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Preface

How to find a new value from data becomes very crucial in science and

technology. One of the driving forces is, of course, the continued development

of information technology. To understand the phenomena behind data, statistical

modeling plays an important role and a model of probability distributions is

one of the basic statistical models. This thesis is to make a contribution to the

development of such a modeling with a probability distribution model through

practice and theory. A focus is on the goodness-of-fit of distributions. We first

present two case studies and build distributional models by considering theoretical

aspects of the data as well as their statistical characteristics. Then, several

theoretical properties of the goodness-of-fit test statistic for contaminated data

are shown, which are inspired by the two case studies.

The first case study is the modeling of the weight of animals on seabed, which

is discussed in Naka et al. (2012). It is shown that the gamma distribution, which

is derived as the equilibrium distribution of the stochastic growth model, can be

used for modeling the weight by using an extended version of the Cramér-von

Mises statistic for independent but not identically distributed observations. Then

the effects of trawling are investigated by comparing the weight distribution after

trawling and the gamma distribution with the parameters estimated from the

observations before trawling. This case study is a joint research in 2009-2011 with

Ross Darnell, Charis Burridge, and Mick Haywood in CSIRO (Commonwealth

Scientific and Industrial Research Organisation) .

The second case study is the modeling of the carapace length of banana

prawns, which is observed in the survey for the assessment of the effect of

freshwater flows in an estuary. A probability distribution model obtained for the

carapace length of banana prawns is an asymmetric mixture distribution, which is

derived by combining a growth model with temperature and salinity of water and
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a survival rate model. This case study is a joint research in 2012-2013 with Ian

Halliday in Department of Employment, Economic Development and Innovation,

Australia and Ross Darnell in CSIRO.

Theoretical results on the asymptotic behavior of the Cramér-von Mises

goodness-of-fit test statistic for contaminated data are given to investigate the

robustness of the statistic, which is studied in Naka and Shibata (2016). The

asymptotic distributions of the Cramér-von Mises statistic for contaminated data

are derived when parameters are known and when parameters are estimated by

the minimum Craḿer-von Mises distance method. The theoretical results together

with the result of numerical experiments show that the Cramér-von Mises statistic

is robust when the minimum distance estimator is used for the estimation of

parameters.
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Chapter 1

Introduction

A model of probability distributions is one of the basic statistical models to

understand the phenomena behind data. Although it is not always the case,

the probability distribution model plays an important role in analyzing data.

The probability distribution model can describe stochastic mechanisms in the

phenomena and the model is simple so that it is easy to understand from the model

how the model describes the mechanisms. However, the probability distribution

model has to be used with caution because it may lead us a wrong direction

without examining the goodness-of-fit. In this chapter, we give a brief introduction

of the methods to examine the goodness-of-fit of a distribution.

We assume in this chapter thatX1,X2, . . . ,Xn are independent and identically

distributed random variables with a distribution functionF(x) which is usually

unknown. We denoteF(x,θ) to be a distribution function of a model for the

observations with a parameter vectorθ = (θ1,θ2, . . . ,θm)
⊤ ∈ Θ ⊂ Rm.

We use hereby the goodness-of-fit of a distribution in view point of examining

whether a modelF(x,θ) fitted to the data gives us a reasonable approximation

to the underlying distributionF(x) and can be used for any further investigation

of the phenomena. This usage is a little different from a general way of thinking

for goodness-of-fit tests. The goodness-of-fit test is a statistical decision whether

F(x) = F(x,θ) or not. However, there are many cases where such a decision

is not real concern. Rather the main concern is often whether the fitted model
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2 Chapter 1. Introduction

can be used for further investigation. Therefore, the role of examining the

goodness-of-fit would be to exclude cases where the use of the model will lead

us an incorrect result. Otherwise we can continue the analysis based on the

probability distribution model since the value of the analysis is determined not

by such a statistical decision but by how persuasive the final result is. The two

case studies presented in Chapter 2 and Chapter 3 are such cases. The aim of

analysis in the case studies is to find out the effect of the environmental changes

on animals on seabed or banana prawn. The probability distribution model is a

main tool for such findings. Validation of the goodness-of-fit of the model plays

an important role but not a goal.

In the following, we first introduce two basic plots as graphical methods for

checking goodness-of-fit and then we give a brief summary of goodness-of-fit

tests for both continuous and discrete distributions.

1.1 Graphical methods for checking goodness-of-fit

Graphical methods for checking goodness-of-fit is useful at an early stage

of building a probability distribution model. It assists us in finding out the

discrepancy between the observations and the model. Letx1,x2, . . . ,xn be

observations from distributionF(x). One of the graphical methods for checking

goodness-of-fit is a quantile-quantile or Q-Q plot (Chambers et al., 1983). A Q-Q

plot is a plot of then points(
F−1

(
j −0.5

n
,θ

)
,x( j)

)
, j = 1,2, . . . ,n,

whereF−1(·,θ) is the inverse function ofF(·,θ) andx(1) ≤ x(2) ≤ ·· · ≤ x(n) are

order statistics of the observations. Two examples of Q-Q plots are shown in

Figure 1.1. Figure 1.1 (a) is a Q-Q plot for the standard normal distribution of

a simulated random sample with size 100 from the standard normal distribution,

and Figure 1.1 (b) is that for the Poisson distribution with mean 10 of a simulated

random sample with size 100 from the Poisson distribution with mean 10.
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(b) The Poisson distribution with mean 10.

Figure 1.1: Examples of Q-Q plots.

If the observations follow the distributionF(x,θ), the points would tend to

follow the liney= x. If F(x,θ) is a distribution function with scale and location

parameters, it is enough to obtainF−1(( j − 0.5)/n,θ), j = 1,2, . . . ,n, with any

values of the parameters and see whether the points follow the liney= ax+b or

not. This is an advantage of Q-Q plots. As seen from Figure 1.1 (b), the points are

overlapped because the distribution function is not continuous so that a Q-Q plot

is not suitable for discrete distributions.

A similar graphical method is a probability-probability or P-P plot (Gan and

Koehler, 1990, Holmgren, 1995), which is also called the “Universal Q-Q plot”

by Lucẽno (2007). A P-P plot is a plot of then points(
j −0.5

n
,F(x( j),θ)

)
, j = 1,2, . . . ,n.

P-P plots for the same data as in Figure 1.1 are given in Figure 1.2. It can be

compared from two figures how Q-Q plots and P-P plots look different for the

same observations. As same as a Q-Q plot, the points on a P-P plot would tend

to follow the liney= x if the observations follow the distributionF(x,θ). Also a

P-P plot is not suitable for discrete distributions because it is not clear whether the
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(b) The Poisson distribution with mean 10.

Figure 1.2: Examples of P-P plots.

points follow the liney= x or not since the distribution function is discontinuous.

An advantage of P-P plots is that it is applicable to independent but not identically

distributed observations, which we will deal with in Chapter 2.

1.2 Goodness-of-fit test statistics for continuous
distributions

Goodness-of-fit test is a statistical test to examine whether a model fits well to

the observations. If we focus on the goodness-of-fit of a distribution, the aim of

the test is to test the null hypothesis H0 : F(x) = F(x,θ), where the observations

are from a distribution functionF(x) andF(x,θ) is a distribution function of a

parametric continuous distribution.

Although there are many tests for specific distributions, such as the

Shapiro-Wilk test for the normal distribution (Shapiro and Wilk, 1965), here we

consider goodness-of-fit tests based on the empirical distribution function. Let
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Fn(x) be the empirical distribution

Fn(x) =
n

∑
j=1

1 Xj≤x,

where

1 Xj≤x =

{
1 Xj ≤ x
0 Xj > x

.

Goodness-of-fit test statistics based on the empirical distribution function are

defined as a distance betweenFn(x) and F(x,θ). In the following, we will

introduce some basic test statistics.

The Kolmogorov-Smirnov type statistic is a statistic based on the

supremum distance betweenFn(x) and F(x,θ). The well-known form of the

Kolmogorov-Smirnov statistic is

Dn(θ) = sup
−∞≤x≤∞

√
n|Fn(x)−F(x,θ)|

and one-sided versions are

D+
n (θ) = sup

−∞≤x≤∞

√
n{Fn(x)−F(x,θ)} , D−

n (θ) = sup
−∞≤x≤∞

√
n{F(x,θ)−Fn(x)} .

These statistics would be the most often used for testing goodness-of-fit and have

been investigated their properties by many researchers. It can be seen from the

definitions that these statistics are basically computed from one observation.

On the other hand, the Cramér-von Mises type statistic is a statistic based on

theL2 norm betweenFn(x) andF(x,θ) such as

n
∫ ∞

−∞
{Fn(x)−F(x,θ)}2g(x)dx

with a weight functiong(x). In contrast to the Kolmogorov-Smirnov type statistic,

this test statistic is computed from all observations. One of the well-known this

type of statistics is the Craḿer-von Mises statistic, which is defined as

W2
n (θ) = n

∫ ∞

−∞
{Fn(x)−F(x,θ)}2dF(x,θ). (1.1)
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Another special statistic is the Anderson-Darling statistic, which is defined as

A2
n(θ) = n

∫ ∞

−∞

{Fn(x)−F(x,θ)}2

F(x,θ){1−F(x,θ)}
dF(x,θ).

SincenE{Fn(x)−F(x,θ)}2 = F(x,θ){1−F(x,θ)} if the observations are from

distributionF(x,θ), the weightg(x) used in this statistic is the reciprocal of the

variance. For these test statistics, details are in Durbin (1973).

One of the problems in using these test statistics is that the asymptotic

distributions of the statistics depend on the modelF(x,θ) in case that the

parameters are unknown and estimated from a sample, while the distributions of

the test statistics do not depend onF(x,θ), that is, the tests are distribution-free,

in case that the parameters are known. To overcome this problem, various

methods have been proposed. For example, Khmaladze (1981) showed that

the process
√

n{Fn(x)−K(x,Fn(x),θ)} converges to the standard wiener process

so that distribution-free test is possible by using the following transformation

K(x,Fn(x),θ), known as “Khmaladze transform”:

K(x,Fn(x),θ) =
∫ ∞

−∞

{∫ min(x,y)

−∞
q(z,θ)⊤C−1(z,θ)dF(z,θ)

}
q(y,θ)dFn(y),

where

q(x,θ)⊤ =

(
1,

∂
∂θ

log f (x,θ)

)
,

C(z,θ) =
∫ ∞

z
q(x,θ)q(x,θ)⊤ f (x,θ)dx,

and f (x,θ) is the probability density function ofF(x,θ). Applications of the

transformation for testing exponentiality are given in Khmaladze et al. (2007) and

Haywood and Khmaladze (2008).

Although many variations of the goodness-of-fit test statistics have been

introduced, we focus on the Cramér-von Mises statistic in this thesis. This is

because the Craḿer-von Mises statistic is simple and asymptotically equal to the

sum of the squared distances between points and a liney= x on a P-P plot so that
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it is easy to understand. The relation between the statistic and the P-P plot can be

seen from the fact that the Cramér-von Mises statistic can be expressed as

W2
n (θ) =

n

∑
j=1

{
F(X( j),θ)−

j −0.5
n

}2

+
1

12n
, (1.2)

whereX(1) ≤ X(2) ≤ ·· · ≤ X(n) are order statistics of the random variables. The

equivalence of the two representations (1.1) and (1.2) can be shown as follows.

From (1.1) and the definition of the empirical distribution function, we have

W2
n (θ) =

∫ ∞

−∞

1
n

(
n

∑
j=1

1 Xj≤x

)2

−2

(
n

∑
j=1

1 Xj≤x

)
F(x,θ)

dF(x,θ)

+n
∫ ∞

−∞
F2(x,θ)dF(x,θ).

Since the first term on the right hand side is equal to

n

∑
j=1

∫ ∞

Xj

{
1
n
−2F(x,θ)

}
dF(x,θ)+

2
n

n

∑
j=2

( j −1)
∫ ∞

X( j)

1dF(x,θ)

=
n

∑
j=1

[
1
n
−

F
(
Xj ,θ

)
n

−
{

1−F2(Xj ,θ
)}]

+
2
n

n

∑
j=2

( j −1)
{

1−F
(
X( j),θ

)}

=
n

∑
j=1

{
F2(X( j),θ

)
−

2( j −0.5)F
(
X( j),θ

)
n

}

=
n

∑
j=1

{
F
(
X( j),θ

)
− j −0.5

n

}2

− n
3
+

1
12n

and the second term is equal ton
∫ 1

0 t2dt = n/3, the representation (1.2) is derived.

Asymptotic distribution of the Cram ér-von Mises statistic

For the goodness-of-fit test, the distribution of the test statistic is essential to

calculate thep-value. If F(x,θ) is a distribution function of a continuous

distribution, it is known that the asymptotic distribution of the Cramér-von Mises
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statistic is given by a distribution of a weighted sum of chi-squared random

variables with 1 degree of freedom, such that

∞

∑
j=1

λ jZ
2
j ,

whereZ j , j = 1,2, . . ., follows the standard normal distribution, regardless of

parameters being known or estimated (Darling, 1955, Shorack and Wellner, 1986).

When the parameters are known, the weights for the chi-squared random

variables are given as the eigenvalues of the integral equation

λ f (u) =
∫ 1

0
ρ0(u,v) f (v)dv

with the kernel function

ρ0(u,v) = min(u,v)−uv.

Here λ is an eigenvalue of the integral equation andf (u) is an eigenfunction

corresponding toλ . It can be seen from the kernel function that the asymptotic

distribution of the statistic does not depend on the modelF(x,θ).

However, the asymptotic distribution depends on the modelF(x,θ) and the

estimator if the parameters are necessary to be estimated from observations. Let

θ̃ be an estimator of the parameterθ in the modelF(x,θ). Then under some

regularity conditions, the asymptotic distribution is given as a distribution of a

weighted sum of chi-squared random variables with 1 degree of freedom, where

the weights are eigenvalues of the integral equation with the kernel function

ρ(u,v) = ρ0(u,v)−g(u,θ)⊤h(v)−h(u)⊤g(v,θ)+g(u,θ)⊤Σ g(v,θ). (1.3)

Here

g(u,θ) =

(
∂

∂θ j
F(x,θ)

∣∣∣∣
x=F−1(u,θ)

; 1≤ j ≤ m

)
,

h(u) = lim
n→∞

E

[
√

n

{
1
n

n

∑
i=1

1F(Xi ,θ)<u−u

}{√
n
(
θ̃−θ

)}]
,
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and

Σ = lim
n→∞

n E
{(
θ̃−θ

)(
θ̃−θ

)⊤}
.

For a general estimator, no simpler form of the function (1.3) is obtained

for other than the maximum likelihood estimator. If the maximum likelihood

estimator is employed, (1.3) becomes

ρ(u,v) = ρ0(u,v)−g(u,θ)⊤I(θ)−1g(v,θ),

where I(θ) is the Fisher information matrix. Since the maximum likelihood

estimator is widely used and has a simple form ofρ(u,v), much works have been

done for the Craḿer-von Mises statistic when the parameters are estimated by the

maximum likelihood method. It is shown in Sukhatme (1972) that the asymptotic

distribution does not depend on the unknown parameters for location-scale family,

that is, for parametric distribution family with location and scale parameters.

Moreover, Martynov (2010) showed that the asymptotic distribution does not

depend on the unknown parameters for parametric distribution family with power

and scale parameters, for example the Weibull and the Pareto distributions. The

critical points obtained for various significance levels are tabulated, for example

the normal, the gamma, and the logistic distributions in D’Agostino and Stephens

(1986), the exponential distribution with scale and location parameters in Spinelli

and Stephens (1987), the Weibull distribution in Lockhart and Stephens (1994),

the Laplace distribution in Puig and Stephens (2000), the generalized Pareto

distribution in Choulakian and Stephens (2001), and the hyperbolic distribution

in Puig and Stephens (2001). An R package “fgof” for calculating goodness-of-fit

test statistics andp-values for some distributions by a fast weighted bootstrap is

developed by Kojadinovic and Yan (2012).

For the minimum distance estimator, which is an estimator of the parameters

chosen to minimize the Craḿer-von Mises statistic, there are some results for

location-scale family of distributions. This is because the asymptotic distribution

is independent of the unknown parameters. In fact, when the minimum distance
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estimator is used, Boos (1981) showed a representation of the asymptotic

distribution for location-scale family. Koul and DeWet (1983) gave a similar

method of the evaluation in the case of regression. However, their results are

still not simple enough for calculation, and the generalization over location-scale

family does not seem to be easy. In Chapter 4, we focus on the minimum

distance estimator and describe a practical procedure for obtaining the asymptotic

distribution of the statistic by a new approach.

1.3 Goodness-of-fit test statistics for discrete
distributions

Let x1,x2, . . . ,xn be independent and identically distributed observations following

a discrete distribution withK cells labeled 1,2, . . . ,K and with probabilityp j of

falling into cell j, j = 1,2, . . . ,K. We wish to checkp j = p j(θ) with a parameter

vectorθ = (θ1,θ2, . . . ,θm)
⊤ ∈ Θ ⊂ Rm. Let o j be the observed number of the

observation andej = npj(θ) be the expected number in cellj, j = 1,2, . . . ,K.

One of the most used goodness-of-fit tests for discrete distributions would be

Pearson’s chi-squared test and the test statistic is given as

χ2(θ) =
K

∑
j=1

{
o j −ej(θ)

}2

ej(θ)
.

If the parameters are estimated properly, then the asymptotic distribution of the

test statistic is distribution-free, that is, the test statistic does not depend on the

probabilitiesp j(θ), j = 1,2, . . .. Pearson’s chi-squared test is also widely used

for data other than ordered or not ordered categorical data. For example, if the

observations follow a discrete distribution taking nonnegative integer, such as the

Poisson distribution and the geometric distribution, it is enough to sum up the tail

part to do the test. Also the test can be used for rounded or grouped data, which

occurs often in practice.

One of the major disadvantages of Pearson’s chi-squared test is its sensitivity

to cell selection. If the number of the cells is countable and infinite, for example in
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case of the Poisson distribution, there are some choices of values that are included

into the last cell. In addition, it is required to be enough observations in each cell

because the validation of the test is shown as a limiting result. For example, it is

noted in Cochran (1954) that the number of observations in each cell should not

be less than 5. The cell selection is required to satisfy these needs, however, the

result of the test tends to be changed by the selection. A lot of goodness-of-fit

tests are introduced to overcome this disadvantage.

The tests based on the empirical distribution function can be applied for cases

other than non-ordered categorical data. Letc1,c2, . . . ,cK be the increasing values

corresponded for each cell 1,2, . . . ,K. Then the distribution functionF(ck,θ) and

the empirical distribution functionFn(ck) can be defined as

F(ck,θ) =
1
n

k

∑
j=1

ej(θ), Fn(ck) =
1
n

k

∑
j=1

o j

for k = 1,2, . . . ,K, respectively, so that the test statistics based on the empirical

distribution function, such as the Kolmogorov-Smirnov and the Cramér-von Mises

type statistics, are derived directly for discrete distributions. It is often said

that the tests based on the empirical distribution functions are more powerful

than Pearson’s chi-squared test because they concern the order of the cells while

Pearson’s chi-squared test does not.

The Kolmogorov-Smirnov statistic for discrete distributions has been studied

for long time as same as for continuous distributions. The discrete distribution

version of the Kolmogorov-Smirnov statisticDn(θ) is

D(d)
n (θ) = sup

1≤k≤K

√
n|Fn(ck)−F(ck,θ)|= sup

1≤k≤K

1√
n

∣∣∣∣∣ k

∑
j=1

o j −
k

∑
j=1

ej(θ)

∣∣∣∣∣ .
Conover (1972) gave a method of finding the critical value for the

Kolmogorov-Smirnov test for discrete distributions. Horn (1977) compared 5

goodness-of-fit tests for discrete distributions, including Pearson’s chi-squared

test and the Kolmogorov-Smirnov test, and suggested the Kolmogorov-Smirnov

test for small sample size and ordered categorical data. The asymptotic
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distribution of the statistic is derived by Wood and Altavela (1978) when the

parameters are known.

The Craḿer-von Mises statistic for discrete distributions is also investigated.

The discrete distribution version of the Cramér-von Mises statisticW2
n (θ) is

W(d)2
n (θ) = n

K

∑
k=1

{Fn(ck)−F(ck,θ)}2{F(ck,θ)−F(ck−1,θ)}

=
1
n

K

∑
k=1

{
k

∑
j=1

o j −
k

∑
j=1

ej(θ)

}2

pk(θ). (1.4)

Choulakian et al. (1994) introducedW(d)2
n (θ) as well as the Anderson-Darling

type

A(d)2
n (θ) =

1
n

K

∑
k=1

{
∑k

j=1o j −∑k
j=1ej(θ)

}2
pk(θ)

Hk(1−Hk)
,

where Hk = ∑k
j=1ej(θ)/n, and gave tables for tests for the discrete uniform

distribution. Spinelli and Stephens (1997) developed their result to the Poisson

distribution when mean parameter is unknown. Spinelli (2001) gave slightly

different definitions for these statistics and showed that the statistics give powerful

tests for exponentiality with grouped data. The asymptotic distributions of the

new version of the statistics when the parameters are estimated by the maximum

likelihood method are given by Lockhart et al. (2007). They also showed from

Monte Carlo simulations that the percentage points converge to the asymptotic

points quickly and these tests are more powerful than Pearson’s chi-squared test

when the probabilities in the cells are in a steadily increasing pattern.

