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Chapter 1

Introduction

1.1 Background

As 4G technique has been widely applied, and more and more researchers are

focusing on the techniques for realizing 5G. However, as mobile service providers,

they even more concern how to deploy and maintain the wireless networks. For

example, how many base stations (BSs) should be implemented in an area? How to

set the transmit power? How to optimize the coverage probability or throughput?

How to allocate the resource block? A general and tractable model of the modern

cellular networks is necessary to answer these questions. Using the model, we can

simulate the cellular networks performance under different parameters, and verify

the effectiveness of new techniques. The model is not only used to characterize the

operation, and also helpful for designing and optimizing the cellular networks.

In the era of information explosion, the demand for fast and convenient communi-

cation is constantly increasing. To meet the demand, mobile communication gets fast

development. Benefiting from mobile terminals, such as mobile phone, laptop, tablet,

even vehicles, people around the world can communicate with each other without

the limitation of movement. The mobile communication service is rendered by the

wireless cellular networks deployed by the mobile communication provider. A typical

cellular networks consist of BSs deployed in some areas. The BSs and the mobile

terminals can in turn be transmitters or receivers. Each transmitter-receiver pair
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requires its own wireless link. At a given time, the link that several BSs transmit

simultaneously toward its own mobile users is called downlink. The opposite direction

link that from mobile users to BSs is called uplink.

Recent years, with the population of the terminals, the large number of mobile ter-

minals results in the great demand of high communication traffic (network capacity).

The multiple-input multiple-output (MIMO) technique, benefiting from the multiple

transmit and receive antennas, can significantly increase the capacity of wireless net-

works, and reduce transmit power. MIMO has become a key technique of wireless

communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi),

HSPA+ (3G), WiMAX (4G), and Long Term Evolution (4G). The massive MIMO is

also an essential elementary of 5G [1–3].

To increase spatial frequency efficiency and transmit capacity, the modern cellular

network deployments are increasingly transforming from homogeneous deployments

to heterogeneous networks (HetNets). HetNets play a key role in the next-generation

wireless systems, such as the Third Generation Partnership Project (3GPP) Long-

Term Evolution Advanced (LTE-A) [4] and the IEEE 802.16m Worldwide Interop-

erability for Microwave Access (WiMAX) [5]. The concept of HetNets is to bring

transmitters closer to users in order to enhance the system capacity, provide cover-

age, and save power [6]. Comparing to the homogeneous networks (one tier) [7], the

HetNets consist of different tiers, which differ in terms of transmit power, deployment

density, and even transmission technique. Usually, each tier is comprised of one kind

of BSs, such as operator-deployed macro BSs, Pico BSs [8] [9], and user-deployed

Femto BSs [10]. Due to the coexistence of different tiers, the HetNets introduce the

problem of cross-tier interference. Furthermore, BSs in every tier, particularly user-

deployed femto BSs, obviously increase the randomness of the BSs locations, which

undoubtedly makes analysis of HetNets a challenge. In this case, traditional analysis

of the HetNets based on deterministic models of BSs’ locations is no longer applicable,

even intractable. As a result, there is a strong demand for a new model for analysis

of HetNets.
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1.2 Related Works

The work that applying Stochastic Geometry (SG) to analysis of wireless networks

can be traced back to the late 70’s. To author’s best knowledge, [11] firstly analyzes

the capacity of packet radio networks in which the nodes’ locations are considered ran-

domly rather than deterministic. Following [11], some researchers make determined

efforts, however their works are confined to apply SG to only the analysis of ad hoc

networks [12] [13]. At beginning of the development of wireless cellular networks, the

BSs are deployed almost as hexagonal grid. However, inorder to increase the capacity

of cellular networks, the cellular networks transform to HetNets. It means that BSs

in HetNets, particularly user-deployed femto BSs, obviously increase the randomness

of the BSs’ locations. In this case, using SG to characterize the BSs can naturally

capture the randomness of the BSs’ locations. Furthermore, due to powerful mathe-

matic tool, using SG can also get tractable results. Motivated by these advantages,

researchers attempt to apply SG to model cellular networks.

Downlink

The first related important paper on the topic was published in 2011 [14], which

uses Poisson point process (PPP) to model one tier networks and gets a tractable

result of coverage probability and average rate of users. Although just modeling

one-tier network, the paper contributes to the topic greatly, since it gives a very good

sample of analyzing networks with PPP. Following [14], many cellular networks models

are proposed based on PPP. The authors in [15] [16] not only extended the result of

[14] to 𝐾 tiers, but also considered the both open and closed access cases. It should

be noted that [14–16] provided the base of the analysis of the HetNets with PPP.

The authors of [17] developed a general and tractable model that consists of multi

cellular networks, each deploying up to 𝐾 different tiers of access points (APs), each

class of APs is modeled as an independent PPP, with mobile user locations modeled

as another independent PPP, all channels further consisting of Rayleigh fading.

Most models typically assumes that all BSs from each tier always transmit data
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to its user pair, however, practically some BSs might be idle and hence would not

contribute to the load and aggregate interference. It results in the diversity in the

loads served by different ties and low accuracy of signal-to-Interference plus Noise

Ratio (SINR). In [18], authors overcame the drawback above by assuming transmit

independently with a given probability. Due to the high transmission power gap with

the macro BSs, small cell BSs, such as Pico and Femto BSs, could provide higher

received signal strength (RSS) than macro BSs only in very near area. It results in

the overload of macro BSs and light of small cell BSs, since a user associates with BS

based on the RSS. In [19] [20], the authors investigated the above issue and introduced

a biasing factor to control the network load of each network tier. The biasing factor

can be thought as a virtual increase of transmit power of a given network tier. Usually,

it is used to virtually increase the RSS provided by small cells and then lighten the

load of macro BSs

The relationship between BS density and energy-efficient is investigated in [21].

The authors in [21] proposed a general PPP model of HetNets, and derived the upper

and lower bounds of the optimal BS density for homogeneous scenarios. Based on the

bounds, they obtained the optimal macro/micro BS (base station) density for energy-

efficient heterogeneous cellular networks with quality of service (QoS) constraints. In

[22], authors introduce a new analytical methodology to evaluate the average rate,

which avoids the computation of the coverage probability and needs only the moment

generating function (MGF) of the aggregate interference at the probe mobile terminal.

Authors of [23] develop a sequence of equivalence relations for HetNets and use them

to derive semi-analytical expressions for the coverage probability at the mobile station

when the transmissions from each BS may be affected by random fading with arbitrary

distributions as well as attenuation following arbitrary path loss models. More works

on coverage probability analysis for PPP based HetNets model can be found in [24–

27].

The access mechanism can be classified to be open access, closed access, and hybrid

access. In hybrid access small cells, the available spectrum is partitioned into two

groups. One group is assigned to the closed subscriber group to guarantee their QoS,
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while the other group is assigned to the non-subscribers to enhance their coverage and

reduce the interference experienced from them [28]. In [29], authors proposed a two

tiers PPP model considering hybrid access. They derived the distributions of SINR,

and mean achievable rates of nonsubscribers and subscribers, and thus optimized the

hybrid access policy in a two tier HetNets.

Fractional frequency reuse (FFR) is an attractive interference management tech-

nique, which can remarkably increase spectral efficiency [30, 31]. The authors in

[30, 31] propose an analytical 𝐾 tiers model for evaluating strict FFR and soft fre-

quency reuse (SFR) deployments based on the spatial PPP. The papers not only

derive the cell-edge user coverage probability and average rate, but also propose a

new method of partitioning the users. As well known, in order to use FFR technique,

we need to know who are the cell-edge users. The traditional method partitions the

users by spatial locations, which is effective for the deterministic model. However,

because of introducing randomness to the BSs’ locations, the traditional method is

unavailable for the PPP model. [30, 31] partition the users into the cell-edge users

and cell-interior users by the SINR threshold, thus solve the problem very well [28].

Early work on MIMO networks with FFR is also found in [32]. The paper consid-

ers both MIMO networks and FFR with the deterministic model, and demonstrates

that the proposed trisector frequency partition can not only effectively overcome the

intergroup interference, but can avoid executing the complex multi base-station joint

processing for a huge number of cluster of cells at all locations [32]. Although be-

ing a great reference for the design and deployment of MIMO HetNets with FFR,

their analysis is constrained to the deterministic model and does not consider the SG

model, thus the flexibility and applicability of the conclusions are seriously affected.

As far as I know, the authors of [33, 34] firstly apply the PPP model to analyze

the MIMO HetNets. [35] concludes that MIMO channel power distribution follows

the Gamma distribution. In [33, 34], based on the conclusion of [35], the authors

evaluate the upper bound on the coverage probability using a PPP tool, thereby give

us a new excellent method to analyze MIMO HetNets. [36, 37] studied MIMO based

downlink HetNets with joint transmit–receive diversity using orthogonal space–time
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block coding at the BSs and maximal-ratio combining (MRC) at the users. The

further works about modeling and analyzing MIMO HetNets based on PPP can be

found in [38–44] The authors in [45] applied PPP model to analyze MIMO HetNets

utilizing the FFR technique. The downlink performance of a massive MIMO HetNets

is studied in [46].

Hardcore point process (HCPP) is a point process where points are forbidden to

be closer than a certain minimum distance. Therefore, it is more suitable for modeling

BSs’ distribution than PPP. Since the more accurate analysis based on HCPP is at

the cost of computation complexity, HCPP is not widely used in modeling cellular

networks. In [47–49], HCPP is used to model a two–tier cellular network composed

of multiple macro BSs, multiple cognitive femto access points, multiple users in a

multiple channels environment. The authors investigated the optimization of outage

probability in a cellular networks including cognitive networks.

Uplink

Different from downlink analysis, the uplink analysis pays more attention to power

control due to the restriction of the transmitters of uplink (mobile terminals). In

[50, 51], authors modeled BSs and users by independent PPP and considered Rayleigh

fading to evaluate the uplink coverage probability. Although only a simple model is

proposed in [50, 51], they gave us a paradigm for analyzing uplink HetNets based

on SG. Following it, many more practical and more rigorous models for HetNets

were developed. In [52], the authors modeled a multi-tier cellular network where all

network tiers were assumed to follow independent homogeneous PPPs. Considering

the mobile terminals power control, they derived the expression of outage probability

and spectral efficiency. Based on the similar model, the author of [53] derived the

expression of the average symbol error probability for different modulation schemes

due to aggregate network interference. The more rigorous models for HetNets uplink

can be found in [54–58]
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1.3 Contributions

In the first part of this thesis, we introduce the background of SG based modeling

and analysis of wireless cellular networks in chapter 1. We explain why do we need

a general model of cellular networks, and the motivation of applying SG to model

cellular networks. We briefly review the history of SG analysis on cellular networks

and also summarize the related work of the topic, which is very helpful for under-

standing and studying the history and development of applying SG to model cellular

networks. The basic knowledge of SG are introduced then. The three most frequently

used classical point process (PP) are presented in Section 2.1. Meanwhile, we also in-

troduce the related properties and Voronoi tessellation of PP. They are the necessary

knowledge before beginning the study of modeling cellular networks.

In second part, we use PPP to model BSs’ locations and propose a framework to

analyze the downlink coverage probability of HetNets utilizing the FFR technique.

Based on this model, the tractable expressions of typical users’ coverage probability

under both closed and open access cases are obtained. Then, we propose a tractable

and flexible model for 𝐾–tier MIMO HetNets, with the FFR technique, based on the

spatial PPP. In this work, we show the numerical coverage probabilities of different

FFR and access cases under the full Space division multiple access (SDMA) and

single-user beamforming (SU-BF), and discuss the effects of main parameters on the

coverage probability. We also illustrate how to use the coverage probability results

to derive the average rate expressions. These analyses can assist system designers

in designing networks, and evaluating new algorithm related to MIMO HetNets. To

author’s best knowledge, this work applies SG to model MIMO HetNets with the

FFR technique.

So far all the analyze based on PPP need to utilize the mathematical tool, the

probability generating functional (PGFL) [59] of the PPP, which contributes signif-

icantly on simplifying computations, the resulting expressions usually only involve

computable integrals, even the closed form expressions in some special cases. How-

ever, it restricts the channel of networks to exponential distribution, which greatly
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limits the application of the PPP model. To break through the channel limitation, in

this paper, we develop a novel way of analyzing cellular networks based on PPP, which

maintains the generality of the PPP model, and derives the closed form expressions

of coverage probability at a given distance of the serving BS.

In one word, the main contributions of this thesis are as follows:

∙ We introduce the basic knowledge of the SG: the classical point process, and

the related properties.

∙ Based on SG we model and analysis the of HetNets and MIMO HetNets utilizing

FFR technique.

∙ We develop a novel way of analyzing cellular networks based on PPP, which

successfully breaks through the channel limitation, maintains the generality of

the PPP model.

1.4 Outline of Dissertation

The outline of this dissertation is shown in Fig. 1-1. Chapter 1 firstly introduces

the background, objective of the SG based model of cellular networks. The related

works and contributions of this dissertation are presented. The fundamentals of

SG and necessary related content are presented in Chapter 2. Chapters 3 and 4

are two studies on modeling and analysis of HetNets and MIMO HetNets utilizing

FFR technique, respectively. The results of these two chapters are derived using

probability generating functional (PGFL) of PPP, which results in restrictions of

modeling cellular networks. To break through the restrictions, A new approach to

utilize PPP is proposed. Chapter 5 depicts how to apply the new approach to analysis

of cellular networks. The dissertation conclusion and future works are discussed in

Chapter 6.

The detailed relationship between chapters and techniques is illustrated in fig.

1-2. Chapter 2 introduces the elementary knowledge of SG. In the study of modeling

and analysis on cellular networks, there are two types of models: stochastic model
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and deterministic model. Deterministic model assumes the BSs distributed regularly,

commonly used are hexagonal and square models. Stochastic model applies stochas-

tic geometry to model cellular networks, which uses PPs to characterize the BSs’

locations. Commonly used are PPP, HCPP and Poisson point process (PCP). Based

on the powerful mathematic tool PGFL, stochastic model is widely applied to model

wireless networks, e.g., Ad Hoc, cognitive, cellular networks. This dissertation focuses

on modeling cellular networks. After many years development, the stochastic model

is successfully used to model one tier cellular networks and HetNets. This dissertation

further widen the application of stochastic model. Chapter 3 models and analyzes

HetNets and MIMO HetNets utilizing FFR technique based on the stochastic model.

By introducing MIMO to the framework of Chapter 3, a tractable and flexible model

for K tiers MIMO HetNets, with FFR technique is proposed in this Chapter 4. The

different access mechanism, open access and closed access, are considered in both 3

and 4. Chapters 3 and 4 analyzes cellular networks based on PGFL, which is only

valid to Rayleigh channel. Therefore, the channel of stochastic model restricts to fast

fading, which greatly limits the application of the PPP model. which greatly limits

the application of the PPP model. In Chapter 5, utilizing the conclusion of deter-

ministic model, we develop a probabilistic approach of analyzing cellular networks

based on PPP, which successfully breaks through the channel limitation, maintains

the generality of the PPP model.

9



Figure 1-1: Outline of this dissertation
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Figure 1-2: Relationship between chapters and techniques
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Chapter 2

Stochastic Geometry

A wireless cellular network can be viewed as a collection of BSs, located in a

plane. Considering downlink, each BS transmits to a corresponding receiver thought

as a user, simultaneously. The interference seen by a receiver is the sum of the

signal powers received from all transmitters, except its own transmitter. In a simple

model, the geometry of the locations of the BSs plays a key role since it determines

SINR [60]. SG is the study of random spatial patterns. It provides a natural way of

characterizing the locations of the BSs, and thus modeling and analyzing the cellular

networks from a macroscopic view. Compared with traditional model (deterministic

model), modeling scale cellular networks in terms of SG model is more suitable and

general. SG, which we use as a mathematic tool, is intrinsically related to the theory

of point processes. Therefore, in this chapter, I present the elementary knowledge of

SG and necessary related content are presented, which is the basic of SG for modeling

cellular networks.

2.1 Classical Stochastic Geometry

Point process (PP) is the most basic object studied in SG. Visually and loosely

speaking, a PP is a random collection of points residing in some space. This space

can be considered as the 𝑑–dimensional Euclidean space R𝑑. In the applications of

modeling wireless networks, each point represents the locations of a BS.
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2.1.1 Poisson Point Process (PPP)

One of the simplest and important PP is the so called PPP. It is also the most

frequently used one on modeling and analyzing wireless networks.

Definition of PPP

Definition 2.1.1 (PPP). The PPP Φ of intensity measure Λ is defined by means of

its finite dimensional distributions:

𝑃{Φ(𝐴1) = 𝑛1, . . . ,Φ(𝐴𝑘) = 𝑛𝑘} =
𝑘∏︁

𝑖=1

(︃
𝑒Λ(𝐴𝑖)

Λ(𝐴𝑖)
𝑛𝑖

𝑛𝑖!

)︃

for every 𝑘 = 1, 2, . . . and all bounded, mutually disjoint sets 𝐴𝑖 for 𝑖 = 1, . . . , 𝑘. If

Λ(𝑑𝑥) = 𝜆𝑑𝑥 is a multiple of Lebesgue measure (volume) in R𝑑, we call Φ a homoge-

neous PPP and 𝜆 is its intensity parameter [60].

This definition is very abstract and difficult to understand. For readers’ conve-

nience, an alternative definition is given as:

Definition 2.1.2 (PPP). A PP Φ = {𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈ R𝑑 with intensity 𝜆 is a

PPP if and only if the number of points inside any compact set 𝐴 ⊂ R𝑑 is a Poisson

random variable, and the numbers of points in disjoint sets are independent [61].

Definition 2.1.3 (PPP). A PP Φ = {𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈ R𝑑 with intensity 𝜆 is a

random point set such that

∙ The number of points 𝒩 (𝐴) for any bounded 𝐴 ⊂ R𝑑 follows a Poisson distri-

bution with

E(𝒩 (𝐴)) = 𝜆× |𝐴|, where |𝐴| denotes the area of 𝐴.

∙ 𝒩 (𝐴) and 𝒩 (𝐵) are independent if 𝐴 and 𝐵 are independent (disjoint sets)

It is not evident that such a point process exists. Although the definition is very

clear, how to get a realization of PPP is unknown.
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Realization of PPP

We take a 2 dimensional spacial PPP as an example to illustrate how to simulate

it. Considering to get a PPP realization with intensity 𝜆 on 𝐴 = [−𝐿,𝐿]. There are

two steps as follow:

1. Getting a number of points in the set 𝐴, which is a Poisson random variable

with mean 𝜆|𝐴|.

2. Conditioned on the number of points, and distribute the points within the 𝐴.

The corresponding matlab code is as:

∙ N=poissrnd(𝜆|𝐴|);

∙ Points = unifrnd(-𝐿,𝐿,N,2);

Fig. 2-1 illustrates one realization of PPP with 𝜆 = 2, generated by the codes

above.
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Figure 2-1: One realization of PPP with 𝜆 = 2
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Distance to nearest point

Usually, the analysis is conducted on a user locating on origin, and the users in the

cellular networks are assumed to connect to the nearest BS. Therefore, the probability

density function (PDF) of the distance 𝑟 that from the nearest BS to the user is an

important and necessary for analyzing the cellular networks. The nearest distance 𝑟

means all points must be farther than 𝑟. Considering 2 dimensional space, one simple

fact is that the null probability of a PPP in a set 𝐴 is exp(−𝜆|𝐴|). Therefore,

P[𝑟 > 𝑅] = P[No point nearer than 𝑅] = 𝑒−𝜆𝜋𝑅2

.

