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Abstract

Water molecules play important roles in maintaining the cell membrane functions

and providing unique environments for biological reactions on cell membranes. In

this study, all-atom molecular dynamics simulations were performed to investigate

the dynamics of water molecules around cell membrane surfaces.

Firstly, we showed that temperature dependencies of water translational and

rotational motions near a membrane surface are different from those in bulk. De-

creasing temperature enhances the water retardation on the membrane surface,

and the lateral motions of water molecules are correlated with the vertical motions.

Next, we found anomalous dynamics of water molecules on membrane surfaces.

The translational and rotational diffusion of water molecules on the membrane sur-

faces exhibit subdiffusion and aging. The anomalous diffusion is attributed to both

divergent mean trapping time (continuous-time random walk) and long-correlated

noise (fractional Brownian motion). Moreover, we found that hydration dynamics

on the lipid membranes exhibits 1/f noise. Constructing a dichotomous process for

the hydration dynamics, we provided an evidence that the origin of the 1/f noise

is a combination of a power-law distribution with cutoff of interoccurrence times

of switching events and a long-term correlation between the interoccurrence times.

Finally, water permeation through an Aquaporin, which exclusively permeates wa-

ter molecules across cell membranes and regulate the osmotic pressure of the cell,

was investigated. Analyzing the effects of the conformational fluctuations of amino

acids on water permeation, we found that 1/f fluctuations of amino acids generate

non-Poisson water permeation in AQP1.

These results provide new insights on the water molecules that play important

roles for the function of cell membranes.
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Chapter 1

Introduction

1.1 Cell membrane

The cell membrane, also known as the plasma membrane or cytoplasmic mem-

brane, is a biological membrane which is mainly composed with lipid molecules and

membrane proteins [see Fig. 1.1]. The cell membrane surrounds the cell and con-

trols the interior environment segregating the intracellular environment from the

extracellular environment. It is involved in a variety of biological process such as

molecular transport, energy conversions, biological reactions, membrane remodel-

ing, and cell signaling. Lipid molecules and membrane proteins have diffusivities in

the cell membrane [1], where encounter and interaction of these biomolecules result

in physiological control of cell functions.

The most abundant component in cell membranes is phospholipids [2], which

have a single hydrophilic head group (glycerol, phosphate, and choline) and two hy-

drophobic hydrocarbon tails [see Fig 1.2]. The amphipathic lipids spontaneously ag-

gregate and form micelles or liposomes depending on conditions, where hydrophilic

head group interacts with aqueous environment and with each other, and hydropho-

bic tails are isolated from water. The lipid bilayer, which constitutes the cell mem-

brane and intracellular organelle membranes, works as a barrier rejecting the per-

meation of hydrophilic solutes across the membrane but accepting the permeation

of hydrophobic solutes [3–6]. Lipids adopt fluid and gel phases, which are character-

ized by a different spatial freedom of each lipid with respect to its neighbors. The

rheological properties of the lipid membrane enable coexistence of fluidity and rigid-

ity: the former is essential for the membrane protein assemblies and trafficking, and

the latter for stabilizing the structure of the lipid bilayer. Although the mechani-

cal properties of phospholipid monolayers have been investigated by microrheology
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experiments [7, 8], for the limited experimental window the rheological properties

of lipids have been controversial, viscosity [7, 9] or viscoelasticity [8, 10, 11]. Sin-

gle particle tracking can characterize the rheological properties of a medium if the

diffusion process is characterized by time-dependent memory function [12], i.e. the

current state is influenced by the past state. Single particle tracking of lipid bilayers

using simulations has shown the viscoelastic feature [13,14].

The lipid composition is different between intracellular organelles. The tail is

made of fatty acids, and length is varied (number 14-24 carbons). Typically one

of two contains cis-unsaturated fatty chains of varying lengths, and the other is

saturated fatty chains. There are more than 1000 kinds of lipids in a variety of com-

binations of hydrophilic head group and hydrophobic tails. The lipids are mainly

sorted into three types: phospholipid, cholesterol, and glycolipid. The main com-

position of lipids in mammalian cell membranes is glycerophospholipids such as

phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylser-

ine (PS) [see Fig. 1.2]. The other important compositions of the membrane are

sphingomyelin (SM) and cholesterol. These two lipids are concentrate in the lipid

raft domain [15]. The laterally segregated nanoscale domain also contains many pro-

teins which have function in membrane signaling and trafficking. The acyl chains

of lipids are accommodated in hydrophobic pockets of transmembrane proteins and

contribute to the protein function via protein lipid interactions, e.g. structural

stability, regulating channel opening and closing, and controlling the oligomer of

protein complexes [16, 17]. Lipids can act as not only second messengers but also

regulator of the function of transmembrane proteins.

1.2 Water molecules around lipid membranes

Approximately 70 % of human body is filled with water. Water in biology is not a

simple solvent but plays more active and essential roles with biomolecules in com-

plex and subtle ways [18,19]. The function of biomolecules depends on the structure

and dynamics of the hydration shell. Moreover, disruption of such interfacial wa-

ter, which reflects the abnormality of the well-balanced system, can be used as a

biomarker of diseases [20,21].

Water molecules around the lipid membranes are believed to be playing impor-

tant roles in biological reactions and maintaining the cell functions, which are af-

fected by the structure and dynamics of water molecules in the hydration layer
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Fig. 1.1 Schematic diagram of the cell membrane.

of membranes [22–24]. The properties of the water molecules have been studied

by variety of experimental techniques, e.g. X-ray [25], nuclear magnetic resonance

(NMR) [26–28], neutron scattering techniques [28, 29], infrared spectroscopy [30–

33], terahertz time-domain spectroscopy (THz-TDS) [33–35], pump-probe spec-

troscopy [36], Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry

technique [37–39], and vibrational sum frequency generation spectroscopy [40–44].

Unique properties of water have been found in the interfacial region up to 1.2 nm

away from the membrane surfaces. Various types of spectroscopy studies suggested

inhomogeneous water structures at lipid interfaces [27, 30, 31, 33, 36], and those are

weakly aligned by charges on the lipid head group [41–44]. These spectra reflect the

difference in orientation and hydrogen bond network on negatively charged phos-

phate, positively charged choline, and hydrophobic region of the lipid [43].

About the translational diffusivity, ODNP NMR relaxometry technique enables to

measure the diffusivity of interfacial water within ∼1 nm around nitroxide radical-

based spin labels located at the molecular surface [37–39], and revealed that it is

slower than those in bulk. The dynamics of the interfacial water can be also detected

experimentally by neutron scattering and NMR [28, 29]. Because the time scale of

the experiment is 10−9-10−11 s, only interfacial water molecules strongly interacting

with lipids are observed: the time scale of rotational relaxation is 10−10 s order and

diffusion constant is 10−9 m2/s order [29].

To interpret the molecular mechanism of experimentally observed phenomena

and investigate more microscopic dynamics of molecules, molecular dynamics (MD)
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simulation can be a powerful computational tool [45, 46]. In particular, this in

silico approach on water molecules around membranes is in qualitative agreement

with the experimentally observed band spectrum [47–50]. Solvent structure around

lipid head group regions is different from that in bulk [51–53]. The formation

of a clathrate-like shell is observed for the hydrophobic PC head group but not

for hydrophilic PE head group. In self-assembled lipid structures such as vesicles,

liposomes, and plasma membranes, water molecules form a bridge that connects

lipid molecules [54, 55]. Approximately 70 % of lipid molecules are linked by the

water bridge, where approximately 70 % of the intermolecular water bridges are
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Fig. 1.3 Snapshot of interfacial water on the POPC lipid membrane by MD simulation.
Oxygen, phosphorus, nitrogen, and carbon atoms of lipids are colored red, brown, blue,
and gray, respectively. Water molecules correspond to the upper transparent coating.
The interfacial water molecules on the lipid bilayer is colored yellow (oxygen) and white
(hydrogen).

formed between non-ester phosphate oxygen, and the rest are formed between non-

ester phosphate and carbonyl oxygen [54]. About half of those form multiple bridges.

Mean residence time of such interfacial water molecules on the membrane surface

is 7-71 ps depending on the biding sites and definitions of hydrated molecules [54,

56,57].

The dynamics and structure of the interfacial water are largely influenced by the

thermal motion of the polar head groups and lipid fluidity [45]. Translational and

rotational motions of water molecules near membranes are slower than those in

bulk [56,58–60]. The degree of slowness of the dynamics depends on the location of

water molecules near the lipid head group and lipid types. Neutral ethanolamine

group of PE, negatively charged glycerol group of phosphatidylglycerol (PG), and

negatively charged serine group of PS make the hydrated water molecules much

slower than the neutral choline group of PC [56, 59]. To compare the effect of

lipid membrane phase on properties of water-membrane interfaces, distearoyl-PC

membrane (a gel phase) and dilinoleoyl-PC membrane (a liquid-crystalline phase)

were studied at the same temperature 310 K [61]. The PC bilayer in the gel phase is
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partially dehydrated at the carbonyl group, and rotational motion of surface water

molecules is slower than that on the liquid-crystalline phase.

Containing of cholesterols also decreases lipid-lipid links and increases hydration

in the polar region of the lipid membranes [55]. Increase of cholesterol concentration

accelerates the surface water diffusivity [39]. Ions also affect the water environment

on membrane surfaces. Cations induce dehydration of lipids [62] and perturb in-

terfacial water organization [44]. Near the membrane surface (∼0.1 nm), specific

ions alter the activation energy of the surface water diffusivity, and the order of the

activation energy follows the Hofmeister series [38].

1.3 Aquaporin

Aquaporins (AQPs), transmembrane proteins found in the cell membranes of all

living entities, are natural transporter of water molecules. After the first discovery

of AQP1 [63], 13 isoforms of human AQPs (AQP0-12) have been identified [64], each

with a different tissue distribution and each playing specific physiological roles [65].

The basic function of AQPs in regulating the osmotic pressure of the cells has

therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma, and sev-

eral other conditions [66]. In fact, congenital cataracts (AQP0), diabetes insipidus

(AQP2), and the autoimmune demyelinating disease neuromyelitis optica are linked

to the AQPs.

All AQPs are tetrameric proteins composed of four identical monomers, and

some form large arrays with varying structural properties [67, 68] [see Fig. 1.4A].

The aquaporin family can be divided into three major groups based on the amino

acid sequences: classical aquaporins, aquaglyceroporins, and unorthodox aquapor-

ins [69]. The aquaporin group, which includes AQP0, AQP1, AQP2, AQP4, and

AQP5, exclusively permits water molecules, rejecting charged molecules, ions and

even protons [70–73]. The aquaglyceroporin group, which includes AQP3, AQP7,

AQP9, and AQP10, can permeate other small solutes such as glycerol and urea other

than water. The unorthodox aquaporin group includes AQP6, AQP8, AQP11, and

AQP12. The AQP6 permeates anions [74] and AQP8 permeates urea [75]. The

AQP11 and AQP12 are not expressed in plasma membrane but inside the cell, and

have not been fully elucidated [76]. By understanding the mechanism of water per-

meation within AQPs, researchers can begin to design biomimetic nanopores for

desalination processes [77–79].
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Fig. 1.4 Structure of aquaporins. (A) Structure of AQP1 tetramer, parallel to the mem-
brane (left) and from the extracellular side (right). Water channels (red circle) in each
tetramer and a central pore (yellow circle) in the center of the tetramer. (B) Overall
structure of an AQP1 monomer. Eight transmembrane helices (M1-M8) and connecting
loops are colored respectively. (C) Schematic representation of the aquaporin channel with
ar/R region and NPA motif.

High-resolution overall structures have been established for some aquaporins:

AQP0 [80,81], AQP1 [82,83], AQP2 [84], AQP4 [85], AQP5 [86], E. coli AqpZ [87], E.

coli aquaglyceroporin GlpF [88,89], and malarial Plasmodium falciparum AQP [90].

These enable us to understand the mechanism of water permeation and other solute

exclusion. Further insights into water configuration and the energetic of water

permeation within AQPs have been provided by MD simulations [89,91–98].

AQPs consist of six transmembrane α-helices (M1, M2, M4-M7, and M8), two

short helices (M3 and M7), and five connecting loops (loops a-e) [see Fig. 1.4B].

The tetrameric structure creates an additional hydrophobic narrow pore through its

center, which permeates ions [99, 100] and gas molecules [101]. The six transmem-
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brane helices compose a hourglass shape narrow pore, where water molecules align

in a single file and permeate with high permeability of approximately one water

molecule per one nanosecond. Using a finite-element calculation the characteristic

hourglass shape of AQPs was suggested to optimize the water permeation though

the AQPs [102]. The cone-shaped vestibules of AQPs with suitable opening angle

may make an increase of water permeability.

Channel steric conformation and solute binding sites within AQP pore facilitate

the rapid and highly selective permeation of water molecules. There are two charac-

teristic parts, the asparagine-proline-alanine (NPA) motif and the aromatic/arginine

selectivity filter (ar/R region) [see Fig. 1.4C]. The NPA motif is located at the two

short helices, cytoplasmic M3 and extracellular M7, in the center of the membrane.

This motif is a part of hydrophilic surface and allows the water molecule to form

hydrogen bonds with two asparagines, thereby reversing the orientation of the wa-

ter molecule in opposite direction. Although asparagine is conserved, proline and

alanine are variable, e.g. asparagine-proline-cysteine in AQP11 and asparagine-

proline-threonine in AQP12 [64]. It has been suggested that the NPA motif play a

key role for expression of AQPs in the plasma membrane [103].

The other domain is the ar/R region constituting the narrowest part of the pore,

the diameter about 0.3 nm [83]. The ar/R region of aquaglyceroporins is wider and

less polar [88, 89]. The ar/R region is composed of a conserved arginine and three

amino acids, where histidine is conserved across most of water-specic AQPs. The

different combination of amino acids in the ar/R region contributes to site diverse

in size and hydrophobicity, and works as a filter blocking molecules that are too

large to pass through the narrowest region [72]. Point mutations in the ar/R region

in AQP1 allow passage of urea, glycerol, ammonia, and protons [104].

These two highly conserved parts has been treated as a controversial topic for

proton exclusion filters. MD simulations suggest that the free energy barrier located

at the NPA motif is dominant for the proton exclusion [89, 93, 95, 105–108]. But,

this could not mention the fact that mutations in the ar/R-region increase the

proton conductance [104,109]. Recently, a high resolution X-ray structure of yeast

aquaporin (0.88 Å) proposed that ar/R region breaks the continuous hydrogen bond

network and is a feasible part to prevent proton permeation [110].
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1.4 Thesis objective and outline

In this thesis, we investigate the dynamics of water molecules around lipid mem-

branes. In chapter 2, the computational methodology of MD simulations are intro-

duced. In chapter 3, temperature dependence of water dynamics near the membrane

surface is revealed. In chapter 4 and 5, anomalous dynamics, such as anomalous

diffusion and 1/f nose, of water molecules on the membrane surfaces are discussed.

Moreover, we reveal the origin of these anomalous dynamics. In chapter 6, relation-

ship between conformational fluctuation of AQP and water permeation is discussed.
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Chapter 2

Computational methods: Molecular

dynamics simulation

The MD simulation is one of the computational techniques, where the motion of

particles is solved by Newton’s equation of motion. The equation of motion for

particle i is described as
mir̈i = F i. (2.1)

This equation is numerically solved by integrating coordinates and velocities of

particles. Such a simulation technique can be a “computational microscope” in

variety of research fields, such as physics, biology, chemistry, and engineering, for

observing various phenomena at molecular levels and temporal time scales that are

difficult to access experimentally.

2.1 Numerical integration

The equations of motion in the MD simulation cannot be solved analytically because

these are simultaneous differential equations of all degree of freedom. Thus, numeri-

cal integration of difference equation is performed at every time steps ∆t. Although

various numerical integration methods have been developed, Verlet algorithm [111]

as well as velocity-Verlet algorithm [112] is often used for MD simulations.

