N-アルコキシアミド基を用いた含窒素四置換炭素 構築法の開発およびマダンガミン類の合成研究

2015 年度

柳田 悠太

学位論文 博士 (理学)

N-アルコキシアミド基を用いた含窒素四置換炭素 構築法の開発およびマダンガミン類の合成研究

2015 年度

慶應義塾大学大学院理工学研究科

はじめに
はじめに

略語	表	IV

緒論

第一章 フ	アミド基への求核付加反応による多置換アミンの構築	2
第一節	アミド基への求核付加反応について	2
第二節	アミド基の活性化段階を経る求核付加反応	4
第三節	アミド基の In Situ 活性化を利用した求核付加反応	8
第四節	アミド基への直接的求核付加反応	11
第五節	当研究室における N-アルコキシアミド基に対する求核付加反応	12

第二章 マダンガミン類	
第一節 単離・構造・生物活性および生合成仮説	
第二節 マダンガミン類の合成研究	
第一項 ABC 環の合成例	
第二項 大環状アミン D・ E 環の合成例	
第三項 マダンガミン D の全合成	

本論

箫	京一章 N	-アルコキシアミド基を用いた含窒素四置換炭素構築法の開発	26
	第一節	研究背景および概略	26
	第二節	<i>N</i> -アルコキシアミドの合成	28
	第三節	含窒素四置換炭素の構築(アリル化)	30
	第四節	含窒素四置換炭素の構築(シアノ化)	32
	第五節	考察	34
	第一項	〔 収率	34
	第二項	〔 立体選択性	35
	第六節	第一章のまとめ	38

第二章 マダンガミン類の合成研究	
第一節 合成計画	
第二節 マダンガミン類 A 環部の構築	
第三節 マダンガミン類 B 環部の構築	
第一項 Heck 反応による B 環部の構築	
第二項 ルテニウム触媒を用いる B 環部の構築	
第三項 パラジウム触媒を用いる B 環部の構築	
第四節 マダンガミン類C環部の構築	
第五節 マダンガミン類共通骨格の合成	
第一項 ビニル基の変換	
第二項 分子内アレニル化によるアレンの合成	
第六節 マダンガミン C の全合成	
第七節 第二章のまとめ	
総括	
実験編	
	1.65
参考乂厭	
割長	160
₩J H⊥ •••••••••••••••••••••••••••••••••••	

はじめに

近年、有機合成化学において合成ターゲットの複雑化が顕著になっている。このような流れの中 で、複雑な天然物を如何に効率的に合成するかという点が重要になっている。

特に、これまで構築が困難であった構造を1工程で構築可能な反応の開発は、天然物合成の短工 程化に大きく貢献できる可能性を秘めている。本研究では、天然物に多く見られる含窒素四置換炭 素構造に着目し、これを1工程で構築する方法論の開発に取り組んだ。その結果、N-アルコキシア ミド基の性質を利用し、様々なラクタムや炭素求核剤の組み合わせで含窒素四置換炭素の構築に成 功した。

その他に、複雑天然物の合成において重要な点として、効率的なルート設計が挙げられる。効率 的なルートの開拓は、構造類縁体への迅速なアクセスを可能にし、非天然型化合物への誘導化や構 造活性相関研究の発展など、医薬品分野への貢献も大きく期待できる。このような中で、本研究で はマダンガミン類の構造に着目し、これらの網羅的合成計画を立案した。マダンガミン類の共通骨 格を合成終盤で構築することで、共通骨格から各マダンガミンの迅速な合成が可能となる。実際に マダンガミン類の共通骨格を合成し、そこからマダンガミン C の全合成を達成した。

本論文では、以下にこれらの内容について詳述する。

略語表

Ac	acetyl
AIBN	2,2'-azo bisisobutyronitrile
aq	aqueous
Ar	aryl (substituted aromatic ring)
AZADOL	2-hydroxy-2-azaadamantane
Bn	benzyl
Boc	<i>t</i> -butoxycarbonyl
Bu	butyl
Bz	benzoyl
С	cyclo
cat.	catalytic
Cbz	benzyloxycarbonyl
CMPI	2-chloro-1-methylpyridinium iodide
Ср	cyclopentadienyl
CSA	camphorsulfonic acid
Су	cyclohexyl
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DEAD	diethyl azodicarboxylate
decomp.	decomposition
DIBAL-H	diisobutylaluminium hydride
DMAP	4-dimethylaminopyridine
DMF	N,N-dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethylsulfoxide
DPPA	diphenylphosphoryl azide
dppf	1,1'-bis(diphenylphosphino)ferrocene
dr	diastereomeric ratio
DTBMP	2,6-di- <i>t</i> -butyl-4-methylpyridine
EDCI	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
	(ethyldimethylaminopropylcarbodiimide)
Et	ethyl
eq.	equivalent

HATU	O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium
	hexafluorophosphate
Hex	hexyl
HMPA	hexamethylphosphoramide
HOBt	1-hydroxybenzotriazole
HRMS	high resolution mass spectroscopy
hv	irradiation with light
i	iso
IBX	2-iodoxybenzoic acid
IR	infrared (spectrum)
т	meta
mCPBA	<i>m</i> -chloroperoxybenzoic acid
Me	methyl
MOM	methoxymethyl
mp	melting point
MPM	<i>p</i> -methoxybenzyl
Ms	mesyl (methanesulfonyl)
n	normal
NMO	4-methylmorpholine N-oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	NOE correlated spectroscopy
Ns	2-nitrobenzenesulfonyl
PDBBA	potassium diisobutyl-t-butoxyaluminium hydride
PDC	pyridinium dichromate
Ph	phenyl
ppm	parts par million
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
Ру	pyridine
quant.	quantitative
rt	room temperature
SDBBA	sodium diisobutyl-t-butoxyaluminium hydride
SES	2-[(trimethylsilyl)ethyl]sulfonyl
t	tertiary
TBAF	tetrabutylammonium fluoride

TBAI	tetrabutylammonium iodide
TBDPS	t-butyldiphenylsilyl
TBS	t-butyldimethylsilyl
ТЕМРО	2,2,6,6-tetramethylpiperidine 1-oxyl free radical
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofurane
THP	2-tetrahydropyranyl
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	N,N,N',N'-tetramethylethylenediamine
TMS	trimethylsilyl
TPAP	tetra-n-propylammonium perruthenate
Ts	tosyl (p-toluenesulfonyl)
9-BBN	9-borabicyclo[3.3.1]nonane

第一章 アミド基への求核付加反応による多置換アミンの構築

第一節 アミド基への求核付加反応について

アミド基は、医薬品分野や化学繊維分野などにおいて重要な役割を果たす官能基である。そのた め、様々なアミド基構築法がこれまでに開発されており、その信頼性は非常に高い。その一方で、 生じたアミド基への求核付加反応の開発はあまり進んでおらず、より実用的な反応の開発が課題と なっている。

アミド1に対し、1つ目の求核剤 R⁴M を作用させると N,O-アセタール中間体 2 を経由してイミニ ウムイオン 3 が生じる (スキーム 1)。これに対し 2 つ目の求核剤が付加すれば多置換アミン 4 が得 られる。しかしこの求核付加反応を実現するためには解決すべき 2 つの問題点がある。1 つ目は、ア ミドカルボニル基の求電子性の低さである。アミドカルボニル基は、窒素原子の共鳴効果により、 エステルやアルデヒドに比べ求電子性が極端に低いことが知られている。そのため、アミド 1 への 求核付加の際には強力な求核剤を用いたり、アミド基の求電子性を増すために活性化する工夫が必 要となる。2 つ目は、N,O-アセタール 2 の不安定性である。2 は容易に分解し、ケトン5 とアミン 6 が生成してしまう。2 つ目の問題点はイミニウムイオン 3 の反応性である。3 は反応性が高く、系中 に存在する過剰の R⁴M と反応し、7 を生成する懸念がある。アミド基への求核付加反応が開発できれ ば、容易に入手可能なアミド基より各置換アミンが一挙に構築できるため、優れた生物活性アルカ ロイド合成法になる。

Scheme 1. Nucleophilic addition to amide carbonyl groups and its inherent problems

アミド基の低い求電子性を解決するため、アミド1をより反応性の高い化合物である8や9へと 変換して活性化した後、求核付加反応を用いる手法が複数報告されている(スキーム2)。しかし、 これらの手法では、アミド基の活性化段階が必要となり、アミド基から多置換アミンへの変換に 2 工程以上必要となる。また、用いることのできる求核剤に限りがあるなど反応としての実用性にも 乏しい。そこで、アミド基に対して 1 工程にて様々な求核剤を付加し、多様な多置換アミンを合成 可能な手法の開発が望まれている。

Scheme 2. Conventional methods of nucleophilic addition to amides

第二節 アミド基の活性化段階を経る求核付加反応¹

アミド基の活性化方法として、アミド基をカルバメート化する手法が報告されている。アミド10 をカルバメート化して得られるアシルカルバメート11のアミドカルボニル基は通常のアミド基に比 ベ求電子性が高くなっている(スキーム3)。これは、カルバメート基の電子求引性により、アミド 基の炭素-窒素結合の二重結合性が低下するためである。また、1つ目の求核剤 R⁴M の付加により生 じるアシルイミニウムイオン12はカルバメート基の電子求引性のため通常のものより求電子力が高 い。これに対し2つ目の求核剤 R⁵M'が付加すれば多置換アミン13 が得られる。

Scheme 3. Nucleophilic addition to amides via acyl carbamates

Suh らは、アシルカルバメート 14 に対する段階的な求核付加反応の開発に成功した(スキーム 4) ²。14 に対し DIBAL-H を作用させ、生じたアセタールを TMS でトラップし 15 とした。これに対し、 BF₃·OEt₂存在下アリルトリブチルスズを添加するとアリル化が進行し、16 を収率良く得た。本反応 は、マクロラクタム 17 に対しても適用でき、アリル化体 19 を収率良く得ている。また、2 つ目の求 核剤に TMSCN を用いるとシアノ化が進行し、20 が合成できた。さらに、本手法は分子内反応に応 用可能であり、21 の分子内アリル化により 22 を得た。

Scheme 4. Nucleophilic addition to amides via acyl carbamates (Suh)

DeNinno らは、アシルカルバメート 23 を DIBAL-H で還元して N,O-ヘミアミナール 24 とした後、 TiCl₄ で処理し Pictet-Spengler 反応により 25 を収率良く得た(スキーム 5)³。

このように、アミドからアシルカルバメートへの変換により収率良く求核付加反応を達成している。しかし、これらの手法では、1 つ目の求核剤は DIBAL-H によるヒドリド付加に限られており、 反応の汎用性があまり高くないことが課題として挙げられる。

Scheme 5. Nucleophilic addition to amides via acyl carbamates (DeNinno)

アミド基の活性化法として、アミドをチオアミドへと変換する手法が報告されている。アミド 1 は Lawesson 試薬等で1工程にてチオアミド 26 へと変換できる(スキーム 6)。これに対しメチル化 剤を作用させると、求電子性の高いチオイミニウムイオン 27 が生成する。27 に対し求核剤 R⁴M を 加えると *N,S*-アセタール 28 となり、2 つ目の求核剤 R⁵M'を添加すると多置換アミン 4 が得られる。

Scheme 6. Nucleophilic addition to amides via thioamides

吉田らは、チオアミド 29 に対し、2 等量の Grignard 試薬を作用させ、2 つのアリル基が付加した 30 を合成した(スキーム 7)⁴。本反応では有機金属試薬の選択が重要であり、Grignard 試薬の代わ りに有機リチウム試薬では 1,4 付加が優先的に進行する。

Scheme 7. Nucleophilic addition to amides via thioamides (Yoshida)

石田らは、チオアミドを有するインドール 31 に対し MeI を作用させ、Bischler-Napieralski 反応に よる環化にてイミニウムイオン 32 とした後、これを還元して 33 を得た(スキーム 8)⁵。吉田らの 手法が同一の求核剤を2つ付加したのに対し、こちらの手法では2つの異なる求核剤を付加できる。

Scheme 8. Nucleophilic addition to amides via thioamides (Ishida)

細見らは、チオアミド 34 に対し PhLi を付加し、続いて LiAlH₄ で処理するとアミン 35 を収率良く 得た (スキーム 9)⁶。

Scheme 9. Nucleophilic addition to amides via thioamides (Hosomi)

村井らは、チオアミド 36 より、ワンポットにて含窒素四置換炭素を有する 40 を合成した(スキ ーム 10)⁷。36 に対し MeOTf を作用させると生じるチオイミニウムイオン 37 に 1 つ目の求核剤と してリチウムアセチリドを付加すると *N,S-*アセタール 38 が生じる。38 に対し EtMgBr を加えると試 薬のルイス酸性でイミニウムイオン 39 が生じ、これに対する求核付加反応が進行して 40 を得た。 本反応では、1 つ目の求核剤を有機リチウム試薬、2 つ目の求核剤を有機マグネシウム試薬とした時 のみ反応が進行した。

Scheme 10. Nucleophilic addition to amides via thioamides (Murai)

このように、活性化したアミド基に対する求核付加反応は様々な手法が開発されている。しかし、 活性化のための工程数増加や、それに伴う収率の低下が懸念される。 第三節 アミド基の In Situ 活性化を利用した求核付加反応

アミド基の活性化段階による工程数の増加という問題点を解決するため、In Situ にて活性化する手法が報告されている。アミド1をTf₂Oで処理し、イミニウムトリフラート 41 とする (スキーム 11)。 41 に対し2 つの求核剤 R⁴M と R⁵M'を順次加えると 42 を経由してアミン 4 となる。

Scheme 11. Nucleophilic addition to amides via iminium triflates

Huang らは、種々のアミドに対する In Situ 活性化を用いる求核付加反応を報告している(スキーム 12)⁸。ラクタム 43 を、Tf₂O と DTBMP で処理した後、Grignard 試薬ならびに LiAlH₄ を順次作用 させ、アミン 44 を合成した。また、2 つ目の求核剤を炭素求核剤へと拡張し、含窒素四置換炭素の 構築に成功している (43→45)。また、本手法は鎖状アミドに対しても適用可能であった (46→47)。

Scheme 12. Nucleophilic addition to amides via iminium triflates (Huang)

Huang らは本手法を全合成へと応用した(スキーム 13)^{8b}。5 員環ラクタム 48 に対し、立体選択 的な求核付加反応にて 49 とした。49 より(+)-preussin を合成した。また、6 員環ラクタム 50 に対す る求核付加反応も立体選択的に進行し 51 を与えた。51 より(-)-cassine の全合成を達成した。

Scheme 13. Application to synthesis of natural products

Bélanger らは、ホルムアミド 52 に対し同様の条件で処理しイミニウムイオン 53 とした後、 (*n*Bu)₄PBr を加える事で複雑な三環性骨格 54 及び 55 の合成に成功した(スキーム 14)⁹。

Scheme 14. Nucleophilic addition to amides via iminium triflates (Bélanger)

馬場らは、InI₃とシラン誘導体を用いた In Situ 活性化によるアミド基への求核付加反応を報告した(スキーム 15)¹⁰。アミド 56 を触媒量の InI₃とフェニルシランで処理すると触媒により活性化されたアミドカルボニル基にヒドロシリル化が進行し、*N,O*-アセタール 57 が生じる。57 のシロキシの脱離にてイミニウムイオン 58 が生じ、これに対するシリルケテンアセタールの求核付加にてアミン59 を得た。

Scheme 15. Nucleophilic addition to amides using InI₃ and hydrosilane

第四節 アミド基への直接的求核付加反応

活性化段階のないアミド基に対する直接的な求核付加反応は、適用可能な基質が限られている点 や同一の2つの求核剤しか導入できないなど課題は多いものの、幾つかの例が報告されている。本 反応の鍵は、酸素親和性の高い金属試薬を用いることである。

Calderwood らは、一級アミド 60 に対し過剰量の有機セリウム試薬を作用させ、アミン 61 を合成 した (スキーム 16)¹¹。

Scheme 16. Direct nucleophilic addition to amides (Calderwood)

また、Denton らは、ラクタム **43** に対し Grignard 試薬と ZrCl₄を作用させ、直接的な求核付加反応 に成功した(スキーム 17、**43→62**)。また、鎖状アミドに対する求核付加反応は TiCl₄を用いて達成 した(**63→64**)¹²。

Scheme 17. Direct nucleophilic addition to amides (Denton)

de Meijere らは、ホルムアミド 65 に対し TMSCl と触媒量の Ti(OiPr)₄存在下 Grignard 試薬を連続的に付加し、アミン 66 を得ている(スキーム 18)¹³。

Scheme 18. Direct nucleophilic addition to amides (de Meijere)

第五節 当研究室における N-アルコキシアミド基に対する求核付加反応

当研究室では、*N*-アルコキシアミド基の性質に着目し、これに対する連続的求核付加反応を開発 している(スキーム19)¹⁴。*N*-アルコキシアミド 69 は、対応するカルボン酸 67 とアミン 68 との縮 合により容易に合成可能である。69 は、アルコキシ基の効果によりアミドカルボニル基の求電子力 が通常のアミド基よりも高い。69 に対し、求核剤 R³M を作用させるとキレート中間体 70 を与える。 70 を加水分解すれば Weinreb ケトン合成となり、ケトン 71 が合成できる。また、キレート中間体 70 は安定であるため、求核剤の過剰付加は進行しない。70 にルイス酸と 2 つ目の求核剤 R⁴M'を加 えるとオキシイミニウムイオン 72 を経由して求核付加反応が進行し、多置換アミン 73 が得られる。

Scheme 19. Nucleophilic addition to N-alkoxyamides

本反応の特徴として、高い基質一般性が挙げられる(スキーム 20)。1 つ目の求核剤を DIBAL-H、 2 つ目の求核剤をアリルスズとした結果、鎖状アミドだけでなく(74→75)、マクロラクタムに対し ても収率良く反応が進行した(76→77)。

Scheme 20. Nucleophilic addition to *N*-alkoxyamides (allylation)

また、2 つ目の求核剤を TMSCN としたシアノ化についても鎖状アミド 74、マクロラクタム 76 に 対して収率良く進行する (スキーム 21)。

Scheme 21. Nucleophilic addition to *N*-alkoxyamides (cyanation)

このように、本反応は高い基質一般性を有するが、DIBAL-H を 1 つ目の求核剤としているため、 共存可能な官能基は限られている。そこで、Schwartz 試薬([Cp₂ZrHCl])を用いた官能基選択的な求 核付加反応を開発している(スキーム 22)。様々な官能基を有する *N*-アルコキシアミドに対し、 Schwartz 試薬で還元した後、アリルスズと触媒量の Sc(OTf)₃を作用させると、共存する官能基を損 なうこと無くアミド選択的にアリル化が進行し、対応するアミン 81~84 を収率良く与えた。

Scheme 22. Amide-selective nucleophilic addition to N-alkoxyamides

本反応の高い有用性は、ゲフィロトキシンの効率的な全合成を可能にした(スキーム 23)。N-アル コキシアミド 85 とアルデヒドをルイス酸存在下縮合させると、アシルイミニウムイオン中間体 86 を経由してピリドン 87 が生成した。種々の工程にて 88 とした後、Schwartz 試薬を用いた還元、続 くアリル化にてメチルエステル基を損なうことなく高収率・高立体選択的に 89 を得た。89 より数工 程にてゲフィロトキシンの全合成を達成している。

Scheme 23. Total synthesis of gephyrotoxin

このように、*N*-アルコキシアミド基に対する求核付加反応は非常に有用な反応であることが示さ れた。しかし、1 つ目の求核剤が DIBAL-H や Schwartz 試薬によるヒドリド付加に限られている。ヒ ドリドのみでなく、様々な炭素求核剤が付加できるようになればさらに有用な反応になる。

第二章 マダンガミン類

第一節 単離・構造・生物活性および生合成仮説

マダンガミンAは1994年、カナダのAndersenとその共同研究者らによってパプアニューギニア 近海に生息する海綿、*Xestospongia ingens*より単離・構造決定された(スキーム24)^{15a}。マダンガミ ンB-Eは1998年に同研究者らにより、同生物から単離・構造決定されている^{15b}。マダンガミンF は2007年に、ブラジルのBerlinckとその共同研究者らによって海綿、*Pachychalina alcaloidifera*より 単離・構造決定された^{15c}。マダンガミン類の構造的な特徴として、3つの6員環が全てイス型配座 で縮環した特異なジアザトリシクロドデカン骨格ABC環を共通骨格として有している。また、マダ ンガミンA-E はスキップジエンを有する大環状アミン部E環も共通骨格であり、D環のみが異なっ ている。

Scheme 24. Madangamine alkaloids

幾つかのマダンガミン類について、生物活性が報告されている。マダンガミンAはマウス白血病 P388 細胞・ヒト肺癌 A549 細胞・ヒト脳腫瘍 U373 細胞・ヒト乳癌 MCF-7 細胞に対する細胞毒活性 を有する^{15a}。マダンガミンDはヒト大腸癌 HT29 細胞・ヒト膵臓癌 PSN1 細胞に対する細胞毒活性 を有する一方、マダンガミンAに見られた A549 細胞への細胞毒活性は見られなかった¹⁶。また、 マダンガミンFは中枢神経系癌 SF295 細胞・ヒト乳癌 MDA-MB435 細胞・ヒト大腸癌 HCT8 細胞・ ヒト白血病 HL60 細胞に対する細胞毒活性が報告されている。マダンガミンAとDの生物活性が異 なることから、D環の構造と生物活性の間には相関があることが示唆される。さらに、残るマダン ガミンB·C·Eについても他とは異なる生物活性を有することが期待される。

マダンガミン類の生合成経路として、3-アルキルピリジン誘導体を経由する経路が推定されている(スキーム 25)^{15a}。3-アルキルピリジン誘導体 90より分子内[4+2]付加環化反応にて 91 が生成する。アリル位の官能基化による 92 の生成、続く開裂にて 4 環性イミニウムイオン中間体 93 となる。 次に redox 反応によるイミニウムイオンの移動が起こって 94 となり、これに対する分子内環化でマ ダンガミンが生成するというものである。ただし、現在までに中間体の存在は確認されていない。

Scheme 25. Proposed biosynthesis for madangamine A

他にも、3-アルキルピリジン誘導体を中間体とする生合成経路が提唱されている天然物として、 インゲナミンやマンザミンA等が挙げられる(スキーム 26)。

Scheme 26. Representative natural products biosynthesized from 3-alkylpyridine

マダンガミン類はその興味深い構造と生物活性から、多くの研究者により合成研究がなされている。 ここでは、ABC 環および DE 環の部分合成研究、全合成の3つについて紹介する。

第一項 ABC 環の合成例

マダンガミン類の構造の中でも特に複雑な三環性骨格 ABC 環は、多くの有機化学者により合成が 試みられている。Weinreb らは、アザ-Claisen 転位を鍵反応とし、初の ABC 環の合成を報告した(ス キーム 27)¹⁷。フラン 95 より Achmatowicz 反応にて *N,O-*アセタール 96 とし、これを BF₃·OEt₂存在 下 Et₃SiH で還元してエノン 97 とした。97 と 1,3-ブタジエンとの Diels-Alder 反応にて 2 環性骨格 98 を合成した。数工程にてアルデヒド 99 とした後、ジアリルアミン、パラジウム触媒を作用させた。 すると、エナミン 100 を経由してアザ-Claisen 転位が進行し、9 位四級炭素を含むイミン 101 となり、 これを加水分解してアルデヒド 102 を得た。種々の工程にてアミン 103 とした後、オレフィンへの アミノ水銀化、続く酸素酸化にて A 環を構築し、アミノアルコール 104 を得た。

Scheme 27. Construction of the ABC-ring (Weinreb)

樹林らは、分子内 N,O-アセタール化を経由した還元反応を鍵反応とする ABC 環の合成を報告して いる(スキーム 28)¹⁸。シクロヘキセノン 105 より誘導したケタール 106 を PPTS で処理すると、ア セタールの除去によるケトン 107 の生成と、107 に対する分子内 N,O-アセタール化にて AC 環構造 108 とした。108 を AlH₃ で処理すると N,O-アセタールの還元的な開環にて 109 が生成した。その後、 分子内 S_N2 反応にて B 環を構築し 3 環性骨格 110 とした。