Then, the cumulative distribution function (CDF) of 𝑟 is

𝐹𝑟(𝑅) = P[𝑟 < 𝑅] = 1 − 𝑒−𝜆𝜋𝑅2

.

Finally, the PDF of 𝑟 can be obtained as

𝑓𝑟(𝑟) =
𝑑𝐹𝑟(𝑟)

𝑑𝑟
= 𝑒−𝜆𝜋𝑟22𝜋𝜆𝑟 [14].

Probability Generating Functional (PGFL) of PPP

In the process of analysis of cellular networks, PGFL, as a mathematic tool, plays

a key role on dealing with the interference of the cellular networks. The PGFL of

PPP is

Theorem 2.1.1. Let 𝑓 : R𝑑 → R be a measurable function and Φ{𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈

R𝑑 a PPP, then

E
[︁ ∏︁
𝑥𝑖∈Φ

𝑓(𝑥𝑖)
]︁

= exp
{︁
−
∫︁
R𝑑

(︀
1 − 𝑓(𝑥)

)︀
Λ(𝑑𝑥),

}︁
(2.1)

where Λ is a locally finite non-null intensity measure on R𝑑 [60]

Considering 2 dimensional space, the intensity measure of PPP is a constant

Λ = 𝜆. Therefore, the theorem 2.1.1 can be depicted as
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Lemma 2.1.2. Let 𝑓 : R2 → R be a measurable function and Φ{𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈

R2 denotes a PPP with intensity 𝜆, then

E
[︁ ∏︁
𝑥𝑖∈Φ

𝑓(𝑥𝑖)
]︁

= exp
{︁
−
∫︁
R2

(︀
1 − 𝑓(𝑥)

)︀
𝜆𝑑𝑥

}︁
. (2.2)

It should be noted that the 𝑥 in formula (2.2) is a variable denoting points coordi-

nate rather than scalar variables. In the study of signal process, the signal attenuation

depends on distance from transmitter to receiver. Therefore, utilizing the PGFL of

PPP for analyzing cellular networks requires transforming the variable 𝑥 in formula

(2.2) to the distance. To achieve the purpose, we resort to polar coordinates, then

𝑑𝑥 = 𝑟𝑑𝑟𝑑𝜃, here 𝑟 and 𝜃 denote distance and angle, respectively. Then formula (2.2)

can be written in terms of polar coordinates as

E
[︁ ∏︁
𝑥𝑖∈Φ

𝑓(𝑥𝑖)
]︁

= exp
{︁
−
∫︁
R2

(︀
1 − 𝑓(𝑥)

)︀
𝜆𝑑𝑥,

}︁
= exp

{︁
− 𝜆

∫︁ 2𝜋

0

𝑑𝜃

∫︁ ∞

0

(︀
1 − 𝑓(𝑟)

)︀
𝑑𝑟,
}︁

= exp
{︁
− 2𝜋𝜆

∫︁ ∞

0

(︀
1 − 𝑓(𝑟)

)︀
𝑑𝑟,
}︁

(2.3)

The detail of PGFL application on analyzing cellular works will be introduced in

Chapters 3, 4.

2.1.2 Other Point Processes

PPP is the most frequently used PP, however, there are some other point pro-

cesses. The study of PP is beyond of this thesis, here only two other PPs are briefly

introduced, for details please refer to [59] and [60].

Hardcore Point Process (HCPP)

From the method of realization of PPP, we can know PPP uniformly distributes

in the space, therefore, the points may be very near to each other. However, in

the practical cellular networks, the BSs are exclusive to each other in order to mit-
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igate interference and increase the capacity. To increase the model accuracy, some

researchers resort to hardcore point process (HCPP) to model HetNets.

Definition 2.1.4 (HCPP). An HCPP is a repulsive point process where no two

points of the process coexist with a separating distance less than a predefined hard

core parameter 𝑟ℎ. A PP Φ = {𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈ R𝑑 is an HCPP if and only if

‖𝑥𝑖 − 𝑥𝑗‖ ≥ 𝑟ℎ,∀𝑥𝑖 ⊂ Φ, 𝑖 ̸= 𝑗, where 𝑟ℎ ≥ 0 is a predefined hard core parameter, ‖ · ‖

is the Euclidean norm [28].

Form the definition, we can know that HCPP is a point process where points are

forbidden to be closer than a certain minimum 𝑟ℎ distance, it is closer to practical

cellular networks. Therefore, using HCPP to characterize the locations of BSs can

get more accurate results than using PPP. However, since HCPP is more complex

than PPP, the more accurate results derived by HCPP model are at the cost of high

computation complexity.

Poisson Cluster Process (PCP)

In daily life, people usually assemble in some special places, such as stations, mall,

which means the users of cellular networks are not distributed as uniformly. To model

this phenomenon better, many researchers resort to Poisson cluster process.

Definition 2.1.5 (PCP). The PCP models the random patterns produced by ran-

dom clusters. The Poisson cluster process is constructed from a parent PPP Φ =

{𝑥𝑖; 𝑖 = 1, 2, 3, ...} ∈ R𝑑 by replacing each point 𝑥𝑖 ∈ Φ with a cluster of point 𝑀𝑖 are

independently and identically distributed in the spatial domain [28].

The PCP is suitable to model BSs or users if they are clustered according to

certain social behavior.

2.2 Models of BSs

There are two types of models used to analyze cellular networks: deterministic and

stochastic models. Deterministic model uses regular shape and points to characterize
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the cell and BSs, respectively. The typical examples are hexagonal and square grid

models. Stochastic model uses Voronoi tessellation and point process to characterize

the cell and BSs, respectively. A simple and typical sample of stochastic model and

deterministic model are shown in Fig. 2-2 2-3, respectively. In Fig. 2-2, the triangles

are one realization of a PPP. They are randomly distributed in the area, and used to

characterize the BSs’ locations. The tessellation shown is called Voronoi tessellation,

which is used to depict the cell borders of PPP model. In Fig. 2-3, each cell borders

are shown by a regular hexagon. The point in the central of each hexagon denotes

the BSs. The two models represent opposite poles of BSs’ distribution, random and

regular. Therefore, in theory the results derived by them denote upper and lower

bounds.
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Figure 2-2: One realization of PPP with the Voronoi tessellation
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Figure 2-3: Hexagonal model
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Chapter 3

A Model Based on Poisson Point

Process for Downlink K Tiers

Fractional Frequency Reuse

Heterogeneous Networks

Chapters 3-5 are the applications of PPP on modeling cellular networks. In this

chapter, PPP is used to model downlink HetNets utilizing FFR. We derive tractable

expressions of coverage probability under both open and closed access schemes, which

even can be simplified to a simple closed form for interference-limited HetNets (neglect

noise).

3.1 System Model

3.1.1 Fractional Frequency Reuse (FFR)

As an attractive interference management technique, fractional frequency reuse

(FFR) has been included in fourth generation (4G) wireless standards including

WiMAX 2 (802.16m) and 3rd Generation Partnership Projectlong term evolution

(3GPP-LTE) since release 8 [30] [62]. This will undoubtedly promote employing FFR

21



in different wireless applications. FFR can remarkably improve the rate, coverage,

and spectral efficiency (SE) of cell edge users, with low complexity of implementation.
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Figure 3-1: Strict FFR and SFR frequency and transmit power allocation.

There are two main types of FFR: strict FFR and SFR. Fig. 3-1 (a) and (b)

illustrate strict FFR and SFR frequency and transmit power allocation from inter-

tier and intra-tier point of views, respectively.

Under strict FFR, from inter-tier view, the whole frequency resource is partitioned

to 𝑓𝑐 +𝑓𝑒 subbands, where 𝑓𝑐 is the common subband, which is shared by the interior

users of each tier, 𝑓𝑒 is used as edge users’ subbands. 𝑓𝑒 is further divided into∑︀𝐾
𝑘=1 𝑓𝑒𝑘, where 𝐾 is the number of tiers and 𝑓𝑒𝑘 is allocated to the 𝑘𝑡ℎ tier as total
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edge users’ subbands. Because each 𝑓𝑒𝑘 is used by just 𝑘𝑡ℎ tier, the 𝑘𝑡ℎ tier edge users

only receive interference from 𝑘𝑡ℎ tier.

From intra-tier view, 𝑓𝑒𝑘 is further divided to 𝐷𝑘 subbands 𝑓𝑗, where 𝐷𝑘 is reuse

factor of 𝑘𝑡ℎ tier. These subbands will be chosen uniformly to transmit to the 𝑘𝑡ℎ tier

edge users. That means the intra-tier interference received by the edge user of the 𝑘𝑡ℎ

tier is further thinned with 𝐷𝑘. In general strict FFR removes cross-tier interference

and significantly thins intra-tier interference for edge user at the cost of low spectral

efficiency [30] [63].

Under SFR, the whole frequency resource is equally partitioned to 𝐷 subbands,

these subbands can be shared by all cells of all tiers. From intra-tier view, each cell

chooses one subband for edge user transmission. Correspondingly interior users are

allocated the rest 𝐷− 1 subbands. That means SFR does not have the reserved sub-

bands, so the edge users of SFR will experience interference from all cells of all tiers,

which result in low SINR. To improve the SINR, SFR increases edge users’ transmit

power to 𝛽𝑘𝑃𝑘 where 𝑃𝑘 is the interior user’s transmit power, and 𝛽𝑘 > 1 power

control factor, which ranges typically from 0 to 20 dB [64] [65]. Thus, comparing to

strict FFR, SFR gets great spectral utilization at the cost of experiencing much more

interference [30] [64].

It should be noted that the total transmit power at each BS may differ from each

other for SFR, and there should be power constraint in the practical application.

The main purposal in this chapter is providing a simple model for analyzing HetNets.

To theorize our model clearly, we simplify the parameters without considering the

power constraint. However, the total transmit power of each BS can be constrained

by setting the upper limit of 𝛽𝑘. Furthermore, if there are some BSs using different

transmission powers in one tier, we can divide the original tier into two tiers with

appropriate densities, which is enabled by the fact that independently thinning a PPP

leads to two independent PPPs [33].
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3.1.2 HetNets Model

We consider a cellular downlink 𝐾 tiers HetNets utilizing FFR, and use different

independent PPP Φ𝑘 with density 𝜆𝑘 to model the BSs of each tier. Without loss of

generality, we conduct analysis on a typical user located at the origin. The typical

user can connect to any tier without any restriction under open access case, however

is allowed to access to only a subset of tiers under closed access case. We assume the

typical user can access to just one tier at a time and to the nearest BS of the tier. We

also assume each tier has the same transmit power 𝑃𝑘 and the same threshold of SINR

𝑇𝑘. The locations of 𝑘𝑡ℎ tier serving BSs are denoted as 𝑥𝑘, and those of the other

BSs are denoted as 𝑦. The distances from the typical user to the nearest BS of 𝑘𝑡ℎ

tier is denoted as 𝑟𝑘. Referring to [59], since the 𝑘𝑡ℎ tier BSs are distributed as PPP

with density 𝜆𝑘, 𝑟𝑘 will follow the Rayleigh distribution, furthermore its probability

density function (PDF) is 𝑓𝑟𝑘(𝑟𝑘) = 𝑒𝜆𝑘𝜋𝑟
2
𝑘2𝜋𝜆𝑘𝑟𝑘 [14]. This model is applicable both

to non-orthogonal (CDMA) and orthogonal (TDMA, OFDMA) HetNets.

3.1.3 Channel Model

We consider the Rayleigh fading, and more complex channel distributions can

be considered in the model [14] [66]. The direct link from the serving BS to the

typical user and interference links from the other BS to the typical user are i.i.d.

exponentially distributed with mean 𝜇, which are denoted by 𝑔𝑘𝑥𝑘
∼ exp(𝜇) and

𝐺𝑘𝑥𝑘
∼ exp(𝜇), respectively. Define the received power of the typical user at the

origin from the nearest serving BS as 𝑃𝑟 = 𝑃𝑘𝑔𝑘𝑥𝑘
𝑟−𝛼
𝑘 , where 𝛼 is the path loss

exponent. The received SINR of the typical user is defined as

𝑆𝐼𝑁𝑅(𝑥𝑘) =
𝑃𝑘𝑔𝑘𝑥𝑘

𝑟−𝛼
𝑘

𝐾∑︀
𝑗=1

𝐼𝑗 + 𝜎2

,

where 𝐼𝑗 =
∑︀
𝑦∈Φ𝑗

𝑃𝑗𝐺𝑗𝑦𝑅
−𝛼
𝑗𝑦 , 𝑅𝑗𝑦 are the distances from the 𝑗𝑡ℎ tier’s interference BSs

to the typical user, and 𝜎2 is the constant additive noise.

With FFR, we need to define who the edge users are. For the deterministic
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model, we can partition the users by spatial locations. However, for PPP model, it

is ineffective due to the randomness of BSs’ locations. Thus, we partition the users

into edge users or interior users by SINR threshold [30] [31]. We compute a mobile

user’s SINR to the nearest BS of the 𝑘𝑡ℎ tier and check if it is less than the tier’s FFR

threshold 𝑇𝑘. If so, then the user is classified as an edge user, otherwise interior user.

3.2 Coverage Probability

In this section, we will derive the coverage probability of edge user for SFR and

strict FFR. We assume that a typical user is covered by 𝑘𝑡ℎ tier if its downlink SINR

from the nearest BS of 𝑘𝑡ℎ tier is greater than the threshold 𝑇𝑘. In other words,

the coverage probability equals the complementary cumulative distribution function

(CCDF) of the SINR. The coverage probability of edge user is conditional one, because

it depends on the coverage probability of interior user. With FFR, when a mobile user

is classified as an edge user, BSs transmit to it on the reserved FFR band. Thereby,

the edge user will experience new direct interference channel, denoted as 𝑔𝑘𝑥𝑘
∼ exp(𝜇)

and �̂�𝑘𝑥𝑘
∼ exp(𝜇), respectively, which also follow exponential distribution, but are

independent of 𝑔𝑘𝑥𝑘
and 𝐺𝑘𝑥𝑘

. Correspondingly, the interference of the edge users

from 𝑘𝑡ℎ tier changes to 𝐼𝑗 =
∑︀
𝑦∈Φ𝑗

𝑃𝑗�̂�𝑗𝑦𝑅
−𝛼
𝑗𝑦 and the SINR of the 𝑘𝑡ℎ tier edge users

is denoted as 𝑆𝐼𝑁𝑅𝑘, that describes the next subsections.

3.2.1 Open Access Case

In open access case, a typical user can connect to any tier without any restriction

[67]. Because the BSs’ locations of each tier are modeled by independent PPP, the

coverage probabilities of each tier are also independent. Thus, under open access

scheme the coverage probability can be thought as the sum of the coverage probability

of each tier. Considering FFR technique, the coverage probability of open access can

be expressed as

P
(︂ 𝐾⋃︁

𝑘=1

𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |
𝐾⋂︁
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︂
, (3.1)
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where 𝑇𝑘 means the thresholds of the 𝑘𝑡ℎ tier edge users, and 𝑇𝑗 means the SINR

threshold of 𝑗𝑡ℎ tier interior users. Due to the independence between each tier, (3.1)

can be evaluated as

P
(︂ 𝐾⋃︁

𝑘=1

𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |
𝐾⋂︁
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︂
𝐾∑︁
𝑘=1

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |

𝐾⋂︁
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀

𝑎
=

𝐾∑︁
𝑘=1

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 ,

𝐾⋂︀
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀
P
(︀ 𝐾⋂︀
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀

=
𝐾∑︁
𝑘=1

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 ,

𝐾∏︀
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀
P
(︀ 𝐾∏︀
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀ , (3.2)

where 𝑎means conditioning on 𝑟𝑘, and using conditional probability formula P(𝐴|𝐵) =

P(𝐴𝐵)
P(𝐵)

.

SFR Case

As mentioned previously, SFR improves the SINR of the edge users by increasing

transmit power, rather than allocating reserved subbands. That means the edge users

experience both cross-tier and inter-cell interference. Under SFR, the SINR of 𝑘𝑡ℎ edge

and interior user can be denoted as 𝑆𝐼𝑁𝑅𝑘 =
𝛽𝑘𝑃𝑘𝑔𝑘𝑟

−𝛼
𝑘∑︀𝐾

𝑛=1 𝜂𝑛𝐼𝑛+𝜎2
, 𝑆𝐼𝑁𝑅𝑗 =

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗∑︀𝐾

𝑚=1 𝜂𝑚𝐼𝑚+𝜎2
,

respectively, where 𝜂𝑘 = (𝐷𝑘−1+𝛽𝑘)/𝐷𝑘. Because increasing the edge users’ transmit

power will correspondingly impact on interference, so we introduce 𝜂𝑘 to consolidate

the influence of the edge and interior users form 𝑘𝑡ℎ tier. Now for SFR, eq. (3.2) can
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be further expressed as

𝑃𝑆𝐹𝑅(𝑇𝑘) =
𝐾∑︁
𝑘=1

P
(︂

𝛽𝑘𝑃𝑘𝑔𝑘𝑟
−𝛼
𝑘

𝐾∑︀
𝑛=1

𝜂𝑛𝐼𝑛+𝜎2

> 𝑇𝑘 ,
𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗

𝐾∑︀
𝑚=1

𝜂𝑚𝐼𝑚+𝜎2

< 𝑇𝑗

)︂

P
(︂

𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗

𝐾∑︀
𝑚=1

𝜂𝑚𝐼𝑚+𝜎2

< 𝑇𝑗

)︂ . (3.3)

After evaluating (3.3), we can get the coverage probability as theorem 3.2.1.

Theorem 3.2.1. (SFR, open access, edge user, HetNets): The coverage probability

of edge user with SFR and open access scheme is

𝑃𝑆𝐹𝑅,𝑜𝑝(𝑇𝑘) =
𝐾∑︁
𝑘=1

∫︀∞
0 𝜌(𝑘,𝜆)e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)·

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

∫︀∞
0 𝜌(𝑘,𝜆)

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

, (3.4)

where 𝜌(𝑘, 𝜆) = 2𝜋𝑟𝑘𝜆𝑘𝑒
−𝜋𝑟2𝑘𝜆𝑘 , 𝑠𝑘 =

𝜇𝑇𝑘𝑟
𝛼
𝑘

𝑃𝑘𝛽𝑘
, 𝑠𝑗 =

𝜇𝑇𝑗𝑟
𝛼
𝑗

𝑃𝑗
and

𝑓𝑆𝐹𝑅(𝑠) = exp

(︂
− (𝑠𝜇−1)

2
𝛼𝐶(𝛼)

𝐾∑︁
𝑚=1

𝜆𝑚(𝜂𝑚𝑃𝑚)
2
𝛼

)︂
, (3.5)

where 𝐶(𝛼) = 2𝜋2csc(2𝜋
𝛼

)𝛼−1.

Proof: see the A.1.

We can observe from theorem 3.2.1 that the coverage probability is only a function

of the relevant SFR and HetNets’ parameters, and very tractable, just containing

single integral. The reason for introducing integral is that evaluating (3.3) needs to

condition on and decondition on 𝑟𝑘. The terms 𝑓𝑆𝐹𝑅(𝑠
2
𝛼
𝑘 ) and 𝑓𝑆𝐹𝑅(𝑠

2
𝛼
𝑘 ) come from

𝑆𝐼𝑁𝑅𝑘 and 𝑆𝐼𝑁𝑅𝑘 terms of (3.3), respectively. In (3.3), the edge and interior users

have the same SINR pattern, they are in the same situation, besides transmit power,

thus we can express the results of them by the same function.