There are many studies comparing various tests and introducing new

goodness-of-fit tests. For testing the Poisson distribution, extensive comparisons

among a variety of tests as well as simulation results for power studies are given by

Gürtler and Henze (2000) and Karlis and Xekalaki (2000). Power studies for the

uniform null in 10 cells are given by Steele and Chaseling (2006). As an example

of the new goodness-of-fit tests, Székely and Rizzo (2004) proposedM-test for

the Poisson distribution, which is based on a characterization by mean distances.
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Asymptotic distribution of the Cram ér-von Mises statistic for discrete
distributions

We first note that the other version of the Cramér-von Mises statistic for discrete

distributions introduced by Spinelli (2001) is

1
n

K

∑
k=1

{
k

∑
j=1

o j −
k

∑
j=1

ej(θ)

}2
pk(θ)+ pk+1(θ)

2
, (1.5)

wherepK+1(θ) = p1(θ). It is explained that the reason for this modification is

that the distribution of the test statistic is identical for a new random variableY =

−X for a negative exponential distribution, so that the test becomes symmetric.

However, in this thesis we focus on the statisticW(d)2
n (θ) because we apply the

statistic to truncated data, which is assumed to follow a continuous distribution

before the truncation, in the second case study presented in Chapter 3 and it is not

necessary to be the test symmetric in that situation.

The asymptotic distribution of the statisticW(d)2
n (θ) is given as a distribution

of a weighted sum of chi-squared random variables with 1 degree of freedom, as

same as the statisticW2
n (θ) for continuous distributions (Choulakian et al., 1994).

Let

y =

(
1√
n

(
k

∑
j=1

o j −
k

∑
j=1

ej(θ)

)
;1≤ k≤ K

)

andΣy = E
(
yy⊤

)
. Then we have

W(d)2
n (θ) = y⊤P(θ)y =

(
Σ− 1

2
y y

)⊤
Σ

1
2
y P(θ)Σ

1
2
y

(
Σ− 1

2
y y

)
,

where P(θ) = diag(p(θ)) and p(θ) = (p1(θ), p2(θ), . . . , pK(θ))
⊤. The

distribution ofΣ− 1
2

y y converges to the multivariate normal distribution with mean

0 and varianceI , so that the asymptotic distribution ofW(d)2
n (θ) is given by

K−1

∑
j=1

λ jV
2
j ,
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whereVj follows the standard normal distribution andλ j is an eigenvalue of

Σ
1
2
y P(θ)Σ

1
2
y , j = 1,2, . . . ,K−1.

When the parameters are estimated by the maximum likelihood method,

Lockhart et al. (2007) showed that the asymptotic distribution is also given as

a distribution of a weighted sum of chi-squared random variables with 1 degree of

freedom. Although their result is for the statistic (1.5), it can be easily modified

for W(d)2
n (θ). This is because the statistic (1.5) can be written asy⊤P′(θ)y, where

P′(θ) = diag

(
p1(θ)+ p2(θ)

2
,

p2(θ)+ p3(θ)

2
, . . . ,

pK(θ)+ pK+1(θ)

2

)
.

Applying their result toW(d)2
n (θ), the weights for the chi-squared random

variables are given by the eigenvalues ofΣỹP(θ), where

Σỹ = ΣyP(θ)−AZ(θ)
{

Z(θ)⊤P(θ)Z(θ)
}−1

Z(θ)⊤A⊤P(θ)

with aK×m matrix

Z(θ) =

(
∂

∂θk
p j(θ);1≤ j ≤ K,1≤ k≤ m

)
and aK ×K matrix

A=


1 0 · · · 0
1 1 · · · 0
...

...
.. .

...
1 1 · · · 1

 .

As a reference, we note another approach to deriving the asymptotic

distribution of the Craḿer-von Mises statistic for discrete distributions. The

asymptotic distribution can be derived by using the fact that the empirical

process
√

n{Fn(x)−F(x,θ)} converges to a Gaussian process even for discrete

distributions. In case of known parameters, the convergence is shown in

Theorem 16.4 in Billingsley (1968) and Wood and Altavela (1978) gave the

asymptotic distribution of the Kolmogorov-Smirnov test statistic for discrete

distributions by using this approach. The convergence of the empirical process
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when the parameters are estimated is shown by Burke et al. (1979). Henze (1996)

extended the results to the case under triangular arrays to establish the validity

of parametric bootstrap and also gave simulation results for the Poisson and the

geometric distribution.





Chapter 2

Trawling effect on the weight of
animals on seabed

In this chapter, we discuss on the modeling the weight of animals on seabed as the

first case study. The trawling effect on the weight of animals on seabed is verified

by using the derived probability distribution model.

2.1 Introduction

Effects of various methods of harvesting the sea have been investigated in many

articles on marine ecology. Collie et al. (2000) carried out a meta-analysis of

39 published fishing impact studies to draw general conclusions. Bishop et al.

(2000) investigated the impact of technology on vessel performance in a trawl

fishery during 1988-96 by using a generalized estimating equation. Burridge et al.

(2003) investigated the trawl-depletion rate for benthic fauna in an area closed to

commercial trawling.

In this chapter we investigate the effect of trawling through changes of

weight distribution of animals on seabed, which is modeled by the equilibrium

distribution of a stochastic growth model. The stochastic growth model is

frequently used for modeling population size (Russo et al., 2009) or size of

plants (Rup̌sys, 2007) or animals (Tovar-Ávila et al., 2009). We show that the

gamma distribution, which is the equilibrium distribution of the stochastic growth

17
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model, is useful for modeling the weight distribution when no effective ecological

disturbance exists. This result allows us to detect any effective disturbance by

departure from the gamma distribution with the parameters estimated from the

sample before the disturbance. The reason why we focus on individual weights

of animals as an index of disturbance in this analysis is that it is sensitive to any

ecological disturbances and easy to measure compared to their size. An advantage

of our approach is that it makes possible to draw a whole picture of the current

status of each species on seabed before and after trawling without introducing any

particular estimating equation or indexes, such as Shannon’s index and Simpson’s

index for biodiversity (Kaiser and Spencer, 1996).

The data used in this analysis were obtained in the project “Quantifying

the effects of trawling on seabed fauna in the Northern Prawn Fishery” by

the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in

Australia, which will be explained in detail in Section 2.2. Analyses of the data

were already reported in Haywood et al. (2005). Together with calculating various

fundamental statistics and drawing many graphs and maps, they tried finding out

the effect of trawling by an application of a simple depletion and recovery model,

however, it does not seem successful enough. There are several reasons why their

analysis was not successful enough. One is that it is a class by class analysis,

using popular descriptive statistics and plots, however, class by class analysis

seems to be too coarse to verify any effect of ecological disturbances from our

preliminary analysis. Instead we verify such disturbances by species by species

analysis. Another reason is that their analysis is based on the whole weight of each

species caught, normalized by the dredge area. The biomass density is a useful

abundance measure for each survey area from the view point of fishery but not so

for the detection of ecological disturbances. Changes of individual weights would

be more useful for detecting ecological disturbance. For these reasons we examine

the change of the weight in this analysis by fitting the model for individual weights

of animals on seabed.

The model for individual weights is derived as we described above, however,
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the observations are only the total weight and the number of catches for each

species. Therefore, we have to deal with not identically distributed variables.

It does not cause any serious problem in parameter estimation but requires a

modification of the goodness-of-fit test statistic because most of the tests are

proposed for independent and identically distributed observations. We evaluate

p -values of the extended version of the Cramér-von Mises statistic by executing

computer simulations around the maximum likelihood estimate since even the

asymptotic distribution is unknown.

This chapter is organized as follows. In Section 2.2, we give descriptions of

the data. The stochastic growth model is introduced in Section 2.3 and the gamma

distribution is derived as the equilibrium distribution for the weight. The models

for the distributions of individual animal weights for each cases are determined

by the gamma distributions with parameters estimated from the samples observed

before trawling in Section 2.4. The effect of trawling is investigated through

changes of the weight distribution in Section 2.5. Comparisons of the methods

to investigate the effect of trawling between our approach and using simple mean

tests, Welch’st-test and Student’st-test, are given in Section 2.6.

2.2 Seabed fauna data in Northern Prawn Fishery

The data are from the Fisheries Research and Development Corporation (FRDC)

funded Project 2002/102, “Quantifying the effects of trawling on seabed fauna

in the Northern Prawn Fishery” (NPF) in Australia. The project was originally

identified as a high priority research area by the Northern Prawn Fishery

Management Advisory Committee (NORMAC) because under the Environmental

Protection and Biodiversity Conservation Act (EPBC Act), Australian fisheries

are required to demonstrate their environmental sustainability. Industry offered

special funding to support the research and the FRDC was asked to manage the

project. CSIRO agreed to carry out the work, develop the scope of the work and

the experimental design, and contribute to the funding.
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Trawlers in the NPF tend to concentrate their fishing on areas of higher prawn

density. Also intensive trawling of small areas is a feature of the tiger and

endeavor prawn fishery. Around 20% of the catch is prawns but the rest are other

animals collected from the seabed. The names of such by-catch animals are shown

in Table A.1 in the Appendix A, although those are caught not by trawling but by

experimental dredges.

Table 2.1: Part of the data.

Region Plot Treatment Time Scientific name Count Weight (g)

East 12 4 Before Retiflustra cornea 1 0.25
East 12 4 Before Melaxinaea vitrea 1 9.16
East 12 4 Before Tubeworm OPNO 006 14 2.28
East 12 4 Before Neritidae OPNO 142 0 0
East 12 4 Before Leucosia whitei 1 1.49

The data consist of 207,726 records obtained by the experimental dredge

survey and Table 2.1 shows a part of the data, which is for an explanation

of the data structure. The first column labeled “Region” indicates the region

where the experiment was performed. The survey area shown in Figure 2.1 is

roughly divided into two regions, East (East of Mornington Island) and West

(West of Mornington Island); three experimental plots, which are small areas for

experiment, are set in each region, “Plot” 3, 5 and 6 in the West and “Plot” 9,

10, and 12 in the East. Geographical features of the seabed of the East and West

are different; the East is deeper but the West is rougher and harder acoustically

(Haywood et al., 2005). Such a difference suggests the need of separate analyses

for the East and West regions. At each plot, three levels of experimental trawlings

(“Treatment”) were repeated three times. The three levels are the intensities of

trawling, 0, 4, and 20, and the number of repeated trawlings on each plot. The

trawled seabed was dredged immediately after, 6, 12, and 18 months after trawling

as well as before trawling, indicated by the variable “Time.” “Scientific name”

is the name of the species caught by each dredge and “Count” is the number of
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individuals of each species caught in each dredge. “Weight” is the total dry weight

of each case in grams.

Figure 2.1: Two regions near Mornington Island used for the experimental survey
(Haywood et al., 2005).

Although the primary aim of the survey was to investigate the effect of

different levels of the trawl intensity and the recovery time, we will concentrate

on whether the effect of trawling is significant, since the number of effective

observations is not large enough for a detailed analysis because of the large

number of empty catches. Therefore, in this analysis the treatment levels 4

and 20 are combined, and the weights recorded immediately after trawling

are used for the analysis in contrast with the weights before trawling. We

may satisfy ourselves if the effect of trawling were verified in a systematic

manner. For this analysis only 16 classes of species were considered as there

were too many zero catches for the other classes. Furthermore, 5 classes
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out of 16 are not appropriate for this analysis with the following reasons.

Demospongiae is difficult to count since they are colonial, Pisces can easily escape

from dredging and trawling, and Phaeophyta, Liliopsida, and Chlorophyta are

fragile plants difficult to collect intact. Consequently, 11 classes remained for

our investigation: Hydorozoa, Anthozoa, Gymnolaemata, Polychaeta, Bivalvia,

Gastropoda, Asteroidea, Ophiuroidea, Echinoidea, Crustacea, and Ascidiacea.

We also removed those species with observations of less than 5, while the

maximum number of observations for each case is 27 before trawling and 18

after trawling. As a result 76 species remained in those classes for the analysis,

although 778 species were observed in this survey.

2.3 Probability distribution model of the weight of
animals on seabed

2.3.1 Stochastic growth model and its equilibrium distribution

Richards (1969) showed that many of the deterministic growth models are given

by modifying the relative growth rate(1/x)dx/dt as

dxt

xt
= f (xt)dt,

where f (xt) is a function ofxt at timet. An example of the deterministic models

is the logistic growth model

dxt = ρxt(κ −xt)dt, (2.1)

whereκ is a growth limit andρ is a rate of growth. This model is one of the well

known models for population growth (Davidson, 1938, Smith, 1963), probably

first proposed by Verhulst (1838). This model has since been used for describing

many other aspects of growth other than the growth related to the population, for

example, Marubini et al. (1972) analyzed the growth of boys’ and girls’ heights.

We introduce a stochastic growth model for individual weights of animals on
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seabed for each species at timet,

dXt = rXt

(
1− Xt

k

)
dt+σXtdBt , (2.2)

wherer is the growth rate,k is the growth limit, andBt is a standard Brownian

motion. Model (2.2) is a stochastic version of (2.1), but unlike (2.1) it reflects

the animal growth with some random fluctuations. In this respect the stochastic

growth model (2.2) is a better model for the weight. To understand the relation

between these two models, the derivation given by May (1973) might be helpful.

May (1973) assumed that the growth limitκ randomly fluctuates asκ = k+ γ(t)

reflecting environmental changes for plants and animals, whereγ(t) = κ − k

represents the fluctuation of the growth limit aroundk at timet. If γ(t)dt is given

as

γ(t)dt = (κ −k)dt = σ0dBt ,

then (2.1) becomes

dXt = (ρk)Xt

(
1− Xt

k

)
dt+(ρσ0)XtdBt ,

which is equal to the model (2.2) whenr = ρκ and σ = ρσ0. The source

of random fluctuation in this derivation is the growth limitκ . In other words,

individual difference comes from different values ofκ in this model.

In this analysis, we are interested in investigating the distributional change

of weight Xt rather than tracing the growth of individual weights. Letp(t,x) be

the probability density function ofXt . Then, as shown in the following,p(t,x)

converges to the equilibrium distributionp(x) as timet goes on, provided that

2r > σ2 (May, 1973).

To use the equilibrium distributionp(x) as a model for the weight of animals

on seabed, we consider the equilibrium distribution as follows. Letp(t,x)

is the distribution of the weight in the population at timet, not the age of

the animals. If we assume that all individuals in the population grow as the

stochastic differential equation (2.2), then the distributionp(t,x) gets close to the
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equilibrium distributionp(x) as time goes on. Here we note that the convergence

of p(t,x) to p(x) does not depend on the distribution ofp(t,x), which is shown in

the following. Assuming that the lifetime of the animals is long compared to the

time thatp(t,x) can be approximated byp(x), then it would be reasonable to use

the equilibrium distributionp(x) as a model for the weight of animals on seabed

where no disturbance from outside was made for an adequate period.

Convergence to the equilibrium distribution

As has been shown by May (1973), the equilibrium distribution ofXt is the gamma

distribution GA(ν ,α) with the probability density function

f (x,θ) =
1

αΓ(ν)

( x
α

)ν−1
exp
(
− x

α

)
,

where the shape parameterν = 2r/σ2 − 1 > 0 and the scale parameterα =

σ2k/2r > 0. As a reference, we give a simple proof for the convergence to the

equilibrium distribution as time tends to infinity with necessary conditions and an

application for other growth models.

The equilibrium distribution is derived in a general frame work whenXt

satisfies

dXt = a(Xt)dt+b(Xt)dBt (2.3)

for some real functionsa(x) ̸= 0 andb(x) ̸= 0. We hereafter assume that this is

the Ito type stochastic differential equation. It is well known that the probability

density functionp(t,x) for Xt satisfies the Kolmogorov forward equation,

∂ p(t,x)
∂ t

=− ∂
∂x

{a(x)p(t,x)}+ 1
2

∂ 2

∂x2

{
b2(x)p(t,x)

}
, (2.4)

see for example Goel and Richter-Dyn (1974). If the equilibrium distribution

p(x) = limt→∞ p(t,x) exists, then it satisfies the equation

0=− d
dx

{a(x)p(x)}+ 1
2

d2

dx2

{
b2(x)p(x)

}
. (2.5)

Theorem 1 gives us an explicit expression ofp(x) under some assumptions.
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Theorem 1. Assume that the equilibrium distribution p(x) exists and satisfies

lim
x→∞

p(x)a(x) = 0

and

lim
x→∞

d
dx

{
b2(x)p(x)

}
= 0.

Then the solution of (2.5) can be written as

p(x) =
C

b2(x)
exp

(∫ x 2a(u)
b2(u)

du

)
,

where C is a constant.

Proof. By integrating the both sides of (2.5), we have

a(x)p(x)− 1
2

d
dx

{
b2(x)p(x)

}
+C̃= 0,

for a constantC̃. It is shown thatC̃ is 0 because other terms tend to 0 asx tends

to infinity from the assumptions. The result then easily follows from the fact that

q(x) = b2(x)p(x) is the solution of

q′(x)− 2a(x)
b2(x)

q(x) = 0.

In the analysis of the trawling data, we only use the equilibrium distribution of

the model (2.2), however, we note that the following theorem shows that various

types of distributions appear as equilibrium distributions ofXt from other growth

models. Table 2.2 is a list of such distributions given in Rupšys (2007) for the

case of the growth model

dXt = rXa
t

{
1−
(

Xt

k

)b
}

dt+σXtdBt . (2.6)

We hereafter assume thata,b> 0 for model (2.6). The following theorem gives

us an organized view of these distributions concentrated onx> 0.
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Table 2.2: Some examples of equilibrium distributions for the growth model (2.6).

Law Parameters(a,b) p(x)

Verhulst (1, 1) Cx2(rσ−2−1)exp
(
−2rxk−1σ−2

)
Gompertz (1,b→ 0) Cx−2exp

(
−r
(
log k

x

)2σ−2
)

Mitscherlich (0,1) Cx−2(rk−1σ−2+1)exp
(
−2rx−1σ−2

)
Bertalanffy

(2
3,

1
3

)
Cx

−2

(
rk−

1
3 σ−2+1

)
exp
(
−6rx−

1
3 σ−2

)
Richards (1,b≥−1) C

(
x
k

)2(rσ−2−1)exp
(
−2r

(
x
k

)β β−1σ−2
)

Theorem 2. The equilibrium distribution p(x) for (2.6) is a power transformed

gamma distribution if and only if one of the following conditions is satisfied.

1. If a = 1 and 2r > σ2, then Xb follows the gamma distribution with shape

and scale parameters

ν =
1
b

(
2r
σ2 −1

)
, α =

bσ2kb

2r
.

2. If a+b= 1, then X−b follows the gamma distribution with shape and scale

parameters

ν =
1
b

(
2r

σ2kb +1

)
, α =

bσ2

2r
.

Proof. Using Theorem 1 to the stochastic differential equation (2.6), we have

p(x) =
C
σ2x−2exp

(
2r
σ2

∫ x
ua−2− 1

kbua+b−2du

)
.

If a= 1, p(x) becomes

p(x) =
C
σ2x−2+ 2r

σ2 exp

(
− 2r

bσ2kbxb
)
,

which can be a probability density function of a power transformed gamma

distribution if 2r > σ2 because the shape parameter is necessary to beν > 0.
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Therefore, a probability density function ofY = Xb becomes

py(y) =
C

bσ2y
2rσ−2−1

b −1exp

(
− 2r

bσ2kby

)
,

which is the density function of the gamma distribution with shape and scale

parameters

ν =
1
b

(
2r
σ2 −1

)
, α =

bσ2kb

2r
,

whena= 1 and 2r > σ2 are satisfied.

On the other hand, ifa+b= 1, then

p(x) =
C
σ2x−2− 2r

σ2kb exp

(
− 2r

bσ2x−b
)
.

A probability density function ofY = X−b becomes

py(y) =
C

bσ2y
2r

σ2kb+1

b −1exp

(
− 2r

bσ2y

)
,

which is the density function of the gamma distribution with

ν =
1
b

(
2r

σ2kb +1

)
, α =

bσ2

2r
.

If a ̸= 1 anda+b ̸= 1, p(x) becomes

p(x) =
C
σ2x−2exp

(
2r

(a−1)σ2xa−1− 2r
(a+b−1)σ2kbxa+b−1

)
,

which cannot be the probability density function of any power transformed gamma

distribution.

It follows from Theorem 2 that the equilibrium distribution of the growth

model (2.2), which is adopted in our analysis and corresponds toa= 1 andb= 1

in the general model (2.6), is the gamma distribution with the probability density

function

p(x) =
1

ανΓ(ν)
xν−1exp

(
− x

α

)
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for ν = 2r/σ2−1 andα = σ2k/2r, if 2r > σ2.

It is worth noting that the solution does not remain the same if the definition

of the stochastic integral is not the Ito type integral for the stochastic differential

equation (2.3). The equilibrium distribution is not necessarily the gamma

distribution if other integral type such as the Stratonovich integral is employed

(Feldman and Roughgarden, 1975).

Existence of the equilibrium distribution

For the existence of the equilibrium distributionp(x) = limt→∞ p(t,x) in (2.4),

one of the answers is given by Gihman and Skorohod (1979) in the framework of

ergodic theory.

Theorem 3 (Gihman and Skorohod (1979), Theorem 3 in §18, Chapter 4). The

equilibrium distribution of Xt exists for

dXt = σ(Xt)dBt

and is written as

p(x) =

∫ x
−∞

1
σ2(y)

dy∫ ∞
−∞

1
σ2(y)

dy
,

provided thatσ(x) satisfies a first order Lipschitz condition and
∫ ∞
−∞

1
σ2(y)

dy< ∞.