2.1.1 Verlet algorithm

Taylor expansion of coordinates ri(t+ ∆t) and ri(t− ∆t) is given by

ri(t+ ∆t) = ri(t) + ∆tṙi(t) +
∆t2

2!
r̈i(t) +

∆t3

3!
...
r i(t) +O(∆t4), (2.2)

ri(t− ∆t) = ri(t) − ∆tṙi(t) +
∆t2

2!
r̈i(t) −

∆t3

3!
...
r i(t) +O(∆t4). (2.3)
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The sum of Eq. (2.2) and Eq. (2.3) is

ri(t+ ∆t) + ri(t− ∆t) = 2ri(t) + ∆t2r̈i(t) +O(∆t4). (2.4)

Using Eq. (2.1) and Eq. (2.4), we have

ri(t+ ∆t) = 2ri(t) − ri(t− ∆t) +
∆t2

mi
F i(t) +O(∆t4), (2.5)

and from Eq. (2.2) and Eq. (2.3) we obtain

ṙi(t) =
ri(t+ ∆t) + ri(t− ∆t)

2∆t
+O(∆t2). (2.6)

The Eq. (2.5) and Eq. (2.6) are called Verlet algorithm [111].

2.1.2 Velocity-Verlet algorithm

Taylor expansion of coordinate ri(t+∆t), velocity vi(t+∆t), and force F i(t+∆t)

is given by

ri(t+ ∆t) = ri(t) + ∆tṙi(t) +
∆t2

2!
r̈i(t) +O(∆t3), (2.7)

vi(t+ ∆t) = vi(t) + ∆tv̇i(t) +
∆t2

2!
v̈i(t) +O(∆t3), (2.8)

F i(t+ ∆t) = F i(t) + ∆tḞ i(t) +
∆t2

2!
F̈ i(t) +O(∆t3). (2.9)

Inserting ṙi(t) = vi(t) and r̈i(t) = F i(t)/mi into Eq. (2.7), we have

ri(t+ ∆t) = ri(t) + ∆tvi(t) +
∆t2

2!
F i(t)
mi

+O(∆t3), (2.10)

and using v̇i(t) = F i(t)/mi with Eq. (2.8)−∆t
2 ×Eq. (2.9) results in

vi(t+ ∆t) = vi(t) +
∆t
2mi

(
F i(t) + F i(t+ ∆t)

)
+O(∆t3). (2.11)

The Eq. (2.10) and Eq. (2.11) are called velocity-Verlet algorithm [112]．

2.2 Constrained molecular dynamics simulation

The general force fields for MD simulations are designed to be applied constraints

on all or partial of molecules. The constrained MD simulation is the method to

treat molecules as rigid body

mir̈i = F i + Ri, (2.12)
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Ri = −
∑

k

λk∇igk, (2.13)

gk = (ri − rj)
2 − d2

ij = 0, (2.14)

where Ri is the force on particle i due to the constraints, λk is time-dependent

Lagrange multipliers determined from Eq. (2.14), and dij is the fixed bond distance

between particles i and j. The temporal differentiation of Eq. (2.14)

ġk = 2 (ṙi − ṙj) (ri − rj) = 0, (2.15)

means that relative velocity of particles i and j is normal to relative coordinate.

2.2.1 SHAKE algorithm

In the case of the contrained MD simulations with Eq. (2.12), the Verlet algorithm

of Eq. (2.4) can be written as

ri(t+ ∆t) = 2ri(t) − ri(t− ∆t) +
∆t2

mi
F i(t) +

∆t2

mi
Ri(t). (2.16)

The Eq. (2.16) can be divided into two terms: moved coordinate term, qi (t+ ∆t),

without constraints and correction term with constraints

ri(t+ ∆t) = qi(t+ ∆t) +
∆t2

mi
Ri(t). (2.17)

Inserting Eq. (2.17) into Eq. (2.14), constraint condition at time t+ ∆t is given by

gk(t+ ∆t) =
{(

qi(t+ ∆t) − qj(t+ ∆t)
)

+ ∆t2
(

Ri(t)
mi

− Rj(t)
mj

)}2

− d2
ij = 0.

(2.18)

Using Eq. (2.13), Eq. (2.14), and Eq. (2.18), we have

2∆t2
(
qi(t+ ∆t) − qj(t+ ∆t)

) {
−

∑
k

2λk
1
µij

(ri(t) − rj(t))

}

+4∆t4
∑

k

∑
k′

λkλk′
1

µijµi′j′
(ri(t) − rj(t)) (ri′(t) − rj′(t))

= d2
ij −

(
qi(t+ ∆t) − qj(t+ ∆t)

)2
, (2.19)

where µij is the reduced mass of particles in the constraint bond and given by

1
µij

=
1
mi

+
1
mj

. (2.20)

To obtain the λk by solving Eq. (2.19) is called SHAKE algorithm [113].
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2.2.2 RATTLE algorithm

As using velocity-Verlet algorithm, we have to consider the constraint coordination

and velocity. Dividing the difference formula of velocity-Verlet into moved coordi-

nate term qi (t+ ∆t) without constraints and correction term with constraints, we

have following expression

ri(t+ ∆t) = ri(t) + ∆tri(t) +
∆t2

2mi
F i(t) +

∆t2

2mi
RRi(t), (2.21)

ri(t+ ∆t) = qi(t+ ∆t) +
∆t2

2mi
RRi(t), (2.22)

ṙi(t+∆t) = ṙi(t)+
∆t
2mi

(
F i(t)+F i(t+∆t)

)
+

∆t
2mi

(RRi(t) + RV i(t+ ∆t)) , (2.23)

ṙi(t+ ∆t) = q̇i(t+ ∆t) +
∆t
2mi

RV i(t+ ∆t), (2.24)

where RRi and RV i are constraint forces for coordinate and velocity, respectively.

Firstly, we consider RRij . The constraint force of ij pair can be written as

RRij = −λRij
rij

rij
. (2.25)

Here, putting the following equation

gij =
λRij∆t2

2rij
, (2.26)

into Eq. (2.22), the coordinates of particles i and j can be written as

ri(t+ ∆t) = qi(t+ ∆t) − gij

mi
rij(t), (2.27)

rj(t+ ∆t) = qj(t+ ∆t) +
gij

mj
rij(t). (2.28)

Inserting Eq. (2.27) and Eq. (2.28) into Eq. (2.14) gives

d2
ij = |rij(t+ ∆t)|2 =

∣∣qij(t+ ∆t) − gijµijrij(t)
∣∣2 . (2.29)

As ignoring the g2
ij term, gij is given by

gij ≈
∣∣qij(t+ ∆t)

∣∣2 − d2
ij

2µij(qij(t+ ∆t) · rij(t))
. (2.30)
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The coordinates ri(t+∆t) and rj(t+∆t) are obtained putting gij into Eq. (2.27) and

Eq. (2.28). Because Eq. (2.30) is an approximation formula, until the constraint

condition Eq. (2.14) is achieved for all pair ij, the insertion of Eq. (2.30) into

Eq. (2.27) and Eq. (2.28) is continued by replacing qi(t+ ∆t) and qj(t+ ∆t) with

the obtained ri(t+∆t) and rj(t+∆t). The F i(t+∆t) is obtained from ri(t+∆t).

Secondly, we consider the constraint force RV ij . Because RV ij between particles

i and j is proportional to rij , RV ij can be written as

RV ij = −λV ij
rij

rij
. (2.31)

Putting the following kij

kij =
λV ij∆t

2dij
, (2.32)

into Eq. (2.24), the velocities of particles i and j can be written as

ṙi(t+ ∆t) = q̇i(t+ ∆t) +
kij

mi
rij(t+ ∆t), (2.33)

ṙj(t+ ∆t) = q̇j(t+ ∆t) +
kij

mj
rij(t+ ∆t). (2.34)

Inserting Eq. (2.33) and Eq. (2.34) into constraint condition Eq. (2.15), kij is given

by

kij =
rij(t+ ∆t) · qij(t+ ∆t)

µijd2
ij

. (2.35)

Until the constraint condition Eq. (2.15) is achieved for all pair ij within a adequate

error, the insertion of Eq. (2.35) into Eq. (2.33) and Eq. (2.34) is continued by

replacing qi(t + ∆t) and qj(t + ∆t) with the obtained vi(t + ∆t) and vj(t + ∆t).

This is called RATTLE algorithm [114].

2.3 Control of pressure and temperature

If all particles in a system are along trajectories in accordance with the Newton’s

equation of motion, the total energy E of the system is preserved. When the

number of particles N and the volume V are constant in an isolated molecular

system, the MD simulation achieves the microcanonical ensemble (NV E ensemble).

Because many experiments are performed in a condition of constant temperature T

and pressure P (isobaric-isothermal ensemble, NPT ensemble), MD simulations are
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required ingenuity in the equation of motion to be equal to that of experiments. The

temperature of the monatomic molecule is calculated by principle of equipartition

3
2
NkBT =

N∑
i=1

1
2
miv

2
i . (2.36)

The system pressure is calculated with the virial theorem

P =
1

3V

[
N∑

i=1

miv
2
i +

N∑
i=1

(riF i)

]
. (2.37)

2.3.1 Berendsen’s algorithm

Some methods have been developed to achieve constant temperature and pressure in

MD simulations. The Berendsen’s algorithm [115] is often used for the calculation

of complex and large-scale system because of its simple treatment. Berendsen’s

algorithm for temperature control is accomplished by scaling the velocities of the

particles at each time step as follows

λ =

√
1 +

∆t
τT

(
T0

T
− 1

)
, (2.38)

v′
i = λvi, (2.39)

where τ
T
, T0, and T are coupling time with an external heat bath, given temperature

of the heat bath, and system temperature, respectively. The strength of the coupling

with the heat bath can be controlled with τ
T
.

Berendsen’s algorithm for pressure control is accomplished by rescaling the coor-

dinates of the particles and the cell size at every time step as follows

µ =
[
1 − ∆t

τ
P

(P0 − P )
]1/3

, (2.40)

r′
i = µri, (2.41)

V ′ = (detµ)V , (2.42)

where τ
P
, P0, and P are coupling time with a barostat, given reference pressure,

and pressure of the system, respectively. The strength of the coupling with the

barostat can be controlled with τ
P
.
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Solvent!

Replica images!

Fig. 2.1 Boundary condition.

2.4 Boundary condition

To approximate the results of MD simulations to reality, it is ideal to increase the

number of particles in the system of MD simulations close to the real system, ideally

handling the order of Avogadro number (' 1023). However, the limitation of the

number of particles is 104-107 degrees with current high-performance computers.

Thus, periodic boundary conditions are usually applied in MD simulations. The

cubical simulation box Ω is replicated throughout space to form an infinite lattice

Φ [see Fig. 2.1]. If a particle is in a system with cubic size L, the concept of the

periodic boundary condition is written as

Φ ≈ Ω(r) + Ω(r + Ln), (2.43)

where n is an integer vector except for zero vector.

2.5 Force and potential

Some of the popular force fields such as AMBER, CHARMM, OPLS, and GROMOS

use a simple functional form defined by bonded and non-bonded interactions. Total
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Fig. 2.2 Schematic diagram of bonded interactions.

potential energy U is represented by the following formula

U =
∑

bonds

Kb(r − r0)2 +∑
angles

Ka(θ − θ0)2 +

∑
torsions

Vn

2
(1 + cos(nφ− γ)) +

∑
nonbond ij

εij

[(
Rij

rij

)12

− 2
(
Rij

rij

)6
]

+

∑
nonbond ij

QiQj

4πεrij
. (2.44)

In the following we will explain the individual potential.

2.5.1 Bonded interaction

Bond

For covalently bonded two atoms, the potential and force are calculated with an

approximation of a spring [see Fig. 2.2]

Ubond ij = Kb(rij − r0)2, (2.45)
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F i = −F j = −2Kb(rij − r0)
rij

rij
, (2.46)

where rij , r0, and Kb are distance between atoms, equilibrium distance, and spring

constant of stretching vibration, respectively.

Angle

For three atoms, the potential and force are calculated with following equation [see

Fig. 2.2]
Uangle ijk = Ka(θijk − θ0)2, (2.47)

F i = −2Ka(θijk − θ0)
1

rij sin θijk

(
rkj

rkj
− cos θijk

rij

rij

)
, (2.48)

F i = −2Ka(θijk − θ0)
1

rkj sin θijk

(
rij

rij
− cos θijk

rkj

rkj

)
, (2.49)

F j = −F i − F k, (2.50)

cos θijk =
rij · rkj

rijrkj
, (2.51)

where θijk, θ0, andKa are angle between three bonded atoms ijk, equilibrium angle,

and spring constant of deformation vibration, respectively.

Torsion

The potential and force of the torsion angle (dihedral angle) for i, j, k, and l

atoms are calculated as following [see Fig. 2.2]. If we define the normal vector as

n1 = rij × rkj ,n2 = rkj × rkl, the torsion angle φ(−π < φ ≤ π) is given by

cosφ =
n1 · n2

n1n2
, (2.52)

φ = −sign (arccos(cosφ), rkj · (n1 × n2)) . (2.53)

The potential for the torsion angle is described as

Utorsion =
V

2
(1 + cos(nφ− γ)), (2.54)

where V , n, and γ are spring constant of the dihedral angle, cycle, and equilibrated

dihedral angle, respectively. The forces for i, j, k, and l are given by

F i = fa(f b × rkj),
F j = fa(−f c × rkl + f b × rik),
F k = fa(−f b × rij + f c × rjl),
F l = fa(f c × rkj), (2.55)
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where fa, f b, and f c are

fa = −nV
2

sin(nφ− γ)
sinφ

,

f b =
(

n2

n2
− cosφ

n1

n1

)
1
n1
,

f c =
(

n1

n1
− cosφ

n2

n2

)
1
n2
. (2.56)

2.5.2 Non-bonded interaction

Van der Waals force

The van der Waals force includes repulsion and attraction for non-bonded atom

pairs at close and long ranges, respectively. The Lennard-Jones potential [116] is

often used as an approximate model for the van der Waals force

Uij = εij

[(
Rij

rij

)12

− 2
(
Rij

rij

)6
]
. (2.57)

The exponent in the first term, which is the repulsive term, is not necessary to be

12 and can be changed from 9 to 15. The exponent 6 in the second term, which is

the attractive term, is based on quantum chemical calculation. The force is written

as

F i = −F j = −12εij

Rij

[(
Rij

rij

)13

−
(
Rij

rij

)7
]

ri − rj

rij
, (2.58)

where εi, εj , Ri, and Rj are decided from Fig. 2.3. The εij and Rij are defined as

εij = √
εiεj and Rij = Ri +Rj .

Coulomb force

The electrostatic interaction between electrically charged particles is described by

Coulomb’s law:
Uij =

QiQj

4πεrij
, (2.59)

whereQ is the charge of the particle. Because the decay of this potential is very slow,

the cutoff method cannot be used in this case. Therefore, in MD simulations, the

Ewald method [117] is usually used for the calculation of the coulombic interaction.

In the Ewald method, the interaction is separated into the real space and recipro-

cal space functions. The potential energy of the Coulombic interaction in the Ewald
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Fig. 2.3 Van der Waals potential.

method is given by

UEwald =U1 + U2 + U3, (2.60)

U1 =
1
2

∑
n

∑
i

∑
j(j 6=i)

QiQj

4πε0
erfc(α | ri − rj + Ln |)

| ri − rj + Ln |
, (2.61)

U2 =
2π
L3

∑
G

exp(− | G |2 /4α2)
| G |2

∑
i

∑
j

QiQj

4πε0
cos[G · (ri − rj)], (2.62)

U3 = −
∑

i

Q2
i

4πε0
α√
π
, (2.63)

where G = 2π
L h is the reciprocal lattice vector, and h is an integer vector.
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Chapter 3

Temperature dependence of water

dynamics near membrane surfaces

3.1 Introduction

Cryopreservation is a process to preserve tissues at low temperature. In the cooling

process, water crystallization causes mechanical damage to cell membranes. Thus,

it is important to investigate the behavior of water molecules near cell membranes

at low temperature.

Temperature dependence of water molecules near membrane surfaces has been

investigated by experimental and computational approaches [32, 35, 37, 118, 119].

Polarized infrared spectroscopy technique revealed that hydration water molecules

near palmitoyl-oleoyl-phosphatidylcholine (POPC) membrane can be divided into

two groups: well-structured low density “network” water and less-structured dense

“multimer” water [32]. According to an increase in temperature, the network wa-

ter decreases whereas the multimer water increases. Using ODNP technique, the

temperature dependence of the diffusion coefficient of water molecules within 1 nm

of the spin-labeled site on the dihexadecanoyl-phosphatidylcholine (DPPC) mem-

brane surface was found to follow the Arrhenius law between 295 K and 330 K [37].