Comparing to the conventional derivations of [30] [31], the expressions of theorem

3.2.1 are simple and general, which contain only single integral and consider 𝐾 tiers

HetNets. There are two reasons of that. Firstly, the different tiers BSs’ locations are
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modeled by independent PPP, which means the BSs from different tiers are totally

independent. This independence is used in (3.1), which plays a key role in simplifying

the expressions. Secondly, [15] provides a simple method of evaluating the Laplace

transform under PPP model. Based on this conclusion, the simple expression of (A.4)

can be derived.

The expressions of theorem 3.2.1 can be further simplified for interference-limited

case to a simple closed form expression.

Lemma 3.2.2. (No noise, SFR, open access, HetNets). In interference-limited net-

work, the coverage probability of edge user with SFR and open access scheme is

𝑃𝑆𝐹𝑅,𝑜𝑝,𝐼𝐿 =
𝐾∑︁
𝑘=1

𝜋
(︀
𝜋 + 𝑇

2
𝛼
𝑘 𝜃
)︀

(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃
)︀(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃 + 𝑇

2
𝛼
𝑘 𝜃
)︀ , (3.6)

where 𝜃 = 𝜆−1
𝑘 𝑃

− 2
𝛼

𝑘 𝐶(𝛼)
∑︀𝐾

𝑚=1 𝜆𝑚(𝜂𝑚𝑃𝑚)
2
𝛼 .

Proof: see the A.2.

This conclusion is not only helpful for system design of the HetNets with SFR,

but also gives us some important observations. For 𝑇𝑘 = 𝑇𝑘𝛽
−1
𝑘 , (3.6) can be further

simplified to

𝑃𝑆𝐹𝑅,𝑜𝑝,𝐼𝐿 =
𝐾∑︁
𝑘=1

𝜋(︀
𝜋 + 2𝑇

2
𝛼
𝑘 𝜃
)︀ . (3.7)

Considering only one tier network (𝐾 = 1), (3.6) changes to

𝑃𝑆𝐹𝑅,𝑜𝑝,𝐼𝐿 =
𝜋
(︀
𝜋 + 𝑇

2
𝛼
𝑘 𝜃1

)︀
(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃1
)︀(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃1 + 𝑇

2
𝛼
𝑘 𝜃1

)︀ , (3.8)

where 𝜃1 = 𝐶(𝛼)𝜂1. From (3.8), we note that the coverage probability of edge user in

interference-limited one tier network with SFR is independent of density and transmit

power of BSs, and only depends on the thresholds of edge and interior user and

transmit power control factor 𝛽𝑘. We can find the similar observation in [14] and
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[15]: in one tier network interference-limited network the coverage probability of

interior user is independent of density and transmit power of BSs. Including above

observations, we can conclude that neglecting noise, density and transmit power do

not affect coverage probability of both edge and interior users.

Strict FFR

For Strict FFR case, the interior users use common subband 𝑓𝑐, thereby, it will be

interfered by both inter-cell and cross-tier BSs. However, the edge user is allocated

reserved subbands to reduce cross-interference, that means the edge users of strict

FFR just experience one tier’s interference, furthermore, thinned with 𝐷𝑘. The SINR

of 𝑘𝑡ℎ edge and interior user can be denoted as 𝑆𝐼𝑁𝑅𝑘 =
𝐷𝑘𝑃𝑘𝑔𝑘𝑟

−𝛼
𝑘

𝐼𝑘+𝜎2
, 𝑆𝐼𝑁𝑅𝑘 =

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗∑︀𝐾

𝑚=1 𝐼𝑚+𝜎2
, respectively. Now for strict FFR, (3.2) can be further expressed as

𝑃𝑠𝐹𝐹𝑅(𝑇𝑘) =
𝐾∑︁
𝑘=1

P
(︂

𝐷𝑘𝑃𝑘𝑔𝑘𝑟
−𝛼
𝑘

𝐼𝑘+𝜎2
> 𝑇𝑘 ,

𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗∑︀𝐾

𝑚=1 𝐼𝑚+𝜎2
< 𝑇𝑗

)︂
P
(︂

𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗∑︀𝐾

𝑚=1 𝐼𝑚+𝜎2
< 𝑇𝑗

)︂ . (3.9)

Comparing eqs. (3.9) and (3.3), they are similar and (3.9) is much easier, because its

edge user’s SINR does not contain cross-tier interference. So referring to the method

of SFR, after evaluating it, we can derive

Theorem 3.2.3. (strict FFR, open access, edge user, HetNets): The coverage prob-

ability of edge user with strict FFR and open access scheme is

𝑃𝑠𝐹𝐹𝑅,𝑜𝑝 =
𝐾∑︁
𝑘=1

∫︀∞
0 𝜌(𝑘,𝜆)e−𝑠𝑘𝜎2

𝑓𝑒𝑑𝑔𝑒(𝑠𝑘)·

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑠𝐹𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

∫︀∞
0 𝜌(𝑘,𝜆)

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑠𝐹𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

(3.10)

where 𝑠𝑗 =
𝜇𝑇𝑗𝑟

𝛼
𝑗

𝑃𝑗
, 𝑠𝑘 =

𝜇𝑇𝑘𝑟
𝛼
𝑘

𝑃𝑘𝐷𝑘
,

𝑓𝑠𝐹𝐹𝑅(𝑠) = exp

(︂
− (𝑠𝜇−1)

2
𝛼𝐶(𝛼)

𝐾∑︁
𝑚=1

𝜆𝑚𝑃
2
𝛼
𝑚

)︂
, (3.11)
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𝑓𝑒𝑔𝑑𝑒(𝑠) = exp

(︂
− (𝑠𝜇−1)

2
𝛼𝐶(𝛼)𝜆𝑘𝑃

2
𝛼
𝑘

)︂
. (3.12)

Proof: see the A.3.

The expressions of theorem 3.2.3 are similar to that of theorem 3.2.1. We can

see from (3.10), which also contains only single integral, and the interference term of

edge and interior user are included in 𝑓𝑠𝐹𝐹𝑅(𝑠) and 𝑓𝑒𝑔𝑑𝑒(𝑠), respectively.

These expressions also can be further simplified for interference-limited network

to a simple closed form expression.

Lemma 3.2.4. (No noise, strict FFR, HetNets). In interference-limited network,

the coverage probability of edge user with strict FFR and open access scheme is

𝑃𝑆𝐹𝑅,𝑜𝑝,𝐼𝐿 =
𝐾∑︁
𝑘=1

𝜋

(︂
𝜋 + 𝑇

2
𝛼
𝑘 𝜃′
)︂

(︂
𝜋 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼
𝐶(𝛼)

)︂(︂
𝜋 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼
𝐶(𝛼) + 𝑇

2
𝛼
𝑘 𝜃′
)︂ , (3.13)

where 𝜃′ = 𝜆−1
𝑘 𝑃

− 2
𝛼

𝑘 𝐶(𝛼)
∑︀𝐾

𝑚=1 𝜆𝑚𝑃
2
𝛼
𝑚 .

Proof: refer to the proof of corollary 3.2.2.

The conclusion of corollary 3.2.4 is similar to that of SFR, and more simple, this

is because the 𝑘𝑡ℎ tier edge user of strict FFR just experiences inter-cell interference

from 𝑘𝑡ℎ tier.

Considering only one tier network (𝐾 = 1), Eq. (3.13) changes to

𝑃𝑆𝐹𝑅,𝑜𝑝,𝐼𝐿 =

𝜃′1

(︂
𝜃′1 + 𝑇

2
𝛼
𝑘

)︂
(︂
𝜃′1 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼

)︂(︂
𝜃′1 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼

+ 𝑇
2
𝛼
𝑘

)︂ , (3.14)

where 𝜃′1 = 𝜋𝐶(𝛼)−1.

Eq. (3.14) shows the coverage probability of edge user in interference-limited one

tier network with strict FFR is independent of density and transmit power of BSs,

and only depends on the thresholds of edge and interior user and reuse factor 𝐷𝑘.
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Furthermore, if let 𝑇𝑘 = 𝑇𝑘𝐷
−1
𝑘 , the coverage probability of edge user just depends

on 𝑇𝑘, which is as

𝐾∑︁
𝑘=1

𝜃′1(︂
𝜃′1 + 2𝑇

2
𝛼
𝑘

)︂ . (3.15)

Now considering (3.8) and (3.14), we can conclude that neglecting noise, in one

tier network, for both SFR and strict FFR, density of BSs and transmit power do not

affect coverage probability of both edge and interior users.

3.2.2 Closed Access

Under closed access scheme, a mobile user accesses to only a subset of tiers and the

rest of the tiers act purely as interference [68]. This access scheme is applied exten-

sively in private owned infrastructure, such as user-deployed femto BSs or company-

deployed pico BSs, which is used to improve service to their staffs. In this work, we

assume the typical user can access to a subset 𝐵 ⊂ {1, 2, · · · , 𝐾}, and due to the

independence between each tier, the coverage probability under closed access case can

be thought as the sum of those of the each subset tier under closed access case. With

FFR, the coverage probability can be expressed as

P
(︂ ⋃︁

𝑘∈𝐵

𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |
⋂︁
𝑗∈𝐵

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︂
. (3.16)

Referring to (3.2), (3.16) equals

∑︁
𝑗∈𝐵

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 ,

∏︀
𝑗∈𝐵

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀
P
(︀ ∏︀
𝑗∈𝐵

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀ . (3.17)

SFR

In section 3.2.1, we have already introduced the SINR of 𝑘𝑡ℎ edge and interior

users, now plug them into (3.17), we can derive
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Theorem 3.2.5. (SFR, closed access, edge user, HetNets): The coverage probability

of edge user with SFR and closed access scheme is

𝑃𝑆𝐹𝑅,𝑐𝑙 =
∑︁
𝑘∈𝐵

∫︀∞
0 𝜌(𝑘,𝜆)e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)·

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

∫︀∞
0 𝜌(𝑘,𝜆)

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑆𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

, (3.18)

where 𝑠𝑘 =
𝜇𝑇𝑘𝑟

𝛼
𝑘

𝑃𝑘𝛽𝑘
, 𝑠𝑗 =

𝜇𝑇𝑗𝑟
𝛼
𝑗

𝑃𝑗
, 𝜌(𝑘, 𝜆) and 𝑓𝑆𝐹𝑅(𝑠𝑘) are given in theorem 3.2.1.

Proof: refer to the proof of theorem 3.2.1. The process of theorem 3.2.5 proof is

almost same as that of theorem 3.2.1, only the tiers calculated are different, theorem

3.2.5 considers a subset 𝐵 ⊂ {1, 2, · · · , 𝐾} rather than all tiers 𝐾.

Similar to corollary 3.2.2, the following corollary specializes from theorem 3.2.5,

to interference-limited (no noise) HetNets.

Lemma 3.2.6. (No noise, SFR, closed access, HetNets). In interference-limited

netxwork, the coverage probability of edge user with SFR and closed access scheme is

𝑃𝑆𝐹𝑅,𝑐𝑙,𝐼𝐿 =
∑︁
𝑘∈𝐵

𝜋
(︀
𝜋 + 𝑇

2
𝛼
𝑘 𝜃
)︀

(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃
)︀(︀
𝜋 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃 + 𝑇

2
𝛼
𝑘 𝜃
)︀ , (3.19)

where 𝜃 is given in corollary 3.2.2.

Proof: refer to the proof of corollary 3.2.2. The difference from corollary 3.2.2 is

only the tiers calculated, corollary 3.2.6 considers a subset 𝐵 ⊂ {1, 2, · · · , 𝐾} rather

than all tiers 𝐾.

Let 𝑇𝑘 = 𝑇𝑘𝛽
−1
𝑘 , (3.19) can be further simplified to

∑︁
𝑘∈𝐵

𝜋(︀
𝜋 + 2𝑇

2
𝛼
𝑘 𝜃
)︀ . (3.20)

The analysis of one tier (𝐾 = 1) network in closed access scheme, please refer to

that of open access case, which is given in the analysis part after corollary 3.2.2. This
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is because for one tier network, there is no difference between open access and closed

access cases.

strict FFR

For strict FFR, we also consider users are allowed to connect to a subset tiers

𝐵 ⊂ {1, 2, · · · , 𝐾}. Plugging the SINR of 𝑘𝑡ℎ edge and interior users, which are

introduced in 3.2.1, into (3.17), we can derive

Theorem 3.2.7. (strict FFR, closed access, edge user, HetNets): The coverage prob-

ability of edge user with strict FFR and closed access scheme is

𝑃𝑠𝐹𝐹𝑅,𝑐𝑙 =
∑︁
𝑘∈𝐵

∫︀∞
0 𝜌(𝑘,𝜆)e−𝑠𝑘𝜎2

𝑓𝑒𝑑𝑔𝑒(𝑠𝑘)·

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑠𝐹𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

∫︀∞
0 𝜌(𝑘,𝜆)

(︂
1−e−𝑠𝑘𝜎2

𝑓𝑠𝐹𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

(3.21)

where 𝑠𝑗 =
𝜇𝑇𝑗𝑟

𝛼
𝑗

𝑃𝑗
, 𝑠𝑘 =

𝜇𝑇𝑘𝑟
𝛼
𝑘

𝑃𝑘𝐷𝑘
, 𝑓𝑠𝐹𝐹𝑅(𝑠) and 𝑓𝑒𝑔𝑑𝑒(𝑠) are given in (3.11) and (3.12),

respectively.

Proof: refer to the proof of theorem 3.2.1.

Similar to corollary 3.2.4, the following corollary specializes from theorem 3.2.7,

to interference-limited (no noise) HetNets.

Lemma 3.2.8. (No noise, strict FFR, closed access, HetNets). In interference-

limited network, the coverage probability of edge user with strict FFR and closed

access scheme is

𝑃𝑠𝐹𝐹𝑅,𝑐𝑙,𝐼𝐿 =
∑︁
𝑘∈𝐵

𝜋

(︂
𝜋 + 𝑇

2
𝛼
𝑘 𝜃′
)︂

(︂
𝜋 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼
𝐶(𝛼)

)︂(︂
𝜋 + ( 𝑇𝑘

𝐷𝑘
)

2
𝛼
𝐶(𝛼) + 𝑇

2
𝛼
𝑘 𝜃′
)︂ , (3.22)

where 𝜃′ is given in corollary 3.2.4.

Proof: refer to the proof of corollary 3.2.2.
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Let 𝑇𝑘 = 𝑇𝑘𝐷
−1
𝑘 , (3.22) can be further simplified to

∑︁
𝑘∈𝐵

𝜋(︀
𝜋 + 2𝑇

2
𝛼
𝑘 𝜃
)︀ . (3.23)

The analysis of one tier (𝐾 = 1) network in the closed access scheme, please refer

to the that of open access case, which is give in the analysis part after corollary 3.2.4.

3.2.3 Propositions

Observe theorems and corollaries above carefully, we can further give some propo-

sitions. First, the expressions of corollary 3.2.2-3.2.8 do not contain the mean 𝜇 of

exponential distribution followed by channel. Not only that, in the procedure of prov-

ing corollary 3.2.2-3.2.8, for example in A.2, (A.7) is the outage probability of interior

user, which also does not contain 𝜇. Thus, this conclusion can be seen as derived in

the interference-limited HetNets without FFR. Thereby, we can give one proposition

as

Proposition 1. No matter with or without FFR, in interference-limited HetNets, the

coverage probability of edge or interior is independent of channel parameter 𝜇.

Comparing (3.4), (3.10) to (3.18), (3.21), respectively, we will easily observe that

the difference between them is just the sum of tiers, if we let subset 𝐵 contain all

tiers, then they are the same, and if we assume the subset just contains one tier,

𝐵 = {𝑘}, then (3.18), (3.21) become the coverage probabilities of 𝑘𝑡ℎ tier under SFR

and strict FFR, respectively. Furthermore, they equal with that of open access case.

Thereby, we can give

Proposition 2. The coverage probability of 𝑘𝑡ℎ tier with FFR under open access case

is the same as that of single tier under closed access case.

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |

𝐾⋂︁
𝑗=1

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀
= P

(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |𝑆𝐼𝑁𝑅𝑘 < 𝑇𝑘

)︀
(3.24)
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Referring to (3.2), the term P
(︀ ⋂︀
𝑗 ̸=𝐾

𝑆𝐼𝑁𝑅𝑗 < 𝑇𝑗

)︀
contained by the left formula of

(3.24) will be simplified out, due to the independence between each tier, thereby we

can get proposition 4.2.2.

Based on proposition 4.2.2, we can derive easily

Proposition 3. The coverage probability of edge user with FFR under open access

scheme equals the sum of the coverage probability of each single tier under closed

access scheme.

𝑃𝐹𝐹𝑅,𝑜𝑝 =
𝐾∑︁
𝑘=1

P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘 |𝑆𝐼𝑁𝑅𝑘 < 𝑇𝑘

)︀
. (3.25)

3.3 Numerical Result and System Design Implica-

tion

In this section we show the numerical results of coverage probability and discuss

the influence of main parameters on it. For clearly illustrating HetNets performance

analysis, we consider limited-interference and two tiers (𝐾 = 2) networks. The related

simulation parameters are as: 𝐷𝑘 = [3, 3], 𝑇𝑘 = [1, 1]dB, 𝑇𝑘 = [1, 1]dB, 𝑃𝑘 = [20, 1]W,

𝛽𝑘 = [8, 8], 𝛼 = 2.8, 𝜆𝑘 = [24, 96] BSs per 10km2.

3.3.1 Coverage Probability

Fig. 3-2 and Fig. 3-3 show the coverage probabilities of edge user for both open

and closed access cases.

For open access, we can see from Fig. 3-2, the coverage probability of strict FFR

is much higher than that of SFR. This is because strict FFR can reduce the inter-tier

interference, furthermore thin intra-tier interference with 𝐷𝑘. However, instead of

reducing inter-tier interference, SFR improves the SINR of edge user by increasing

their transmit power, which simultaneously also increases the interference of the whole

HetNets and decreases the coverage probability. Thus, in coverage probability respect,

Strict FFR is better than SFR.
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Figure 3-2: Downlink edge user coverage probability for open access with FFR

We can also see from Fig. 3-2, for the low threshold of first edge user 𝑇1, the

coverage probability of SFR increases with the increase of 𝛽1. However, for the high

threshold, the situation is gradually reversed. This is because in the simulation we just

increase the 𝛽1, which increases the coverage probability of first tier and decreases

that of second tier, simultaneously. For low 𝑇1, the improvement of the first tier

coverage probability is dominant, however with the increase of 𝑇1, situation changes

gradually, and finally the improvement can not offset the loss of second tier coverage

probability.

For the closed access, we can see from Fig. 3-3, increasing 𝛽𝑘 can increase the

coverage probability of first tier edge user, which is consistent with SFR theory, and

the performance of strict FFR is also better than that of SFR.

It should be noted that for both access cases, the bigger 𝛽𝑘 is, the higher the

coverage probability of 𝑘𝑡ℎ tier edge user is. However the improvement becomes

smaller and smaller, and finally approaches a limited value rather than 1, even in the
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Figure 3-3: Downlink first tier edge user coverage probability for closed access with
FFR

case of 𝛽𝑘 = ∞.

