                               (3.55)

𝑁

𝑀

𝑁𝑠

𝑀𝑠 𝑁𝑠

𝑀𝐷 𝑁𝑠

𝑚𝐼𝐷 𝑀𝐷

(𝑚𝐼𝐷 ∈ [max{1, 𝑀𝑠 –  (𝑁𝑠 – 𝑀𝐷)}, min{𝑀𝑠, 𝑀𝐷}])

𝑚𝑂𝐷 𝑀𝐷

(𝑚𝑂𝐷 = 𝑀𝐷 − 𝑚𝐼𝐷)



 
 

 

𝑝𝑅𝐵 𝑝𝑡𝑥

𝑃𝑑 𝑃𝑓 𝑝𝑅𝐵

𝑃𝑓 𝑃𝑑

𝑃𝑓 𝑃𝑑

𝑃𝑓 = 0 𝑃𝑑 = 1 𝑃𝑑 𝑃𝑓

𝜃

𝜃

𝜃 𝜃



 
 

 

𝜆𝑀
′

𝜆𝐹
′ 𝑝𝑅𝐵𝑝𝑡𝑥



 
 

 

1 ×  1

𝑃𝐹 = 22 dBm

𝑃𝑀 = 42 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1 𝜆𝑀
′ = 12 λ𝐹 = 800

𝜆𝐹
′ = 700



 
 

 

𝑃𝐹 = 22 dBm 𝑃𝑀 = 42 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1 𝜆𝐹
′ = 700

𝜆𝑀
′ = 12 λ𝑀 = 50

𝜃

I



 
 

 

𝜆𝑀
′

𝛾

𝜆𝑀
′

𝜆𝑀
′

𝑃𝐹 = 22 dBm , 𝑃𝑀 = 42 dBm , 𝛼 = 4 , 𝑝𝑅𝐵 = 0.8 , 𝑝𝑡𝑥 = 0.7 , 𝜇 = 0.2 , 𝜇𝑝 = 1 , 𝐾 = 1 , λ𝐹 = 800

𝜆𝐹
′ = 700



 
 

 

𝜆𝐹
′

𝜆𝐹
′

𝜆𝐹
′

𝑃𝐹 = 22 dBm 𝑃𝑀 = 42 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 𝜇 = 0.2 𝜇𝑝 = 1

𝐾 = 1 𝜆𝑀
′ = 12 λ𝑀 = 50



 
 

 

𝐾 𝐷 = 𝐾𝑟𝑀

Φ𝐹
′

Φ𝐹

𝐷 Φ𝐹
′ ⊂ Φ𝐹

𝐷

𝐷 𝐾 = 10

𝐷



 
 

 

𝐷

𝑃𝐹 = 22 dBm 𝑃𝑀 = 42 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 𝜇 = 0.2

𝜇𝑝 = 1 λ𝑀 = 50 𝜆𝑀
′ = 12 𝜆𝑀

′ = 25

𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑅𝐵 = 1 𝑝𝑡𝑥 = 1

𝑝𝑅𝐵 = 1

𝑝𝑡𝑥 = 1



 
 

 

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵

𝑝𝑡𝑥

𝑃𝐹 = 22 dBm

𝑃𝑀 = 42 dBm 𝛼 = 4 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1 λ𝐹 = 800 𝜆𝐹
′ = 700 𝜆𝑀

′ = 12

𝑝𝑡𝑥

𝑝𝑡𝑥 = 1

𝑝𝑅𝐵

𝑝𝑅𝐵 𝑝𝑡𝑥



 
 

 

𝑝𝑅𝐵 = 1

𝑝𝑡𝑥 = 1

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵

𝑝𝑡𝑥

𝑃𝐹 = 22 dBm

𝑃𝑀 = 42 dBm 𝛼 = 4 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1 𝜆𝐹
′ = 700 λ𝑀 = 50 𝜆𝑀

′ = 12

𝜏

 

1 − 𝑝𝑂𝐹



 
 

 

𝑝𝑅𝐵𝑝𝑡𝑥

1 − 𝑝𝑅𝐵𝑝𝑡𝑥

 

1 − 𝑝𝑂𝐹

𝑝𝑅𝐵𝑝𝑡𝑥

𝑇

𝜏 𝑇 = 𝜏 log(1 +  𝜃)

𝑇(ℎ𝑎𝑙𝑓) = 𝑝(1 − 𝑝)(1 − 𝑝𝑂𝐹) log(1 +  𝜃)

𝑇(𝑓𝑢𝑙𝑙) = 𝑝(1 − 𝑝𝑂𝐹) log(1 +  𝜃)                                           (3.56)

𝑝 = 𝑝𝑅𝐵𝑝𝑡𝑥

𝑝 = 𝑝𝑅𝐵𝑝𝑡𝑥

𝑝

𝑝 𝑝 = 0.3

𝑝 = 0.35 𝑝



 
 

 

𝜃

𝑝 𝑃𝐹 = 22 dBm 𝑃𝑀 = 42 dBm 𝛼 = 4 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1

𝜆𝑀
′ = 12 λ𝐹 = 800 𝜆𝐹

′ = 700 𝜃 = 11



 
 

 

𝑃𝐹 = 22 dBm

𝑃𝑀 = 42 dBm 𝛼 = 4 𝜇 = 0.2 𝜇𝑝 = 1 𝐾 = 1 𝜆𝑀
′ = 12 λ𝐹 = 800 𝜆𝐹

′ = 700

𝑝

𝑝𝑡𝑥

𝑝𝑅𝐵



 
 

 



 
 

 



 
 

 



 
 

 

𝑝𝑂𝐹

𝑚𝑑,𝐹

𝑥 = ℎ𝐹

𝑝(𝑥) =
𝑚𝑑,𝐹

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝑚𝑑,𝐹Г(𝑚𝑑,𝐹)

(𝑥)𝑚𝑑,𝐹−1𝑒
−

𝑚𝑑,𝐹𝑥

𝛺𝑑,𝐹                                   (4.1)

𝑚𝑑,𝐹 𝛺𝑑,𝐹

𝑚𝑑,𝐹

𝑚𝑑,𝐹 = 1

𝑚𝑑,𝐹 = ∞

𝑃[SINR > 𝜃] = 𝑃 [
𝑃𝐹ℎ𝐹𝑟𝐹

−𝛼

ϭ2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵
> 𝜃]                              

= 𝑃 [ℎ𝐹 > (ϭ2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵)
𝜃𝑟𝐹

𝛼

𝑃𝐹
]                                                              

  =  E𝐼 [𝑃 [ℎ𝐹 > (𝐼)
𝜃𝑟𝐹

𝛼

𝑃𝐹
]].                                                                  (4.2)



 
 

 

ℎ𝐹

Г(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡 d𝑡
∞

𝑥

𝑃 [ℎ𝐹 > (𝐼)
𝜃𝑟𝐹

𝛼

𝑃𝐹
] = ∫ 𝑝(𝑥)

∞

𝜃𝑟𝐹
𝛼

𝑃𝐹
(𝐼)

d𝑥              

=
−𝑚𝑑,𝐹

𝑚𝑑,𝐹(−1)𝑚𝑑,𝐹−1

(−𝑚𝑑,𝐹)
𝑚𝑑,𝐹

[
 
 
 
 Г [𝑚𝑑,𝐹,

𝑚𝑑,𝐹

𝛺𝑑,𝐹
(

𝜃𝑟𝐹
𝛼

𝑃𝐹
(𝐼))]

Г(𝑚𝑑,𝐹)

]
 
 
 
 

                    (4.3)

𝐼 = ϭ2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵

Г[𝑚,𝑚𝑦]

Г(𝑚)
= 𝑒−𝑚𝑦 ∑

𝑚𝑘

𝑘!
𝑦𝑘𝑚−1

𝑘=0 𝑚

𝑃 [ℎ𝐹 > (𝐼)
𝜃𝑟𝐹

𝛼

𝑃𝐹
]

[
 
 
 

𝑒
−

𝑚𝑑,𝐹
𝛺𝑑,𝐹

(
𝜃𝑟𝐹

𝛼

𝑃𝐹
)𝐼

∑
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

𝑘

𝑘!
𝐼𝑘

𝑚𝑑,𝐹−1

𝑘=0
]
 
 
 

                                          

𝑃[SINR > 𝜃] = ∫

[
 
 
 

𝑒
−

𝑚𝑑,𝐹
𝛺𝑑,𝐹

(
𝜃𝑟𝐹

𝛼

𝑃𝐹
)𝐼

∑
(

𝑚𝑑,𝐹𝜃𝑟𝐹
𝛼

𝛺𝑑,𝐹𝑃𝐹
)

𝑘

𝑘!
𝐼𝑘

𝑚𝑑,𝐹−1

𝑘=0
]
 
 
 ∞

0

𝑓𝐼(𝑖) d𝑖 .                (4.4)

𝑚𝑑,𝐹

𝑃[SINR > 𝜃] = [ ∑
(𝑠)𝑘

𝑘!
(−1)𝑘

𝑑𝑘ℒ𝐼(𝑠)

𝑑𝑠𝑘

𝑚𝑑,𝐹−1

𝑘=0

]                                        (4.5)



 
 

 