Scheme 28. Construction of the ABC-ring (Kibayashi)

Marazano らは、ジエチルアセトンジカルボキシレートのジヒドロピリジニウムイオンへの付加を 鍵反応とする ABC 環の新規構築法を報告した(スキーム 29)¹⁹。ピリジン 111 より合成したジヒド ロピリジニウム塩 112 に対し、ナトリウムエノラートを作用させると付加反応が進行し、四級炭素 の立体化学が異なる 2 つの化合物 113a・113b が生成した。これをさらに K₂CO₃ で処理すると、113b は直接環化反応が起こり三環性骨格 116b が、113a は A 環が一度開環した後に環の巻き直しが進行 し 116a を与えた。

Scheme 29. Construction of the ABC-ring (Marazano)

Bonjoch らは、分子内光延反応を利用した ABC 環の構築を報告した(スキーム 30)²⁰。ベンジル アミン誘導体 117 からシクロヘキセノン 118 とし、これを NaOEt で処理するとエノンへの異性化続 くシアノアセトアミド部位の 1,4 付加が進行し、二環性骨格 119 が得られた。119 から数工程にてノ シルアミドを有するアルコール 120 へと誘導した。120 の分子内光延反応により、三環性骨格 121 が得られた。

Scheme 30. Construction of the ABC-ring (Bonjoch)

第二項 大環状アミン D・E 環の合成例

ABC 環ほど例は多くないものの、大環状アミン D・E 環の合成例も報告されている。山崎・樹林ら は、マダンガミン類の E 環の初の合成を報告した(スキーム 31)^{18b}。シクロヘキセノン 122 よりア セタール 123 とした後、分子内 *N,O-アセタール*化にて AC 環を有する 124 を合成した。124 から数 工程にてケトン 125 とし、125 に対する Still-Gennari 法による Horner-Wadsworth-Emmons オレフィン 化にて高選択的に Z オレフィンを導入し 126 とした。これをカーボネート 127 へと誘導し、Z 体の ビニルスズとの Stille カップリングにてスキップジエンを有するアルコール 128 を得た。TBDPS 基 を除去してアルコール 129 とした後、還元的アミノ化により大環状アミンを構築し、マダンガミン 類 ACE 環 130 の構築に成功した。

Scheme 31. Construction of the ACE-ring (Kibayashi)

Diaba, Bonjoch らは、マダンガミン D および E の ABCD 環の合成を報告した(スキーム 32)^{20b}。 ジケトン 131 から得られる 132 を Bu₃SnH および AIBN で処理するとラジカル環化反応が進行し、 AC 環 133 を得た。133 を 134 とした後、分子内光延反応続く脱ノシル基にて B 環を構築し三環性骨格 135 を得た。その後 N-アシル化と閉環メタセシス、水素添加、アミドの還元にてマダンガミン D・ E に相当する ABCD 環 138a, 138b の構築に成功した。

Scheme 32. Construction of the ABCD-ring (Diaba, Bonjoch)

第三項 マダンガミンDの全合成

マダンガミン類のうち、全合成が達成されているのは 2014 年に Amat, Bosch らによって報告され たマダンガミン D のみである。ここでは、Amat, Bosch らの合成研究を紹介する¹⁶。

Amat, Bosch らは ABC 環の構築にあたり、フェニルグリシノールを用いたエナンチオ選択的デカ ヒドロイソキノリン骨格構築法に着目した (スキーム 33)。アクリル酸メチルより合成可能なラセミ 体 139 と光学活性なフェニルグリシノール 140 を Na₂SO₄存在下反応させると立体選択的な環化反応 が進行し、ラクタム 141 が得られる。141 にオレフィンとエステルを導入してエノン 142 とし、アリ ル基の立体選択的な 1,4-付加と続く閉環メタセシス反応にて二環性骨格 143 を得た。更に、立体選 択的なアルキル化にて四級炭素を構築し、144 とした。144 のフェニルグリシノール部位は、Birch 還元と LiAlH₄による還元で除去可能であった。得られた 145 を数工程にてアジド化およびエポキシ 化し、146 を得た。146 を Staudinger 反応の条件で処理するとエポキシドの開環を伴う環化が進行し た。続いて二級アミンをトシル化し、ABC 三環性骨格 147 が合成できた。

Scheme 33. Construction of the ABC-ring (Amat, Bosch)

2つの大環状アミン部DE環の構築は閉環メタセシス反応およびマクロラクタム化にて達成された (スキーム 34)。147 より数工程にて D 環構築に必要なアルキル鎖を導入した 148 とし、第1世代 Grubbs 触媒を用いた閉環メタセシス反応により、D 環を有する 149 を E/Z 混合物として与えた。続 いて、水素添加にてオレフィンの還元と Bn 基の除去を同時に行い、生じた水酸基を Dess-Martin 酸 化し、ケトン 150 とした。150 と別途調製したホスホニウム塩との Wittig 反応は E/Z 選択性が低いも のの、マダンガミン D の全ての炭素を導入した 151 が得られた。Ts 基の除去、メチルエステルの加 水分解の後、マクロラクタム化の条件で処理すると E 環が構築され、5 環性骨格 152 が生成した。 最後に 2 つのアミド基を同時に還元し、マダンガミン D の全合成を達成した。

Scheme 34. Total synthesis of madangamine D

このように、キラルなデカヒドロイソキノリン骨格の構築を鍵とし、マダンガミン D の初の全合成 を達成し、生物活性を明らかにした。一方、本合成では D 環を全合成の中盤で構築しているため、 D 環のみが異なるマダンガミン類の網羅的全合成への展開は困難が予想される。

第一章 N-アルコキシアミド基を用いた含窒素四置換炭素構築法の開発

第一節 研究背景および概略

緒論第一章で述べたように、アミド基に対する求核付加反応では、アミド基1を高活性な中間体
(8,9)へと変換した後に求核付加反応を用いて多置換アミン4とする段階的な方法が一般的である
(スキーム35)。この活性化段階を経ずに様々な求核剤を付加できる反応が開発できれば汎用性の高い反応となりうる。

Scheme 35. Conventional methods of nucleophilic addition to amides

当研究室では、活性化段階を経ないアミド基への求核付加反応として *N*-アルコキシアミド 69 に着 目した(スキーム 36)。*N*-アルコキシアミド 69 を DIBAL-H で還元すると五員環キレート中間体 153 を形成する。これをルイス酸で処理するとイミニウムイオン 154 を経由して 2 つ目の求核剤が付加 し、ワンポットにて α-置換アミン 155 を与える。

Scheme 36. Nucleophilic addition to N-alkoxyamides using DIBAL-H

本反応は活性化段階を経ずに脂肪族・芳香族を問わず様々なアミド基に対して適用可能な汎用性 の高い反応である。しかし、1 つ目の求核剤として DIBAL-H によるヒドリドしか付加できないとい う問題点が挙げられる。1 つ目の求核剤として炭素求核剤が利用可能になればワンポットで含窒素四 置換炭素の構築が可能になる(スキーム 37、69→158)。含窒素四置換炭素は、様々な生物活性アル カロイドに見られる重要な構造であることから、炭素求核剤の付加が可能になれば本反応の汎用性 がさらに向上すると考え、研究に着手した。

Scheme 37. Construction of α-trisubstituted amines from *N*-alkoxyamides

初めに、各種 *N*-アルコキシラクタムを合成した。アルコキシ基は、基質の揮発を防ぐ目的から分 子量の大きいベンジルオキシ基を採用した。まず、置換基のない6員環ベンジルオキシラクタム163 を合成した(スキーム38)²¹。メチル5-ヘキセノエート159をオゾン分解にてアルデヒド160とし た後、*O*-ベンジルヒドロキシルアミンを作用させ、オキシムエーテル161とした。オキシムエーテ ルを還元してアミン162とした後、水酸化リチウムで処理したところ、環化反応が進行し、*N*-ベン ジルオキシラクタム163が高収率にて得られた。

Scheme 38. Preparation of N-benzyloxylactam 163

次に、フェニル基を置換基として有する N-ベンジルオキシラクタム 168 を合成した(スキーム 39)。 4-ベンゾイル酪酸 164 に対し、オキシムエーテル化して 165 とし、これを還元してアミン 166 とし た。166 を加水分解してカルボン酸 167 とし、縮合反応にてラクタム 168 を合成した。

Scheme 39. Preparation of N-benzyloxylactam 168

また、同様の手順にて 3-ベンゾイルプロピオン酸 169 よりフェニル基を有する 5 員環ラクタム
173を合成した (スキーム 40)。

Scheme 40. Preparation of N-benzyloxylactam 173

合成した N-ベンジルオキシラクタム 163 に対して連続的求核付加反応を試みた(表 1)。1 つ目の 炭素求核剤として各種有機金属試薬を付加し、その後ルイス酸とアリルスズを添加し、含窒素四置 換炭素を構築した。ルイス酸については、当研究室の過去の研究において、アリル化に最適とされ る Sc(OTf)3 を用いることとした。1 つ目の有機金属試薬として有機アルミニウム試薬を用いた際に は求核付加反応がほとんど進行せず、望む化合物174は得られたものの、5%と非常に低収率であっ た(エントリー1)。Grignard 試薬を用いた際には、収率は若干向上した(エントリー2)。次に、有 機リチウム試薬を用いたところ、収率が 47%と大幅に向上した(エントリー3)。さらに、2 つ目の 求核剤を入れる直前にアセトニトリルを添加したところ、収率の大幅な向上が見られた(エントリ $-4)_{0}$

O OBn	MeM –78 °	I, THF │ °C	Me
163	then S addit	c(OTf) ₃ _SnBu ₃ ive, rt	N 174
entry	MeM	additive	yield
1	Me ₃ Al		5%
2	MeMgBr		12%
3	MeLi		47%
4	MeLi	MeCN	92%

Table 1. Optimization of the synthesis of α -trisubstituted amine

得られた最適条件を元に、種々の基質・求核剤による含窒素四置換炭素の構築を検討した(スキ ーム 41)。その結果、1つ目の求核剤は MeLi のみならず nBuLi を用いても収率良く反応が進行した (174, 175)。また、フェニルアセチリドを用いた際にも収率良く含窒素四置換炭素が構築できた (176)。一方で、フェニルリチウムを用いた際には望む化合物 177 は全く得ることができなかった。 また、置換基としてフェニル基を有する立体障害の大きなラクタムに対する求核付加反応も5員環・ 6員環を問わず、収率良く進行した(178~180)。興味深いことに反応は完全な立体選択性で進行し、 望む化合物を単一異性体として与えた。

Scheme 41. Substrate scope for the synthesis of α -trisubstituted amines (allylation)

化合物 178~180 の立体化学は NOE 実験により決定した (スキーム 42)。各化合物のベンジル位 プロトンと、アリル位プロトンとの相関により、立体化学を決定した。

Scheme 42. Determination of the stereostructure

続いて、2 つ目の求核剤を TMSCN としたシアノ化について検討した(スキーム 43)。その結果、 アリル化と同様にメチル基やブチル基の求核付加に成功した(181, 182)。しかし、フェニルアセチ リドの付加はアリル化に比べ低収率であった(183)。一方で、アリル化の際には0%であったフェニ ルリチウムの付加反応がシアノ化の際には良好な収率で進行することがわかった(184)。また、フ ェニル基を有するラクタムに対する付加も収率良く進行した(185,186)。フェニル基を有するラクタ ムのうち、6 員環ラクタムについては立体選択的に反応が進行した。一方で、5 員環ラクタムに対す る反応では立体選択性がほぼ発現しないという結果となった(187)。

Scheme 43. Substrate scope for the synthesis of α -trisubstituted amines (cyanation)

立体決定はそのままの状態では困難であったため、以下のように誘導化した後に決定した(スキ ーム 44)。185 のシアノ基を LiAlH₄ で還元して一級アミン 188 とした後、これをトシル化してトシ ルアミド 189 とした。189 のベンジル位プロトンとスルホンアミドα位との NOE 相関により立体化 学を決定した。他の生成物に関しても同様の手法にて立体化学を決定した。

Scheme 44. Determination of the stereostructure

第五節 考察

第三節・四節で述べた通り、N-アルコキシアミド基に対し1 つ目の求核剤として有機リチウム試 薬を、2 つ目の求核剤としてアリルスズや TMSCN を用い、連続的な求核付加反応による含窒素四置 換炭素の構築に成功した。本節では、収率ならびに立体選択性に関して考察する。

第一項 収率

どの基質、求核剤の組み合わせにおいても概ね良い収率で反応が進行した。しかし、同じ基質で も求核剤の種類によって結果が大きく異なるものがあった(スキーム 45)。この理由について次のよ うに考察した。

Scheme 45. Results of nucleophilic addition to N-benzyloxylactam 163 using PhLi

1 つ目の求核剤が PhLi の場合を例に説明する。本反応では副生成物として、エナミン 191 が得ら れた(スキーム 46)。これは、次のようにして生成したと考えた。PhLi が付加した後に Sc(OTf)₃を 添加するとイミニウムイオン 190 が生じる。これに対しアリルスズが付加すれば望む 177 が生成す る。しかし、付加が進行する前に脱プロトン化が進行すればエナミン 191 が生じる。2 つ目の求核剤 のアリルスズは大きな求核剤であるため、立体反発によって求核付加が遅くなり、脱プロトン化が 優先したと考えた。一方で、比較的小さな求核剤である TMSCN を用いるシアノ化では 73%の収率 で反応が進行している(スキーム 45、下段)。これは、脱プロトン化よりも求核付加反応が優先した 結果であると考えた。PhLi の時に脱プロトン化が進行しやすい原因として、191 のエナミンがフェ ニル基との共役によって安定化され、他の有機リチウム試薬を用いた時よりも生成しやすい点が挙 げられる。

Scheme 46. Mechanistic rationale for nucleophilic addition to six-membered N-benzyloxylactam 163

第二項 立体選択性

フェニル基を有する N-ベンジルオキシラクタムに対する求核付加反応は、環の大きさにより異な る立体選択性が発現した。この理由について考察した。

まず、6員環ラクタムについて考察する。6員環ラクタムでは、すべての求核剤で立体選択的に反応が進行し、生成物を単一異性体として与えた(31ページ、スキーム41、178-180)。ラクタム168に対し求核剤とルイス酸を作用させるとイミニウムイオン192が生じる(スキーム47)。192はフェニル基が擬エカトリアル位を占めるような配座を取る。2つ目の求核剤の付加は、AとBの2通りが考えられる。しかし、Bからの付加は立体電子効果により不利となるため193は生じない。そのため、立体電子効果的に有利となるAからの付加が優先し、194が選択的に得られたと考えられる。

Scheme 47. Stereoselectivity of six-membered lactam

次に5員環ラクタムの選択性について考える。5員環ラクタムでは、2つ目の求核剤がアリルスズ の時は高立体選択的に反応が進行したのに対し、TMSCNの時は立体選択性はほとんど発現しなかっ た。この違いを、Woerpel モデルに従い推測する²²。Woerpel は、5員環オキソカルベニウムイオン に対する求核付加反応について研究し、その立体選択性を次のように考察した(スキーム 48)。オキ ソカルベニウムイオン 195 に対する求核付加反応は、面の違いにより「インサイドアタック」と「ア ウトサイドアタック」の2通りが考えられる。インサイドアタックでは遷移状態 196 の全ての炭素 がスタッガード型となる配座が取れるため、立体電子効果的に有利である。一方でアウトサイドア タックでは、遷移状態 197 は全てエクリプス型となる配座を取るため立体電子効果的に不利である。 このことから、Woerpel は、5員環オキソカルベニウムイオンに対する求核付加反応はインサイドア タックが優先するというモデルを提唱した。

Scheme 48. Woerpel's model for steleoselective nucleophilic addition to five-membered ring oxocabenium ion

この Woerpel の提唱モデルを基に我々の基質における立体選択性を考察する(スキーム 49)。5員 環イミニウムイオン中間体 198 は、198'との平衡にある。まずアリル化について考える。求核剤で あるアリルスズは大きい求核剤であるため 198'のフェニル基との間に大きな立体反発が生じる。そ こで、198 の遷移状態から Woerpel モデルに従い求核付加が優先的に進行し、180 が単一異性体にて 得られた。一方で、TMSCN は小さな求核剤であるため、198 のみでなく 198'に対しても求核付加が 進行する。その結果、187 と共に 187'が生じ、選択性が低下したと推測した。

Scheme 49. Mechanistic rationale for nucleophilic addition to five-membered N-benzyloxylactam 173

第六節 第一章のまとめ

第一章では、N-ベンジルオキシラクタムを用いた含窒素四置換炭素の構築について述べた。アミ ドのカルボニル基はケトンやエステルに比べ求電子性が低い。そのため、アミド基に対する求核付 加反応では、アミド基を高活性中間体に変換した後に求核付加を行うことが一般的であった(スキ ーム 50)。この手法では、アミド基の活性化段階が必要であり、工程数の増加やそれに伴う収率の低 下が問題となっていた。

Scheme 50. Conventional method of nucleophilic addition to amides

これを解決する手法として、当研究室では N-アルコキシアミド基を利用した求核付加反応を開発 した(スキーム 51)。本手法は、アミド基の活性化段階を経ることなくアミドカルボニル基に2つの 異なる求核剤を導入できる。しかし、1つ目の求核剤は DIBAL-H によるヒドリドに限られていた。

Scheme 51. Nucleophilic addition to N-alkoxyamides using DIBAL-H

そこで、本研究では1つ目の求核剤を炭素求核剤へと拡張する含窒素四置換炭素の新規構築法を 開発した(スキーム52)。N-ベンジルオキシラクタムに対して有機リチウム試薬を付加し、ルイス酸 と2つ目の求核剤を添加すると、含窒素四置換炭素が構築できた。1つ目の求核剤には、アルキル基 やフェニル基等が利用可能であった。

Scheme 52. Construction of α-trisubstituted amines from N-benzyloxylactams

第二章 マダンガミン類の合成研究

第一節 合成計画

マダンガミン類の全合成を困難としている点は、複雑な三環性骨格 ABC 環の構築と、三置換 Zオ レフィンを含むスキップジエンを有する大環状アミン E 環の構築である。本研究では、マダンガミ ン類の網羅的全合成を指向し、マダンガミン類の共通骨格を構築した後に各マダンガミン類を合成 する計画を立案した(スキーム 53)。また、特に複雑な三環性骨格 ABC は、比較的構築が容易であ ると考えられるシスデカリン骨格 AB 環を構築した後に C 環を構築する。安価に入手可能なグリシ ン 199 を出発原料とし、アルケニルハライド 200 の分子内 Heck 反応にてシスデカリン骨格を有する AB 環 201 が合成できると考えた。C 環は、分子内アリル化にて構築することとした。201 に対して アリルシランを導入して 202 とする。202 を酸で処理すると、エナミンから生じるイミニウムイオン に対する分子内アリル化が進行して C 環が構築され、三環性骨格 203 が得られるものとした。ここ から炭素鎖を伸長してカルボン酸 204 とし、マクロラクタム化にて E 環を構築すればマダンガミン 類の四環性共通骨格 205 となる。205 より D 環を構築しマダンガミン類を網羅的に全合成する。

Scheme 53. Synthetic plan for unified total synthesis of madangamines

A 環の構築における合成上の課題は、9 位四級炭素の構築と2 つの窒素原子の導入である。まず、 1 つ目の窒素源を有するグリシンを出発原料とした。9 位四級炭素は、グリシン 199 より合成するア リルアルコール 206 に対する Johnson-Claisen 転位にて構築できるものとした(スキーム 54)。207 に 対するアリル化にて 208 とした後、閉環メタセシス反応にて A 環を有する 209 とする。209 の加水 分解と続く Curtius 転位にて 2 つ目の窒素原子を導入し 210 が得られるものとした。

Scheme 54. Synthetic plan for the A-ring

まず、アリルアルコールの合成を行った(スキーム 55)²³。グリシン 199 を Boc グリシン 211 と し、メルドラム酸との縮合と続く熱分解にて環化反応が進行し 5 員環ラクタム 212 とした。212 をト シル化して 213 とした後、アリルアルコール誘導体との鈴木・宮浦カップリングにより、収率 76% で望むカップリング体 214 を与えた。

Scheme 55. Suzuki-Miyaura coupling

続いて、214 の還元的な開環反応によるアリルアルコールの合成を検討した(表 2)。Luche 還元条件や DIBAL-H による還元ではいずれも望む 215 は得られず、ほぼ原料を回収するのみであった。少量生成した化合物を精査したところ、ピロール 216 であった。この結果から、ラクタムの開環によるアリルアルコールの合成は困難であると考えた。

 Table 2. Attempted synthesis of allylalcohol 215

次に、鎖状化合物を経由したアリルアルコールの合成を試みた(スキーム 56)。Boc グリシン 211 を既知工程にて β-ケトエステル 217 を経由してトシラート 218 とした²⁴。218 とアリルアルコール誘 導体との鈴木・宮浦カップリングは良好な収率で進行し 219 を与えた。

Scheme 56. Suzuki-Miyaura coupling

続いて、219の還元によるアリルアルコール 220 の合成を試みた(表 3)。LiAlH₄による還元では 再現性の良い結果が得られなかった(エントリー1)。DIBAL-Hによる還元では、反応は進行したも のの、低収率であった(エントリー2)。この原因について、DIBAL-Hが基質の窒素原子に配位する ことで 1,4-還元が競合しているためと考えた。そこで森分らの報告に従い、BF₃-OEt₂共存下 DIBAL-H で還元すると収率良く反応が進行し、94%で望むアリルアルコール 220 を得た(エントリー3)²⁵。

Table 3. Synthesis of allylalcohol 220

アリルアルコール 220 が得られたので、Johnson-Claisen 転位による四級炭素の構築を試みた(ス キーム 57)。220 を *t*BuPh 中オルトエステル・酸と共に加熱すると転位反応が進行し、マダンガミン 類の 9 位四級炭素を有する 221 が 72%で合成できた。生じたエステルは水酸化リチウムにて加水分 解し、カルボン酸 222 へと誘導した。

Scheme 57. Johnson-Claisen rearrangement

カルボン酸が得られたので、Curtius 転位による窒素原子の導入を試みた(スキーム 58)。222 を DPPA で処理して加熱し、さらにベンジルアルコールを加えた。すると、望むカルバメート 223 はほ とんど得られず、副生成物としてラクタム 224 が中程度の収率で得られた。

224 が生成した理由を次のように推定した(スキーム 59)。Curtius 転位では、カルボン酸に DPPA を作用させるとアシルアジド中間体 225 が生じる。これが転位するとイソシアネート 226 を経由し て望むカルバメート 223 が得られる。しかし、225 は求核力の高い窒素原子を分子内に有しているため、転位する前に環化反応が進行し、224 が生成したと考えられる。

Scheme 59. Plausible mechanism for formation of undesired lactam 224

この問題点を解決するため、あらかじめ窒素原子にアリル基を導入した基質を合成し、これに対 する Curtius 転位を試みることとした。

まず、基質へのアリル基の導入を検討した(スキーム 60)。アリルアルコール 220 を TBS 化した 後、アリル化し、227 を得た。227 の選択的な TBS 基の除去は、TBAF と酢酸で処理して達成した。 しかし、アリル基の導入に 3 工程かかる点と TIPS 基と TBS 基の完全な区別化が困難なことから、 収率の向上が見込まれないため新たなルートを検討した。その結果、220 をアセチル化した 229 に対 し、アリル化した後にメタノールを加えると、ワンポットにてアリル化と脱保護に成功した。工程 数は 3 工程から 2 工程へと短縮され、再現性よく高収率にて 228 が合成できた。

Scheme 60. Introduction of the N-allyl group

N-アリル化されたアリルアルコール 228 が合成できたので、Johnson-Claisen 転位による四級炭素の構築を試みた (スキーム 61)。オルトキシレン溶媒中、ピバル酸とオルトエステルと加熱したところ、転位が速やかに進行し、収率 81%にて四級炭素を有する 230 を得た。