Fig. 3-3 just shows the coverage probabilities of first tier under closed access

case, according to proposition 4.3.1, which can be also seen as the first tier coverage

probability of open access case.

3.3.2 System Design Implication

Now we discuss the influence of main HetNets’ parameters on the coverage prob-

ability of edge user.

BSs’ Density

We first discuss the effects of the density of BSs on the coverage probability of

edge user. For the sake of convenience, we define 𝜅 = 𝜆2/𝜆1, and change 𝜅 only by

changing 𝜆2.
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Figure 3-4: Relation between 𝜅 and first tier edge user coverage probability under
closed access case

Fig. 3-4 shows the relationship between the coverage probability of first edge user

and 𝜅 under closed access case. For strict FFR, increasing 𝜆2 increases the coverage

probability of first tier cell-edge user. This is because increasing 𝜆2 will reduce the

SINR of first tier users, due to the closed access restriction, which makes more and

more first tier users become edge users. These edge users can get reserved subbands,

thus whose coverage probability is increased.

For SFR, the results are contrary to those of strict FFR. This is because SFR does

not reduce the interference of edge users, thus the increase of interference directly

impacts on the first cell-edge users, thereby decreases their coverage probability.

Threshold 𝑇2

We know that only changing the threshold of second interior user 𝑇2 does not

change HetNets situation at all, thus under the closed access case, 𝑇2 can not impact

on the coverage probability of first tier user.
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Figure 3-5: Relation between 𝜅 and first tier edge user coverage probability under
closed access case

Fig. 3-5 shows the effects of 𝑇2 on the coverage probability of edge user under

open access scheme. For both strict FFR and SFR, increasing 𝑇2 will increase the

coverage probability of edge user. The reason is that increasing 𝑇2 makes more and

more users become cell-edge users, thereby increases the coverage probability.

3.4 Conclusion

We use PPP to model BSs’ locations, and propose a framework to analyze the

downlink coverage probability of HetNets utilizing the FFR technique. We give

tractable expressions of typical users’ coverage probability under both closed and

open access cases, which can be furthermore simplified to a close form in interference-

limited networks. Through analysis, some useful propositions and interesting obser-

vations are proposed: the coverage probability of edge user is independent of channel

parameter 𝜇; The coverage probability of edge user with FFR under open access

scheme equals the sum of the coverage probability of each single tier under closed

access scheme; In one tier network with FFR, both for SFR and strict FFR, density

of BSs and transmit power do not affect coverage probability of both edge and interior
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users. We give the numerical results of coverage probability, and discuss the effects

of main parameters on it. These analysis can assist system designers in designing

networks, and evaluating new algorithm about HetNets utilizing FFR.
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Chapter 4

A Model Based on Poisson Point

Process for Analyzing MIMO

Heterogeneous Networks Utilizing

Fractional Frequency Reuse

MIMO is a key technique of wireless communication standards including IEEE

802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long

Term Evolution (4G). Therefore, the modeling and analysis of MIMO cellular net-

works appear to be of essence. By introducing MIMO to the framework of Chapter

3, a tractable and flexible model for K tiers MIMO HetNets, with FFR technique is

proposed in this chapter.

4.1 System Model

4.1.1 BS Location Model

In this section, we consider an orthogonal frequency-division multiple access (OFDMA)

cellular downlink MIMO HetNets consisting of 𝐾 tiers of BSs. The BSs’ locations of

the 𝑘𝑡ℎ tier are modeled as independent PPP Φ𝑘 [59] with the density 𝜆𝑘. First we

41



get the number of the points in a bounded area, which follows a Poisson distribution.

Secondly, we distribute the points within the area uniformly, then the points are a

realization of PPP. Without loss of generality, we conduct analysis on a typical single

antenna user located at the origin. According to [69], the modern networks are typical

interference-limited networks, that means the noise of the network can be ignored.

Therefore we will compute the SIR instead of SINR for the typical user at the origin.

We assume the typical user can access just one tier at a time and connect to the

nearest BS of the tier. Which location is set as 𝑥𝑘. Since the BSs are distributed as

PPP, the distance between the user and the nearest BS ‖𝑥𝑘‖ will follow the exponen-

tial distribution, furthermore its PDF is 𝑓‖𝑥𝑘‖(‖𝑥𝑘‖) = 𝑒𝜆𝑘𝜋‖𝑥𝑘‖22𝜋𝜆𝑘‖𝑥𝑘‖ [59]. We

assume the BSs of the 𝑘𝑡ℎ tier have the same transmit power 𝑃𝑘 and the same target

SIR 𝑇𝑘.

4.1.2 MIMO Channel

Before going into the technical details, it is necessary to point out that MIMO

channel is quite different from the single antenna channel. For classical single antenna

channel, both direct and interfering links are exponentially distributed. However, for

MIMO channel, the direct and interfering links follow different distributions (mainly

in terms of parameters). In our considered scope, that means the channel distribution

of the link from a multi antenna BS to a typical single antenna user differs in terms

of the MIMO technique and what kind of BS (serving or interfering) it is. This is

because if it is a serving BS, it will precode its data for a typical user, which may lead

to a different channel distribution from the case when it simply acts as an interferer.

We assume that the channel for the direct link from the nearest BS of 𝑘𝑡ℎ tier, which

located at 𝑥𝑘, to a typical user is denoted by ℎ𝑘𝑥𝑘
, and the other links, which are

from the BSs located at 𝑦𝑗, are considered as interfering links. The channel of the

interfering links is denoted by 𝑔𝑗𝑦𝑗 .

The appendix A of [34] has proved in detail that for linear precoding, both direct

and interference links follow the Gamma distribution, denoted by ℎ𝑘𝑥𝑘
∼ Γ(∆𝑘, 1) and

𝑔𝑘𝑥𝑘
∼ Γ(Ψ𝑘, 1), where ∆𝑘 and Ψ𝑘 depend on the multi-antenna technique adopted.
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For zero-forcing pre-coding, ∆𝑘 = 𝑀𝑘 − Ψ𝑘 + 1 and 𝑀𝑘 is the number of antennas.

According to [34], if consider the channel vector multiplying linear precoding vector

as the direct link ℎ𝑘𝑥𝑘
, then after deriving, we can get that ℎ𝑘𝑥𝑘

follows Gamma

distribution. The interference link is as well. Furthermore, [34] also proves and gives

other instances following three specific transmission techniques:

∙ Space-division multiple-access (SDMA): in this case, the BS of 𝑘𝑡ℎ tier, which

is with 𝑀𝑘 antennas, serves Ψ𝑘 > 1 users. When Ψ𝑘 = 𝑀𝑘, we term it as full

SDMA, for which ∆𝑘 = 1.

∙ Single-user beamforming (SU-BF): in this case, ∆𝑘 = 𝑀𝑘 and Ψ𝑘 = 1, which

models MISO eigen-beamforming or SU-BF with perfect channel state informa-

tion (CSI) and the BS serves Ψ𝑘 = 1 users.

∙ ∆𝑘 = Ψ𝑘 = 1: this case models the special case of single-input single-output

(SISO). It should be noted that this case is just a special case of SISO and is

not our key point. For more information of this case, please refer to [30].

Because the proof of MIMO channel listed is beyond the scope of this paper,

interested readers are recommended to refer to [7] for more details.

We define the received power of the typical user at the origin from the serving

BS as 𝑃𝑟 = 𝑃𝑘ℎ𝑘𝑥𝑘
‖𝑥𝑘‖−𝛼, where 𝛼 is the path loss exponent. Denoting the set of

interfering BSs in the 𝑘𝑡ℎ tier as 𝑍𝑘, i.e., BSs that use the same subband as the typical

user, the received SIR of the typical user is defined as

𝑆𝐼𝑅(𝑥𝑘) =
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼∑︀
𝑗∈𝐾

𝐼𝑗
,

where 𝐼𝑗 =
∑︀

𝑦∈𝑍𝑗
𝑃𝑗𝑔𝑗𝑦𝑗‖𝑦𝑗‖−𝛼.

To use the FFR, the user should be first classified . We compute the typical user’s

SIR from the nearest BS of the 𝑘𝑡ℎ tier, and check whether it is smaller than the

predetermined threshold 𝑇𝑘. If so, then the user is classified as a cell-edge user, and

if not, the user is classified as a cell-interior user.
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4.2 Closed Access Coverage Probability Analysis

From this section, we will derive the coverage probability of a typical user. We

assume that a typical user is covered by 𝑘𝑡ℎ tier if its downlink SIR from the nearest

BS of 𝑘𝑡ℎ tier is greater than the threshold 𝑇𝑘, in other words, the coverage probability

equals the CCDF of the SIR, and denoted as

P𝑐 = P(𝑆𝐼𝑅𝑘 > 𝑇𝑘).

In the networks without FFR, the cell-interior user with lower SIR than the thresh-

olds is not covered. However, in the networks using FFR, if a cell-interior user is

not covered, it becomes a cell-edge user and experiences new direct and interference

channels, which not only also follow Gamma distributions, but also are independent

of ℎ𝑘 and 𝑔𝑘, and are denoted as ℎ̂𝑘𝑥𝑘
∼ Γ(∆𝑘, 1) and 𝑔𝑘𝑦𝑘 ∼ Γ(Ψ𝑘, 1), respec-

tively. Correspondingly, the interference of 𝑘𝑡ℎ tier of the cell-edge users changes to

𝐼𝑘 =
∑︀

𝑦𝑘∈𝑍𝑘
𝑃𝑘𝑔𝑘𝑦𝑘‖𝑦𝑘‖−𝛼 and the SIR of the cell-edge users is denoted as 𝑆𝐼𝑅𝑒𝑑𝑔𝑒,

which is further introduced later.

4.2.1 Coverage with Strict FFR

Under strict FFR case, the cell-interior users use common subband 𝑓𝑐, thereby,

it will be interfered by both inter-cell and cross tier BSs. However, the cell-edge

user only experiences the inter-cell interference, furthermore, the interference will be

thinned with a reuse factor of 𝐷𝑘, according to the reserved frequency allocation

scheme of cell-edge users. As introduced in the last paragraph of section 4.1.2, we

partition the users into the cell-edge users and cell-interior users by SIR threshold.

Only if the typical user’s SIR as a cell-interior user is smaller than threshold, namely

𝑆𝐼𝑅𝑘 < 𝑇𝑘, the typical user can become a cell-edge user. Therefore, the cell-edge

user’s coverage probability is conditioned on its SIR as a cell-interior user, thus is a
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conditional probability, denoted as

P(𝑆𝐼𝑅𝑒𝑑𝑔𝑒 > 𝑇 |𝑆𝐼𝑅𝑘 < 𝑇𝑘)

= P
(︀𝐷𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐼𝑘
> 𝑇

⃒⃒⃒⃒
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝐼𝑘

< 𝑇𝑘

)︀
(4.1)

where 𝑇 is the new threshold for cell-edge user, and evaluating (4.1), we can get the

conclusion as (hereinafter for convenience of notation, we express ‖𝑥𝑘‖ as 𝑥𝑘).

Theorem 4.2.1. (strict FFR, closed access, edge user, MIMO channel): The cover-

age probability of a 𝑘𝑡ℎ tier cell-edge user in the MIMO HetNets with strict FFR and

closed access is

𝑃𝐹𝐹𝑅,𝑐𝑙 =

∫︀∞
0

𝜌(𝑘, 𝜆) · f1(𝑠1𝑥𝑘
) ·
(︀
1 − f ′1(𝑠1𝑥𝑘

)
)︀
d𝑥𝑘∫︀∞

0
𝜌(𝑘, 𝜆) ·

(︀
1 − f ′1(𝑠1𝑥𝑘

)
)︀
d𝑥𝑘

(4.2)

where 𝑠1𝑥𝑘
=

𝑇𝑥𝛼
𝑘

𝑃𝑘𝐷𝑘
, 𝑠1𝑥𝑘

=
𝑇𝑘𝑥

𝛼
𝑘

𝑃𝑘
,

𝜌(𝑘, 𝜆) = 2𝜋𝑥𝑘𝜆𝑘𝑒
−𝜋𝑥2

𝑘𝜆𝑘 (4.3)

f1(𝑥) =

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑥
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑥
)︀𝑖 exp

(︀
− 𝑥

2
𝛼𝜆𝑘𝑃

2
𝛼
𝑘 C
(︀
𝛼,Ψ𝑘

)︀)︀]︀

f ′1(𝑥) =

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑥
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑥
)︀𝑖 exp

(︀
− 𝑥

2
𝛼

𝐾∑︁
𝑗=1

𝜆𝑗𝑃
2
𝛼
𝑗 C
(︀
𝛼,Ψ𝑗

)︀)︀]︀
and

C(𝛼,Ψ𝑗) =
2𝜋

𝛼

Ψ𝑗∑︁
𝑚=1

(︂
Ψ𝑗

𝑚

)︂
B

(︂
Ψ𝑗 −𝑚 +

2

𝛼
,𝑚− 2

𝛼

)︂
(4.4)

B(𝑥, 𝑦) =

∫︁ 1

0

𝑡𝑥−1
(︀
1 − 𝑡

)︀𝑦−1
d𝑡

Proof: see the appendix B.1.

The coverage probability is only a function of the relevant FFR, MIMO and Het-

Nets’ parameters. The reason for introducing an integral is that (4.1) is a conditional

probability, evaluating it first needs to condition on the typical BS’s location 𝑥𝑘, and
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deconditioning on it will introduce the integral. The similar method is also applied

by the following theorems. f1(𝑠1𝑥𝑘
) and f ′1(𝑠1𝑥𝑘

) express the probability (conditioning

on 𝑥𝑘) of cell-edge users with new subband and cell-interior users, respectively. Com-

paring them, we can find that the main difference is a sum term from 1 to 𝐾 in f ′1.

It means before being allocated a new reserved subband, typical users experience the

cross tier interference, but after being allocated a new reserved subband, the user just

experiences the same tier interference thinned with 𝐷𝑘. We can also observe that the

influence of different MIMO techniques is shown in the sum term about ∆𝑘 and Ψ𝑘,

furthermore ∆𝑘 introduces the ∆𝑘 − 1 order derivative.

4.2.2 Coverage with SFR

Now we focus on the coverage probability of SFR case. In this case, every BS uses

all of the 𝐷 subbands, and uniformly picks up one of the subbands to transmit to

cell-edge user. The SIR of the cell-edge user is increased by increasing the transmit

power by the 𝛽 parameter. As introduced in strict FFR case, the cell-edge user’s

coverage probability is also conditioned on its SIR as a cell-interior user, thus is a

conditional probability, expressed as

P
(︂
𝛽𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

> 𝑇

⃒⃒⃒⃒
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

< 𝑇𝑘

)︂
(4.5)

evaluating above formula, we can get

Theorem 4.2.2. (SFR, closed access, edge user, MIMO channel): The coverage

probability of the 𝑘𝑡ℎ tier cell-edge user in the MIMO HetNets with SFR and closed

access is

𝑃𝑆𝐹𝑅,𝑐𝑙 =

∫︀∞
0

𝜌(𝑘, 𝜆) · f2(𝑠2𝑥𝑘
) ·
(︀
1 − f2(𝑠2𝑥𝑘

)
)︀
d𝑥𝑘∫︀∞

0
𝜌(𝑘, 𝜆) ·

(︀
1 − f2(𝑠2𝑥𝑘

)
)︀
d𝑥𝑘

(4.6)
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where 𝜌(𝑘, 𝜆) is given by (4.3), 𝑠2𝑥𝑘
=

𝑇𝑥𝛼
𝑘

𝛽𝑘𝑃𝑘
, 𝑠2𝑥𝑘

=
𝑇𝑘𝑥

𝛼
𝑘

𝑃𝑘
, f2(𝑥) =

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑥
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑥
)︀𝑖 exp

(︀
− 𝑥

2
𝛼

𝐾∑︁
𝑗=1

𝜆𝑗

(︀
𝜂𝑗𝑃𝑗

)︀ 2
𝛼 C
(︀
𝛼,Ψ𝑗

)︀)︀]︀
and C

(︀
𝛼,Ψ𝑗

)︀
is given by (4.4).

Proof: see the appendix B.2.

In fact, different from the strict FFR, under SFR case, both cell-edge and cell-

interior users are in the same situation, exception for transmit power. Thus, the

coverage probabilities (conditioning on 𝑥𝑘) can be expressed by the same function

f2(𝑠2𝑥𝑘
) and f2(𝑠2𝑥𝑘

), respectively.

4.2.3 Numerical Result of Closed Access

For closed access case, we also consider the interference-limited network. The

related simulation parameters are as: 𝐷𝑘 = [3, 3, 3], 𝑇𝑘 = [3, 3, 3]dB, 𝑃𝑘 = [20, 5, 1]W,

𝛼 = 4, 𝜆𝑘 = [24, 72, 216] BSs per 10km2. We give a curve of ∆𝑘 = 1 and Ψ𝑘 = 1

special case, which is considered as a limiting form of both SDMA and SU-BF to

express the variation trend of them. Under full SDMA case, ∆𝑘 = 1 and Ψ𝑘 = 𝑀𝑘,

and under SU-BF, ∆𝑘 = 𝑀𝑘 and Ψ𝑘 = 1, which reduces the expression of coverage

probability significantly. It should be noted that to theorize our model clearly, all tiers

are assumed to adopt same MIMO technique. However, our model is not restricted to

uniform MIMO technique across different tiers. Substituting ∆𝑘 and Ψ𝑗 of each tier

with different values as introduced in Section 4.1.2, we can get the result of MIMO

HetNets using different MIMO techniques.

Fig. 4-1 shows the derived coverage probability of the first tier strict FFR cell-edge

users for the three tier interference-limited networks. For SDMA, we can see that the

coverage probability decreases with the increase of Ψ𝑘, here we consider full SDMA,

that means Ψ𝑘 = 𝑀𝑘. For SU-BF, the probability increases with the increase of ∆𝑘.

The results of both SDMA and SU-BF accord with the MIMO channel theorem.
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Figure 4-1: Downlink first tier cell-edge user coverage probability for strict FFR with
closed access

Fig. 4-2 shows the derived coverage probability of the first tier SFR cell-edge

users. Comparing to Fig. 4-1, we can see that the coverage probability is similar to

that in Fig. 4-1 but lower. This is because SFR increases the coverage probability by

increasing the transmit power, which increases the interference of the whole networks,

and strict FFR can remove the cross-tier interference effectively.

