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Preface

In this thesis, we deal with two game theoretical models on networks, the multi-unit

trading network model and the marking game. We analyze these models by focusing on

discrete structures of them.

After an introduction chapter (Chapter 1), we introduce general terminology of

graphs in the beginning of Chapter 2. We then introduce discrete convex analysis, which

plays an important role in analyzing the multi-unit trading network model. Moreover,

we describe fundamentals of game theory and microeconomics related to this thesis.

In Chapter 3, we consider the multi-unit trading network model. This model is an

extension of the single-unit trading network model introduced by Hatfield et al. By

extending their model, we can handle multiple units of contracts with the same unit

price. In Section 3.1, we give definitions of the model, and then review the previous

results shown by Hatfield et al. In the first subsection of Section 3.2, we show that

twisted M♮-concavity and the generalized full substitutes condition are equivalent. This

fact is a reason why we use discrete convex analysis to analyze the model. By using

discrete convex analysis, we show that there always exists a competitive equilibrium and

that the set of competitive equilibrium price vectors forms a lattice under the generalized

full substitutes condition. In Section 3.3, we consider the relationship among competitive

equilibria, efficient trade vectors, and stable outcomes. In Section 3.4, we study three

stability concepts, stability, strong group stability, and chain stability. Most of our

results in Sections 3.3 and 3.4 are also proven by using discrete convex analysis.

In Chapter 4, we consider the marking game, which is one of the 2-person zero-sum

games. This game is played by Alice and Bob and closely related to graph coloring. In

Section 4.1, we give formal definitions of the marking game. We also introduce the game

coloring number which is defined as the smallest score such that Alice has a winning
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strategy in the marking game. The game coloring number gives an upper bound for the

game chromatic number which is defined through the chromatic game. In Section 4.2,

we estimate an upper bound for the game coloring number of planar graphs with girth

at least 4. In Section 4.3, we estimate lower bounds for the game coloring number of

planar graphs with girth 4 and 5, respectively.
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Chapter 1

Introduction

In this thesis, we focus on two models which are both related to combinatorial optimiza-

tion and game theory.

Combinatorial optimization is one of the biggest research topics in applied mathe-

matics. Many people have been studying a lot of combinatorial optimization problems,

for example, the maximum flow problem, the graph coloring problem, the maximum

matching problem, and so on. The aim is to solve these problems, that is, to find the

best solution from the feasible solutions. Combinatorial optimization is also applied in

several areas such as operations research, algorithmic theory, auction theory, artificial

intelligence, and so on (see [39, 52, 58]).

Since the number of feasible solutions is very huge in general, it is not practical

to check all of them. Indeed, there are many combinatorial optimization problems

which cannot be solved in polynomial time (unless P = NP ). However, there are

polynomial time algorithms for solving some combinatorial optimization problems (e.g.

the maximum flow problem [14], the maximum matching problem [9]). We can efficiently

solve some of combinatorial optimization problems.

Solving combinatorial optimization problems efficiently, we often focus on discrete

structures like graphs and matroids. Graphs are one of the most popular structures in

combinatorics and discrete mathematics. Most of combinatorial optimization problems

can be represented in terms of graphs and some properties of graphs are useful to solve

them. Matroids are also discrete structures which generalize the notion of linear inde-

1
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pendence in vector system [56, 70, 71]. They are related to discrete convex analysis,

which is a theoretical framework of discrete optimization proposed by Murota [43, 45].

It is based on convex analysis and matroid theory. A lot of combinatorial optimization

problems can be analyzed by using discrete convex analysis. In this thesis, graphs and

discrete convex analysis play important roles.

On the other hand, game theory is the study of mathematical models in which two or

more players interact with each other. In the early 20th century, some people analyzed

a game theoretical situation by using mathematics. For instance, Zermelo [73] studied

the optimal chess strategy and von Neumann [67] showed the minimax theorem for

the 2-person zero-sum game. Then von Neumann and Morgenstern published the book

“Theory of Games and Economic Behavior” [68] which built on the basics of game theory.

Since then, game theory has been remarkably developed by many people. At present,

it is applied in several fields including economics, computer science, biology, and so

on [5, 6, 53].