𝐼 = ϭ2 + 𝐼𝐹𝐵 + 𝐼𝑀𝐵 𝑠 =
𝑚𝑑,𝐹𝜃𝑟𝐹

𝛼

𝛺𝑑,𝐹𝑃𝐹

ℒ𝐼(𝑠) = 𝐹𝐼(𝑠) = 𝐸[𝑒−𝑠𝐼]                                                                                               

= E[𝑒−𝑠(ϭ2+𝐼𝐹𝐵+𝐼𝑀𝐵)]                                                                           

= E[𝑒−𝑠𝐼𝐹𝐵]E[𝑒−𝑠𝐼𝑀𝐵]E[𝑒−𝑠ϭ2
]                                                        

= ℒ𝐼𝐹𝐵
(𝑠)ℒ𝐼𝑀𝐵

(𝑠)𝑒−𝑠ϭ2
                                                             (4.6)

ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠) 𝐼𝐹𝐵

𝐼𝑀𝐵 𝑠 𝑠 =
𝑚𝑑,𝐹𝜃𝑟𝐹

𝛼

𝛺𝑑,𝐹𝑃𝐹

𝑃[SINR > 𝜃] = [ ∑
(𝑠)𝑘

𝑘!
(−1)𝑘

𝑑𝑘(ℒ𝐼𝐹𝐵
(𝑠)ℒ𝐼𝑀𝐵

(𝑠)𝑒−𝑠ϭ2
)

𝑑𝑠𝑘

𝑚𝑑,𝐹−1

𝑘=0

].             (4.7)

𝓛𝑰𝑭𝑩
(𝒔) 𝓛𝑰𝑴𝑩

(𝒔)

ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠)

𝑠 =
𝑚𝑑,𝐹𝜃𝑟𝐹

𝛼

𝛺𝑑,𝐹𝑃𝐹

ℒ𝐼𝐹𝐵
(𝑠)

|𝑠=
𝑚𝑑,𝐹𝜃𝑟𝐹

𝛼

𝛺𝑑,𝐹𝑃𝐹

= 𝑒
𝑟𝐹

𝑑𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹
′ −

𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (
𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃)

𝑑
𝛼

𝑟𝐹
𝑑𝑀(𝜃,𝛼)

                    (4.8)



 
 

 

𝑀(𝜃, 𝛼) = E [(𝑔)
𝑑

𝛼 (Г (−
𝑑

𝛼
,
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃𝑔) − Г (−

𝑑

𝛼
))].                              (4.9)

𝑚𝐼,𝐹 𝛺𝐼,𝐹

𝑀(𝜃, 𝛼)

𝑀(𝜃, 𝛼) = (
−Г(−

𝑑

𝛼
)𝑚𝐼,𝐹

𝑚𝐼,𝐹(
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

−
𝑑
𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

) [∑
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

𝑘

(
𝛺𝐼,𝐹𝛺𝑑,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝐹+𝛺𝐼,𝐹𝑚𝑑,𝐹𝜃
)

𝑚𝐼,𝐹+𝑘

Г(𝑘+1−
𝑑

𝛼
)

∞
𝑘=0 Г(𝑚𝐼,𝐹 + 𝑘)].   (4.10)

ℒ𝐼𝑀𝐵
(𝑠)

|𝑠=
𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹

= 𝑒
−𝑏𝑑𝜆𝑀

′ Г(1−
𝑑

𝛼
)(

𝑃𝑀
𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃

𝑃𝐹
)

𝑑
𝛼

𝑟𝐹
𝑑E[(𝐺)

𝑑
𝛼]

.                               (4.11)

𝑚𝐼,𝑀

𝛺𝐼,𝑀 E [(𝐺)
𝑑

𝛼]

E [(𝐺)
𝑑

𝛼] =
1

𝛺𝐼,𝑀
𝑚𝐼,𝑀

[(
𝛺𝐼,𝑀

𝑚𝐼,𝑀
)

𝑑

𝛼
+𝑚𝐼,𝑀

(
𝑚𝐼,𝑀

𝑚𝐼,𝑀

Г(𝑚𝐼,𝑀)
)] Г (

𝑑

𝛼
+ 𝑚𝐼,𝑀).            (4.12)



 
 

 

𝑧 = 𝑟𝐹
𝛼

𝑝𝑂𝐹 = 1 − [ ∑
(𝑧)𝑘

𝑘!
(−1)𝑘

𝑑𝑘(exp(𝑙(𝑧)))

𝑑𝑧𝑘

𝑚𝑑,𝐹−1

𝑘=0

]

⏞                      
𝑃[SINR>𝜃]

                                  (4.13)

exp(𝑙(𝑧)) = 𝑒
[A]𝑧

𝑑
𝛼−

𝑚𝑑,𝐹𝜃ϭ2

𝛺𝑑,𝐹𝑃𝐹
𝑧

𝑧 = 𝑟𝐹
𝛼                                         (4.14)

A

𝑚𝑑,𝐹 𝑚𝐼,𝐹 𝑚𝐼,𝑀

𝑚𝑑,𝐹 𝑚𝑑,𝐹 − 1

𝑚𝑑,𝐹

𝑝𝑂𝐹̅̅ ̅̅ ̅ = 1 − E𝑟𝐹
[𝑃[SINR > 𝜃]]                   

   𝑝𝑂𝐹̅̅ ̅̅ ̅ = 1 − ∫ [𝑃[SINR > 𝜃]]𝑓𝑟𝐹
(𝑟𝐹)

∞

0

d𝑟𝐹                              (4.16)

𝑓𝑟𝐹
(𝑟𝐹) = 𝑒−λ𝐹𝜋𝑟𝐹

2
2𝜋λ𝐹𝑟𝐹 𝑟

𝑝𝑂𝐹̅̅ ̅̅ ̅

𝑚𝑑,𝐹

𝑚𝑑,𝐹 = 1, 𝛼 = 4      𝑝𝑂𝐹̅̅ ̅̅ ̅ = 1 +
λ𝐹𝜋

(A−λ𝐹𝜋)
                                (4.17)



 
 

 

A

= 𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥λ𝐹
′ +

𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥λ𝐹

′ (
Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

)

[
 
 
 

∑
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

𝑘

(
𝛺𝐼,𝐹𝛺𝑑,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝐹+𝛺𝐼,𝐹𝑚𝑑,𝐹𝜃
)

𝑚𝐼,𝐹+𝑘

Г (𝑘 + 1 −
𝑑

𝛼
)

∞

𝑘=0

Г(𝑚𝐼,𝐹 + 𝑘)

]
 
 
 

⏞                                                                  
A1

−𝑏𝑑𝜆𝑀
′ Г (1 −

𝑑

𝛼
) (

𝑃𝑀
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃

𝑃𝐹
)

𝑑

𝛼

1

𝛺𝐼,𝑀
𝑚𝐼,𝑀

[(
𝛺𝐼,𝑀

𝑚𝐼,𝑀
)

𝑑

𝛼
+𝑚𝐼,𝑀

(
𝑚𝐼,𝑀

𝑚𝐼,𝑀

Г(𝑚𝐼,𝑀)
)]Г (

𝑑

𝛼
+ 𝑚𝐼,𝑀)

⏟                                                    
A2

 (4.15)

𝑚𝑑,𝐹 = 2, 𝛼 = 4   𝑝𝑂𝐹̅̅ ̅̅ ̅ = 1 +
λ𝐹𝜋[(A−λ𝐹𝜋)+

A

2
Г(2,0)]

(A−λ𝐹𝜋)2                           (4.18)

𝑚𝑑,𝐹 = 3, 𝛼 = 4

 𝑝𝑂𝐹̅̅ ̅̅ ̅ = 1 +
λ𝐹𝜋[(A − λ𝐹𝜋)5 +

5A

8
Г(2,0)(A − λ𝐹𝜋)4 +

A2

8
Г(3,0)(A − λ𝐹𝜋)3]

(A − λ𝐹𝜋)6
. (4.19)

(A − λ𝐹𝜋) < 0 ϭ2 → 0

𝑚𝑑,𝐹 ≥ 4 𝑝𝑂𝐹̅̅ ̅̅ ̅

exp(𝑙(𝑧))

exp(𝑙(𝑧))

𝑝𝑂𝑀

𝛾 𝑚𝑑,𝑀

𝑦 = ℎ𝑀

𝑝(𝑦) =
𝑚𝑑,𝑀

𝑚𝑑,𝑀

𝛺𝑑,𝑀
𝑚𝑑,𝑀Г(𝑚𝑑,𝑀)

(𝑦)𝑚𝑑,𝑀−1𝑒
−

𝑚𝑑,𝑀𝑦

𝛺𝑑,𝑀                                (4.20) 



 
 

 

𝑚𝑑,𝑀

𝛺𝑑,𝑀

𝑃[SINR > 𝛾] = [ ∑
(𝑠)𝑘

𝑘!
(−1)𝑘

𝑑𝑘(ℒ𝐼𝐹𝐵
(𝑠)ℒ𝐼𝑀𝐵

(𝑠)𝑒−𝑠ϭ2
)

𝑑𝑠𝑘

𝑚𝑑,𝑀−1

𝑘=0

]                        (4.21)

ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠) 𝐼𝐹𝐵

𝐼𝑀𝐵 𝑠 𝑠 =
𝑚𝑑,𝑀

𝛺𝑑,𝑀

𝛾𝑟𝑀
𝛼

𝑃𝑀

ℒ𝐼𝐹𝐵
(𝑠) ℒ𝐼𝑀𝐵

(𝑠) 𝑠 =
𝑚𝑑,𝑀

𝛺𝑑,𝑀

𝛾𝑟𝑀
𝛼

𝑃𝑀

𝓛𝑰𝑴𝑩
(𝒔) 𝓛𝑰𝑭𝑩

(𝒔)

ℒ𝐼𝑀𝐵
(𝑠)

ℒ𝐼𝑀𝐵
(𝑠)

|𝑠=
𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾𝑟𝑀
𝛼

𝑃𝑀

= 𝑒
𝑟𝑀

𝑑𝑏𝑑𝜆𝑀
′ −

𝑑

𝛼
𝑏𝑑𝜆𝑀

′ (
𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾)

𝑑
𝛼

𝑟𝑀
𝑑𝑉(𝛾,𝛼)

                               (4.22)

𝑉(𝛾, 𝛼) = E [(𝑔𝑝)
𝑑

𝛼 (Г (−
𝑑

𝛼
,
𝑚𝑑,𝑀

𝛺𝑑,𝑀
𝛾𝑔𝑝) − Г (−

𝑑

𝛼
))]

𝑚𝐼,𝑀 𝛺𝐼,𝑀

𝑉(𝛾, 𝛼) 𝑀(𝜃, 𝛼)

𝑉(𝛾, 𝛼)

𝑉(𝛾, 𝛼) =
−Г (−

𝑑

𝛼
) 𝑚𝐼,𝑀

𝑚𝐼,𝑀 (
𝑚𝑑,𝑀

𝛺𝑑,𝑀
𝛾)

−
𝑑

𝛼

𝛺𝐼,𝑀
𝑚𝐼,𝑀Г(𝑚𝐼,𝑀)

[
 
 
 

∑
(

𝑚𝑑,𝑀

𝛺𝑑,𝑀
𝛾)

𝑘

(
𝛺𝐼,𝑀𝛺𝑑,𝑀

𝑚𝐼,𝑀𝛺𝑑,𝑀+𝛺𝐼,𝑀𝑚𝑑,𝑀𝛾
)

𝑚𝐼,𝑀+𝑘

Г (𝑘 + 1 −
𝑑

𝛼
)

∞

𝑘=0

Г(𝑚𝐼,𝑀 + 𝑘)

]
 
 
 

.      (4.23)



 
 

 

ℒ𝐼𝐹𝐵
(𝑠)

ℒ𝐼𝐹𝐵
(𝑠) = 𝑒

K𝑑𝑟𝑀
𝑑𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ −
𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (
𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝑃𝐹𝛾

𝑃𝑀
)

𝑑
𝛼

𝑟𝑀
𝑑𝑇(𝛾,𝛼)

                         (4.24)

𝑇(𝛾, 𝛼) = E [(𝐺𝑝)
𝑑

𝛼 (Г (−
𝑑

𝛼
,

𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾𝑃𝐹𝐺𝑝

K𝛼𝑃𝑀
) − Г (−

𝑑

𝛼
))].

𝑚𝐼,𝐹 𝛺𝐼,𝐹

𝑇(𝛾, 𝛼) 𝑀(𝜃, 𝛼)

𝑉(𝛾, 𝛼) 𝑇(𝛾, 𝛼)

𝑇(𝛾, 𝛼) =
−Г(−

𝑑

𝛼
)𝑚𝐼,𝐹

𝑚𝐼,𝐹(
𝑚𝑑,𝑀

𝛺𝑑,𝑀K𝛼𝑃𝑀
𝛾)

−
𝑑
𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

[
 
 
 
 
 

∑

(

𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾𝑃𝐹

K𝛼𝑃𝑀
)

𝑘

(
K𝛼𝑃𝑀𝛺𝑑,𝑀𝛺𝐼,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝑀K𝛼𝑃𝑀+𝑚𝑑,𝑀𝛺𝐼,𝐹𝑃𝐹𝛾
)

𝑚𝐼,𝐹+𝑘

Г(𝑘+1−
𝑑

𝛼
)

∞
𝑘=0 Г(𝑚𝐼,𝐹 + 𝑘)

]
 
 
 
 
 

. (4.25)

𝑧 = 𝑟𝑀
𝛼

 𝑝𝑂𝑀 = 1 − [ ∑
(𝑧)𝑘

𝑘!
(−1)𝑘

𝑑𝑘(exp(𝑙(𝑧)))

𝑑𝑧𝑘

𝑚𝑑,𝑀−1

𝑘=0

]                           (4.26)

exp(𝑙(𝑧)) = 𝑒
[B]𝑧

𝑑
𝛼−

𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾ϭ2

𝑃𝑀
𝑧

𝑧 = 𝑟𝑀
𝛼                                       (4.27)

B



 
 

 

B

= K𝑑𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹
′ +

𝑑

𝛼
𝑏𝑑𝑝𝑅𝐵𝑝𝑡𝑥𝜆𝐹

′ (
𝑚𝑑,𝑀

𝛺𝑑,𝑀

𝛾

𝑃𝑀

)

𝑑

𝛼

(

 
 Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹 (
𝑚𝑑,𝑀

𝛺𝑑,𝑀K𝛼𝑃𝑀
𝛾)

−
𝑑

𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

)

 
 

[
 
 
 
 
 

∑

(

𝑚𝑑,𝑀
𝛺𝑑,𝑀

𝛾𝑃𝐹

K𝛼𝑃𝑀
)

𝑘

(
K𝛼𝑃𝑀𝛺𝑑,𝑀𝛺𝐼,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝑀K𝛼𝑃𝑀+𝑚𝑑,𝑀𝛺𝐼,𝐹𝑃𝐹𝛾
)

𝑚𝐼,𝐹+𝑘

Г (𝑘 + 1 −
𝑑

𝛼
)

∞

𝑘=0

Г(𝑚𝐼,𝐹 + 𝑘)

]
 
 
 
 
 

⏞                                                                                          
B1

+ 𝑏𝑑𝜆𝑀
′ +

𝑑

𝛼
𝑏𝑑𝜆𝑀

′ (
Г (−

𝑑

𝛼
) 𝑚𝐼,𝑀

𝑚𝐼,𝑀

𝛺𝐼,𝑀
𝑚𝐼,𝑀Г(𝑚𝐼,𝑀)

)[∑
(

𝑚𝑑,𝑀

𝛺𝑑,𝑀
𝛾)

𝑘

(
𝛺𝐼,𝑀𝛺𝑑,𝑀

𝑚𝐼,𝑀𝛺𝑑,𝑀+𝛺𝐼,𝑀𝑚𝑑,𝑀𝛾
)

𝑚𝐼,𝑀+𝑘

Г (𝑘 + 1 −
𝑑

𝛼
)

∞

𝑘=0

Г(𝑚𝐼,𝑀 + 𝑘)]

⏟                                                          
B2

                                                     (4.28)

𝑝𝑂𝑀̅̅ ̅̅ ̅ = 1 − E𝑟𝑀
[𝑃[SINR > 𝛾]]                   

𝑝𝑂𝑀̅̅ ̅̅ ̅ = 1 − ∫ [𝑃[SINR > 𝛾]]. 𝑓𝑟𝑀
(𝑟𝑀)

∞

0

d𝑟𝑀                          (4.29)

𝑓𝑟𝑀
(𝑟𝑀) = 𝑒−λ𝑀𝜋𝑟𝑀

2
2𝜋λ𝑀𝑟𝑀 𝑟𝑀 𝑝𝑂𝑀̅̅ ̅̅ ̅

𝑚𝑑,𝑀

𝑃𝑑 = 1 𝑃𝑓 = 0

𝑃𝑑 ≠ 1 𝑃𝑓 ≠ 0

𝑃𝑑 = 1 𝑃𝑓 = 0 :

𝑃𝑑 = 1 𝑃𝑓 = 0



 
 

 

E[𝑒−𝑠𝐼𝑀𝐵] = 1 ℒ𝐼𝑀𝐵
(𝑠) = 1

A A1 𝑝𝑅𝐵

B B2

𝑃𝑑 ≠ 1 𝑃𝑓 ≠ 0 :

𝑝𝑅𝐵

𝑝𝑅𝐵

A



 
 

 

A1 + A2

B B1 + B2

1 ×  1



 
 

 

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 = 1 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7  K = 1 𝜆𝑀
′ = 10 λ𝐹 = 800

𝜆𝐹
′ = 700

𝑃𝐹 = 23 dBm 𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝑀 = 𝑚𝐼,𝑀 = 𝑚𝐼,𝐹 = 1 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 K = 1

𝜆𝐹
′ = 700 𝜆𝑀

′ = 10 λ𝑀 = 50

𝜃



 
 

 

𝐼

A = A1

𝜆𝑀
′

𝜆𝑀
′

𝜆𝑀
′

𝑃𝐹 = 23 dBm 𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 = 1 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7  K = 1

λ𝐹 = 800 𝜆𝐹
′ = 700



 
 

 

𝜆𝐹
′

𝜆𝐹
′

𝑃𝐹 = 23 dBm 𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝑀 = 𝑚𝐼,𝑀 = 𝑚𝐼,𝐹 = 1 𝑝𝑅𝐵 = 0.8