Theorem 3 can be applied for the case of (2.3). In fact, the function

f (x) =
∫ x

0
exp

(
−
∫ v

0

2a(u)
b2(u)

du

)
dv

satisfies the equation

a(x) f ′(x)+
1
2

b2(x) f ′′(x) = 0,

so thatYt = f (Xt) satisfies the stochastic differential equation

dYt = f ′(Xt)b(Xt)dBt
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from the Ito formula. This is nothing more than the equation in Theorem 3

with σ(x) = f ′(x)b(x). Therefore, a sufficient condition for the existence of the

equilibrium distribution forXt of (2.3) is that botha(x) andb(x) satisfy a first

order Lipschitz condition and

∫ ∞

−∞

1
b2(x)

exp

(
2
∫ x

0

2a(u)
b2(u)

du

)
dx< ∞.

However, these conditions are very strong in practice. The Lipschitz condition for

a(x) is not satisfied for the case of (2.6) unlessa+b≤ 1.

Another approach to showing the existence of the equilibrium distribution is to

show the existence of the limit of the solutionp(t,x) of the Kolmogorov forward

equation. We first state the following lemma for a general functionψ(z), which is

used in the proof of Theorem 4.

Lemma 1 (Levitan and Sargsjan (1991), Lemma 3.1.1 and its remark). For the

spectrum of the problem

d2ψ(z)
dz2 +{λ −U(z)}ψ(z) = 0

ψ(0)cosα +ψ ′(0)sinα = 0

to be discrete, it suffices that U(z) tends to infinity as z tends to infinity.

We have the following theorem for

U(z) =
dã(z)

dz
+ ã2(z),

where

ã(z) =
a(x)
b(x)

− 1
2

db(x)
dx

andz(x) =
∫ xb−1(u)du. A sketch of the proof is given in Goel and Richter-Dyn

(1974), however, necessary conditions are clarified in the following theorem.
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Theorem 4. Assume that b(x)> 0 and U(z) is continuous and tends to infinity as

z tends to infinity. Then,

lim
t→∞

p(t,x) =
q(x)
b2(x)

,

where

q(x) =
C1+C2

∫ xP(u)du
P(x)

and

P(x) = exp

(
−
∫ x 2a(u)

b2(u)
du

)
.

Proof. From the definition ofz(x), it follows that z(x) is a strictly increasing

function ofx sinceb(x)> 0. Letg(t,z) = b(x)p(t,x) . Then (2.4) can be rewritten

as

∂
∂ t

{
g(t,z)
b(x)

}
=− ∂

∂x

{
a(x)

g(t,z)
b(x)

}
+

1
2

∂ 2

∂x2 {g(t,z)b(x)}

and we have

∂g(t,z)
∂ t

=− ∂
∂z

{ã(z)g(t,z)}+ 1
2

∂ 2

∂z2g(t,z). (2.7)

Suppose that the solution is of the typeg(t,z) = Q(z)R(t). Then (2.7) becomes

dR(t)
dt

· 1
R(t)

=
−2 d

dz{ã(z)Q(z)}+ d2

dz2
Q(z)

2Q(z)
.

Therefore, we have

dR(t)
dt

· 1
R(t)

= λ

and

−2 d
dz{ã(z)Q(z)}+ d2

dz2
Q(z)

2Q(z)
= λ
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for a constantλ . The solutions of this simultaneous differential equation

are written as R(t) = eλ t+C and Q(z) = π− 1
2(z)ψ(z) by using π(z) =

exp(−2
∫ zã(u)du) andψ(z), which is the solution of

d2ψ(z)
dz2 +

{
λ − dã(z)

dz
− ã(z)2

}
ψ(z) = 0.

Here note that there exists an orthogonal basis{ψ(z,λn),n = 0,1,2, . . .} of

L2([0,∞),dz) from Lemma 1. Then{Qn(z) = ψ(z,λn)π(z)−
1
2 ,n = 0,1,2, . . .}

forms an orthogonal basis ofL2([0,∞),πdz). This implies that the solution of

(2.7) is written as

g(t,z) =
∞

∑
n=0

αn(t)Qn(z).

However, from the former discussion it is clear thatαn(t) can be writtenαn(t) =

aneλnt . We now have the solution of (2.7) is given by

g(t,z) =
∞

∑
n=0

aneλntQn(z).

For the existence of the limit ofg(t,z) in terms oft, all coefficientsan have to be

zero exceptak for theλk = 0. This implies that

lim
t→∞

g(t,z) = akQk(z).

It is enough to note thatg(t,z) = b(x)p(t,x) and Qk(z) is a base function for

λk=0.

We can now verify the existence of the equilibrium distribution for our

growth model,a(x) = rx(1−x/k) and b(x) = σx, by checking the conditions

in Theorem 4. It is clear thatb(x)> 0 for anyx> 0. The function

U(z) =
dã(z)

dz
+ ã(z)2 =−rx

k
+
{ r

σ

(
1− x

k

)
− σ

2

}2

is clearly continuous andU(z) tends to infinity asz(x) tends to infinity since

z(x) =
∫ x

b−1(u)du=
logx

σ
tends to infinity asx tends to infinity and

ã(z) =
a(x)
b(x)

− 1
2

db(x)
dx

=
r
σ

(
1− x

k

)
− σ

2
.
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The von Bertalanffy model

At the end of this subsection, we note the result when we tried to use the von

Bertalanffy model for describing the weight distribution of animals on seabed

instead of the growth model (2.2). A frequently used growth model for a scale,

such as a lengthYt of animals, is so called the von Bertalanffy model (von

Bertalanffy, 1960),

Yt =Y∞ − (Y∞ −Y0)exp(−β t) , (2.8)

which is the solution of the differential equation

dYt

dt
= β (Y∞ −Yt),

whereY∞ is the asymptotic length,Y0 is the mean length at time 0, andβ is the

growth rate. Since this model is for a scale, the differential equation for the weight

or volume becomes

dXt = ρκXt
2
3dt−ρκ

2
3Xtdt (2.9)

from (2.8) by puttingXt = Yt
3. Here ρ = 3β/Y∞

2 and κ = Y∞
3. There are

many articles which support the deterministic model (2.9) to use for describing

the growth. For example, von Bertalanffy (1960) used the model for describing

the difference between surface-proportional anabolism and weight-proportional

catabolism. It then seems worthy of trying to fit a stochastic modification of (2.9)

to our data,

dXt = ρκXt
2
3dt−ρκ

2
3Xtdt+σXtdBt . (2.10)

However, as a result, it did not work well for our data. One of the reasons

that the goodness-of-fit test of the model is rejected for many cases would be

that the von Bertalanffy model is mainly for tracing the individual growth in

size, for example, tracing the growth of plant or any other increasing size, which

approaches to the growth limit. Therefore, this model is not good enough for
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describing an equilibrium in a population. In fact, the equilibrium distribution

of the stochastic model (2.10) is a power transformed gamma distribution with

power−1/3 as seen from Theorem 2. Such a negative power transformed gamma

distribution does not seem reasonable.

Also, the use of such a distribution for which no reproducibility property

holds true causes a lot of problems in the estimation of parameters and the

goodness-of-fit test. The distribution of the total weight of each case, which is the

only available observation, becomes much more complicated. For these reasons

we concentrate ourselves on the model (2.2) in this analysis.

2.3.2 Maximum likelihood estimator

As has been mentioned before, only total weights for each case in each dredge

were recorded in this survey since measuring individual weights takes time

and money. Therefore, thejth observationYj is considered to be the sum of

unobserved individual weights{Xjk,k= 1,2, . . . ,mj}, such as

Yj = Xj1+Xj2+ · · ·+Xjm j , j = 1,2, . . . ,n,

wheremj is the number of individuals caught in thejth dredge. The variables

Y1,Y2, . . . ,Yn for the observations are now independent but not identically

distributed random variables. Fortunately, the reproducibility of the gamma

distribution provides us a simple treatment of such non-identically distributed

random variables. That is, theYj is still distributed as the gamma distribution

GA(mjν ,α), provided thatXjk, j = 1, . . . ,n, k= 1,2, . . . ,mj , are independent and

identically distributed as GA(ν ,α), i.e. all individuals share the same scaleα and

shapeν parameters. The maximum likelihood estimator ofα is a function ofν ,

α̂ =
y

mν
,

wherey = ∑n
j=1y j is the sum of observed total weightsy1,y2, . . . ,yn and m=

∑n
j=1mj is the sum of the number of individuals observed. Although no closed

form is known for the maximum likelihood estimator ofν andα, we could obtain
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the numerical value of the estimate ofν by a numerical algorithm to maximize

the profile likelihood,

L(ν , α̂) =
n

∑
j=1

{
− log

(
Γ(mjν)

)
+(mjν −1) logy j

}
−mν log

( y
mν

)
−mν .

The function “nlminb”, which is an implementation of the nonlinear minimization

program on R, is used for the estimation.

The standard errors of the estimates are calculated from the inverse of the

Fisher information matrix. The consistency and the asymptotic normality of

the maximum likelihood estimator when the observations are independent but

not identically distributed are already proved in Hoadley (1971) under suitable

regularity conditions. Since such regularity conditions are satisfied in our case, the

asymptotic variance covariance matrix of the estimators is given by the inverse of

the Fisher information matrix. If we assume that the number of individuals caught

mj , j = 1,2, . . . ,n, are reproduced even after thenth observation or the numbers

are distributed with the same probability, the Fisher information matrixI(θ) is

given by

I(θ) =

(
M1 M2

M2
ν
α M2

)
,

where

M1 =
1
n

n

∑
j=1

m2
j ψ ′(mjν), M2 =

1
nα

n

∑
j=1

mj

with trigamma functionψ ′(ν) = d2

dν2 logΓ(ν). Then the standard errors of the

estimates are obtained by

1√
n

(ν
α

M1M2−M2
2

)−1 ν
α

M2

for the shape parameter and

1√
n

(ν
α

M1M2−M2
2

)−1
M1

for the scale parameter, respectively.
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2.3.3 Goodness-of-fit

Checking goodness-of-fit is important when a probability distribution model

is fitted to data. We adopt a P-P plot for a graphical method for checking

goodness-of-fit since the observations are not identically distributed in this case.

The P-P plot forn independent observationsy1,y2, . . . ,yn is a plot of then points,(
j −0.5

n
,z( j)

)
,

wherezj = Fj
(
y j ,θ

)
and z(1) ≤ z(2) ≤ ·· · ≤ z(n) are order statistics ofzj , j =

1,2, . . . ,n. Here the distribution functionFj (y,θ) is that of the gamma distribution

with the parameter(mjν ,α) for the common parameterθ = (ν ,α).

A goodness-of-fit test statistic for independent but not identically distributed

random variablesY1,Y2, . . . ,Yn parallel to the P-P plot would be

W̃2
n (θ) =

n

∑
j=1

{
Z( j)−

j −0.5
n

}2

+
1

12n
, (2.11)

where Z j = Fj(Yj ,θ), j = 1,2, . . . ,n. This statistic is an extension of the

Craḿer-von Mises statisticW2
n (θ) in (1.2) becauseW2

n (θ) can be reduced from

W̃2
n (θ) when the observations are independent and identically distributed as

F(x,θ). In addition, the distribution ofW̃2
n (θ) is equal to that ofW2

n (θ) when

the parameters are known sinceZ j is the transformation ofYj , j = 1,2, . . . ,n, by

its distribution function so thatZ j follows the standard uniform distribution, which

is the same when the observations are independent and identically distributed.

When the parameters are unknown and are necessary to be estimated from

a sample, the asymptotic distribution of the statisticW̃2
n (θ̂), where the estimator

θ̂ is plugged in (2.11) instead ofθ, cannot be obtained by a simple extension

of the case when the observations are independent and identically distributed.

There are some articles on the behavior of the empirical process
√

n(F̃n(z)− z),

whereF̃n(z) is the empirical distribution function ofZ1,Z2, . . . ,Zn, by Pierce and

Kopecky (1979) and Loynes (1980). However, it is not directly useful to obtain

the p-values of the test statistic̃W2
n (θ̂).
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In the following, we first evaluate thep-value of W̃2
n (θ̂) because the

parameters are necessary to be estimated from the observations. Thep-values

are obtained from 500 sets of generated random numbers from GA(mjν ,α),

j = 1,2, . . . ,n. Since it is not clear how the distribution of̃W2
n (θ̂) depends on

the value of the estimatêθ, we evaluate the goodness-of-fit at several lattice

points in the neighborhood,(mjν ,α) for ν = 0.5ν̂ ,0.75ν̂ ,1.25ν̂ , and 1.5ν̂ and

α = 0.5α̂,0.75α̂,1.25α̂, and 1.5α̂, not only at the point estimate(mj ν̂ , α̂). As an

example, Table 2.3 shows thep -values in the neighborhood for Case 2 in Table

A.1 in the Appendix A withν̂ = 1.140 andα̂ = 0.967. As seen from the Table 2.3,

the p -value does not fluctuate so much, ranging from 0.091 to 0.133, so that we

use the minimum in the neighborhood as ap -value through this analysis, which

is favorable to the rejection of the fit. For all cases before trawling, we evaluate

the p-value for the goodness-of-fit of the gamma distribution to the observations

by the method described here.

Table 2.3: Thep -values of the goodness-of-fit test for Case 2.

0.5α̂ 0.75α̂ α̂ 1.25α̂ 1.5α̂

0.5ν̂ 0.119 0.106 0.108 0.121 0.096
0.75ν̂ 0.125 0.127 0.126 0.114 0.114

ν̂ 0.129 0.128 0.125 0.108 0.133
1.25ν̂ 0.115 0.106 0.114 0.118 0.122
1.5ν̂ 0.115 0.091 0.099 0.103 0.092

2.4 Distributions before trawling

The results for all species are shown in Table A.1 in the Appendix A, where the

gamma distribution GA(ν ,α) is fitted to individual weights before trawling for

the cases numbered from 1 to 80. Each case can be identified by a combination of

its scientific name and the region name of the experiment. The class and family

names are also listed as a reference. Species identified by scientific name are
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grouped into a family and several families are further grouped into a class. We can

see what kind of animal was caught as a by-catch of the prawns from the seabed.

The column labeledn indicates the number of nonzero observations out of 27

observations in each case. The maximum likelihood estimates of the parametersν̂

andα̂ are also listed. The last two columns give the values of goodness-of-fit test

statistic,W̃2
n

(
θ̂
)
, and the correspondingp -values obtained from the distribution

of W̃2
n

(
θ̂
)

with the maximum likelihood estimator̂θ. In the tablep -values less

than 0.1 are marked by∗ as a reference. It seems reasonable to exclude these 23

cases for which the goodness-of-fit test is rejected at significance levelα = 0.1.

For later analysis, we concentrate our attention on 57 cases out of 80 to investigate

the effect of trawling because we are going to verify the effect through changes of

the equilibrium distribution of the stochastic growth model (2.2). For the visual

understanding of the goodness-of-fit of the 57 unmarked cases, P-P plots are given

in Figure 2.2 for Cases 1, 2, and 3 as examples.
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Figure 2.2: P-P plots for Cases 1, 2, and 3.

To understand the meaning of the estimated parameters for the 57 cases,

a reasonable transform of the parameters would bek = α(ν + 1) and ξ =√
2/(ν +1) because it is equivalent to rewrite the model (2.2) as

dXs = Xs

(
1− Xs

k

)
ds+ξXsdBs,
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where time is changed fromt to s= rt . The parameterk is now the growth limit

and ξ is the degree of randomness around the growth limitk. Figure 2.3 is a

scatter plot ofξ̂ =
√

2/(ν̂ +1) and k̂ = α̂(ν̂ + 1) where Case 12 is excluded

becausêk= 735.870 is very large as the growth limit witĥξ = 1.219. The points

on the scatter plot are identified by initial letters of class names. For example, H

is for the class Hydrozoa as described in the legend. We observe that the value

of k is very large for 4 species, but it only implies that these species have heavy

dry weights. However, it is interesting to note that species in the same class share

similar ξ̂ values for several classes. The valueξ̂ is less than 0.8 for Bivalvia,

greater than 1.0 for Hydrozoa and between 0.7 and 1.1 for Gymnolaemata.
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Figure 2.3: Scatter plot of the degree of randomnessξ̂ =
√

2/(ν̂ +1) and the
growth limit k̂= α̂(ν̂ +1).
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There are some possible reasons that the gamma distribution does not fit well

for the remaining 23 cases. For some species, the stochastic growth model (2.2) or

its equilibrium distribution may not be a good model for describing their weights.

On the other hand, there are some species for which the goodness-of-fit test of

the gamma distribution is rejected for the observations on one region while it is

not for the observations on the other region. In fact, only one speciesDardanus

imbricatusshows the gamma distribution can be used for the data observed both

in the West and East out of four species in the list for which enough observations

are available both in the West and East (Cases 6, 7, 41, 42, 50, 51, 57, and

58). Possibly, in these cases, environmental factors may have delayed species

maturity. Besides, it is worth noting that there is no consistent rejection of the

goodness-of-fit test over different species. This result also suggests that it is

necessary to consider the species by species or case by case analysis.

2.5 The effect of trawling

In this section we verify the effect of trawling through discrepancies between the

gamma distribution with the parameters estimated from the observations before

trawling and the distribution of the weight observed after trawling. The data are

obtained under a careful design of experiments (Haywood et al., 2005) so that it

is natural to assume that there are no effects other than trawling. For this reason

we verify the effect of trawling if the discrepancy is significant. Here we note that

the number of target cases is now 47 since not enough observations are available

after trawling for the remaining cases.

Although the existence of the discrepancy is examined by the goodness-of-fit

test, the statistical framework for the calculation of thep -value is different from

the method we have used for the case of before trawling. The goodness-of-fit test

we apply here is to test the goodness-of-fit of the gamma distribution with the

parameters estimated from the observations before trawling to the observations

after trawling, which corresponds to the goodness-of-fit test when parameters
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are known. We hereafter denote the parameters estimated from the observations

before trawling asθ0 to make sure that the goodness-of-fit of the distribution when

the parameters are known is examined. The distribution ofW̃2
n (θ0) is equal to

that ofW2
n (θ0) as we explained in Section 2.3.3, and the asymptotic distribution

of W2
n (θ0) is given as a distribution of a weighted sum of chi-squared random

variables with 1 degree of freedom, as described in Section 1.2. However, we

obtain thep -value by generating 500 sets of random numbers distributed as the

gamma distribution with the parameters estimated from the observations before

trawling to obtain the distribution of the test statistic because the sample sizes

may not be enough large to use the asymptotic distribution of the statistic.

A summary of the results for the 47 cases is given in Table 2.4. The unaffected

cases, for which the goodness-of-fit test is not rejected, are denoted by U in the

column labeled “Effect.” For other cases, for which the goodness-of-fit test is

rejected, the directions of the change of the weight distribution from the gamma

distribution with the parameters estimated from the observations before trawling

are denoted in the column of “Effect,” where L is for lighter cases and C or C(L)

is for the cases that the weight distribution is changed but not consistently lighter

or heavier. There are no heavier cases in our study. The direction of the change,

which represents the type of the effect, is determined as follows. It is L if all points

are below the liney= x on the P-P plot, which indicates thatz( j) < ( j−0.5)/n for

all j = 1,2, . . . ,n. Type C(L) is for the case when the type of the effect is almost

same as the case for L, with a few exceptional points on the P-P plot.

We can see more details about the changes of the distribution through P-P

plots. Figure 2.4 shows P-P plots for 6 cases of type L. A possible reason that the

weight distribution is changed to the lighter direction after trawling would be that

those species have difficulty to avoid the trawl net and only individuals smaller

than the net size remain, so that the distribution is skewed in the lighter direction.

Figure 2.5 shows P-P plots for 5 cases of type C and C(L). It is observed that

the distribution is skewed to lighter direction for Case 21, Case 53, and Case 75,

if a single point on the P-P plot is ignored. However, there is no clear direction
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Table 2.4: The effect of trawling ( U:Unaffected, L:Lighter, C:Changed ).

Case n W̃2
n (θ0) p-value Effect Case n W̃2

n (θ0) p-value Effect

1 6 0.092 0.636 U 34 9 0.115 0.550 U
3 15 0.106 0.584 U 36 14 0.091 0.650 U
5 9 0.076 0.734 U 40 7 0.319 0.106 U
7 13 0.059 0.838 U 41 6 0.319 0.112 U
9 8 0.077 0.748 U 45 7 0.096 0.650 U

11 8 0.144 0.424 U 46 18 0.264 0.184 U
12 6 0.097 0.604 U 47 11 0.143 0.404 U
13 17 1.075 0.000 L 49 9 0.658 0.022 L
14 8 0.223 0.212 U 51 13 0.166 0.348 U
15 12 0.441 0.058 L 52 7 0.367 0.088 L
19 9 0.150 0.422 U 53 12 1.556 0.000 C(L)
20 10 0.044 0.918 U 57 11 0.211 0.248 U
21 13 0.549 0.030 C(L) 58 8 0.191 0.276 U
22 12 0.183 0.334 U 59 14 0.242 0.210 U
23 10 0.446 0.054 L 60 7 0.097 0.640 U
24 12 0.125 0.530 U 61 12 0.390 0.094 C
25 9 0.212 0.272 U 63 10 0.200 0.250 U
26 15 0.458 0.036 C 70 7 0.066 0.808 U
27 14 0.184 0.322 U 71 15 0.188 0.300 U
28 8 0.225 0.208 U 73 6 0.277 0.136 U
30 9 0.122 0.516 U 75 10 0.697 0.008 C(L)
31 11 0.197 0.276 U 76 6 0.327 0.100 U
32 18 0.253 0.210 U 78 12 0.355 0.118 U
33 8 1.663 0.000 L
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Figure 2.4: P-P plots for 6 cases where the weight distribution became lighter
after trawling. The null distributions are GA(1.313,24.512), GA(2.687,0.062),
GA(4.320,0.660), GA(35.112,0.043), GA(2.388,5.049), and GA(5.018,0.259),
respectively.
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of change for the other cases, Case 26 and Case 61. The reason why the weight

distribution is changed in no clear direction might be that such species are more

sensitive to other factors like the local unevenness of the environment rather than

the trawling effect.
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Case 61.
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Figure 2.5: P-P plots for 5 cases where the weight distribution
changed without direction after trawling. The null distributions are
GA(2.342,3.467), GA(26.664,0.0463), GA(1.007,3.693), GA(27.462,0.049),
and GA(0.690,3.327), respectively.