Scheme 61. Johnson-Claisen rearrangement

続いて Curtius 転位による窒素原子の導入を試みた(スキーム 62)。230 のメチルエステルを TMSOK を用いてカルボン酸 231 とした。これを Curtius 転位の条件で処理し、カルバメートの構築を試みた。 その結果、望む 233 は得られず、カルバモイルアジド 234 が中程度の収率で得られた。これは、転 位により生じたイソシアネート 232 に対し、アルコールではなく DPPA より生じるアジ化物イオン が付加したため生じたと考えられる。この 234 に対し、対応するアルコキシドを用いて 233 への変 換を試みたが、反応は進行しなかった。

Scheme 62. Curtius rearrangement

そこで、本基質では Curtius 転位は困難であると考え、類似の反応であり、アジ化物イオンの生じ ない Hofmann 転位を用いるカルバメートの構築を試みた(スキーム 63)。メチルエステル 230 をホ ルムアミド、NaOMe を用いて 1 工程にて一級アミド 235 とした²⁶。これを、アルコール存在下 PhI(OAc)₂ で処理したところ Hofmann 転位が進行し、望むカルバメート 236 を収率 80%で得た。236 に対し、第1世代 Grubbs 触媒を用いた閉環メタセシス反応で、マダンガミン類の A 環 237 の合成を 達成した。

Scheme 63. Hofmann rearrangement

第一項 Heck 反応による B 環部の構築

次の課題は、B環の環化によるシスデカリン骨格の構築である(スキーム 64)。シスデカリン骨格 239 は、ブロモアルケン 238 に対する分子内 Heck 反応にて構築できるものとした。続いて、239 に 対する位置および立体選択的なヒドロホウ素化で B 環の全ての立体化学を構築した 240 が得られる と考えた。

Scheme 64. Synthetic plan for the cis-fused AB-ring

まず、Heck 反応に必要なブロモアルケンの導入を試みた(スキーム 65)。237 に対し 2,3-ジブロモ プロペンを用いてブロモアルケン 238 を合成しようとした。しかし、望む 238 は全く得られず末端 アルキン 241 が収率良く得られた。また、237 に対しプロパルギルブロミドを用いるアルキンの直接 導入は 92%と高収率で進行した。

Scheme 65. Attempted synthesis of the alkenyl bromide

次に、237 に対しクロロアセトンを作用させ、Heck 反応の基質 243 への誘導を試みた(スキーム 66)。しかし、反応は進行せず、望む 242 は得られなかった。

Scheme 66. Attempted synthesis of enol triflate 243

また、得られたアルキン 241 から 238 への誘導を試みた(スキーム 67)。241 を B-Br-9-BBN で処理し、ブロモホウ素化を行った。しかし、望む 238 を得ることはできなかった。試薬自体のルイス酸性や、試薬が分解して生じる HBr により基質が分解したと思われる。

241 に対する水和反応を用いたケトン 242 の合成も試みた。しかし、ルイス酸性により保護基が外れるなどの副反応が競合したと思われる化合物が多数生成し、望む 242 は得られなかった。

Scheme 67. Attempted transformation of alkyne 241

このように、いずれの方法においても Heck 反応基質の合成は困難であった。反応が進行しない原因として、近傍に存在する四級炭素の影響による立体障害の増加が挙げられる。そのため、アルキンのような立体障害の小さな分子のみが導入できたと考えられる。

以上の結果から、Heck 反応による B 環の構築は困難であると考え断念した。そこで、Heck 反応 に代わり、アルキンが導入できた 241 を用いた環化反応について検討することとした。 第二項 ルテニウム触媒を用いる B 環部の構築

新規 B 環構築法として、Trost によって報告されている環化異性化反応に着目した(スキーム 68) ²⁷。これは、エンイン 244 をルテニウム触媒で処理すると環化反応とオレフィンの異性化が進行し二 環性骨格 247 を与えるものである。本反応の第一段階であるアリル位 C-H 結合への酸化的付加は、 置換基の配位が重要である。244 では、エステル基の配位を受けて 245 の立体化学で C-H 活性化が 起こる。その後アルキンへの挿入、続く還元的脱離にて 247 が生成する。エステル基との配位によ り本基質ではトランス縮環体が立体選択的に得られる。

Scheme 68. Trans-selective ruthenium-catalyzed cycloisomerization by Trost

この環化異性化反応をエンイン 241 に適用すれば、次のようにしてシス縮環体 239 が得られると 考えた (スキーム 69)。すなわち、241 への C-H 結合への酸化的付加は基質に存在するカルバメート の配位により α 面から進行する。その後、環化反応が起これば望むシス配座を有する 239 が得られ るものとした。

Scheme 69. Plan for the construction of cis-bicyclic system 239

実際に、ルテニウム触媒を用いて環化異性化反応を検討した(表 4)。溶媒を DMF とした時には、 望む化合物は得られず、基質が分解した(エントリー1)。そこで、溶媒をアセトンとしたところ、 反応が進行し、低収率ではあるものの 239 が得られた(エントリー2)。この時、分子間反応が進行 したと思われる二量体や三量体が質量分析にて検出された。そこで、反応溶液の濃度を 1/10 にして 反応を試みた(エントリー3)。その結果、分子間反応が抑えられ、239 の収率が大幅に向上した。

Table 4. Ruthenium-catalyzed cycloisomerization

生成物の立体化学は、以下のようにして決定した(スキーム 70)。Trost は、シス・トランス縮環体 249・247 をそれぞれ合成し、NOESY 実験を行った。その結果、249 は縮環部のプロトンとオレフィンプロトンとの相関が観測された。一方で、247 では、1,3-ジアキシアルの関係にあるプロトン 同士の相関が観測された。この結果を踏まえ 239 に対し NOE 実験を行った。その結果、縮環部のプロトンとオレフィンプロトンとの相関が観測されたため、生成物は望むシス縮環体であると推定した。

Scheme 70. Determination of the stereostructure

Trost らが提唱する反応機構とマダンガミンにおける実験結果を踏まえ、反応機構を以下のように 推定した (スキーム 71)。まず、ルテニウム触媒が基質のアリル位の C-H 結合に対し酸化的付加し、 π-アリルルテニウム錯体 248 を形成する。この時、ルテニウムが B 環窒素原子と配位するため、反 応面が 1 つに決まると考えられる。その後、アルキンへの挿入にて 250 が生成し、最後に還元的脱 離にて望む 239 が得られたと考えている。

Scheme 71. Plausible mechanism for ruthenium-catalyzed cycloisomerization

環化異性化による AB 二環性骨格 239 の合成に成功した。しかし、本環化体は次に示すように C 環部環化基質であるアリルシランへの変換が困難であることがわかった。239 に対するヒドロホウ素 化と続く酸化による水酸基の導入を試みた (表 5)。ホウ素試薬として 9-BBN とボラン THF 錯体の 2 種類を用いてオレフィンに付加し、酸化を行ったところ望むアルコール 246 は全く得られなかった (エントリー1,2)。副生成物として、2 つのオレフィンにホウ素試薬が付加したと思われるジオール 251 やエナミン由来のオレフィンのみが選択的に反応した 252 と思われる化合物が得られた。ホウ素 試薬は電子豊富なオレフィンとの反応が優先するため、エナミン由来のオレフィンとの反応が優先 したと考えられる。

そこで、エナミンが反応しないようエナミンを *N,O-*アセタールとして保護することとした(スキ ーム 72)。239 を PPTS、エタノールで処理して *N,O-*アセタール化を試みた。*N,O-*アセタール 253 と 思われる化合物は生成したものの不安定であり、単離できなかった。

Scheme 72. Attempted formation of N,O-acetal 253

以上の結果から、ヒドロホウ素化を用いた 240 の合成は困難であると考えた。そこで、新たな B 環の構築法および増炭法を検討することとした。

第三項 パラジウム触媒を用いる B 環の構築

Trost は、ルテニウム触媒による環化異性化反応と相補的な反応として、パラジウム触媒を用いた 環化異性化反応を報告している(スキーム 73)²⁷。本反応では、官能基とのキレーションを経由し ないため、生成物がシス縮環体 249 となる。

Scheme 73. Cis-selective palladium-catalyzed cycloisomerization by Trost

これを利用した新たな合成計画を立案した(スキーム 74)。アルキンにエステル基を導入した 254 に対する環化異性化反応にてシス縮環体 255 が得られるものとした。その後 1,4-還元にて B 環の全 ての立体化学を構築した 256 とする。

Scheme 74. New strategy for synthesis of the B-ring

まず、254 の合成を検討した(表 6)。*n*BuLi と Mander 試薬²⁸を用いると、254 は得られたものの 中程度の収率であった(エントリー1)。そこで、辻らの条件に従い、241 を一酸化炭素雰囲気下触媒 量のパラジウムで処理すると、良好な収率でエステルを導入した 254 を得た²⁹。

Table 6. Methoxycarbonylation of 241

254 が得られたので、環化異性化反応による 255 の合成を試みた(表 7)。Trost らと同様の条件で あるジクロロエタン/アセトニトリル混合溶媒中ギ酸とパラジウム触媒を用いる条件では、46%と中 程度の収率であった(エントリー1)。本反応は、酸性条件であるために反応中に基質の分解が進行 したと考えられる。そこで、酸性度を抑えるためにより低極性な溶媒であるトルエンを用いたとこ ろ、収率は 71%と大幅に向上した(エントリー2)。しかし、反応の完結までに 2 時間程かかり、基 質や生成物が分解した。そこで、反応の温度を 40 ℃ から 60 ℃ としたところ、反応は 1 時間で完結 し、収率を 84%まで向上できた(エントリー3)。

続いて、立体選択的な 1,4-還元を行った(表 8)。Striker 試薬を用いた際には反応は進行しなかった(エントリー1)³⁰。続いて鈴木らの報告に従い、水素化ホウ素ナトリウムと NiCl₂ を用いる還元 を試みたところ、反応は進行したが収率およびジアステレオマー比は共に低かった(エントリー2)³¹。そこで、成定らの報告に従い、水素化ホウ素ナトリウムと 1 価の塩化銅を用いる 1,4-還元を試み たところ、望む 253 を高収率かつ高立体選択的に得た(エントリー3)³²。これにより、マダンガミ ン類の B 環に存在する全ての不斉炭素の構築に成功した。

生成物の立体化学は、NOESY 実験により決定した(スキーム 75)。NOESY 実験を行ったところ、 図に矢印にて示した相関が観測された。この結果から、1,4-還元体の各立体化学を決定した。また、 AB 環はシス縮環していることもこの結果より確認できた。

Scheme 75. Stereochemical determination of 256

得られた結果と Trost の提唱反応機構により、パラジウム触媒を用いた環化異性化反応のメカニズ ムを以下のように推定した(スキーム 76)。まず、0 価のパラジウムとギ酸からパラジウムヒドリド 種 257 が生じる。これが 254 のアルキンに付加しアルケニルパラジウム 258 が生成する。続いて A 環のオレフィンへの挿入にて二環性骨格 259 が生成する。最後に β-ヒドリド脱離が起こり、260 を 経由して触媒の再生と共に望む化合物 255 が得られたと考えている。

Scheme 76. Plausible mechanism for palladium-catalyzed cycloisomerization

シス縮環した AB 環 256 が合成できたので、C 環の構築を検討した。C 環はエナミンに対する分子 内アリル化にて構築するものとした(スキーム 77)。すなわち、256 より誘導したアリルシラン 261 をプロトン酸で処理するとイミニウムイオン 262 が生じる。これに対し分子内アリル化が進行すれ ば C 環が構築され 263 が得られる。しかし、262 はアリルシランがエカトリアル位にある 262a が最 安定配座であると考えられる。この配座では、反応点同士の距離が遠く、環化反応は進行しない。 環化するためには、262a が配座変換し 262b となる必要がある。しかし、262b では、アリルシラン と A 環との間に大きな 1,3-ジアキシアル反発が生じることが予想される。この大きなエネルギー障 壁を乗り越えて環化を実現するために、立体障害の比較的小さなアリルシランと求電子力の高いア シルイミニウムイオンを用いる計画を立てた。

Scheme 77. Inherent issue in the formation of the C-ring

まず、C 環環化基質であるアリルシラン 261 を合成した(スキーム 78)。An 等によって報告され ている PDBBA (KAlH(OtBu)iBu₂)を用いて 256 から1 工程でのアルデヒド 264 の合成を試みた³³。そ の結果、望むアルデヒドは 30%程度しか得られなかった。残りは、原料が回収される一方で、256 が過剰還元された一級アルコールであった。このことから、アルデヒドへの直接変換は断念した。

Scheme 78. Synthesis of aldehyde 264

そこで、エステルを1度アルコールへと還元し、酸化にてアルデヒド264 とするルートを検討した(スキーム79)。エステル256 を水素化アルミニウムリチウムにてアルコール265 へと還元した。 続いて、265 の酸化を検討した。TEMPO 酸化では、望むアルデヒド264 は得られたものの、低収率 であった(エントリー1)。IBX 酸化や Swern 酸化、Ley 酸化では中程度の収率となった(エントリ ー2-4)。また、265 が不安定であるため、いずれの酸化においても再現性に難があった。

Scheme 79. Synthesis of aldehyde 264 via alcohol 265

この問題点を解決するため、アルコール 265 を経由しないアルデヒド 264 の合成を試みた(スキ ーム 80)。256 をメトキシメチルアミンを用いて Weinreb アミド 266 へと変換し、これを DIBAL-H で還元するとアルデヒド 264 が得られた³⁴。2 つの工程はいずれも高収率にて進行し、不安定化合物 を経由しないため高再現性を示した。続いて、264 を Wittig 反応にて末端オレフィンとした後、アリ ルシランとの第 2 世代 Grubbs 触媒を用いたクロスメタセシス反応にて、*E/Z* 比 4:1 で望むアリルシ ラン 261 を得た。

Scheme 80. Preparation of allylsilane 261

アリルシラン 261 が得られたので、分子内アリル化による C 環の構築を試みた(表 9)。まず、ト ルエン中、PPTS を作用させ加熱したところ、反応は進行せずに原料を回収した(エントリー1)。そ こで、PPTS よりも強い酸である CSA を用いた。しかし、原料の回収や基質の分解が進行するのみ で望む 263 は得られなかった(エントリー2,3)。更に強い酸である TFA や TfOH を用いた際には、 低温でも基質の分解が進行した(エントリー4,5)。

そこで、一度エナミン等価体である N,O-アセタールを経由する環化について検討した(スキーム 81)。261 をエタノール中 CSA を加え加熱すると中程度の収率で N,O-アセタール化が進行し 267 を 与えた。得られた 267 に対し、様々なルイス酸を用いて C 環の構築を検討した。ジクロロメタン溶 媒中、−78 °C にて各種ルイス酸を加えた。その結果、Sc(OTf)₃ や TMSOTf、TiCl₄ では化合物の分解 が見られ、263 は得られなかった (エントリー1-3)。しかし、BF₃·OEt₂を用いた時のみ反応が進行し、 望む 263 を収率 55%で単一異性体として得ることができた。

Scheme 81. Intramolecular allylation via N,O-acetal 267

生成物の立体化学は NOESY 実験により決定した(スキーム 82)。NOESY 実験を行うと、3 位プロトンと 1,3-ジアキシアルの関係にある 5 位・11 位プロトンとの相関が観測された。この結果から、 263 のビニル基の立体化学が決定された。

NOESY experiment

(CDCl₃, 500 MHz, 60 °C)

Scheme 82. Stereochemical determination of ABC-ring 263

環化反応にはエナミンでは無く *N,O*-アセタールが効果的であるという知見が得られた。しかし、 不安定な *N,O*-アセタールを単離する分子内アリル化による C 環の構築は中間体の安定性から *N,O*-アセタール化と環化反応ともに中程度の収率のため、全合成への展開が困難であった。そこで、こ れまでの知見を元に、*N,O-*アセタールを単離しないエナミンからの直接環化を試みた(スキーム 83)。 261 に対し、ジクロロメタンとエタノール混合溶媒中 BF₃·OEt₂を作用させたところ、環化反応が進 行し、1 工程にて三環性骨格 263 が収率 66%で得られた。TLC による観察から、反応は *N,O-*アセタ ール 267 を経由して進行していることが示唆された。収率は 267 を単離する場合と比べ、2 工程 29% から1 工程 66%と大幅に改善された。

Scheme 83. One-pot cyclization of the C-ring

第一項 ビニル基の変換

合成した ABC 三環性骨格 263 とマダンガミン類では、E 環部の二重結合の位置が異なっている(ス キーム 84)。そこで、263 の二重結合の位置をマダンガミン類の二重結合の位置と対応させるための 官能基変換を試みた。

Scheme 84. Comparison of 263 and madangamines

263 への四酸化オスミウムを用いたジヒドロキシ化は、ジオールのジアステレオ混合物 268 を非常 に低収率にて与えるのみであった (スキーム 85)。263 をオゾン分解にてアルデヒドとした後、Comins 試薬³⁵を用いてエノールトリフラート化を試みたが望む 269 は得られなかった。

Scheme 85. Attempted transformation of the terminal olefin of 263

このように、分子内アリル化では、環化後のビニル基の変換が困難であった。新たに導入する二 重結合は Z 体であり、263 からの構築は工程数の増加など困難が予想される。そこで、より簡便な Z オレフィン構築法を用いる新規合成計画を立案した。 第二項 分子内アレニル化によるアレンの合成

ABC 三環性骨格の構築にあたり、アリルシランではなく、プロパルギルシランを用いる環化を計画した (スキーム 86)。プロパルギルシラン 270 を酸で処理すると分子内アレニル化が進行してアレン 271 を与える。271 をオゾン分解にてケトン 272 とした後、Z 選択的な安藤オレフィン化にて Z 選択的に 273 が得られると考えた。その後、増炭を経て 274 へと誘導し、マクロラクタム化にて共通 骨格 275 を得る。

Scheme 86. New strategy for the macrocyclic E-ring

まず、アレン 271 の合成を行った(スキーム 87)。アルデヒド 264 を大平-Bestman 試薬 ³⁶を用い て末端アルキン 276 とした。276 のアルキル化にてプロパルギルシラン 270 を得た。270 にジクロロ メタンとエタノール混合溶媒中 BF₃·OEt₂を作用させたところ、収率 57%にてアレン 271 が得られた。

Scheme 87. Intramolecular allenylation of propargyl silane 270

アレン 271 が合成できたので E 環を構築し、マダンガミン類の共通骨格である ABCE 四環性骨格 の合成を試みた (スキーム 88)。271 をオゾン分解にてケトン 272 とした後、272 に対して安藤オレ フィン化を行った³⁷。その結果、望む 273 は得られたものの、*E/Z* = 1:1 という結果であった。

Scheme 88. Ando olefination

そこで安藤オレフィン化ではなく、不安定イリド 277 との Wittig 反応を試みた (スキーム 89)^{16e}。 その結果、2 工程収率 44%にて望む Z 体 278 を単一異性体にて得た。以上、E 環の構築に必要な全て の炭素鎖の導入に成功した。

Scheme 89. Wittig reaction

炭素鎖の導入に成功したので 11 員環である E 環の構築を検討した (スキーム 90)。Wittig 生成物 278 を水酸化リチウム水溶液で加水分解してカルボン酸 279 を高収率にて得た。続いてこれを TMSOTf と 2,6-lutidine を用いた Boc 基の除去によりアミン 274 とし、HOBt、EDCI を作用させると マクロラクタム化が進行し、四環性骨格 275 が高収率にて得られた。これにより、マダンガミン類 の共通骨格 ABCE 環の構築を完了した。

Scheme 90. Synthesis of common intermediate 275 for madangamine alkaloids
マダンガミン類の共通骨格 275 を合成したため、様々な D 環部を合成の終盤に構築するマダンガ ミン類の網羅的全合成が可能となった(スキーム 91)。本研究では、これらマダンガミン類のうち、 未だ全合成例が報告されていないマダンガミン C の全合成を試みた。

Scheme 91. Unified total synthesis of madangamines

まず、275の TIPS 基の選択的な除去を検討した(表 10)。THF/水混合溶媒中、溶媒量の TFA を作用させると、複数の化合物が生成し、望む 280 は得られなかった(エントリー1)。TBAF を用いた際には保護基の区別化が困難であり、280の他に Teoc 基も除去された 281 が生成した(エントリー2)。 そこで、メタノール溶媒中 CSA で処理し加熱すると、TIPS 基の選択的除去が速やかに進行し、望む 一級アルコール 280 が収率 94%で得られた(エントリー3)。

Table 10. Selective cleavage of the TIPS group

続いて、生成した一級アルコールの酸化を検討した(表 11)。Parikh-Doering 酸化や IBX 酸化では 反応が進行せずに原料回収となった(エントリー1,2)。次に、Ley 酸化を試みたが 280 が消費される 前に TLC が多点化し、282 は得られなかった(エントリー4)。そこで、ニトロキシラジカルを用い る酸化剤について検討した。TEMPO を用いた酸化では、反応は進行せず原料を回収した(エントリ ー4)。そこで、岩淵等によって報告されている AZADO による酸化を試みた(エントリー5)³⁸。そ の結果、反応は良好な収率で進行し、望むアルデヒド 282 を高収率にて与えた。

Table 11. Oxidation of the primary alcohol

アルデヒド 282 が得られたので、Wittig 反応による増炭反応を試みた(スキーム 92)。アルデヒド

282 に対し、別途調製した既知のホスホニウム塩と NaN(TMS)₂を作用させたところ Wittig 反応が進行し、マダンガミン C の D 環の炭素が全て導入された 283 を得た。しかし、47%と中程度の収率であり、分離不可能な幾何異性体の混合物として得られた。そのため、283 は得られたもののこの先へ進めるのは困難であると判断し、別のルートによる 283 の合成を試みた。

Scheme 92. Attempted Wittig reaction

新規合成ルートとして、Wittig 反応ではなく鈴木・宮浦カップリングにて幾何選択的に増炭するル ートを検討した(スキーム93)。アルデヒド282に対し、Wittig 反応にてヨードオレフィン284をZ 選択的に得た。次に、284と市販の5-ヘキセン酸メチルとの鈴木・宮浦カップリングを試みた。 PdCl₂(dppf)·CH₂Cl₂を用いた際には、望む生成物285は得られず構造不明物を与えた(エントリー1)。 そこで、Pd(PPh₃)₄を用いたところ、望むカップリング体285を収率74%で得た(エントリー2)。こ れにより、マダンガミンCのD環の構築に必要な全ての炭素鎖の導入に成功した。

Scheme 93. Suzuki-Miyaura coupling

炭素鎖の導入に成功したので、マクロラクタム化による 13 員環である D 環の構築を検討した(ス キーム 94)。カップリング体 285 を加水分解してカルボン酸 283 を得た。TBAF にて Teoc 基を除去 し、ワンポットにてマクロラクタム化を行うと、D 環が構築された五環性骨格 287 を 2 工程収率 48%

Scheme 94. Construction of the D-ring

マダンガミン C の全合成に向けた最後の課題は、2 つのアミド基の同時還元である(表 12)。まず、 Vaska 錯体を用いて還元を試みたところ、望むマダンガミン C は得られなかった(エントリー1)。 そこで、固体の LiAlH₄による還元を試みたが反応系は多点化してしまい、マダンガミン C は得られ なかった(エントリー2)。固体の LiAlH₄は分解による不純物も多く、溶解性もあまり良くなかった。 そこで、LiAlH₄の THF 溶液を用いて還元したところ、還元反応が進行し、マダンガミン C の全合成 を達成した(エントリー3)。生成物の不安定さにより 18%と低収率ではあったものの、合成したマ ダンガミン C の ¹H NMR は天然物と良い一致を示した。

18%

LiAIH₄ (THF solution), Et₂O, rt

3

第七節 第二章のまとめ

以下に二章をまとめた。

まず A 環を構築した (スキーム 95)。グリシン 199 を出発原料とし、既知の 3 工程にてトシラート 218 とした。続いて、アリルアルコール 228 の Johnson-Claisen 転位にてマダンガミン類の 9 位四 級炭素を構築した。その後、Hofmann 転位による B 環窒素原子の導入と閉環メタセシスにて A 環 237 を合成した。