Unlike basic optimization models, there is conflict between players in game theoretical

models. This feature makes problems more complicated because we have to consider

strategies of each player. However, many positive results are shown. For example,

Nash [51] proved that there exists an equilibrium point, called the Nash equilibrium, in

non-cooperative n-person games.

In this thesis, we focus on two models although there are many types of games.

Both of them are models on networks (graphs) and closely related to combinatorial

optimization and game theory. The first model is called the “multi-unit trading network

model,” which is a generalization of the stable matching model. This model is also

related to the market game. However, unlike the market game, we deal with indivisible

commodities and utility functions of agents are defined on the set of trade vectors in the

multi-unit trading network model. We study competitive equilibria and stable outcomes

in the multi-unit trading network model by using discrete convex analysis. The second

model is the “marking game,” which is a 2-person zero-sum game on graphs with perfect
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information. We analyze strategies for players and consider the game coloring number

of graphs, which is associated with the game.

1.1 Multi-unit trading network model

We give introduction of the multi-unit trading network model. This model is an

extension of the two-sided market model. The feature of the model is that we can

handle multiple units of contracts which cannot be handled in the previous models. We

use discrete convex analysis to analyze the multi-unit trading network model. We first

explain background and history of the two-sided market model. Then we describe our

motivation and the outline of the results of the model.

The two-sided market model is well known and well studied in the fields of game

theory, economics, and operations research. Many significant results of the two-sided

market model are known and it has been successfully applied to many real world prob-

lems (e.g. college admissions problem [57], hospitals/residents problem [29]).

All variants and extensions of the two-sided market model stem from the stable

matching model due to Gale and Shapley [20] and the assignment model due to Shapley

and Shubik [61]. These two models differ in that the assignment model allows commodity

prices, while the stable matching model does not. At present, there are many extensions

and generalizations of these two models, not all of which can be clearly classified as

being based on which one. In fact, some models can be viewed as generalizations of

both models. Moreover, results on the stable matching model can be interpreted into

results on the assignment model, and vice versa. Our model, the multi-unit trading

network model, also can be regarded as a common extension of the two models.

We introduce the stable matching model and extensions which are related to our

model. The stable matching model was first proposed in 1962 by Gale and Shapley [20].

They introduced the deferred acceptance algorithm by which they proved the existence

of stable matchings. Hatfield and Milgrom [29] introduced the concept of contracts,

which allows discrete prices to be implicitly considered. They showed that under the
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condition called the substitutes condition, stable outcomes always exist and that they

form a lattice structure. Ostrovsky [55] further generalized the Hatfield-Milgrom model

by extending the two-sidedness to the supply chain network, which is represented by an

acyclic directed graph. Furthermore, he introduced two new conditions, the same side

substitutability (SSS) and cross side complementarity (CSC). He showed the existence

of chain stable allocations when these conditions are satisfied.

On the other hand, the assignment model was proposed by Shapley and Shubik [61]

in a game theoretical setting. They proved the nonemptiness of the core and showed

that the core has a lattice structure. Then Sotomayor [64] extended this result to the

multiple-partners assignment model. Kelso and Crawford [35] introduced the two-sided

job matching model in which the gross substitutes condition plays an important role.

The gross substitutes condition1 is an often-used condition in economics. Indeed, there

exists a core allocation in the two-sided job matching model, if preferences of firms satisfy

the gross substitutes condition [35]. Roughly speaking, the gross substitutes condition

requires that when the salary of some worker increases, no firms have an incentive to

fire the workers whose salaries do not change. There are some conditions which are

equivalent to the gross substitutes condition. Gul and Stacchetti [23] introduced the

two new conditions called the single improvement condition and the no complementar-

ity condition and proved that these two conditions are equivalent to the gross substitutes

condition. Recently, in the same way as Ostrovsky [55] extended the two-sided stable

matching model to acyclic directed graphs, Hatfield et al. [27] generalized the assignment

model to general networks (graphs). They defined the full substitutes condition, which

is a generalization of the SSS and CSC condition, and showed that there exists a com-

petitive equilibrium when preferences of all agents satisfy the full substitutes condition.