2.6 Comparisons with simple mean tests

We have seen how the trawling effect is verified by using the extended version of

the Craḿer-von Mises goodness-of-fit test of the gamma distribution, which is the
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model for the weight distribution of animals on seabed. It would be worthwhile

to compare this result with that obtained by a simple mean difference test statistic

like Welch’st-test statistic as

T =
Wa−Wb√

sa
2

na
+ sb

2

nb

.

Here Wa is the sample mean of the weights normalized by the number of

individuals observed after trawling,sa
2 is the sample variance, andna is the

sample size.Wb, sb
2, andnb are those for the normalized weights before trawling.

Table 2.5 shows thep -values forW̃2
n (θ0) given in Table 2.4 and for Welch’st-test

statistic for the two sided alternative hypothesis in the case of type U. Also the

p -values for Student’st-test statistic,

T =
Wa−Wb√

sa
2

na

,

whereWb is assumed to be known, are shown in the table as a reference. This is

because thep -values forW̃2
n (θ0) are obtained for the case when the parameters

are known. The sign of Welch’st-test statistic, which is the same sign of Student’s

t-test statistic, is also given in Table 2.5.

It seems reasonable that thep-values for Welch’st-tests are all large for the

cases of type U. However, the values themselves are not consistent with those

for W̃2
n (θ0), particularly for the three cases marked † in Table 2.5. The reason is

that the discrepancy from the weight distribution is symmetric so that the mean

difference fails in describing such a discrepancy as seen in the P-P plots given in

Figure 2.6. We also note that thep -values for Student’st-tests are not consistent

with those for Welch’st-tests, particularly for the three cases marked∗ in this

table. It can be seen from the P-P plots for those three cases given in Figure 2.7

that Student’st-test is sensitive to a small shift of the distribution.

Table 2.6 shows the result for type L, corresponding to the result for type U

in Table 2.5. It is clear that Welch’st-test fails in detecting changes in the 3 cases
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Table 2.5: Thep-values for type U.

Case 1 3 5 7 9 11 12

p-value (W̃2
n (θ0)) 0.636 0.584 0.734 0.838 0.748 0.424 0.604

p-value (Welch’st-test) 0.524 0.541 0.735 0.642 0.376 0.756 0.804
p-value (Student’st-test) 0.315 0.428 0.690 0.507 0.354 0.734 0.679
sign(T) – – + – + + –

14 19 20 22 24 25 27 28 30 31∗

0.212 0.422 0.918 0.334 0.530 0.272 0.322 0.208 0.516 0.276
0.318 0.777 0.975 0.757 0.810 0.465 0.423 0.628 0.674 0.154
0.130 0.756 0.960 0.592 0.771 0.135 0.298 0.269 0.526 0.097

– – – + – + – + + +

32 34 36 40 41 45 46† 47 51 57∗

0.210 0.550 0.650 0.106 0.112 0.650 0.184 0.404 0.348 0.248
0.851 0.967 0.721 0.177 0.260 0.981 0.992 0.954 0.393 0.157
0.808 0.955 0.609 0.105 0.186 0.976 0.990 0.947 0.279 0.016

+ + – – + + – – – –

58 59∗ 60 63 70 71 73 76† 78†

0.276 0.210 0.640 0.250 0.808 0.300 0.136 0.100 0.118
0.372 0.269 0.963 0.766 0.730 0.425 0.338 0.606 0.833
0.330 0.055 0.945 0.682 0.670 0.354 0.301 0.595 0.797

– – + + – + – + –
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Figure 2.6: P-P plots for Cases 46, 76, and 78 after trawling.



46 Chapter 2. Effect of trawling

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantiles

P
ro

ba
bi

lit
y−

in
te

gr
al

 tr
an

sf
or

m
ed

 d
at

a

Case 31.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantiles

P
ro

ba
bi

lit
y−

in
te

gr
al

 tr
an

sf
or

m
ed

 d
at

a

Case 57.
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Figure 2.7: P-P plots for Cases 31, 57, and 59 after trawling.

marked by †, although the values of Welch’st-test statistics are all negative. The

sensitivity of Student’st-test makes a difference for Case 23 as well as for type U.

Table 2.6: Thep-values for type L.

Case 13 15† 23† 33 49 52†

p -value (W̃2
n (θ0)) 0.000 0.058 0.054 0.000 0.022 0.088

p -value (Welch’st-test) 0.005 0.291 0.194 0.010 0.020 0.486
p -value (Student’st-test) 0.000 0.174 0.014 0.009 0.013 0.384
sign(T) – – – – – –

Table 2.7 is for type C and C(L). In this case, Welch’st-test fails in detecting

changes at a level of 0.1 in 3 cases out of the 5 cases. A significant difference is

shown for Case 75, where the sign of Welch’st-test is positive although it belongs

to type C(L).

In summary, Welch’st-test tends to fail in the detection of distributional

changes when the weight distribution after trawling differs from the weight

distribution before trawling in a symmetric manner. On the other hand, Student’s

t-test seems very sensitive for slight differences from the weight distribution

before trawling. Such mean difference tests are simple and easy to use, but not

strong enough for investigating distributional changes since the distributions are
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only identified by the mean in their tests.

Table 2.7: Thep-values for type C or C(L).

Case 21 26† 53 61† 75†

p-value (W̃2
n (θ0)) 0.030 0.036 0.000 0.094 0.008

p-value (Welch’st-test) 0.084 0.168 0.056 0.937 0.720
p-value (Student’st-test) 0.020 0.073 0.008 0.928 0.696
sign(T) – + – – +

2.7 Concluding remarks

We have shown that the gamma distribution, the equilibrium distribution of the

stochastic growth model, can describe the distribution of weight of animals on

seabed. Goodness-of-fit of the distribution is examined by using the extended

version of the Craḿer-von Mises statistic with a P-P plot. One of the reasons why

we need such a test is that only the total weights of catches for each species are

recorded in the survey. As a result the integrated use of numerical and graphical

methods for checking goodness-of-fit shows the trawling effect on the weight

distribution of animals on seabed through the change of the distribution.

Another approach to examining the difference of the weight distributions

between before and after trawling would be the likelihood ratio test, which

compares the parameters of the gamma distribution. However, this approach does

not give an answer for the case when the gamma distribution does not fit to the

data observed after trawling, which is happened in some cases. Also our approach,

checking the direction of the change of the weight distribution from the gamma

distribution with the parameters estimated from the observations before trawling,

would give a simpler understanding how the weight distribution changed than

comparing the changes of the parameters. For these reasons we have examined

the distributional change rather than the change of the parameters of the gamma

distribution in this analysis.





Chapter 3

The effect of freshwater flows on the
growth of banana prawns

Another case study, which is the modeling the length-frequency data of banana

prawns, is presented in this chapter. By using the derived probability distribution

model, the effect of freshwater flows on the growth of banana prawns is

investigated.

3.1 Introduction

It is important to understand the role of freshwater flows into estuaries, the

downstream sections of rivers and streams, and the requirement for a sustainable

environment, especially in Australia, because the water resources are limited

but a demand for human use is increasing. A wide review of the need of

freshwater flows for estuarine fisheries in tropical areas can be found in Robins

et al. (2005). For that reason the project “Environmental flows for sub-tropical

estuaries: understanding the freshwater needs for sustainable fisheries production

and assessing the impacts of water regulation.” was initiated in Australia, whose

data are analyzed in this chapter. The project aimed at an investigation of

the effects of freshwater flows on estuarine fisheries production. Although a

preliminary analysis is published in Halliday and Robins (2007), there still remain

problems unsolved.

49
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In this chapter, we focus on banana prawn (Penaeus merguiensis), which is

known to be one of the significant target species in the trawl fisheries of northern

Australia and has been investigated by many researchers. Lucas et al. (1979)

assessed the state of the banana prawn stocks in the Gulf of Carpentaria, Australia,

by yield per recruit analysis based on the studies of migration, growth, and

mortality. The effects of temperature and salinity on growth and survival were

examined by Staples and Heales (1991) from laboratory experiments. Haywood

and Staples (1993) investigated growth and mortality of juvenile banana prawns

from data sampled from 1986 to 1989 in the north-eastern Gulf of Carpentaria.

The size-dependent mortality of juvenile banana prawns was suggested by Wang

and Haywood (1999). For the behavior of postlarval penaeid prawns, including

banana prawns, the effect of tide and day/night on the vertical migration was

explored by Vance and Pendrey (2008).

The effects of freshwater flows on the growth rate of banana prawns have

been investigated in Halliday and Robins (2007) for the data we analyze in this

chapter. They decomposed length-frequency distributions of banana prawns into

components of the normal distributions to identify means and found the links of

the means to identify the cohort. For each links, the first and last dates the cohort

was sampled were set to bet1 andt2 and the mean carapace lengths on the dates

wereLt1 andLt2, respectively. Then they investigated the effects of environmental

factors by modeling the growth rateK in the von Bertalanffy model

Lt2 = Lt1 +(L∞ −Lt1)
{

1−e−K(t2−t1)
}
,

which is already introduced in (2.8), as a function of freshwater inflow and other

environmental factors. For example, the final model for the growth rateK for the

Calliope River is in the form of

K = β0+β1T +β2T2+β3W0+β4W4,

whereT is temperature,W0 is the total freshwater inflow for the period between

t1 andt2, andW4 is the total freshwater inflow four weeks beforet1.
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Although the effects of freshwater flows and other environmental factors are

included in their model, the explanation led by this model is not convincing

enough. For example, the distribution of the length has different shape time by

time so that using only the mean would not be enough to investigate the effect

of environmental factors on the growth. Also salinity of water is observed but it

was not used in their model. To overcome such weakness of their analysis, we

introduce a new probability distribution model for the length of banana prawns.

Descriptions of the data we analyze are given in Section 3.2. We build the

probability distribution model for length-frequency data of banana prawns in

Section 3.3. In Section 3.4, the methods for fitting the model to the data and

testing goodness-of-fit of the distribution are described. Results of the fit to the

data are given in Section 3.5.

3.2 Data

The data we analyze here are obtained in the Fisheries Research and Development

Corporation (FRDC) funded Project 2001/022, “Environmental flows for

sub-tropical estuaries: understanding the freshwater needs for sustainable fisheries

production and assessing the impacts of water regulation.” in Australia. Although

the surveys were done for some species in three rivers, the Fitzroy River, the

Calliope River, and the Boyne River, we focus on the banana prawns catch data

observed in the Calliope River from December 4th, 2002 to April 19th, 2004 in

this analysis. The data are observed fortnightly from the beginning of the survey

to July 12th, 2003 and in 4 weeks after then.

The target data are the carapace length-frequency data of banana prawns in the

estuary. Table 3.1 is a part of the length-frequency data. Banana prawns caught

were measured to a truncated 1 mm Carapace Length (CL) size-class, that is, 1.00

to 1.99 mm are counted for 1 mm CL. The size of the carapace length is ranged

from 1 mm truncated CL size-class to 33 mm truncated CL size-class. The total

catches of banana prawns for each size-class within 8 sites are observed.
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Table 3.1: Part of the length-frequency data.

Date Length class (mmCL) Number of catches

2003/12/4 7 1
2003/12/4 8 2
2003/12/4 9 3
2003/12/4 10 9

There are also data of environmental factors: temperature, salinity, pH, and

turbidity. Table 3.2 is a part of the data of the environmental factors. Temperature

is of water and salinity is recorded in ‰. Turbidity gives the depth in meter

no longer visible the Secchi disc and the large value indicates that water is

transparent. Although the number of catches is recorded by summing up among

8 sites, these environmental factor data are observed in each site. For this reason

we use the environmental factor data by averaging over sites.

Table 3.2: Part of the data of the environmental factors.

Unique site number Temperature Salinity pH Turbidity

5-1 30.11 38.64 7.94 0.50
5-2 30.82 38.87 7.72 0.30
5-3 33.43 38.61 7.96 0.20
5-4 31.17 39.26 7.90 0.20
5-5 33.21 38.54 7.99 0.35
5-5 33.21 38.54 7.99 0.35
5-6 32.97 38.65 7.96 0.40
5-7 31.81 38.72 7.89 0.30
5-8 33.60 38.47 7.98 0.40



3.3. Probability distribution model of the carapace length of banana prawns 53

3.3 Probability distribution model of the carapace
length of banana prawns

To construct a probability distribution model of the length of banana prawns, we

assume that the observations are constituted of two kinds of cohorts because of

the life cycle of banana prawns and the interval of the samplings. Banana prawns

are spawned in offshore waters and larvae and post-larvae migrate into estuaries.

After several months in the estuary they migrate to coastal marine waters (Halliday

and Robins, 2007). They have around one year life cycle, and on the other hand,

the samplings were done fortnightly or 4 weeks in the estuary in this survey.

Therefore, it is natural to consider that the observations are a mixture of two

kinds of cohorts, a cohort which has been stayed in the estuary from the previous

sampling and a cohort which migrates from offshore waters to the estuary after

the previous sampling. We also note that it is reasonable to assume that banana

prawns migrate from offshore waters in a cohort because it is known that peaks of

spawning of banana prawns are on new and full moon.

3.3.1 Cohort stayed in the estuary

We first consider constructing a probability distribution model of the carapace

length of banana prawns for a cohort stayed in the estuary by using the data

observed in the previous sampling. One of the natural models would be given

by a transformation of the previous carapace length distribution with reflecting

growth and survival.

Let ft0(x) be a probability density function for the distribution of the carapace

length at timet0. Also we defineg(x, t0, t) andq(x, t0, t) to be a carapace increment

and a survival rate during the period(t0, t), wherex is the length at timet0. If we

assume that a proportion of prawns migrating to coastal marine waters is constant

for each length, then the distribution function of the carapace length at timet > t0
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becomes

G(x, t0, t) = c1

∫ x

0
ft0(y−g(y, t0, t))q(y, t0, t)dy (3.1)

with a normalized constantc1. In this analysis,ft0(x) is given by a polygon

approximation of the observed length-frequency data. To construct models for

the carapace incrementg(x, t0, t) and the survival rateq(x, t0, t), we use models

suggested by Staples and Heales (1991) and Wang and Haywood (1999) as

follows.

Carapace incrementg(x, t0, t)

For the carapace incrementg(x, t0, t), we use two models, for the intermoult

period and for the moult increment, obtained by Staples and Heales (1991). From

laboratory experiments, they derived the models such that

tm− tm−1 = 13.919−0.411T +0.027(T −25)2

−0.014S+0.001(S−30)2+0.201xm−1

for the intermoult period and

xm−xm−1 = 0.039+0.012T −0.002(T −25)2

−0.001S−0.001(S−30)2+0.023xm−1 (3.2)

for the moult increment. Heretm denotes the day of themth moult, xm is the

carapace length in mm after themth moult,T is temperature, andSis salinity (‰),

where temperature and salinity were held constant in their experiments. These

models show that the intermoult period and the moult increment depend on

temperature and salinity.

Before applying these models to the data, we give a modification to the

model (3.2) because there seems to be some rounding errors in the coefficients

of the model (3.2). Figure 3.1 (a) is the figure given in Staples and Heales (1991),
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describing the moult increment against salinity at temperature 28◦C. The black

dots are for 5 mm CL and the white dots are for 10 mm CL. On the other hand, in

Figure 3.1 (b), the curves based on the model (3.2) at temperature 28◦C are drawn

and the points are plotted as imitating the points in Figure 3.1 (a) to make it easy

to compare. For this inconsistency, we have estimated the coefficients forS and

(a) Figure from Staples and Heales (1991).
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(b) Curve based on the model (3.2).

Figure 3.1: Plots of the carapace increment against salinity (‰).

(S−30)2 to fit the curves in Figure 3.1 (a) given by Staples and Heales (1991) and

use the modified model

xm−xm−1 = 0.039+0.012T −0.002(T −25)2

−0.00126S−0.0004(S−30)2+0.023xm−1 (3.3)

instead of (3.2). As a reference, the curves based on the model (3.3) at temperature

28◦C is drawn in Figure 3.2 with the points plotted as imitating the points in

Figure 3.1 (a).

Moreover, we note that these models suggest that a growth rate, which is the

carapace increment per day, is approximately constant in length. If we rewrite the
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Figure 3.2: Plot of the carapace increment against salinity (‰). The curve based
on the model (3.3) are drawn.

models as

tm− tm−1 = f1(T,S)+0.201xm−1 (3.4)

xm−xm−1 = f2(T,S)+0.023xm−1 (3.5)

with the functionsf1(T,S) and f2(T,S) of T andS, then the sums of the intermoult

period and the moult increment from them0th moult to themth moult are given as

tm− tm0 =
0.201
0.023

{
xm0 +

f2(T,S)
0.023

}{
(1+0.023)m−m0 −1

}
+(m−m0)

{
f1(T,S)−

0.201
0.023

f2(T,S)

}
≈ (m−m0){ f1(T,S)+0.201xm0}

and

xm−xm0 =
{
(1+0.023)m−m0 −1

}
xm0 +

(1+0.023)m−m0 −1
0.023

f2(T,S)

≈ (m−m0){ f2(T,S)+0.023xm0}
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using an approximation(1+ 0.023)m−m0 ≈ 1+ 0.023(m−m0). Therefore, we

have

xm−xm0

tm− tm0

≈ f2(T,S)+0.023xm0

f1(T,S)+0.201xm0

=
xm0+1−xm0

tm0+1− tm0

(3.6)

and this approximation suggests that the growth rate is approximately constant in

length if temperature and salinity hold constant.

By using these models for the intermoult period and for the moult increment,

we employ the following steps to obtain the carapace incrementg(x, t0, t) in (3.1).

First we use the locally weighted scatter plot smoothing (loess) to the data of

temperature and salinity because they were only observed on the day of the

sampling and were changing throughout the survey. Figure 3.3 gives plots of

temperature and salinity from January to July in 2003 as an example. As shown

in Figure 3.3, temperature changes along with the season and salinity changes

suddenly, which is because of freshwater flows.
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Figure 3.3: Plots of temperature and salinity for each sampling date from January
to July in 2003.

Using temperature and salinity obtained by the loess, the number of moults

during the period(t0, t) is given bym which is the maximum number satisfying
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t > tm, wheretm is given by

tm− t0 = 0.201

{
(1+0.023)m−1

0.023
x0+

m−1

∑
l=0

l

∑
l ′=1

(1+0.023)l ′−1 f2(Ttl−l ′ ,Stl−l ′ )

}

+
m−1

∑
l=0

f1(Ttl ,Stl ),

which is obtained from (3.4) and (3.5) by reflecting the changes of temperature

and salinity. Here we assume that thet0 is the time immediately after the moult

and the length att0 is x0. Tt andSt are temperature and salinity at timet obtained

by the loess. By using the number of moultsm given above, the total carapace

increment during the period(t0, t) is then given as

xm−x0 = {(1+0.023)m−1}x0+
m−1

∑
l=0

(1+0.023)l f2(Ttm−l+1,Stm−l+1).

We denoteg∗(x0, t0, t) = xm−x0 as the total carapace increment during the period

(t0, t) for a banana prawn whose carapace length isx0 at timet0 and use

g(x, t0, t) =
1
30

30

∑
y=1

g∗(y, t0, t) (3.7)

for the carapace incrementg(x, t0, t) in our analysis. Here we note thatg(x, t0, t)

does not depend on the carapace lengthx. The averaging over the carapace length

y= 1,2, . . . ,30 is to obtain a good approximation of the carapace increment. This

is because the growth rate is approximately constant in length and the averaging

would help to take an account of errors of the moult day. We also note that the

growth rate is approximately constant in time, which is also shown by (3.6).

Survival rate q(y, t0, t)

For the survival rate, we use the size-dependent mortality rate model proposed

by Wang and Haywood (1999) from data observed in the Gulf of Carpentaria.

Assume that the instantaneous mortality rate at carapace lengthx has a form of the
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exponential functionαeβx, then the size-dependent mortality of banana prawns

afterδ weeks is given as

q∗(xt0,δ ,γ) = exp

[
− α

βγ

{
eβ (xt0+γδ )−eβxt0

}]
, (3.8)

where the growth rateγ mm per week is constant andxt0 is the length at time

t0. For the parametersα andβ , we use the valueŝα = 1.594 andβ̂ = −0.2919,

which were obtained in Wang and Haywood (1999).

Using the size-dependent mortality rate model, the survival rateq(x, t0, t) in

the model (3.1), which is for a cohort stayed in the estuary, is given as

q(x, t0, t) = q∗
(

x, t − t0,
g(x, t0, t)

t − t0

)
,

where the growth rateγ in (3.8) is given by averaging the carapace total increment

g(x, t0, t) of (3.7) during the period(t0, t).

3.3.2 Cohort migrated from offshore waters to the estuary

To construct a model for a cohort migrated from offshore waters to the estuary,

we use the size-dependent mortality rate model (3.8) again. We assume that the

carapace length immediately after hatching follows the normal distribution with

meanµ0 and varianceσ2. Also we assume that the growth rate in offshore waters

is γ0 = 1 (Haywood and Staples, 1993, Wang and Haywood, 1999). Then the

distribution of the carapace lengthδ weeks after hatching is given as

H(x,δ ′,σ) = c2

∫ x

0
φ
(

y−δ ′

σ

)
q∗(y,δ ′,1)dy, (3.9)

wherec2 is a constant andδ ′ = δ + µ0. Here we have used an approximation of

e−β µ0 by 1 because we assume thatµ0 is small enough.