4.3 Open Access Coverage Probability Analysis

Due to the complexity of the open access case, we consider two tiers networks

in the following analysis. Compared to three tiers, considering two tiers networks

greatly reduces the complexity of the expressions, while our conclusion can be easily

extended to unlimited number of tiers. Correspondingly we define the SIR of first and

second tier users as 𝑆𝐼𝑅1 =
𝑃1ℎ1𝑥1𝑥

𝛼
1

𝐼1+𝐼2+𝑃2𝑔2𝑦2𝑥
𝛼
2
, 𝑆𝐼𝑅2 =

𝑃2ℎ2𝑥2𝑥
𝛼
2

𝐼1+𝐼2+𝑃1𝑔1𝑦1𝑥
𝛼
1
, respectively, where

𝐼1 =
∑︀

𝑦1∈𝑍1/𝑥1
𝑃1𝑔1𝑦1𝑦

−𝛼
1 , 𝐼2 =

∑︀
𝑦2∈𝑍2/𝑥2

𝑃2𝑔2𝑦2𝑦
−𝛼
2 . Because open access allows
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Figure 4-2: Downlink first tier cell-edge user coverage probability for SFR with closed
access

users to access every tier, if there are more than one tier that can satisfy the SIR

threshold, cell-interior users select the tier with the highest SIR to access. Therefore,

the typical user is a cell-edge user just when its 𝑆𝐼𝑅1 < 𝑇1 and 𝑆𝐼𝑅2 < 𝑇2. The

cell-edge user’s coverage probability, which is conditioned on the 𝑆𝐼𝑅1 and 𝑆𝐼𝑅2,

so the first tier cell-edge user’s coverage probability will be a conditional probability,

denoted as

P(𝑆𝐼𝑅𝑒𝑑𝑔𝑒 > 𝑇 |𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2). (4.7)

As we can see from (4.7), it is more complicated than that in the closed access case. It

should be noted that although only coverage probability of the first tier cell-edge user

is derived in theorems 4.3.1 and 4.3.2, the conclusion can be extended to that of the

second tier cell-edge user. Furthermore, Denoting the coverage probability of the first

and second tier cell-edge user as 𝑃1 and 𝑃2, respectively. Due to the independence

between each tier, the two coverage probabilities are independent, too. Therefore,
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according to the basic of probability theory, the cell-edge user’s coverage probability

under open access equals

1 − (1 − 𝑃1)(1 − 𝑃2). (4.8)

4.3.1 Coverage with Strict FFR

First we consider the strict FFR case. In this case, the cell-edge users will be

allocated reserved subbands, thereby experience new fading power 𝑔1𝑦1 and only intra-

tier interference thinned with 𝐷1. (4.7) can be further expressed as

P
(︂
𝐷1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝐼1
> 𝑇

⃒⃒
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︂
(4.9)

and evaluate it, we can get

Theorem 4.3.1. (strict FFR, open access, edge user, MIMO channel): The coverage

probability of the first tier cell-edge user in the MIMO HetNets with the strict FFR

and open access is 𝑃𝐹𝐹𝑅,𝑜𝑝 =

∫︀∞
0

∫︀∞
0 𝜌(1,𝜆) 𝜌(2,𝜆)

(︁
Δ1−1∑︀
𝑖=0

1
𝑖!

[︀(︀
−𝑠′
)︀𝑖

𝛿𝑖

𝛿

(︀
𝑠′
)︀𝑖 f3(𝑠′,1)

]︀)︁
∫︀∞
0

∫︀∞
0 𝜌(1,𝜆) 𝜌(2,𝜆) f3d(𝑠,𝑠′,𝑠

′
2)d𝑥1d𝑥2

·
(︁

f3d(𝑠, 𝑠′, 𝑠′2)
)︁

d𝑥1d𝑥2 (4.10)

where 𝑠 =
𝑇1𝑥𝛼

1

𝑃1
, 𝑠′ =

𝑥𝛼
1

𝑃1
, 𝑠′2 = 𝑃2

𝑇2
𝑥−𝛼
2 , 𝑠′ =

𝑇𝑥𝛼
1

𝑃1𝐷1
,

f3(𝑥, 𝑘) = exp
(︀
− 𝑥

2
𝛼𝜆𝑘𝑃

2
𝛼
𝑘 C
(︀
𝛼,Ψ𝑘

)︀)︀
(4.11)

f3d(𝑠, 𝑠′, 𝑠′2) = −
Δ1−1∑︀
𝑖=0

1
𝑖!

[︂(︀
− 𝑠
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠
)︀𝑖 (︀ f3(𝑠, 1) · f3(𝑠, 2)

· 1(︀
1+𝑠𝑃2𝑥

−𝛼
2

)︀Δ2

)︀]︂
+ f3d_2(𝑠

′, 𝑠′2) (4.12)

where 𝑛 = ∆2 − 1, and
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f3d_2(𝑠
′, 𝑠′2) =

Δ1−1∑︀
𝑖=0

1
𝑖!

[︂
(−𝑠′)𝑖 𝛿𝑖

𝛿(𝑠′)𝑖

(︂
1 + 1

Γ(Δ2)

𝑛∑︀
𝑚=0

𝑛!
(𝑛−𝑚)!

· (𝑠′2)𝑚−𝑛 ( 1
(1+𝑠′𝑠′2)

𝑚+1 − 1) ·

(−1)𝑛−𝑚 𝛿𝑛−𝑚

𝛿( 1
𝑠′2

)𝑛−𝑚

(︁
f3(

1
𝑠′2
, 1) f3(

1
𝑠′2
, 2)
)︁)︂]︂

. (4.13)

Proof: see the appendix B.3

Comparing to the closed access case, the derivations are more complicated, and

have double integrals. In fact, the number of tiers is the number of integrals. Nev-

ertheless, it is expected that most practical deployments would not have more than

about three tiers even in dense environments, which makes this analysis practical

through the use of numerical evaluation of the integrals [30].

4.3.2 Coverage with SFR

Comparing to strict FFR, in the case of SFR, the transmit power will be increased

to 𝛽𝑃 and the cell-edge users experience cross-tier interference. Taking these factors

into account, and (4.7) can be further expressed as

P
(︂
𝛽1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝜂1𝐼1 + 𝜂2𝐼2
> 𝑇

⃒⃒
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︂
(4.14)

and evaluate above formula, we can conclude

Theorem 4.3.2. (SFR, open access, edge user, MIMO channel): The coverage prob-

ability of the first tier cell-edge user in the MIMO HetNets with the SFR and open

access is 𝑃𝑆𝐹𝑅,𝑜𝑝 =

∫︀∞
0

∫︀∞
0

𝜌(1, 𝜆) 𝜌(2, 𝜆)
(︀

f4(𝑠)
)︀
·
(︀

f3d(𝑠, 𝑠′, 𝑠′2)
)︀
d𝑥1d𝑥2∫︀∞

0

∫︀∞
0

𝜌(1, 𝜆) 𝜌(2, 𝜆) f3d(𝑠, 𝑠′, 𝑠′2)d𝑥1d𝑥2

(4.15)
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where 𝑠 =
𝑇𝑥𝛼

1

𝛽1𝑃1
, 𝑠, 𝑠′ and 𝑠′2 are the same as theorem 4.3.1, f4(𝑠) =

∑︀Δ1−1
𝑖=0

1
𝑖!

[︀(︀
− 𝑠
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠
)︀𝑖 (︀exp

(︀
− 𝑠

2
𝛼𝜆1

(︀
𝜂1𝑃1

)︀ 2
𝛼 C
(︀
𝛼,Ψ1

)︀)︀
· exp

(︀
− 𝑠

2
𝛼𝜆2

(︀
𝜂2𝑃2

)︀ 2
𝛼 C
(︀
𝛼,Ψ2

)︀)︀)︀]︀
. (4.16)

Proof: see the appendix B.4

Since both SFR and strict FFR use the same method to partition cell-edge user,

some parts of the theorem 4.3.2 result are the same as those of the theorem 4.3.1.

4.3.3 Numerical Results of Open Access

For open access case, we consider two tier interference-limited network and the

related simulation parameters are the same as closed access. In this simulation, we

first use the theorems 4.3.1 and 4.3.2 to calculate cell-edge user’s coverage probability

of each tier, and then according to (4.8), calculate the cell-edge user’s under open

access.

Fig. 4-3 shows cell-edge user’s coverage probability with strict FFR. From the

figure, we can see that the results are similar to that in the closed access. For full

SDMA the probability decreases with the increase of the number of antennas 𝑀𝑘.

This is because according to the fundamental theory of SDMA, increasing 𝑀𝑘 means

increasing the interference received by users, which results in the decrease of coverage

probability. For SU-BF ∆𝑘 can be seen as the number of transmit antennas, thus it

is very easy to understand the average probability increases with the increase of ∆𝑘.

Fig. 4-4 shows the result of cell-edge user’s coverage probability with SFR under

open access. Under SFR, the coverage probability is also similar to that of strict FFR

for the same reason of strict FFR. However, due to introducing the extra transmit

power, which results in increasing the interference, the coverage probability is lower

than that of strict FFR. It should be noted that although the coverage probability of

the strict FFR is higher than that of the SFR, we can not say that strict FFR is better,

because comparing them needs to take account that more frequency is available for
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Figure 4-3: Downlink first tier cell-edge user coverage probability for open access with
strict FFR

SFR since each BS fully utilizes the whole frequency.

It should be noted that since the users have more tiers to access, the coverage

probabilities of open access is much higher than that of closed access, as shown if we

compare Figs. 4-1 and 4-2 to Figs. 4-3 and 4-4.

4.4 System Design Implication

In this section we discuss the influence of main HetNets’ parameters on the cover-

age probability of cell-edge user, and present several applications of the above conclu-

sions, which illustrates how they can be used to help design MIMO HetNets utilizing

FFR.
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Figure 4-4: Downlink first tier cell-edge user coverage probability for open access with
SFR

4.4.1 Average Cell-edge User Rate

In modern cellular networks, besides coverage probability, average rate is also very

important metric and can be derived from the SIR statistics. As we know, [14] firstly

illustrates how to use the above coverage probability results to derive the average

rate expressions in one tier networks modeled by PPP. Although based on one tier

networks, the method of [14] also applies to the 𝐾 tiers networks modeled by PPP.

The average rate of the typical user is 𝜏 = E[ln(1 + SIR)], which normalizes

bandwidth and is given in terms of nats/Hz. The expectation is taken over both SIR,

which including PPP, fading distribution and whole logarithm term. Since 𝑥𝑘 follows

the exponentail distribution, as we mentioned in Section 4.1.1, the expectation for

the PPP can be easily evaluated by the definition of expectation. Using the fact

that 𝜏 = ln(1 + SIR) is a positive random variable, E[𝜏 ] =
∫︀
𝑡>0

𝑃 (𝜏 > 𝑡)d𝑡, and

considering the SIR of cell-edge user is conditional just as theorem 4.2.1-4.3.2, thus
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Figure 4-5: Downlink coverage probability of first tier cell-edge user for strict FFR
with closed access as a function of the tier density ratio 𝜅

we have 𝜏 = E[ln(1 + SIR)] =

∫︁ ∞

0

∫︁ ∞

0

𝜌(𝑘, 𝜆)P
[︂
ln(1 + 𝑆𝐼𝑅𝑒𝑑𝑔𝑒) > 𝑡 |𝑆𝐼𝑅𝑘 < 𝑇𝑘)

]︂
d𝑥𝑘d𝑡

=

∫︁ ∞

0

∫︁ ∞

0

𝜌(𝑘, 𝜆)P
[︂
𝑆𝐼𝑅𝑒𝑑𝑔𝑒 > 𝑒𝑡 − 1 |𝑆𝐼𝑅𝑘 < 𝑇𝑘)

]︂
d𝑥𝑘d𝑡. (4.17)

where 𝜌(𝑘, 𝜆) is given in (4.3). As we can see from the above expression, the average

rate of cell-edge user can be evaluated by substituting 𝑒𝑡 − 1 for the threshold 𝑇 of

the results of the theorem 4.2.1-4.3.2 and computing additional integrals.

4.4.2 BSs’ Density

Now we discuss the effects of the density of BSs on the coverage probability. We

assume a two tiers SDMA HetNets, and focus on first tier cell-edge users. For the

sake of convenience, we define 𝜅 = 𝜆2/𝜆1, and change 𝜅 only by changing 𝜆2.
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Figure 4-6: Downlink coverage probability of first tier cell-edge user for SFR with
closed access as a function of the tier density ratio 𝜅

56



Fig. 4-5 and Fig. 4-6 show the relationship between the coverage probability of

first cell-edge users and 𝜅 under both strict FFR and SFR case, respectively. Fig.

4-5 shows that increasing 𝜆2 increases the coverage probability of first tier cell-edge

users. This is because as the interference caused by increasing 𝜆2 increase, considering

the closed access constraint, more and more first tier users become cell-edge users,

and under strict FFR, reserved subbands are allocated to cell-edge users, which can

greatly reduce interference, thus increase the coverage probability. It should be noted

that, as the the number of cell-edge users increase, larger reserved subbands will be

needed, which decreases the overall sum rate, due to the reduction of frequency reuse

efficiency. Under SFR, we can see from Fig. 4-6, the results are contrary to those of

strict FFR. This is because SFR does not reduce the interference of cell-edge users,

thus the increase of interference directly impacts on the first cell-edge users, thereby

decreases their coverage probability.

For open access, we can get very similar results to that of closed access under both

strict FFR and SFR. However it should be noted that the results of open access just

reflect the coverage probability of first tier rather than all tiers. Since open access

allows users to access to any tier, we need to do further work about it in future.

4.4.3 Closed Access FFR Thresholds

For thresholds under closed access, from the expressions of theorem 4.2.1 and 4.2.2,

we can know the coverage probability only depends on the threshold of the tier the

cell-edge users access to. Fig. 4-7 shows the effects of 𝑇1 on the coverage probability

of first cell-edge users under both strict FFR and SFR, here we also assume a two

tiers SDMA HetNets. As 𝑇1 increases we see in Fig. 4-7, the coverage probability

increases for both strict FFR and SFR. The reason is that increasing 𝑇1 makes more

and more users become cell-edge users, thereby increases the coverage probability.
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Figure 4-7: Downlink coverage probability of first tier cell-edge user for closed access
as a function of 𝑇1

4.4.4 Power Increase Factor 𝛽

Fig. 4-8 and Fig. 4-9 show the relationship between 𝛽𝑘 and the coverage probabil-

ity under closed and open access, respectively. For both access cases, from the figures

we can see that increasing 𝛽𝑘 can increase the coverage probability. The bigger 𝛽𝑘

is, the higher the probability is, however it should be noted that the improvement

of coverage probability becomes smaller and smaller, and the coverage probability

approaches a limited value rather than 1, even in the case of 𝛽𝑘 = ∞.

4.5 Conclusion

We use PPP to model the locations of BSs, and proposes a framework to analyze

the downlink coverage probability of the MIMO HetNets utilizing the FFR technique.

We give a tractable expression of the typical user coverage probability under both
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Figure 4-8: Relation between 𝛽𝑘 and the coverage probability of the first tier cell-edge
user for SFR with closed access

closed and open access cases, which can be easily extended to develop average cell-

edge user rate expressions. We show the numerical results of different FFR and access

cases under the full SDMA and SU-BF, and discuss the effects of main parameters on

the coverage probability. We also illustrate how to use the coverage probability results

to derive the average rate expressions. These analyses can assist system designers in

designing networks, and evaluating new algorithm related to MIMO HetNets. It

should be noted that this analysis is for downlink networks, without mentioning

uplink case. Considering the importance of uplink case, we will analyze it in our

future work.

59



0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

threshold β
k

co
ve

ra
ge

 p
ro

ba
bi

lit
y

SDMA Ψ
k
=[4,4]

 

 

T=−10
T=−5
T=0
T=5

Figure 4-9: Relation between 𝛽𝑘 and the coverage probability of the first tier cell-edge
user for SFR with open access
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Chapter 5

A Probabilistic Approach for Using

Poisson Point Process to Model one

tier Cellular Networks

Chapters 3 and 4 analyzes cellular networks based on PGFL, (introduced in Sec-

tion 2.1.1). Although using the PGFL can derive tractable analysis results, the main

drawback of PGFL is only valid to Rayleigh channel. Due to the drawback, the chan-

nel of PPP model restricts to fast fading, which greatly limits the application of the

PPP model. In chapter, utilizing the conclusion of deterministic model, we develop a

probabilistic approach of analyzing cellular networks based on PPP, which successfully

breaks through the channel limitation, maintains the generality of the PPP model.

Considering path loss, shadow, and fast fading impact, we derive the expressions of

coverage probability at a given distance of the serving BS. The expressions can be

calculated easier than the expression derived by the traditional method, and even get

the closed form expression considering the path loss and fast fading channel. The

simulations show that the expressions accords with that of the deterministic model

and form the lower and upper bounds of the coverage probability.
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5.1 System model

5.1.1 Cellular Networks Model

We focus on the downlink cellular networks and consider the path loss, shadowing,

and fast fading effects. As Fig. 5-1 shows, we assume that the cellular network covers

a circle area with the radius 𝑅. We use PPP Φ with intensity 𝛽 to model the BSs’

locations within the area. Let 𝑟0 and 𝑟𝑖 denote the distance between the user and

the closest BS, and that between the user and the 𝑖𝑡ℎ BS, respectively. Without loss

of generality, the analysis is conducted on a typical user located at the center, who

is only served by the closest BS. Fig 5-2 shows the traditional hexagonal model of a

cellular network, where 𝐴 and 𝑎 denote the side length of the hexagon that represents

the entire network area and that of the hexagon of each cell, respectively. Compared

to Fig 5-1, the difference between the hexagonal model and the proposed model are

shown explicitly. The further parameters relationships between the two models will

be addressed in Section 5.3.

5.1.2 SIR Calculation

By considering path loss, shadowing, and fast fading effects, the signal power

received by the typical user is denoted as:

𝑆 = 𝑃0𝑟0𝑋0𝑌0, (5.1)

where 𝑃0 denotes the transmit power of serving BS, 𝑋0, 𝑌0 represent the fast fading

and shadowing impact of direct link, respectively.

The interference power received by the typical user can be written as:

𝐼 =
𝑛−1∑︁
𝑖=1

𝑃𝑖𝑟𝑖𝑋𝑖𝑌𝑖, (5.2)

where 𝑃𝑖 denotes the transmit power of the 𝑖𝑡ℎ interferer, 𝑋𝑖, 𝑌𝑖 represent the fast

fading and shadowing impacts of 𝑖𝑡ℎ interference link, respectively. 𝑛 and 𝑛−1 denote
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Figure 5-1: A typical realization of the proposed approach for distribution of base
stations

the number of BSs and interference BSs, respectively.

Here both 𝑋0 and 𝑋𝑖 are random variables (RV) representing the Rayleigh fading

effects, whose PDF is 𝑃𝑋(𝑥) = 𝑒−𝑥. 𝑋𝑖 and 𝑌𝑖 are lognormal RVs characterizing

shadowing with zero mean and standard deviation 𝜎 [70].

Then, the 𝑆𝐼𝑅 can now be obtained:

𝑆𝐼𝑅 =
𝑆

𝐼
. (5.3)

5.2 Coverage probability

Here, we define the coverage probability as the probability that the SIR received

is greater than a given threshold 𝑇 , which is given as P(𝑆𝐼𝑅 > 𝑇 ).