They also studied the relationship between competitive equilibria and stable outcomes.

1The gross substitutes condition also appears in auction theory. Gul and Stacchetti [24] used the gross
substitutes condition in an ascending auction. They showed that there exists an auction mechanism
which converges to the smallest Walrasian equilibrium prices if the preferences of all bidders satisfy
the gross substitutes condition. Sun and Yang [65, 66] extended the gross substitutes condition
to the gross substitutability and complementarity (GSC) condition and showed that there exists a
Walrasian equilibrium in the auction model under the GSC condition.
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The above models consider only single-unit trades, that is, all trades are restricted

to one unit of commodity. In the stable matching model, trades can be generalized to

multi-units by creating duplicate trades, however, as we have to consider commodity

prices in the assignment model, this technique does not work. One of our motivation is

to generalize the model of Hatfield et al. [27] (we call this model the single-unit trading

network model) to multi-units. To accomplish this, we believe that the most useful tool

is discrete convex analysis due to Murota [43, 45].

Discrete convex analysis, which is centered on M♮ and L♮-convexity, has been success-

fully utilized in various economical models (for more details, see [7, 8, 10, 17, 18, 40, 62]).

In particular, M♮-concavity has many nice properties. For example, Fujishige and

Yang [19] showed the equivalence of the gross substitutes condition and M♮-concavity on

the unit hypercube. Ikebe and Tamura [33] showed that twisted M♮-concave functions

(a variant of M♮-concave functions) satisfy the SSS and CSC conditions. Recently, Sh-

ioura and Yang [63] considered the auction model, and introduced the generalized gross

substitutes and complements (GGSC) condition, which is a generalization of the GSC

condition introduced by Sun and Yang [65, 66]. They showed that the GGSC condition

is equivalent to twisted M♮-concavity. Moreover, they proved that under the GGSC con-

dition, a Lyapunov function is a generalized L♮-convex function and the set of Walrasian

equilibrium price vectors forms a good structure, called a generalized lattice.

In this thesis, we deal with the multi-unit trading network model, which is an exten-

sion of the single-unit trading network model due to Hatfield et al. [27]. In our model,

valuation functions of each agent are twisted M♮-concave functions defined on the set of

integer vectors. This allows us to consider multiple units of contracts, which cannot be

handled in the single-unit trading network model. We also introduce the generalized full

substitutes condition and show that this condition is equivalent to twisted M♮-concavity.

Our main results of the multi-unit trading network model concern the existence of

competitive equilibria and the structure of competitive equilibrium price vectors. We

show that there exists a competitive equilibrium under the generalized full substitutes

condition and that the set of competitive equilibrium price vectors forms a lattice. We
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also consider the relationship among competitive equilibria, stability, and efficiency.

Although these concepts are not equivalent, we prove that a competitive equilibrium

is stable, and a competitive equilibrium trade vector is efficient. Moreover, we show

that we can construct a competitive equilibrium from a stable outcome by changing

the price vector under the generalized full substitutes condition. Unlike the single-unit

trading network model, there is an obvious gap between competitive equilibria and stable

outcomes with respect to price vectors in our model.

Furthermore, we deeply study stability in the model. Although there are many types

of stability concepts, we focus on the three stability concepts in this thesis: stability,

strong group stability, and chain stability. While these concepts are not equivalent in

general, we show that these concepts are equivalent under the generalized full substitutes

condition. The greater part of our results are shown by using discrete convex analysis,

which gives a novel view of the trading network model.

1.2 Marking game

Games associated with graphs are being considered by many people and there are

many types of games (e.g. the hat game [13], the cops and robbers game [3], the Maker-

Breaker game [31]). In this thesis, we focus on the marking game.