𝑝𝑡𝑥 = 0.7 K = 1 𝜆𝑀
′ = 10 λ𝑀 = 50

𝛾

B = B2



 
 

 

𝜆𝐹
′

K 𝐷 = K𝑟𝑀

Φ𝐹
′ ⊂ Φ𝐹

𝐷

𝐷 𝐷 = K𝑟𝑀

𝑃𝐹 = 23 dBm 𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝑀 = 𝑚𝐼,𝑀 = 𝑚𝐼,𝐹 = 1

𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 λ𝑀 = 50 𝜆𝑀
′ = 10 𝜆𝑀

′ = 25



 
 

 

𝐷

𝐷

𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑅𝐵 = 1 𝑝𝑡𝑥 = 1

𝑝𝑅𝐵 = 1

𝑝𝑡𝑥 = 1

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑡𝑥

𝑝𝑡𝑥 = 1

𝑝𝑅𝐵



 
 

 

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵

𝑝𝑡𝑥

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 = 1 K = 1 λ𝐹 = 800 𝜆𝐹
′ = 700 𝜆𝑀

′ = 10

𝑝𝑅𝐵 𝑝𝑡𝑥 𝑝𝑅𝐵

𝑝𝑡𝑥

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 = 1 K = 1 𝜆𝐹
′ = 700 λ𝑀 = 50 𝜆𝑀

′ = 10

𝑝𝑅𝐵 𝑝𝑡𝑥

𝑝𝑅𝐵 = 1

𝑝𝑡𝑥 = 1



 
 

 

𝜃

𝑚𝑑,𝐹 = 𝑚𝐼,𝐹

𝛽𝐹 =
𝛺𝑑,𝐹

𝑚𝑑,𝐹
=

𝛺𝐼,𝐹

𝑚𝐼,𝐹
𝛽𝑀 =

𝛺𝑑,𝑀

𝑚𝑑,𝑀
=

𝛺𝐼,𝑀

𝑚𝐼,𝑀

𝑚

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 K = 1 𝜆𝐹 = 800 𝜆𝐹
′ = 700 λ𝑀 = 50 𝜆𝑀

′ = 10



 
 

 

𝑚

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑝𝑅𝐵 = 0.8 𝑝𝑡𝑥 = 0.7 K = 1  𝜆𝐹 = 800 𝜆𝐹
′ = 700 λ𝑀 = 50 𝜆𝑀

′ = 10

𝜏

𝑇

𝑝 = 𝑝𝑅𝐵𝑝𝑡𝑥

𝑝

𝑝 𝑝 = 0.3

𝑝 = 0.35 𝑝



 
 

 

𝑝 𝑃𝐹 = 23 dBm 𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 =

1  K = 1 𝜆𝑀
′ = 10 λ𝐹 = 800 𝜆𝐹

′ = 700 𝜃 = 11

𝜃



 
 

 

𝑃𝐹 = 23 dBm

𝑃𝑀 = 43 dBm 𝛼 = 4 𝑚𝑑,𝐹 = 𝑚𝐼,𝐹 = 𝑚𝐼,𝑀 = 1  K = 1 𝜆𝑀
′ = 10 λ𝐹 = 800 𝜆𝐹

′ = 700

𝑝

𝑝𝑡𝑥

𝑝𝑅𝐵



 
 

 



 
 

 

 



 
 

 

𝐾 𝐾

𝑑



 
 

 

𝐾



 
 

 



 
 

 

𝐀⋆𝑑 𝑑th

𝐀 𝑑 × 𝑑 𝐈𝑑 Tr[𝐀]

𝐀 𝐀𝐻

𝐀

V U

𝐾 𝐾

𝑀 𝑁

𝑘 𝑘 ∈ {1,2, … , 𝐾} 𝑙𝑘



 
 

 

𝑋𝑘,𝑙𝑘 = ∑ 𝐕𝑘,𝑙𝑘
⋆𝑑𝑑𝑘

𝑑=1 𝑆𝑘,𝑙𝑘
𝑑 = 𝐕𝑘,𝑙𝑘𝑆𝑘,𝑙𝑘 ∀𝑘 ∈ {1,2, … , 𝐾}                               (5.1)

𝑆𝑘,𝑙𝑘 𝑑𝑘 × 1 𝑙𝑘th

𝐕𝑘,𝑙𝑘 𝑀 × 𝑑𝑘

𝑘

𝑌𝑘 = ∑ 𝑝𝑖𝐇𝑘,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝑆𝑖,𝑙𝑖
+ 𝑍𝑘

𝐾
𝑖=1 ∀𝑘 ∈ {1,2, … , 𝐾}                                  (5.2)

𝐇𝑘,𝑙𝑖
𝑁 × 𝑀 𝑙𝑖 𝑘

𝑝𝑘 𝑙𝑘 𝑘 𝑍𝑘

𝑁 × 1

𝑘

𝑘th 𝐔𝑘,𝑙𝑘 𝑁 × 𝑑𝑘

𝑌𝑘̅ = 𝐔𝑘,𝑙𝑘
𝐻 𝑌𝑘

= 𝐔𝑘,𝑙𝑘
𝐻 𝑝𝑘𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘𝑆𝑘,𝑙𝑘⏟            

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙

+ 𝐔𝑘,𝑙𝑘
𝐻 ∑ 𝑝𝑖𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
𝑆𝑖,𝑙𝑖

𝐾

𝑖=1,𝑖≠𝑘⏟                
𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

+ 𝐔𝑘,𝑙𝑘
𝐻 𝑍𝑘⏟    
𝑛𝑜𝑖𝑠𝑒

.                    (5.3)

𝐔𝑘,𝑙𝑘
𝐻 𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
= 0 ∀𝑘, 𝑖 ∈ {1, … , 𝐾}, 𝑖 ≠ 𝑘                                              (5.4)

rank(𝐔𝑘,𝑙𝑘
𝐻 𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘) = 𝑑𝑘.                                                                   (5.5)

𝐕 𝐔



 
 

 

𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾}

𝐇𝑖,𝑙𝑘 ∀𝑖 ∈ {1,2, … , 𝐾}

𝐾

𝐇𝑘,𝑙𝑖

∀𝑖 ∈ {1,2, … , 𝐾} 𝐾𝑁𝑀



 
 

 

𝐾2𝑁𝑀

𝐾3𝑁𝑀

𝛰(𝐾3𝑁𝑀)

𝐾𝑁𝑀

𝐾2𝑁𝑀

𝑀𝑑

𝐾2𝑁𝑀 + 𝐾𝑀𝑑

𝛰(𝐾2𝑁𝑀)

𝑝̅𝑇𝐵

max
𝒑

min
𝑘=1,…,𝐾

SINR𝑘,𝑙𝑘 =

𝑝𝑘

𝑑
|𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘|

2

∑
𝑝𝑖

𝑑
|𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
|
2𝐾

𝑖=1,𝑖≠𝑘 + 𝜎𝑘
2

0 ≤ 𝑝𝑘 ≤ 𝑝̅𝑙𝑘 ,     𝑘 = 1, … , 𝐾,

{𝑙1, … , 𝑙𝐾} = {1, … , 𝐾},                                                     (5.6)

∑ 𝑝𝑘 ≤ 𝑝̅𝑇𝐵

𝐾

𝑘=1

,

𝒑 = (𝑝1, … , 𝑝𝐾)



 
 

 

𝑝̅𝑙𝑘

𝑝̅𝑙1 = 𝑝̅𝑙2 = ⋯ = 𝑝̅𝑙𝐾 = 𝑝̅𝑇𝐵

𝜎𝑘
2

𝑘

𝑇𝑘(𝒑) ≜
∑

𝑝𝑖

𝑑
|𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
|
2𝐾

𝑖=1,𝑖≠𝑘 + 𝜎𝑘
2

1

𝑑
|𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘|

2 ,               

𝑇(𝒑) ≜ (𝑇1(𝒑), … , 𝑇𝐾(𝒑)).                                                       (5.7)

𝑇𝑘(𝒑) 𝑙𝑘

𝑝𝑗, ∀ 𝑗 ≠ 𝑘

𝒑(𝟎)

𝒑 (𝑡 + 1) ←
𝑇(𝒑(𝑡))

∑ 𝑇𝑖(𝒑(𝑡))𝐾
𝑖=1

𝑝̅𝑇𝐵.                                                 (5.8)

𝑘

𝑝𝑘(𝑡 + 1) ←
𝑇𝑘(𝒑(𝑡))

∑ 𝑇𝑖(𝒑(𝑡))𝐾
𝑖=1

𝑝̅𝑇𝐵.                                               (5.9)



 
 

 

𝐔𝑘,𝑙𝑘 𝑘 ∈

{1,2, … , 𝐾}

𝐕𝑘,𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾}

𝑘

min
𝐔𝑘,𝑙𝑘

𝐔𝑘,𝑙𝑘
𝐻 =𝐈𝑑𝑘

𝐼𝑘                                                            (5.10)

𝐼𝑘 𝑘

𝐔𝑘,𝑙𝑘 𝑙𝑘

𝑘

max
𝐕1,𝑙1 ,…,𝐕𝐾,𝑙𝐾

𝑅𝑠𝑢𝑚 = ∑ 𝑅𝑘,𝑙𝑘                                                   (5.11)