3.4 Fitting the model to the data

We fit the model to the data for 19 cases shown in Table 3.3 in this analysis. This

is because the model for a cohort stayed in the estuaryG(x, t0, t) given in (3.1) is
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constructed from the data observed in the previous sampling. For example, Case

1 in Table 3.3 refers to modeling the data observed in December 16th, 2002 by the

mixture of cohorts stayed in the estuary from December 4th, 2002 and migrated

from offshore waters to the estuary. We exclude the cases for December 4th, 2002

and October 26th, 2003 because there is no sampling prior to these dates.

Table 3.3: Target cases.

Case Date Number of observations

- 2002/12/04 23
1 2002/12/16 41
2 2003/01/19 43
3 2003/02/02 54
4 2003/02/15 75
5 2003/03/18 1715
6 2003/04/02 382
7 2003/04/17 465
8 2003/05/02 307
9 2003/05/16 341
10 2003/05/31 64
11 2003/07/12 26
- 2003/10/26 23
12 2003/11/25 170
13 2003/12/23 88
14 2004/01/18 633
15 2004/01/22 761
16 2004/02/16 204
17 2004/02/20 251
18 2004/03/21 174
19 2004/04/19 35
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3.4.1 Model for a mixture of different cohorts

In general case, a mixture model of cohorts stayed in the estuary and cohorts

migrated from offshore waters to the estuary is given as

F(x,θ) = r0G(x, t0, t)+ ∑
j≥1

r jH(x,δ j ,σ j),

where 0≤ r j ≤ 1, j = 0,1, . . ., and∑ j≥0 r j = 1, however, it turns out that only

the following two models are useful in this analysis because the results show that

these models can be used for 15 cases out of 19.

• Model 1 :

F(x,θ) = r0G(x, t0, t)+ r1H(x,δ1,σ1),

whereθ = (r0,δ1,σ1) andr1 = 1− r0.

• Model 2 :

F(x,θ) = r0G(x, t0, t)+ r1H(x,δ1,σ1)+ r2H(x,δ2,σ2)

whereθ = (r0, r1,δ1,δ2,σ1,σ2) andr2 = 1− r0− r1.

Although we have examined the mixture model with more than 3 components

for the other 4 cases, the goodness-of-fit tests were rejected for any number of

components.

Since the data for the carapace length are binned data, we consider a grouped

distribution ofF(x,θ), which is defined as

p j(θ) = F( j +1,θ)−F( j,θ), j = 1,2, . . . ,33,

for the probability distribution model of the carapace length of banana prawns.
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3.4.2 Parameter estimation

The parameterθ in the probability distribution modelp j(θ), j = 1,2, . . . ,33, is

estimated by minimizing the Crámer-von Mises statistic for discrete distributions

W(d)2
n (θ) =

1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j(θ)

}2

pk(θ),

which is already introduced in (1.4), with two constrains in the estimation of the

parameters. One of the constrains is for the rate parameters,r0 in Model 1 and

r0, r1, andr2 in Model 2, to take on values between 0 and 1. The other constrain

is for δ2 in Model 2. To avoid to become a too flexible model, we assumeδ2

as δ2 = δ1 + d and adopt the valued which gives the highestp-value among

d = 2,4,6, . . .. Since it is known that peaks of spawning of banana prawns are

on new and full moon, we here assume that the interval of the migration to the

estuary is 2,4,6, . . . weeks. For this reason the constrain forδ2 to beδ2 = δ1+d

would be reasonable.

The standard errors of the estimates of the parameters are calculated using a

parametric bootstrap, with 500 bootstrap samples, because of the constrains.

3.4.3 Goodness-of-fit test

To check goodness-of-fit of the derived probability distribution model to the

data, we use the Crámer-von Mises statistic for discrete distributions when the

parameters are estimated by the minimum distance method with two constrains

described in Section 3.4.2. We calculate thep-values using the parametric

bootstrap, as same as for the standard errors of the estimates of the parameters.

Although the p-values are calculated using parametric bootstrap in this

analysis, as a reference, we give the following theorem, which shows the

asymptotic distribution of the Crámer-von Mises statistic for discrete distributions

when parameters are estimated by the minimum distance method, which is the

estimation method of finding the valuêθ which makes the Crámer-von Mises

statistic for discrete distributions a minimum. We note that the asymptotic
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distribution of the statistic when parameters are estimated by the maximum

likelihood method is given by Lockhart et al. (2007).

Theorem 5. Let X1,X2, . . . ,Xn be independent and identically distributed random

variables following a discrete distribution with K cells labeled1,2, . . . ,K and

probability pj(θ) of falling into cell j, j = 1,2, . . . ,K. Then the asymptotic

distribution of W(d)2
n (θ̂), whereθ̂ is the minimum distance estimator, is given as a

distribution of a weighted sum of chi-squared random variables with 1 degree of

freedom, such that

K−1

∑
j=1

λ jV
2
j ,

where Vj follows the standard normal distribution andλ j is an eigenvalue of a

K×K matrix

ΣyP(θ)

[
I −AZ(θ)

{
Z(θ)⊤A⊤P(θ)AZ(θ)

}−1
Z(θ)⊤A⊤P(θ)

]
, (3.10)

for j = 1,2, . . . ,K−1. HereΣy,P(θ), A, and Z(θ) are defined in Section 1.3.

Proof. We first show that the estimation error
√

n
(
θ̂−θ

)
is approximated by

−
{

Z(θ)⊤A⊤P(θ)AZ(θ)
}−1

Z(θ)⊤A⊤P(θ)y,

wherey is defined in Section 1.3. Since the minimum distance estimatorθ̂ is a

solution of

∂
∂θ

1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j(θ)

}2

pk(θ)

∣∣∣∣∣∣
θ=θ̂

= 0,

where0= (0,0, . . . ,0)⊤, and

1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j
(
θ̂
)}{

−n
k

∑
j=1

∂
∂θ

p j (θ)

∣∣∣∣
θ=θ̂

}{
pk
(
θ̂
)
− pk(θ)

}
converges to 0 asn tends to infinity, it is shown that

1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j
(
θ̂
)}{

−n
k

∑
j=1

∂
∂θ

p j (θ)

∣∣∣∣
θ=θ̂

}
pk(θ) (3.11)
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converges to 0 asn tends to infinity. Applying a Taylor expansion to (3.11) around

θ gives an approximation of
√

n(θ̂−θ) as

[
K

∑
k=1

{
k

∑
j=1

∂
∂θ

p j (θ)

}{
k

∑
j=1

∂
∂θ⊤

p j (θ)

}
pk(θ)

+
1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j (θ)

}{
k

∑
j=1

∂ 2

∂θ∂θ⊤
p j (θ)

}
pk(θ)

]−1

×
√

n

[
1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j (θ)

}{
k

∑
j=1

∂
∂θ

p j (θ)

}
pk(θ)

]
.

Note that

1
n

{
k

∑
j=1

o j −n
k

∑
j=1

p j (θ)

}

converges to 0 asn tends to infinity for anyk= 1,2, . . .K, thus
√

n
(
θ̂−θ

)
can be

approximated as

[
K

∑
k=1

{
k

∑
j=1

∂
∂θ

p j (θ)

}{
k

∑
j=1

∂
∂θ⊤

p j (θ)

}
pk(θ)

]−1

×
√

n

[
1
n

K

∑
k=1

{
k

∑
j=1

o j −n
k

∑
j=1

p j (θ)

}{
k

∑
j=1

∂
∂θ

p j (θ)

}
pk(θ)

]

=
{

Z(θ)⊤A⊤P(θ)AZ(θ)
}−1

Z(θ)⊤A⊤P(θ)y.

On the other hand, applying a Taylor expansion toW(d)2
n (θ) around the

minimum distance estimator̂θ and using the approximation shown above, we

have

W(d)2
n (θ̂)+n

(
θ̂−θ

)⊤
Z(θ)⊤A⊤P(θ)AZ(θ)

(
θ̂−θ

)
.
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From these approximations it follows thatW(d)2
n (θ̂) can be approximated by

y⊤P(θ)

[
I −AZ(θ)

{
Z(θ)⊤A⊤P(θ)AZ(θ)

}−1
Z(θ)⊤A⊤P(θ)

]
y

=

(
Σ− 1

2
y y

)⊤
D

(
Σ− 1

2
y y

)
,

whereD is aK×K matrix defined by

D = Σ
1
2
y P(θ)

[
I −AZ(θ)

{
Z(θ)⊤A⊤P(θ)AZ(θ)

}−1
Z(θ)⊤A⊤P(θ)

]
Σ

1
2
y .

As used by Choulakian et al. (1994) in their proof, the distribution of

Σ− 1
2

y y converges to the multivariate standard normal distribution, therefore, the

asymptotic distribution ofW(d)2
n (θ̂) is given as a distribution of a weighted sum

of chi-squared random variables with 1 degree of freedom, where the weights are

the eigenvalues of the matrixD. The equivalence of the eigenvalues ofD and

(3.10) is easily checked.

3.5 Results

Figure 3.4 shows the result for Case 14 fitting Model 2 as an example. The data

observed on December 23rd, 2003 are shown in Figure 3.4 (a). By using this

distribution, a model for a cohort stayed in the estuaryG(x, t0, t) is determined as

described in Section 3.3.1, wheret0 is December 23rd , 2003 andt is January 18th,

2004. The probability density function ofG(x, t0, t) is drawn in Figure 3.4 (b). On

the other hand, probability density functions of models for two cohorts migrated

from offshore waters to the estuaryH(x, δ̂1, σ̂1) and H(x, δ̂2, σ̂2) are drawn in

Figure 3.4 (c) and (d) with the estimated parametersδ̂1 = 6.014, σ̂1 = 1.396,

δ̂2 = 10.014, andσ̂2 = 1.498. Combining the distributionsG(x, t0, t), H(x, δ̂1, σ̂1),

andH(x, δ̂2, σ̂2), the mixture model is given as

F(x, θ̂) = r̂0G(x, t0, t)+ r̂1H(x, δ̂1, σ̂1)+ r̂2H(x, δ̂2, σ̂2)
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with the estimated rate parameters ˆr0 = 0.079, ˆr1 = 0.786, and ˆr2=0.135. The

probability density function ofF(x, θ̂) is drawn in Figure 3.4 (e). The target

data for Case 14 are the data observed on January 18th, 2004, which is shown

in Figure 3.4 (f). It is observed from Figure 3.4 (e) and (f) that the data can be

modeled by the mixture model for Case 14. For this case, thep-value obtained by

the parametric bootstrap is 0.984.

If we assume that the model can be used when thep-value is higher than 0.1,

which implies that the goodness-of-fit test is not rejected with the significance

level α = 0.1, it is shown that Model 1 can be used for 8 cases, as shown in

Table 3.4, and Model 2 can be used for other 7 cases, as shown in Table B.1

in Appendix B. The values with∗ in both tables denote that the values are not

estimated because the estimates were close to 0 or 1 so that the values are fixed

to 0 or 1 to make the model simple. For these 15 cases, the model can explain the

effects of the changes in temperature and salinity of water caused by freshwater

flows on the growth of banana prawns.

For Cases 2, 5, 6, and 16, on the other hand, the goodness-of-fit test is rejected

for both models. From Figure 3.5, it might be because of the small number

of observations and some outliers for Case 2. For Cases 5 and 6, there might

be a large cohort constructed for some reason because much more prawns were

caught on March 18th, 2003 compared to the data on February 15th and April 2nd,

2003, as shown in Figure 3.6 and Figure 3.7, respectively. For Case 16, there are

some large prawns observed on February 16th compared to January 22nd, 2004 as

shown in Figure 3.8, so there might be some reason to make the growth of banana

prawns faster than the model we have applied to.
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(f) 2004/01/18.

Figure 3.4: Result for Case 14. (a) and (f) are length-frequency data observed on
2003/12/23 and 2004/1/18. Others are probability density functions of distribution
functionsG(x, t0, t), H(x, δ̂1, σ̂1), H(x, δ̂2, σ̂2), andF(x, θ̂), respectively.
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Table 3.4: Parameters and results of goodness-of-fit test for Model 1.

Case r̂0 (SE) r̂1 = 1− r̂0 δ̂1 (SE) σ̂1 (SE) W(d)2
n

(
θ̂
)

p-value

1 0.314 (0.112) 0.686 11.045 (1.607) 3.828 (0.995) 0.040 0.186
4 0.165 (0.181) 0.835 8.888 (1.202) 2.765 (0.603) 0.005 0.944
8 0.000∗ 1.000∗ 6.788 (0.293) 4.169 (0.261) 0.043 0.360
9 0.155 (0.198) 0.845 6.023 (0.387) 3.779 (0.575) 0.015 0.774

10 0.836 (0.199) 0.164 5.444 (1.005) 1.112 (1.345) 0.066 0.254
11 0.410 (0.135) 0.590 7.092 (0.995) 1.523 (0.791) 0.008 0.880
13 0.073 (0.071) 0.927 10.346 (0.849) 3.246 (0.527) 0.025 0.522
15 0.000∗ 1.000∗ 4.351 (0.146) 3.454 (0.138) 0.022 0.734
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(b) 2003/1/19.

Figure 3.5: Length-frequency data for Case 2.
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(b) 2003/3/18.

Figure 3.6: Length-frequency data for Case 5.
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(a) 2003/3/18.
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(b) 2003/4/2.

Figure 3.7: Length-frequency data for Case 6.
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(a) 2004/1/22.
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(b) 2004/2/16.

Figure 3.8: Length-frequency data for Case 16.
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3.6 Concluding remarks

We have shown that a mixture of two probability distribution models, for a cohort

stayed in the estuary and for a cohort migrated from offshore waters to the estuary,

can be used for describing the distribution of the carapace length of banana prawns

in the estuary. Since our model is an elaborated model to reflect the changes

of the environmental factors, it makes easy to detect outlying cases where some

unknown cause exists. On the contrary, the model can explain the effects of the

changes in temperature and salinity of water caused by freshwater flows on the

growth of banana prawns for the cases where the model can be used to describe

the distribution of the carapace length. We hope that our results will be useful for

further understanding of the length-frequency data.

From a statistical point of view, how the choice of parameter estimation affects

the goodness-of-fit test would be an interesting problem for the case of discrete

distributions as well as for the case of continuous distributions. In this chapter,

the parameters are estimated by minimizing the Crámer-von Mises statistic for

discrete distributions with some constrains. The reason we used the minimum

distance estimator is that such an estimator chosen to minimize some distance is

known to be robust to contamination, which we will explain in Section 4.5.1, and

such property would be favorable to the situation where one wishes to give an

approximation model of the data. We will investigate how the combination of the

parameter estimation and the goodness-of-fit test works in the next chapter.





Chapter 4

Asymptotic behavior of the
Cramér-von Mises statistic when
contamination exists

In the two case studies, we have used the goodness-of-fit test to check whether

the derived probability distribution model can be used or not. In this chapter,

we investigate the asymptotic behavior of the Cramér-von Mises statistic when

contamination exists because it often happens in practice that the data are

contaminated.

4.1 Introduction

In this chapter, we assume thatX1,X2, . . . ,Xn are independent and identically

distributed random variables from a distribution functionFε(x,θ) and X(1) ≤
X(2) ≤ ·· · ≤ X(n) are their order statistics. Here the distributionFε(x,θ) is

contaminated as

Fε(x,θ) =

(
1− ε√

n

)
F(x,θ)+

ε√
n

G(x),

where F(x,θ) is a continuous distribution with a parameter vectorθ =

(θ1,θ2, . . . ,θm)
⊤ ∈ Θ ⊂ Rm, G(x) is the distribution of the contamination, and

ε ≥ 0. We hereafter assume that both distributionsF(x,θ) andG(x) have bounded

and smooth probability density functionsf (x,θ) andg(x), respectively.

73
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In this chapter, we use

W2
n (θ) =

n

∑
j=1

{
F
(
X( j),θ

)
− j

n+1

}2

as the Craḿer-von Mises statistic for simplicity. This definition is slightly

different from the definition in (1.2), however, the asymptotic behaviors of the

statistics for each definition are identical. Although the asymptotic behavior

of W2
n (θ) when no contamination exists has been thoroughly investigated as

introduced in Section 1.2, only a few works have been performed for the case

that contamination exists.

We first derive the asymptotic distribution ofW2
n (θ) via an elementary matrix

calculation in Section 4.2.1. It follows from the result that the asymptotic

distribution of W2
n (θ) is given as a distribution of a weighted infinite sum of

non-central chi-squared random variables with 1 degree of freedom and the

effect of contamination appears only in the non-centralities. In Section 4.2.2,

the result given in Section 4.2.1 is extended to the case where the parameters

are estimated by the minimum distance method, which is the estimation method

of finding the valueθ̂ which makes the Craḿer-von Mises statistic a minimum.

An approximation of the distribution of the statistic based on the result given in

Section 4.2.2 is described in Section 4.3. Some remarks on the weights in the

asymptotic distribution of the Craḿer-von Mises statistic are given in Section 4.4.

The robustness of the Cramér-von Mises goodness-of-fit test when the minimum

distance estimator is used is investigated by extending the robustness of the

estimator and demonstrated by numerical experiments in Section 4.5.
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4.2 Asymptotic distribution of the Cramér-von
Mises statistic

4.2.1 When the parameters are known

We rewriteW2
n (θ) asW2

n (θ) = ∥(n+1)SnUn∥2 by introducing ann× (n+ 1)

matrix

Sn =

(
1

n+1

(
1 j≥k−

j
n+1

)
;1≤ j ≤ n,1≤ k≤ n+1

)
and ann+1-dimensional vector

Un =
(
F
(
X( j),θ

)
−F

(
X( j−1),θ

)
;1≤ j ≤ n+1

)⊤
.

Here we defineF
(
X(0),θ

)
= 0 andF

(
X(n+1),θ

)
= 1 for convenience. We also

define a diagonal matrixB with diagonal elements,b1 = b2 and

b j+1 =
f (F−1

ε ( j
n+1,θ),θ)

fε(F
−1
ε ( j

n+1,θ),θ)
, j = 1,2, . . . ,n,

where fε(x,θ) and F−1
ε (u,θ) = x are the probability density function and the

inverse function ofFε(x,θ), respectively.

A Taylor expansion of

F
(
X( j),θ

)
−F

(
X( j−1),θ

)
= F

(
F−1

ε
(
Fε
(
X( j),θ

)
,θ
)
,θ
)
−F

(
F−1

ε
(
Fε
(
X( j−1),θ

)
,θ
)
,θ
)

aroundFε
(
X( j−1),θ

)
, j = 1,2, . . . ,n+1, yields an approximation ofUn as

B

{
U ∗

n −
1

n+1
(1−cn)

}
,

where

U ∗
n =

(
Fε
(
X( j),θ

)
−Fε

(
X( j−1),θ

)
;1≤ j ≤ n+1

)⊤
,
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cn is ann+1-dimensional vector where the first element is(n+1)F(F−1
ε (1/(n+

1),θ),θ)/b1 and all others are equal to 1, and1= (1,1, . . . ,1)⊤. Again we define

Fε
(
X(0),θ

)
= 0 andFε

(
X(n+1),θ

)
= 1 for convenience.

We now see that it is enough to know the distribution of

(Vn+µn)
⊤Λn(Vn+µn) =

n

∑
j=1

λn j(Vn j +µn j)
2 (4.1)

instead ofW2
n (θ), where

Vn = (Vn1,Vn2, . . . ,Vnn)
⊤ = (n+1)Λn

− 1
2P⊤

n SnB

(
U ∗

n −
1

n+1
1

)
and

µn = (µn1,µn2, . . . ,µnn)
⊤ = Λn

− 1
2P⊤

n SnBcn.

HereΛn is a diagonal matrix of eigenvaluesλn1 ≥ λn2 ≥ ·· · ≥ λnn, andPn is an

orthogonal matrix of eigenvectorsp(n)j , j = 1,2, . . ., of SnB2S⊤n . The following

proposition gives the limits of these eigenvalues and eigenvectors. It follows from

this proposition that the eigenvalues and the eigenvectors become independent of

the contamination in the limit.

Proposition 1. For any fixed j> 0, as n tends to infinityλn j converges toλ j =

1/( jπ)2 and
√

np(n)⌈nu⌉ j converges to fj(u) =
√

2sin(π ju) for 0< u< 1, which are

the eigenvalues and the eigenfunctions of the integral equation

λ f (u) =
∫ 1

0
ρ0(u,v) f (v)dv,

where the kernel functionρ0(u,v) = min(u,v)−uv, p(n)k j is the kth element ofp(n)j ,

and⌈x⌉ is the minimum integer which is greater than or equal to x.

Before giving the proof of Proposition 1, we will make sure of the convergence

of the eigenvalues and the eigenvectors. The following lemma can be derived

from the theorem on page 372 of Riesz and Sz.-Nagy (1990), which states that

the eigenvalues and eigenfunctions of an integral equation are continuous with
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respect to the kernel function of the integral equation as far as the kernel function

belongs to the space

L2(ν ×ν) =
{

k(x,y);
∫ ∫

k2(x,y)dν(x)dν(y)< ∞
}

with the norm∥·∥, whereν is a sigma finite measure. We will use the following

lemma in some of the proofs through this chapter.

Lemma 2. Let λn j and f( j)
n (u) be the jth eigenvalue and eigenfunction of the

integral equation

λ f (u) =
∫

kn(u,v) f (v)dν

andλ j and f( j)(u) be the jth eigenvalue and eigenfunction of the integral equation

λ f (u) =
∫

k(u,v) f (v)dν .