Scheme 95. Construction of the A-ring

次に BC 環を構築し、マダンガミン類の ABC 三環性骨格を構築した(スキーム 96)。得られた 237 より 2 工程でエンイン 254 とした。その後、254 に対するパラジウム触媒を用いた環化異性化反応で シス縮環した AB 環 255 の合成に成功した。255 から種々の工程にてプロパルギルシラン 270 とした。 270 を酸で処理すると分子内アレニル化が進行し、ABC 三環性骨格 271 が構築できた。

Scheme 96. Construction of the ABC-ring

アレン 271 より、マダンガミン類共通骨格の構築およびマダンガミン C の全合成を達成した(ス キーム 97)。271 のオゾン分解と続く Z 選択的な Wittig 反応にて E 環に対応する炭素鎖を導入し 278 とした。その後、マクロラクタム化にて E 環を構築し、マダンガミン類の ABCE 共通骨格 275 の構 築に成功した。275 より鈴木・宮浦カップリングによる増炭とマクロラクタム化にて D 環を構築し 287 を得た。最後に 287 のアミド基を還元し、マダンガミン C の全合成を達成した。

Scheme 97. Total synthesis of madangamine C

以上、既知化合物 218 より 28 工程にてマダンガミン C を全合成した。

本研究では、*N*-アルコキシアミド基を用いた含窒素四置換炭素構築法の開発に成功した。また、 海洋性アルカロイドであるマダンガミンCの全合成を達成した。

N-アルコキシアミド基を用いた含窒素四置換炭素構築法の開発

N-アルコキシアミドに対して有機リチウム試薬を付加し、ルイス酸を添加するとイミニウムイオンが生じる。これに対し更に求核剤を添加し、含窒素四置換炭素を構築した。本反応では、異なる2つの求核剤をワンポットで付加できた。

マダンガミン類の合成研究

マダンガミン類の網羅的全合成を志向したマダンガミン類共通骨格の構築およびマダンガミン C の全合成を達成した。グリシンを出発原料として得られるエンインに対する環化異性化反応にて、 シスデカリン骨格 AB 環を構築した。ここからプロパルギルシランへと誘導し、分子内アレニル化 による C 環を構築した。更に増炭を行った後、マクロラクタム化にて E 環を構築し、マダンガミン 類の共通骨格の構築に成功した。更にここから残る環を構築し、マダンガミン C の全合成を達成し た。

General Details. Reactions were performed in oven-dried glassware fitted with rubber septa under an argon atmosphere. DMF was distilled from CaH₂. Pyridine was distilled from sodium hydroxide. All distilled solvents, CH₂Cl₂, (CH₂Cl)₂, Et₂O, PhMe, THF, *o*-xylene, MeCN, MeOH and EtOH were dried over activated 3Å molecular sieves. Commercial reagents were used without further purification. Thin-layer chromatography was performed on Merck 60 F₂₅₄ precoated silica gel plates, which were visualized by exposure to UV (254 nm) or stained by submersion in *p*-anisaldehyde solution or ethanolic phosphomolybdic acid solution followed by heating on a hot plate. Flash column chromatography was performed on silica gel (Silica Gel 60 N; 63–210 or 40–50 mesh, KANTO CHEMICAL CO., INC.). ¹H NMR spectra were recorded at 500 MHz and ¹³C NMR spectra at 125 MHz with JEOL ECA-500 spectrometers. Chemical shifts are reported in ppm with reference to solvent signals [¹H NMR: CDCl₃ (7.26), C₆D₆ (7.16); ¹³C NMR: CDCl₃ (77.16)]. Signal patterns are indicated as br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. MPLC was performed on Yamazen, YFLC AI-580. Infrared spectra were recorded using a BRUKER ALPHA FT-IR spectrometer. Mass spectra were measured with Waters, LCT Premier XE (ESI-TOF). Melting points were measured with a Mitamura-Riken microhot stage.

Synthesis of 1-(benzyloxy)-6-phenylpiperidin-2-one (168)

Methyl 5-((benzyloxy)amino)-5-phenylpentanoate (166)

o-Benzylhydroxyamine hydrochloride (1.87 g, 11.7 mmol) was added to a solution of 4-benzoylbutyric acid **164** (2.04 g, 10.6 mmol), pyridine (1.9 mL, 23 mmol) and EtOH (35 mL) at room temperature. The solution was refluxed for 5 h, quenched with saturated aqueous NH₄Cl (30 mL), and extracted with EtOAc (2x 30 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated. The residue was directly used in the next reaction without further purification. For an analytical sample, the crude mixture was purified by silica gel column chromatography (EtOAc/hexane 1:10 to 1:3) to afford pure **165**: white crystals, mp 72.0–73.0 °C; IR 3062, 3032, 2932, 2877, 1708, 1455, 1243, 1020, 930, 766, 737, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68–7.61 (m, 2H), 7.43–7.25 (m, 8H), 5.22 (s, 2H), 2.86 (t, *J* = 7.7 Hz, 2H), 2.39 (t, *J* = 7.5 Hz, 2H), 1.88 (tt, *J* = 7.7, 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 179.4 (C), 157.9 (C), 138.1 (C), 135.4 (C), 129.3 (CH), 128.7 (CH), 128.5 (CH), 128.3 (CH), 127.9 (CH), 126.4 (CH), 76.4 (CH₂), 33.6 (CH₂), 25.8 (CH₂), 21.5 (CH₂); HRMS (ESI), calcd for C₁₈H₂₀NO₃⁺ (M+H)⁺ 298.1443, found 298.1441.

Acetyl chloride (11 mL, 159 mmol) was added dropwise to MeOH (20 mL) at 0 °C. The solution was allowed to warm to room temperature, and stirred for 30 min. The resulting HCl in MeOH was added to a solution of the crude **165** and MeOH (33 mL) at 0 °C. Sodium cyanoborohydride (2.00 g, 31.8 mmol) was then added to this mixture at 0 °C. The mixture was allowed to warm to room temperature, stirred for 15 h at room temperature, and quenched with saturated aqueous NaHCO₃ (40 mL). The resulting mixture was extracted with EtOAc (2x 30 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:20 to 1:10) to give 2.00 g of **166** (60% for 2 steps): a colorless oil; IR (film) 2950, 2864, 1737, 1454, 1206, 1159, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.20 (m, 10H), 5.65 (s, 1H), 4.63 (d, *J* = 11.5 Hz, 1H),

4.56 (d, J = 11.5 Hz, 1H), 3.97 (dd, J = 8.0, 5.4 Hz, 1H), 3.63 (s, 3H), 2.29 (ddd, J=16.5, 7.2, 1.5 Hz, 1H), 2.24 (ddd, J=16.5, 7.2, 1.5 Hz, 1H), 1.84 (dddd, J = 12.9, 10.4, 5.4, 5.4 Hz, 1H), 1.66 (dddd, J = 10.4, 8.0, 5.4, 5.4 Hz, 1H), 1.64–1.43 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C), 141.4 (C), 137.9 (C), 128.6 (CH), 128.5 (CH), 128.4 (CH), 127.84 (CH), 127.82 (CH), 127.7 (CH), 76.8 (CH₂), 65.6 (CH), 51.6 (CH₃), 34.0 (CH₂), 33.2 (CH₂), 21.6 (CH₂); HRMS (ESI), calcd for C₁₉H₂₃N Na O₃⁺ (M+Na)⁺ 336.1576, found 336.1576.

Preparation of 1-(Benzyloxy)-6-phenylpiperidin-2-one (168)

Lithium hydroxide monohydrate (1.34 g, 31.9 mmol) was added to a solution of **166** (2.00 g, 6.38 mmol), THF (43 mL) and H₂O (21 mL) at room temperature. The solution was maintained for 5.5 h at room temperature, and quenched with saturated aqueous NH₄Cl (50 mL). The resulting mixture was extracted with EtOAc (5x 30 mL). The combined organic extracts were washed with brine (80 mL), dried over Na₂SO₄, and concentrated. The residue was directly used in the next reaction without further purification.

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (1.22 g, 6.38 mmol) was added to a solution of the crude **167**, Et₃N (0.89 mL, 6.4 mmol) and CH₂Cl₂ (32 mL) at room temperature. The solution was maintained for 1 day at room temperature, and quenched with H₂O (30 mL). The resulting mixture was extracted with EtOAc (2x 20 mL). The combined organic extracts were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:20 to 1:10) to give 1.41 g of **168** (78% for 2 steps): white crystals, mp 89.0–90.0 °C; IR (film) 3031, 2952, 2875, 1668, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.26 (m, 8H), 7.18–7.15 (m, 2H), 5.03 (d, *J* = 10.0 Hz, 1H), 4.63 (d, *J* = 10.0 Hz, 1H), 4.53 (dd, *J* = 6.0, 6.0 Hz, 1H), 2.62 (ddd, *J* = 17.2, 6.6, 6.6 Hz, 1H), 2.56 (dddd, *J* = 17.2, 7.5, 6.0, 0.9 Hz, 1H), 2.13–2.05 (m, 1H), 1.96–1.87 (m, 1H), 1.80–1.71 (m, 1H), 1.68–1.58 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8 (C), 140.4 (C), 135.4 (C), 129.6 (CH), 128.6 (CH), 128.6 (CH), 128.6 (CH), 128.6 (CH), 127.9 (CH), 127.0 (CH), 76.4 (CH₂), 65.7 (CH), 33.6 (CH₂), 33.0 (CH₂), 18.4 (CH₂); HRMS (ESI), calcd for C₃₂H₆(N₂O₅Si₂⁺ (M+H)⁺ 609.4119, found 609.4130.

Synthesis of 1-(Benzyloxy)-5-phenylpyrrolidin-2-one (173)

Preparation of methyl 4-((benzyloxy)amino)-4-phenylbutanoate (171)

o-Benzylhydroxyamine hydrochloride (1.96 g, 12.3 mmol) was added to a solution of 3-benzoyl propionic acid **169** (2.00 g, 11.2 mmol), pyridine (2.0 mL, 25 mmol) and EtOH (37 mL) at room temperature. The solution was refluxed for 14 h, quenched with saturated aqueous NH₄Cl (30 mL), and extracted with EtOAc (2x 30 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated. The residue was directly used in the next reaction without further purification. For an analytical sample, the crude **170** was filtered through a pad of silica gel and then purified by HPLC (PEGASIL Silica 120-5, 250×20 mm, UV 254 nm, EtOAc/hexane 1:14, 10 mL/min, $T_R = 17.0$ min) to afford pure **170**: a colorless oil; IR (film) 3062, 3032, 2927, 2877, 1710, 1453, 1023, 761, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.66–7.60 (m, 2H), 7.44–7.28 (m, 8H), 5.24 (s, 2H), 3.12–3.06 (m, 2H), 2.67–2.59 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 179.0 (C), 156.9 (C), 137.9 (C), 135.1 (C), 129.5 (CH), 128.7 (CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 126.4 (CH), 76.5 (CH₂), 30.7 (CH₂), 22.3 (CH₂); HRMS (ESI), calcd for C₁₇H₁₈NO₃⁺ (M+H)⁺ 284.1287, found 284.1287.

Acetyl chloride (12 mL, 170 mmol) was added dropwise to MeOH (20 mL) at 0 °C. The solution was allowed to warm to room temperature, and stirred for 30 min. The resulting HCl in MeOH was added to a solution of the crude **170** and MeOH (33 mL) at 0 °C. Sodium cyanoborohydride (2.11 g, 33.6 mmol) was then added to this mixture at 0 °C. The mixture was allowed to warm to room temperature, stirred for 18 h at room temperature, and quenched with saturated aqueous NaHCO₃ (40 mL). The resulting mixture was extracted with EtOAc (2x 30 mL). The combined organic extracts were washed with brine (40 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:60 to 1:10) to give 0.884 g of **171** (28% for 2 steps): a colorless oil; IR (film) 3030, 2951, 1737, 1454, 1169, 751, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.25 (m, 10H), 5.66 (s, 1H), 4.66 (d, *J* = 11.5 Hz, 1H),

4.60 (d, J = 11.5 Hz, 1H), 3.99 (dd, J = 6.6, 6.6 Hz, 1H), 3.61 (s, 3H), 2.30–2.14 (m, 3H), 2.02–1.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C), 140.8 (C), 137.9 (C), 128.63 (CH), 128.60 (CH), 128.4 (CH), 127.90 (CH), 127.86 (CH), 127.8 (CH), 76.9 (CH₂), 65.1 (CH), 51.7 (CH₃), 30.8 (CH₂), 29.0 (CH₂); HRMS (ESI), calcd for C₁₈H₂₁N Na O₃⁺ (M+Na)⁺ 322.1419, found 322.1416.

1-(Benzyloxy)-5-phenylpyrrolidin-2-one (173)

Lithium hydroxide monohydrate (621 mg, 14.8 mmol) was added to a solution of **171** (884 mg, 2.95 mmol), THF (20 mL) and H₂O (10 mL) at room temperature. The solution was maintained for 1 day at room temperature, and quenched with saturated aqueous NH₄Cl (30 mL). The resulting mixture was extracted with EtOAc (5x 30 mL). The combined organic extracts were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The residue was directly used in the next reaction without further purification.

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (1.22 g, 6.38 mmol) was added to a solution of the crude **172**, Et₃N (0.41 mL, 3.0 mmol) and CH₂Cl₂ (15 mL) at room temperature. The solution was maintained for 19 h at room temperature, and quenched with H₂O (20 mL). The resulting mixture was extracted with EtOAc (2x 20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:3) to give 0.656 g of **173** (83% for 2 steps): white crystals, mp 78.0–79.0 °C; IR (film) 3032, 2950, 2880, 1717, 1456, 1369, 1053, 1033, 753, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41–7.24 (m, 8H), 7.22–7.18 (m, 2H), 5.03 (d, *J* = 10.3 Hz, 1H), 4.69 (d, *J* = 10.3 Hz, 1H), 4.44 (dd, *J* =6.9, 6.9 Hz, 1H), 2.56–2.48 (m, 1H), 2.43–2.31 (m, 2H), 2.00–1.90 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1 (C), 139.8 (C), 135.3 (C), 129.5 (CH), 128.9 (CH), 128.8 (CH), 128.5 (CH), 128.4 (CH), 127.1 (CH), 77.4 (CH₂), 62.8 (CH), 27.3 (CH₂), 25.8 (CH₂); HRMS (ESI), calcd for C₁₇H₁₈NO₂⁺ (M+H)⁺ 268.1338, found 268.1338.

[General procedure A: Synthesis of *α*-trisubstituted amines through the allylation]

2-Allyl-1-(benzyloxy)-2-methylpiperidine (174)

Methyllithium (1.07 M in Et₂O, 0.18 mL, 0.19 mmol) was added dropwise to a solution of **163** (30.6 mg, 149 μ mol) and THF (1.5 mL, freshly distilled from sodium/benzophenone) at -78 °C. The solution was

maintained for 10 minutes at -78 °C, and then MeCN (0.50 mL), allyltributyltin (0.14 mL, 0.45 mmol) and Sc(OTf)₃ (95.5 mg, 0.194 mmol) were added to the solution at -78 °C. The mixture was allowed to warm to room temperature, and stirred for 1 day. The reaction mixture was quenched with saturated aqueous NaHCO₃ (3.0 mL) and extracted with EtOAc/hexane = 1:1 (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (hexane to EtOAc/hexane 1:40) to give 21.6 mg of **174** (92%): a colorless oil; IR (film) 2936, 2853, 1453, 1369, 911 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.37–7.24 (m, 5H), 5.97–5.83 (m, 1H), 5.09–5.01 (m, 2H), 4.69 (s, 2H), 3.09–2.79 (m, 2H), 2.44 (dd, *J* = 12.6, 6.9 Hz, 1H), 2.41 (dd, *J* = 12.6, 6.3 Hz, 1H), 1.72–1.26 (m, 6H), 1.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, mixture of two lotamers) δ 138.0 (C), 135.5 (CH), 128.5 (CH), 128.4 (CH), 127.7 (CH), 117.1 (CH₂), 75.5 (CH₂), 75.1 (CH₂), 61.2 (C), 49.5 (CH₂), 48.9 (CH₂), 46.1 (CH₂), 35.5 (CH₂), 34.3 (CH₂), 25.7 (CH₂), 25.2 (CH₂), 19.8 (CH₂), 19.8 (CH₂), 14.5 (CH₃); HRMS (ESI), calcd for C₁₆H₂₄NO⁺ (M+H)⁺ 246.1858, found 246.1860.

2-Allyl-1-(benzyloxy)-2-butylpiperidine (175)

Following the general procedure A using *n*-BuLi (1.67 M in hexane, 0.15 mL, 0.24 mmol), **163** (33.3 mg, 0.162 mmol) was converted to **175** (40.0 mg, 86%): a colorless oil; IR (film) 2934, 2858, 1453, 1028, 909 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.36–7.23 (m, 5H), 6.03–5.87 (m, 1H), 5.07–5.00 (m, 2H), 4.68 (d, J = 10.9 Hz, 1H), 4.66 (d, J = 10.9 Hz, 1H), 3.08–2.97 (m, 2H), 2.48 (dd, J = 14.3, 7.2 Hz, 1H), 2.38 (dd, J = 14.3, 7.5 Hz, 1H), 1.71–1.53 (m, 4H), 1.51–1.26 (m, 8H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 138.5 (C), 136.1 (CH), 128.4 (CH), 128.3 (CH), 127.6 (CH), 116.4 (CH₂), 74.8 (CH₂), 63.2 (C), 48.8 (CH₂), 44.0–32.0 (CH₂ x2, broad), 31.4 (CH₂), 26.0 (CH₂), 24.8 (CH₂), 23.8 (CH₂), 19.7 (CH₂), 14.3 (CH₃); HRMS (ESI), calcd for C₁₉H₃₀NO⁺ (M+H)⁺ 288.2327, found 288.2328.

2-Allyl-1-(benzyloxy)-2-(phenylethynyl)piperidine (176)

n-Butyllithium (1.67 M in hexane, 0.21 mL, 0.35 mmol) was added dropwise to a solution of phenylacetylene (38 μ L, 0.35 mmol) and THF (0.75 mL, freshly distilled from sodium/benzophenone) at –78 °C. The solution was maintained for 15 min at –78 °C, and was then added to a solution of **163** (30.7 mg, 0.150 mmol) and THF (0.75 mL) via cannula at –78 °C. After the solution was maintained for 10 minutes at –78 °C, MeCN

(0.50 mL), allyltributyltin (0.14 mL, 0.45 mmol) and Sc(OTf)₃ (96.2 mg, 0.195 mmol) were added to the solution at -78 °C. The resulting mixture was allowed to warm to room temperature, and stirred for 1 day. The reaction mixture was quenched with saturated aqueous NaHCO₃ (3 mL) and extracted with EtOAc/hexane 1:3 (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (hexane to EtOAc/hexane = 1:40) to give 40.3 mg of **176** (81%): a colorless oil; IR (film) 2939, 2853, 1490, 1442, 1364, 1294, 1027, 913, 755, 692 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.24 (m, 10H), 6.05 (dddd, *J* = 16.9, 9.2, 8.0, 7.2 Hz, 1H), 5.15 (d, *J* = 16.9 Hz, 1H), 5.12 (d, *J* = 9.2 Hz, 1H), 4.76 (d, *J* = 11.2 Hz, 1H), 4.73 (d, *J* = 11.2 Hz, 1H), 3.11–3.02 (m, 2H), 2.93 (dd, *J* = 13.8, 7.2 Hz, 1H), 2.46 (dd, *J* = 13.8, 8.0 Hz, 1H), 1.92–1.47 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9 (C), 134.6 (CH), 132.0 (CH), 128.8 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 123.7 (C), 117.7 (CH₂), 89.2 (C), 87.5 (C), 75.4 (CH₂), 64.0 (C), 52.2 (CH₂), 44.3 (CH₂), 36.7 (CH₂), 25.8 (CH₂), 21.0 (CH₂); HRMS (ESI), calcd for C₂₃H₂₆NO⁺ (M+H)⁺ 332.2014, found 332.2018.

2-Allyl-1-(benzyloxy)-2-methyl-6-phenylpiperidine (178)

Following the general procedure A, **168** (70.0 mg, 0.249 mmol) was converted to **178** (71.8 mg, 90%): a colorless oil; IR (film) 2936, 2868, 1454, 1368, 1027, 911, 748, 698cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.55–7.45 (m, 2H), 7.37–7.25 (m, 3H), 7.20–7.11 (m, 3H), 6.78–6.68 (m, 2H), 5.81 (dddd, *J* = 17.2, 9.5, 6.9, 6.6 Hz, 1H), 5.09 (d, *J* = 17.2 Hz, 1H), 5.04 (d, *J* = 9.5 Hz, 1H), 4.40 (d, *J* = 8.9 Hz, 1H), 4.05–3.93 (m, 1H), 3.83 (d, *J* = 8.9 Hz, 1H), 2.67 (dd, *J* = 12.3, 6.9 Hz, 1H), 2.56 (dd, *J* = 12.3, 6.6 Hz, 1H), 1.90–1.43 (m, 6H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7 (C), 137.1 (C), 135.7 (CH), 129.1 (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 127.3 (CH), 117.1 (CH₂), 77.8 (CH₂), 65.1 (CH), 63.0 (C), 35.3 (CH₂), 35.1 (CH₂), 33.0 (CH₂), 27.6 (CH₃), 19.7 (CH₂); HRMS (ESI), calcd for C₂₂H₂₈NO⁺ (M+H)⁺ 322.2171, found 322.2173.

NOE experiment for 178

2.9% 178 (CDCl_{3,} 500 MHz)

2-Allyl-1-(benzyloxy)-2-butyl-6-phenylpiperidine (179)

Following the general procedure A using *n*-BuLi (1.59 M in hexane, 0.13 mL, 0.21 mmol), **168** (45.0 mg, 0.160 mmol) was converted to **179** (42.0 mg, 72%): a colorless oil; IR (film) 2939, 2870, 1454, 1261, 1096, 1026, 911, 804, 749, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.62–7.42 (m, 2H), 7.38–7.25 (m, 3H), 7.21–7.10 (m, 3H), 6.75–6.64 (m, 2H), 5.92–5.77 (m, 1H), 5.07 (d, *J* = 17.2 Hz, 1H), 5.03 (d, *J* = 9.7 Hz, 1H), 4.30 (d, *J* = 8.6 Hz, 1H), 4.07–3.96 (m, 1H), 3.00 (d, *J* = 8.6 Hz, 1H), 2.69 (dd, *J* = 12.6, 6.9 Hz, 1H), 2.50 (dd, *J* = 12.6, 6.0 Hz, 1H), 1.88–1.23 (m, 12H), 0.96 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.4 (C), 137.2 (C), 136.1 (CH), 129.0 (CH), 128.8 (CH), 128.1 (CH), 128.0 (CH), 127.6 (CH), 127.2 (CH), 117.0 (CH₂), 77.0 (CH₂), 65.6 (CH), 64.9 (C), 37.2 (CH₂), 35.5 (CH₂), 34.2 (CH₂), 31.6 (CH₂), 25.2 (CH₂), 23.7 (CH₂), 19.4 (CH₂), 14.6 (CH₃); HRMS (ESI), calcd for C₂₅H₃₄NO⁺ (M+H)⁺ 364.2640, found 364.2642.