MD simulation study [119] of single tail cationic surfactant membrane, behenyl

trimethyl ammonium chloride, between 283 K and 350 K also confirmed the Arrhe-

nius nature of water molecules near the membrane surface below the phase tran-

sition temperature of the membrane. The interfacial water molecules were defined

as whose oxygen z coordinates remain continuously within ±0.3 nm from the lipid

head group peak positions for 40 ps. The entropy and potential energy of the inter-

facial water have a strong correlation with the phase transition of the membrane.
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Such a correlation is also observed for hydration water reorientation dynamics on

the dimyristoyl-phosphatidylcholine (DMPC) membrane with THz-TDS [35]. Using

broadband dielectric spectroscopy and modulated differential scanning calorimetry

techniques below 250 K [118], it was investigated that the Arrhenius temperature

dependence of dynamics of the DMPC lipid head group at high hydrated state,

which changes to a super-Arrhenius nature at low hydration level, has a correlation

with relaxation of interfacial water molecules near the lipid head group.

Translational and rotational motions of water molecules near membranes are

slower than those in bulk [58, 59]. However, little is known regarding how and

why water molecules near membranes become slow. It is considered that power-

law distribution of residence times, which is observed in water molecules on pro-

teins [120–122] and DNA [123], is related to the water retardation on lipid membrane

surfaces.

Power-law trapping-time distributions are widespread phenomena ranging from

Hamiltonian systems [124] and material science [125–127] to biological phenom-

ena [13, 128–130]. Two mechanisms generating a power-law trapping-time distri-

bution are well-known. One is a random energy landscape [131]. Following the

Arrhenius law, the average trapping time 〈τE〉 in a potential valley is proportional

to τ0 exp (E/kBT ), where τ0, E, T , and kB denote the characteristic escape time, en-

ergy barrier height, temperature, and Boltzmann’s constant, respectively. A power-

law trapping time distribution can be observed when the barrier heights follow the

exponential distribution P (E) = E−1
0 exp (−E/E0), where E0 is the mean barrier

height. For simplicity, we assume τE = 〈τE〉 = τ0 exp(E/kBT ). Using the relation

P (τE)dτE = P (E)dE, we can calculate the distribution P (τ) of the trapping times

for which particles are confined within exponentially distributed random potential

valleys [132]:

P (τ) =
1
E0

exp
(
− E

E0

)
kBT

τ0
exp

(
− E

kBT

)
=
kBT

E0

(
τ

τ0

)−µ−1 1
τ0
, (3.1)

for τ ≥ τ0, where µ = kBT/E0 and E0 is the mean barrier height. Here, it is

assumed that there is no correlation in the barrier heights. The other one is a

comb-like structure [133]. If particles diffuse in a comb-like structure, they cannot

move to the direction perpendicular to the comb while in the comb. The distribution
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of escape times from the comb follows a power law with exponent 3/2 (µ = 1/2),

which is that of recurrence times to the origin in one-dimensional random walk.

The former is attributed to an energy trap, while the latter is attributed to an

entropy trap [134]. There exists another origin for a power law in the trapping-time

distribution. For example, the distribution of trapping times for which particles

governed by the fractional Langevin equation are confined within a potential follows

a power-law distribution (escape from a potential driven by a fractional noise) [135].

Here, we perform MD simulations on system of water molecules plus a palmitoyl-

oleoyl-phosphatidylethanolamine (POPE) membrane at temperature 250-350 K to

investigate diffusivities of water molecules near the membrane surface. We report

that long time trappings of water molecules induced by a power-law trapping-time

distribution enhance the viscosity of water molecules around membrane surfaces.

The temperature dependence of the water molecular motions on the membrane

surface is different from that in bulk. Decreasing temperature enhances the water

retardation on the membrane surface. Moreover, we show that water molecules

on the membrane surface exhibit a subdiffusion, i.e. sublinear growth of the mean

square displacement.

3.2 Methods

To elucidate the temperature dependence of water dynamics around the lipid mem-

brane surface, MD simulations of a POPE bilayer were performed at temperature

ranging from 250 K to 350 K. The lipid bilayer system of pure POPE lipids was

consisted of 128 lipids (64 for each leaflet) and 10,004 TIP3P water molecules [see

Fig. 3.1]. We minimized the energy of all molecules by steepest descent method

followed by the conjugate gradient method. A 200 ns simulation of the membrane

system provided with constant number of atoms at pressure of 0.1 MPa and tem-

perature of 310 K was performed, and the final structure of the simulation was

defined to be a standard structure. We performed additional 60-90 ns simulations

at several temperatures (250, 270, 280, 290, 330, and 350 K) using the standard

structure. The stability and equilibration of each system were monitored by average

area per lipid. All MD simulations were carried out under constant atom number,

pressure, and temperature, using the Berendsen’s algorithm [115] with a coupling

time of 0.2 ps. The time step was set at 1 fs. The lengths of bonds involving the

hydrogen atoms were constrained to equilibrium lengths using the SHAKE method.
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Fig. 3.1 Schematic view of the simulation system. (a) Snapshot of the simulation system.
Lipid bilayer and water molecules show silver and red, respectively. The surface of the lipid
bilayer is colored with cyan. (b) Structural formula of the POPE lipid molecule. (Red,
brown, light blue, and gray circles indicate oxygen, phosphorus, nitrogen, and carbon
atoms, respectively.)

The GAFF force field was used for the POPE lipid. This parameter of POPE has

been used in previous studies about the membrane or a membrane protein [5,13,96],

and the transition temperature was estimated about 280 K [5]. We note that the

area per lipid at 310 K is smaller than experimental data [136] and almost the same

as other MD simulations [137–139], indicating that POPE bilayer is a little stiff in

our simulations. The particle mesh Ewald method was used with a specified direct

space cutoff distance of 1.0 nm. A three-dimensional periodic boundary condition

was imposed on all systems. The properties of each system were analyzed from the

trajectories of the final 20 ns of each system. MD simulations were performed using

AMBER10 software [140].
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Fig. 3.2 Area per lipid at different temperature. Circles with error bars are the result of
MD simulations. Areas from 250 to 280 K are almost constant, and areas above 280 K
notably increase. This suggests that transition temperature is around 280 K. The dashed
line is the average area from 250 to 280 K, and the solid line is the increasing rate of areas
from 280 to 350 K calculated by the least-squares method.
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3.3 Results and Discussion

3.3.1 Residence of water molecules on the POPE membrane surface

To investigate dynamics of water molecules near the membrane surface, we define

the layer of water molecules in an explicit manner. Although a location of water

molecules near the surfaces of membranes can be defined by their perpendicular

distance from the surfaces of the head group regions of membranes, this distance

cannot be determined exactly because the membrane surface is fluctuating and

undulate. Therefore, we classify the layer of water molecules according to their

hydrogen bond connectivity if water molecules remain over 5 ps in the layer. If the

residence time is less than 5 ps, we removed the water molecules from the ensemble

in layers. More precisely, water molecules in the first layer form hydrogen bonds

with surface lipid molecules, those in the second layer hydrogen-bond to the first

layer water molecules, those in the third layer hydrogen-bond to the second layer

water molecules, etc. Hydrogen bonds form when interatomic distances between N

(lipid) - O (water), O (lipid) - O (water), and O (water) - O (water) are within

0.34, 0.33, and 0.32 nm, respectively. We note that water molecules in the sixth

layer reside about 1.2 nm above the surface of membranes. Bulk water molecules

are defined as molecules more than 4.0 nm distant from the membrane surfaces.

Figure 3.3A shows a trajectory of a water molecule projected onto the lateral

plane (xy plane). Water molecules in the first layer can diffuse slowly on the xy

plane while they are trapped on the membrane surface. As shown in Fig. 3.3B,

the probability density function (PDF) of residence time P (t), which is defined by

the times during which water molecules remain in the first layer, at temperature

ranging 250-350 K follows power-law, P (t) ∝ t−2.3 to t−2.7. Moreover, as shown in

Fig. 3.3C, the power-law exponent increases linearly as a function of temperature.

The observed linear relationship between power-law exponent and temperature is

consistent with Eq. 3.1. Therefore, it is physically reasonable to consider that the

power-law residence time of water molecules on membrane surfaces is attributed to

a random energy landscape constructed by interactions between the water molecules

and lipid molecules near the membrane. This random energy landscape could be

provided by complex surfaces composed with the hydrophilic head groups of lipid

molecules, which typically comprise phosphate, choline, and glycerol. The linear
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Fig. 3.3 Residence of water molecules on the POPE membrane surface. (A) Lateral
trajectory of a water molecule tracked for 1 ns at 310 K. Red, black, green, and blue lines
with different line types represent the trajectories in the first layer, second layer, third to
fifth layer, and sixth layer to bulk, respectively. Water molecules in the first layer can
diffuse locally, whereas water molecules far from the lipid bilayer surface diffuse widely.
(B) PDFs of residence times of water molecules in the first layer at temperature 250, 280,
310, and 350 K. P (t) follow power laws t−α for all temperature. (C) Power-law exponents of
P (t). The power-law exponents are calculated by the least-square method within the region
3 ≤ ln(t) ≤ 6.5 for all temperature. Symbols are the results of simulations; the solid line
represents a linear fitting. Power-law exponents are linearly dependent on temperature.

temperature dependence of power-law exponents holds around the transition tem-

perature of the POPE membrane (about 280 K for this force field) [see Fig. 3.2].

This result suggests that phase transition of the membrane does not influence the

power-law behavior.

3.3.2 Diffusivities of water molecules near the POPE membrane surface

In normal diffusion, the mean square displacement (MSD) grows linearly with time:

〈|r(t) − r(0)|2〉 ∼ 2dDt (t→ ∞), (3.2)

where r(t) is a particle position at time t, D is the diffusion coefficient, d is the di-

mension, and 〈. . .〉 denote an ensemble average. In this form, the diffusion coefficient

can be expressed as

D = lim
t→∞

〈
|r(t) − r(0)|2

〉
2dt

. (3.3)

However, the diffusion coefficient cannot properly characterize the diffusivity of

water molecules near the membrane surfaces because water molecules do not always

remain in such a local space for a long time. To characterize a translational motion

of water molecules near the membrane surfaces, we introduce the mean exit time

(MET) [141]. The MET for lateral direction (METL) and z direction (METZ)
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are defined by the mean of the exit times: METL = 〈tL〉 , METZ = 〈tZ〉, where

tL and tZ are the exist times for lateral and z directions, respectively. These are

defined by tL = min{t|{x(t + t0) − x(t0)}2 + {y(t + t0) − y(t0)}2 > 2L2}, tZ =

min{t|{z(t+t0)−z(t0)}2 > L2}, where t0 defines the entry time of a water molecule

into each layer and L is a distance to the exit. We note that the layer of a water

molecule at tL may not be the same as that at t0. In other words, we include

water molecules in the ensemble of the METs even when they escape from the layer

at t0. The diffusion coefficient is approximately equal to L2/2MET. In bulk, the

METL and METZ are identical. Figure 3.4 shows the METs when L2 is set at

0.5 nm2, almost twice the interatomic hydrogen bond distance between two water

molecules. We confirmed that the result is qualitatively the same as L2 = 0.1 nm2,

almost the interatomic hydrogen bond distance between two water molecules [see

Fig. 3.6]. Figures 3.4A and 3.4B show the METs for each temperature. For the

lateral direction, we use trajectories of water molecules that are subtracted the

position of the center of mass of the membrane because the membrane itself can

diffuse laterally due to a finite size effect.. The METL and METZ near the surface of

the membrane become large due to interactions between water molecules and head

groups of lipid molecules. Temperature dependence of the METL and METZ differs

in each layer. The differences of the METL and METZ between the first layer and

bulk become large as temperature decreases. At low temperature, water molecules

near the surface of the membrane become more viscous than bulk molecules, but this

effect decreases at higher temperature. Figures 3.4C and 3.4D show the PDFs of

the METL and METZ for different layers at 310 K. The shapes of the distributions

depend on the layers. Diffusivities in the z direction and the lateral direction on the

membrane surface are about 2.7 (350 K) - 3.7 (250 K) and 2.5 (350 K) - 3.5 (250 K)

times slower than the bulk diffusivity, respectively [see Fig. 3.5A]. As the METZ

ratio between the first layer and bulk becomes large, the METL ratio becomes large,

which means that decrease in lateral diffusivity is positively associated with that

in the z direction. Therefore, enhanced power-trappings make the translational

motions of water molecules near the membrane surface much slower than those in

bulk especially at low temperature. As a result, temperature dependence near the

membrane surface is more sensitive than that in bulk.
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Fig. 3.4 Translational motion of water molecules near the POPE membrane surface (mean
exit times in the case L2 = 0.5 nm2). (A)(B) METL and METZ of water molecules at
different temperature and layers (symbols with lines). (C)(D) Probability density function
(PDF) of exit times for lateral and z direction at 310 K. PDFs P (t∗) are normalized by
their mean, t∗ = t/ 〈ti〉, where 〈ti〉 means the average of MET in i th layer. The METLs
for i = 1 to 6 and bulk are 111, 87, 63, 52, 46, 43, and 40 ps, respectively. The METZs
for i = 1 to 6 and bulk are 129, 113, 96, 76, 55, 51, and 43 ps, respectively.
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Fig. 3.6 Mean exit times in the case L2 = 0.1 nm2. (A)(B) METL and METZ of water
molecules at different temperature and layers (symbols with lines). (C)(D) Probability
density function (PDF) of exit times for lateral and z direction at 310 K. PDFs P (t∗) are
normalized by their mean, t∗ = t/ 〈ti〉, where 〈ti〉 means the average of MET in i th layer.
The METLs for i = 1 to 6 and bulk are 36, 23, 14, 11, 10, 10, and 10 ps, respectively. The
METZs for i = 1 to 6 and bulk are 43, 30, 20, 15, 11, 11, and 11 ps, respectively.
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3.3.3 Rotational motion of water molecules near the POPE membrane

surface

To investigate rotational motions of water molecules near the membrane surfaces,

we consider an orientational correlation function of water molecules, defined by

Ci(t) = 〈−→µi(t+ t0) · −→µi(t0)〉 , (3.4)

where t0 is the entry time of a water molecule into the i-th layer, and −→µi(t+ t0) is

a dipole vector of a water molecule at time t+ t0. As shown in Fig. 3.7A, Ci(t) is

fitted by a superposition of exponential functions: Ci(t) = (1 − Ai) exp(−t/τ ′i) +

Ai exp(−t/τi) with τi > τ ′i [142], where i = 1, ..., 6 and b. Relaxation times τ ′i , τi
and weight Ai of the first layer and bulk are summarized in Table 3.1. The weight

Ai is larger than 1−Ai for all temperature, and increase as temperature decreases.