If kn(x,y) is a compact operator and∥kn−k∥ converges to 0 as n tends to infinity,

thenλn j converges toλ j and
∥∥∥ f ( j)

n − f ( j)
∥∥∥ converges to 0 as n tends to infinity for

j = 1,2, . . . when f( j)
n and f( j) are properly normalized, including their signs.

Proof of Proposition 1.We first rewrite the equationλn jp
(n)
j = SnB2Sn

⊤p
(n)
j as

the integral equation

λn j f
( j)
n (u) =

∫
kn(u,v) f ( j)

n (v)dν

with the kernel function

kn(u,v) =
n

(n+1)2

n+1

∑
l=1

(
1⌈nu⌉≥l −

⌈nu⌉
n+1

)
b2

l

(
1⌈nv⌉≥l −

⌈nv⌉
n+1

)

and the eigenfunctionf ( j)
n (u) =

√
np(n)⌈nu⌉ j . Noting that kn(u,v) can be

approximated as

k∗(u,v) =
∫ 1

0
(1u≥s−u)(1v≥s−v)b(s)2ds,
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whereb(s) = f (Fε(s,θ),θ)/ fε(Fε(s,θ),θ), then the convergence ofk∗(u,v) to

ρ0(u,v) = min(u,v)−uv=
∫ 1

0
(1u≥s−u)(1v≥s−v)ds

is clear from Lebesgue’s dominated convergence theorem because 0≤ b(s) ≤
(1− ε/

√
n)−1 for any 0≤ s≤ 1 andε2 < n. The desired result follows from

Lemma 2 because the eigenvalues and the eigenfunctions of the integral equation

for the kernelρ0(u,v) are 1/( jπ)2 and
√

2sin(π ju), j = 1,2, . . ..

We also give the following proposition for the convergence ofVn.

Proposition 2. Any finite-dimensional random vector
(
Vn j1,Vn j2, . . . ,Vn jp

)⊤
converges in distribution to a normally distributed random vectorV =(
Vj1,Vj2, . . . ,Vjp

)⊤
with mean0 and variance Ip as n tends to infinity.

Proof. We first note that thekth element ofU ∗
n can be replaced byEk/∑n+1

j=1 E j ,

where E j , j = 1,2, . . . ,n + 1, are independent and identically distributed

exponential random variables with mean 1. This is because of a property of order

statistics of a sample from the standard uniform distribution, for example, LePage

et al. (1981) used this property to prove the convergence of the normalized partial

sums to a stable distribution. Letc j l k be the( j l ,k) element ofΛ− 1
2

n P⊤
n SnB. Then,

it is enough to show that for anyt= (t1, t2, . . . , tp) ∈ Rp,

n+1

∑n+1
j=1 E j

p

∑
l=1

tl
n+1

∑
k=1

c j l k(Ek−1) =
n+1

∑n+1
j=1 E j

n+1

∑
k=1

(
p

∑
l=1

tl c j l k

)
(Ek−1)

converges to a normally distributed random variableV = t⊤V with mean 0 and

variancet⊤t. It is easily seen that the Lindeberg condition for the central limit

theorem is satisfied for

Vn =
n+1

∑
k=1

(
p

∑
l=1

tl c j l k

)
(Ek−1).

In fact, the inequality

1
t⊤t

n+1

∑
k=1

(
p

∑
l=1

tl c j l k

)2

E

{
(Ek−1)21|(∑p

l=1 tl c jl k)(Ek−1)|>ε
√
t⊤t

}
≤ H

(
ε

√
pcn

)
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implies the desired result, where the function

H(x) = E
{
(Ek−1)21|Ek−1|>x

}
is a monotone decreasing to 0 asx increases and

cn = max
1≤l≤p,1≤k≤n+1

∣∣c j l k
∣∣≤ max

1≤l≤p,1≤k≤n+1

bkλ− 1
2

n jl

n+1

{
n

∑
l ′=1

(
1l ′≥k−

l ′

n+1

)2
} 1

2

.

Combining the results in Proposition 1 and Proposition 2, we see that

∑p
j=1λn j(Vn j + µn j)

2 converges to∑p
j=1λ j(Vj + µ j)

2, whereV1,V2, . . . ,Vp follow

the standard normal distribution and

µ j = ελ− 1
2

j

∫ 1

0

∫ 1

0
f j(u)(1u≥v−u)

{
1− g(F−1(v,θ))

f (F−1(v,θ),θ)

}
dudv, j = 1,2, . . . .

On the other hand,∑n
j=1λn jµ2

n j converges to∑∞
j=1λ j µ2

j because of the

boundedness of∑n
j=1λn jµ2

n j. We therefore have the following theorem. It follows

from this theorem that the contamination affects only the non-centralitiesµ j ,

j = 1,2, . . ., with the proportionε.

Theorem 6. W2
n (θ) converges to∑∞

j=1λ j(Vj + µ j)
2 in distribution as n tends

to infinity, where V1,V2, . . . are independent and identically distributed random

variables with the standard normal distribution.

The asymptotic distribution ofW2
n (θ) for the case that no contamination exists,

which we have introduced in Section 1.2 as a known result, can be reduced from

Theorem 6. We note that our derivation of the asymptotic distribution is different

from others, for example Darling (1955) and Shorack and Wellner (1986), since

many of the results are derived as an application of the theory of the empirical

processes
√

n{Fn(x)−F(x,θ)}.

A closely related result to Theorem 6 is given by Guttorp and Lockhart (1988).

They developed a general theory for an asymptotic distribution of quadratic forms
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of order statistics from a uniform distribution under contiguous alternatives, where

densities are of the form 1+δη(u)/n
1
2 under the condition

∫ 1
0 η(u)2du= 1. If we

consider the caseη(F(x,θ)) = g(x)/ f (x,θ)−1, the same result as in Theorem 6

can be derived from their theory. However, a major difference is that Theorem 6 is

free from the constraint
∫ 1

0 η(u)2du< ∞. We have used only the fact thatf (x,θ)

andg(x) are probability density functions in the proof.

4.2.2 When the parameters are estimated by the minimum
distance method

We hereafter assume the followings in order to derive the asymptotic distribution

of W2
n

(
θ̂
)
, the Craḿer-von Mises statistic when the parameters are estimated by

the minimum distance method, which is the estimation method of finding the value

θ̂ which makes the Craḿer-von Mises statistic a minimum.

Assumption 1(Identifiability).

lim
n→∞

∫ ∞

−∞
{F(x,θn)−F(x,θ)}2dF(x,θ) = 0

implies the convergence ofθn to θ in Θ.

Assumption 2(Regularity).

• F(x,θ) is differentiable with respect toθ.

• gk(u,θ) = ∂
∂θk

F(x,θ), k = 1,2, . . . ,m, are all continuous and

square-integrable with respect to u∈ (0,1), where u= F(x,θ).

• The matrix A=
(∫ 1

0 g j(u,θ)gk(u,θ)du;1≤ j,k≤ m
)

is of full rank.

• ∂
∂θk

g j(u,θ), j,k= 1,2, . . . ,m exist and are continuous for u∈ (0,1).

• sup0<u<1

∣∣∣ ∂
∂θl

gk(u,θ)
∣∣∣< ∞ for any k, l = 1,2, . . . ,m.

• sup0<u<1

∣∣∣ ∂
∂ugk(u,θ)

∣∣∣< ∞ for any k= 1,2, . . . ,m.
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Let λ̄n1(θ) ≥ λ̄n2(θ) ≥ ·· · ≥ λ̄nn−m(θ) and q(n)1 ,q
(n)
2 , . . . ,q

(n)
n−m be the

eigenvalues and the eigenvectors of the matrix

Dn(θ) = Λn
1
2

[
I −P⊤

n Zn(θ)
{

Zn(θ)
⊤Zn(θ)

}−1
Zn(θ)

⊤Pn

]
Λn

1
2 ,

where

Zn(θ) =

(
1√
n

gk

(
j

n+1
,θ

)
;1≤ j ≤ n, 1≤ k≤ m

)
.

Without loss of generality, we may assume thatZn(θ) is of full rank for eachn, in

view of the third assumption in Assumption 2.

Since the minimum distance estimatorθ̂ is the solution of
n

∑
j=1

{
F(X( j),θ)−

j
n+1

}
g
(
F
(
X( j),θ

)
,θ
)∣∣∣∣∣

θ=θ̂

= 0

for g(u,θ) = (g1(u,θ),g2(u,θ), . . . ,gm(u,θ))
⊤, a Taylor expansion of the left

hand side aroundθ gives an approximation of
√

n
(
θ̂−θ

)
as

−

[
1
n

n

∑
j=1
g
(
F
(
X( j),θ

)
,θ
)
g
(
F
(
X( j),θ

)
,θ
)⊤

+
1
n

n

∑
j=1

{
F(X( j),θ)−

j
n+1

}
∂

∂θ
g
(
F
(
X( j),θ

)
,θ
)⊤]−1

×

[
1√
n

n

∑
j=1

{
F(X( j),θ)−

j
n+1

}
g
(
F
(
X( j),θ

)
,θ
)]

.

Here we have

lim
n→∞

E

[
n

∑
j=1

{
F(X( j),θ)−

j
n+1

}2
]
=

∞

∑
j=1

λ j µ2
j < ∞,

thus
√

n
(
θ̂−θ

)
can be approximated as

−
√

n

{
n

∑
j=1
g
(
F
(
X( j),θ

)
,θ
)
g
(
F
(
X( j),θ

)
,θ
)⊤}−1

×

[
n

∑
j=1

{
F(X( j),θ)−

j
n+1

}
g
(
F
(
X( j),θ

)
,θ
)]

. (4.2)
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Moreover, it is further approximated as

−(n+1)
{

Zn(θ)
⊤Zn(θ)

}−1
Zn(θ)

⊤SnUn (4.3)

because it can be shown thatg
(
F
(
X( j),θ

)
,θ
)

in (4.2) can be replaced

by g ( j/(n+1),θ) for j = 1,2, . . . ,n in the approximation after the tedious

calculation. AlsoW2
n

(
θ̂
)

is asymptotically equivalent to

W2
n (θ)−n

(
θ̂−θ

)⊤{
Zn(θ)

⊤Zn(θ)
}(
θ̂−θ

)
,

therefore, we see from (4.1) and (4.3) that it is enough to derive the asymptotic

distribution of

(Vn+µn)
⊤Dn(θ)(Vn+µn) =

n−m

∑
j=1

λ̄n j(θ)
{
Yn j + µ̄n j(θ)

}2

instead ofW2
n

(
θ̂
)
, whereYn j = q

(n)⊤
j Vn andµ̄n j(θ)= q

(n)⊤
j µn, j = 1,2, . . . ,n−m.

The following propositions show the limits of the eigenvalues and the eigenvectors

of the matrixDn(θ) and the convergence ofYn j, j = 1,2, . . . ,n−m.

Proposition 3. For any fixed j> 0, λ̄n j(θ) converges tōλ j andq(n)j converges to

q j , whereλ̄ j andq j = (q1 j ,q2 j , . . .)
⊤ are the jth eigenvalue and eigenvector of

the infinite-dimensional matrix

D∞(θ) =

(
λ

1
2
j λ

1
2

k

∫ 1

0

∫ 1

0
f j(u)h(u,v) fk(v)dudv;1≤ j,k< ∞

)
, (4.4)

where h(u,v) = δ (u−v)−g(u,θ)⊤A−1g(v,θ) with the Dirac delta functionδ (u).

Proof. By taking ν as a counting measure in Lemma 2,Dn(θ) andD∞(θ) can

be considered as compact operators onL2(ν). To evaluate∥Dn(θ)−D∞(θ)∥, we

first note that

∥Dn(θ)−D∞(θ)∥

≤
p

∑
j=1

p

∑
k=1

{
d(n)

jk −d jk

}2
+2

n

∑
j=1

n

∑
k=p+1

{
d(n)

jk −d jk

}2
+2

∞

∑
j=1

∞

∑
k=n+1

d2
jk, (4.5)



4.2. Asymptotic distribution of the Cramér-von Mises statistic 83

whered(n)
jk andd jk are the( j,k) element ofDn(θ) and ofD∞(θ), respectively. The

first term of (4.5) converges to 0 for any fixedp, sinced(n)
jk converges tod jk for

fixed j andk. The convergence of the second term of (4.5) to 0 can be shown as

follows. Since the matrix

I −P⊤
n Zn(θ)

{
Zn(θ)

⊤Zn(θ)
}−1

Zn(θ)
⊤Pn

is a projection, we have
∣∣∣d(n)

jk

∣∣∣≤ λ
1
2

n jλ
1
2

k j, so that

n

∑
k=p+1

{
n

∑
j=1

d(n)
jk

2
+

n

∑
j=1

d2
jk

}
≤

(
n

∑
j=1

λn j

)
n

∑
k=p+1

λnk+α

(
n

∑
j=1

λ j

)
n

∑
k=p+1

λk,

(4.6)

whereα = maxj,k λ− 1
2

j λ− 1
2

k

∣∣d jk
∣∣. Here∑∞

j=1λ j = π−2∑∞
j=1 j−2 = 1/6 and

n

∑
j=1

λn j = trace
(

SnB2S⊤n
)
=

n

∑
j=1

n+1

∑
k=1

(
1 j≥k−

j
n+1

)2

b2
k ≤

1
6

(
1− ε√

n

)−2

,

because 0≤ f (x,θ)/ fε(x,θ)≤ (1− ε/
√

n)−1 for anyx andε2 < n. Therefore, by

taking a large enough value ofp, the right hand side of (4.6) will be sufficiently

small. The convergence of the last term of (4.5) is clear from the inequality

∞

∑
j=1

∞

∑
k=n+1

d2
jk ≤

1
6

α2

(
∞

∑
k=n+1

λk

)
.

SinceDn(θ) is a compact operator, the proof is complete from Lemma 2.

Proposition 4. Any finite-dimensional random vector
(
Yn j1,Yn j2, . . . ,Yn jp

)
converges in distribution to a normally distributed random vector(
Yj1,Yj2, . . . ,Yjp

)
with mean0 and variance Ip as n tends to infinity.

Proof. Using a similar argument to that given in the proof of Proposition 2, it is

enough to show that

max
1≤m≤p,1≤k≤n

∣∣∣∣∣ n

∑
l=1

q(n)lm c j l k

∣∣∣∣∣
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converges to 0 asn tends to infinity. We have∣∣∣∣∣ n

∑
l=1

q(n)lm c j l k

∣∣∣∣∣≤
∣∣∣∣∣ p′

∑
l=1

q(n)lm c j l k

∣∣∣∣∣+
{

n

∑
l=p′+1

q(n)2lm

} 1
2
(

n

∑
l=p′+1

c2
j l k

) 1
2

(4.7)

and see that the first term on the right hand side of (4.7) converges to 0 asn

tends to infinity for anyp′ < n from the fact in the proof of Proposition 2 that

cn = max1≤l≤p,1≤k≤n
∣∣c j l k

∣∣ converges to 0 asn tends to infinity. Noting that

∑n
l=1q(n)2lm = 1 for anym, ∑p

l=1c2
j l k

≤ ∑n
l=1c2

lk ≤ 1 for anyk and Lemma 2, the

proof is complete.

From the fact that∑n−m
j=1 λ̄n j(θ)µ̄2

n j(θ) ≤ ∑n
j=1λn jµ2

n j, we have the following

theorem by using the similar argument to that for Theorem 6.

Theorem 7. W2
n

(
θ̂
)

converges to∑∞
j=1 λ̄ j

(
Yj + µ̄ j

)2
in distribution as n tends

to infinity, where Y1,Y2, . . . are independent and identically distributed random

variables with the standard normal distribution and

µ̄ j =
∞

∑
l=1

ql j µl , j = 1,2, . . . .

Hereµl , l = 1,2, . . ., are defined in Theorem 6.

4.3 An approximation of the distribution of the
Cramér-von Mises statistic

The derivations of Theorem 6 and Theorem 7 suggest a good way of the

approximations of the distributions ofW2
n (θ) andW2

n

(
θ̂
)
. For the distribution

of W2
n (θ), it follows from Theorem 6 that a distribution of a weighted finite

sum of non-central chi-squared random variables with 1 degree of freedom

∑p
j=1λn j

(
Vj +µn j

)2
would give a good approximation of the distribution of

W2
n (θ) for an appropriate choice ofp≤ n, whereλn j andµn j are obtained from

the eigenvalues and the eigenvectors ofSnB2S⊤n .

Similarly, for the distribution ofW2
n (θ̂), it follows from Theorem 7 that

a distribution of a weighted finite sum of non-central chi-squared random
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variables with 1 degree of freedom∑p
j=1 λ̄n j(θ̂)

{
Yj + µ̄n j

(
θ̂
)}2

would give a

good approximation of the distribution ofW2
n (θ̂), whereλ̄n j

(
θ̂
)

and µ̄n j
(
θ̂
)

are

obtained from the eigenvalues and the eigenvectors ofDn
(
θ̂
)
. The replacement

of θ by θ̂ in the calculation is justified by the consistency ofθ̂ irrespective of the

existence of contamination. In fact,
n−m

∑
j=1

λ̄n j(θ̂)
{
Yj + µ̄ j

(
θ̂
)}2−

n−m

∑
j=1

λ̄n j(θ)
{
Yj + µ̄ j (θ)

}2

converges to 0 in probability asn tends to infinity. It follows from the strong

consistency of̂θ given by Woodward et al. (1984) and Lemma 2.

Example 1

An example for the approximation of the distribution function ofW2
n

(
θ̂
)

by that of

∑n−m
j=1 λ̄n j

(
θ̂
){

Yj + µ̄n j
(
θ̂
)}2

is shown in Figure 4.1. The distributionF(x,θ) is

the exponential distribution with mean 0 and the distribution of the contamination

G(x) is the normal distribution with mean 7 and variance 1 in this experiment. The

sample size isn= 100. In Figure 4.1 the broken lines stand for the distribution of

∑n−m
j=1 λ̄n j

(
θ̂
){

Yj + µ̄n j
(
θ̂
)}2

. The R function “imhof ” developed by Duchesne

and De Micheaux (2010) is used for calculating the probability of the distribution

of the weighted sum of non-central chi-squared random variables with 1 degree

of freedom. The solid lines stand for the distributions of ofW2
n

(
θ̂
)

obtained from

30,000 times random number experiments. Three gray scales, black, dark, and

light, are used for indicating different rates of contamination,ε = 0,0.25,0.5,

respectively. Figure 4.1 shows that the approximation works fine even whenn=

100. The figure also shows that the distribution slightly shifts toward the right as

ε increases. Such an insensitivity ofW2
n

(
θ̂
)

will lead us the robustness of the test

shown in Section 4.5.

Practical procedure to obtain the weights for the goodness-of-fit test

In the Craḿer-von Mises goodness-of-fit test, we only need to obtain the weights

λ̄n j
(
θ̂
)
, j = 1,2, . . ., because the distribution ofWn

(
θ̂
)

when no contamination
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Figure 4.1: Distribution functions ofW2
n

(
θ̂
)

when the observations are
contaminated.

exists can be approximated as∑n−m
j=1 λ̄n j

(
θ̂
)
Y2

j . Noting that B = I when no

contamination exists, a practical procedure for obtaining
{

λ̄n j
(
θ̂
)}

would be

1. Obtain the eigenvalues and the eigenvectors ofSnS⊤n to makeΛn andPn by

a singular value decomposition ofSn.

2. Find the eigenvalues of
{

I −U
(
θ̂
)
U
(
θ̂
)⊤}Λn, where U(θ̂) is an

orthogonal matrix obtained by a singular value decomposition ofPnZn(θ̂)

asPnZn(θ̂) =U
(
θ̂
)

D
(
θ̂
)
V
(
θ̂
)⊤

.

3. The squared values of the eigenvalues obtained in 2. are
{

λ̄n j
(
θ̂
)}

.

Note that it is enough to obtainΛn andPn only once, since those matrices are

solely determined from the constant matrixSn.

Example 2

Here we demonstrate the validity of the approximation through the critical values

for the Craḿer-von Mises goodness-of-fit test when the parameters are estimated
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by the minimum distance method. As a simple example, consider the gamma

distribution with shapeν > 0 and scalea> 0. The probability density function is

f (x,θ) =
1

aΓ(ν)

(x
a

)ν−1
exp
(
−x

a

)
with θ = (ν ,a). The elements ofZn(θ) is calculated by using the formulas

g1(u,θ) =−uψ(ν)−uloga+
∫ F−1(u,θ)

0
f (x,θ) logx dx

and

g2(u,θ) =−F−1(u,θ)
a

f (F−1(u,θ),θ)

with the digamma functionψ(ν) = d
dν logΓ(ν). We have performed 30,000 times

random number simulations for the caseν = 2 anda = 1. For each sample, the

parameters are estimated by the minimum distance method and the critical value

for the significance levelα is obtained from the distribution of∑n−m
j=1 λ̄n j

(
θ̂
)
Y2

j .

The R function “qchiapprox” developed by Tong et al. (2010) is used for obtaining

the critical value of the distribution of the weighted sum of chi-squared random

variables with 1 degree of freedom. Table 4.1 shows the proportion of acceptance

of the null hypothesis in the 30,000 times random number simulations for eachα

andn= 50,100,150,200. It shows that the proportion is close to theα as far as

α ≥ 0.8 even ifn= 50.