NOE experiment for 179

4.1% 179 (CDCl_{3,} 500 MHz)

2-Allyl-1-(benzyloxy)-2-methyl-5-phenylpyrrolidine (180)

Following the general procedure A, **173** (42.8 mg, 0.160 mmol) was converted to **180** (30.9 mg, 63%): a colorless oil; IR (film) 2969, 2872, 1454, 1368, 1028, 911, 752, 698 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 7.61–7.56 (m, 2H), 7.36–7.30 (m, 2H), 7.28–7.22 (m, 3H), 7.18–7.08 (m, 3H), 5.91 (dddd, J = 16.0, 11.2, 8.0, 7.2 Hz, 1H), 5.16 (dddd, J = 11.2, 2.6, 1.2, 1.2 Hz, 1H), 5.14 (dddd, J = 16.0, 2.6, 1.2, 1.2 Hz, 1H), 4.67 (d, J = 10.6 Hz, 1H), 4.50 (d, J = 10.6 Hz, 1H), 4.26 (dd, J = 9.5, 7.7 Hz, 1H), 2.74 (ddddd, J = 13.5, 7.2, 1.2 1.2, 0.9 Hz, 1H), 2.41 (dddd, J = 13.5, 8.0, 1.2, 1.2 Hz, 1H), 1.97 (dddd, J = 12.6, 9.5, 9.5, 7.2 Hz, 1H), 1.81 (ddd, J = 12.0, 9.5, 3.7 Hz, 1H), 1.67 (dddd, J = 12.6, 10.3, 7.7, 3.7 Hz, 1H), 1.58 (dddd, J = 12.0, 10.3, 7.2, 0.9 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.5 (C), 137.7 (C), 136.1 (CH), 128.7 (CH), 128.29 (CH),

128.26 (CH), 128.21 (CH), 127.7 (CH), 127.2 (CH), 117.4 (CH₂), 77.9 (CH₂), 67.9 (CH), 66.4 (C), 37.2 (CH₂), 31.9 (CH₂), 28.8 (CH₂), 25.8 (CH₃); HRMS (ESI), calcd for C₂₁H₂₆NO⁺ (M+H)⁺ 308.2014, found 308.2013.

NOE experiment for 180

2.4% 180 (C₆D₆, 500 MHz)

[General procedure B: Synthesis of α -trisubstituted amines through the cyanation]

1-(Benzyloxy)-2-methylpiperidine-2-carbonitrile (181)

Methyllithium (1.07 M in Et₂O, 0.18 mL, 0.19 mmol) was added dropwise to a solution of **163** (30.5 mg, 0.149 mmol) and THF (1.5 mL) at -78 °C. The solution was maintained for several minutes at -78 °C, and then MeCN (0.50 mL), TMSCN (32 µL, 0.45 mmol) and SnCl₄ (23 µL, 0.19 mmol) were added to the solution at -78 °C. The mixture was allowed to warm to room temperature, and stirred for 1 day. The reaction mixture was quenched with saturated aqueous NaHCO₃ (3.0 mL) and extracted with EtOAc/hexane = 1:1 (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane = 1:20 to 1:10) to give 29.3 mg of **181** (85%): a colorless oil; IR (film) 2944, 2852, 1454, 1369, 1026, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.28 (m, 5H), 4.73 (d, *J* = 11.5 Hz, 1H), 4.71 (d, *J* = 11.5 Hz, 1H), 3.22–3.10 (m, 1H), 2.80 (ddd, *J* = 11.2, 11.2, 2.6 Hz, 1H), 1.95 (ddd, *J* = 10.3, 2.6, 2.6 Hz, 1H), 1.78–1.68 (m, 1H), 1.64–1.50 (m, 7H); ¹³C NMR (125 MHz, CDCl₃) δ 137.0 (C), 128.9 (CH), 128.4 (CH), 128.1 (CH), 119.5 (C), 76.0 (CH₂), 62.3 (C), 53.2 (CH₂), 37.4 (CH₂), 25.4 (CH₃), 25.2 (CH₂), 21.1 (CH₂); HRMS (ESI), calcd for C₁₄H₁₉N₂O⁺ (M+H)⁺ 231.1497, found 231.1498.

1-(Benzyloxy)-2-butylpiperidine-2-carbonitrile (182)

Following the general procedure B using *n*-BuLi (1.67 M in hexane, 0.16 mL, 0.27 mmol), **163** (33.0 mg, 0.160 mmol) was converted to **182** (38.9 mg, 89%): a colorless oil; IR (film) 2957, 2868, 1455, 1365, 1022, 751, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.28 (m, 5H), 4.72 (d, *J* = 11.2 Hz, 1H), 4.69 (d, *J* = 11.2 Hz, 1H), 3.22–3.14 (m, 1H), 2.84 (ddd, *J* = 10.3, 10.3, 2.3 Hz, 1H), 2.12 (ddd, *J* = 13.2, 11.7, 4.9 Hz, 1H), 2.04–1.97 (m, 1H), 1.78–1.18 (m, 10H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.0 (C), 128.9 (CH), 128.4 (CH), 128.1 (CH), 119.1 (C), 75.7 (CH₂), 66.6 (C), 53.2 (CH₂), 37.0 (CH₂), 34.1 (CH₂), 25.9 (CH₂), 25.1 (CH₂), 23.0 (CH₂), 21.0 (CH₂), 14.1 (CH₃); HRMS (ESI), calcd for C₁₇H₂₅N₂O⁺ (M+H)⁺ 273.1967, found 273.1971.

1-(Benzyloxy)-2-(phenylethynyl)piperidine-2-carbonitrile (183)

n-Butyllithium (1.67 M in hexane, 0.18 mL, 0.30 mmol) was added dropwise to a solution of phenylacetylene (33 µL, 0.30 mmol) and THF (0.75 mL, freshly distilled from sodium/benzophenone) at -78 °C. The solution was maintained for 15 min at -78 °C, and was then added to a solution of 163 (30.6 mg, 0.149 mmol) and THF (0.75 mL) via cannula at -78 °C. After the solution was maintained for 20 minutes at -78 °C, MeCN (0.50 mL), TMSCN (32 µL, 0.45 mmol) and SnCl₄ (23 µL, 0.19 mmol) were added to the solution at -78 °C. The resulting mixture was allowed to warm to room temperature, and stirred for 1 day. The reaction mixture was quenched with saturated aqueous NaHCO₃ (3 mL) and extracted with EtOAc/hexane 1:1 (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (hexane to EtOAc/hexane = 1:10) to give 16.1 mg of 183 (34%): a colorless oil; IR (film) 2949, 2935, 2858, 2236, 1491, 1444, 1146, 1022, 756, 692 cm⁻¹; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3, 60 \text{ °C}) \delta 7.47 \text{ (d, } J = 8.0 \text{ Hz}, 2\text{H}), 7.41 \text{ (d, } J = 7.2 \text{ Hz}, 2\text{H}), 7.38-7.25 \text{ (m, 6H)}, 5.09-4.86 \text{ (m, 6H)}$ (m, 2H), 3.30–2.76 (m, 2H), 2.45–2.05 (m, 2H), 1.80–1.55 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, mixture of two rotamers, signals of the major rotamer are reported) & 136.9 (C), 132.0 (CH), 129.3 (C), 129.2 (CH), 129.0 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 121.6 (C), 84.8 (C), 84.0 (C), 76.8 (CH₂), 60.1 (C), 53.1 (CH₂), 37.8 (CH₂), 24.6 (CH₂), 20.2 (CH₂), HRMS (ESI), calcd for C₂₁H₂₁N₂O⁺ (M+H)⁺ 317.1654, found 317.1658.

1-(Benzyloxy)-2-phenylpiperidine-2-carbonitrile (184)

Preparation of PhLi in Et₂O: Bromobenzene (0.32 mL, 3.1 mmol) was added to a mixture of Lithium wire (3.2 mm diam., 42.9 mg, 6.18 mmol) and Et_2O (1.6 mL, freshly distilled from LiAlH₄) at room temperature. The mixture was stirred for 30 min with ultrasound, and then centrifugalized for 40 min. The supernatant of the mixture was used in the next reaction. Concentrations of PhLi in Et_2O was determined as 0.8 M by reported method^[1].

Following the general procedure B using PhLi (0.8 M in Et₂O, 0.28 mL, 0.22 mmol), **163** (30.2 mg, 0.147 mmol) was converted to **184** (31.3 mg, 73%): brown crystals, mp 97.0–98.0 °C; IR (film) 2928, 2853, 1449, 1017, 755, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.79–7.73 (m, 2H), 7.45–7.36 (m, 3H), 7.23–7.17 (m, 3H), 6.95–6.90 (m, 2H), 4.38 (d, *J* = 10.6 Hz, 1H), 4.17 (d, *J* = 10.6 Hz, 1H), 3.35 (ddd, *J* = 11.5, 3.4, 2.3 Hz, 1H), 2.99 (ddd, *J* = 11.5, 11.5, 3.2 Hz, 1H), 2.11–2.01 (m, 2H), 1.88–1.80 (m, 1H), 1.76–1.65 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0 (C), 136.7 (C), 128.8 (CH), 128.7 (CH), 128.5 (CH), 128.2 (CH), 127.9 (CH), 126.9 (CH), 117.6 (C), 75.4 (CH₂), 71.7 (C), 53.7 (CH₂), 39.8 (CH₂), 25.2 (CH₂), 21.4 (CH₂); HRMS (ESI), calcd for C₁₉H₂₁N₂O⁺ (M+H)⁺ 293.1654, found 293.1658.

1-(Benzyloxy)-2-methyl-6-phenylpiperidine-2-carbonitrile (185)

Following the general procedure B using 1.7 equivalent of MeLi, **168** (45.0 mg, 0.16 mmol) was converted to **185** (42.3 mg, 86%): white crystals, mp 124.0–125.0 °C; IR (film) 2945, 2871, 1456, 1241, 1033 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.55–7.45 (m, 2H), 7.41–7.30 (m, 3H), 7.21–7.14 (m, 3H), 6.81–6.74 (m, 2H), 4.38 (d, *J* = 10.0 Hz, 1H), 3.96–3.91 (m, 1H), 3.92 (d, *J* = 10.0 Hz, 1H), 2.11–2.01 (m, 1H), 1.92–1.72 (m, 5H), 1.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.5 (C), 136.0 (C), 129.1 (CH), 129.0 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 119.9 (C), 78.1 (CH₂), 69.3 (CH), 63.8 (C), 37.6 (CH₂), 34.0 (CH₂), 26.1 (CH₃), 21.4 (CH₂); HRMS (ESI), calcd for C₂₀H₂₂N₂NaO⁺ (M+Na)⁺ 329.1630, found 329.1627.

Stereochemical determination of 185

^[1] M. F. Lipton, C. M. Sorensen, A. C. Sadler, J. Organomet. Chem. 1980, 186, 155–158.

[General procedure C: Stereochemical determination of 185]

N-((1-(Benzyloxy)-2-methyl-6-phenylpiperidin-2-yl)methyl)-4-methylbenzenesulfonamide (189)

Lithium aluminium hydride (42.1 mg, 1.11 mmol) was added to a solution of **185** (9.2 mg, 30 μ mol) and Et₂O (3.7 mL) at room temperature. The mixture was stirred for 2 h at room temperature, quenched with saturated aqueous (+)-potassium sodium tartrate (5.0 mL), stirred for 1 h, and extracted with CHCl₃ (3x 5.0 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. A column containing Dowex-50 Wx8 (200–400 mesh, 4.0 g) was charged with the residue. After elution with 1 M aqueous NaOH, the collected solution was extracted with CHCl₃ (3x 10 mL). The combined organic extracts were washed with brine (15 mL), dried over Na₂SO₄, and concentrated to give the amine, which was directly used in the next reaction without further purification.

p-Toluenesulfonyl chloride (21.2 mg, 0.111 mmol) was added to a solution of the crude amine, Et₃N (77 µL, 0.56 mmol) and CH₂Cl₂ (3.7 mL) at room temperature. The solution was maintained for 1 h at room temperature, quenched with H₂O (5.0 mL), and extracted with EtOAc (2x 5.0 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:7 to 1:3) to give 36.4 mg of **189** (9.7 mg, 70% for 2 steps): a colorless oil; IR (film) 3286, 2926, 2872, 2854, 1454, 1326, 1162, 1094, 1071, 700, 551 cm⁻¹; ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.49–7.25 (m, 7H), 7.21–7.12 (m, 3H), 6.77–6.67 (m, 2H), 6.24 (dd, *J* = 6.3, 6.3 Hz, 1H), 4.50–4.22 (m, 1H), 3.96–3.72 (m, 2H), 3.46–3.33 (m, 2H), 2.41 (s, 3H), 2.01–1.25 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 143.2 (C), 142.7 (C), 137.3 (C), 136.1 (C), 129.7 (CH), 129.0 (CH), 128.5 (CH), 128.3 (CH), 128.1 (CH), 127.7 (CH), 127.2 (CH), 78.3 (CH₂), 66.0 (CH), 61.9 (C), 44.5 (CH₂), 37.5 (CH₂), 34.8 (CH₂), 25.9 (CH₃), 21.7 (CH₃), 19.7 (CH₂); HRMS (ESI), calcd for C₂₇H₃₃N₂O₃S⁺ (M+H)⁺ 465.2212, found 465.2209.

NOE experiment for 189

Following the general procedure B using *n*-BuLi (1.59 M in hexane, 0.13 mL, 0.21 mmol), **168** (45.0 mg, 0.16 mmol) was converted to **186** (34.7 mg, 62%): a colorless oil; IR (film) 2958, 2872, 1699, 1456, 761, 698, 669 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.56–7.44 (m, 2H), 7.40–7.29 (m, 3H), 7.21–7.13 (m, 3H), 6.80–6.72 (m, 2H), 4.35 (d, *J* = 10.0 Hz, 1H), 3.97 (dd, *J* = 9.7, 5.2 Hz, 1H), 3.87 (d, *J* = 10.0 Hz, 1H), 2.25–2.07 (m, 2H), 1.92–1.70 (m, 6H), 1.59–1.47 (m, 2H), 1.43–1.35 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.7 (C), 136.0 (C), 128.7 (CH), 128.7 (CH), 128.3 (CH), 128.2 (CH), 127.92 (CH), 127.90 (CH), 119.5 (C), 77.8 (CH₂), 69.4 (CH), 68.1 (C), 37.4 (CH₂), 34.1 (CH₂), 33.9 (CH₂), 26.0 (CH₂), 23.1 (CH₂), 21.2 (CH₂), 14.1 (CH₃); HRMS (ESI), calcd for C₂₃H₂₉N₂O⁺ (M+H)⁺ 349.2280, found 349.2285.

Stereochemical determination of 186

N-((1-(Benzyloxy)-2-butyl-6-phenylpiperidin-2-yl)methyl)-4-methylbenzenesulfonamide (186)

Following the general procedure C, **186** (21.3 mg, 61.1 µmol) was converted to **288** (23.1 mg, 75% for 2 steps): a colorless oil; IR (film) 3293, 2952, 2871, 1454, 1329, 1162, 699, 548 cm⁻¹; ¹H NMR (500 MHz, (CD₃)₂CO) δ 7.70–7.63 (m, 2H), 7.45–7.27 (m, 7H), 7.22–7.16 (m, 3H), 6.76–6.68 (m, 2H), 6.15–6.08 (m 1H), 4.35–4.26 (m, 1H), 3.88–3.80 (m, 1H), 3.80–3.72 (m, 1H), 3.40 (dd, *J* = 12.9, 4.3 Hz, 1H), 3.35–3.26 (m, 1H), 2.43 (s, 3H), 1.86–1.27 (m, 12H), 0.94 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.1 (C), 143.0 (C), 137.1 (C), 136.0 (C), 129.7 (CH), 129.0 (CH), 129.0 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.6 (CH), 127.3 (CH), 78.1 (CH₂), 66.2 (CH), 64.0 (C), 44.0 (CH₂), 36.6 (CH₂), 34.9 (CH₂), 34.3 (CH₂), 25.1 (CH₂), 23.6 (CH₂), 21.7 (CH₃), 19.4 (CH₂), 14.3 (CH₃); HRMS (ESI), calcd for C₃₀H₃₉N₂O₃S⁺ (M+H)⁺ 507.2681, found 507.2683.

NOESY experiment for 288

1-(Benzyloxy)-2-methyl-5-phenylpyrrolidine-2-carbonitrile (187)

Following the general procedure B using 1.7 equivalent of MeLi, 173 (42.8 mg, 0.160 mmol) was converted to 187 (39.2 mg, 84%, dr = 1.3:1). For analytical samples, the diastereometric mixture was purified by HPLC (PEGASIL Silica 120-5. 250x20 mm, EtOAc/hexane 1/14, major product: $T_R = 16.0$ min, minor product: $T_R = 18.0$ min) to afford pure products: major product: a colorless oil; IR (film) 2923, 2877, 2854, 2240, 1454, 1376, 1028, 750, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.49–7.44 (m, 2H), 7.40–7.30 (m, 3H), 7.25-7.20 (m, 3H), 7.05-7.00 (m, 2H), 4.77 (d, J = 10.0 Hz, 1H), 4.37 (d, J = 10.0 Hz, 1H), 4.07 (dd, J = 8.9, 10.0 Hz, 10.0 Hz8.9 Hz, 1H), 2.57 (ddd, J = 12.9, 10.6, 5.7 Hz, 1H), 2.20 (dddd, J = 12.9, 9.5, 8.9, 5.7 Hz, 1H), 2.05 (ddd, J = 12.9, 9.5, 5.7 Hz, 1H), 1.91 (dddd, J = 12.9, 10.6, 8.9, 5.7 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.1 (C), 136.4 (C), 129.1 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 123.4 (C), 77.8 (CH₂), 67.6 (CH), 60.3 (C), 34.7 (CH₂), 28.5 (CH₂), 19.3 (CH₃); HRMS (ESI), calcd for C₁₉H₂₁N₂O⁺ (M+H)⁺ 293.1654, found 293.1650.; **minor product**: a colorless oil; IR (film) 2924, 2853, 1455, 1368, 1026, 753, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.5 Hz, 2H), 7.42–7.29 (m, 3H), 7.25–7.19 (m, 3H), $7.09-7.02 \text{ (m, 2H)}, 4.43 \text{ (d, } J = 10.6 \text{ Hz}, 1\text{H}), 4.28 \text{ (d, } J = 10.6 \text{ Hz}, 1\text{H}), 4.30-4.23 \text{ (m, 1H)}, 2.44-2.25 \text{ (m, 2H)}, 2.44-2.25 \text$ 2H), 2.03–1.94 (m, 1H), 1.89–1.80 (m, 1H), 1.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.4 (C), 136.8 (C), 128.9 (CH), 128.6 (CH), 128.33 (CH), 128.25 (CH), 128.07 (CH), 128.05 (CH), 120.5 (C), 77.8 (CH₂), 69.5 (CH), 64.3 (C), 33.7 (CH₂), 28.1 (CH₂), 23.7 (CH₃); HRMS (ESI), calcd for C₁₉H₂₁N₂O⁺ (M+H)⁺ 293.1654, found 293.1655.

NOE experiment for 187 (major)

187 (major) (CDCl₃, 500 MHz)

Unsaturated ester (219)

9-Borabicyclo[3.3.1]nonane (0.5 M solution in THF, 23 mL, 12 mmol) was added to a solution of (allyloxy)triisopropylsilane^[2] (1.62 g, 7.56 mmol) and THF (3.8 mL) at 0 °C. The solution was allowed to warm to room temperature, maintained for 1 h at room temperature, and quenched with H₂O (1.6 mL, 91 mmol). This solution was added to a mixture of Cs₂CO₃ (4.93 g, 15.1 mmol), PdCl₂(dppf)·CH₂Cl₂ (247 mg, 302 µmol). A solution of tosylate 218^[3] (3.02 g, 7.56 mmol), H₂O (1.9 mL) and THF (19 mL) was then added to the resulting mixture. The mixture was allowed to warm to 60 °C, and stirred for 1 h. After cooling to 0 °C, the mixture was quenched with NaBO₃·4H₂O (3.49 g, 22.7 mmol) and H₂O (19 mL) at 0 °C, stirred for 1 h at room temperature, and extracted with EtOAc (2x 20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:9 to 1:4) to give unsaturated ethyl ester 219 (2.77 g, 83%): a colorless oil; IR (film) 3368, 2943, 2867, 1719, 1517, 1463, 1367, 1247, 1178, 1105, 882, 681 cm⁻¹; ¹H NMR (500 MHz. $CDCl_{3}$, 60 °C) δ 5.77 (s, 1H), 4.67 (brs, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.83 (d, J = 5.7 Hz, 2H), 3.75 (t, J = 6.3Hz, 2H), 2.65 (t, J = 7.9 Hz, 2H), 1.75 (tt, J = 7.9, 6.3 Hz, 2H), 1.46 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H), 1.14–1.05 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3 (C), 159.8 (C), 155.8 (C), 114.7 (CH), 79.9 (C), 63.4 (CH₂), 59.8 (CH₂), 46.3 (CH₂), 32.1 (CH₂), 28.5 (CH₃), 27.4 (CH₂), 18.1 (CH₃), 14.4 (CH₃), 12.1 (CH); HRMS (ESI), calcd for $C_{23}H_{45}NO_5SiNa^+$ (M+Na)⁺ 466.2965, found 466.2962.

^[2] Iwasaki, M.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. **2007**, *129*, 4463–4469.

^[3] Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies, I. W. Org. Lett. 2005, 7, 215–218.

Allylic alcohol (229)

Boron trifluoride diethylether complex (3.0 mL, 25 mmol) was added to a solution of unsaturated ethyl ester **219** (9.99 g, 22.5 mmol) and CH₂Cl₂ (45 mL) at -78 °C. After maintaining for 30 min at -78 °C, diisobutylalminium hydride (1.0 M in hexane, 68 mL, 68 mmol) was added dropwise to the solution. This solution was quenched with saturated aqueous (+)-potassium sodium tartrate (50 mL), allowed to warm to room temperature, stirred for 3 h at room temperature, and extracted with EtOAc (3x 50 mL). The combined organic extracts were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/4) to give allylic alcohol **229** (8.50 g, 94%): a colorless oil; IR (film) 3350, 2942, 2866, 1696, 1514, 1463, 1271, 1172, 1106, 882, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.62 (t, *J* = 6.9 Hz, 1H), 4.61 (brs, 1H), 4.17 (d, *J* = 6.9 Hz, 2H), 3.71 (d, *J* = 5.2 Hz, 2H), 3.68 (t, *J* = 5.7 Hz, 2H), 2.22 (t, *J* = 7.5 Hz, 2H), 1.65 (tt, *J* = 7.5, 5.7 Hz, 2H), 1.44 (s, 9H), 1.14–1.02 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0 (C), 140.0 (C), 125.2 (CH), 79.5 (C), 62.4 (CH₂), 58.6 (CH₂), 45.5 (CH₂), 31.5 (CH₂), 28.5 (CH₃), 25.0 (CH₂), 18.1 (CH₃), 12.1 (CH); HRMS (ESI), calcd for C₂₁H₄₃NO₄SiNa⁺ (M+Na)⁺ 424.2859, found 424.2861.

Allylic acetate (229)

Acetic anhydride (5.8 mL, 61 mmol) was added to a solution of allyic alcohol **220** (12.3 mg, 30.6 mmol), pyridine (5.0 mL, 61 mmol), *N*,*N*-dimethyl-4-aminopyridine (374 mg, 3.06 mmol) and CH₂Cl₂ (102 mL) at 0 °C. This solution was allowed to warm to room temperature, maintained for 1 h at room temperature, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/6) to give allylic acetate **229** (13.5 g, 99%): a colorless oil; IR (film) 3367, 2943, 2867, 1742, 1719, 1510, 1463, 1367, 1235, 1171, 1106, 882, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.49 (t, *J* = 6.9 Hz, 1H), 4.64 (d, *J* = 6.9 Hz, 2H), 4.53 (brs, 1H), 3.73 (d, *J* = 5.7 Hz, 2H), 3.70 (t, *J* = 6.1 Hz, 2H), 2.21 (t, *J* = 7.8 Hz, 2H), 2.04 (s, 3H), 1.65 (tt, *J* = 7.8, 6.1 Hz, 2H), 1.46 (s, 9H), 1.14–1.05 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 171.0 (C), 155.9 (C), 142.8 (C), 119.6 (CH), 79.5 (C), 62.8 (CH₂), 60.8 (CH₂), 45.6 (CH₂), 32.0 (CH₂), 28.5 (CH₃), 25.6 (CH₂), 21.1 (CH₃), 18.1 (CH₃), 12.1 (CH); HRMS (ESI), calcd for C₂₃H₄₅NO₅SiNa⁺ (M+Na)⁺ 466.2965, found 466.2965.