63



Figure 5-2: Hexagonal network and main parameters

5.2.1 Path Loss and Fast Fading Impact

Assuming interferers transmit data with same power 𝑃𝑖 = 𝑃𝑐, and considering

path loss and fast fading impact, the SIR is given by:

𝑆𝐼𝑅 =
𝑃0𝑟

−𝜂
0 𝑋0

𝑛−1∑︀
𝑖=1

𝑃𝑐𝑟
−𝜂
𝑖 𝑋𝑖

=
𝑆

𝐼
, (5.4)

where 𝑆 and 𝐼 are two independent RVs. The PDF of the signal power 𝑆 is given by

[71]:

𝑓𝑆(𝑥) =
1

𝑟−𝜂
0

𝑒
𝑥

𝑟
−𝜂
0 . (5.5)

The authors of [70] approximate the interference PDF using the central limit

theorem for causal functions [10] by a Gamma distribution. The PDF of 𝐼 is given
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by (for details, please refer to [70]):

𝑓𝐼(𝑥) =
𝑦𝜈−1

Γ(𝜈)𝜆𝜈
𝑒

𝑦
𝜆 , (5.6)

where 𝜈 = E[𝐼]2
var(𝐼)

and 𝜆 = var(𝐼)
E[𝐼] , 𝑣𝑎𝑟(·) denotes variance. Since E[𝑋𝑖] = 1 and

var(𝑋𝑖) = 1, then the mean and the variance of 𝐼 is given by:

E[𝐼] =
𝑛−1∑︁
𝑖=1

𝑃𝑐𝑟
−𝜂
𝑖 E[𝑋𝑖] =

𝑛−1∑︁
𝑖=1

𝑃𝑐𝑟
−𝜂
𝑖 (5.7)

and

var(𝐼) =
𝑛−1∑︁
𝑖=1

𝑃 2
𝑐 𝑟

−𝜂
𝑖 var(𝑋𝑖) =

𝑛−1∑︁
𝑖=1

𝑃 2
𝑐 𝑟

−𝜂
𝑖 . (5.8)

Then 𝜈 and 𝜆 are expressed as:

𝜈 =

(︂
𝑛−1∑︀
𝑖=1

𝑟−𝜂
𝑖

)︂2

𝑛−1∑︀
𝑖=1

𝑟−2𝜂
𝑖

(5.9)

and

𝜆 = 𝑃𝐶

𝑛−1∑︀
𝑖=1

𝑟−2𝜂
𝑖

𝑛−1∑︀
𝑖=1

𝑟−𝜂
𝑖

. (5.10)

Finally, the coverage probability can be derived as:

P(𝑆𝐼𝑅 > 𝑇 ) =

∫︁ ∞

0

P(𝑆 > 𝐼𝑇 |𝐼 = 𝑦)𝑓𝐼(𝑦)𝑑𝑦

=
1(︂

𝜆𝑇

𝑟−𝜂
0 𝑃0

+ 1

)︂𝜈 . (5.11)

Since 𝜈 and 𝜆 are the functions of the distances from BSs to the typical user, and

there are no restrictions to the distribution followed by BSs, the formula (5.11) based

on the deterministic model is also applicable to the PPP model. Then the problem is

how to calculate 𝜈 and 𝜆 under the PPP model. Assuming that the cellular networks
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are deployed in a circle area with the radius 𝑅, according to the properties of PPP,

we can derive the PDF of the distances 𝑟 from BSs to the user at origin as:

𝑓𝑟(𝑟) =
2𝑟

𝑅2
. (5.12)

Referring to [72], the probability that 𝑟 is greater than 𝑟0 is:

P(𝑟 > 𝑟0) = 𝑒−𝛽𝜋𝑟20 . (5.13)

Considering the distance from the serving BS 𝑟0, the PDF of the distances from the

interferers 𝑟𝑖 can be written as:

P(𝑟𝑖|𝑟 > 𝑟0) =
P(𝑟𝑖, 𝑟 > 𝑟0)

P(𝑟 > 𝑟0)
=

2𝑟𝑖𝑒
𝛽𝜋𝑟20

𝑅2 − 𝑟20
. (5.14)

Now we go back to the numerator of (5.9). Let
∑︀𝑛−1

𝑖=1 𝑟−𝜂
𝑖 =

∑︀𝑛−1
𝑖=1 𝑥𝑖 = �̂�, where

𝑥𝑖 = 𝑟−𝜂
𝑖 ∀𝑖 = {1, 2, · · · , 𝑛 − 1} is a sequence of independent and identically dis-

tributed (i.i.d.) random variables drawn from distributions of expected values and

finite variances. Then �̂� meets the central limit theorem, which means when 𝑛 → ∞

�̂� − (𝑛− 1)𝜇𝑥√︀
(𝑛− 1)𝜎𝑥

v Φ(0, 1), (5.15)

where Φ(0, 1) denotes the normal distribution with mean 0 and variance 1. Then the

expectation 𝜇�̂� and variance 𝜎2
�̂�
of �̂� can be written as:

𝜇�̂� = (𝑛− 1)𝜇𝑥𝑖
, (5.16)

and

𝜎2
�̂�

= (𝑛− 1)𝜎2
𝑥𝑖
. (5.17)
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According to the definition of variance, the expectation of �̂�2.

E[�̂�2] = 𝜇�̂�2 = 𝜎2
�̂�

+ 𝜇2
�̂�

= (𝑛− 1)𝜎2
𝑥𝑖

+ (𝑛− 1)2𝜇2
𝑥𝑖
. (5.18)

Now going back to the denominator of (5.9), similarly, assuming
∑︀𝑛−1

𝑖=1 𝑟−2𝜂
𝑖 =∑︀𝑛−1

𝑖=1 𝑦𝑖 = 𝑌 when 𝑛 → ∞

𝑌 − (𝑛− 1)𝜇𝑦𝑖√︀
(𝑛− 1)𝜎𝑦𝑖

v Φ(0, 1), (5.19)

then E[𝑌 ] = 𝜇𝑌 = (𝑛− 1)𝜇𝑦𝑖 .

Conditioned on 𝑛, the numerator 𝜇�̂�2 and the denominator 𝜇�̂� of (5.9) are inde-

pendent. Plug 𝜇�̂�2 and 𝜇𝑌 back to (5.9), then:

E𝜈 [𝜈|𝑛] =
(𝑛− 1)𝜎2

𝑥𝑖
+ (𝑛− 1)2𝜇2

𝑥𝑖

(𝑛− 1)𝜇𝑦𝑖

=
𝜎2
𝑥𝑖

+ (𝑛− 1)𝜇2
𝑥𝑖

𝜇𝑦𝑖

. (5.20)

According to the definition of PPP, where 𝑛 follows a Poission distribution, which

PDF is

P(𝑛) = 𝑓(𝑛; 𝛽) =
𝛽𝑛𝑒−𝛽

𝑛!
. (5.21)
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Then (5.9) equals

E𝜈 [𝜈] =
∞∑︁
𝑛=0

E𝜈 [(𝜈|𝑛)]P(𝑛) =
∞∑︁
𝑛=0

𝜎2
𝑥𝑖

+ (𝑛− 1)𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽𝑛𝑒−𝛽

𝑛!

=
𝜎2
𝑥𝑖

𝜇𝑦

∞∑︁
𝑛=0

𝛽𝑛𝑒−𝛽

𝑛!
−

𝜇2
𝑥𝑖

𝜇𝑦𝑖

∞∑︁
𝑛=0

𝛽𝑛𝑒−𝛽

𝑛!

+
𝜇2
𝑥𝑖

𝜇𝑦𝑖

∞∑︁
𝑛=0

𝑛
𝛽𝑛𝑒−𝛽

𝑛!

=
𝜎2
𝑥𝑖

𝜇𝑦𝑖

𝛽 −
𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽 +
𝜇2
𝑥𝑖

𝜇𝑦𝑖

∞∑︁
𝑛=1

𝑛
𝛽𝑛𝑒−𝛽

𝑛!

=
𝜎2
𝑥𝑖

𝜇𝑦𝑖

𝛽 −
𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽 +
𝜇2
𝑥𝑖
𝛽

𝜇𝑦𝑖

∞∑︁
𝑛=1

𝛽(𝑛−1)𝑒−𝛽

(𝑛− 1)!

=
𝜎2
𝑥𝑖

𝜇𝑦𝑖

𝛽 −
𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽 +
𝜇2
𝑥𝑖
𝛽

𝜇𝑦𝑖

∞∑︁
𝑛=0

𝛽𝑛𝑒−𝛽

𝑛!

=
𝜎2
𝑥𝑖

𝜇𝑦𝑖

𝛽 −
𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽 +
𝜇2
𝑥𝑖

𝜇𝑦𝑖

𝛽2

=
𝜇𝑥2

𝑖

𝜇𝑦𝑖

𝛽 +
𝜇2
𝑥𝑖

𝜇𝑦𝑖

(𝛽2 − 2𝛽). (5.22)

The expectation of (5.10) can be similarly and more easily derived as:

E[𝜆] =
(𝑛− 1)𝜇𝑦𝑖

(𝑛− 1)𝜇𝑥𝑖

=
𝜇𝑦𝑖

𝜇𝑥𝑖

. (5.23)

Since 𝑥𝑖 = 𝑟−𝜂
𝑖 and 𝑦𝑖 = 𝑟−2𝜂

𝑖 , based on the PDF of 𝑟𝑖 (5.14), the PDFs of 𝑥𝑖 and

𝑦𝑖 can be derived as:

𝑓(𝑥𝑖|𝑟 > 𝑟0) =
2𝑒𝛽𝜋𝑟

2
0

𝜂(𝑅2 − 𝑟20)
𝑥

−2−𝜂
𝜂

𝑖 , (5.24)

𝑓(𝑦𝑖|𝑟 > 𝑟0) =
𝑒𝛽𝜋𝑟

2
0

𝜂(𝑅2 − 𝑟20)
𝑦

−1−𝜂
𝜂

𝑖 . (5.25)

Therefore,
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𝜇𝑥𝑖
=

∫︁ 𝑟−𝜂
0

𝑅−𝜂

𝑥𝑖𝑓(𝑥𝑖|𝑟 > 𝑟0)𝑑𝑥𝑖

=
2𝑒𝛽𝜋𝑟

2
0

(𝑅2 − 𝑟20)(𝜂 − 2)

(︁
𝑟2−𝜂
0 −𝑅2−𝜂

)︁
, (5.26)

𝜇𝑦𝑖 =

∫︁ 𝑟−2𝜂
0

𝑅−2𝜂

𝑦𝑖𝑓(𝑦𝑖|𝑟 > 𝑟0)𝑑𝑦𝑖

=
𝑒𝛽𝜋𝑟

2
0

(𝑅2 − 𝑟20)(𝜂 − 1)

(︁
𝑟2−2𝜂
0 −𝑅2−2𝜂

)︁
, (5.27)

𝜇𝑥2
𝑖

=

∫︁ 𝑟−𝜂
0

𝑅−𝜂

𝑥2
𝑖 𝑓(𝑥𝑖|𝑟 > 𝑟0)𝑑𝑥𝑖

=
𝑒𝛽𝜋𝑟

2
0

(𝑅2 − 𝑟20)(𝜂 − 1)

(︁
𝑟2−2𝜂
0 −𝑅2−2𝜂

)︁
. (5.28)

Plugging 𝜇𝑥, 𝜇𝑦, and 𝜇𝑥2 back in (5.22) and (5.23), we can get the values of 𝜈 and

𝜆. Finally, plugging 𝜈 and 𝜆 back to (5.11), then we can get the coverage probability.

5.2.2 Path Loss, Shadowing and Fast Fading Impact

Assuming that interferers transmit data with the same power 𝑃𝑖 = 𝑃𝑐, and con-

sidering the path loss, shadowing, and fast fading channel, we can write 𝑆 and 𝐼 in

the expression 𝑆𝐼𝑅 = 𝑆/𝐼, as follows:

𝑆 = 𝑃0𝑟
−𝜂
0 𝑋0𝑌0, 𝐼 =

𝑛−1∑︁
𝑖=1

𝑃𝑖𝑟
−𝜂
𝑖 𝑋𝑖𝑌𝑖. (5.29)

For readers’ convenience, referring to [70], we briefly introduce the process of deriva-

tion again. Approximating the interference PDF using the central limit theorem for

causal functions, we need to compute 𝜈 = E[𝐼]2
var(𝐼)

and 𝜆 = var(𝐼)
E[𝐼] . Since 𝑋𝑖 and 𝑌𝑖

are independent, and recall that 𝑌𝑖 follows a log-normal distribution with logarithmic
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mean 0 and standard deviation 𝜎. Then

E[𝐼] =
𝑛−1∑︁
𝑖=1

𝑃𝑐𝑟
−𝜂
𝑖 E[𝑋𝑖]E[𝑌𝑖] = 𝑒

𝜎2

2

𝑛−1∑︁
𝑖=1

𝑃𝑐𝑟
−𝜂
𝑖 (5.30)

and

var(𝐼) =
𝑛−1∑︁
𝑖=1

𝑃 2
𝑐 𝑟

−𝜂
𝑖

(︁
E[𝑋2

𝑖 ]E[𝑌 2
𝑖 ] − E[𝑋𝑖]

2E[𝑌𝑖]
2
)︁
.

=
(︁

2𝑒2𝜎
2 − 𝑒𝜎

2
)︁ 𝑛−1∑︁

𝑖=1

𝑃 2
𝑐 𝑟

−𝜂
𝑖 . (5.31)

Now, 𝜈𝑠 and 𝜆𝑠 can be calculated as:

𝜈𝑠 =
1

2𝑒𝜎2 − 1
𝜈,

and

𝜆𝑠 = 𝑒
𝜎2

2

(︁
2𝑒𝜎

2 − 1
)︁
𝜆.

Finally, the average coverage probability can be derived as [70]:

P(𝑆𝐼𝑅 > 𝑇 ) =

∫︁
𝑃 (𝑆 > 𝐼𝑇 |𝑌0)𝑓𝑌 (𝑦)𝑑𝑦

=

∫︁
𝑃
(︁
𝑟−𝜂
0 𝑋0 >

𝐼𝑇

𝑦

)︁
𝑓𝑌 (𝑦)𝑑𝑦

=

∫︁ ∞

0

1(︁
𝑃𝑐𝜆𝑠𝑇

𝑃0𝑟
−𝜂
0 𝑥

+ 1
)︁𝜈𝑠 1

𝑥𝜎
√

2𝜋
exp
(︁
− ln(𝑥)2

2𝜎2

)︁
𝑑𝑥. (5.32)

5.3 Simulation

In this section we simulate the coverage probabilities of the proposed model, con-

sidering both the channel scenarios mentioned, and compare with that of the hexag-

onal model. The parameters are as: the intensity of PPP 𝛽 = 2, the radius of area

𝑅 = 15 km, path loss exponent 𝜂 = 3, 𝑃𝑐 = 10 dB, for the shadow channel 𝜎 = 3.

Correspondingly the side length of the hexagon of networks area and the side lengh

of the hexagon of each cellular can be calculated as 𝐴 =
√︀

𝜋
2.6

𝑅, 𝑎 = (2.6 * 𝛽)
1
2 ,

70



respectively.
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Figure 5-3: The coverage probability with path loss and fast fading impact

The simulation result of considering path loss and fast fading impact is shown in

Fig. 5-3. From the figure, the shape of the coverage probability of the PPP model

accords with that of the hexagonal model. As the increase of threshold, the coverages

of both model decrease to 0. Theoretically, the coverage probabilities of the PPP

model and the hexagonal model are the lower and upper bounds of the practical

coverage probability. Here the impact of serving BS’s transmit power also appears in

the figure. Obviously, a higher serving BS transmitting power increase the coverage

probability as expected.

The simulation result of considering the path loss, shadowing, and fast fading

impact is shown in Fig. 5-4, which demonstrates the similar conclusion as that of

considering path loss and fast fading impact. As the increase of the threshold, the

coverage probabilities of both the models decrease to 0, too. The higher transmit

power surely results in the higher coverage probability. In Fig. 5-5, we show what
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Figure 5-4: The coverage probability with path loss, shadow and fast fading impact

impact the standard derivation 𝜎 has on the coverage probability of both the PPP

and hexagonal models. We can see from the figure, the coverage probability of low

𝜎 = 3 fits well with that of hexagonal model. For 𝜎 = 5, compared to the hexagonal

model, the coverage probability is not quite accurate for the high threshold region,

but remains accurate for the low threshold region. This is because both the derivation

of [70] and this paper use the central limit theorem for approximations. Therefore, it

is clear that the highest is 𝜎, the highest is the error induced by the approximations.

5.4 Conclusion

We have proposed a novel way of analyzing cellular networks based on Poisson

point process, and derive simple formulas of the coverage probabilities, while consid-

ering path loss, shadowing and fast fading impacts. Traditional analyses are based

on PGFL of PPP, which restrict the channel to fast fading. The new approach is

based on basic theory of probability and statistics, does not rely on PGFL, therefore,
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it releases the restriction of channel. The expressions of the coverage probability in

[70] are the function of only the distances from BSs, and the distances do not restrict

to a special distribution. Therefore, the main idea of this paper is that using PPP to

model the BSs’ locations and substitute some expression depending on the distances

with statistical values. Assuming that the network area is a circle, we derive the

PDF of the distances from the BSs to the user. Based on this PDF, and combining

the conclusions of deterministic model of cellular networks, the average value of the

expressions depending on the distances can be calculated, then the expressions of the

coverage probability are obtained.

First, considering the path loss and fast fading impacts, the closed form formula

of the coverage probability at a given distance of the serving BS is obtained. We

then consider path loss, shadowing, and fast fading and give an analytical expression

of the outage probability at a given distance of the serving BS. Since the expression

depends only on the distances from interferers, which allows further integrations much
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more easily than with existing formulas derived in a traditional way of utilizing PPP.

Finally, the simulation results verified the feasibility and correctness of the proposed

method. This method releases the channel restriction of the traditional PPP model,

surely promotes and broadens the applications of PPP in analysis of cellular network.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has discussed a study on Stochastic Geometry Based Modeling

and Analysis of Cellular Networks. The objectives, background, related works, con-

tribution of this research are addressed in Chapter 1. In Chapter 2, the fundamentals

of SG and necessary related content are presented. Three typical PPs, PPP, HCPP,

PCP, and related properties are introduced.

In Chapter 3, we use PPP to model BSs’ locations, and propose a framework

to analyze the downlink coverage probability of HetNets utilizing the FFR tech-

nique. We give tractable expressions of typical users’ coverage probability under

both closed and open access cases, which can be furthermore simplified to a close

form in interference-limited networks. Through analysis, some useful propositions

and interesting observations are proposed: the coverage probability of edge user is

independent of channel parameter 𝜇; The coverage probability of edge user with FFR

under open access scheme equals the sum of the coverage probability of each single

tier under closed access scheme; In one tier network with FFR, both for SFR and

strict FFR, density of BSs and transmit power do not affect coverage probability of

both edge and interior users. We give the numerical results of coverage probability,

and discuss the effects of main parameters on it. These analysis can assist system de-

signers in designing networks, and evaluating new algorithm about HetNets utilizing
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FFR.

Chapter 4 uses PPP to model the locations of BSs, and proposes a framework to

analyze the downlink coverage probability of the MIMO HetNets utilizing the FFR

technique. We give a tractable expression of the typical user coverage probability

under both closed and open access cases, which can be easily extended to develop

average cell-edge user rate expressions. We show the numerical results of different

FFR and access cases under the full SDMA and SU-BF, and discuss the effects of main

parameters on the coverage probability. We also illustrate how to use the coverage

probability results to derive the average rate expressions. These analyses can assist

system designers in designing networks, and evaluating new algorithm related to

MIMO HetNets. It should be noted that this analysis is for downlink networks,

without mentioning uplink case. Considering the importance of uplink case, we will

analyze it in our future work.