Table 4.1: Validation of the approximation in the case of the gamma distribution.

n\α 0.8 0.85 0.9 0.95 0.99
50 0.828 0.872 0.918 0.960 0.992

100 0.814 0.862 0.909 0.956 0.991
150 0.810 0.859 0.906 0.955 0.991
200 0.808 0.857 0.905 0.954 0.990
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4.4 Equivalence of the weights in the asymptotic
distribution of Wn

(
θ̂
)

In this section, we show that the weights
{

λ̄ j
}

in the asymptotic distribution of

Wn
(
θ̂
)

given in Theorem 7 can be obtained as the eigenvalues of two different

integral equations. This equivalence implies that the weights can be obtained by

solving the infinite-dimensional matrix or the integral equations. In our result, the

infinite-dimensional matrix is derived as the limit of the finite-dimensional matrix.

Therefore, it is a natural way to use the eigenvalues of the finite-dimensional

matrix as an approximation of the weights, which we have demonstrated in the

previous section.

As we have introduced in Section 1.2, the asymptotic distribution of the

Craḿer-von Mises statistic when the parameters are estimated by a general

estimation method and no contamination exists is well known. Along with the

known result, the asymptotic distribution of the statistic when the parameters are

estimated by the minimum distance method is given as a distribution of a infinite

weighted sum of chi-squared random variables with 1 degree of freedom, where

the weights are the eigenvalues of the integral equation

λ f (u) =
∫ 1

0
ρ(u,v) f (v)dv (4.8)

with the kernel function

ρ(u,v) = ρ0(u,v)−g(u,θ)⊤h(v)−h(u)⊤g(v,θ)+g(u,θ)⊤Σ g(v,θ). (4.9)

Hereρ0(u,v) is given in Proposition 1,

h(u) = lim
n→∞

E

[
√

n

{
1
n

n

∑
i=1

1F(Xi ,θ)<u−u

}{√
n
(
θ̂−θ

)}]
,

and

Σ = lim
n→∞

nE
{(
θ̂−θ

)(
θ̂−θ

)⊤}
.
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For example, Beran (1984) gave an explicit representation ofρ(u,v) in the case

of the minimum distance estimator.

We first give the following lemma to prove that the eigenvalues
{

λ̄ j
}

of the

matrix D∞(θ) in Proposition 3 are also those of the integral equation (4.8).

Lemma 3.

ρ(s, t) =
∫ 1

0

∫ 1

0
h(s,u)h(t,v)ρ0(u,v)dudv,

where h(u,v) is given in Proposition 3.

Proof. We first note that

h(u) = E

{
w(u)A−1

∫ 1

0
w(v)g(v,θ)dv

}
= A−1

∫ 1

0
ρ0(u,v)g(v,θ)dv,

whereu = F(x,θ) andw(u) is a Brownian bridge and the limit of the empirical

process
√

n{Fn(x)−F(x,θ)}. Next we see that

Σ = A−1
[∫ 1

0

∫ 1

0
E{w(u)w(v)}g(u,θ)g(v,θ)⊤dudv

]
A−1

= A−1
{∫ 1

0

∫ 1

0
ρ0(u,v)g(u,θ)g(v,θ)

⊤dudv

}
A−1

because
√

n
(
θ̂−θ

)
converges toA−1∫ 1

0 w(u)g(u,θ)du. The desired result

follows from (4.9) and the representations ofh(u) andΣ given above.

Proposition 5.
{

λ̄ j
}

are also the eigenvalues of the integral equation (4.8).

Proof. It is easily verified that the function

f (u) =
∫ 1

0
h(u,v)

{
∞

∑
k=1

λ
1
2

k fk(v)q
( j)
k

}
dv

is the solution of (4.8) forλ = λ̄ j from Lemma 3 and the fact thatρ0(u,v) can be

written by usingf j(u), j = 1,2, . . . , in Proposition 1 as

ρ0(u,v) =
∞

∑
j=1

λ j f j(u) f j(v). (4.10)
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For the proof of the converse, we first note that the kernel functionρ(u,v)

is a compact operator because it is bounded and continuous. The integral

equation (4.8) thus has only discrete bounded spectra,λ̌1 ≥ λ̌2 ≥ . . .. Denote

the corresponding eigenfunctions asf̌1(u), f̌2(u), . . ., then it becomes clear that

the infinite-dimensional vector ˇq j with the elements

q̌( j)
k = λ

1
2

k

∫ 1

0

∫ 1

0
fk(u)h(u,v) f̌ j(v)dudv, k= 1,2, . . . ,

is also the solution of (4.4) forλ = λ̌ j from Lemma 3 together with (4.10).

It is also interesting to note that a simpler kernel function of the integral

equation instead of (4.9) is available in the case of the minimum distance

estimator. The reason is that
√

n
(
θ̂−θ

)
can be approximated by a simple

function of the empirical process.

Proposition 6. The
{

λ̄ j
}

are also the eigenvalues of the integral equation

λ f (u) =
∫ 1

0
ζ (u,v) f (v)dv (4.11)

with the kernel function

ζ (u,v) = ρ0(u,v)−h(u)⊤g(v,θ),

where

h(u) = A−1
∫ 1

0
ρ0(u,v)g(v,θ)dv.

Proof. Similarly as in the proof of Proposition 5, the function

f (u) =
∞

∑
k=1

λ
1
2

k fk(u)q
( j)
k

is the solution of (4.11) forλ = λ̄ j , and

q̃( j)
k = λ

1
2
j

∫ 1

0

∫ 1

0
f j(u)h(u,v) f̃k(v)dudv

is the solution of (4.4) forλ = λ̃ j , where f̃k(v), k= 1,2, . . . , are the eigenfunctions

for (4.11) with λ̃1 ≥ λ̃2 ≥ ·· · . Therefore,
{

λ̄ j
}

are also the eigenvalues of the

integral equation (4.11).
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4.5 Robustness

In this section, we investigate the robustness of the Cramér-von Mises statistic

when the parameters are estimated by the minimum distance method. Several

theoretical results are developed from the robustness of the minimum distance

estimator to that of the test statistic. To compare with the case that the parameters

are estimated by the maximum likelihood method, the numerical experiments are

presented.

4.5.1 Minimum distance estimators and their robustness

In general, a minimum distance estimator is referred as “an estimator chosen

to minimize a certain distance of two functions.” General review and the

bibliography of the minimum distance estimator can be found in Parr (1981).

Because of its general name, there are various kinds of estimators called

“minimum distance estimator.” A fundamental difference comes from functions

to be measured for the distance. In this context, we focus on distribution functions,

that is, the distance between an empirical distribution function and a distribution

function is focused. For the distance based on probability density functions, see

Basu et al. (2011) for example.

Various characteristics of a minimum distance estimator which is chosen to

minimize a distance based on the empirical distribution functionFn(x) and the

distribution functionF(x,θ) are investigated. Sahler (1970) gave conditions

under which minimum distance estimators exist and are consistent. Bolthausen

(1977) showed the weak convergence of minimum distance estimators for general

parameters than location parameters and other norm than integral-type ones.

One of the advantages of using minimum distance estimators is their

robustness. Robustness is a word widely used in many senses and there

are many results showing the robustness of minimum distance estimators. In

Parr and Schucany (1980), Monte Carlo results show that minimum distance

estimators are competitive with other estimators in the sense of the variance of



92 Chapter 4. Asymptotic behavior of the Cramér-von Mises statistic

the location parameter of a symmetric distribution. A mathematical framework

for describing the robustness of minimum distance estimators is constructed by

Millar (1981). Donoho and Liu (1988) showed that minimum distance estimators

are “automatically” robust, in the sense of the stability of the quantity estimated.

In addition to the results for general minimum distance estimators described

above, the robustness of the minimum distance estimator which is chosen to

minimize the Craḿer-von Mises statistic is also studied by many researchers.

Woodward et al. (1984) demonstrated by numerical experiments that the minimum

distance estimator is better than the maximum likelihood estimator under

symmetric departures from normality of each component in normal mixture

models. Since then, the minimum distance estimator is often used in practice for

mixture models to avoid instability of the identification of the distribution due to

small number of outlying observations (Beutner and Bordes, 2011, Garcı́a-Dorado

and Marin, 1998). The robustness based on the influence function for complete

and grouped data is considered in Duchesne et al. (1997). Moreover, the minimum

distance estimator which is chosen to minimize the Cramér-von Mises statistic

shares the same loss function with the goodness-of-fit test if we adopt the

Craḿer-von Mises statistic as a goodness-of-fit test statistic. It seems natural to

employ the same loss function for both parameter estimation and a goodness-of-fit

test.

4.5.2 Millar’s robustness and the minimum distance estimator

We first introduce the result on the robustness given by Millar (1981) because it

is suitable for considering the relationship between a minimum distance estimator

and a test statistic. LetH be a finite measure onR1 and define| · |H and⟨·, ·⟩H

to be norm and inner product ofL2(H). Millar (1981) considered a risk of

parameter estimation when observations are from a contaminated distribution

Gnq(x) = F(x,θ)+ 1√
nq(x), whereq is in N(c) =

{
q∈ L2(H);

∫
q(x)dH(x)< c

}
and chosen so thatGnq(x) is a distribution function, and proved that under suitable
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regularity conditions,

lim
n

inf
θ̃

sup
q∈N(cn)

n
∫ ∣∣F(·,θ ∗)−F(·, θ̃)

∣∣2
H dGn

nq ≥ E
{
|πw(F(·,θ))|2H

}
(4.12)

for any increasing sequencecn. Here an operatorπ is an orthogonal projection

in L2(H) to the subspaceΣ = {⟨θn−θ,ξ ⟩;θn ∈ Rm}, where| · | and⟨,⟩ are the

Euclidean norm and inner product andξ is a function such that⟨θn − θ,ξ ⟩ ∈
L2(H) for all θn and

|F(·,θn)−F(·,θ)−⟨θn−θ,ξ ⟩|H = o(|θn−θ|)

for anyθn which goes toθ. Theθ∗ is the pseudo true value which attains

inf
θ

∣∣Gnq(·)−F(·,θ)
∣∣
H =

∣∣Gnq(·)−F(·,θ∗)
∣∣
H

andw(u) is a Brownian bridge. Millar (1981) defined any sequence of estimators

θn for which the limiting minimax risk,

lim
n

sup
q∈N(cn)

n
∫

|F(·,θ ∗)−F(·,θn)|2H dGn
nq

in this case, is equal to the lower bound of (4.12) as “H-robust” and showed that

an estimatorθ′ that attains

inf
θ
|Fn(·)−F(·,θ)|H =

∣∣Fn(·)−F(·,θ′)
∣∣
H

is “H-robust.” The following lemma shows that the lower bound of (4.12) can be

written in other form.

Lemma 4.

E
{
|πw(F(·,θ))|2H

}
= lim

n→∞
nE

{∣∣∣(θ′0−θ)⊤g(F(x,θ),θ)
∣∣∣2
H

}
, (4.13)

whereθ′0 is the estimator which satisfies

inf
θ

∣∣F0
n (·)−F(·,θ)

∣∣
H =

∣∣F0
n (·)−F(·,θ′0)

∣∣
H

and F0
n (x) is the empirical distribution function for observations from F(x,θ).
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Proof. SinceF0
n (x) is the empirical distribution function for observations from

F(x,θ), the empirical process
√

n
{

F0
n (x)−F(x,θ)

}
converges to a Brownian

bridgew(F(x,θ)) so that the left hand side of (4.13) is equal to

lim
n→∞

nE
{∣∣π (F0

n (·)−F(·,θ)
)∣∣2

H

}
.

We have

π
(
F0

n (·)−F(·,θ)
)
= π

(
F0

n (·)−F(·,θ′0)
)
+π

(
F(·,θ′0)−F(·,θ)

)
(4.14)

and it is shown as follows that the first term on the right hand side of (4.14)

converges to 0 asn tends to infinity. Noting thatθ′0 satisfies

⟨
F0

n (·)−F(·,θ′0), g(F(·,θ),θ′0)
⟩
= 0,

it follows that

⟨
F0

n (·)−F(·,θ′0), F(·,θ′0)−F(·,θ)
⟩

=
⟨

F0
n (·)−F(·,θ′0),

(
θ′0−θ

)⊤
g(F(·,θ),θ′0)+o(|θ′0−θ|)

⟩
converges to 0 asn tends to infinity. Then the first term on the right hand side of

(4.14) converges to 0 asn tends to infinity becauseπ is the orthogonal projection

to Σ.

The second term on the right hand side of (4.14) is asymptotically equal to

π
((
θ′0−θ

)⊤ ∂
∂θ

F(x,θ)

)
=
(
θ′0−θ

)⊤
g(F(x,θ),θ)

from a Taylor expansion

F(x,θ)−F(x,θ′0) =
(
θ′0−θ

)⊤
g(F(x,θ),θ)+o(|θ |)

and the proof is complete.
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In the case of the minimum distance estimator

The result of Lemma 4 is easily interpreted in the case that observations are from

the contaminated distributionFε(x,θ) and the parameters are estimated by the

minimum distance method, which is the estimation method of finding the value

θ̂ which makes the Craḿer-von Mises statistic a minimum. Consider the case

H(x) = F(x,θ) andGnq(x) = Fε(x,θ) with q(x) = ε {G(x)−F(x,θ)}, then the

following theorem is derived from Millar’s result and Lemma 4.

Theorem 8. For any increasing sequence cn,

lim
n→∞

inf
θ̃

sup
ε<cn,G(x)

nEFε

[∫ ∞

−∞

{
F(x,θ∗)−F(x, θ̃)

}2
dF(x,θ)

]

≥
∫ 1

0

∫ 1

0
ρ0(u,v)g

⊤(u,θ)A−1g(v,θ)dudv, (4.15)

whereθ∗ attains

inf
θ

∫ ∞

−∞
{Fε(x,θ)−F(x,θ)}2dF(x,θ) =

∫ ∞

−∞
{Fε(x,θ)−F(x,θ∗)}2dF(x,θ).

Proof. It follows from Lemma 4 that we only need to calculate

lim
n→∞

nE

[∫ ∞

−∞

{(
θ̂−θ

)⊤
g(F(x,θ),θ)

}2
dF(x,θ)

]
,

where θ̂ is the minimum distance estimator and estimated from observations

following the distributionF(x,θ). The proof is complete from the fact that
√

n
(
θ̂−θ

)
converges toA−1∫ 1

0 w(u)g(u,θ)du, which is also used in the proof

of Lemma 3.

As shown by Millar (1981), the minimum distance estimatorθ̂ is robust in this

framework of the robustness. The following result also shows that the limiting risk

for θ̂

lim
n→∞

nEFε

[∫ ∞

−∞

{
F(x,θ∗)−F(x, θ̂)

}2
dF(x,θ)

]
does not depend onG(x) andε.
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Remark 1. For the minimum distance estimatorθ̂,

lim
n→∞

nEFε

[∫ ∞

−∞

{
F(x,θ∗)−F(x, θ̂)

}2
dF(x,θ)

]

=
∫ 1

0

∫ 1

0
ρ0(u,v)g

⊤(u,θ)A−1g(v,θ)dudv. (4.16)

For the minimum distance estimator, it follows from Remark 1 that the

limiting risk attains the lower bound (4.15), however, it does not always attain for

other estimators. As an example, we consider an M-estimatorθ̄, which satisfies

∑n
j=1ψ

(
Xj , θ̄

)
= 0, whereψ(x,θ) is am-dimensional function and differentiable

with respect toθ. M-estimators are proposed by Huber (1964) as a generalization

of the maximum likelihood estimator.

Remark 2. For the M-estimatorθ̄ ,

lim
n→∞

nEFε

[∫ ∞

−∞

{
F(x,θ∗)−F(x, θ̄)

}2
dF(x,θ)

]

=
∫ 1

0
g⊤(u,θ)

{
A−1qq⊤A−1−A−1qr⊤Ψ−1

1

− Ψ−1
1 rq

⊤A−1+Ψ−1
1

(
Ψ−1

2 +rr⊤
)

Ψ−1
1

}
g(u,θ)du, (4.17)

whereq andr are m-dimensional vectors such that

q = ε
∫ 1

0

{
G(F−1(u,θ))−u

}
g(u,θ)du

r = ε
∫ ∞

−∞
{g(x)− f (x,θ)}ψ(x,θ)dx

andΨ1 andΨ2 are m×m matrices such that

Ψ1 =
∫ ∞

−∞

∂
∂θ⊤

ψ(x,θ)dF(x,θ)

Ψ2 =
∫ ∞

−∞
ψ(x,θ)ψ(x,θ)⊤dF(x,θ).

It can be seen from Remark 2 that the limiting risk for the M-estimator (4.17)

depends onG(x) andε, while the limiting risk for the minimum distance estimator

(4.16) does not. The difference is demonstrated in the following example.
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Example 3

In this example, we consider the case whereF(x,θ) = Φ(x−θ0) with θ = θ0 and

G(x) = Φ(x−θ1), whereΦ(x) is the distribution function of the standard normal

distribution. Then, we have

Fε(x,θ) =

(
1− ε√

n

)
Φ(x−θ0)+

ε√
n

Φ(x−θ1),

which is the normal distribution contaminated with another normal distribution.

We here note that the results on the calculations of the distribution function and

the probability density function of the normal distribution given by Owen (1980)

and Patel and Read (1996) are used in the following calculations. As shown in the

previous, the lower bound (4.15) does not depend onG(x) andε and becomes

√
12π

{∫ ∞

−∞

∫ ∞

−∞
min(Φ(x),Φ(y))φ2(x)φ2(y)dxdy− 1

16π

}
, (4.18)

whereφ(x) is the probability density function of the standard normal distribution.

Here we consider a simple example of M-estimators, such thatψ(x,θ) =

[x−θ ]b−b, where[y]b−b = y for |y| < b and 0 otherwise. Then the limiting risk

is given as

1√
12π

(
1

Φ(b)−Φ(−b)
+ ε2

[
−
√

3π
2

{
Φ

(√
2θ2√
3

)
− 1

2

}

+
φ(b+θ2)−φ(−b+θ2)−θ2{Φ(b+θ2)−Φ(−b+θ2)}

Φ(b)−Φ(−b)

]2
)

with θ2 = θ0 − θ1. In particular, the limiting risk for the maximum likelihood

estimator, which is the caseb= ∞ in the estimator given above, is given as

1√
12π

1+ ε2

[
−
√

3π
2

{
Φ

(√
2θ2√
3

)
− 1

2

}
−θ2

]2
 .

Figure 4.2 illustrates the limiting risk curves for the minimum distance

estimator (MDE), the maximum likelihood estimator (MLE), and the
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M-estimators (M (b = 2), M (b = 3), M (b = 4) ) againstε and |θ0−θ1|,
respectively. For both cases the limiting risk curves for the minimum distance

estimator, which is given by (4.18), are obtained by a Monte Carlo simulation with

1,000,000 replications. These results show that the limiting risk of the minimum

distance estimator is a little larger than those of other estimators for very small

ε and for very small|θ0− θ1|, however, the limiting risk curve stays whenε or

|θ0− θ1| increases, while those of other estimators increase, especially whenε

increases.

4.5.3 The Craḿer-von Mises statistic when an estimator is
plugged in

Here we investigate the property of the Cramér-von Mises statistic when

contamination exists using the robustness of the parameters, which we have shown

in the previous section. Noting that for any estimatorθ̃, we have

n
∫ ∞

−∞
{Fn(x)−F(x,θ∗)}2dF(x,θ)

= n
∫ ∞

−∞

{
Fn(x)−F(x, θ̃)

}2
dF(x,θ)+ξ1

(
θ̃
)
−ξ2

(
θ̃
)
,

where

ξ1
(
θ̃
)
= n

∫ ∞

−∞

{
F(x,θ∗)−F(x, θ̃)

}2
dF(x,θ)

and

ξ2
(
θ̃
)
= 2n

∫ ∞

−∞

{
Fn(x)−F(x, θ̃)

}{
F(x,θ∗)−F

(
x, θ̃
)}

dF(x,θ),

the Craḿer-von Mises statisticW2
n

(
θ̃
)

can be divided into three parts as

W2
n

(
θ̃
)
= n

∫ ∞

−∞
{Fn(x)−F(x,θ∗)}2dF(x,θ)−ξ1(θ̃)+ξ2(θ̃). (4.19)

We can see that the first term on the right hand side of (4.19) is independent of the

estimatorθ̃ and the limit of the expectation ofξ1
(
θ̃
)

is the limiting risk, which

we have evaluated in the previous section.
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Figure 4.2: Comparisons of the limiting risks for the minimum distance estimator,
the maximum likelihood estimator, and the M-estimators.
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If the minimum distance estimator̂θ is used, the limit distribution ofξ1
(
θ̂
)

is independent ofG(x) andε and the limit of the expectation ofξ1
(
θ̂
)

is given

as a constant, as shown in Remark 1. In addition, we haveξ2
(
θ̂
)
= 0 since the

minimum distance estimator̂θ satisfies∫ ∞

−∞

{
Fn(x)−F

(
x, θ̂
)}
g(F(x,θ),θ)dF(x,θ)

∣∣
θ=θ̂

= 0.

Therefore, the Craḿer-von Mises statistic when the parameters are estimated by

the minimum distance method can be divided into two parts; the term independent

of the estimator and the term independent ofG(x) andε .

These characteristics are distinctive of the estimator becauseξ1
(
θ̃
)

usually

depends onG(x) andε andξ2
(
θ̃
)

is not always 0. We can see them in the case of

an M-estimatorθ̄ as an example. As we have shown, the limit of the expectation

of ξ1
(
θ̃
)

is (4.17). Note thatξ2
(
θ̄
)

is asymptotically equal to

2n

[(
θ∗− θ̄

)⊤ ∫ ∞

−∞
{Fn(x)−Fε(x,θ)}g(F(x,θ),θ)dF(x,θ)+ξ1(θ̄)

]
.