Allylic alcohol (228)

Sodium hydride (2.3 g, 61 mmol) was added to a solution of allylic acetate **229** (9.00 g, 20.3 mmol), allyl bromide (2.1 mL, 24 mmol), tetrabutylammonium iodide (750 mg, 2.03 mmol) and DMF (100 mL) at 0 °C. After maintaining for 2 h at this temperature, methanol (51 mL) was added to the solution. This solution was maintained at 0 °C for 30 min, quenched with saturated aqueous NH₄Cl (80 mL), and extracted with EtOAc/hexane = 1/3 (3x 80 mL). The combined organic extracts were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/9) to give allylic alcohol **228** (7.62 g, 85%): a colorless oil; IR (film) 3435, 2943, 2866, 1698, 1460, 1411, 1247, 1171, 1106, 882, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.77 (ddt, *J* = 16.9, 10.3, 5.8 Hz, 1H), 5.50 (t, *J* = 6.9 Hz, 1H), 5.12 (dt, *J* = 10.3, 1.2, 1.2 Hz, 1H), 5.09 (dt, *J* = 16.9, 1.2, 1.2 Hz, 1H), 4.21 (d, *J* = 6.9 Hz, 2H), 3.81 (brs, 2H), 3.77 (brs, 2H), 3.69 (t, *J* = 6.0 Hz, 2H), 2.16 (t, *J* = 7.2 Hz, 2H), 1.70–1.62 (m, 2H), 1.46 (s, 9H), 1.15–1.05 (m, 21H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 155.7 (C), 138.6 (C), 134.0 (CH), 126.3 (CH), 116.5 (CH₂), 79.8 (C), 62.9 (CH₂), 58.9 (CH₂), 51.1 (CH₂), 48.7 (CH₂), 31.9 (CH₂), 28.5 (CH₃), 25.0 (CH₂), 18.1 (CH₃), 12.3 (CH); HRMS (ESI), calcd for C₂₄H₄₇NO₄SiNa⁺ (M+Na)⁺ 464.3172, found 464.3167.

Methyl ester (230)

A sealed tube was charged with allylic alcohol **228** (2.22 g, 5.03 mmol), pivalic acid (51.1 mg, 0.503 mmol), trimethyl orthoacetate (3.2 mL, 25 mmol) and *o*-xylene (50 mL). The solution was heated to 160 °C, and maintained for 8 h at this temperature. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/29 to 1/7) to give methyl ester **230** (2.04 g, 81%): a colorless oil; IR (film) 2944, 2866, 1739, 1699, 1462, 1405, 1248, 1171, 1104, 883, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.87 (dd, *J* = 17.8, 11.2 Hz, 1H), 5.75 (ddt, *J* = 17.2, 10.3, 5.2 Hz, 1H), 5.12–5.03 (m, 2H), 5.09 (d, *J* = 11.2 Hz, 1H), 4.98 (d, *J* = 17.8 Hz, 1H), 3.92–3.80 (m, 2H), 3.67 (t, *J* = 6.3 Hz, 2H), 3.64 (s, 3H), 3.45 (d, *J* = 14.6 Hz, 1H), 3.34 (d, *J* = 14.6 Hz, 1H), 2.49 (d, *J* = 15.2 Hz, 1H), 2.45 (d, *J* = 15.2 Hz, 1H), 1.70–1.62 (m, 2H), 1.62–1.50 (m, 2H), 1.45 (s, 9H), 1.13–1.04 (m, 21H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 172.3 (C), 172.3 (C), 156.7 (C), 156.4 (C), 143.8 (CH), 143.8 (CH), 134.2 (CH), 133.8 (CH), 116.0 (CH₂), 115.8 (CH₂), 113.4 (CH₂), 113.4 (CH₂), 80.1 (C), 79.5 (C), 63.9 (CH₂), 53.6 (CH₂), 53.6 (CH₂), 51.9 (CH₂), 51.9 (CH₂), 51.3 (CH₃), 51.3 (CH₃),

44.2 (C), 44.2 (C), 38.0 (CH₂), 38.0 (CH₂), 31.5 (CH₂), 31.5 (CH₂), 28.4 (CH₃), 28.4 (CH₃), 27.4 (CH₂), 27.4 (CH₂), 18.1 (CH₃), 18.1 (CH₃), 12.1 (CH), 12.1 (CH); HRMS (ESI), calcd for C₂₇H₅₁NO₅SiNa⁺ (M+Na)⁺ 520.3434, found 520.3428.

Primary amide (235)

Sodium methoxide (543 mg, 5.03 mmol) was added to a solution of methyl ester **230** (1.00 g, 2.01 mmol), formamide (1.2 mL, 30 mmol) and DMF (4.0 mL) at room temperature. The solution was heated to 100 °C, and maintained for 19 h. After cooling to 0 °C, the solution was quenched with saturated aqueous NH₄Cl (10 mL), and extracted with EtOAc (3x 20 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/5) to give primary amide **235** (774 mg, 80%): a colorless oil; IR (film) 3344, 3192, 3082, 2943, 2866, 1675, 1464, 1406, 1249, 1163, 1102, 915, 882, 680 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.67 (brs, 1H), 5.84 (dd, *J* = 17.8, 11.2 Hz, 1H), 5.73 (ddt, *J* = 17.2, 10.3, 5.5 Hz, 1H), 5.26 (brs, 1H), 5.15 (d, *J* = 11.2 Hz, 1H), 5.11 (d, *J* = 10.3 Hz, 1H), 5.05 (d, *J* = 17.2 Hz, 1H), 5.01 (d, *J* = 17.8 Hz, 1H), 3.91 (dd, *J* = 16.4, 5.5 Hz, 1H), 3.80–3.68 (m, 1H), 3.67–3.56 (m, 2H), 3.12 (d, *J* = 12.6 Hz, 1H), 2.41 (d, *J* = 13.8 Hz, 1H), 2.33 (d, *J* = 13.8 Hz, 1H), 1.77–1.65 (m, 1H), 1.62–1.49 (m, 3H), 1.45 (s, 9H), 1.13–1.03 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8 (C), 157.8 (C), 143.8 (CH), 133.7 (CH), 116.2 (CH₂), 114.3 (CH₂), 80.5 (C), 63.8 (CH₂), 53.5 (CH₂), 52.5 (CH₂), 44.1 (C), 40.0 (CH₂), 32.9 (CH₂), 28.4 (CH₃), 27.4 (CH₂), 18.2 (CH₃), 12.1 (CH); HRMS (ESI), calcd for C₂₆H₅₁N₂O₄Si⁺ (M+H)⁺ 483.3618, found 483.3614.

2-(Trimethylsilyl)ethyl carbamate (236)

(Diacetoxyiodo)benzene (4.28 g, 13.3 mmol) was added to a solution of primary amide **235** (5.83 g, 12.1 mmol), 2-trimethylsilyl ethanol (8.7 mL, 60 mmol) and $(CH_2Cl)_2$ (120 mL) at room temperature. The solution was heated to 60 °C, and maintained for 12 h at 60 °C. After cooling to room temperature, the solution was quenched with saturated aqueous NaHCO₃ (50 mL), and extracted with CH_2Cl_2 (3x 30 mL). The combined organic extracts were washed with brine (50 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/44 to 1/34) to give 2-(trimethylsilyl)ethyl carbamate **236** (6.14 g, 85%): a colorless oil; IR (film) 3368, 2945, 2866, 1723, 1684, 1517, 1464, 1411, 1250,

1159, 1103, 883, 837, 682 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 6.26 (brs, 1H), 5.77–5.67 (m, 1H), 5.72 (dd, J = 18.1, 11.2 Hz, 1H), 5.15 (d, J = 11.2 Hz, 1H), 5.10 (ddt, J = 10.4, 1.2, 1.2 Hz, 1H), 5.05 (ddt, J = 17.2, 1.4, 1.4 Hz, 1H), 5.02 (d, J = 18.1 Hz, 1H), 4.14 (t, J = 7.7 Hz, 2H), 3.90–3.80 (m, 1H), 3.76 (dddd, J = 16.1, 5.2, 1.4, 1.2 Hz, 1H), 3.69 (dt, J = 9.8, 5.5 Hz, 1H), 3.62 (dt, J = 9.8, 5.8 Hz, 1H), 3.36 (d, J = 14.9 Hz, 1H), 3.29 (dd, J = 13.8, 7.2 Hz, 1H), 3.16–3.03 (m, 1H), 3.07 (d, J = 14.9 Hz, 1H), 1.68–1.31 (m, 4H), 1.45 (s, 9H), 1.12–1.03 (m, 21H), 0.98 (t, J = 7.7 Hz, 2H), 0.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.4 (C), 157.4 (C), 142.6 (CH), 133.7 (CH), 116.1 (CH₂), 114.8 (CH₂), 80.3 (C), 63.9 (CH₂), 62.6 (CH₂), 51.9 (CH₂), 51.8 (CH₂), 45.5 (C), 42.5 (CH₂), 30.6 (CH₂), 28.4 (CH₃), 27.1 (CH₂), 18.2 (CH₃), 17.8 (CH₂), 12.1 (CH), -1.3 (CH₃); HRMS (ESI), calcd for C₃₁H₆₃N₂O₅Si₂⁺ (M+H)⁺ 599.4276, found 599.4269.

Tetrahydropyridine (237)

A solution of 2-(trimethylsilyl)ethyl carbamate 236 (7.26 g, 12.1 mmol) and CH₂Cl₂ (242 mL) was heated to reflux, and maintained for 2 h at that temperature for deoxygenation. The Grubbs 1st generation catalyst (249 mg, 0.303 mmol) was then added to the solution at 40 °C, maintained for 3 h at 40 °C, and cooled to room temperature. This solution was quenched with a solution of potassium 2-isocyanoacetate^[4] (376 mg, 3.03 mmol) and MeOH (10 mL) at room temperature, maintained for 1 h, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/9 to 1/5) to give tetrahydropyridine 237 (5.76 g, 97%): a colorless oil; IR (film) 3350, 2945, 2866, 1724, 1701, 1518, 1425, 1249, 1104, 860, 837, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.72 (d, J = 10.1 Hz, 1H), 5.58 (d, J = 10.1 Hz, 1H), 4.92 (m, 1H), 4.14 (t, J = 8.3 Hz, 2H), 4.00 (d, J = 18.3 Hz, 1H), 3.74 (d, J = 18.3 Hz, 1H), 3.67 (dt, J = 9.8, 6.3 Hz, 1H), 3.64 (dt, J = 18.3 Hz, 1H), 3.64 (d J = 9.8, 6.3 Hz, 1H), 3.55 (brs, 1H), 3.27 (dd, J = 13.8, 7.8 Hz, 1H), 3.08 (m, 1H), 3.02–2.92 (m, 1H), 1.64–1.45 (m, 2H), 1.48 (s, 9H), 1.45–1.39 (m, 2H), 1.14–1.01 (m, 21H), 0.98 (t, J = 8.3 Hz, 2H), 0.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 157.1 (C), 157.1 (C), 155.4 (C), 154.7 (C), 131.7 (CH), 131.0 (CH), 126.0 (CH), 125.3 (CH), 80.2 (C), 80.0 (C), 63.9 (CH₂), 63.9 (CH₂), 63.1 (CH₂), 62.9 (CH₂), 47.5 (CH₂), 46.4 (CH₂), 46.2 (CH₂), 46.2 (CH₂), 44.1 (CH₂), 43.1 (CH₂), 40.1 (C), 40.1 (C), 31.3 (CH₂), 31.2 (CH₂), 28.5 (CH₃), 28.5 (CH₃), 27.3 (CH₂), 27.3 (CH₂), 18.2 (CH₃), 18.2 (CH₃), 17.8 (CH₂), 17.8 (CH₂), 12.1 (CH), 12.1 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for C₂₉H₅₉N₂O₅Si₂⁺ (M+H)⁺ 571.3963, found 571.3991.

^[4] Galan, B. R.; Kalbarczyk, K. P.;Szczepankiewicz, S.;Keister, J. B.; Diver, S. T. Org. Lett. 2007, 9, 1203–1206.

Eneyne (241)

Sodium hydride (580 mg, 15 mmol) was added to a solution of tetrahydropyridine 237 (5.76 g, 10.1 mmol), propargyl bromide (1.1 mL, 15 mmol), tetrabutylammonium iodide (373 mg, 1.01 mmol) and DMF (100 mL) at 0 °C. This solution was maintained at this temperature for 4 h, quenched with saturated aqueous NH₄Cl (50 mL), and extracted with EtOAc/hexane = 1/3 (3x 50 mL). The combined organic extracts were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/29 to 1/12) to give 5.67 g of eneyne 241 (92%): a colorless oil; IR (film) 3313, 2945, 2866, 1702, 1418, 1249, 1175, 1147, 1105, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.74-5.66 (m, 1H), 5.63 (d, J = 10.6 Hz, 1H), 4.20 (t, J = 8.6 Hz, 2H), 4.10 (brs, 2H), 3.92-3.78 (m, 2H), 3.65(t, J = 6.0 Hz, 2H), 3.48-3.36 (m, 1H), 3.43 (d, J = 14.9 Hz, 1H), 3.39 (d, J = 14.9 Hz, 1H), 3.33-3.24 (m, 1H), 3.33-32.17 (brs, 1H), 1.64–1.42 (m, 4H), 1.48 (s, 9H), 1.14–1.00 (m, 23H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) & 157.1 (C), 157.1 (C), 155.3 (C), 155.2 (C), 132.3 (CH), 131.9 (CH), 125.1 (CH), 124.6 (CH), 80.2–79.2 (C x4), 72.2–71.3 (CH x2), 64.3 (CH₂), 64.3 (CH₂), 63.9 (CH₂), 63.9 (CH₂), 52.8 (CH₂), 52.1 (CH₂), 48.0 (CH₂), 46.8 (CH₂), 43.7 (CH₂), 42.9 (CH₂), 41.2–40.4 (C x2), 38.4 (CH₂), 38.4 (CH₂), 32.8 (CH₂), 32.5 (CH₂), 28.6 (CH₃), 28.6, (CH₃), 27.4 (CH₂), 27.4 (CH₂), 18.2 (CH₃), 18.2 (CH₃), 17.9 (CH₂), 17.8 (CH₂), 12.1 (CH), 12.1 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for $C_{32}H_{61}N_2O_5Si_2^+$ (M+H)⁺ 609.4119, found 609.4130.

Exo-olefin (239)

Tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate (1.0 mg, 23.3 µmol) was added to a solution of eneyne **241** (10.7 mg, 17.6 µmol) in acetone (4.7 mL). The solution was maintained for 6 h, concentrated and the residue was purified by silica gel column chromatography (EtOAc/hexane 1/9) to give exo-olefin **239** (11.6 mg, 82%): a colorless oil; IR (film) 2944, 2866, 1707, 1464, 1432, 1367, 1250, 1168, 1108, 860, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.03–6.67 (m, 1H), 5.01 (brs, 1H), 4.85 (brs, 1H), 4.77–4.49 (m, 1H), 4.23–4.03 (m, 3H), 3.81–3.32 (m, 3H), 3.65 (ddd, *J* = 15.5, 9.5, 5.8 Hz, 1H), 3.64 (ddd, *J* = 15.5, 9.5, 5.8 Hz, 1H), 3.17 (d, *J* = 12.9 Hz, 1H), 3.10 (brs, 1H), 2.65 (brs, 1H), 1.64–1.33 (m, 4H), 1.49 (s, 9H), 1.13–0.97 (m, 23H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 155.9 (C), 152.7 (C), 143.9 (C), 126.0 (CH), 113.4 (CH₂), 105.6 (CH), 81.2 (C), 64.0 (CH₂), 63.7 (CH₂), 48.4 (CH₂), 47.5–46.0 (CH₂ x2), 44.8 (CH), 35.9

(C), 31.7 (CH₂), 28.5 (CH₃), 26.9 (CH₂), 18.21 (CH₃), 18.16 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI), calcd for $C_{32}H_{61}N_2O_5Si_2^+$ (M+H)⁺ 609.4119, found 609.4117.

Methyl ynoate (254)

A flask containing PdCl₂ (7.8 mg, 44 µmol), CuCl₂ (739 mg, 5.50 mmol), NaOAc (542 mg, 6.60 mmol) and MeOH (10 mL) was fitted with a septa and a balloon of carbon monoxide gas. A solution of eneyne 241 (1.34 g, 2.20 mmol) and MeOH (10 mL) was added to the mixture via cannula at 0 °C. This mixture was stirred at 0 °C for 12 h, quenched with saturated aqueous NH₄Cl/NH₄OH = 9/1 (10 mL), and extracted with EtOAc/hexane = 1/4 (3x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/29 to 1/19) to give 1.17 g of methyl vnoate **254** (80%): a colorless oil; IR (film) 2945, 2866, 2239, 1702, 1462, 1423, 1250, 1175, 1104, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.76–5.69 (m, 1H), 5.60 (d, J =10.0 Hz, 1H), 4.28-4.17 (m, 4H), 3.94-3.86 (m, 1H), 3.84-3.76 (m, 1H), 3.75 (s, 3H), 3.65 (t, J = 6.0 Hz, 2H), 3.56-3.32 (m, 1H), 3.42 (d, J = 14.3 Hz, 1H), 3.35 (d, J = 14.3 Hz, 1H), 3.24 (brs, 1H), 1.62-1.45 (m, 4H), 1.48 (s, 9H), 1.13–1.00 (m, 23H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 156.9 (C), 156.9 (C), 155.4 (C), 155.2 (C), 153.8 (C), 153.8 (C), 132.1 (CH), 131.7 (CH), 125.6 (CH), 125.2 (CH), 84.3 (C), 83.8 (C), 80.1 (C), 80.1 (C), 64.7 (CH₂), 64.7 (CH₂), 63.9 (CH₂), 63.9 (CH₂), 52.8 (CH₃), 52.8 (CH₃), 52.7 (CH₂), 52.7 (CH₂), 48.0 (CH₂), 46.7 (CH₂), 43.7 (CH₂), 43.0 (CH₂), 40.9 (C), 40.6 (C), 38.6 (CH₂), 38.5 (CH₂), 32.9 (CH₂), 32.1 (CH₂), 28.6 (CH₃), 28.6 (CH₃), 27.4 (CH₂), 27.4 (CH₂), 18.2 (CH₃), 18.2 (CH₃), 18.0 (CH₂), 17.9 (CH₂), 12.1 (CH), 12.1 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for C₃₄H₆₃N₂O₇Si₂⁺ $(M+H)^+$ 667.4174, found 667.4173.

Unsaturated methyl ester (255)

Tris(dibenzylidenacetone)dipalladium chloroform adduct (11.0 mg, 10.4 μ mol) was added to a solution of methyl ynoate **254** (348 mg, 0.522 mmol), HCO₂H (99 μ L, 2.6 mmol) and PhMe/MeCN = 49 (52 mL). The solution was heated to 60 °C, maintained for 1 h, quenched with saturated aqueous NaHCO₃ (20 mL) at room temperature, and extracted with EtOAc (3x 20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography

(EtOAc/hexane 1/19) to give unsaturated methyl ester **255** (293 mg, 84%): a colorless oil; IR (film) 2947, 2866, 1708, 1649, 1369, 1249, 1167, 1107, 858, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.07–6.77 (m, 1H), 5.75 (s, 1H), 5.01 (brs, 1H), 4.56 (brs, 1H), 4.40–4.11 (m, 1H), 4.18 (t, *J* = 8.6 Hz, 2H), 3.84–3.56 (m, 4H), 3.72 (s, 3H), 3.30 (d, *J* = 9.7 Hz, 1H), 2.87 (d, *J* = 13.8 Hz, 1H), 2.66 (brs, 1H), 1.68–1.36 (m, 4H), 1.50 (s, 9H), 1.12–0.99 (m, 23H), 0.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 166.1 (C), 166.1 (C), 156.6 (C), 156.4 (C), 155.9 (C), 155.9 (C), 152.7 (C), 152.2 (C), 127.0 (CH), 126.8 (CH), 118.4 (CH), 118.0 (CH), 103.3 (CH), 103.3 (CH), 81.5 (C), 81.5 (C), 63.9 (CH₂), 63.9 (CH₂), 63.7 (CH₂), 63.7 (CH₂), 51.4 (CH₃), 51.4 (CH₃), 46.7 (CH₂), 46.3 (CH₂), 46.0 (CH), 45.6 (CH), 44.4 (CH₂), 44.2 (CH₂), 37.4 (C), 37.2 (C), 32.0 (CH₂), 31.7 (CH₂), 29.8 (CH₂), 29.8 (CH₂), 28.3 (CH₃), 28.3 (CH₃), 26.7 (CH₂), 26.7 (CH₂), 18.1 (CH₃), 18.1 (CH₃), 18.0 (CH₂), 17.9 (CH₂), 12.0 (CH), 12.0 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for C₃₄H₆₂N₂O₇Si₂Na⁺ (M+Na)⁺ 689.3993, found 689.3984.

Methyl ester (256)

Copper (I) chloride (15.0 mg, 0.156 mmol) and NaBH₄ (5.9 mg, 0.16 mmol) were added to a solution of unsaturated methyl ester 255 (104 mg, 0.156 mmol) and EtOH (1.6 mL) at -20 °C. Copper (I) chloride (15.0 mg, 0.156 mmol) and NaBH₄ (5.9 mg, 0.16 mmol) were added to the mixture every 15 min until TLC analysis indicated the complete consumption of unsaturated methyl ester 255 (total: CuCl 8.0 equiv., NaBH₄ 8.0 equiv.). The mixture was quenched with saturated aqueous NH₄Cl (1.0 mL), and extracted with EtOAc (3x 5 mL). The combined organic extracts were washed with brine (5 mL), dried over Na_2SO_4 , and concentrated. The residue was filtered through a pad of silica gel (EtOAc/hexane 1/19). Two diastereomers were then separated by MPLC (Yamazen Ultra Pack Column D, 50×300 mm, EtOAc/hexane 9:91 to 30:70, 45 mL/min, **256**: major: $T_R = 38.0 \text{ min}$, **256**: minor: $T_R = 42.0 \text{ min}$) to afford methyl esters **256**: major (88.0 mg, 85%) and **256**: minor (6.8 mg, 7%). **256**: major: a colorless oil; IR (film) 2946, 2865, 1742, 1703, 1652, 1436, 1367, 1250, 1168, 1110 cm⁻¹; ¹H NMR (500 MHz, C₆D₆, 79 °C) δ 7.20–6.90 (m, 1H), 4.43 (dd, J = 8.9, 1.7 Hz, 1H), 4.29 (t, J = 8.3 Hz, 2H), 4.12–3.96 (m, 1H), 3.94–3.72 (m, 1H), 3.63–3.54 (m, 2H), 3.38 (s, 3H), 2.91 (d, J = 13.2 Hz, 1H), 2.87 (d, J = 13.5 Hz, 1H), 2.52–2.40 (m, 2H), 2.23 (brs, 1H), 2.06 (dd, J = 15.8, 6.9 Hz, 1H), 2.01 (dd, J = 15.8, 6.9 Hz, 1H), 1.65–1.49 (m, 4H), 1.42 (s, 9H), 1.17–1.05 (m, 21H), 1.02–0.95 (m, 2H), -0.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 172.4 (C), 172.2 (C), 156.0 (C), 156.0 (C), 152.9 (C), 152.4 (C), 127.0 (CH), 126.8 (CH), 101.8 (CH), 101.4 (CH), 81.3 (C), 81.3 (C), 63.8 (CH₂), 63.7 (CH₂), 63.7 (CH₂), 63.6 (CH₂), 51.9 (CH₃), 51.9 (CH₃), 48.9 (CH₂), 47.9 (CH₂), 45.5 (CH₂), 45.1 (CH₂), 44.2 (CH₂), 43.9 (CH₂), 38.2 (CH), 37.5 (CH), 35.2 (CH₂), 35.0 (CH₂), 34.0 (C), 34.0 (C), 31.7 (CH), 31.4 (CH), 30.7 (CH₂), 30.5 (CH₂), 28.4 (CH₃), 28.4 (CH₃), 26.4 (CH₂), 26.4 (CH₂), 18.2 (CH₃), 18.2 (CH₃), 17.9

(CH₂), 17.9 (CH₂), 12.1 (CH), 12.1 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for C₃₄H₆₄N₂O₇Si₂Na⁺ (M+Na)⁺ 691.4150, found 691.4172.; **256**: minor: a colorless oil; IR (film) 2947, 2866, 1741, 1705, 1649, 1369, 1249, 1173, 1136, 1110 cm⁻¹; ¹H NMR (500 MHz, C₆D₆, 79 °C) δ 7.20–6.85 (m, 1H), 4.67 (dd, J = 8.0, 5.4 Hz, 1H), 4.41–4.33 (m, 1H), 4.31 (td, J = 10.9, 7.5 Hz, 1H), 4.26 (td, J = 10.9, 7.5 Hz, 1H), 4.13 (d, J = 13.8 Hz, 1H), 4.00–3.75 (m, 1H), 3.61–3.52 (m, 2H), 3.37 (s, 3H), 3.28 (d, J = 13.5 Hz, 1H), 2.71 (d, J = 13.8 Hz, 1H), 2.45 (dd, J = 13.2, 11.2 Hz, 1H), 2.30 (dd, J = 14.6, 3.4 Hz, 1H), 2.02–1.88 (m, 2H), 1.62–1.46 (m, 2H), 1.44–1.38 (m, 1H), 1.42 (s, 9H), 1.36–1.17 (m, 2H), 1.15–1.03 (m, 21H), 1.01–0.95 (m, 2H), -0.03 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 172.6 (C), 172.6 (C), 155.6 (C), 155.6 (C), 153.0 (C), 152.4 (C), 125.4 (CH), 125.0 (CH), 104.2 (CH), 103.7 (CH), 81.1 (C), 81.1 (C), 63.8 (CH₂), 63.8 (CH₂), 63.7 (CH₂), 63.7 (CH₂), 51.8 (CH₃), 51.8 (CH₃), 50.5 (CH₂), 56.0 (CH₂), 34.4 (C), 34.3 (C), 32.1 (CH₂), 32.1 (CH₂), 28.4 (CH₃), 28.4 (CH₃), 26.8 (CH₂), 26.7 (CH₂), 18.1 (CH₃), 18.1 (CH₃), 17.9 (CH₂), 17.9 (CH₂), 12.0 (CH), 12.0 (CH), -1.3 (CH₃), -1.3 (CH₃); HRMS (ESI), calcd for C₃₄H₆₅N₂O₇Si₂⁺ (M+H)⁺ 669.4330, found 669.4363.