𝐾

𝑘=1

𝐕𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘
𝐻 = 𝐈𝑑𝑘

, ∀𝑘 ∈ {1,2, … , 𝐾}                

𝑅𝑘,𝑙𝑘 𝑙𝑘 𝑘

𝑅𝑘,𝑙𝑘 = log2

|𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝐻 𝐇𝑘,𝑙𝑖
𝐻𝐾

𝑖=1 |

|𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝐻 𝐇𝑘,𝑙𝑖
𝐻𝐾

𝑖=1,𝑖≠𝑘 |
.                                         (5.12)

𝐔

𝑑𝑘

𝑑𝑘 𝐖𝑘

𝑑𝑘 𝐔𝑘,𝑙𝑘



 
 

 

𝐔𝑘,𝑙𝑘
⋆𝑑 = ν𝑑[𝐖𝑘] 𝑑 = 1, … , 𝑑𝑘                                               (5.13)

ν𝑑[𝐀]

𝐀 𝑑𝑘 = 𝑑

𝑅𝑠𝑢𝑚

𝐕𝑘,𝑙𝑘 , (𝑘 ∈ {1,2, … , 𝐾})

𝐕

𝐕

𝐕𝑘,𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾}

𝑇

𝐕𝑘,𝑙𝑘
𝑡+1 = 𝜙𝑇 (𝐕𝑘,𝑙𝑘

𝑡 , grad𝐕𝑘,𝑙𝑘
𝑅𝑠𝑢𝑚, 𝜇)                                           (5.14)

𝜙𝑇 𝑇 𝐕𝑘,𝑙𝑘 ∈ 𝑇

grad𝐕𝑘,𝑙𝑘
𝑅𝑠𝑢𝑚 grad𝐕𝑅𝑠𝑢𝑚 𝑅𝑠𝑢𝑚



 
 

 

𝐕 𝑇 𝑅𝑠𝑢𝑚

𝑇 𝜇 grad𝐕𝑅𝑠𝑢𝑚

St(𝑀, 𝑑)

grad𝐕
St(𝑀,𝑑)

𝑅𝑠𝑢𝑚 = 𝛁𝑅𝑠𝑢𝑚(𝐕) − 𝐕∇𝑅𝑠𝑢𝑚(𝐕)𝐻𝐕.                                   (5.15)

𝜙𝑇 St(𝑀, 𝑑)

𝜙St(𝑀,𝑑)(𝐕, grad𝐕
St(𝑀,𝑑)

𝑅𝑠𝑢𝑚, 𝜇)                                             

= exp(𝜇grad𝐕
St(𝑀,𝑑)

𝑅𝑠𝑢𝑚𝐕𝐻) 𝐕                            

= exp(𝜇[∇𝑅𝑠𝑢𝑚(𝐕)𝐕𝐻 − 𝐕∇𝑅𝑠𝑢𝑚(𝐕)𝐻𝐕𝐕𝐻]) 𝐕                                   

= exp(𝜇[∇𝑅𝑠𝑢𝑚(𝐕)𝐕𝐻 − 𝐕∇𝑅𝑠𝑢𝑚(𝐕)𝐻]) 𝐕.                              (5.16)

𝑅𝑠𝑢𝑚(𝐕) 𝐕 𝑅𝑠𝑢𝑚(𝐕)

∇𝑅𝑠𝑢𝑚(𝐕) = 2
𝛿(𝑅𝑠𝑢𝑚(𝐕))

𝛿𝐕∗ = 2 (
𝛿(𝑅𝑠𝑢𝑚(𝐕))

𝛿𝐕
)

∗

𝑘 ∇𝑅𝑠𝑢𝑚(𝐕)

∇𝑅𝑠𝑢𝑚(𝐕)𝑘,𝑙𝑘 =
2

ln2
∑ 𝑝𝑘𝐇𝑖,𝑙𝑘

𝐻 𝐗𝑖
−1𝐇𝑖,𝑙𝑘𝐕𝑘,𝑙𝑘

𝐾

𝑖=1

−
2

ln2
∑ 𝑝𝑘𝐇𝑖,𝑙𝑘

𝐻 𝐘𝑖
−1𝐇𝑖,𝑙𝑘𝐕𝑘,𝑙𝑘

𝐾

𝑖=1,𝑖≠𝑘

 (5.17)

𝐗𝑘 = 𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝐻 𝐇𝑘,𝑙𝑖
𝐻

𝐾

𝑖=1

                                        (5.18)

 𝐘𝑘 = 𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐕𝑖,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝐻 𝐇𝑘,𝑙𝑖
𝐻

𝐾

𝑖=1,𝑖≠𝑘

.                                     (5.19)



 
 

 

𝜙𝑇

𝜙𝑇

grad𝐕𝑅𝑠𝑢𝑚

grad𝐕
Gr(𝑀,𝑑)

𝑅𝑠𝑢𝑚 = ∇𝑅𝑠𝑢𝑚(𝐕) − 𝐕𝐕𝐻∇𝑅𝑠𝑢𝑚(𝐕).                               (5.20)

𝐕

Gr(𝑀, 𝑑)

𝚶(𝒅)

𝚶(𝒅)

𝑅𝑠𝑢𝑚(𝐕𝐄) = 𝑅𝑠𝑢𝑚(𝐕) 𝐕 ∈ St(𝑀, 𝑑) 𝐄 d × d

𝐄 ∈ 𝐎(d)

grad𝐕
Gr(𝑀,𝑑)

𝑅𝑠𝑢𝑚 = grad𝐕
St(𝑀,𝑑)

𝑅𝑠𝑢𝑚                                      (5.21)

𝜙Gr(𝑀,𝑑)(𝐕, grad𝐕
Gr(𝑀,𝑑)

𝑅𝑠𝑢𝑚, 𝜇) = 𝜙St(𝑀,𝑑)(𝐕, grad𝐕
St(𝑀,𝑑)

𝑅𝑠𝑢𝑚, 𝜇).       (5.22)



 
 

 

𝐎 = 𝐷𝐹𝑇(𝐼𝐷𝐹𝑇(𝐗) ⊗ 𝐆 + 𝐍̃) = 𝐇𝐗 + 𝐍,                                    (5.23)

𝐎 𝐗 𝐆 𝐍̃ 𝐍

𝐇 = 𝐷𝐹𝑇(𝐆) ⊗

𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎



 
 

 

𝐵

𝐵

𝐵

𝐗𝜋𝑖
𝑁 × 𝐵

𝑖 𝜋𝑖 𝑖 𝜋𝑖 ∈ {1, … , 𝐵}, 𝑖 ∈

{1, … , 𝐾}

𝐵

𝑀 × 𝐵 𝑙𝑘 𝑙𝑘 ∈ {1, … , 𝐾}, 𝑘 ∈ {1, … , 𝐾}

𝐎𝑙𝑘 = ∑ √𝑝̅𝑖𝑑𝑙𝑘(𝐫𝑖)𝐇⃐  𝑖,𝑙𝑘𝐗𝜋𝑖

𝐾

𝑖=1

+ 𝐍𝑙𝑘                                           (5.24)

𝐇⃐  𝑖,𝑙𝑘 𝑀 × 𝑁 𝑖 𝑙𝑘 𝑝̅𝑖

𝑖 𝐫𝑖 ∈ ℝ2

𝑖 𝑑𝑙𝑘(𝐫)

𝑙𝑘

𝐫 𝐍𝑙𝑘 𝑀 × 𝐵

𝑙𝑘 𝐍𝑙~𝐶𝑁(0, 𝜎𝑧
2) 𝜎𝑧

2

𝑘th 𝑙𝑘

𝐘𝜋𝑘,𝑙𝑘 = 𝐎𝑙𝑘𝐗𝜋𝑘
𝐻                                           

= ∑ √𝑝̅𝑖𝑑𝑙𝑘(𝐫𝑖)𝐇⃐  𝑖,𝑙𝑘𝐗𝜋𝑖
𝐗𝜋𝑘

𝐻

𝐾

𝑖=1

+ 𝐍𝑙𝑘𝐗𝜋𝑘
𝐻 .                   (5.25)

𝐗𝑎𝐗𝑏
𝐻 = 𝐵𝛿(𝑎 − 𝑏)

𝐘𝜋𝑘,𝑙𝑘 = ∑ √𝑝̅𝑖𝑑𝑙𝑘(𝐫𝑖)𝐇⃐  𝑖,𝑙𝑘𝐵𝛿(𝜋𝑖 − 𝜋𝑘)

𝐾

𝑖=1

+ 𝐍𝑙𝑘𝐗𝜋𝑘
𝐻



 
 

 

= ∑ √𝑝̅𝑖𝑑𝑙𝑘(𝐫𝑖)𝐇⃐  𝑖,𝑙𝑘𝐵

𝑖∈S𝜋𝑘

+ 𝐍𝑙𝑘𝐗𝜋𝑘
𝐻       

= √𝑝̅𝑘𝑑𝑙𝑘
(𝐫𝑘)𝐇⃐  𝑘,𝑙𝑘𝐵 + ∑ √𝑝̅𝑖𝑑𝑙𝑘

(𝐫𝑖)𝐇⃐  𝑖,𝑙𝑘𝐵

𝑖∈S𝜋𝑘
\{𝑘}

+ 𝐍𝑙𝑘𝐗𝜋𝑘
𝐻 .                 (5.26)