Figure 3.7B shows the relaxation time τi. It follows that rotational motions of

water molecules near the surface of the membrane are slower than those in bulk for

all temperature. Although the relaxation times τi for over fourth layer are almost

the same as those in bulk, the relaxation times τi of the first and second layer

are about 2-5 times larger than those in bulk. Differences of the relaxation time

between the first layer and bulk increases according to a decrease in temperature

[see Fig. 3.8B]. As opposed to the temperature dependence of the normalized METL

and METZ, the ratio between the first layer and bulk τ1/τb decreased according

to a decrease in temperature [see Fig. 3.8A]. The results indicate that long time

trappings on the membrane surface do not affect the relaxation time very much

and that temperature dependence of the relaxation time due to interaction between

water and lipid molecules is less sensitive than that due to interaction between water

and water molecules.
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Table 3.1 The factor of the orientational correlation function fitting curves of water
molecules: (τ ′

i , τi, Ai)

τ ′1 [ps] τ1 [ps] A1 τ ′b [ps] τb [ps] Ab

250 K 0.52 18.5 0.82 0.62 5.61 0.82
270 K 0.58 13.8 0.78 0.58 3.90 0.79
280 K 0.59 12.4 0.76 0.65 3.37 0.76
290 K 0.60 11.4 0.74 0.61 2.91 0.75
310 K 0.60 9.42 0.70 0.57 2.26 0.72
330 K 0.61 8.46 0.65 0.56 1.83 0.67
350 K 0.60 7.26 0.61 0.51 1.49 0.64
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3.3.4 Anomalous diffusion of water molecules on the POPE membrane

surface

To investigate the dynamics of water molecules, we consider the ensemble-averaged

translational mean-squared displacement (tMSD) given by

〈
l2(t)

〉
=

1
2
〈{x(t+ t0) − x(t0)}2 + {y(t+ t0) − y(t0)}2〉, (3.5)

where t0 is the time when water molecules enter the first layer. In consider-

ing rotational diffusion, we define δθ(t) ≡ cos−1 (−→µ (t) · −→µ (t+ δt)) and direction
−→p (t) ≡ −→µ (t) × −→µ (t + δt), where −→µ (t) is the dipole vector of a water molecule at

time t. The vector −→ϕ (t) ≡
∫ t0+t

t0
δθ(t′)−→p (t′)dt′ gives us the trajectory represent-

ing the rotational motion. Then, the ensemble-averaged rotational mean-squared

displacement (rMSD) [143] is given by〈
ϕ2(t)

〉
=

〈
|−→ϕ (t) −−→ϕ (0)|2

〉
. (3.6)

We note that the ensemble of the MSD at time t does not include water molecules

that have ever exited from the first layer. Therefore, the ensemble is not exactly

the same as that of the METs. We use trajectories of water molecules that are sub-

tracted the position of the center of mass of the membrane. As shown in Fig. 3.3.4,

translational and rotational diffusion of water molecules near the surface of the

membrane is not normal but subdiffusion, i.e. the sublinear growth of the MSD. In

the next Chapter 4, we investigate the origin of the subdiffusion.

In summary, we have found that the PDF of residence times of water molecules

on the POPE membrane surface follows a power-law. Because there are correlation

between lateral and vertical motions of water molecules near the membrane surface,

long time tappings induced by a power-law residence time distribution enhance the

viscosity of water molecules near the membrane surfaces. Translational and rota-

tional motions near the surface of the membrane surface become much slower than

those in bulk as temperature decreases. We have also found that translational and

rotational motions of water molecules on the membrane surface exhibit subdiffusion.
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Chapter 4

Anomalous diffusion of water

molecules on membrane surfaces

4.1 Introduction

In usual case, diffusion can be characterized by the ensemble-averaged MSD, i.e.

〈r2(t)〉 = 2dDt, where D is the diffusion constant and d is a dimension. However,

for example single-particle tracking experiments have shown subdiffusion to occur

in living cells [130,144–147]

〈r2(t)〉 ' 2dDαt
α with 0 < α < 1, (4.1)

where α is the subdiffusive exponent and Dα is the generalized diffusion constant.

Indeed, such “anomalous” dynamic behavior as subdiffusion is perhaps not anoma-

lous but is rather widely observed in biological systems [148]. There are three well-

known stochastic models of subdiffusion with different mechanisms [148]: continu-

ous time random walk (CTRW) [149], fractional Brownian motion (FBM) [150,151],

and diffusion on a fractal lattice [152]. Because these models have different physical

nature, revealing the origin is significant to understand physical properties [12,148].

In particular, the physical origin of subdiffusion in living cells has been extensively

studied [130,145–147].

Here, we briefly introduce the CTRW and FBM mainly related to the topic of

this chapter.

Subdiffusive continuous time random walk

In the CTRW model, the random walker has to be wait for a random waiting time

τ drawn from the waiting time PDF ψ(τ). If the PDF is drawn with power-law

ψ(τ) ' τα
0

τ1+α
, (4.2)
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Fig. 4.1 Schematic view of observing the aging process. The process is renewed governed
by the random waiting times with power-law distribution (blue lines). We start the mea-
surement of the process at a time t1 (aging period, red line) after start time of the process
at t = 0. The waiting time for the first renewal after the time t1 is tm.

for 0 < α < 1, the mean of the waiting time diverges, and the diffusive motion

shows subdiffusion. In what follows, we discuss the subdiffusive case of CTRW.

Ergodicity is a statistical term that the time average of all quantities for suf-

ficiently long time is the same as the ensemble average. There is a discrepancy

between the MSD and the time-averaged mean square displacement (TAMSD), i.e.

weak ergodicity breaking [131,153–155]. The mean of the TAMSD is given by

〈δ2(∆; t)〉 ∼ 2Dα

Γ(1 + α)
∆
t1−α

, (4.3)

in the limit ∆ � t. The TMASD increases linearly, while MSD increases sublin-

early, indicating ergodicity breaking. The TAMSD decreases when measurement

time t increases. The longer the process goes on, the more the walker occasionally

encounters longer time trappings, which affects the subdiffusive motion. Such long

time trapping events typically increase according to an increase of the observation

time t. Such aging phenomena of TMASD, δ2 ' 1/t1−α, are observed for the diffu-

sion of a potassium channel in the plasma membrane [130] and insulin granules in

the cytoplasm [147].

We consider the aging process when we start to observe the random walker at a

time t1 after the walker starts to move at time t = 0 [see Fig. 4.1]. The PDF of

the waiting time tm for the first jump after the start time of the measurement at

t1 [156,157] is given by

h(tm; t1) =
sinπα
π

tα1
tαm(tm + t1)

. (4.4)

When the aging period is enough longer t1 � tm, the scaling of the PDF h(tm; t1) '
t−α
m is broader than that of the original one ψ(τ) ' τ−1−α.

The MSD in this aging process can be written as

〈x2(t; t1)〉 ∼ Dα [(t+ t1)α − tα1 ] . (4.5)
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For times t1 � t we observe sublinear increase of the MSD, 〈x2(t; t1)〉 ∼ Dαt
α, while

for times t1 � t the MSD shows apparent linear scaling with time t, 〈x2(t; t1)〉 ∼
Dαt

α−1
1 t. Thus, as start time of the measurement t1 increases, the MSD decreases.

From the TAMSD for the aging process

δ2(∆; t, t1) =
1

t− ∆

∫ t1+t−∆

t1

{x(t′ + ∆) − x(t′)}2dt′, (4.6)

the mean of the TAMSD results in

〈δ2(∆; t, t1)〉 ∼
Λα(t1/t)
Γ(1 + α)

2Dα
∆
t1−α

= Λα(t1/t)〈δ2(∆; t)〉, (4.7)

for ∆ � t, where Λα(z) = (1 + z)α − zα. In the limit of strong aging t1 � t � ∆,

we observe an equivalence of the MSD and the TAMSD

〈δ2(∆; t, t1)〉 ∼
2Dα

Γ(1 + α)
tα−1
1 ∆ ∼ 〈x2(∆; t1)〉. (4.8)

Another feature of the CTRW is a large scatter of the TAMSDs, i.e. the ampli-

tudes between different TAMSDs exhibit large variation. To characterize the scatter

of the TAMSDs, relative standard deviation (RSD) is defined by

R(t;∆) ≡

√
〈δ2(∆; t)

2
〉 − 〈δ2(∆; t)〉2

〈δ2(∆; t)〉
. (4.9)

If the process is ergodic, the RSD of the TAMSDs converge to zero when the mea-

surement time is long. In the case of the CTRW, non-ergodic case, the RSD of

TAMSDs converge to a non-zero constant depending on the power-law exponent α

of the waiting time distribution [153,158]:

R(t; ∆) →

√
2Γ2(α+ 1)
Γ(2α+ 1)

− 1, (t→ ∞), (4.10)

for all ∆ � t. This means that the TAMSDs remain random variables even when

the measurement time goes to infinity, which is totally different from the Brownian

motion, FBM, or random walk on fractal lattice. Such a large scattering of TAMSDs

is observed in the motion of mRNA molecules inside live E. coli cells [145], chro-

mosomal loci in live bacterial cells [159], and lipid granules in living fission yeast

cells [146].
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Fractional Brownian motion

The stochastic integral term of the FBM was introduced by Mandelbrot and van

Ness [151] to take into account correlations in a random walk

x(t) =
1

Γ([1 + α]/2)

[∫ t

0

(t− t′)(α−1)/2dB(t′)

+
∫ 0

−∞

{
(t− t′)(α−1)/2 − (−t′)(α−1)/2

}
dB(t′)

]
,

(4.11)

where dB(t) is the white Gaussian noise. In this model, the current state is influ-

enced by the past state.

To be more intuitive, we consider the Langevin equation with the fractional Gaus-

sian noise ξfGn(t)

x(t) =
∫ t

0

ξfGn(t′)dt′, (4.12)

where the mean of the fractional Gaussian noise 〈ξfGn(t)〉 = 0 and the covariance

function is given by a power law

〈ξfGn(t1)ξfGn(t2)〉 = α(α− 1)K∗
α|t1 − t2|α−2, (4.13)

for t1, t2 > 0 and t1 6= t2. The autocorrelation function of positions in the FBM is

〈x(t1)x(t2)〉 = K∗
α(tα1 + tα2 − |t1 − t2|α). (4.14)

At t = t1 = t2, we can observe the consistent of the MSD with mean of the TAMSD,

i.e. the FBM is ergodic [160]:

〈δ2(∆)〉 = 2K∗
α∆α = 〈x2(∆)〉. (4.15)

The fractional Gaussian noise of Eq. (4.13) can describe both superdiffusion for

positively correlated noise (1 < α < 2) and subdiffusion for negatively correlated

noise (0 < α < 1). And the cases of α = 1 and α = 2 correspond to Brownian and

ballistic diffusion, respectively.

In general, it is difficult to reveal the underlying mechanism of subdiffusion. Iden-

tification of ergodic and aging properties is one of the clues in clarifying the physical

origin. It is known that the FBM motion is ergodic, whereas under confinement of

an harmonic external potential U(x) = kx2/2, we observe an exponential relaxation

of the MSD for a model related to the FBM [161–163]

〈x2(t)〉 ∼ 〈x2〉st −
2
k2
α(α− 1)K∗

αt
α−2e−kt, (4.16)
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and a power-law relaxation of the TAMSD

δ2(∆) ∼ 2〈x2〉st −
K∗

αΓ(1 + α)
kα

e−k∆ − 2α(α− 1)K∗
α

k2∆2−α
, (4.17)

where 〈x2〉st = K∗
αΓ(1 + α)/kα, and in particular, δ2(∆) = 2〈x2〉st at ∆ → ∞.

Moreover, the FBM under the external confinement exhibits transient aging, where

time and ensemble averages behave differently, i.e. transiently nonergodic [164].

Since the ordinary ergodicity, where the time average are equal to the ensemble

average, holds for the FBM and diffusion on a fractal lattice [160,165], the dominant

feature of CTRW with a divergent mean waiting time is aging and weak ergodicity

breaking [131,153–155]. Such phenomena are also observed in a range of stochastic

models different from the CTRW such as random walk with static disorder [166],

random walks with correlated waiting times [167,168], spatially correlated random

walks [169], aging walks [170], and stored-energy-driven Lévy flight [171].

Water molecules “near” the surface of lipid membranes were found to show tran-

sient subdiffusion [172, 173]. They define the surface water molecules that are in

a layer (z, z + ∆z) perpendicular to the membrane surface. They assume that the

surface of the membrane is smooth despite the complex lipid membrane surface is

undulating and fluctuating. The definition contains water molecules that are not

associated with the lipid surface atoms. And to obtain enough ensembles, water

molecules are harmonically constrained in the z direction [173].

Here, we focus on the water molecules which continuously interact with lipid

molecules on the surface without any artificial forces. We investigate the subdiffu-

sion of water molecules “on” membrane surfaces and the origin of the subdiffusive

motion.

4.2 Methods

MD simulations of pure POPC or POPE bilayers were performed. Each lipid bi-

layer system consisted of 128 lipids (64 for each leaflet) and 7,680 TIP3P water

molecules [see Fig. 4.2(A)]. The CHARMM36 [174] force field was used for the

lipids. The TIP3P water model modified for the CHARMM force field [175] was

used because the CHARMM36 force field was developed based on the TIP3P water

models. Although the diffusion constant of TIP3P water model is higher than the

experimental values, it reproduces the first-shell hydration and the energetics of liq-

uid water [176]. The bond lengths involving the hydrogen atoms were constrained to
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equilibrium lengths using the SHAKE method. The direct sum and Lennard-Jones

interactions were smoothly truncated at a cutoff distance of 1.2 nm, using a switch-

ing function that becomes effective at 1.0 nm. The particle-mesh Ewald method

was used for calculations of electrostatic interactions. Before MD simulations, en-

ergy minimization was performed using a conjugate gradient algorithm to remove

the bad contacts of the initial configuration. Simulations were performed under

constant NPT (number of particles, pressure, and temperature) with temperature

310 K and pressure 0.1 MPa. For temperature and pressure control, a Langevin

thermostat and piston were used with a damping coefficient of 1 ps−1 and a collision

period of 0.2 ps, respectively. The three orthogonal dimensions of the periodic cell

were allowed to change independently in the x-y and z dimensions (semi-isotropic

pressure coupling). Each simulation ran for 240 ns under 2.0 fs time-step increments;

coordinates were recoded every 1.0 ps. The final system sizes of MD simulations of

POPC and POPE bilayers are 0.66×0.66×0.88 nm3 and 0.61×0.61×1.02 nm3, re-

spectively. The properties of each system were analyzed over the trajectories of the

final 130 ns of each system. All MD simulations were performed using NAMD2.9

software [177].

4.3 Results and Discussion

4.3.1 Diffusion of water molecules on membrane surfaces

Water molecules forming the bridges connecting lipid molecules on the membrane

surface do not diffuse. This bridge is formed by hydrogen bonds between the water

molecules and head groups of the lipid molecules. These hydrogen bond interac-

tions create a complicated and random potential surface over the membrane. To

investigate the diffusivity of water molecules on the membrane surface, we define

surface water molecules as water molecules for which the oxygens remain contin-

uously within interatomic distances of 0.35 nm from atoms (oxygen, phosphorus,

nitrogen, and carbon atoms) in the lipid molecules. In what follows, we use trajec-

tories of the water and lipid molecules where the position of the center of mass of

the membrane is subtracted.

First, we consider the survival probability of residence time of water molecules

on the membrane surface, where the residence time is defined as the duration for

which a water molecule remains on the membrane surface [see Fig. 4.2B]. The sur-
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vival probability is defined by F (t) =
∫ ∞

t
P (t′)dt′, where P (t′) is a PDF. The PDFs

of the residence times follow power-law distributions with exponential cutoffs in

their tails [see Fig. 4.3]. Mean residence times on POPC and POPE bilayers are

7.0±36 ps and 9.3±42 ps, respectively. Although almost all of the water molecules

pass on the membrane surface without binding to the lipid molecules, we are inter-

ested in the water molecules diffusing on lipid membrane surfaces. This is because

water molecules residing on the surface for long time can contribute to membrane

stability by making water bridges and may have important role in many physiolog-

ical processes.

Figure 4.2C shows a lateral trajectory of a water molecule residing on the POPE

bilayer surface for 9 ns. Surprisingly, water molecules do diffuse widely on the mem-

brane surface while residing on it. In other words, a water bridge connecting lipid

molecules in a membrane is not fixed but dynamical. Indeed, diffusion distances

on the membrane surface lengthen with increasing residence times. Figure 4.2D

shows the probability that the maximal excursion distance for water molecules is

greater than lc, P (r2max(t) > 2l2c), where the maximal excursion distance is defined

by rmax(t) = max{r(t′) : 0 ≤ t′ ≤ t} with r(t) =
√
x(t)2 + y(t)2. About 40 % of

water molecules that reside on the membrane surface over 600 ps can diffuse above

0.5 nm2. This implies that water molecules can diffuse beyond a lipid molecule in the

membranes, because the area per lipid is about 0.5-0.7 nm2. Some water molecules

diffuse by interchanging the water bridge while remaining on the membrane surface.