NOESY experiment for 256: major and 256: minor

256: major (C₆D₆, 500 MHz, 79 °C)

Weinreb amide (266)

Isopropylmagnesium chloride (2.0 M in THF, 3.3 mL, 6.5 mmol) was added to a mixture of methyl ester **256** (1.09 g, 1.63 mmol), MeNHOMe \cdot HCl (319 mg, 3.26 mmol) and THF (20 mL) at -20 °C. The mixture was stirred for 15 min, and quenched with saturated aqueous NH₄Cl (5.0 mL). The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/3) to give Weinreb amide **266** (1.11 g, 97%): a colorless oil; IR (film) 2944, 2866, 1703, 1670, 1367, 1250, 1170, 1110
cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.02–6.72 (m, 1H), 4.69 (brs, 1H), 4.16 (t, J = 8.3 Hz, 2H), 3.94–3.84 (m, 1H), 3.84–3.50 (m, 4H), 3.69 (s, 3H), 3.18 (s, 3H), 3.09–2.91 (m, 1H), 2.80 (d, J = 12.9 Hz, 1H), 2.60–2.42 (m, 3H), 2.41–2.30 (m, 2H), 1.63–1.46 (m, 4H), 1.49 (s, 9H), 1.13–1.03 (m, 21H), 1.00 (t, J = 8.3 Hz, 2H), 0.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 1:1 mixture of rotamers) δ 172.5 (C), 172.2 (C), 156.1 (C), 156.1 (C), 153.0 (C), 152.5 (C), 126.7 (CH), 126.6 (CH), 102.4 (CH), 102.1 (CH), 81.2 (C), 81.2 (C), 63.9 (CH₂), 63.6 (CH₂), 63.6 (CH₂), 63.6 (CH₂), 61.4 (CH₃), 61.4 (CH₃), 49.0 (CH₂), 47.9 (CH₂), 45.4 (CH₂), 45.2 (CH₂), 44.4 (CH₂), 44.3 (CH₂), 38.8–37.0 (CH x2), 34.1 (C), 34.0 (C), 32.8–32.0 (CH₃ x2, CH₂ x2), 31.0 (CH), 30.9 (CH), 30.7 (CH₂), 30.5 (CH₂), 28.4 (CH₃), 28.4 (CH₃), 26.5 (CH₂), 26.5 (CH₂), 18.1 (CH₃), 18.1 (CH₃), 17.9 (CH₂), 17.9 (CH₂), 12.0 (CH), 12.0 (CH), -1.4 (CH₃), -1.4 (CH₃); HRMS (ESI), calcd for C₃₅H₆₈N₃O₇Si₂⁺ (M+H)⁺ 698.4596, found 698.4590.

Aldehyde (264)

Diisobutylaluminium hydride (1.0 M in hexane, 710 µL, 0.71 mmol) was added to a solution of weinreb amide **266** (165 mg, 0.237 mmol) and THF (7.9 mL) at -78 °C. This solution was maintained at this temperature for 1 h, and quenched with saturated aqueous (+)-potassium sodium tartrate (5.0 mL). The resulting mixture was allowed to warm to room temperature, stirred for 1 h, and extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/4) to give aldehyde **264** (145 mg, 95%): a colorless oil; IR (film) 2945, 2866, 2723, 1703, 1367, 1250, 1169, 1111, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 9.79 (s, 1H), 7.02–6.72 (m, 1H), 4.61 (brs, 1H), 4.17 (t, *J* = 8.3 Hz, 2H), 3.91–3.77 (m, 1H), 3.75–3.55 (m, 4H), 3.09–2.94 (m, 1H), 2.83 (d, *J* = 12.9 Hz, 1H), 2.63–2.49 (m, 2H), 2.45 (dd, *J* = 16.6, 5.2 Hz, 1H), 2.37 (dd, *J* = 16.6, 6.9 Hz, 1H), 2.32 (brs, 1H), 1.63–1.52 (m, 2H), 1.51–1.45 (m, 2H), 1.50 (s, 9H), 1.14–1.03 (m, 21H), 1.00 (t, *J* = 8.3 Hz, 2H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 200.0 (CH), 156.1 (C), 152.7 (C), 127.4 (CH), 101.4 (CH), 81.4 (C), 63.82 (CH₂), 63.78 (CH₂), 49.3–47.5 (CH₂, broad), 45.7 (CH₂), 44.5 (CH₂), 12.3 (CH₃), 74.3 (CH₃); HRMS (ESI), calcd for C₃₃H₆₃N₂O₆Si₂⁺ (M+H)⁺ 639.4225, found 639.4222.

Terminal olefin (289)

n-Butyllithium (1.6 M in hexane, 0.38 mL, 0.62 mmol) was added dropwise to a solution of Ph₃PCH₃Br (245 mg, 0.686 mmol) and THF (5.6 mL) at 0 °C. After stirring at 15 min at 0 °C, a solution of aldehyde 264 (219 mg, 0.343 mmol) and THF (3.0 mL) was added to the suspension of the ylide via cannula at 0 °C. The mixture was stirred for 10 min, quenched with saturated aqueous NH_4Cl (5.0 mL), and allowed to warm to room temperature. The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/19) to give terminal olefin 289 (181 mg, 83%): a colorless oil; IR (film) 2944, 2865, 1703, 1650, 1366, 1250, 1169, 1109 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.01–6.69 (m, 1H), 5.77 (dddd, J = 16.9, 10.3, 6.9, 6.9 Hz, 1H), 5.08 (d, J = 16.9 Hz, 1H), 5.06 (d, J = 10.3 Hz, 1H), 4.72 (brs, 1H), 4.17 (t, J = 8.3 Hz, 2H), 4.00–3.50 (m, 5H), 2.97 (brs, 1H), 2.76 (d, J = 11.7 Hz, 1H), 2.42 (dd, *J* = 12.3, 12.3 Hz, 1H), 2.29 (brs, 1H), 2.11–2.00 (m, 2H), 1.99–1.89 (m, 1H), 1.63–1.42 (m, 4H), 1.50 (s, 9H), 1.14–1.03 (m, 21H), 1.02–0.96 (m, 2H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 156.2 (C), 152.8 (C), 135.9 (CH), 126.8 (CH), 116.9 (CH₂), 102.1 (CH), 81.2 (C), 64.0 (CH₂), 63.6 (CH₂), 50.0-47.8 (CH₂, broad), 45.7 (CH₂), 44.4 (CH₂), 38.1 (CH), 34.7 (CH₂), 34.5 (CH), 34.2 (C), 30.9 (CH₂), 28.5 (CH₃), 26.7 (CH₂), 18.2 (CH₃), 18.1 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI), calcd for C₃₄H₆₄N₂O₅Si₂Na⁺ (M+Na)⁺ 659.4252, found 659.4261.

Allylsilane (261)

A solution of terminal olefin **289** (181 mg, 0.284 mmol), allyltrimethylsilane (0.45 mL, 2.8 mmol) and CH₂Cl₂ (240 mL) was heated to reflux. After stirring for 2 h, Grubbs 2nd catalyst (24.2 mg, 28.4 µmol) was added to the resulting solution. The solution was stirred for 4 h at this temperature. After cooling to room temperature, a solution of potassium 2-isocyanoacetate (17.6 mg) and MeOH (1.0 mL) was added. The resulting mixture was stirred for 1 h and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/24) to give a mixture of *E*/*Z* isomers **261** (181 mg, 93%, *E*/*Z* = 4.0:1): a colorless oil; IR (film) 2950, 2866, 1704, 1651, 1366, 1249, 1169, 1109, 857, 840 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C, a 4:1 mixture of *E*/*Z* isomers, signals of the *E* isomer were reported) δ 7.00–6.68 (m, 1H), 5.46 (dt, *J* = 15.2, 8.0 Hz, 1H), 5.19 (dt, *J* = 15.2, 6.9 Hz, 1H), 4.72 (brs, 1H), 4.16 (t, *J* = 8.3 Hz, 2H), 3.97–3.58 (m, 5H), 2.95 (brs, 1H), 2.75 (d, *J* = 12.3 Hz, 1H), 2.39 (dd, *J* = 12.9, 12.3 Hz, 1H), 2.29 (brs, 1H), 2.07–1.92 (m, 2H), 1.89 (brs, 1H), 1.60–1.40 (m, 6H),1.49 (s, 9H), 1.12–1.04 (m, 21H), 1.02–0.96 (m, 2H), 0.04 (s, 9H), 0.00 (s, 9H); HRMS (ESI), calcd for C₃₈H₇₅N₂O₅Si₃⁺ (M+H)⁺ 723.4984, found 723.4950.

Diazatricyclic core (263)

Boron trifluoride diethylether complex (21 µL, 55 µmol) was added to a solution of allylsilane 261 (40.0 mg, 55.3 µmol), CH₂Cl₂ (5.3 mL) and EtOH (0.28 mL) at room temperature. The solution was maintained for 19 h, quenched with saturated aqueous NH₄Cl (10 mL), and extracted with EtOAc (3x 20 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/5) to give diazatricyclic core 263 (23.7 mg, 66%): a colorless oil; IR (film) 2945, 2866, 1693, 1414, 1251, 1176, 1139, 838 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C, 1:1 mixture of rotamers) δ 5.85 (ddd, J = 16.9, 10.3, 6.6 Hz, 1/2H), 5.79 (ddd, J = 16.9, 10.3, 6.6 Hz, 1/2H), 5.02 (d, J = 16.9 Hz, 1H), 4.98 (d, J = 10.3 Hz, 1/2H), 4.97 (d, J = 10.3 Hz, 1/2H), 4.43 (brs, 1/2H, 4.28–4.11 (m, 5/2H), 4.03 (brs, 1H), 3.82 (brs, 1H), 3.75–3.58 (m, 3H), 3.10 (d, J = 14.3 Hz, 1/2H), 3.05 (d, J = 14.3 Hz, 1/2H), 2.91-2.81 (m, 1H), 2.61 (d, J = 14.0 Hz, 1/2H), 2.58 (d, J = 14.0 Hz, 1/2H), 2.47-2.31 (m, 1H), 2.11-2.04 (m, 1H), 1.99-1.88 (m, 1H), 1.78-1.58 (m, 3H), 1.56-1.34 (m, 5H), 1.43 (s, 9H), 1.12–1.04 (m, 21H), 1.01 (t, J = 8.3 Hz, 2H), 0.06 (s, 9/2H), 0.05 (s, 9/2H); ¹³C NMR (125 MHz, CDCl₃, 60 °C, 1:1 mixture of rotamers) δ 156.95 (C), 156.88 (C), 156.1 (C), 156.0 (C), 141.0 (CH), 140.6 (CH), 114.2 (CH₂), 114.0 (CH₂), 79.5 (C), 79.4 (C), 64.1 (CH₂), 64.0 (CH₂), 63.8 (CH₂), 63.8 (CH₂), 51.1 (CH₂), 51.1 (CH₂), 49.5 (CH₂), 49.4 (CH₂), 48.5 (CH), 47.9 (CH₂), 47.7 (CH₂), 47.1 (CH), 45.3 (CH), 44.1 (CH), 35.7 (CH), 35.3 (C), 35.0 (C), 34.9 (CH), 34.8 (CH), 34.7 (CH), 33.1 (CH₂), 32.9 (CH₂), 30.3 (CH₂), 30.1 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 28.64 (CH₃), 28.59 (CH₃), 27.0 (CH₂), 27.0 (CH₂), 18.21 (CH₃), 18.21 (CH₃), 18.16 (CH₂), 18.16 (CH₂), 12.3 (CH), 12.3 (CH), -1.3 (CH₃), -1.3 (CH₃); HRMS (ESI), calcd for C₃₅H₆₆N₂O₅Si₂Na⁺ $(M+Na)^+$ 673.4408, found 673.4406.

NOESY experiment for 263

263 (CDCl₃, 500 MHz, 60 °C)

Alkyne (276)

Potassium carbonate (453 mg, 3.28 mmol) was added to a solution of aldehyde **264** (1.05 g, 1.64 mmol), Ohira-Bestmann reagent (473 mg, 2.46 mmol) and MeOH (16 mL) at room temperature. The solution was maintained for 3 h, quenched with saturated aqueous NH₄Cl (10 mL), and extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/9) to give alkyne **276** (977 mg, 94%): a colorless oil; IR (film) 3074, 2894, 1704, 1465, 1366, 1169, 1111, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.01–6.67 (m, 1H), 4.65 (brs, 1H), 4.17 (t, *J* = 8.3 Hz, 2H), 3.99 (brs, 1H), 3.90–3.50 (m, 4H), 3.08–2.92 (m, 1H), 2.76 (d, *J* = 13.2 Hz, 1H), 2.53–2.40 (m, 2H), 2.28–2.07 (m, 3H), 2.07–1.97 (m, 1H), 1.60–1.45 (m, 4H), 1.49 (s, 9H), 1.14–0.97 (m, 23H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 156.1 (C), 152.7 (C), 127.1 (CH), 101.5 (CH), 81.4 (C), 81.2 (C), 70.2 (CH), 63.9 (CH₂), 63.6 (CH₂), 48.3 (CH₂), 45.6 (CH₂), 44.2 (CH₂), 37.8 (CH), 34.3 (C), 34.2 (CH), 30.8 (CH₂), 28.5 (CH₃), 26.6 (CH₂), 19.9 (CH₂), 18.2 (CH₃), 18.1 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI),

Propargyl silane (270)

n-Butyllithium (1.6 M in hexane, 0.59 mL, 0.96 mmol) was added dropwise to a solution of alkyne **276** (582 mg, 0.917 mmol) and THF (8.0 mL) at -78 °C. After stirring at 15 min at -78 °C, HMPA (1.2 mL) and TMSCH₂I (0.16 mL, 1.10 mmol) were added to the solution at -78 °C. The mixture was stirred for 20 min, quenched with saturated aqueous NH₄Cl (5.0 mL). The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/9) to give propargylsilane **270** (530 mg, 80%): a colorless oil; IR (film) 2953, 2866, 1705, 1345, 1250, 1170, 854 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.01–6.67 (m, 1H), 4.80–4.60 (m, 1H), 4.16 (t, *J* = 8.0 Hz, 2H), 4.05–3.54 (m, 5H), 3.05–2.90 (m, 1H), 2.74 (d, *J* = 13.5 Hz, 1H), 2.52–2.36 (m, 4H), 2.27–2.17 (m, 1H), 2.16–2.00 (m, 2H),

1.60–1.45 (m, 4H), 1.50 (s, 9H), 1.14–0.97 (m, 23H), 0.10 (s, 9H), 0.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 156.2 (C), 152.8 (C), 126.8 (CH), 102.4 (CH), 81.2 (C), 79.6 (C), 75.5 (C), 64.0 (CH₂), 63.6 (CH₂), 48.5 (CH₂), 45.6 (CH₂), 44.5 (CH₂), 38.0 (CH), 34.6 (CH), 34.3 (C), 30.9 (CH₂), 28.5 (CH₃), 26.7 (CH₂), 20.5 (CH₂), 18.22 (CH₃), 18.19 (CH₂), 12.3 (CH), 7.28 (CH₂), -1.33 (CH₃), -1.84 (CH₃)

Allene (271)

Boron trifluoride diethylether complex (2.6 μ L, 21 μ mol) was added to a solution of propargylsilane **270** (15.0 mg, 20.8 μ mol), CH₂Cl₂ (1.9 mL) and EtOH (0.21 mL) at room temperature. The solution was maintained for 2 h, quenched with saturated aqueous NaHCO₃ (5.0 mL), and extracted with EtOAc (2x 5.0 mL). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/19) to give diazatricyclic core **271** (7.7 mg, 57%): a colorless oil; IR (film) 2945, 2865, 1696, 1279, 1174, 1105, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.00–4.55 (m, 3H), 4.19 (d, *J* = 8.0 Hz, 2H), 4.10–3.98 (m, 1H), 3.90–3.77 (m, 1H), 3.90–3.77 (m, 1H), 3.23–3.07 (m, 1H), 2.86 (d, *J* = 12.3 Hz, 1H), 2.68–2.50 (m, 2H), 2.40–2.30 (m, 1H), 2.18–2.12 (m, 1H), 2.00 (brs, 1H), 1.72–1.66 (m, 1H), 1.60–1.36 (m, 13H), 1.15–0.82 (m, 23H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 205.5 (C), 156.8 (C), 155.7 (C), 99.6 (C), 79.7 (C), 77.4 (CH), 74.0 (CH₂), 63.94 (CH₂), 63.88 (CH₂), 51.1 (CH₂), 49.1 (CH₂), 48.5 (C), 47.4 (CH₂), 35.2 (CH), 34.8 (CH), 33.0 (CH₂), 29.9 (CH₂), 29.5 (CH₂), 28.6 (CH₃), 27.0 (CH₂), 18.2 (CH₃), 18.1 (CH₂), 12.3 (CH), -1.3 (CH₃)

Skipped diene (278)

Ozone gas was bubbled to a solution of allene **271** (102 mg, 0.157 mmol) and MeOH (5.2 mL) at -78 °C. The solution was maintained for 0.5 h, quenched with PPh₃ (41.2 mg, 0.157 mmol). The solution was warmed to room temperature, evapolated. The residue was filtered through a pad of silica gel. The ketone **272** was directly used in the next reaction without further purification.

Sodium hexamethyldisilamide(1.0 M in THF, 63 μ L, 63 μ mol) was added dropwise to a solution of known phosphoniu salt 277 (33.4 mg, 67.2 µmol) and THF (1.0 mL) at room temperature. After stirring at 15 min at room temperature, a solution of ketone 272 (13.4 mg, 21.0 µmol) and THF (1.0 mL) was added to the suspension of the ylide via cannula at room temperature. The mixture was stirred for 4 h at 40 °C, guenched with saturated aqueous NH₄Cl (5.0 mL). The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/9) to give skipped diene 278 (8.5 mg, 44% for 2 steps): a colorless oil; IR (film) 2946, 2866, 1741, 1692, 1436, 1250, 1131, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 5.40–5.30 (m, 2H), 5.22–4.92 (m, 2H), 4.19 (brs, 1H), 4.01 (brs, 1H), 3.85 (brs, 1H), 3.73–3.58 (m, 3H), 3.66 (s, 3H), 3.12 (d, J = 14.0 Hz, 1H), 3.04–2.95 (m, 1H), 2.84 (d, J = 13.2 Hz, 1H), 2.65–2.50 (m, 2H), 2.34–2.22 (m, 1H), 2.31 (t, J = 7.5 Hz, 2H), 2.18–2.08 (m, 3H), 1.93 (brs, 1H), 1.75–1.63 (m, 3H), 1.60–1.40 (m, 4H), 1.45 (s, 9H),1.14–0.97 (m, 26H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 174.1 (C), 156.8 (C), 155.4 (C), 136.4 (C), 129.5 (CH), 129.0 (CH), 125.0 (CH), 124.1 (CH), 79.5 (C), 64.0 (CH₂), 63.8 (CH₂), 51.4 (CH₃), 51.1 (CH₂), 49.1 (CH₂), 47.3 (CH₂), 44.3 (C), 36.3 (CH), 36.0 (CH), 35.4 (CH₂), 33.7 (CH₂), 32.9 (CH₂), 30.0 (CH₂), 28.7 (CH₃), 27.0 (CH₂), 26.8 (CH₂), 26.1 (CH₂), 25.1 (CH₂), 18.2 (CH₃), 18.1 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI), calcd for C₄₂H₇₆N₂O₇Si₂Na⁺ (M+Na)⁺ 799.5089, found 799.5090.

Carboxylic acid (279)

Lithium hydroxide solution (1.0 M in H₂O, 0.77 mL) was added to a solution of **278** (4.5 mg, 5.79 μ mol) and THF (0.39 mL) at room temperature. The solution was maintained for 6 h at 60 °C, and quenched with saturated aqueous NH₄Cl (5.0 mL). The resulting mixture was extracted with EtOAc (3x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/3) to give carboxylic acid **279** (4.2 mg, 83%): a colorless oil; IR (film) 2944, 2866, 1691, 1415, 1250, 1132, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃,

60 °C) δ 5.43–5.28 (m, 2H), 5.22–4.92 (m, 2H), 4.28–4.12 (m, 2H), 4.01 (brs, 1H), 3.86 (brs, 1H), 3.77–3.57 (m, 3H), 3.18–3.07 (m, 1H), 3.05–2.78 (m, 1H), 2.68–2.50 (m, 2H), 2.36 (t, *J* = 7.7 Hz, 2H), 2.32–2.20 (m, 1H), 2.17–2.10 (m, 2H), 1.94 (brs, 1H), 1.76–1.63 (m, 3H), 1.60–1.28 (m, 16H), 1.12–0.88 (m, 25H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 177.4 (C), 156.9 (C), 155.4 (C), 136.2 (C), 129.7 (CH), 128.9 (CH), 125.4 (CH), 124.2 (CH), 79.8 (C), 64.0 (CH₂), 63.9 (CH₂), 51.2 (CH₂), 49.2 (CH₂), 47.4 (CH₂), 44.5 (C), 36.2 (CH), 35.9 (CH), 35.5 (CH₂), 33.4 (CH₂), 32.8 (CH₂), 30.0 (CH₂), 28.7 (CH₃), 27.0 (CH₂), 26.7 (CH₂), 26.1 (CH₂), 24.9 (CH₂), 18.2 (CH₃), 18.1 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI), calcd for C₄₁H₇₄N₂O₇Si₂Na⁺ (M+Na)⁺ 785.4932, found 785.4937.