S𝜋𝑘
𝑘th

𝑝̅𝑖 = 𝑝̅ ∀𝑖 ∈ {1, … , 𝐾}

𝐍𝑙𝑘 = 𝐍 ∀𝑙𝑘 ∈ {1, … , 𝐾}

𝐇̂𝑘,𝑙𝑘 =
𝐘𝜋𝑘,𝑙𝑘

𝐵√𝑝̅𝑑𝑙𝑘(𝐫𝑘)
                      

= 𝐇⃐  𝑘,𝑙𝑘 + ∑
𝑑𝑙𝑘(𝐫𝑖)

𝑑𝑙𝑘(𝐫𝑘)
𝐇⃐  𝑖,𝑙𝑘

𝑖∈S𝜋𝑘
\{𝑘}

+
𝐍𝐗𝜋𝑘

𝐻

𝐵√𝑝̅𝑑𝑙𝑘(𝐫𝑘)
.                              (5.27)

𝐍𝐗𝜋𝑘
𝐻

𝐵√𝑝̅𝑑𝑙𝑘
(𝐫𝑘)

 ~𝐶𝑁(0,
𝜎𝑧

2

𝐵√𝑝̅𝑑𝑙𝑘
(𝐫𝑘)

) 𝑝𝑒 =
√𝑝̅

𝜎𝑧
2

𝐍𝐗𝜋𝑘
𝐻

𝐵√𝑝̅𝑑𝑙(𝐫𝑘)
~𝐶𝑁(0,

1

𝐵𝑝𝑒𝑑𝑙𝑘
(𝐫𝑘)

)

𝐇̂𝑘,𝑙𝑘 = 𝐇⃐  𝑘,𝑙𝑘 + ∑
𝑑𝑙𝑘(𝐫𝑖)

𝑑𝑙𝑘(𝐫𝑘)
𝐇⃐  𝑖,𝑙𝑘

𝑖∈S𝜋𝑘
\{𝑘}⏟            

𝑃𝑖𝑙𝑜𝑡 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

+
𝐍𝜋𝑘

√𝐵𝑝𝑒𝑑𝑙𝑘(𝐫𝑘)
                         (5.28)

𝐍𝜋𝑘
~𝐶𝑁(0, 𝐈𝑀)

𝐇̂𝑘,𝑙𝑘 = 𝐇⃐  𝑘,𝑙𝑘 +
𝐍𝜋𝑘

√𝐵𝑝𝑒𝑑𝑙𝑘
(𝐫𝑘)

.                                           (5.29)



 
 

 

𝐇̂𝑘,𝑙𝑘 = 𝐑𝑘,𝑙𝑘𝐐𝜋𝑘,𝑙𝑘𝐘𝜋𝑘,𝑙𝑘                                                      (5.30)

𝐐𝜋𝑘,𝑙𝑘 = ( ∑
𝑑𝑙𝑘(𝐫𝑖)

𝑑𝑙𝑘(𝐫𝑘)
𝐑𝑖,𝑙𝑘

𝑖∈S𝜋𝑘

+
1

𝐵𝑝𝑒𝑑𝑙𝑘(𝐫𝑘)
𝐈𝑀)−1        

= (𝐑𝑘,𝑙𝑘 + ∑
𝑑𝑙𝑘(𝐫𝑖)

𝑑𝑙𝑘(𝐫𝑘)
𝐑𝑖,𝑙𝑘

𝑖∈S𝜋𝑘
\{𝑘}

+
1

𝐵𝑝𝑒𝑑𝑙𝑘(𝐫𝑘)
𝐈𝑀)−1.                                   (5.31)

𝐑𝑖,𝑙𝑘 𝑀 × 𝑀 𝑖

𝑙𝑘

𝐐𝜋𝑘,𝑙𝑘 = (𝐑𝑘,𝑙𝑘 +
1

𝐵𝑝𝑒𝑑𝑙𝑘(𝐫𝑘)
𝐈𝑀)−1.                                         (5.32)

𝐇 = 𝐇⃐  𝐻

𝐇

𝐇⃐  



 
 

 

 𝐕𝑘,𝑙𝑘 𝑘 = 1, … , 𝐾 𝑙𝑘 ∈ {1, … , 𝐾}

𝒑(0) = (𝑝1(0), … , 𝑝𝐾(0)) 𝜇

 𝐖𝑘

𝐖𝑘 = ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖𝐕𝑖,𝑙𝑖𝐕𝑖,𝑙𝑖

𝐻 𝐇𝑘,𝑙𝑖
𝐻

𝐾

𝑖=1,𝑖≠𝑘

 𝐔𝑘,𝑙𝑘 𝑘 ∈

{1,2, … , 𝐾}

𝑘 𝐼𝑘 = Tr[𝐔𝑘,𝑙𝑘
𝐻 𝐖𝑘𝐔𝑘,𝑙𝑘]

 𝐕𝑘,𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾}

∇𝑅𝑠𝑢𝑚

𝐕𝑘,𝑙𝑘 = exp(𝜇[∇𝑅𝑠𝑢𝑚(𝐕)𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘
𝐻 − 𝐕𝑘,𝑙𝑘∇𝑅𝑠𝑢𝑚(𝐕)𝑘,𝑙𝑘

𝐻 ]) 𝐕𝑘,𝑙𝑘

 ∇𝑅𝑠𝑢𝑚(𝐕)

 

𝑇𝑘(𝒑) ≜
∑

𝑝𝑖

𝑑
|𝐇𝑘,𝑙𝑖𝐕𝑖,𝑙𝑖|

2𝐾
𝑖=1,𝑖≠𝑘 + 𝜎𝑘

2

1

𝑑
|𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘|

2

𝑇(𝒑) ≜ (𝑇1(𝒑), … , 𝑇𝐾(𝒑))

𝑝𝑘  (𝑡 + 1) ←
𝑇𝑘(𝒑(𝑡))

∑ 𝑇𝑖(𝒑(𝑡))𝐾
𝑖=1

𝑝̅𝑇𝐵

  𝜇 = 𝜇 × 0.95

 

1. 𝐕𝑘,𝑙𝑘 𝑘 = 1, … , 𝐾 𝑙𝑘 ∈ {1, … , 𝐾}

𝒑(0) = (𝑝1(0), … , 𝑝𝐾(0)) 𝜇

2. 𝐖𝑘

3. 𝐔𝑘,𝑙𝑘



 
 

 

4. 𝐔𝑘,𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾}

∇𝑅𝑠𝑢𝑚

𝐔𝑘,𝑙𝑘 = exp(𝜇[∇𝑅𝑠𝑢𝑚(𝐔)𝑘,𝑙𝑘𝐔𝑘,𝑙𝑘
𝐻 − 𝐔𝑘,𝑙𝑘∇𝑅𝑠𝑢𝑚(𝐔)𝑘,𝑙𝑘

𝐻 ]) 𝐔𝑘,𝑙𝑘

∇𝑅𝑠𝑢𝑚(𝐔)𝑘,𝑙𝑘 =
2

ln2
∑ 𝑝𝑘𝐇𝑖,𝑙𝑘𝐗𝑖

−1𝐇𝑖,𝑙𝑘
𝐻 𝐔𝑘,𝑙𝑘

𝐾

𝑖=1,

−
2

ln2
∑ 𝑝𝑘𝐇𝑖,𝑙𝑘𝐘𝑖

−1𝐇𝑖,𝑙𝑘
𝐻 𝐔𝑘,𝑙𝑘

𝐾

𝑖=1,𝑖≠𝑘

𝐗𝑘 = 𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐻 𝐔𝑖,𝑙𝑖𝐔𝑖,𝑙𝑖
𝐻 𝐇𝑘,𝑙𝑖

𝐾

𝑖=1

 𝐘𝑘 = 𝐈 + ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐻 𝐔𝑖,𝑙𝑖𝐔𝑖,𝑙𝑖
𝐻 𝐇𝑘,𝑙𝑖

𝐾

𝑖=1,𝑖≠𝑘

.

5. 𝐖𝑘

𝐖𝑘 = ∑
𝑝𝑖

𝑑
𝐇𝑘,𝑙𝑖

𝐻 𝐔𝑖,𝑙𝑖𝐔𝑖,𝑙𝑖
𝐻 𝐇𝑘,𝑙𝑖

𝐾

𝑖=1,𝑖≠𝑘

           

6. 𝐕𝑘,𝑙𝑘 𝑘 ∈ {1,2, … , 𝐾} 𝐖𝑘

𝐕𝑘,𝑙𝑘
⋆𝑑 = ν𝑑[𝐖𝑘] 𝑑 = 1, … , 𝑑𝑘 .

7. 𝐕𝑘,𝑙𝑘

∇𝑅𝑠𝑢𝑚

8. 

9. 𝜇 = 𝜇 × 0.95

10. 