We found a water-bridge interchange dynamics for the first time.
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Fig. 4.2 Diffusion of water molecules on lipid membrane surfaces. (A) Configuration of
POPC bilayer. Each color represents a different phospholipid. Explicit water molecules
correspond to the upper and lower transparent coatings. (B) Survival provability of resi-
dence time of water molecules on the membrane surfaces. (C) Lateral trajectory of a water
molecule (yellow) tracked for 9 ns on a POPE membrane surface. Circles with lines rep-
resent trajectories of different lipid molecules. (D) Fraction of water molecules traversing
a certain distance lc. Each color represents different lc values.
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4.3.2 Translational and rotational subdiffusion of water molecules on

membrane surfaces

To investigate the diffusion of water molecules on the membrane surfaces, we con-

sider translational as well as rotational diffusion of the water molecules. The

ensemble-averaged lateral translational MSD (tMSD) is defined as

〈
l2(t)

〉
=

1
2
〈{x(t+ t0) − x(t0)}2 + {y(t+ t0) − y(t0)}2〉, (4.18)

where t0 is the time when water molecules enter the membrane surfaces and 〈. . .〉
is the average with respect to captured and reflected water molecules impinging on

the membrane surface. If exiting from the membrane surfaces, water molecules are

excluded from the ensemble. In considering rotational diffusion, we define δθ(t) ≡
cos−1 (−→µ (t) · −→µ (t+ δt)) and direction −→p (t) ≡ −→µ (t)×−→µ (t+ δt), where −→µ (t) is the

dipole vector of a water molecule at time t. The vector −→ϕ (t) ≡
∫ t0+t

t0
δθ(t′)−→p (t′)dt′

gives us the trajectory representing the rotational motion. Then, the ensemble-

averaged rotational MSD (rMSD) [143] is given by〈
ϕ2(t)

〉
=

〈
|−→ϕ (t) −−→ϕ (0)|2

〉
. (4.19)

In CTRW, the MSD is suppressed with increase of the starting time t1 of a mea-

surement [156]. This behavior is called aging. To investigate aging, we consider the

dependence of the MSDs on the starting time of a measurement. Here, we consider

tMSD(t; t1) = 〈{x(t+ t0 + t1)− x(t0 + t1)}2 + {y(t+ t0 + t1)− y(t0 + t1)}2〉/2 and

rMSD(t; t1) =
〈
|−→ϕ (t+ t0 + t1) −−→ϕ (t0 + t1)|2

〉
, where t1 corresponds to times after

entering the membrane surface at t0. Figure 4.4 shows the MSDs measured after

time t1 from 0 to 200 ps. Translational motions of water molecules exhibit subdiffu-

sion as in diffusion of lipid molecules [13,14,144,178,179] and peripheral membrane

proteins [180]. Whereas the subdiffusive exponents in the tMSDs decrease as time

t increases, the rMSDs show subdiffusion with a constant subdiffusive exponent.

For tMSD and rMSD, water molecules on POPC bilayers are faster than those on

POPE bilayers. This is because hydrogen bonds between choline groups and wa-

ter molecules in POPC bilayers are weaker than those in POPE bilayers because

methyl groups are present in the choline group of POPC. Moreover, as seen in

Fig. 4.4, both tMSD and rMSD depend on the starting time of a measurement t1.

Both MSDs become smaller the later t1 becomes. For t1 > 50 ps, unlike CTRW,
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MSDs do not strongly depend on t1. Therefore, this aging will be affected by a

non-equilibrium initial condition when water molecules attach to the membrane

surfaces. We note that MSDs calculated after equilibration on membrane surfaces

also decrease according to t1 [see Fig. 4.5].
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Fig. 4.4 Subdiffusion and aging of water molecules on membrane surfaces. (A) Ensemble-
averaged tMSD and (C) rMSD of water molecules on a POPC membrane surface. (B) and
(D) are the tMSD and rMSD on a POPE membrane surface. The slope of the solid lines
are fitted in the time interval from 50 to 1000 ps for t1 = 200 ps. The different colored
lines correspond to different measurement starting times t1.
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Fig. 4.5 Ensemble-averaged MSDs of water molecules with different measurement starting
times. (A) Ensemble-averaged tMSD and (C) rMSD of water molecules on a POPC
membrane surface. (B) and (D) are the tMSD and rMSD on a POPE membrane surface.
We consider tMSD(t; t1) = 〈{x(t + t0 + t1 + t2)− x(t0 + t1 + t2)}2 + {y(t + t0 + t1 + t2)−
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˙

|−→ϕ (t + t0 + t1 + t2) −−→ϕ (t0 + t1 + t2)|2
¸

, where
t2 is a skipping time of non-equilibrium initial condition when water molecules attach to
the membrane surfaces at t0, and t1 corresponds to times after t0 + t2. Here, t2 is 200 ps.
The different colored lines correspond to different measurement starting times t1. After
the non-equilibrium initial condition, MSDs decrease depending on t1.
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4.3.3 Origin of subdiffusive motion of water molecules on membrane sur-

faces

To clarify the origin of subdiffusive motions of water molecules on membrane sur-

faces, we perform a mean maximal excursion (MME) analysis [181], i.e. measure the

maximal distance covered by the particle up to time t after its initial release from the

origin. The MME analysis provides us an information on the physical nature of the

underlying subdiffusive processes by using trajectories only. In Figs. 4.6A and 4.7A,

the translational and rotational MSDs,
〈
l2(t)

〉
and

〈
ϕ2(t)

〉
, and the MME second

moments,
〈
l2(t)max

〉
and

〈
ϕ2(t)max

〉
, grow sublinearly with time, where

〈
l2(t)max

〉
and

〈
ϕ2(t)max

〉
are the ensemble averages of lmax(t) = max{l(t′) : 0 ≤ t′ ≤ t}

and ϕmax(t) = max{ϕ(t′) : 0 ≤ t′ ≤ t}, respectively. For about t > 30 ps,

the subdiffusive exponents of MSDs are almost the same as those of the MME

second moment. This result suggests that a fractal or CTRW feature appears

over relatively large-time intervals. Moreover, Figs. 4.6B and 4.7B show that the

regular moment ratios
〈
l4(t)

〉
/

〈
l2(t)

〉2 and
〈
ϕ4(t)

〉
/

〈
ϕ2(t)

〉2 fluctuate above 2

except for
〈
ϕ4(t)

〉
/

〈
ϕ2(t)

〉2 around 1000 ps and that the MME moment ratios〈
l4(t)max

〉
/

〈
l2(t)max

〉2 and
〈
ϕ4(t)max

〉
/

〈
ϕ2(t)max

〉2 fluctuate above 1.49. This re-

sult suggests CTRW scenario and excludes FBM and fractal scenarios. Figures 4.6C

and 4.7C show that the probability for water molecules to be in a sphere of growing

radius r0tα/2 is almost constant over t, while for rotational diffusion, the probability

below 20 ps increases because of a change in the subdiffusive exponent. This result

suggests CTRW or FBM scenarios and excludes fractal scenario. The above results

are summarized in Table 4.1. These results strongly support the CTRW scenario

for large-time intervals.
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Fig. 4.6 Quantitative analysis of trajectories of water molecules on the POPC membrane
surface. (A) MSD and second MME moment as functions of time t for translational and
rotational diffusion. (B) Regular and MME moment ratios for translational and rotational
motions. Horizontal lines are ratios 2 and 1.49. (C) Probability of water molecules to be

in a sphere of growing radius r0t
α/2. The value of α is based on fitted values 0.56 and

0.76 for translational and rotational motions in the time interval from 10 to 1000 ps for
t1 = 0 ps, respectively.
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Fig. 4.7 Quantitative analysis on trajectories of water molecules on the POPE membrane
surface. (A) MSD and second MME moment as function of time t for translational and
rotational diffusion. (B) Regular and MME moment ratios about translational and rota-

tional motions. (C) Probability to be in a growing sphere of radius r0t
α/2. The α are

based on the fitted values 0.5 and 0.66 for translational and rotational motions in the time
interval from 10 to 1000 ps for t1 = 0 ps, respectively.
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To validate the CTRW scenario, we consider the TAMSDs defined by δ2(∆; t) =(
δ2x(∆; t) + δ2y(∆; t)

)
/2 and δ2ϕ(∆; t) = 1

t−∆

∫ t−∆

0
|~ϕ(t′ + ∆) − ~ϕ(t′)|2dt′ for trans-

lational and rotational motions, respectively, where t is the measurement time and

δ2x(∆; t) =
∫ t−∆

0
{x(t′ + ∆) − x(t′)}2dt′/(t− ∆). TAMSDs for trajectories of water

molecules residing on the surface of the membrane longer than 2000 ps for both

translational and rotational motions are shown in Figs. 4.8AB and 4.9AB. Unlike

CTRW, where the TAMSD grows linearly with ∆, TAMSDs do not show a lin-

ear scaling over short-time durations. Because the TAMSD shows subdiffusion in

FBM, i.e. sublinear scaling of ∆, translational and rotational motions have a FBM

characteristic over short-time durations of ∆. However, rotational TAMSDs show

normal diffusion (linear scaling of ∆) as expected by CTRW, whereas translational

TAMSDs do not show normal diffusion. The mean rotational TAMSDs crossover

from sublinear to linear [see Fig. 4.10]. The crossover points at around 10 ps are co-

incident with the relaxation time for the orientational correlation functions of water

molecules on the membrane surfaces [see Fig. 3.7]. Because the sublinear growth of

the TAMSDs suggests FBM, the dynamics of water molecules will be affected by

viscoelasticity.

Figures 4.8CD and 4.9CD show the aging plots for translational and rotational

TAMSDs on the POPC membrane surface, i.e. the ensemble average of the TAMSD

as a function of the measurement time t, for different measurement starting times

t1. Whereas the ensemble averages of translational and rotational TAMSDs show

power-law decays: 〈δ2(∆; t)〉 ∝ t−γ1 and 〈δ2ϕ(∆; t)〉 ∝ t−γ2 for t1 < 50 ps, those show

little decay for t1 > 50 ps. In CTRW, the ensemble average of a TAMSD decays as

〈δ2(∆; t)〉 ∝ t−(1−α) [153], where α is the power-law exponent for the trapping-time

PDF. However, recently, it is shown that CTRW with strong noisy fluctuations do

not show the aging of TAMSD, whereas MSD still shows aging [182]. Thus, the

power-law decays of ensemble average of TAMSDs for t1 < 50 ps are attributed to

non-equilibrium initial conditions of water molecules on the membrane surfaces, in

other words, the initial condition is like a state of a collision with a wall. This is

because mean velocity of bulk water molecules is higher than those on the membrane

surfaces. Moreover, the longer water molecules reside on the membrane surfaces,

the more water molecules have chance to be buried into phosphate and glycerol

groups. We note that MSDs show aging in our simulations even when an initial

non-equilibrium state is skipped (see Fig. 4.5).



4.3 Results and Discussion 53

 0.01

 100  1000

< 
tT

A
M

SD
 >

 [n
m

2 ]

t [ps]

~ t - 0.18
t1 =     0 ps

=   50 ps
= 200 ps
= 400 ps
= 600 ps

 1

 100  1000

< 
rT

A
M

SD
 >

 [r
ad

2 ]

t [ps]

t1 =     0 ps
=   50 ps
= 200 ps
= 400 ps
= 600 ps

~ t - 0.2

 0.1

 1

 10

 1  10  100

rT
A

M
SD

 [r
ad

2 ]

∆ [ps]

~ ∆

 0.001

 0.01

 0.1

 1  10  100

tT
A

M
SD

 [n
m

2 ]

∆ [ps]

~ ∆ 0.5

~ ∆

A	
 B	


C	
 D	


Fig. 4.8 (A) Translational and (B) rotational TAMSDs of water molecules on the POPC
membrane surface. The different colored lines show 128 trajectories of water molecules.
(C) Aging plot for translational and (D) rotational TAMSD for ∆ = 10 ps. The different
colored symbols correspond to different measurement starting times t1. For reference, the
power-law decays are represented by solid lines.
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Fig. 4.9 (A) Translational and (B) rotational TAMSDs of water molecules on the POPE
membrane surfaces. The different colored lines show 128 trajectories of water molecules.
(C) Aging plot for translational and (D) rotational TAMSDs for ∆ = 10 ps. The different
colored symbols correspond to different measurement starting times t1.
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Figure 4.11 shows the RSDs [Eq. (4.9)] for translational and rotational TAMSDs

of water molecules residing on the membrane surfaces longer than 2000 ps. At the

time scale of subdiffusion, the RSDs of TAMSDs do not converge to a non-zero

constant but are decreasing monotonically, and are not consistent with Eq. (4.10).

We think that this is because CTRWs with noisy fluctuations also show a similar

behavior.
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Fig. 4.11 Relative standard deviation of TAMSDs. RSDs of (A) translational and (C) ro-
tational TAMSDs of water molecules on the POPC membrane surface. RSDs of (B) trans-
lational and (D) rotational TAMSDs of water molecules on the POPE membrane surface.
All are done for ∆ = 10 ps. The different colored symbols correspond to different mea-
surement starting times t1.
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Table 4.1 Summary of confirming the origin of subdiffusive motions

Analysis Translational
Second moment (regular, MME) Fractals or CTRW [∝ tα,∝ tα]
Ratio (regular, MME) CTRW [> 2, > 1.49]
Growing spheres CTRW or FBM [Pr(r ≤ r0t

α/2, t) = A0]
TAMSD FBM

Analysis Rotational
Second moment (regular, MME) Fractals or CTRW [∝ tα,∝ tα]
Ratio (regular, MME) CTRW [> 2, > 1.49]
Growing spheres CTRW or FBM [Pr(r ≤ r0t

α/2, t) = A0]
TAMSD CTRW and FBM

Together with the MME analysis, it is physically reasonable to consider that

the origin of the observed subdiffusion is a combination of CTRW and FBM. Al-

though we do not provide a distinct evidence of constant aging effect, results in

noisy CTRW [182] assist a suggestion that aging due to CTRW is inherent in water

dynamics on the membrane surfaces. Readers may confront the question whether

the observed CTRW feature could be due to the non-equilibration of the MD sim-

ulations. We note that non-equilibrium conditions of water molecules on the mem-

brane surface are compatible with an equilibration of the total system. As shown in

Fig. 4.12, total systems are equilibrated whereas TAMSDs show apparent aging [see

aging plot in Fig. 4.8]. This apparent inconsistency can be resolved by dissociation

of water molecules from the membrane surfaces. In fact, because water molecules

can dissociate from the membrane surfaces and the mean residence time is finite,

the system can be equilibrated.

The distribution of waiting times contributes to CTRW arising from random

binding and unbinding of water molecules from the lipid surface. Moreover, trans-

lational motions of water molecules forming the water bridge are affected by lipid

motions in lipid membranes which are governed by FBM motions [13,14,179]. Un-

like CTRW, where a trapped state simply does not move, it is difficult to estimate

exact trapping times in such situations. Figure 4.13 shows the PDFs of transla-

tional and rotational exit time of water molecules on the membrane surfaces with

two types of thresholds. Although the PDF of exit times is known to be follow

a power-law distribution with a divergent mean in CTRW, the PDFs P (t) of exit
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times on the membrane surfaces do not follow power-law distributions. The shapes

of the PDFs strongly depend on the threshold value. It is difficult to determine the

shape of the PDF for large lc and θ in the situation such that particles can move

during a trapped state. We think that a power-law distribution is invisible because

water molecules on the membrane surface can move during a trapped state. We also

confirmed that there are no significant differences in the water behavior on both

POPC and POPE lipid membranes.
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lipid systems. (B) Total energy per particle versus time for the two lipid systems. The
areas per lipid and total energies per particle fluctuate around each constant value, which
means that the systems are in an equilibrium.

In summary, we have shown that water molecules on membrane surfaces can

diffuse laterally while connected as part of a bridging network to lipid molecules

in membrane. This interchanging dynamics in the water bridge network can be



58 Chapter 4 Anomalous diffusion of water molecules on membrane surfaces

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

 10  100  1000

P(
t)

t [ps]

POPC, θ2 = 10 rad2

POPE, θ2 = 10 rad2

POPC, θ2 = 50 rad2

POPE, θ2 = 50 rad2

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

 10  100  1000

P(
t)

t [ps]

POPC, lc2 = 0.1 nm2

POPE, lc2 = 0.1 nm2

POPC, lc2 = 0.5 nm2

POPE, lc2 = 0.5 nm2

B	


A	


Fig. 4.13 Exit times of water molecules. PDFs of (A) translational and (B) rotational exit
times of water molecules on the lipid membrane surfaces. Different color lines represent
the differences of lipid membrane and thresholds.

described by CTRW. Furthermore, we have found translational and rotational sub-

diffusion of water molecules on the membrane surfaces. These subdiffusion originate

from a combination of CTRW and FBM, which are attributed to long-time trapping

by the membrane surface and viscoelasticity of lipid bilayers, respectively. Such a

subdiffusive process has been observed in experiments of intracellular transport of

insulin granules [147].