Common intermediate of madangamine alkaloids (275)

Trimethylsilyl trifluoromethanesulfonate (155 mg, 0.486 mmol) was added to a solution of carboxylic acid **279** (124 mg, 0.162 mmol), 2,6-lutidine (114 μ L, 0.972 mmol) and CH₂Cl₂ (3.2 mL) at room temperature. The solution was maintained for 1 h, quenched with Et₃N (0.28 mL), and concentrated. The crude amine was directly used in the next reaction without further purification.

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (155 mg, 0.81 mmol) was added to a solution of the crude amine, *i*Pr₂NEt (0.28 mL, 1.62 mmol) HOBt (110 mg, 0.810 mmol) and CH₂Cl₂ (160 mL) at room temperature. The solution was maintained for 19 h at room temperature, and quenched with H₂O (10 mL). The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/4) to give lactam **275** (70.7 mg, 67% for 2 steps): a colorless oil; IR (film) 2944, 2865, 1697, 1633, 1438, 1249, 1103, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.53 (brs, 1H), 5.41 (brs, 1H), 5.28 (brs, 1H), 5.00 (brs, 1H), 4.28–4.10 (m, 3H), 4.00 (brs, 1H), 3.85 (brs, 1H), 3.67 (brs, 1H), 3.63–3.53 (m, 1H), 3.18–3.05 (m, 1H), 2.98–2.78 (m, 2H), 2.75–2.38 (m, 4H), 2.35–1.92 (m, 4H), 1.88–1.65 (m, 2H), 1.50–1.35 (m, 6H), 1.11–0.88 (m, 23H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 173.5 (C), 156.8 (C), 137.2 (C), 129.2 (CH), 128.0 (CH), 125.5 (CH), 63.91 (CH₂), 63.86 (CH₂), 50.4 (CH₂), 49.1 (CH₂), 48.1 (CH), 45.2 (CH₂), 36.3 (C), 35.8 (CH), 35.2 (CH), 35.1 (CH₂), 34.5 (CH₂), 32.9 (CH₂), 32.5 (CH₂), 30.6 (CH₂), 27.8 (CH₂), 26.5 (CH₂), 25.8 (CH₂), 18.19 (CH₃), 18.15 (CH₂), 12.3 (CH), -1.3 (CH₃); HRMS (ESI), calcd for C₃₆H₆₅N₂O₄Si₂⁺ (M+H)⁺ 645.4483, found 645.4487.

Alcohol (280)

Camphorsulfonic acid (72.0 mg, 0.310 mmol) was added to a solution of lactam **275** (99.9 mg, 0.155 mmol) and MeOH (3.1 mL) at room temperature. The solution was maintained for 1 h at 40 °C, quenched with saturated aqueous NaHCO₃ (10 mL), and extracted with EtOAc (3x 10 mL). The combined organic extracts were washed with brine (5 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (MeOH/EtOAc 1/19) to give alcohol **280** (71.3 mg, 94%): a colorless oil; IR (film) 2950, 2921, 1693, 1613, 1438, 1249, 1059, 839 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.60 (brs, 1H), 5.38 (brs, 1H), 5.26 (brs, 1H), 5.02 (brs, 1H), 4.40–4.12 (m, 3H), 4.10–3.80 (m, 2H), 3.63 (brs, 1H), 3.52 (brs, 1H), 3.10 (ddd, *J* = 14.9, 9.5, 9.5 Hz, 1H), 2.92–2.77 (m, 2H), 2.75–2.44 (m, 4H), 2.33–1.95 (m, 6H), 1.87–1.53 (m, 6H), 1.52–1.36 (m, 2H), 1.15 (brs, 1H), 1.02 (t, *J* = 8.3 Hz, 2H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 173.8 (C), 156.8 (C), 136.8 (C), 129.0 (CH), 128.1 (CH), 126.4 (CH), 63.9 (CH₂), 62.9 (CH₂), 50.9 (CH₂), 49.2 (CH₂), 48.4 (CH), 43.5 (CH₂), 37.1 (CH), 36.8 (C), 34.9 (CH₂), 33.9 (CH₂), 32.6 (CH₂), 31.8 (CH₂), 30.6 (CH₂), 27.8 (CH₂), 26.5 (CH₂), 26.3 (CH₂), 25.7 (CH₂), 18.2 (CH₂), -1.3 (CH₃); HRMS (ESI), calcd for C₂₇H₄₅N₂O₄Si⁺ (M+H)⁺ 489.3149, found 489.3153.

Aldehyde (282)

Iodobenzene diacetate (44.1 mg, 0.137 mmol) was added to a solution of aocohol **280** (55.6 mg, 0.114 mmol), AZADOL (1.7 mg, 11.4 μ mol) and CH₂Cl₂ (3.8 mL) at room temperature. The solution was maintained for 6, quenched with saturated aqueous NaHCO₃ (5 mL), and extracted with EtOAc (3x 5 mL). The combined organic extracts were washed with brine (5 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 3/1) to give aldehyde **282** (47.8 mg, 86%): a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 5.62 (brs, 1H), 5.38 (brs, 1H), 5.24 (brs, 1H), 5.00 (brs, 1H), 4.33–3.78 (m, 3H), 3.20–3.07 (m, 1H), 2.90–2.75 (m, 2H), 2.74–2.30 (m, 5H), 2.28–2.08 (m, 3H), 2.07–1.92 (m, 2H), 1.91–1.75 (m, 2H), 1.45–1.20 (m, 2H), 1.01 (t, *J* = 8.4 Hz, 2H), 0.05 (s, 9H)

Iodoalkene (284)

Sodium hexamethyldisilamide(1.0 M in THF, 0.11 mL, 0.108 mmol) was added dropwise to a solution of ICH₂PPh₃I (63.1 mg, 0.119 mmol) and THF (2.6 mL) at -78 °C. After stirring at 15 min at -78 °C, HMPA (38 μ L, 0.22 mmol), a solution of aldehyde **282** (17.5 mg, 36.0 μ mol) and THF (1.0 mL) was added to the suspension of the ylide via cannula at -78 °C. The mixture was stirred for 15 min at -78 °C, quenched with saturated aqueous NH₄Cl (3.0 mL). The resulting mixture was extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/3 to 1/1) to give iodoalkene **284** (15.2 mg, 69%): a colorless oil; IR (film) 2948, 2918, 1693, 1628, 1441, 1248, 840 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.17 (d, *J* = 7.3 Hz, 1H), 6.12 (dd, *J* = 13.8, 7.3 Hz, 1H), 5.58 (brs, 1H), 5.38 (brs, 1H), 5.24 (brs, 1H), 4.99 (brs, 1H), 4.30–3.78 (m, 5H), 3.22–3.08 (m, 1H), 2.93–2.61 (m, 4H), 2.60–2.38 (m, 3H), 2.32–1.93 (m, 7H), 1.88–1.70 (m, 2H), 1.55–1.20 (m, 4H), 1.08–0.95 (m, 2H), 0.04 (s, 9H); HRMS (ESI), calcd for C₂₈H₄₃N₂O₃SiINa⁺ (M+Na)⁺ 633.1985, found 633.1985.

Methyl ester (285)

9-Borabicyclo[3.3.1]nonane (0.5 M solution in THF, 98 μ L, 49 μ mol) was added to a solution of methyl 5-hexenoate (42 mg, 33.8 μ mol) and THF (7.1 mL) at room temperature. The solution was maintained for 3 h at room temperature, and quenched with H₂O (7.1 μ L, 0.405 mmol). This solution was added to a mixture of Cs₂CO₃ (8.2 mg, 25.2 μ mol), Pd(PPh₃)₄ (1.5 mg, 1.26 μ mol). A solution of iodoalkene **284** (7.7 mg, 12.6 μ mol), H₂O (0.13 mL) and THF (1.3 mL) was then added to the resulting mixture. The mixture was stirred for 3 h at room temperature. After cooling to 0 °C, the mixture was quenched with NaBO₃·4H₂O (5.8 mg, 37.8 μ mol) and H₂O (1.3 mL) at 0 °C, stirred for 1 h at room temperature, and extracted with EtOAc (2x 5.0 mL). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/3) to give methyl ester **285** (5.7

mg, 74%): a colorless oil; IR (film) 2948, 2926, 1738, 1695, 1631, 1437, 1249, 859, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.56 (brs, 1H), 5.50–5.12 (m, 4H), 4.98 (brs, 1H), 4.33–3.75 (m, 5H), 3.70–3.60 (m, 2H), 3.66 (s, 3H), 3.22–3.08 (m, 1H), 2.92–2.38 (m, 6H), 2.38–1.86 (m, 8H), 1.85–1.53 (m, 4H), 1.48–1.17 (m, 10H), 1.01 (t, *J* = 8.2 Hz, 2H), 0.05 (s, 9H); HRMS (ESI), calcd for C₃₅H₅₇N₂O₅Si⁺ (M+H)⁺ 613.4037, found 613.4037.

Carboxylic acid (283)

Lithium hydroxide solution (1.0 M in H₂O, 0.44 mL) was added to a solution of methyl ester **285** (4.0 mg, 6.53 μ mol) and THF (0.87 mL) at room temperature. The solution was maintained for 7 h at room temperature, and quenched with saturated aqueous NH₄Cl (2.0 mL). The resulting mixture was extracted with EtOAc (2x 5.0 mL). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/1) to give carboxylic acid **283** (2.9 mg, 74%): a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.59 (brs, 1H), 5.55–5.12 (m, 4H), 4.99 (brs, 1H), 4.33–3.80 (m, 5H), 3.28–3.08 (m, 1H), 2.92–2.40 (m, 6H), 2.38–1.88 (m, 8H), 1.85–1.55 (m, 4H), 1.54–1.10 (m, 10H), 1.02 (brs, 1H), 0.05 (s, 9H); HRMS (ESI), calcd for C₃₄H₅₅N₂O₅Si⁺ (M+H)⁺ 599.3880, found 599.3878.

Bislactam (287)

Tetrabutylammonium fluoride (1.0 M solution in THF, 20 μ L, 20 μ mol) was added to a solution of carboxylic acid **283** (6.0 mg, 10.0 μ mol) and THF (1.0 mL) at room temperature. The solution was maintained for 1 h, and concentrated. The crude amine was directly used in the next reaction without further purification.

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (19.2 mg, 0.100 mmol) was added to a solution of the crude amine, *i*Pr₂NEt (34 μ L, 0.20 mmol) HOBt (13.6 mg, 0.100 mmol) and CH₂Cl₂ (10 mL)

at room temperature. The solution was maintained for 10 h at room temperature, and quenched with H₂O (5.0 mL). The resulting mixture was extracted with EtOAc (2x 5.0 mL). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1/3) to give bislactam **287** (2.1 mg, 48% for 2 steps): a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.66–5.55 (m, 1H), 5.54–5.46 (m, 1H), 5.44–5.30 (m, 2H), 5.27–5.17 (m, 1H), 4.98 (brs, 1H), 4.45 (d, *J* = 14.0 Hz, 1H), 4.27 (d, *J* = 13.1 Hz, 1H), 3.60 (d, *J* = 14.0 Hz, 1H), 3.22–3.10 (m, 1H), 2.94 (d, *J* = 13.7 Hz, 1H), 2.81 (d, *J* = 14.2 Hz, 1H), 2.76–2.65 (m, 2H), 2.55–2.18 (m, 9H), 2.17–1.50 (m, 20H), 1.46–1.10 (m, 10H); HRMS (ESI), calcd for C₂₈H₄₁N₂O₂⁺ (M+H)⁺ 437.3168, found 437.3167.

Madangamine C

Lithium aluminium hydride (1.0 M solution in THF, 25 μ L, 25 μ mol) was added to a solution of bislactam **287** (1.1 mg, 2.5 μ mol) and Et₂O (0.84 mL) at room temperature. The solution was maintained for 1 h at room temperature. The reaction mixture was quenched with saturated aqueous (+)-potassium sodium tartrate, stirred for 1 h, and extracted with EtOAc (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography (*i*Pr₂NH/Et₂O/hexane 0.1/25/75) to give madangamine C (48%, internal standard: mesitylene): a colorless oil; ¹H NMR (500 MHz, CDCl₃, 65 °C) δ 5.50–5.35 (m, 3H), 5.23–5.13 (m, 2H), 3.72 (brs, 1H), 3.44–3.30 (m, 2H), 3.18–3.10 (m, 1H), 2.88–2.80 (m, 1H), 2.76–2.55 (m, 4H), 2.40–2.20 (m, 12H), 1.90–1.80 (m, 2H), 1.75–1.07 (m, 15H), 0.85–0.95 (m, 1H); HRMS (ESI), calcd for C₂₈H₄₅N₂⁺ (M+H)⁺ 409.3583, found 409.3585.

X : parts per Million : 13C

140.0 130.0 180.0 170.0 150.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 –10.0 -20.0 220.0 210.0 200.0 190.0 160.0 77.4143 77.1616 76.9040 65.5725 64.9096 37.2246 35.5315 34.2009 31.6113 31.6113 25.2492 25.7326 19.4356 14.5663 144.3924 137.2101 136.1227 128.9928 128.8354 128.1296 128.0199 127.6479 127.2378 116.9888 X : parts per Million : 13C

参考文献

¹ Seebach, D. Angew. Chem. Int. Ed. 2011, 50, 96–101.

- ² (a) Suh, Y.-G.; Shin, D.-Y.; Jung, J.-K.; Kim, S.-H. Chem. Commun. 2002, 1064–1065. (b) Suh, Y.-G.; Kim,
- S.-H; Jung, J.-K.; Shin, D.-Y. Tetrahedron Lett. 2002, 43, 3165–3167. (c) Jung, J.-W.; Shin, D.-Y.; Seo, S.-Y;
- Kim, S.-H.; Paek, S.-M.; Jung, J.-K.; Suh, Y.-G. Tetrahedron Lett. 2005, 46, 573–575.
- ³ (a) DeNinno, M.P.; Eller, C. *Tetrahedron Lett.* **1997**, *38*, 6545–6548. (b) DeNinno, M.P.; Eller, C.; Etienne, J. B. J. Org. Chem. **2001**, *66*, 6988–6993.
- ⁴ Tamaru, Y.; Harada, T.; Nishi, S.; Yoshisa, Z. Tetrahedron Lett. 1982, 29, 5771–5774.
- ⁵ Ishida, A.; Nakamura, T.; Irie, K.; Oh-ishi, T. Chem. Pharm. Bull. 1985, 33, 3237-3249.
- ⁶ (a) Tominaga, Y.; Kohra, S.; Hosomi, A.; *Tetrahedron Lett.* **1987**, *28*, 1529–1532. (b) Tominaga, Y.; Matsuoka, Y.; Hayashida, H.; Kohra, S.; Hosomi, A. Tetrahedron Lett. **1988**, *29*, 5771–5774.
- ⁷ (a) Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. **2004**, 126, 5968–5969. (b) Murai, T.; Asai, F. J. Am. Chem. Soc. **2007**, 129, 780–781.
- ⁸ (a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. *Angew. Chem. Int. Ed.* 2010, *49*, 3037–3040. (b) Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. *Chem. Eur. J.* **2010**, *16*, 12792–12796.
- ⁹ (a) Larouche-Gauthier, R.; Bélanger, G. *Org. Lett.* **2008**, *10*, 4501–4504. (b) Bélanger, G.; O'Brien, G.; Larouche-Gauthier, R. *Org. Lett.* **2011**, *13*, 4268–4271.
- ¹⁰ Inamoto, Y.; Koga, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2013, 15, 3452–3455.
- ¹¹ Calderwood, D. J.; Davies, R. V.; Rafferty, P.; Twigger, H. L.; Whelan, H. M. *Tetrahedron Lett.* **1997**, *38*, 1241–1244.
- ¹² Denton, S. M.; Wood, A. Synlett, **1999**, 55–56.
- ¹³ Tomashenko, O.; Sokolov, V.; Tomashevskiy, A.; Buchholz, H. A. Eur. J. Org. Chem. 2008, 5107–5111.

¹⁴ (a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. *Angew. Chem. Int. Ed.* **2010**, *49*, 6369–6372. (b) Kurosaki, Y.; Shirokane, K.; Oishi, T.; Sato, T.; Chida, N. *Org. Lett.* **2012**, *14*, 2098–2101. (c) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida. N. *Angew. Chem. Int. Ed.* **2014**, *53*, 512–516. (d) Yoritate, M.; Meguro, T.; Matsuo, N.; Shirokane, K.; Sato, T.; Chida, N, *Chem. Eur. J.* **2014**, *20*, 8210–8216. (e) Sato, T.; Chida, N. *Org. Biomol. Chem.* **2014**, *12*, 3147–3150.

¹⁵ (a) Kong, F.; Andersen, R. J.; Allen, T. M. *J. Am. Chem. Soc.* 1994, *116*, 6007–6008. (b) Kong, F.; Graziani,
E. I.; Andersen, R. J. *J. Nat. Prod.* 1998, *61*, 267–271. (c) de Oliveira, J. H. H. L.; Nascimento, A. M.;
Kossuga, M. H.; Cavalcanti, B. C.; Pessoa, C. O.; Moraes, M. O.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E.;
Pinheiro, U. S.; Berlinck, R. G. S. *J. Nat. Prod.* 2007, *70*, 538–543.

¹⁶ (a) Amat, M.; Pérez, M.; Minaglia, A. T.; Casamitjana, N.; Bosch, J. *Org. Lett.* 2005, *7*, 3653–3656. (b) Amat, M.; Pérez, M.; Proto, S.; Gatti, T.; Bosch, J. *Chem. Eur. J.* 2010, *16*, 9438–9441. (c) Proto, S.; Amat, M.; Pérez, M.; Ballette, R.; Romagnoli, F.; Mancinelli, A.; Bosch, J. *Org. Lett.* 2012, *14*, 3916–3919. (d) Amat, M.; Ballette, R.; Proto, S.; Pérez, M.; Bosch, J. *Chem. Commun.* 2013, *49*, 3149–3151. (e) Ballette, R.; Pérez,

- M.; Proto, S.; Amat, M.; Bosch, J. Angew. Chem. Int. Ed. 2014, 53, 6202-6205.
- ¹⁷ Matzanke, N.; Gregg, R. J.; Weinreb, S. M.; Parvez, M. J. Org. Chem. 1997, 62, 1920–1921.
- ¹⁸ (a) Yamazaki, N.; Kusanagi, T.; Kibayashi, C. Tetrahedron Lett. 2004, 45, 6509-6512. (b) Yoshimura, Y.;
- Inoue, J.; Yamazaki, N.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett. 2006, 47, 3489-3492. (c) Yoshimura, Y.;
- Kusanagi, T.; Kibayashi, C.; Yamazaki, N.; Aoyagi, S. Heterocycles 2008, 75, 1329-1354.
- ¹⁹ Tong, H. M.; Martin, M.-T.; Chiaroni, A.; Bénéchie, M.; Marazano, C. Org. Lett. 2005, 7, 2437–2440.
- ²⁰ (a) Quirante, J.; Paloma, L.; Diaba, F.; Vila, X.; Bonjoch, J. J. Org. Chem. 2008, 73, 768–771. (b) Diaba, F.;
- Pujol-Grau, C.; Martínez-Laporta, A.; Fernández, I.; Bonjoch, J. Org. Lett. 2015, 17, 568-571.
- ²¹ Drouin, A.; Winter, D. K.; Pichette, S.; Aubert-Nicol, S. J. Org. Chem. 2011, 76, 164–169.
- ²² (a) Larsen, L. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 12208–12209.
- (b) Smith, D. M.; Woerpel, K. M. Org. Lett. 2004, 6, 2063-2066.
- ²³ Hamilakis, S.; Kontonassios, D.; Sandris, C. J. Heterocyclic Chem. 1996, 33, 825–829.
- ²⁴ Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies, I. W. Org. Lett. 2005, 7, 215–218.
- ²⁵ Moriwake, T.; Hamano, S.; Miki, D.; Saito, S.; Torii, S. Chem. Lett., **1986**, 15, 815–818.
- ²⁶ (a) Allred, E. L.; Hurwitz, M. D. J. Org. Chem. **1965**, 30, 2376–2381. (b) Ramirez, A.; Mudryk, B.; Rossano,
- L.; Tummala, S. J. Org. Chem. 2012, 77, 775–779.
- ²⁷ (a) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255–4267. (b) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268–4278. (c) Trost, B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118, 6625–6633. (d) Trost, B. M.; Ferreira, E. M.; Gutierrez, A. C. J. Am. Chem. Soc. 2008, 130, 16176–16177. (e) Trost, B. M.; Gutierrez, A. C.; Ferreira, E. M. J. Am. Chem. Soc. 2010, 132, 9206–9218.
- ²⁸ Mander, L. N.; Sethi, S. P. *Tetrahedron Lett.* **1983**, *24*, 5425–5428.
- ²⁹ (a) Tsuji, J.; Takahashi, M.; Takahashi, T. *Tetrahedron Lett.* **1980**, *21*, 849–850. (b) Izawa, Y.; Shimizu, I.; Yamamoto, A. *Bull. Chem. Soc. Jpn.* **2004**, *77*, 2033–2045.
- ³⁰ Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291–293.
- ³¹ Satoh, T.; Nanba, K.; Suzuki, S. Chem. Pharm. Bull. 1971, 19, 817–820.
- ³² Narisada, M.; Horibe, I.; Watanabe, F.; Takeda, K. J. Org. Chem. **1989**, *54*, 5308–5313.
- ³³ Chae, M. J.; Song, J. I.; An, D. K. Bull. Korean Chem. Soc. 2007, 28, 2517–2518.
- ³⁴ Nahm, S.; Weinreb, S. M. *Tetrahedron Lett.* **1981**, *22*, 3815–3818.
- ³⁵ Comins, D. L.; Dehghani, A. *Tetrahedron Lett.* **1992**, *33*, 6299–6302.
- ³⁶ (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett
- 1996, 521–522. (c) Roth, G. J.; Liepold, B.; Müller, S.; Bestmann, H. J. Synthesis 2004, 59–62.
- ³⁷ (a) Ando, K. J. Org. Chem. **1998**, 63, 8411–8416. (b) Ando, K. J. Org. Chem. **1999**, 64, 6815–6821.
- ³⁸ (a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. **2006**, 128, 8412–8413. (b) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun. **2009**, 1739–1741. (c) Yamakoshi, H.;
- Shibuya, M.; Tomizawa, Masaki.; Osada, Y.; Katoh, N.; Iwabuchi, Y. Org. Lett. 2010, 12, 980-983. (d)

Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagashima, N.; Iwabuchi, Y. *Synthesis* **2011**, 3418–3425. (e) Sasano, Y.; Nagasawa, S.; Yamazaki, M.; Shibuya, M.; Park, J.; Iwabuchi, Y. *Angew. Chem. Int. Ed.* **2014**, *53*, 3236–3240.

謝辞

本研究は、慶應義塾大学理工学部 千田憲孝教授の下で行われたものであります。研究の遂行に際 し頂いた数々のご指導ご鞭撻に心から感謝し、御礼申し上げます。千田先生に進学を勧めて頂いた おかげで非常に濃い研究室生活を送ることができました。また、日々の激励やアドバイスは研究の 大きな励みになりました。

本論文の執筆にあたり多くのご助言を賜りました慶應義塾大学理工学部 中田雅也教授、高尾賢一 准教授、末永聖武教授に感謝致します。

本研究の遂行、学会発表ならびに論文の執筆において、数多くの御指導を頂きました佐藤隆章専 任講師に感謝致します。佐藤先生の厳しくも温かい御指導やアドバイスのおかげでここまで来るこ とができました。

共同研究者である中村斐有君、松尾直哉君、黒須靖弘君、そして須藤貴弘君に感謝致します。彼 らの熱意とアイデアが全て揃って本研究を纏めることができました。また、研究室配属から1年の 間、マンツーマンで研究をご指導してくださった白兼研史博士を始め、諸先輩方、同期の皆様、そ して後輩の皆に深く感謝致します。

最後に、私が博士課程進学を決断できたのも家族の精神的・経済的支えがあったからでした。祖 母、両親、妹、そして弟に心から感謝致します。

169