In Chapter 5, we propose a novel way of analyzing cellular networks based on

Poisson point process, and derive simple formulas of the coverage probabilities, while

considering path loss, shadowing and fast fading impacts. Traditional analyses are

based on PGFL of PPP, which restrict the channel to fast fading. The new approach is

based on basic theory of probability and statistics, does not rely on PGFL, therefore,

it releases the restriction of channel. The expressions of the coverage probability in

[70] are the function of only the distances from BSs, and the distances do not restrict

to a special distribution. Therefore, the main idea of this paper is that using PPP to

model the BSs’ locations and substitute some expression depending on the distances

with statistical values. Assuming that the network area is a circle, we derive the

PDF of the distances from the BSs to the user. Based on this PDF, and combining

the conclusions of deterministic model of cellular networks, the average value of the

expressions depending on the distances can be calculated, then the expressions of the

coverage probability are obtained. First, considering the path loss and fast fading

impacts, the closed form formula of the coverage probability at a given distance of

the serving BS is obtained. We then consider path loss, shadowing, and fast fading

and give an analytical expression of the outage probability at a given distance of
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the serving BS. Since the expression depends only on the distances from interference

BSs, which allows further integrations much more easily than with existing formulas

derived in a traditional way of utilizing PPP. Finally, the simulation results verified

the feasibility and correctness of the proposed method. This method releases the

channel restriction of the traditional PPP model, surely promotes and broadens the

applications of PPP in analysis of cellular network.

6.2 Future Work

The work carried out in this thesis could be completed by several extensions,

especially, Chapter 5 is a starting point for other interesting research initiatives. As

mentioned in Chapter 5, although the proposed approach can release the restriction of

channel, obtain easier expressions of coverage probability, there are still some defects.

First one is that due to using the central limit theorem (CLT) for approximation, the

big standard derivation of shadowing channel results in the distortion of the coverage

probability. Second one is that the CLT also requires high density of the BS, therefore,

the low density of BSs impacts the accuracy of the coverage probability.

Furthermore, the proposed model just analyzes a simple scenario of cellular net-

works, actually, the more complex scenario should be considered. Therefore, the fu-

ture works are that overcoming the shortcomings and extending the results to other

scenarios of the cellular networks.

∙ Developing the model of one tier cellular networks, which can verify the feasi-

bility and correctness of the new approach.

∙ Calculating interference with Fenton-Wilkinson approach instead of the CLT,

which can overcome the first shortcoming above.

Fenton-Wilkinson approach approximates a sum of log-normal random variables

by a log-normal random variable and approximates fast fading coefficients in

interference terms by their average value.
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∙ Modeling (heterogeneous) cellular networks in terms of uniform distribution,

which can overcome the second shortcoming above.

Since uniform distribution is the simplest distribution, using it to model the BSs

allows us to calculate the sum of average distances form BSs more accurately

than approximating the sum with CLT.

∙ Extending the results above to multi tiers (heterogeneous) cellular networks.

∙ Developing the model of sector cellular networks, which is most important and

practical situation, however, has not done yet.
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Appendix A

Appedices of Chapter 3

A.1 Proof of theorem 3.2.1

In fact, the proof is the procedure of evaluating (3.3), for your reading convenience,

we rewrite it here.

𝐾∑︁
𝑘=1

P
(︂

𝛽𝑘𝑃𝑘𝑔𝑘𝑟
−𝛼
𝑘

𝐾∑︀
𝑛=1

𝜂𝑛𝐼𝑛+𝜎2

> 𝑇𝑘 ,
𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗

𝐾∑︀
𝑚=1

𝜂𝑚𝐼𝑚+𝜎2

< 𝑇𝑗

)︂

P
(︂

𝐾∏︀
𝑗=1

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗

𝐾∑︀
𝑚=1

𝜂𝑚𝐼𝑚+𝜎2

< 𝑇𝑗

)︂ . (A.1)

Due to the independence of each tier, we can calculate the probabilities of each tier

respectively. For 𝑘𝑡ℎ tier, we first focus on the denominator of (A.1). Conditioning
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on 𝑟𝑗, it can be evaluated as

E𝐼𝑚

[︂ 𝐾∏︁
𝑗=1

P
(︂

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗

𝐾∑︀
𝑚=1

𝜂𝑚𝐼𝑚 + 𝜎2

< 𝑇𝑗

)︂]︂

= E𝐼𝑚

[︂ 𝐾∏︁
𝑗=1

P
(︂
𝑔𝑗 <

𝑇𝑗𝑟
𝛼
𝑗

𝑃𝑗

(︂ 𝐾∑︁
𝑚=1

𝜂𝑚𝐼𝑚 + 𝜎2

)︂)︂]︂

=
𝐾∏︁
𝑗=1

E𝐼𝑚

[︂
1 − 𝑒

−
𝜇𝑇𝑗𝑟

𝛼
𝑗

𝑃𝑗

(︂
𝐾∑︀

𝑚=1
𝜂𝑚𝐼𝑚+𝜎2

)︂]︂
𝑎
=

𝐾∏︁
𝑗=1

(︂
1 − 𝑒−𝑠𝑗𝜎

2 · E𝐼𝑚

[︂
𝑒
−

𝐾∑︀
𝑚=1

𝑠𝑗𝜂𝑚𝐼𝑚
]︂)︂

, (A.2)

where 𝑎 defines 𝑠𝑗 =
𝜇𝑇𝑗𝑟

𝛼
𝑗

𝑃𝑗
.

The expectation of (A.2) equals

E𝐼𝑚

[︀
𝑒
−

𝐾∑︀
𝑚=1

𝑠𝑗𝜂𝑚𝐼𝑚]︀
=

𝐾∏︀
𝑚=1

E𝐼𝑚

[︀
𝑒−𝑠𝑗𝜂𝑚𝐼𝑚

]︀
=

𝐾∏︀
𝑚=1

E𝐺𝑚,Φ𝑚

[︀
𝑒
−𝑠𝑗

∑︀
𝑅𝑚𝑦∈Φ𝑚

𝜂𝑚𝑃𝑚𝐺𝑚𝑅−𝛼
𝑚𝑦]︀

=
𝐾∏︀

𝑚=1

EΦ𝑚

[︂ ∏︀
𝑦∈Φ𝑚

E𝐺𝑚 [𝑒−𝑠𝑗𝜂𝑚𝑃𝑚𝐺𝑚𝑅−𝛼
𝑚𝑦 ]

]︂
, (A.3)

where 𝐺𝑚 means the 𝑚𝑡ℎ interference link, 𝑅𝑚𝑦 means the distance from 𝑚𝑡ℎ tier

interference BSs to the typical edge user.

Eq. (A.3) has already been evaluated by the proof of theorem A.1 of [15], referring
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to it, we can derive

𝐾∏︁
𝑚=1

EΦ𝑚

[︂ ∏︁
𝑦∈Φ𝑚

E𝐺𝑚 [𝑒−𝑠𝑗𝜂𝑚𝑃𝑚𝐺𝑚𝑅−𝛼
𝑚𝑦 ]

]︂
𝑎
=

𝐾∏︁
𝑚=1

EΦ𝑚

[︂ ∏︁
𝑦∈Φ𝑚

𝜇

𝜇 + 𝑠𝑗𝜂𝑚𝑃𝑚𝑅−𝛼
𝑚𝑦

]︂
𝑏
=

𝐾∏︁
𝑚=1

exp

(︂
− 𝜆𝑗

∫︁ ∞

0

(︂
1 − 𝜇

𝜇 + 𝑠𝑗𝜂𝑚𝑃𝑚𝑅−𝛼
𝑚𝑦

)︂
d𝑅𝑚𝑦

)︂
𝑐
=

𝐾∏︁
𝑚=1

exp

(︂
− 2𝜋𝜆𝑗(𝑠𝑗𝜇

−1𝜂𝑚𝑃𝑚)
2
𝛼

∫︁ ∞

0

𝑟

∫︁ ∞

0

e−𝑡(1+𝑟𝛼)d𝑡d𝑟

)︂
𝑑
= exp

(︂
− (𝑠𝑗𝜇

−1)
2
𝛼𝐶(𝛼)

𝐾∑︁
𝑚=1

𝜆𝑚(𝜂𝑚𝑃𝑚)
2
𝛼

)︂
, (A.4)

where 𝐶(𝛼) =
2𝜋2csc( 2𝜋

𝛼
)

𝛼
, 𝑠𝑗 =

𝜇𝑇𝑗𝑟
𝛼
𝑗

𝑃𝑗
. 𝑎 follows from the Rayleigh fading assumption,

𝑏 follows from probability generating functional (PGFL) of PPP [59], 𝑐 results from

algebraic manipulation after converting from Cartesian to polar coordinates, and 𝑑

uses some properties of Gamma function. Plug (A.4) back into (A.2), and deconditon

on 𝑟𝑘, we can get the result of the denominator of (A.1).

Now focus on numerator. Conditioning on 𝑟𝑘, the two terms of numerator of (A.1)

are independent, and the second term is the same as denominator, so we just need to

evaluate the first term, which equals
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P
(︀
𝑆𝐼𝑁𝑅𝑘 > 𝑇𝑘

)︀
= P

(︂
𝛽𝑘𝑃𝑘𝑔𝑘𝑟

−𝛼
𝑘

𝐾∑︀
𝑛=1

𝜂𝑛𝐼𝑛 + 𝜎2

> 𝑇𝑘

)︂

= P
(︂
𝑔𝑘 >

𝑇𝑘𝑟
𝛼
𝑘

𝑃𝑘𝛽𝑘

(︂ 𝐾∑︁
𝑛=1

𝜂𝑛𝐼𝑛 + 𝜎2

)︂)︂

= E𝐼𝑛

[︂
exp

(︂
− 𝜇𝑇𝑘𝑟

𝛼
𝑘

𝑃𝑘𝛽𝑘

(︂ 𝐾∑︁
𝑛=1

𝜂𝑛𝐼𝑛 + 𝜎2

)︂)︂]︂
𝑎
= 𝑒−𝑠𝑘𝜎

2 · E𝐼𝑛

[︂
exp
(︀
−

𝐾∑︁
𝑛=1

𝑠𝑘𝜂𝑛𝐼𝑛
)︀]︂

𝑏
= exp

(︂
− (𝑠𝑘𝜇

−1)
2
𝛼𝐶(𝛼)

𝐾∑︁
𝑛=1

𝜆𝑛(𝜂𝑛𝑃𝑛)
2
𝛼

)︂
(A.5)

where 𝑎 defines 𝑠𝑘 =
𝜇𝑇𝑘𝑟

𝛼
𝑘

𝑃𝑘𝛽𝑘
, 𝑏 refers to (A.3) and (A.4).

Now plug the result of denominator and numerator back into (A.1) and decondi-

tion on 𝑟𝑘, we can get theorem 3.2.1. It should be noted that after deconditioning on

𝑟𝑘, the term
𝐾∏︀
𝑗 ̸=𝑘

𝑃𝑗𝑔𝑗𝑟
−𝛼
𝑗∑︀𝐾

𝑚=1 𝜂𝑚𝐼𝑚+𝜎2
< 𝑇𝑗 contained by both denominator and numerator

can be simplified out.

A.2 Proof of corollary 3.2.2

The proof of corollary just easily follows from theorem 3.2.1 with 𝜎2 = 0. For 𝑘𝑡ℎ

tier, let 𝜎2 = 0, the numerator of (3.4) can be simplified and evaluated as

∫︁ ∞

0

𝜌(𝑘, 𝜆)𝑓𝑆𝐹𝑅(𝑠𝑘) ·
(︂

1 − 𝑓𝑆𝐹𝑅(𝑠𝑘)

)︂
d𝑟𝑘

=

∫︁ ∞

0

𝜌(𝑘, 𝜆)𝑓𝑆𝐹𝑅(𝑠𝑘)d𝑟𝑘 −
∫︁ ∞

0

𝜌(𝑘, 𝜆)𝑓𝑆𝐹𝑅(𝑠𝑘) · 𝑓𝑆𝐹𝑅(𝑠𝑘)d𝑟𝑘

𝑎
=

∫︁ ∞

0

2𝜋𝜆𝑘𝑟𝑘𝑒
−(𝜋𝜆𝑘+(

𝑇𝑘
𝛽𝑘

)

2
𝛼
𝜃)𝑟2𝑘d𝑟𝑘 −

∫︁ ∞

0

2𝜋𝜆𝑘𝑟𝑘𝑒
−(𝜋𝜆𝑘+(

𝑇𝑘
𝛽𝑘

)

2
𝛼
𝜃+𝑇

2
𝛼
𝑘 𝜃)𝑟2𝑘d𝑟𝑘

= 𝜋𝜆𝑘 ·
𝑇

2
𝛼
𝑘 𝜃(︀

𝜋𝜆𝑘 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃
)︀(︀
𝜋𝜆𝑘 + (𝑇𝑘

𝛽𝑘
)

2
𝛼
𝜃 + 𝑇

2
𝛼
𝑘 𝜃
)︀ , (A.6)
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where 𝑎 defines 𝜃 = 𝑃
− 2

𝛼
𝑘 𝐶(𝛼)

∑︀𝐾
𝑚=1 𝜆𝑚(𝜂𝑚𝑃𝑚)

2
𝛼 .

Similarly, the denominator equals

𝑇
2
𝛼
𝑘 𝜃(︀

𝜋𝜆𝑘 + 𝑇
2
𝛼
𝑘 𝜃
)︀ . (A.7)

Now plug (A.6), (A.7) back to (3.4), after simplifying and defining 𝜃 = 𝜆−1
𝑘 𝜃, we get

corollary 3.2.2.

A.3 Proof of theorem 3.2.3

Comparing (3.3) and (3.9), the denominator and the second term of numera-

tor are almost same. Therefore using the same method of (A.4) and (A.5), condi-

tioning on 𝑟𝑗, the denominator and the second term of numerator of (3.9) equals(︂
1 − e−𝑠𝑘𝜎

2
𝑓𝑠𝐹𝐹𝑅(𝑠𝑘)

)︂
.

The first term of the numerator of (3.9) is simpler than that of the numerator of

(3.3). Referring to (A.5) and conditioning on 𝑟𝑗, it equals 𝑓𝑒𝑑𝑔𝑒(𝑠𝑘).

Now plug the result of denominator and numerator back into (3.9) and decondition

on 𝑟𝑗, we can get theorem 3.2.3.
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Appendix B

Appedices of Chapter 4

B.1 Proof of the Theorem 4.2.1

Under this case, the users are allowed to access only one certain tier, thereby we

consider the user, whose 𝑆𝐼𝑅𝑘 < 𝑇𝑘, as cell-edge user. The coverage probability of

the cell-edge user (4.1) can be further expressed as

P
(︀𝐷𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐼𝑘
> 𝑇

⃒⃒⃒⃒
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝐼𝑘

< 𝑇𝑘

)︀

𝑎
=

P
(︀𝐷𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐼𝑘
> 𝑇,

𝑃𝑘ℎ𝑘𝑥𝑘
‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝐼𝑘

< 𝑇𝑘)

P(
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝐼𝑘

< 𝑇𝑘)
(B.1)

where (𝑎) means using Baye’s rule, 𝐷𝑘 means thinning the interference. (hereinafter

for convenience of notation, we express ‖𝑥𝑘‖ as 𝑥𝑘). Conditioning on 𝑥𝑘, which is the

distance to the nearest 𝑘𝑡ℎ tier BS, the two terms of numerator are independent, so
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we can evaluate them respectively. The first term of numerator of (B.1) equals,

E𝐼𝑘

[︀
P
(︀
ℎ̂𝑘𝑥𝑘

>
𝑇𝑥𝛼

𝑘𝐼𝑘
𝑃𝑘𝐷𝑘

)︀]︀
𝑎
= E𝐼𝑘

[︀
𝑒
−𝑇𝑥𝛼𝑘 𝐼𝑘

𝑃𝑘𝐷𝑘

Δ𝑘−1∑︁
𝑖=0

(︀𝑇𝑥𝛼
𝑘 𝐼𝑘

𝑃𝑘𝐷𝑘

)︀𝑖
𝑖!

]︀
𝑏
= E𝐼𝑘

[︀
𝑒−𝑠1𝑥𝑘 𝐼𝑘

Δ𝑘−1∑︁
𝑖=0

(︀
𝑠1𝑥𝑘

𝐼𝑘
)︀𝑖

𝑖!

]︀
=

Δ𝑘−1∑︁
𝑖=0

1

𝑖!
E𝐼𝑘

[︀
𝑒−𝑠1𝑥𝑘 𝐼𝑘

(︀
𝑠1𝑥𝑘

𝐼𝑘)𝑖]

𝑐
=

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠1𝑥𝑘

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠1𝑥𝑘

)︀𝑖ℒ𝐼𝑘

(︀
𝑠1𝑥𝑘

)︀]︀
(B.2)

where referring to the formula (16)(17) of [33] , (a) follows ℎ̂𝑘𝑥𝑘
∼ Γ(∆𝑘, 1), (b) defines

𝑠1𝑥𝑘
=

𝑇𝑥𝛼
𝑘

𝑃𝑘𝐷𝑘
, (c) uses the property of Laplace transform (LT).

There is a lemma in [33] to detail how to evaluate the LT term of (B.2), for

convenience of reading, we rewrite part of it here.

ℒ𝐼𝑘

(︀
𝑠1𝑥𝑘

)︀
= E𝑍𝑘

[︀
𝑒−𝑠1𝑥𝑘

∑︀
𝑦𝑘∈𝑍𝑘

𝑃𝑘𝑔𝑘𝑦𝑘𝑦
−𝛼
𝑘
]︀

= E𝑍𝑘

[︀
Π𝑦𝑘∈𝑍𝑘

𝑒−𝑠1𝑥𝑘𝑃𝑘𝑔𝑘𝑦𝑘𝑦
−𝛼
𝑘

]︀
= E𝑍𝑘

[︀
Π𝑦𝑘∈𝑍𝑘

ℒ𝑔𝑘𝑦𝑘

(︀
𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘 )
]︀

𝑎
= exp

(︀
− 𝜆𝑘

∫︁
𝑅2

1 − ℒ𝑔𝑘𝑦𝑘

(︀
𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘

)︀
d𝑦𝑘
)︀

𝑏
= exp

(︀
− 𝜆𝑘

∫︁
𝑅2

(︂
1 − 1(︀

1 + 𝑠1𝑥𝑘
𝑃𝑘𝑦

−𝛼
𝑘

)︀Ψ𝑘

)︂
d𝑦𝑘
)︀

= exp
(︀
− 𝜆𝑘

∫︁
𝑅2

(︀
1 + 𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘

)︀Ψ𝑘 − 1(︀
1 + 𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘

)︀Ψ𝑘
d𝑦𝑘
)︀

𝑐
= exp

(︀
− 𝜆𝑘

∫︁
𝑅2

Ψ𝑘∑︀
𝑚=1

(︀
Ψ𝑘

𝑚

)︀(︀
𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘

)︀𝑚
(︀
1 + 𝑠1𝑥𝑘

𝑃𝑘𝑦
−𝛼
𝑘

)︀Ψ𝑘
d𝑦𝑘
)︀

𝑑
= exp

(︀
− 𝑠

2
𝛼
1𝑥𝑘

𝜆𝑘𝑃
2
𝛼
𝑘 C
(︀
𝛼,Ψ𝑘

)︀)︀
(B.3)

where C(𝛼,Ψ𝑗) is given in (4.4). (a) follows the probability generating functional
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(PGFL) of PPP [59], (b) follows the LT of the 𝑔𝑘𝑦𝑘 ∼ Γ(Ψ𝑘, 1), (c) follows from

Binomial theorem, and (d) follows from converting to cartesian to polar coordinates

followed by substituting
(︀
1 + 𝑟−𝛼

)︀−1 → 𝑡 to convert the integral into Euler’s Beta

function
∫︀ 1

0
𝑡𝑥−1

(︀
1−𝑡

)︀𝑦−1
d𝑡 [33]. Plugging (B.3) back into (B.2), we can get the result

of first term of numerator of (B.1), which is 𝑓1(𝑠1𝑥𝑘
).