What is a biological significance of subdiffusion and aging phenomena of water

molecules on cell membrane surfaces? Because subdiffusion and aging mean the

diffusivity decreases as time passes, these phenomena cause water retardation and

increase the chance of water binding on the membrane surfaces. As a result, water



4.3 Results and Discussion 59

molecules form bridges that connect lipid molecules and stabilize cell membranes.

Moreover, the water retardation may contribute to higher efficiency of biological

reactions on cell membranes. To recognize and bind to a target, biomolecules diffuse

slowly around the target, and may be guided by the behavior of water molecules

in the target vicinity [19]. For example, water retardation around a metalloenzyme

active site assists enzyme-substrate interactions [183]. In a stochastic model, the

probability of finding a nearby target is explicitly increased by subdiffusion [184].

Biological reactions such as ligand-receptor interactions and enzymatic reactions

occur on cell membranes. Those depend upon encounters between biomolecules,

and the structure and dynamics of water molecules in the hydration layer on the

membranes. The water environment around the cell membranes produced by the

anomalous diffusion of water molecules may have biological significance.
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Chapter 5

1/f noise in hydration dynamics on

lipid membrane surfaces

5.1 Introduction

In numerous natural systems, the power spectra S(f) exhibit enigmatic 1/f noise:

S(f) ∝ 1
fβ

(0 < β < 2). (5.1)

at low frequencies. In biological systems, 1/f noise has been reported for protein

conformational dynamics [185,186], fluctuations of an extended DNA molecule [187],

DNA sequences [188], biorecognition [189], and ionic currents [190–193], implying

that long-range correlated dynamics underlie biological processes.

There are many mathematical models that generate 1/f noise including stochastic

models [151, 194–196] and intermittent dynamical systems [197–200]. The power-

law residence time distribution is one of the most thoroughly studied origins for

1/f noise [195,197–200]. In dichotomous processes, the power spectrum shows 1/f

noise when the distribution of residence times of each state follows a power-law

distribution with divergent second moment. For blinking quantum dots, which

show a 1/f spectrum, residence times for “on” (bright) and “off” (dark) states

have been experimentally shown to have a power-law distribution with a divergent

mean [126, 201]. In stochastic models, this divergent mean residence time violates

the law of large numbers which causes the breakdown of ergodicity, non-stationarity,

and aging [153, 155, 166, 171, 202, 203]. On the other hand, the divergent mean

residence time implies an infinite invariant measure in dynamical systems [204] and

that the time-averaged observables are intrinsically random [204,205].

Although little is known about the hydration dynamics, it is important to un-
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derstand the dynamics of resident water molecules because these water molecules

may play important roles in the overall dynamics of the membrane, and will affect

membrane stability and biological reactions. In fact, such water molecules stabilize

the assembled lipid structures [54]; this water retardation increases the efficiency of

biological reactions [19, 183]. Water molecules enter and exit the hydration layer,

and the number of water molecules near the lipid head group fluctuates.

Here, we perform MD simulations on water molecules plus pure lipid membrane

at 310 K to investigate the hydration dynamics on the lipid surface. We find that

fluctuations in the number of water molecules on the lipid surface show 1/fβ noise

with β > 1 at high frequencies, and that the residence time distributions for “on”

and “off” states follow power-law distributions with exponential cutoffs. Moreover,

we construct a dichotomous process from the trajectory of the number of water

molecules on a lipid molecule to clarify the origin of the 1/f noise. By analyzing

the constructed dichotomous process, we find that there is a long-term correlation

between residence times, which contributes to the β > 1 at high frequencies.

5.2 Methods

5.2.1 Molecular dynamics simulations

Additional MD simulation of complex POPC/palmitoyl-oleoyl-phosphatidylserine

(POPS) bilayer was performed to clarify the universality of the hydration dynamics

on the lipid membrane surfaces. The POPC/POPS (4:1) lipid system of 100 POPC

lipids and 28 POPS lipids was solvated with 7,552 TIP3P water molecules, and NaCl

ions at 150 mM concentration were added to neutralize the system. The simulation

conditions were the same as that in Chapter 4.

Moreover, to confirm the universality of results, we changed water models,

force fields, thermostat, and barostat. We performed a 1.14 µs MD simulation

of the membrane system which has 128 POPC molecules and 7,823 SPC water

molecules [206] using GROMACS-4.5.5 software [207]. The GROMOS96 53a6

force field [208], which is a united-atom model, was used for the POPC lipid.

The pressure of 1 bar and a temperature of 310 K were controlled using the

Parrinello-Rahman barostat [209] and velocity rescaling method [210] with a

coupling time of 1 ps and 0.1 ps, respectively. The lengths of bonds involving

the hydrogen atoms were constrained to equilibrium lengths using the LINCS
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method [211]. The time step was set at 2 fs. The particle-mesh Ewald method was

used for long-range electrostatic interactions. A cut-off distance of 1 nm was used

for the van der Waals interactions.

5.2.2 Degree of non-Markovianity

The degree of non-Markovianity [192] is given by

G(∆, T ) =

 1
T

1
M2

M∑
i,j

∫ ∆+T

∆

D2
i,j(t,∆)dt

1/2

, (5.2)

where M is the total number of the states (M = 2 in our case), T is the range of

the time ∆ and t, and

Di,j(t,∆) = P (i, t|j, 0) −
M∑

k=1

P (i, t|k, t− ∆)P (k, t− ∆|j, 0), (5.3)

where P (i, t|j, s) is the transition probability that the current state at the time

t is in the state number i under the earlier state at the time s was in the state

number j. The value of G strongly depends on the number of ensemble for calcu-

lating the transition probabilities. For calculating the transition probability, 128

dichotomous processes were divided into 100 segments. Thus, we used 12,800 data

at each time step for calculating the conditional probabilities. The shuffled dichoto-

mous processes were generated by shuffling the residence times for “on” and “off”

states among themselves randomly. We generated the Markov dichotomous process

where each state is generated independently with equal probability (p = 1/2). The

P (i, t|j, s) for the Markov dichotomous process was calculated by using the same

number of ensemble 12,800. All G(∆, T ) were calculated for T = 600 ps.

5.3 Results and Discussion

5.3.1 Fluctuations of water molecules on the lipid head group

To investigate the hydration dynamics on the lipid membrane surfaces, we recorded

the number of water molecules for which the oxygen was within interatomic dis-

tances of 0.35 nm [57,212], which corresponds to the hydrogen bond distance, from

all atoms in lipid head group [see Fig. 5.1A]. The number fluctuates around the av-

erage of about 14. Figure 5.1B shows the ensemble-averaged power spectra density
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(PSD) of the water molecules calculated for the 128 lipid molecules in the POPC

lipid bilayer. We have S(f) ∝ f−β with β = 1.35 ± 0.05 at high frequencies, while

below a transition frequency (ft = 0.3 GHz) PSD becomes a plateau at low frequen-

cies. This crossover phenomenon is essential because S(f) ∝ f−β with β ≥ 1 implies

non-integrability and non-stationarity. The observation of the plateau means that

the measurement time is long enough. The time scale of the 1/f noise is longer

than 100 ps (f = 1010 Hz). Mean residence time of water molecules on the mem-

brane surface is 7-71 ps depending on the biding sites and definitions of hydrated

molecules [54, 56, 57], which is shorter than the time scale of the 1/f noise. More-

over, 80 % of water molecules which continuously reside on the membrane surface

more than 1 ns move beyond 0.6 nm2 [see Fig. 4.2]. The area per lipid is about

0.5-0.7 nm2. Thus, most of the water molecules are displaced on the membrane

surface by exchanging hydrogen bond interactions with lipid molecules in the time

scale of the 1/f noise. We have confirmed that fluctuations of the number of water

molecules within a box and a sphere near the membrane surfaces also exhibit 1/f

noises but this is not the case for bulk [see Fig. 5.2].

A similar transition of the power-law exponent of the PSD has also been observed

for the interchange dynamics of “on” and “off” states for quantum dot blinking [213].

This behavior was described theoretically using an alternating renewal process,

where the residence time distributions of “on” and “off” states are given by a power-

law with an exponential cutoff ψon(τ) ∝ τ−1−αe−τ/τon and a power-law ψoff(τ) ∝
τ−1−α with α < 1, respectively [213]. The transition frequency ft is related to the

exponential cutoff in the quantum dot blinking experiment. In this case, the PSD

exhibits aging, non-stationarity, and weak ergodicity breaking because the “off”

time does not have a finite mean. To confirm whether the aging effect appears in

the hydration dynamics on the lipid surface, we calculate the ensemble-averaged

PSDs for different measurement times [Fig. 5.1C]. The magnitudes of the PSDs do

not depend on the measurement time t, i.e. there is no aging. It follows that the

power-law distribution with an exponential cutoff considered in [213] cannot explain

hydration dynamics on the lipid membrane surfaces.
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Fig. 5.1 Fluctuation of number of water molecules on the POPC membrane. (A) Time
series of number of water molecules on a lipid head group. The red dashed line is the av-
erage number of water molecules on the lipid head group over this time period. The outer
windows show snapshots of water molecules around the lipid head group. (B) Ensemble-
averaged PSD of number of water molecules. We use 128 time series to obtain the ensemble-
averaged PSD. The solid lines represent power-law behavior for reference. Total measure-
ment time was 131 ns. (C) Ensemble-averaged PSD for four different measurement times:
2.05, 8.19, 32.8, and 131 ns. The power spectra coincide without fitting.
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Fig. 5.2 Ensemble-averaged PSD of number of water molecules in regions near the POPC
membrane surface. (A) Box (size is lx× ly × lz = 3×3×0.7 nm3) and (B) sphere (radius is
r = 0.35 nm3). The centers of the box and sphere are located at a perpendicular diastase
Z0 from the center of mass of the membrane. Z0 = 2.5 nm is around the surface of the
membrane. The fluctuations at Z0 = 4.0 nm are white Gaussian noise.
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5.3.2 Origin of the 1/f noise

One important question remains unclear: What is the origin of the 1/f noise? In

other words, does power law intermittency or long-term memory contribute to the

1/f noise? To consider the origin of 1/f noise, we constructed a dichotomous (two

states) process from the time series of the number of water molecules, where a

state is called “on” (N ′ = 1) state when the number of water molecules on each

lipid molecule is above the average number and “off” (N ′ = −1) state otherwise

[Fig. 5.3A]. Figure 5.3B shows the ensemble-averaged PSD for the time series of

constructed dichotomous processes. The obtained 1/f noise is the same as the

ensemble-averaged PSD for the original time series [see Fig. 5.1B]. The PSD of the

dichotomous processes also does not show aging [Fig. 5.3C].

To confirm a presence of a long-term memory, we calculate the ensemble-averaged

PSD for shuffled dichotomous processes, where residence times for “on” and “off”

states were shuffled among themselves randomly. Because shuffled dichotomous

processes do not have a long-term correlation between residence times, we can clarify

the existence of a long-term correlation. The ensemble-averaged PSD of the shuffled

dichotomous processes exhibits 1/f noise and plateau at low frequencies [Fig. 5.4B].

However, the power-law exponent of S(f) ∝ f−β at high frequencies changes from

the original one (1.35) to 0.8. The frequency at which the PSD becomes a plateau is

the same order of that of the original dichotomous process in Fig. 5.3B. This means

that the long-term memory in residence times affects the power-law exponents of

the original PSD.

Figure 5.4A shows PDFs of residence times for “on” and “off” states.

Both PDFs follow power-law distributions with exponential cutoffs, P (τ) =

Aτ−1−α exp(−τ/τc), where the power-law exponent is α = 1.2, and cutoffs for the

PDFs of the “on” and “off” states are τc = 59 ps and 1074 ps, respectively. The

observed exponent, α > 1, implies that mean residence time does not diverge and

is consistent with the ergodic behavior (no aging). Following our observations, we

performed a numerical simulation in which time series of “on” and “off” states

were generated with random waiting times drawn from a power-law distribution

with an exponential cutoff (α = 1.2, on: τc = 60 ps, off: τc = 1000 ps). The PSD

of the numerical simulation is well consistent with that of the shuffled dichotomous

process [see Fig. 5.4B]. In alternating renewal process, the power-law exponent β
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Fig. 5.3 1/f noise in dichotomous process on the POPC membrane. (A) Part of a time
series of the number of water molecules on a lipid molecule (blue line); conversion of this
data into “on” or “off” states (yellow line), depending on whether the number of water
molecules is above or below the average (red dashed line). (B) Ensemble-averaged PSD
of the time series of the two states. The solid lines are shown as reference for higher and
lower frequencies. (C) Ensemble-averaged PSD of the time series of the two states for four
different measurement times: 2.05, 8.19, 32.8, and 131 ns. There is no aging.
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Fig. 5.4 Alternating renewal process. (A) PDFs of residence times of “on” and “off”
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averaged PSD of shuffled dichotomous processes (SDP) (black line) on the POPC mem-
brane. Numerical simulation of alternating renewal process; residence times are given
by power-law distribution with exponential cutoff, where α = 1.2, on: τc = 60 ps, off:
τc = 1000 ps (green line). The solid line is shown for reference.

in the PSD is given by the power-law exponent in the residence time distribution,

i.e. β = 2−α as α < 2 [198]. The power-law exponent β observed here in the PSD

is consistent with this relationship.

To clarify the correlation between residence times, we consider three types of time

series of residence times: {τon
1 , ..., τon

n }, {τoff
1 , ..., τoff

n }, and {τon
1 , τoff

1 , ..., τon
n , τoff

n }.
Figure 5.5A shows the conditional averages of τi+1, denoted by 〈τi+1〉τi , when the

previous residence time is in [τ̃lk, τ̃l(k+1)) for some k ∈ {0}∪N, where we set l = 103
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and τ̃i is rearranged in ascending order (τ̃0 < τ̃1 < ... < τ̃i < τ̃i+1 < ...) [214]. There

are positive correlations of residence times between the previous “on” state and the

current “on” state or the previous “off” state and the current “off” state, and neg-

ative correlations of residence times between an “on” state residence time and the

next “off” state time or an “off” state residence time and the next “on” state time.

This means that each state is stable, i.e. the hydration layer is stabilized. Fur-

thermore, we show the degree of non-Markovianity, G(∆, T ), in Fig. 5.5B [192] (the

details are shown in Methods). We used 12800 data at each time step to calculate

the transition probabilities, and G(∆, T ) were calculated for T = 600 ps. Maxi-

mal values for dichotomous process (DP) and shuffled dichotomous process (SDP)

are GDP(21, 600) = 0.067 and GSDP(6, 600) = 0.015, respectively. The value for

computer-generated Markovian dichotomous processes is G = 0.004. The dichoto-

mous process generated by the hydration dynamics shows strong non-Markovianity,

while the shuffled dichotomous process also shows non-Markovianity before 400 ps.

Moreover, the ensemble-averaged PSDs of the three types of time series of residence

times exhibit 1/f noise [see Fig. 5.5C]. This result means that the residence times

have a long-term correlation. These results imply that the high non-Markovianity of

the dichotomous processes comes from not only a power-law residence time distribu-

tion but also a long-term memory in residence times. These results suggest that the

origin of the 1/f noise is a combination of a power-law residence time distribution

and a long-term correlation between residence times. These correlations between

residence times are also observed in quantum dot blinking experiments [215,216].
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Fig. 5.5 Correlation between residence times on the POPC membrane. (A) Conditional
averages of the residence times. Different color lines distinguish the pairs used for the
analysis. (B) Degree of non-Markovianity for dichotomous processes (DP), shuffled di-
chotomous processes (SDP), and Markovian dichotomous processes (MDP). (C) Ensemble-
averaged PSD of residence times. The solid lines are shown for reference.
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Although we used conventional hydrogen bond distance 0.35 nm to define the

surface water molecules, it was shown that there is no preferential mutual orientation

between two water molecules if the distance is more than 0.3 nm [217, 218]. We

confirmed 1/f noise with different definition of hydrogen bond distance 0.3 nm [see

Fig. 5.6]. The value of the power law exponents of PSD become β = −1.2 at high

frequencies. And transition frequency of the PSD shift to lager frequency because

the cutoff of the distribution of the residence time in dichotomous process becomes

short.