 
 

 

𝐔𝑘,𝑙𝑘
⋆𝑠 =

(𝐁𝑘𝑠)
−1𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘

⋆𝑠

‖(𝐁𝑘𝑠)−1𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘
⋆𝑠 ‖

𝐁𝑘𝑠 = ∑
𝑝𝑗

𝑑𝑗

𝐾

𝑗=1

∑ 𝐇𝑘,𝑙𝑗
𝐕𝑗,𝑙𝑗

⋆𝑑𝐕𝑗,𝑙𝑗
⋆𝑑𝐻

𝐇𝑘,𝑙𝑗
𝐻

𝑑𝑗

𝑑=1

−
𝑝𝑘

𝑑𝑘
𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘

⋆𝑠 𝐕𝑘,𝑙𝑘
⋆𝑠 𝐻

𝐇𝑘,𝑙𝑘
𝐻 + 𝐈

𝑠

𝐕𝑘,𝑙𝑘
⋆𝑠 =

(𝐁𝑘𝑠)
−1𝐇𝑘,𝑙𝑘

𝐻 𝐔𝑘,𝑙𝑘
⋆𝑠

‖(𝐁𝑘𝑠)
−1𝐇𝑘,𝑙𝑘

𝐻 𝐔𝑘,𝑙𝑘
⋆𝑠 ‖

𝐁𝑘𝑠 = ∑
𝑝𝑗

𝑑𝑗

𝐾

𝑗=1

∑ 𝐇𝑘,𝑙𝑗
𝐻 𝐔𝑗,𝑙𝑗

⋆𝑑 𝐔𝑗,𝑙𝑗
⋆𝑑 𝐻

𝐇𝑘,𝑙𝑗

𝑑𝑗

𝑑=1

−
𝑝𝑘

𝑑𝑘
𝐇𝑘,𝑙𝑘

𝐻 𝐔𝑘,𝑙𝑘
⋆𝑠 𝐔𝑘,𝑙𝑘

⋆𝑠 𝐻
𝐇𝑘,𝑙𝑘 + 𝐈.



 
 

 

𝐾

(𝑁 × 𝑀, 𝑑)𝐾 𝑑 ≤ min (𝑀, 𝑁) 𝑁 + 𝑀 − 𝑑(𝐾 + 1) ≥ 0

(6 × 6, 𝑑 = 1,2,3)3 (8 × 8, 𝑑 = 1,3)3



 
 

 

(8 × 8, 𝑑 = 1)7

𝜇

𝜇 = 0.1

𝜇

𝑃 (6 × 6, 𝑑 = 1,2)3



 
 

 

𝑃 𝑃

(6 × 6, 𝑑 = 1, 2)3

𝑑 = 1

𝑑 = 2

𝑑 = 1 𝑑 = 2

𝑑 = 2

(8 × 8, 𝑑 = 1, 3)3



 
 

 

𝑃 (8 × 8, 𝑑 = 1,3)3

𝑃 (8 × 8, 𝑑 = 1)7

 

(8 × 8, 𝑑 =

1)7

(8 × 8, 𝑑 = 1)3

3



 
 

 

𝑑 = 1

(6 × 6, 𝑑 = 1, 2,3)3

𝑘 𝑑𝑘 =

rank(𝐔𝑘,𝑙𝑘
𝐻 𝐇𝑘,𝑙𝑘𝐕𝑘,𝑙𝑘) − rank(𝐔𝑘,𝑙𝑘

𝐻 ∑ 𝐇𝑘,𝑙𝑖
𝐕𝑖,𝑙𝑖

𝐾
𝑖=1,𝑖≠𝑘 ) 𝑑 = 1

𝑑 = 1

𝑃 (6 × 6, 𝑑 = 1)3



 
 

 

𝑃 (6 × 6, 𝑑 = 2)3

𝑑 = 2

𝑑 [𝑁 + 𝑀]/[𝐾 + 1]

𝑑 = 3

𝑑 = 3

𝜇

𝑑 = 3

‖𝐇 − 𝐇𝑒𝑠𝑡‖𝐹
2

𝐇𝑒𝑠𝑡

𝑝𝑒



 
 

 

𝐵 = 3 CP = 8

𝑃 (6 × 6, 𝑑 = 3)3

𝑝𝑒

𝑀 = 𝑁 = 6 𝐾 = 3 𝐵 = 3
𝑑𝑙𝑘

(𝐫𝑖)

𝑑𝑙𝑘
(𝐫𝑘)

= 1, ∀𝑘 ∈ {1, … , 𝐾}, 𝑖 ≠ 𝑘



 
 

 

𝑃 (6 × 6, 𝑑 = 2)3 𝑝𝑒 = 10

(6 × 6, 𝑑 = 2)3

𝐾



 
 

 



 
 

 



 
 

 



 
 

 

 , 

 

𝐾



 
 

 



 
 

 



 
 

 



 
 

 

𝑀(𝜃, 𝛼)

𝑀(𝜃, 𝛼)

𝑀(𝜃, 𝛼) = ∫ [(𝑔)
𝑑

𝛼 (Г (−
𝑑

𝛼
, 𝜇𝜃𝑔) − Г (−

𝑑

𝛼
))] 𝜇𝑒−𝜇𝑔

∞

0

d𝑔

Г(𝑎, 𝑥) + 𝛾(𝑎, 𝑥) = Г(𝑎) 𝛾(𝑎, 𝑥) = 𝑥𝑎Г(𝑎)𝑒−𝑥 ∑
𝑥𝑘

Г(𝑎+𝑘+1)
∞
𝑘=0

= −Г (−
𝑑

𝛼
) 𝜇(𝜇𝜃)−

𝑑

𝛼 ∫ 𝑒−𝑔(𝜇+𝜇𝜃)
∞

0

[∑
(𝜇𝜃)𝑘𝑔𝑘

Г (−
𝑑

𝛼
+ 𝑘 + 1)

∞

𝑘=0

] d𝑔

= −Г (−
𝑑

𝛼
) 𝜇(𝜇𝜃)−

𝑑

𝛼 ∫ 𝑒−𝑔(𝜇+𝜇𝜃)
∞

0

[
(𝜇𝜃)0𝑔0

Г (1 −
𝑑

𝛼
)

+
(𝜇𝜃)1𝑔1

Г (2 −
𝑑

𝛼
)

+
(𝜇𝜃)2𝑔2

Г (3 −
𝑑

𝛼
)

+ ⋯ ] d𝑔

= −Г (−
𝑑

𝛼
) 𝜇(𝜇𝜃)−

𝑑

𝛼 [∫
(𝜇𝜃)0(𝑔)(1)−1𝑒−𝑔(𝜇+𝜇𝜃)

Г (1 −
𝑑

𝛼
)

∞

0

d𝑔

+ ∫
(𝜇𝜃)1(𝑔)(2)−1𝑒−𝑔(𝜇+𝜇𝜃)

Г (2 −
𝑑

𝛼
)

∞

0

d𝑔 + ⋯ ]

= −Г (−
𝑑

𝛼
) 𝜇(𝜇𝜃)−

𝑑

𝛼 [
(𝜇𝜃)0

Г(1−
𝑑

𝛼
)(𝜇+𝜇𝜃)

Г(1) +
(𝜇𝜃)1

Г(2−
𝑑

𝛼
)(𝜇+𝜇𝜃)2

Г(2) + ⋯ ]



 
 

 

𝑀(𝜃, 𝛼) = (−Г (−
𝑑

𝛼
) 𝜇(𝜇𝜃)−

𝑑

𝛼) [∑
(𝜇𝜃)𝑘

Г (𝑘 + 1 −
𝑑

𝛼
) (𝜇 + 𝜇𝜃)𝑘+1

∞

𝑘=0

Г(1 + 𝑘)]



 
 

 

𝑃[SINR > 𝜃] = ∫ [𝑒
−(

𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)𝐼

[1 + (
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
) 𝐼 +

1

2
(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

2

𝐼2
∞

0

+ ⋯ ]] 𝑓𝐼(𝑖) 𝑑𝑖

[[(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

0

∫ [𝑒−𝑠𝐼(𝐼0𝑓𝐼(𝑖))]
∞

0

𝑑𝑖] + [(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

1

∫ [𝑒−𝑠𝐼(𝐼1𝑓𝐼(𝑖))]
∞

0

𝑑𝑖]

+ [
1

2
(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

2

∫ [𝑒−𝑠𝐼(𝐼2𝑓𝐼(𝑖))]
∞

0

𝑑𝑖] + ⋯ ]

𝑠
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹

(𝐼𝑛𝑓𝐼(𝑖))

𝑥𝑛𝑓(𝑥)
ℒ

⇔ (−1)𝑛 𝑑𝑛ℒ𝑓(𝑠)

𝑑𝑠𝑛



 
 

 

[[(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

0

(−1)0
𝑑0ℒ𝐼(𝑠)

𝑑𝑠0
] + [(

𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

1

(−1)1
𝑑1ℒ𝐼(𝑠)

𝑑𝑠1
]

+ [
1

2
(
𝑚𝑑,𝐹

𝛺𝑑,𝐹

𝜃𝑟𝐹
𝛼

𝑃𝐹
)

2

(−1)2
𝑑2ℒ𝐼(𝑠)

𝑑𝑠2
] + ⋯ ]

𝑃[SINR > 𝜃] = [ ∑
(𝑠)𝑘

𝑘!
(−1)𝑘

𝑑𝑘ℒ𝐼(𝑠)