Conditioning on the 𝑥𝑘, the second term of numerator and the denominator are

the same, and they equal

1 − E𝑍𝑘

[︂
P
(︀
ℎ𝑘𝑥𝑘

>
𝑇𝑘𝑥

𝛼
𝑘

𝑃𝑘

𝐾∑︁
𝑘=1

𝐼𝑘
)︀]︂
. (B.4)

Referring to (B.2), (B.4) equals

1 −
Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠1𝑥𝑘

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠1𝑥𝑘

)︀𝑖ℒ𝐼′𝑘

(︀
𝑠1𝑥𝑘

)︀]︀
(B.5)

where we define 𝑠1𝑥𝑘
=

𝑇𝑘𝑥
𝛼
𝑘

𝑃𝑘
, 𝐼 ′𝑘 =

∑︀𝐾
𝑘=1 𝐼𝑘. Due to being similar to (B.3), and

referring to lemma 1 of [33], the LT term of (B.5) equals

E𝐼′𝑘

[︀
𝑒𝑠1𝑥𝑘 𝐼

′
𝑘

]︀
= E𝑍𝑘

[︀
𝑒𝑠1𝑥𝑘

∑︀𝐾
𝑘=1

∑︀
𝑦𝑘∈𝑍𝑘𝑃𝑘𝑔𝑘𝑦𝑘𝑦

−𝛼
𝑘

]︀
= exp

(︀
− 𝑠

2
𝛼
1𝑥𝑘

𝐾∑︁
𝑘=1

𝜆𝑘𝑃
2
𝛼
𝑘 C
(︀
𝛼,Ψ𝑘

)︀)︀
. (B.6)

Plugging (B.6) back to (B.5), we can get the result of (B.4), (1−𝑓 ′
1(𝑠1𝑥𝑘

)). Therefore,

the numerator and denominator of (B.1), equal 𝑓1(𝑠1𝑥𝑘
)(1−𝑓 ′

1(𝑠1𝑥𝑘
)) and (1−𝑓 ′

1(𝑠1𝑥𝑘
)),

respectively. Now substituting for each term of (B.1), and conditioning on 𝑥𝑘, the

result of (B.1) is
𝑓1(𝑠1𝑥𝑘 )(1−𝑓 ′

1(𝑠1𝑥𝑘 ))

(1−𝑓 ′
1(𝑠1𝑥𝑘 ))

. After deconditioning on 𝑥𝑘, we get the result of

theorem 1.
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B.2 Proof of the Theorem 4.2.2

Comparing to strict FFR, SFR increases transmit power and experiences inter-tier

interference. Consider these two differences, the probability 𝑃𝑆𝐹𝑅,𝑐𝑙 =

P
(︂
𝛽𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

> 𝑇

⃒⃒⃒⃒
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

< 𝑇𝑘

)︂

=

P
(︂

𝛽𝑘𝑃𝑘ℎ̂𝑘𝑥𝑘
‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

> 𝑇 ,
𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

< 𝑇𝑘

)︂

P
(︂

𝑃𝑘ℎ𝑘𝑥𝑘
‖𝑥𝑘‖−𝛼

𝐾∑︀
𝑘=1

𝜂𝑘𝐼𝑘

< 𝑇𝑘

)︂ . (B.7)

Referring to (B.2) and conditioning on 𝑥𝑘, the first term of numerator equals

E𝐼𝑘

[︀
P
(︀
ℎ̂𝑘𝑥𝑘

>
𝑇𝑥𝛼

𝑘

𝛽𝑘𝑃𝑘

𝐾∑︁
𝑘=1

𝜂𝑘𝐼𝑘
)︀]︀

= E𝐼𝑘

[︀
𝑒
− 𝑇𝑥𝛼𝑘

𝛽𝑘𝑃𝑘

∑︀𝐾
𝑘=1 𝜂𝑘𝐼𝑘

Δ𝑘−1∑︁
𝑖=0

(︀ 𝑇𝑥𝛼
𝑘

𝛽𝑘𝑃𝑘

∑︀𝐾
𝑘=1 𝜂𝑘𝐼𝑘

)︀𝑖
𝑖!

]︀
𝑎
=

Δ𝑘−1∑︁
𝑖=0

1

𝑖!
E𝐼′𝑘

[︀
𝑒−𝑠2𝑥𝑘 𝐼

′
𝑘

(︀
𝑠2𝑥𝑘

𝐼 ′𝑘
)︀𝑖]︀

=

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠2𝑥𝑘

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠2𝑥𝑘

)︀𝑖ℒ𝐼′𝑥𝑘

(︀
𝑠2𝑥𝑘

)︀]︀
(B.8)

where (a) defines 𝑠2𝑥𝑘
=

𝑇𝑥𝛼
𝑘

𝛽𝑘𝑃𝑘
and 𝐼 ′𝑘 =

∑︀𝐾
𝑘=1 𝜂𝑘𝐼𝑘, and Referring to (B.3), the LT of

above can be evaluated as

ℒ𝐼′𝑘

(︀
𝑠2𝑥𝑘

)︀
= E𝑍𝑘

[︀
𝑒−𝑠2𝑥𝑘

∑︁
𝑦𝑘∈𝑍𝑘

𝜂𝑘𝑃𝑘𝑔𝑘𝑦𝑘𝑦
−𝛼
𝑘

]︀
= E𝑍𝑘

[︀
Π𝑦𝑘∈𝑍𝑘

𝑒−𝑠2𝑥𝑘𝜂𝑘𝑃𝑘𝑔𝑘𝑦𝑘𝑦
−𝛼
𝑘

]︀
= E𝑍𝑘

[︀
Π𝑦𝑘∈𝑍𝑘

ℒ𝑔𝑘𝑦𝑘

(︀
𝑠2𝑥𝑘

𝜂𝑘𝑃𝑘𝑦
−𝛼
𝑘 )
]︀

= exp
(︀
− 𝑠

2
𝛼
2𝑥𝑘

𝐾∑︁
𝑘=1

𝜆𝑘

(︀
𝜂𝑘𝑃𝑘

)︀ 2
𝛼 C
(︀
𝛼,Ψ𝑘

)︀)︀
. (B.9)
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Pluging (B.9) to (B.8), then we can get the result of first term of numerator,

which is 𝑓2(𝑠2𝑥𝑘
). Conditioning on 𝑥𝑘, the procedure of calculating second term of

numerator and the denominator are the same. Imitating the method of (B.8) and

(B.9), we can get the result of second term and denominator

1 − P
(︀𝑃𝑘ℎ𝑘𝑥𝑘

‖𝑥𝑘‖−𝛼∑︀𝐾
𝑘=1 𝜂𝑘𝐼𝑘

> 𝑇𝑘

)︀
𝑎
= 1 −

Δ𝑘−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠2𝑥𝑘

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠2𝑥𝑘

)︀𝑖ℒ𝐼′𝑥𝑘

(︀
𝑠2𝑥𝑘

)︀]︀
(B.10)

where (a) defines 𝑠2𝑥𝑘
=

𝑇𝑘𝑥
𝛼
𝑘

𝑃𝑘
and 𝐼 ′𝑘 =

∑︀𝐾
𝑗=1 𝐼𝑘, and the LT term equals

ℒ𝐼′𝑘

(︀
𝑠2𝑥𝑘

)︀
= exp

(︀
− 𝑠

2
𝛼
2𝑥𝑘

𝐾∑︁
𝑗=1

𝜆𝑗

(︀
𝜂𝑗𝑃𝑗

)︀ 2
𝛼 C
(︀
𝛼,Ψ𝑗

)︀)︀
. (B.11)

Pluging (B.11) back to (B.10), then we get the result of second term and denominator

of (B.7), which are (1−𝑓2(𝑠2𝑥𝑘
)). Now substituting for each term of (B.7) with 𝑓2(𝑠2𝑥𝑘

)

and (1−𝑓2(𝑠2𝑥𝑘
)), and conditioning on 𝑥𝑘, the result of (B.7) is

𝑓2(𝑠2𝑥𝑘 )(1−𝑓2(𝑠2𝑥𝑘 ))

(1−𝑓2(𝑠2𝑥𝑘 ))
. After

deconditioning on 𝑥𝑘, we get the result of theorem 2.

B.3 Proof of the Theorem 4.3.1

Different from closed access, open access allows users to access each tier, thereby

the cell-edge user is the user whose 𝑆𝐼𝑅1 < 𝑇1 and 𝑆𝐼𝑅2 < 𝑇2. The coverage

probability of cell-edge user (4.7) can be further expressed as

P
(︀𝐷1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝐼1
> 𝑇

⃒⃒
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︀
𝑎
=

P
(︂

𝐷1𝑃1ℎ̂1𝑥1𝑥
−𝛼
1

𝐼1
> 𝑇, (𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2)

)︂
P
(︀
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︀ (B.12)

where (𝑎) follows the Bayes’ rule.

Conditioning on 𝑥1 and 𝑥2, each part of (B.12) is independent, so we focus on the
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denominator first.

P
(︀
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︀
= P

(︂
𝑃1ℎ1𝑥1𝑥

−𝛼
1

𝐼1 + 𝐼2 + 𝑃2ℎ2𝑥2𝑥
−𝛼
2

< 𝑇1

,
𝑃2ℎ2𝑥2𝑥

−𝛼
2

𝐼1 + 𝐼2 + 𝑃1ℎ1𝑥1𝑥
−𝛼
1

< 𝑇2

)︂
𝑎
= P

(︂
𝑥𝛼
1

𝑃1

(︀𝑃2

𝑇2

ℎ2𝑥2𝑥
−𝛼
2 − 𝐼

)︀
< ℎ1𝑥1

<
𝑇1𝑥

𝛼
1

𝑃1

(︀
𝑃2ℎ2𝑥2𝑥

−𝛼
2 + 𝐼

)︀ ⃒⃒
ℎ2𝑥2

)︂
(B.13)

where (𝑎) condition on ℎ2𝑥2 and 𝐼 = 𝐼1 + 𝐼2. Since ℎ1𝑥1 follows Γ(∆1, 1), using the

CCDF of the Gamma distribution, (B.13) equals

Eℎ2𝑥2 ,𝐼

[︂
1 − 𝑒

−𝑇1𝑥
𝛼
1

𝑃1

(︀
𝑃2ℎ2𝑥2𝑥

−𝛼
2 +𝐼

)︀ Δ1−1∑︁
𝑖=0(︀𝑇1𝑥𝛼

1

𝑃1

(︀
𝑃2ℎ2𝑥2𝑥

−𝛼
2 + 𝐼

)︀)︀𝑖
𝑖!

−
(︁

1 − 𝑒
−𝑥𝛼1

𝑃1

(︀
𝑃2
𝑇2

ℎ2𝑥2𝑥
−𝛼
2 −𝐼

)︀+
Δ1−1∑︁
𝑖=0

(︀𝑥𝛼
1

𝑃1

(︀
𝑃2

𝑇2
ℎ2𝑥2𝑥

−𝛼
2 − 𝐼

)︀+)︀𝑖
𝑖!

)︁]︂
(B.14)

where (︀
𝑥
)︀+

=

⎧⎨⎩ 𝑥, 𝑥 > 0

0, 𝑥 ≤ 0

Define 𝑠 =
𝑇1𝑥𝛼

1

𝑃1
, 𝐼 ′ = 𝐼 + 𝑃2ℎ2𝑥2𝑥

−𝛼
2 , and the first term of (B.14) equals

E𝐼′

[︂
𝑒−𝑠𝐼′

Δ1−1∑︁
𝑖=0

(︀
𝑠𝐼 ′
)︀

𝑖!

]︂
=

Δ1−1∑︁
𝑖=0

1

𝑖!

[︂(︀
− 𝑠
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠
)︀𝑖ℒ𝐼′

(︀
𝑠
)︀]︂
.

(B.15)
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The LT in (B.15) equals

E𝐼′
[︀
𝑒−𝑠𝐼′

]︀
= E𝐼,ℎ2𝑥2

[︀
𝑒−𝑠
(︀
𝐼+𝑃2ℎ2𝑥2𝑥

−𝛼
2

)︀]︀
=E𝑔1𝑦1

[︀
Π𝑦∈𝑍1/𝑥1𝑒

−𝑠𝑃1𝑔1𝑦1𝑦
−𝛼
1
]︀
·

E𝑔2𝑦2

[︀
Π𝑦∈𝑍2/𝑥2𝑒

−𝑠𝑃2𝑔2𝑦2𝑦
−𝛼
2
]︀
· Eℎ2𝑥2

[︀
𝑒−𝑠𝑃2ℎ2𝑥2𝑥

−𝛼
2
]︀
. (B.16)

Referring to (B.2), we can evaluate the first two terms of (B.16). Using the conclusion

of the LT of the Gamma distribution, the third term of (B.16) equals

ℒℎ2𝑥2

(︀
𝑠𝑃2𝑥

−𝛼
2

)︀
=

1(︀
1 + 𝑠𝑃2𝑥

−𝛼
2

)︀Δ2
. (B.17)

Now plugging (B.16), (B.17) back into (B.15) and then we can get the result of (B.15).

Define 𝑠′ =
𝑥𝛼
1

𝑃1
, 𝐼 ′′ =

(︀
𝑃2

𝑇2
ℎ2𝑥2𝑥

−𝛼
2 − 𝐼

)︀+
, and the second term of (B.14) equals

E𝐼′′

[︂
𝑒−𝑠′𝐼′′

Δ1−1∑︁
𝑖=0

(︀
𝑠′𝐼 ′′

)︀𝑖
𝑖!

]︂

=

Δ1−1∑︁
𝑖=0

1

𝑖!

[︂(︀
− 𝑠′

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠′
)︀𝑖ℒ𝐼′′

(︀
𝑠′
)︀]︂
. (B.18)

Defining 𝑠′2 = 𝑃2

𝑇2
𝑥−𝛼
2 , 𝑛 = ∆2 − 1, and using the definition of expectation to evaluate

the expectation of 𝑔2, which follows the Gamma distribution, the LT of (B.18)

ℒ𝐼′′
(︀
𝑠′
)︀

= E𝐼′′
[︀
𝑒−𝑠′𝐼′′

]︀
= E𝐼,ℎ2𝑥2

[︀
𝑒−𝑠′
(︀
𝑠′2ℎ2𝑥2−𝐼

)︀+]︀
𝑎
= E𝐼

[︂ ∫︁ 𝐼
𝑠′2

0

1

Γ(∆2)
ℎ𝑛
2𝑥2

𝑒−ℎ2𝑥2dℎ2𝑥2

+

∫︁ ∞

𝐼
𝑠′2

1

Γ(∆2)
ℎ𝑛
2𝑥2

𝑒−ℎ2𝑥2𝑒−𝑠′𝑠′2ℎ2𝑥2𝑒𝑠
′𝐼dℎ2𝑥2

]︂
. (B.19)
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Evaluating (B.19), collecting terms and simplifying gives

1 +
1

Γ(∆2)

𝑛∑︁
𝑚=0

𝑛!

(𝑛−𝑚)!
(𝑠′2)

𝑚−𝑛 ·(︂
1

(1 + 𝑠′𝑠′2)
𝑚+1

− 1

)︂
E𝐼

[︀
𝑒
− 1

𝑠′2 𝐼𝑛−𝑚
]︀
. (B.20)

According to the LT property, the last part of the (B.20) equals

E𝐼

[︀
𝑒
− 1

𝑠′2 𝐼𝑛−𝑚
]︀

= (−1)𝑛−𝑚 𝛿𝑛−𝑚

𝛿( 1
𝑠′2

)𝑛−𝑚
ℒ𝐼

(︂
1

𝑠′2

)︂
.

The LT term of above formula is the same as the part of (B.16), so it can be derived

by directly using the result of (B.16). Now plugging the result of (B.18) and (B.15)

back into (B.13), then we can get the result of (B.13).

Now we focus on the numerator of (B.12). Comparing it to the denominator, the

second term is the same as denominator, so we just need to calculate the first term.

the first term of (B.12) is similar to the first term of (B.1) numerator, so referring to

(B.2), the first term of (B.12) can be evaluated as

P
(︀𝐷1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝐼1
> 𝑇

)︀ 𝑎
=

Δ1−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠′

)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠′
)︀𝑖ℒ𝐼1

(︀
𝑠′
)︀]︀

(B.21)

where (a) defines 𝑠′ =
𝑇𝑥𝛼

1

𝑃1𝐷1
, 𝐼1 =

∑︀
𝑦∈𝑍1/𝑥1

𝑃1𝑔1𝑦1𝑦
−𝛼
1 . The Laplace transform of

(B.21) equals

ℒ𝐼1

(︀
𝑠′
)︀

= E𝑔1𝑦1

[︀
𝑒−𝑠′

∑︀
𝑦∈𝑍1/𝑥1

𝑃1𝑔1𝑦1𝑦
−𝛼
1
]︀

= exp
(︀
− 𝑠′

2
𝛼𝜆1𝑃

2
𝛼
1 C′(︀𝛼,Ψ1

)︀)︀
. (B.22)

Now plugging (B.13) and (B.21) back into (B.12) and decontitioning on 𝑥1 and 𝑥2,

we get the result of theorem 4.3.1.
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B.4 Proof of the Theorem 4.3.2

Referring to theorem 4.2.2 and theorem 4.3.1, the coverage probability in the case

of SFR and open access can be expressed as

P
(︂
𝛽1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝜂1𝐼1 + 𝜂2𝐼2
> 𝑇

⃒⃒
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︂

=

P
(︂

𝛽1𝑃1ℎ̂1𝑥1𝑥
−𝛼
1

𝜂1𝐼1+𝜂2𝐼2
> 𝑇,

(︀
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︀)︂
P
(︀
𝑆𝐼𝑅1 < 𝑇1, 𝑆𝐼𝑅2 < 𝑇2

)︀ .

(B.23)

Here conditioning on 𝑥1 and 𝑥2, the first term and second term of the numerator

of (B.23) are independent. The denominator and second term of the numerator of

(B.23) are the same as (B.13), so we just need to calculate the first term of numerator.

Define 𝑠 =
𝑇𝑥𝛼

1

𝛽1𝑃1
, 𝐼12 = 𝜂1𝐼1 + 𝜂2𝐼2, and using the method of theorem 4.2.2, the first

term of the numerator of (B.23) equals

P
(︀𝛽1𝑃1ℎ̂1𝑥1𝑥

−𝛼
1

𝜂1𝐼1 + 𝜂2𝐼2
> 𝑇

)︀
=

Δ1−1∑︁
𝑖=0

1

𝑖!

[︀(︀
− 𝑠
)︀𝑖 𝛿𝑖

𝛿
(︀
𝑠
)︀𝑖ℒ𝐼12

(︀
𝑠
)︀]︀

(B.24)

where

ℒ𝐼12

(︀
𝑠
)︀

= exp
(︀
− 𝑠

2
𝛼𝜆1

(︀
𝜂1𝑃1

)︀ 2
𝛼 C
(︀
𝛼,Ψ1

)︀)︀
· exp

(︀
− 𝑠

2
𝛼𝜆2

(︀
𝜂2𝑃2

)︀ 2
𝛼 C
(︀
𝛼,Ψ2

)︀)︀
. (B.25)

Plugging the result of (B.25) and (B.13) back into (B.23), and deconditioning on 𝑥1

and 𝑥2, we have the result of theorem 4.3.2.
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