The origin of the marking game is the map-coloring game. The map-coloring game

was invented by Brams in the study of the Four Color Theorem and first published by

Gardner [1, 21]. The map-coloring game is played by two players, Alice and Bob, with

Alice playing first. Given a simple planar graph G and a color set C. They take turns

coloring uncolored regions (faces) of G with a color in C so that any two adjacent regions

are colored with different colors. Alice wins the game if all regions are colored properly,

otherwise Bob wins the game. By the rule of the game, whether Alice has a winning

strategy for the map-coloring game depends on the structure of a graph and the number

of available colors.
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As we mentioned above, the map-coloring game was first defined only on planar

graphs. Then Bodlaender [2] extended the concept of the game to general graphs. We

call the extended game the chromatic game. In the chromatic game, players color vertices

of a graph instead of regions (vertices and regions of a planar graph are essentially

equivalent because we can regard a region of a planar graph as a vertex of its dual

graph). The game chromatic number of a graph is the smallest number of colors such

that Alice has a winning strategy.

To analyze the game chromatic number, Zhu [74] introduced the new concept, the

game coloring number. The game coloring number is related to the coloring number in

graph theory introduced by Erdös and Hajnal [11]. The coloring number was introduced

to study graph coloring. Similarly, we use the game coloring number to analyze the

game chromatic number.

The game coloring number is defined through the marking game. Although the

marking game is similar to the chromatic game, some settings are different. In the

marking game, players “mark” vertices of a graph instead of coloring them. The score

of the marking game is determined when the game ends. The definition of the score of

the marking game on graph G is given by

s = 1 + max
v∈V (G)

b(v),

where b(v) is the number of neighbors of v which are marked before v. Alice wins the

game if the score of the game is at most k, which is given before starting the game,

otherwise Bob wins the game. The game coloring number of a graph is the minimum

number k such that Alice has a winning strategy for the marking game.

The game coloring number gives an upper bound for the game chromatic number by

their definitions. Since we handle the game coloring number more easily than the game

chromatic number, many researchers analyze an upper bound for the game coloring

number to estimate that of the game chromatic number. For several classes of graphs,

the exact game coloring numbers are determined. We give the game coloring numbers
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Table 1.1: Game coloring numbers of graphs (ω is the clique number).

Graph classes forests interval graphs outerplanar graphs k-trees (k ≥ 2)
Game coloring number 4 3ω − 2 7 3k + 2

Table 1.2: Upper bounds for the game coloring numbers of planar graphs.

Girth 3–4 5 6–7 8 and over
Upper bounds 17 8 6 5

of some classes of graphs in Table 1.1 (these results were proven in [12, 22, 37, 72, 75]).

The values in Table 1.1 are exact, that is,

• there exists Alice’s strategy such that the score of the game is at most the value in

Table 1.1.

• there exists a graph of which the game coloring number is at least the value in

Table 1.1.

One big problem is determining the exact value of the game coloring number of planar

graphs. At present, the best known upper bound is 17 [76] and the best known lower

bound is 11 [72]. From the point of the edge density of planar graphs, we think that

17 is a quite large upper bound. Therefore, some people researched the game coloring

number of planar graphs restricted their girth, which belong to between forests and plane

triangulations. He et al. [30] proved that the game coloring number of planar graphs

with girth at least 5 is at most 8. Kleitman [38] showed that the game coloring number

of planar graphs with girth at least 6 is at most 6. Other known upper bounds are given

in Table 1.2. Moreover, Borodin et al. [4] showed that the game coloring number of

quadrangle-free planar graphs is at most 9.

In this thesis, we deal with the game coloring number of planar graphs with girth 4

and 5. We show the following statements:

• The game coloring number of planar graphs with girth 4 is at most 13.
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• The game coloring number of planar graphs with girth 4 is at least 7.

• The game coloring number of planar graphs with girth 5 is at least 6.

Considering Alice’s strategy, called the activation strategy, is helpful to show the first

statement. The activation strategy depends on a total order on the vertex set of a

graph. We prove the first statement by giving an appropriate total order on the vertex

set. The last two statements are shown by constructing graphs of which the game

coloring numbers are above values.