Moreover, surface water structures and diffusivities of lipid molecules are known

to be affected by negatively charged lipids and ions [38,219]. To clarify the universal-

ity of observed 1/f noise, we performed additional MD simulations of (i) pure POPE

membrane [see Fig. 5.7-5.9], (ii) negatively charged membrane of POPC/POPS (4:1)

lipids with 150 mM NaCl ions [see Fig. 5.10-5.11], and (iii) different force field, ther-

mostat, and barostat [see Fig. 5.12]. Power-law exponent β of PSDs and cutoff time

τ in the power-law residence time are slightly different. However, there are no sig-

nificant qualitative differences, that is, the power law exponent β and the origin of

the 1/f noise [see Fig. 5.6-5.12].

In summary, we have found that fluctuations of number of water molecules on the

lipid molecules exhibit 1/fβ noise with β > 1 and that the power spectrum does not

break ergodicity. Moreover, we have provided an evidence that the 1/f noise and

ergodic behavior are caused by non-Markov power-law intermittency with exponen-

tial cutoff. What is a biological significance of 1/f noise in hydration dynamics on

lipid membrane surfaces? The roles played by the water molecules near the mem-

brane depend upon their structure and dynamics. There are positive correlations

of residence times between the same states, and negative correlations of residence

times between the different states. This means that each state is stable, i.e. the hy-

dration layer is stabilized. The 1/f noise attributed to a correlated renewal process

can contribute to the stability of the hydration layer, which is important for mem-

brane stability and physiological processes. Moreover, these results are relevant to

a broad range of systems displaying 1/f fluctuations.

Because dynamics of lipid molecules and membrane structures affect the hydra-

tion dynamics of water molecules, the complexity of lipid membrane surfaces, dif-

fusivity, and fluctuations of lipid height will contribute to the 1/f noise. Here

we confirmed that temporal fluctuations of the height of lipid molecules also show
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Fig. 5.6 1/f noise in the hydration dynamics on the POPC membrane with using different
hydrogen bond distance 0.3 nm. (A) Ensemble-averaged PSD of number of water molecules
on POPC lipid head group. We use 128 time series to obtain the ensemble-averaged PSD.
The different colored lines represent different measurement times. The solid line is shown
as a reference. (B) Ensemble-averaged PSD of the time series of the two states. The
dichotomous process was generated in the same way as the POPC membrane in the main
text. (C) PDFs of residence times of “on” and “off” states on POPC. Solid lines are fitted
curves for power-law distributions with exponential cutoffs: P (τ) = Aτ−1−α exp(−τ/τc)
(α = 1.4, on: τc = 35 ps, off: α = 1.45, τc = 350 ps). (D) Ensemble-averaged PSD of
shuffled dichotomous processes (SDP) (black line). Numerical simulation of alternating
renewal process; residence times are given by power-law distribution with exponential
cutoff, where on: α = 1.4, τc = 35 ps, off: α = 1.45, τc = 350 ps (green line). (E) Ensemble-
averaged PSD of residence times of two states.
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Fig. 5.7 1/f noise in the hydration dynamics on the POPE membrane. (A) Ensemble-
averaged PSD of number of water molecules on a lipid head group. We use 128 time
series to obtain the ensemble-averaged PSD. The solid lines represent power-law behavior
for reference. Total measurement time was 131 ns. (B) Ensemble-averaged PSD for four
different measurement times: 2.05, 8.19, 32.8, and 131 ns. There is no aging.

1/f noise [see Fig. 5.13]. The transition frequency in the PSD from 1/f noise to

a plateau is almost the same as that of fluctuation of number of water molecules

around the lipid molecule [see Fig. 5.1B and 5.13]. It has been shown that lipid

bilayers exhibit transient subdiffusion originated from fractional Brownian motion

(FBM) (viscoelasticity) [13, 14, 179] and shows dynamic heterogeneity [13]. More-

over, water molecules on the lipid membrane surfaces exhibit subdiffusion, which

originates from a combination of long-term correlated noise (FBM) and divergent

mean trapping time (CTRW) [see Chapter 4]. A power-law waiting time distribu-

tion, arising from random binding of water molecules with the lipid molecules or 1D
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Fig. 5.8 1/f noise in the dichotomous process on the POPE membrane. The dichoto-
mous process was generated in the same way as the POPC membrane in the main text.
(A) Ensemble-averaged PSD of the time series of the two states. We use 128 time series to
obtain the ensemble-averaged PSD. The solid lines are shown as reference for higher and
lower frequencies. (B) Ensemble-averaged PSD of the time series of the two states for four
different measurement times: 2.05, 8.19, 32.8, and 131 ns. There is no aging. (C) PDFs of
residence times of “on” and “off” states. Solid lines are fitted curves for power-law distri-
butions with exponential cutoffs: P (τ) = Aτ−1−α exp(−τ/τc) (on: α = 1.1, τc = 240 ps,
off: α = 1.2, τc = 3000 ps). (D) Ensemble-averaged PSD of shuffled dichotomous pro-
cesses (SDP) (black line). Numerical simulation of alternating renewal process; residence
times are given by power-law distribution with exponential cutoff, where on: α = 1.1,
τc = 240 ps, off: α = 1.2, τc = 3000 ps (green line). The solid line is shown for reference.

comb-like structure of lipid membrane surfaces, contributes to CTRW. Viscoelas-

ticity of lipid bilayers contributes to the FBM of the water molecules. Furthermore,

the hydrogen-bond exchange dynamics shows long range correlations between mul-

tiple water molecules [217, 218]. These effects will contribute to the origin of the

observed 1/f noise.
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Fig. 5.9 Correlation of residence times on the POPE membrane. (A) Conditional averages
of the residence times. Different color lines distinguish the pairs used for the analysis.
(B) Degree of non-Markovianity for dichotomous processes (DP), shuffled dichotomous
processes (SDP), and Markovian dichotomous processes (MDP). (C) Ensemble-averaged
PSD of residence times. The solid lines are shown for reference.
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Ensemble-averaged PSD of number of water molecules on a lipid head groups. We use
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Fig. 5.11 1/f noise in the dichotomous process on the POPC/POPS membrane.
(A) Ensemble-averaged PSD of dichotomous processes . We use 100 and 28 time series to
obtain the ensemble-averaged PSD on POPC and POPS lipids, respectively. The solid lines
are shown as reference for higher and lower frequencies. We confirmed that there is no aging
(results are not shown). (B) Ensemble-averaged PSD of shuffled dichotomous processes.
(C) PDFs of residence times of “on” and “off” states on POPC. Solid lines are fitted curves
for power-law distributions with exponential cutoffs: P (τ) = Aτ−1−α exp(−τ/τc) (α = 1.2,
on: τc = 68 ps, off: τc = 1000 ps). (D) PDFs of residence times of “on” and “off” states
on POPS. Solid lines are fitted curves for power-law distributions with exponential cutoffs:
P (τ) = Aτ−1−α exp(−τ/τc) (α = 1.2, on: τc = 513 ps, off: τc = 3420 ps). (E) Conditional
averages of the residence times on POPC and (F) POPS lipids. (G) Ensemble-averaged
PSD of residence times on POPC and (H) POPS lipids. The solid lines are shown for
reference.
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Fig. 5.12 Universality of the hydration dynamics with different force field, thermostat,
and barostat. 1/f noise in the hydration dynamics on the POPC membrane with us-
ing GROMOS force filed, SPC water model, Parrinello-Rahman barostat and velocity
rescaling method for temperature controlling. (A) Ensemble-averaged PSD of number
of water molecules on POPC lipid head group. We use 128 time series to obtain the
ensemble-averaged PSD. The different colored lines represent different measurement times.
The solid line is shown as a reference. (B) Ensemble-averaged PSD of the time series of
the two states. The dichotomous process was generated in the same way as the POPC
membrane in the main text. (C) PDFs of residence times of “on” and “off” states on
POPC. Solid lines are fitted curves for power-law distributions with exponential cutoffs:
P (τ) = Aτ−1−α exp(−τ/τc) (α = 1.3, on: τc = 196 ps, off: α = 1.4, τc = 100000 ps).
(D) Ensemble-averaged PSD of shuffled dichotomous processes (SDP) (black line). Nu-
merical simulation of alternating renewal process; residence times are given by power-law
distribution with exponential cutoff, where on: α = 1.3, τc = 200 ps, off: α = 1.4,
τc = 100000 ps (green line). (E) Ensemble-averaged PSD of residence times of two states.
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Fig. 5.13 Ensemble-averaged PSD of temporal fluctuations of perpendicular position of
lipid molecules in the POPC membrane. The position of a lipid molecule is defined by the
perpendicular distance between center of mass of the membrane and a phosphorus atom
in the phosphate group of the lipid molecule. We use 128 time series (128 lipid molecules)
to obtain the ensemble-averaged PSD. The PSD exhibits 1/f noise.
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Chapter 6

1/f fluctuations of amino acids

regulate water permeation in AQP1

6.1 Introduction

As water molecules transit through AQPs, they are affected by neighboring water

molecules and by AQP amino acids. Water-amino acid interactions occur chiefly

in two characteristic domains, the NPA motif and the ar/R region [91]. Recently,

Eriksson et al. reported that the water-water interactions within the yeast AQP

are broken at the ar/R region, which prevents proton permeation [110]. Therefore,

the ar/R region plays an important role in water permeation. However, the roles of

fluctuations of the amino acids in these interactions are unclear. The relationship

between conformational fluctuations of amino acids and water dynamics within

AQPs may be of high biological importance.

During transit through the AQP pore, water molecules rotate as they encounter

regions that heavily polarize their dipoles. In carbon nanotubes (CNTs), water

molecules diffuse single file by a continuous-time random walk process with expo-

nential waiting time distribution [220]. On the other hand, the statistical proper-

ties of first-passage water transport times in OmpF membrane protein channels are

known to differ from those in homogeneous pores such as CNTs [129]. Therefore,

little is known about AQP water dynamics because the channel steric conformations

of AQPs are much more complicated than those in CNTs.

Here, we perform MD simulations of the AQP1 embedded in a POPE bilayer.

The amino acids in AQP1 are found to undergo 1/f fluctuations. Moreover, the

occurrence of water molecules crossing the ar/R region of AQP1 is a non-Poisson

process. Analyzing water permeation through the channel is modeled by Langevin
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Fig. 6.1 (A) The system used for MD simulations of AQP1 in a POPE lipid bilayer. A
single tetramer of AQP1 is embedded in the POPE lipid bilayer. The AQP1 is shown in
cartoon (blue). Lipids are shown in green with their oxygen atoms in red. Explicit water
molecules correspond to the upper and lower transparent coatings. The blue line of the
box is a periodic boundary. (B) Root mean-square deviation (RMSD) of the AQP1. The
RMSD fluctuates around a constant value after 70 ns, which means that the structure of
the AQP1 is in an equilibrium.

stochastic simulations, we suggest that the 1/f fluctuations of amino acids may be

implicated in water permeation control in AQPs.

6.2 Methods

6.2.1 Molecular dynamics simulations

To elucidate the water transport properties and fluctuations of amino acids in AQP1,

we performed MD simulations of AQP1 (based on the X-ray crystallographic struc-

ture [83]) embedded in a POPE bilayer. The initial membrane system contained a

homotetrameric assembly of free AQP1, 526 POPE molecules, and 74,738 TIP3P
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water molecules [see Fig. 6.1A]. Before MD simulation, we minimized the energy

of the system by the steepest descent method followed by the conjugate gradi-

ent method. A 120 ns MD simulation of the system was performed with a constant

number of atoms at a pressure of 0.1 MPa and a temperature of 310 K. The MD sim-

ulation was carried out using Berendsen’s algorithm with a coupling time of 0.2 ps.

The time step was set at 1 fs. The lengths of hydrogen bonds were constrained to

equilibrium lengths using the SHAKE method. Parm99 and gaff parameters were

used for the protein and POPE lipids, respectively. This parameter for POPE has

been used in previous studies of membranes or membrane proteins [5,13,62,96]. The

particle mesh Ewald method was used, with a specified direct space cutoff distance

of 1.0 nm. A three-dimensional periodic boundary condition was imposed on all

systems. Because the system reached equilibrium at 70 ns, the trajectories of the

final 50 ns were used in the analysis [see Fig. 6.1B].

Moreover, to investigate the effect of the 1/f fluctuations of amino acids on water

permeation, we performed three MD simulations in which all amino acid residues

of AQP1 were restrained within a harmonic potential in Cartesian space. The

force constant was 10 kcal/mol Å2. The initial structures in the restrained MD

simulations were assumed from equilibrium structures of MD simulations at 80,

100, and 120 ns. Three independent restrained MD simulations were performed

over 20 ns. All MD simulations were performed using AMBER10 software [140].

6.2.2 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) [221] is a method for detecting a long-range

correlations embedded in a time series. First, we construct an integrated time series

yi =
∑i

j=1 rj and divide the series into bins of size n. The fluctuation function F (n)

is the root mean-square of the deviations from a local trend (determined by least-

squares fitting), defined by

F (n) ≡

√√√√ 1
mn

m∑
j=1

jn∑
i=(j−1)n+1

{yi − (ajxi + bj)}2
, (6.1)

where m represents the number of bins of size n. The fluctuation function exhibit

a scaling F (n) ' nβ , and the scaling exponent β gives an information about the

correlation properties of the time series. The cases β < 0.5 and β > 0.5 correspond

to anti-correlated and correlated noise, respectively. Especially, certain exponents
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β correspond to characteristic noises; β ' 0.5: white noise and β ' 1: 1/f noise.

The exponent β and the exponent α of the power spectral density S(f) ' f−α of

the original time series are related by α = 2β − 1.
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6.3 Results and Discussion

6.3.1 Fluctuations of amino acids in AQP1

Channel steric conformation and solute binding sites in AQP1 facilitate the rapid

and highly selective permeation of water molecules. As mentioned above, AQP1

contains two characteristic domains. One is the Asn-Pro-Ala (NPA) motif located

at the two short helices in the center of the membrane, which contains amino acids

N78 and N194 [83] [see Fig. 6.2A]. The NPA motif allows water molecules to form

hydrogen bonds with two Asn residues, thereby reversing the orientation of the wa-

ter molecules. The other domain is an ar/R region constituting the narrowest part

of the pore, formed by Phe58, His182, Cys191, and Arg197 [93,222] [see Fig. 6.2B].

The ar/R region performs a filtering role, blocking partially hydrated ions that are

too large to pass through the narrow region [72, 96]. To evaluate the conforma-

tional fluctuations in AQP1, we analyze the distances between the centers of mass

coordinates of amino acids in the ar/R region (H182 and R197) and in the NPA

motif (N78 and N194) over a 50 ns simulation period [see Fig. 6.2C]. The distance

fluctuations are characterized by the power spectral density of these distances [see

Fig. 6.2D]. The amino acids in AQP1 show 1/f fluctuations. To improve the clarity

of the results, we perform DFA [see Fig. 6.2E]. The F (n) is linear about both H182-

R197 and N78-N194, again suggesting that the distances between the amino acids

undergo 1/f fluctuations. Figure 6.2F shows a PDF of the power law exponent

α. The distances between amino acid pairs show 1/fα fluctuations in AQP1. The

exponent α depends on the amino acid pairs.