If ψ(x) is chosen asθ̄ to follow the normal distribution asymptotically,
√

n
(
θ∗− θ̄

)
converges to the normal distribution with meanA−1q−Ψ−1

1 r and

varianceΨ−1
1 Ψ2Ψ−1

1 andξ2
(
θ̄
)

depends onG(x) andε.

4.5.4 Power and robustness

In this section, via Monte Carlo simulations we compare the Cramér-von Mises

goodness-of-fit tests when the parameters are estimated by the minimum distance

method and by the maximum likelihood method.

In the following comparisons, we set as follows. The sample size here

is fixed at 200, the number of the replications in Monte Carlo simulations is

3,000, and the significance level is 0.1. Testing exponentiality indicates testing

the goodness-of-fit of the exponential distribution when the mean parameter

is estimated and testing normality indicates testing the goodness-of-fit of the

normal distribution when only the mean parameter is estimated and the variance
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parameter is fixed as 1 as the known parameter. The solid line in each panel is for

the case of the minimum distance estimator and the dotted line is for the case of

the maximum likelihood estimator.

The power curves when no contamination exists are drawn in Figure 4.3.

Figure 4.3 (a) shows the power curves for testing exponentiality when

observations are from the gamma distribution with shapeν and scale 1 and

Figure 4.3 (b) shows the power curves for testing normality when observations

are from Student’st-distribution, which has the probability density function

f (x,d) =
Γ
(

d+1
2

)
√

dπΓ
(

d
2

) (1+
x2

d

)− d+1
2

with the parameterν = 1/d, whered is the number of degrees of freedom. The

power curves are drawn against the shape parameterν in Figure 4.3 (a) and the

parameterν = 1/d in Figure 4.3 (b), respectively. These results suggest that

there is no significant difference between the minimum distance and the maximum

likelihood estimator when no contamination exists.

On the other hand, the rejection probability of the Cramér-von Mises

goodness-of-fit test of a distributionF(x,θ) when the observations follow

the distribution Fε(x,θ) are shown in Figure 4.4. The distribution of the

contaminationG(x) is the normal distribution with mean 7 and variance 1.

Figure 4.4 (a) is for the case testing exponentiality when the distributionF(x,θ)

is the exponential distribution with mean 1 and Figure 4.4 (b) is for testing

normality when the distributionF(x,θ) is the standard normal distribution. It

is observed from both figures that the rejection probability quickly increases for

the maximum likelihood estimator, while it does not for the minimum distance

estimator. These results indicate that the use of the minimum distance estimator

makes the goodness-of-fit test robust to contamination.
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Figure 4.3: Power curves against the parameterν .
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(b) Testing normality.

Figure 4.4: Rejection probabilities against the rate of contaminationε.
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4.6 Concluding remarks

The asymptotic distributions of the Cramér-von Mises statistic are derived when

the observations are contaminated for both cases where the parameters are known

and where the parameters are estimated by the minimum distance method. These

results are consistent to the known result when no contamination exists. For both

cases, the asymptotic distribution is given as a distribution of a weighted infinite

sum of non-central chi-squared random variables with 1 degree of freedom and

the effect of contamination on the asymptotic distribution appears only in the

non-centralities. Moreover, the derivations of the asymptotic distributions suggest

a simple procedure to obtain the approximation of distribution of the Cramér-von

Mises statistic.

We also show that the extension of the Millar’s result on robustness of the

minimum distance estimator associates with the robustness of the Cramér-von

Mises goodness-of-fit test. Numerical experiments indicate that the use of

the minimum distance estimator makes the test less sensitive to contamination,

although the power of the test stays almost the same as that for the maximum

likelihood estimator. Such insensitivity would be harmful when the aim of the test

is to detect the existence of contamination. However, it becomes an advantage

if the aim of the test is to check whether the underlying probability distribution

model can be used or not. It often happens in practice that the hypothesis testing is

not a goal but the beginning of an analysis. In such case the robust goodness-of-fit

test, which is insensitive to small number of contaminations, would be preferred.





Chapter 5

Conclusion

We have investigated the role of the goodness-of-fit test of distributions from two

case studies and the asymptotic behavior of the Cramér-von Mises statistic when

contamination exists.

In the first case study, the trawling effect is verified by using the gamma

distribution, which is derived as the equilibrium distribution of the stochastic

growth model, as a model of the weight of animals on seabed. To examine the

goodness-of-fit of the gamma distribution to the weight distribution, we have used

the extended version of the Cramér-von Mises statistic because the observations

are independent but not identically distributed. It is shown that the gamma

distribution can be used for the model of the weight distribution before trawling

for 57 cases out of 80. For 47 cases with large enough sample size of the data

after trawling out of the 57 cases, we have classified the change of the weight

distribution into three types: unaffected, lighter, and changed. The classification

is based on the goodness-of-fit test of the gamma distribution with the parameters

estimated from the observations before trawling and on the direction of the change

of the weight distribution observed from the P-P plots. The results show the effect

of trawling on the weight distribution of animals on seabed through the change of

distribution.

In the second case study, a mixture distribution model is derived for the

carapace length of banana prawns to investigate the effect of freshwater flows.

105
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The model is a mixture of two kinds of probability distributions, for a cohort

stayed in the estuary and for a cohort migrated from offshore waters to the estuary,

derived by combining models for the carapace increment and for the survival

rate. It is shown that the model can be used for 15 cases out of 19 by using

the Craḿer-von Mises statistic for discrete distributions. For these 15 cases, the

model can explain the effects of the changes in temperature and salinity of water

caused by freshwater flows on the growth of banana prawns.

For both case studies, the goodness-of-fit of the probability distribution model

is examined by the Craḿer-von Mises type statistics. As described in both case

studies, the goodness-of-fit test is not a goal but the beginning of the analysis.

For example, in the first case study, the goodness-of-fit test of the gamma

distribution to the weight distribution of animals on seabed before trawling is just

for validating whether the model can be used or not to give an approximation of

the weight distribution. This is because the purpose of the analysis is to investigate

the effect of trawling, not to judge whether the weights of animals on seabed

follow the gamma distribution or not. From this point of view, the robustness

of goodness-of-fit test to contamination would be attractable when one wishes to

give an approximation model to analyze the data.

Theoretical studies of the asymptotic behavior of the Cramér-von Mises

statistic when contamination exists provide a key to the robust method of the

goodness-of-fit test. The asymptotic distribution of the Cramér-von Mises statistic

for contaminated data is derived as a distribution of a weighted infinite sum of

non-central chi-squared random variables with 1 degree of freedom for both cases

when the parameters are known and when the parameters are estimated by the

minimum Craḿer-von Mises distance method. The effect of the contamination

appears only in the non-centralities. We extended the mathematical framework of

the robustness of the minimum distance estimator to that of the goodness-of-fit test

statistic. The theoretical results and the numerical experiments show that using

the minimum distance estimator makes the Cramér-von Mises goondess-of-fit test

robust.
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Goodness-of-fit test is often investigated from the view point of detecting

the existence of contamination, so that robust property is not much of interest.

However, the robustness would become a good property when the aim of the

test is to check whether the probability distribution model is applicable or not,

for example, in the two case studies we have explored. This is because it often

happens in practice that there is small number of contaminations in the data and

the goodness-of-fit test lies the beginning of the analysis. We hope that our results

will help to connect between theoretical studies and practical demands.
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Table A.1: Goodness-of-fit of the gamma distribution before trawling.

Case Class Family Scientific name Region n

1 Hydrozoa Hydroid OPNO 006 East 12
2 Hydrozoa Hydroid OPNO 156 West 20
3 Hydrozoa Hydroid OPNO 184 East 25
4 Hydrozoa Hydroid OPNO 201 East 6
5 Gymnolaemata Flustridae Retiflustra cornea East 18
6 Gymnolaemata Cheilostomata sp OPNO 142 West 7
7 Gymnolaemata Cheilostomata sp OPNO 142 East 17
8 Gymnolaemata Scrupocellaria sp OPNO 215 East 7
9 Gymnolaemata Bryozoan OPNO 142a West 11

10 Gymnolaemata Bryozoan OPNO 142b West 21
11 Gymnolaemata Bryozoan OPNO 171a East 16
12 Gymnolaemata Bryozoan OPNO 171b East 16
13 Gymnolaemata Bryozoan OPNO 203 East 21
14 Gymnolaemata Bryozoan OPNO 216 East 9
15 Polychaeta Tubeworm OPNO 006 East 21
16 Bivalvia Nuculidae Leionucula superba East 6
17 Bivalvia Glycymerididae Melaxinaea vitrea East 14
18 Bivalvia Malleidae Malleus (Malleus) malleus East 25
19 Bivalvia Pectinidae Amusium pleuronectes East 9
20 Bivalvia Pectinidae Annachlamys flabellata East 13
21 Bivalvia Spondylidae Spondylidae OPNO 193 East 18
22 Bivalvia Cardiidae Cardiidae OPNO 151 West 9
23 Bivalvia Veneridae Lioconcha sp OPNO 004 East 7
24 Bivalvia Veneridae Placamen sp OPNO 156 West 10
25 Gastropoda Neritidae Neritidae OPNO 142 West 10
26 Gastropoda Modulidae Modulidae OPNO 151 West 9
27 Gastropoda Strombidae Strombus sp OPNO 142 West 13
28 Gastropoda Strombidae Strombus sp OPNO 150 West 9
29 Gastropoda Muricidae Chicoreus sp OPNO 184 East 24
30 Gastropoda Muricidae Murex sp OPNO 002 East 8
31 Gastropoda Muricidae Murex sp OPNO 172 East 9
32 Gastropoda Cerithiidae Cerithiidae OPNO 142 West 21
33 Gastropoda Cancellariidae Cancellariidae OPNO 151 West 10
34 Gastropoda Architectonicidae Architectonica sp OPNO 151 West 8
35 Gastropoda Smaragdinellidae Smaragdinellidae OPNO 151 West 15
36 Asteroidea Luidiidae Luidiidae OPNO 006 East 22
37 Asteroidea Astropectinidae Astropectinidae OPNO 006 East 18
38 Asteroidea Astropectinidae Astropectinidae OPNO 142 West 26
39 Asteroidea Goniasteridae Stellaster sp OPNO 006a East 9
40 Asteroidea Goniasteridae Stellaster sp OPNO 006b East 9
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Case (again) shapêν (SE) scaleα̂ (SE) W̃2
n

(
θ̂
)

p -value

1 0.674(0.236) 3.712(1.774) 0.045 0.653
2 1.140(0.321) 0.967(0.339) 0.111 0.091∗
3 0.349(0.088) 6.127(1.651) 0.075 0.409
4 1.190(0.614) 1.366(0.871) 0.125 0.042∗
5 1.480(0.449) 0.439(0.158) 0.067 0.335
6 1.024(0.483) 1.168(0.702) 0.120 0.059∗
7 2.344(0.754) 1.947(0.698) 0.102 0.107
8 0.912(0.425) 2.124(1.300) 0.047 0.610
9 0.852(0.315) 4.030(1.989) 0.035 0.793

10 0.686(0.180) 13.502(5.021) 0.163 0.021∗
11 1.098(0.346) 2.918(1.120) 0.102 0.130
12 0.346(0.098) 546.803(279.095) 0.100 0.174
13 1.313(0.366) 24.512(8.162) 0.068 0.330
14 1.382(0.589) 14.952(7.657) 0.050 0.519
15 2.687(0.814) 0.062(0.019) 0.116 0.144
16 3.102(1.712) 0.721(0.423) 0.060 0.420
17 2.560(0.922) 3.187(1.210) 0.397 0.000∗
18 1.233(0.331) 6.478(1.814) 0.163 0.036∗
19 16.855(7.887) 0.783(0.370) 0.079 0.231
20 3.235(1.233) 3.514(1.385) 0.052 0.551
21 2.342(0.755) 3.467(1.154) 0.056 0.540
22 12.990(6.055) 0.353(0.167) 0.026 0.917
23 4.320(2.254) 0.660(0.354) 0.031 0.895
24 13.680(6.066) 0.117(0.053) 0.067 0.355
25 3.780(1.628) 0.496(0.226) 0.067 0.326
26 26.664(12.517) 0.064(0.030) 0.038 0.726
27 5.442(2.102) 0.936(0.367) 0.035 0.815
28 4.147(1.915) 0.752(0.355) 0.051 0.579
29 2.449(0.686) 1.211(0.351) 0.130 0.057∗
30 1.613(0.742) 1.775(0.940) 0.070 0.286
31 5.524(2.557) 0.600(0.284) 0.029 0.889
32 10.651(3.266) 0.077(0.024) 0.100 0.182
33 35.112(15.636) 0.043(0.019) 0.050 0.514
34 3.794(1.834) 1.459(0.740) 0.061 0.396
35 1.215(0.424) 0.779(0.278) 0.584 0.000∗
36 1.603(0.465) 0.655(0.197) 0.038 0.771
37 2.804(0.898) 0.726(0.243) 0.131 0.055∗
38 0.319(0.081) 4.116(1.154) 0.287 0.000∗
39 0.492(0.193) 132.040(78.797) 0.124 0.070∗
40 4.852(2.231) 6.010(2.842) 0.073 0.325
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Table A.1: (continued).

Case Class Family Scientific name Region n

41 Asteroidea Goniasteridae Stellaster sp OPNO 118 West 6
42 Asteroidea Goniasteridae Stellaster sp OPNO 118 East 22
43 Ophiuroidea Ophiuridae Ophiuroidea OPNO 171b East 9
44 Ophiuroidea Ophiuridae Ophiuroidea OPNO 171c East 19
45 Ophiuroidea Ophiuridae Ophiuroidea OPNO 177a East 7
46 Ophiuroidea Ophiuridae Ophiuroidea OPNO 006 East 24
47 Echinoidea Temnopleuridae Temnopleuridae OPNO 142 West 18
48 Echinoidea Temnopleuridae Temnopleuridae OPNO 203a East 18
49 Echinoidea Temnopleuridae Temnopleuridae OPNO 203b East 19
50 Echinoidea Laganidae Laganidae OPNO 142a West 18
51 Echinoidea Laganidae Laganidae OPNO 142a East 12
52 Echinoidea Laganidae Laganidae OPNO 142b West 6
53 Echinoidea Brissidae Brissidae OPNO 006 East 14
54 Crustacea Penaeidae Metapenaeopsis novaeguineae West 11
55 Crustacea Penaeidae Parapenaeopsis cornuta West 14
56 Crustacea Penaeidae Parapenaeopsis tenella West 8
57 Crustacea Diogenidae Dardanus imbricatus West 17
58 Crustacea Diogenidae Dardanus imbricatus East 12
59 Crustacea Paguridae Paguridae OPNO 142 West 11
60 Crustacea Dorippidae Dorippe sp OPNO 142a West 9
61 Crustacea Leucosiidae Leucosia whitei East 8
62 Crustacea Leucosiidae Leucosia ocellata East 17
63 Crustacea Leucosiidae Leucosia sp OPNO 142 West 13
64 Crustacea Leucosiidae Arcania sp OPNO 008 East 16
65 Crustacea Matutidae Matuta inermis West 11
66 Crustacea Matutidae Matuta granulosa West 14
67 Crustacea Majidae Hyastenus sp OPNO 214 East 9
68 Crustacea Majidae Hyastenus sp OPNO 054 West 6
69 Crustacea Majidae Majidae OPNO 154b West 8
70 Crustacea Parthenopidae Aulacolambrus hoplonotus East 14
71 Crustacea Parthenopidae Parthenope nodosus West 16
72 Crustacea Parthenopidae Parthenope longispinus East 7
73 Crustacea Parthenopidae Parthenope sp OPNO 060 West 10
74 Crustacea Portunidae Portunus (Portunus) pelagicus West 8
75 Crustacea Portunidae Portunus (Monomia) rubromarginatusWest 7
76 Crustacea Portunidae Portunus (Xiphonectes) hastatoides East 7
77 Crustacea Pilumnidae Pilumnus pugilator East 9
78 Ascidiacea Clavelinidae Clavelina sp OPNO 142 West 16
79 Ascidiacea Ascidacea Ascidian OPNO 211 East 11
80 Ascidiacea Diazonidae Rhopalaea crassa East 9
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Case (again) shapêν (SE) scaleα̂ (SE) W̃2
n

(
θ̂
)

p -value

41 0.641(0.319) 31.123(20.705) 0.087 0.186
42 0.468(0.126) 14.756(4.703) 0.142 0.043∗
43 2.149(0.973) 0.849(0.397) 0.065 0.450
44 5.041(1.622) 0.354(0.115) 0.151 0.027∗
45 2.683(1.359) 2.718(1.497) 0.064 0.356
46 1.415(0.394) 1.029(0.296) 0.058 0.499
47 1.742(0.561) 0.320(0.106) 0.023 0.970
48 0.684(0.207) 60.401(20.608) 0.128 0.079∗
49 2.388(0.748) 5.049(1.645) 0.075 0.293
50 1.773(0.571) 0.613(0.203) 0.327 0.000∗
51 6.750(2.722) 0.048(0.019) 0.051 0.610
52 5.018(2.858) 0.259(0.149) 0.035 0.868
53 1.007(0.354) 3.693(1.343) 0.041 0.826
54 1.728(0.695) 0.194(0.084) 0.110 0.097∗
55 1.213(0.420) 0.582(0.227) 0.128 0.070∗
56 4.142(2.010) 0.066(0.033) 0.030 0.899
57 1.382(0.443) 1.510(0.523) 0.100 0.162
58 4.953(1.966) 0.479(0.198) 0.058 0.421
59 3.405(1.411) 0.126(0.054) 0.053 0.559
60 0.528(0.211) 6.585(3.644) 0.053 0.544
61 27.462(13.660) 0.049(0.025) 0.071 0.293
62 69.968(23.958) 0.038(0.013) 0.130 0.056∗
63 2.144(0.812) 2.001(0.779) 0.082 0.285
64 6.768(2.356) 0.050(0.018) 0.136 0.052∗
65 1.851(0.745) 4.211(1.844) 0.171 0.009∗
66 0.743(0.245) 26.130(11.074) 0.184 0.012∗
67 1.760(0.770) 1.748(0.862) 0.037 0.767
68 10.607(6.030) 0.031(0.018) 0.027 0.924
69 4.163(2.024) 0.044(0.022) 0.040 0.721
70 1.136(0.395) 2.426(0.940) 0.050 0.576
71 1.414(0.474) 2.895(1.026) 0.064 0.425
72 6.572(3.441) 0.816(0.439) 0.091 0.159
73 7.953(3.498) 0.226(0.101) 0.038 0.770
74 0.229(0.091) 95.524(68.991) 0.266 0.002∗
75 0.690(0.314) 3.327(2.141) 0.091 0.172
76 22.983(12.203) 0.027(0.014) 0.036 0.781
77 5.297(2.443) 0.204(0.096) 0.045 0.648
78 0.443(0.147) 3.419(1.145) 0.049 0.699
79 2.655(1.093) 2.501(1.064) 0.058 0.508
80 2.825(1.265) 9.045(4.392) 0.117 0.060∗
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of the empirical process when parameters are estimated,Annals of Probability

7(5): 790–810.

Burridge, C. Y., Pitcher, C. R., Wassenberg, T. J., Poiner, I. R. and Hill, B. J.

(2003). Measurement of the rate of depletion of benthic fauna by prawn

(shrimp) otter trawls: an experiment in the Great Barrier Reef, Australia,

Fisheries Research60(2-3): 237–253.

119



120

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983).Graphical

Methods for Data Analysis, Wadsworth, Belmont.

Choulakian, V. and Stephens, M. A. (2001). Goodness-of-fit tests for the

generalized Pareto distribution,Technometrics43(4): 478–484.

Choulakian, V., Lockhart, R. A. and Stephens, M. A. (1994). Cramér-von

Mises statistics for discrete distributions,Canadian Journal of Statistics

22(1): 125–137.

Cochran, W. G. (1954). Some methods for strengthening the commonχ2 tests,

Biometrics10(4): 417–451.

Collie, J. S., Hall, S. J., Kaiser, M. J. and Poiner, I. R. (2000). A quantitative

analysis of fishing impacts on shelf-sea benthos,Journal of Animal Ecology

69(5): 785–798.

Conover, W. J. (1972). A Kolmogorov goodness-of-fit test for

discontinuous distributions,Journal of the American Statistical Association

67(339): 591–596.

D’Agostino, R. B. and Stephens, M. A. (1986).Goodness-of-fit Techniques,

Marcel Dekker, New York.

Darling, D. A. (1955). The Cramer-Smirnov test in the parametric case,Annals of

Mathematical Statistics26(1): 1–20.

Davidson, J. (1938). On the ecology of the growth of the sheep population

in South Australia,Transactions of the Royal Society of South Australia

62: 141–148.

Donoho, D. L. and Liu, R. C. (1988). The “automatic” robustness of minimum

distance functionals,Annals of Statistics16(2): 552–586.

Duchesne, P. and De Micheaux, P. L. (2010). Computing the distribution

of quadratic forms: Further comparisons between the Liu–Tang–Zhang

approximation and exact methods,Computational Statistics & Data Analysis

54(4): 858–862.



121

Duchesne, T., Rioux, J. and Luong, A. (1997). Minimum Cramér-von Mises

distance methods for complete and grouped data,Communications in Statistics

- Theory and Methods26(2): 401–420.

Durbin, J. (1973).Distribution Theory for Tests based on the Sample Distribution

Function, Society for Industrial and Applied Mathematics, Philadelphia.

Feldman, M. W. and Roughgarden, J. (1975). A population’s stationary

distribution and chance of extinction in a stochastic environment with

remarks on the theory of species packing,Theoretical Population Biology

7(2): 197–207.

Gan, F. F. and Koehler, K. J. (1990). Goodness-of-fit tests based on P-P probability

plots,Technometrics32(3): 289–303.
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