𝑑𝑠𝑘

𝑚𝑑,𝐹−1

𝑘=0

]

𝑀(𝜃, 𝛼) = ∫ [(𝑔)
𝑑

𝛼 (Г (−
𝑑

𝛼
,
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃𝑔)

∞

0

− Г (−
𝑑

𝛼
))]

𝑚𝐼,𝐹
𝑚𝐼,𝐹

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

𝑔𝑚𝐼,𝐹−1𝑒
−

𝑚𝐼,𝐹𝑔

𝛺𝐼,𝐹 d𝑔

Г(𝑎, 𝑥) + 𝛾(𝑎, 𝑥) = Г(𝑎) 𝛾(𝑎, 𝑥) = 𝑥𝑎Г(𝑎)𝑒−𝑥 ∑
𝑥𝑘

Г(𝑎+𝑘+1)
∞
𝑘=0

=
−Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹 (
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

−
𝑑

𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

∫ (𝑔)𝑚𝐼,𝐹−1𝑒
−𝑔(

𝑚𝐼,𝐹
𝛺𝐼,𝐹

+
𝑚𝑑,𝐹𝜃

𝛺𝑑,𝐹
)

∞

0

[
 
 
 

∑
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

𝑘

𝑔𝑘

Г (−
𝑑

𝛼
+ 𝑘 + 1)

∞

𝑘=0
]
 
 
 

d𝑔



 
 

 

=
−Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹 (
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

−
𝑑

𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

∫ (𝑔)𝑚𝐼,𝐹−1𝑒
−𝑔(

𝑚𝐼,𝐹
𝛺𝐼,𝐹

+
𝑚𝑑,𝐹𝜃

𝛺𝑑,𝐹
)

∞

0

[
 
 
 (

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

0

𝑔0

Г (1 −
𝑑

𝛼
)

+
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

1

𝑔1

Г (2 −
𝑑

𝛼
)

+
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

2

𝑔2

Г (3 −
𝑑

𝛼
)

+ ⋯

]
 
 
 
d𝑔

=
−Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹 (
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

−
𝑑

𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

[
 
 
 
 

∫
(𝑔)𝑚𝐼,𝐹−1𝑒

−𝑔(
𝑚𝐼,𝐹
𝛺𝐼,𝐹

+
𝑚𝑑,𝐹𝜃

𝛺𝑑,𝐹
)

Г (1 −
𝑑

𝛼
)

∞

0

d𝑔

+ ∫
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

1

(𝑔)(𝑚𝐼,𝐹+1)−1𝑒
−𝑔(

𝑚𝐼,𝐹
𝛺𝐼,𝐹

+
𝑚𝑑,𝐹𝜃

𝛺𝑑,𝐹
)

Г (2 −
𝑑

𝛼
)

∞

0

d𝑔 + ⋯

]
 
 
 
 

=

−Г(−
𝑑

𝛼
)𝑚𝐼,𝐹

𝑚𝐼,𝐹(
𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃)
−

𝑑
𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

[
(

𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃)
0

(
𝛺𝐼,𝐹𝛺𝑑,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝐹+𝛺𝐼,𝐹𝑚𝑑,𝐹𝜃
)

𝑚𝐼,𝐹

Г(1−
𝑑

𝛼
)

Г(𝑚𝐼,𝐹) +

(
𝑚𝑑,𝐹
𝛺𝑑,𝐹

𝜃)
1

(
𝛺𝐼,𝐹𝛺𝑑,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝐹+𝛺𝐼,𝐹𝑚𝑑,𝐹𝜃
)

𝑚𝐼,𝐹+1

Г(2−
𝑑

𝛼
)

Г(𝑚𝐼,𝐹 + 1) + ⋯ ]

𝑀(𝜃, 𝛼)

=

(

 
 −Г (−

𝑑

𝛼
) 𝑚𝐼,𝐹

𝑚𝐼,𝐹 (
𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

−
𝑑

𝛼

𝛺𝐼,𝐹
𝑚𝐼,𝐹Г(𝑚𝐼,𝐹)

)

 
 

[
 
 
 

∑
(

𝑚𝑑,𝐹

𝛺𝑑,𝐹
𝜃)

𝑘

(
𝛺𝐼,𝐹𝛺𝑑,𝐹

𝑚𝐼,𝐹𝛺𝑑,𝐹+𝛺𝐼,𝐹𝑚𝑑,𝐹𝜃
)

𝑚𝐼,𝐹+𝑘

Г (𝑘 + 1 −
𝑑

𝛼
)

∞

𝑘=0

Г(𝑚𝐼,𝐹

+ 𝑘)

]
 
 
 



 
 

 

𝑚𝑑,𝐹

𝑚𝑑,𝐹

Г(𝑎,𝑥)

Г(𝑎)
= 1 −

𝛾(𝑎,𝑥)

Г(𝑎)
𝛾(𝑎, 𝑥) =

𝑥𝑎Г(𝑎)𝑒−𝑥 ∑
𝑥𝑘

Г(𝑎+𝑘+1)
∞
𝑘=0

𝑚𝑑,𝐹 , 𝑚𝐼,𝐹 𝑚𝐼,𝑀

𝑝𝑂𝐹 = ∑
(𝑧)𝑘+𝑚𝑑,𝐹

Г(𝑘 + 𝑚𝑑,𝐹 + 1)
(−1)𝑘+𝑚𝑑,𝐹

𝑑𝑘+𝑚𝑑,𝐹(exp(𝑙(𝑧)))

𝑑𝑧𝑘+𝑚𝑑,𝐹

∞

𝑘=0

exp(𝑙(𝑧)) = 𝑒
[A]𝑧

𝑑
𝛼−

𝑚𝑑,𝐹𝜃ϭ2

𝛺𝑑,𝐹𝑃𝐹
𝑧

𝑧 = 𝑟𝐹
𝛼

𝑝𝑂𝐹 = ∑
(𝑧)𝑘+𝑚𝑑,𝐹

Г(𝑘 + 𝑚𝑑,𝐹 + 1)
(−1)𝑘+𝑚𝑑,𝐹

𝑑𝑘+𝑚𝑑,𝐹(∑
A𝑛𝑧

𝑛(
𝑑
𝛼

)

𝑛!
∞
𝑛=0 )

𝑑𝑧𝑘+𝑚𝑑,𝐹

∞

𝑘=0

     

𝑝𝑂𝐹 = ∑
(𝑧)𝑘+𝑚𝑑,𝐹

Г(𝑘 + 𝑚𝑑,𝐹 + 1)
(−1)𝑘+𝑚𝑑,𝐹

𝑑𝑘+𝑚𝑑,𝐹(
A0𝑧0

0!
+

A1𝑧
(
𝑑
𝛼

)

1!
+

A2𝑧
2(

𝑑
𝛼

)

2!
+ ⋯ )

𝑑𝑧𝑘+𝑚𝑑,𝐹

∞

𝑘=0



 
 

 

𝐷𝜇(𝑓(𝑧)) =
𝑑𝜇(𝑓(𝑧))

𝑑𝑧𝜇 𝜇th

𝑓(𝑧) 𝜇 > 0

𝐷𝜇(𝑧𝛾) 𝛾 > −1
Г(𝛾+1)

Г(𝛾−𝜇+1)
𝑧𝛾−𝜇 𝐷𝜇(𝑐𝑓(𝑧)) =

𝑐𝐷𝜇(𝑓(𝑧)) 𝑐

𝑝𝑂𝐹 = ∑
(𝑧)𝑘+𝑚𝑑,𝐹

Г(𝑘 + 𝑚𝑑,𝐹 + 1)
(−1)𝑘+𝑚𝑑,𝐹[

A0Г (0 (
𝑑

𝛼
) + 1) 𝑧0(

𝑑

𝛼
)−(𝑘+𝑚𝑑,𝐹)

0! Г (0 (
𝑑

𝛼
) − (𝑘 + 𝑚𝑑,𝐹) + 1)

∞

𝑘=0

+
A1Г (1 (

𝑑

𝛼
) + 1) 𝑧

1(
𝑑

𝛼
)−(𝑘+𝑚𝑑,𝐹)

1! Г (1 (
𝑑

𝛼
) − (𝑘 + 𝑚𝑑,𝐹) + 1)

+
A2Г (2 (

𝑑

𝛼
) + 1) 𝑧

2(
𝑑

𝛼
)−(𝑘+𝑚𝑑,𝐹)

2! Г (2 (
𝑑

𝛼
) − (𝑘 + 𝑚𝑑,𝐹) + 1)

+ ⋯]

𝑝𝑂𝐹 = ∑
(𝑧)𝑘+𝑚𝑑,𝐹

Г(𝑘 + 𝑚𝑑,𝐹 + 1)
(−1)𝑘+𝑚𝑑,𝐹 ∑

A𝑛

𝑛!

Г (𝑛 (
𝑑

𝛼
) + 1)

Г (𝑛 (
𝑑

𝛼
) − (𝑘 + 𝑚𝑑,𝐹) + 1)

𝑧𝑛(
𝑑

𝛼
)−(𝑘+𝑚𝑑,𝐹)

∞

𝑛=0

∞

𝑘=0

A



 
 

 

 



 
 

 



 
 

 

,

 ,
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