These 1/f fluctuations of amino acids are intriguing. In biological systems, 1/fα

noises have been reported for protein conformational dynamics [185, 186], DNA

sequences [188], and ionic currents [190,192,193], implying that biological proteins

generally undergo long-range correlated dynamics. Distance fluctuations between

donors and acceptors have been modeled by the generalized Langevin equation

with fractional Gaussian noise [186]. Thus, we expect that other transmembrane

proteins will exhibit 1/f fluctuations. Our present finding has potentially important

implications for biological functions.
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Fig. 6.2 Fluctuations of amino acids in AQP1. (A) Snapshot of AQP1 monomer chan-
neling a single file of water molecules. (B) Snapshot of ar/R region in AQP1. Histidine
and arginine contribute to the filter mechanism. The distance between H182 and R197
is analyzed. (C) Distances between amino acids in AQP1, as a function of time. Red
and blue lines indicate H182-R197 and N78-N194 distances, respectively. (D) PSD of the
distances between amino acids. The solid line has slope −1. (E) DFA of distances be-
tween amino acids in AQP1. Different pores in the AQP1 tetramer are distinguished by
colored symbols. Circles and triangles represent the H182-R197 and N78-N194 distances,
respectively. The black line is shown for reference. (F) PDF of the exponent α of power
spectral densities S(f) ' f−α on amino acid distances. These are obtained from all amino
acid pairs in a monomer.

6.3.2 Water dynamics within AQP1

To investigate the water dynamics in AQP1, we calculate the free energy differ-

ence Fe(z) of water molecules in the AQP1 pore, given by Fe(z) = − ln ρ(z) [see

Fig. 6.3A], where z and ρ(z) are the coordinate and the PDF, respectively, of wa-

ter molecules in the pore. We define units of energy by setting kBT = 1. The

PDFs are computed from all trajectories of water molecules in four different pores.

There is a high energy barrier around the ar/R region (z ∼= 0.6 − 0.8 nm). Water

molecules are trapped in a free energy valley in AQP1. Trapped water molecules

jump to neighboring sites at certain instances in time. Jumping events are evident

in the trajectories of water molecules in the AQP1 [see Fig. 6.3B]. To investigate



86Chapter 6 1/f fluctuations of amino acids regulate water permeation in AQP1

the jumping event across the ar/R region, we define the z coordinate of this region

as the center of mass of the H192 and R197 amino acids (the pink line in Fig. 6.3B).

Because the ar/R region is the narrowest section of the pore, jumping events across

the region are readily observed. We then calculate the PDFs of the interoccur-

rence times of the jumping events. To remove molecular vibrational effects from

the PDF, an event is considered a jump only if its movement across the z coordi-

nate of the ar/R region exceeds 0.1 nm. As shown in Fig. 6.3C, the PDFs follow

non-exponential distributions, a non-Poisson process.

One important question remains unclear: what is the origin of the non-Poisson

process? In other words, does the non-Poisson process come from effects by the

complex configuration within the pore or 1/f fluctuation of amino acids? To ad-

dress this question, we perform MD simulations in which the AQP1 structure is

restrained using a harmonic potential. Three independent restrained MD simu-

lations are performed over 20 ns. DFAs of the NPA motif (N78 and N194) and

ar/R region (H182 and R197) are shown in Fig. 6.3A. The amino acid fluctuations

are modified in the restrained MD simulations. Here, the line of slope 0.5 signifies

white noise. Figure 6.3B shows Fe(z) of water molecules in the restrained AQP1.

The value of Fe(z) depends on the first configuration used for the restrained MD

simulations. The modified fluctuations from 1/f noise to white noise alter the

water permeation dynamics within the AQP1. The jump events across the ar/R

region are characterized by a Poisson process, where the interoccurrence times of

the jumping events are distributed exponentially [see Fig. 6.3C]. This implies that

water permeation is extensively affected by amino acid fluctuations. Because the

water permeation depends largely on the pore size, the 1/f fluctuation of distances

between amino acids within the AQP1 is important to regulate the water perme-

ation. We note that the pore sizes in some restrained AQPs became too small to

pass water molecules.
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Fig. 6.3 Water permeation in AQP1. (A) Free energy variation of water molecules within
AQP1. The NPA motif (center of N78 and N194) is located at z = 0. Colored lines
represent the density of water molecules in different pores of the AQP1 tetramer. (B) Water
translocation in AQP1 throughout the 3 ns time course of the MD simulation. The z
coordinate of the NPA motif (located at z = 0) has been subtracted from all z coordinates.
For enhanced clarity, results are averaged over 10 ps intervals. Individual water molecules
are assigned different colors each time they enter or re-enter the channel. Pink line around
z = 0.7 nm is the z coordinate of the ar/R region (center of H182 and R197). (C) PDFs
of interoccurrence times of jump events of water molecules at the ar/R region. Different
AQP1 pores are distinguished by colored symbols.
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6.3.3 Stochastic model of water permeation

The restrained MD simulations are somewhat artificial and difficult to obtain enough

ensembles due to the dependence on the first configuration. To capture the essential

feature of water permeation through AQPs, we propose a stochastic model that a

particle is trapped in a potential and jump the potential height [see Fig. 6.5A]. As

discussed in the previous subsection, events of water molecules crossing the ar/R

region crucially depend on the pore size, which fluctuates with the 1/f distribution.

The pore size corresponds to the height of the potential E, and the fluctuation

of the amino acids represents the fluctuation of the potential height. We consider

that the motion of water molecules is driven by white Gaussian noise. The water

molecules are modeled as particles governed by a Langevin equation in a harmonic

potential:

m
d2x(t)
dt2

= −mγdx(t)
dt

− kx(t) +R(t), (6.2)

where m is the mass of water molecule, γ is a friction coefficient, and k is a spring

constant. The random driving force R(t) satisfies the fluctuation-dissipation rela-

tion, 〈R(t)R(t′)〉 = 2mγkBTδ(t− t′), where kB is the Boltzmann constant and T is

a temperature. Parameter values used in simulations were k = 5 and m = γ = 1.

Water permeation occurs when the particle exceeds a random fluctuating threshold.

To mimic 1/f fluctuations, a fluctuating threshold E(t),

E(t) = E0 + EN (t), (6.3)

is generated by the following method [223], where E0 specifies an average threshold:

EN (t) =
N−1∑
i=0

ζi(t) (6.4)

dζi(t)
dt

= −νiζi(t) +
√

2νiηicNξi(t) (6.5)

where νi = ν0/b
i is the inverse autocorrelation time of the ith component and ηi =

[ηα/Γ(1−α)]Cα(b)να
0 /b

iα is its weight. The autocorrelation function of the noise is

the sum of independent autocorrelation functions, 〈ζi(t)ζj(0)〉 = cNηiδij exp(−νit),

〈EN (t)EN (0)〉 =
N−1∑
i=0

cNηi exp(−νit),
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which approximates 1/f1−α noise. Parameter values used in simulations were E0 =

1.35, ν0 = 50, b = 10, ηα = 0.5, α = 0.0001, and N = 16. Power spectra of

the EN (t) is shown in Fig. 6.5B. In the case of N = 1, the PDF of escape times

follows an exponential distribution for different ν1 [see Fig. 6.5C]. We note that the

variances of E1(t) is adjusted to that of N = 16 by changing η1c1. Figure 6.5D

shows the PDF of escape times when the potential barrier fluctuates with 1/f noise

(N = 16). In this case, the PDF follows a non-exponential distribution that strongly

agrees with that of the interoccurrence times of the jumping events across the ar/R

region. According to an increase of E0, PDF changes from non-exponential to

exponential distribution (not shown). The non-exponential distribution originated

from 1/f fluctuations is well consistent with that obtained by the MD simulation.

Although this model lacks molecular details on water permeation in real AQPs, it

avoids unwarranted assumptions about the detailed mechanisms and captures the

essential features. This model implies that 1/f fluctuations of the potential barrier

generate a non-Poisson feature of water permeation within the pore.

In summary, we have found that amino acids in AQP1 undergo 1/f fluctuations

by performing MD simulations of membrane-embedded AQP1. Moreover, we have

found that the interoccurrence times of water molecules crossing the ar/R region

in AQP1 follow a non-exponential distribution. To investigate the significance of

the 1/f fluctuations, we have performed restrained MD simulations of AQP1 and

proposed a simple stochastic model of water permeation. The model predicts that

water permeation depends on fluctuations of amino acids. These results suggest

that 1/f fluctuations of amino acids regulate the water permeation in AQPs. Re-

cently, design of using vibrating charge has been proposed for controlling the water

transport through CNTs [224,225]. A continuous unidirectional water flow is driven

by a vibration charge without osmotic pressure. Our finding would help in designing

and developing nanoscale systems for desalination processes.
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Fig. 6.5 Stochastic model of water permeation in AQP1. (A) Schematic of the model. A
particle (blue circle) is trapped and fluctuates in a potential. The height of potential E
fluctuates with 1/f noise (red arrow). At a certain moment, the particle escapes from the
potential. (B) Power spectra of the EN (t). Parameters values used in the simulation were
ν0 = 50, b = 10, α = 0.0001, and N = 16. The solid line has slope -1. (C) PDF of escape
times from the fluctuating-threshold potential follows Ornstein-Uhlenbeck noise (N = 1)
or (D) 1/f noise (N = 16). The results for Ornstein-Uhlenbeck noise (N = 1) and 1/f
noise (N = 16) are shown as single log and log-log plots, respectively. The lines are the
results of Langevin simulations. The red circles are the MD simulation results.
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Chapter 7

Conclusion

In summary, we have performed MD simulations to investigate the water dynamics

around lipid membranes.

In chapter 3, we have shown that the temperature dependence of the water molec-

ular motions on the lipid membrane surface is different from that in bulk. Decreas-

ing temperature enhances the water retardation on the membrane surface, and the

lateral motions of water molecules are correlated with the vertical motions. We

have found that trapping times of water molecules onto membrane surfaces are dis-

tributed according to a power-law distribution and that the power-law exponents

depend linearly on temperature, suggesting a random energy landscape picture.

In chapter 4, we have found that translational and rotational diffusion of water

molecules on lipid membrane surfaces exhibit subdiffusion and aging. Moreover,

we have provided evidence that both divergent mean trapping time (CTRW) and

long-correlated noise (FBM) contribute to this subdiffusion.

In chapter 5, we have found that the fluctuation of the number of interfacial water

molecules on the lipid membranes exhibits 1/f noise. Constructing a dichotomous

process of the fluctuation, we have found that residence times in each state follow

a power-law with exponential cutoff and that the process can be regarded as a

correlated renewal process where interoccurrence times are correlated. The results

imply that the origin of the 1/f noise in the hydration dynamics is a combination

of a power-law distribution with cutoff of interoccurrence times of switching events

and a long-term correlation between the interoccurrence times.

In chapter 6, we have analyzed water permeation and fluctuations of amino acids

within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of

long-term memory. Moreover, we have found that water molecules crossing the ar/R

region obey a non-Poisson process. To investigate the effect of the 1/f fluctuations
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on water permeation, we have performed restrained MD simulations of AQP1 and

simple Langevin stochastic simulations. As a result, we have confirmed that the 1/f

fluctuations of amino acids generate the non-Poisson feature of water permeation

within AQP1.

What does the vast number of water molecules do in biological systems, though

H2O has innately simple configurations? Water in biology is not simply a solvent but

plays more active and essential roles with biomolecules in complex and subtle ways.

In this thesis, we have mainly focused on the movement of water molecules on the

surface and through cell membranes. Water molecules cannot simply be regarded

as “anomalous” but as a creator of a unique environment around the membranes.

The observed anomalous diffusion and 1/f noise on the lipid membrane surfaces

may contribute to the enhancement of membrane stability and provide a higher

reaction efficiency. Moreover, the dynamics and structure of the interfacial water

molecules are like a mirror reflecting the surrounding environment. The changes in

the local diffusivities display the changes in the local structure and interaction with

molecules.

Diffusion of biomolecules in cells are affected by the heterogeneous environment,

which depends on the component, size, shape, and crowding of molecules. The

cell membranes, also intracellular organelle membranes, are involved in a variety

of biological process, where lipids, transmembrane proteins, peripheral membrane

proteins move dynamically. On the surface of biomolecules, dynamics of water

molecules is separated from bulk water. The diffusion of biomolecules change spa-

tiotemporally and heterogeneously, and cannot be solely described by Brownian

motion but with the addition of anomalous motion, where the latter is the more

dominant mechanism. Are the anomalous motions merely a peculiarity of molecules,

or can they be extended to biological benefits? Biomolecules are designed to tar-

get designated counterparts to play their physiological functions. The encounter

and interaction of these biomolecules may be controlled by anomalous dynamics.

Investigation of such intracellular transport events of biomolecules is indispensable

to understand living organisms. Studying the mechanism of anomalous motion of

biomolecules provides a deeper insight into biological systems.

In the future research, to understand more complex phenomena in living cells,

larger scale simulations will be conducted based on the current atomistic results.

Moreover, for the research, interdisciplinary approach and strong collaborations
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between experimental, computational, and theoretical approaches, are required.

This will accelerate mutual understanding, solve burning questions in biology, and

open a new frontier in science.
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Abbreviations and symbols

AQP Aquaporin
ar/R Aromatic/arginine
CTRW Continuous time random walk
CNT Carbon nanotube
DFA Detrended fluctuation analysis
DMPC Dimyristoyl-phosphatidylcholine
DPPC Dihexadecanoyl-phosphatidylcholine
FBM Fractional Brownian motion
MD Molecular dynamics
MET Mean exit time
MME Mean maximal excursion
MSD Mean squared displacement
NMR Nuclear magnetic resonance
NPA Asparagine-proline-alanine
ODNP Overhauser dynamic nuclear polarization
PC Phosphatidylcholine
PDF Probability density function
PE Phosphatidylethanolamine
PG Phosphatidylglycerol
POPC Palmitoyl-oleoyl-phosphatidylcholine
POPE Palmitoyl-oleoyl-phosphatidylethanolamine
POPS Palmitoyl-oleoyl-phosphatidylserine
PS Phosphatidylserine
PSD Power spectra density
RMSD Root mean-square deviation
RSD relative standard deviation
SAXS Small angle X-ray scattering
SM Sphingomyelin
TAMSD Time-averaged mean square displacement
THz-TDS Terahertz time-domain spectroscopy
VSFG Vibrational sum frequency generation
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[1] Eiji Yamamoto, Takuma Akimoto, Masato Yasui, and Kenji Yasuoka, “Origin

of 1/f noise in hydration dynamics on lipid membrane surfaces”, Sci. Rep. 5,

8876 (2015).

[2] Eiji Yamamoto, Takuma Akimoto, Masato Yasui, and Kenji Yasuoka, “Origin

of subdiffusion of water molecules on cell membrane surfaces”, Sci. Rep. 4,

4720 (2014).

[3] Eiji Yamamoto, Takuma Akimoto, Yoshinori Hirano, Masato Yasui, and Kenji

Yasuoka, “1/f fluctuations of amino acids regulate water transportation in

AQP1”, Phys. Rev. E 89, 022718 (2014).

[4] Eiji Yamamoto, Takuma Akimoto, Yoshinori Hirano, Masato Yasui, and Kenji
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[2] Winarto, Daisuke Takaiwa, Eiji Yamamoto, and Kenji Yasuoka, “Water-

methanol separation with carbon nanotubes and electric fields”, Nanoscale 7,

12659 (2015).

[3] Winarto, Daisuke Takaiwa, Eiji Yamamoto, and Kenji Yasuoka, “Structures of

water molecules in carbon nanotubes under electric fields”, J. Chem. Phys.

142, 124701 (2015).

[4] Katsufumi Tomobe, Eiji Yamamoto, Dusan Kojic, Masato Yasui, and Kenji

Yasuoka, “Velocity auto-correlation function of ions and water molecules in

different concentrations, anions and ion clusters”, Mol. Sim. 41, 840 (2015).



97

[5] Noriyoshi Arai, Takuma Akimoto, Eiji Yamamoto, Masato Yasui, and Kenji

Yasuoka, “Direct observation of lipid flip-flop in membrane”, J. Chem. Phys.

140, 064901 (2014).
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[192] Siwy, Z. & Fuliński, A. Origin of 1/fα noise in membrane channel currents.

Phys. Rev. Lett. 89, 158101 (2002).

[193] Tasserit, C., Koutsioubas, A., Lairez, D., Zalczer, G. & Clochard, M.-C. Pink

noise of ionic conductance through single artificial nanopores revisited. Phys.

Rev. Lett. 105, 260602 (2010).

[194] Lowen, S. B. & Teich, M. C. Fractal renewal processes generate 1/f noises.

Phys. Rev. E 47, 992–1001 (1993).
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