1.3 Summary of the thesis

The rest of this thesis is organized as follows. We first give some preliminaries. In

Chapter 2, we give definitions and notations of graphs, and introduce discrete convex

analysis, game theory, and microeconomics related to this thesis. In Chapter 3, we deal

with the multi-unit trading network model. In Section 3.1, we introduce the model

and review the results on the single-unit trading network model. We next give the

formal definition of the generalized full substitutes condition in Section 3.2. In this

section, we also discuss the existence and lattice structure of competitive equilibria. We

then consider the relationship among competitive equilibria, stability, and efficiency in

Section 3.3. We study three stability concepts in Section 3.4. In Chapter 4, we discuss

the game coloring number of graphs. In Section 4.1, we introduce the marking game and

define the game coloring number. We consider the upper bounds for the game coloring

number of planar graphs in Section 4.2 and the lower bounds in Section 4.3.



Chapter 2

Preliminaries

Before we take up the main issue, we give some preliminaries. In the beginning of this

chapter, we give fundamental notations and define some terminology of graphs. We

then introduce the fundamentals of discrete convex analysis, game theory, and microe-

conomics.

2.1 Basic notations and orders

We denote by R the set of reals and by Z the set of integers. We also denote by R+

the set of nonnegative reals and by Z+ the set of nonnegative integers.

Let V be a finite set. For vectors x, y ∈ RV , the inner product of x and y is denoted

by ⟨x, y⟩, that is,

⟨x, y⟩ =
∑
t∈V

xt · yt.

A relation ⪯ on a set V is called a partial order if the following three conditions hold

for all x, y, z ∈ V :

• x ⪯ x (reflexivity);

• x ⪯ y and y ⪯ x ⇒ x = y (anti-symmetry);

• x ⪯ y and y ⪯ z ⇒ x ⪯ z (transitivity).

A partial order ⪯ is called a total order if x ⪯ y or y ⪯ x holds for all x, y ∈ V .

10
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2.2 Preliminaries on graphs

In this section, we give some preliminaries on graphs. For more details, see [39, 58].

An undirected graph is a pair G = (V (G), E(G)), where V (G) is a finite set and E(G)

is a set of 2-element subset of V (G), that is,

E(G) ⊆ {U ⊆ V (G) : |U | = 2}.

The elements of V (G) are called vertices and the elements of E(G) are called edges.

A directed graph is also a pair G = (V (G), E(G)), where V (G) is a finite set of

vertices and E(G) is defined by

E(G) ⊆ {(u,w) ∈ V (G)× V (G) : u ̸= w}.

The elements of E(G) are called directed edges.

We say that edge {u,w} (or directed edge (u,w)) connects u and w. Vertices u and

w are adjacent if there exists an edge (or a directed edge) which connects u and w. For

a directed graph, we say that directed edge (u,w) leaves u and enters w.

The underlying undirected graph G′ of a directed graph G is the undirected graph

which satisfies

V (G′) = V (G), E(G′) = {{u,w} : (u,w) ∈ E(G)}.

A graph G′ is called a subgraph of an undirected graph G if V (G′) ⊆ V (G), E(G′) ⊆

E(G), and for {u,w} ∈ E(G′) it holds that u,w ∈ V (G′).

For a vertex u of an undirected graph G, we define

δG(u) = {e ∈ E(G) : u ∈ e}, NG(u) = {v ∈ V (G) : {u, v} ∈ E}.

The element of NG(u) is called a neighbor. The degree of vertex u is defined by

dG(u) = |δG(u)|.
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The maximum degree of G is defined by

∆(G) = max{dG(v) : v ∈ V (G)}.

In the directed case, we define

δ+G(u) = {(v, w) ∈ E(G) : v = u}, δ−G(u) = {(v, w) ∈ E(G) : w = u},

N+
G (u) = {v ∈ V (G) : (u, v) ∈ E(G)}, N−

G (u) = {v ∈ V (G) : (v, u) ∈ E(G)}.

The element of N+
G (u) is called an out-neighbor and the element of N−

G (u) is called an

in-neighbor. The out-degree and in-degree of vertex u are respectively defined by

d+G(u) = |δ+G(u)|, d−G(u) = |δ−G(u)|.

2.2.1 Paths, cycles, and connectivity

A walk in a graph G is a sequence

P = v0, e1, v1, . . . , ek, vk

such that k ≥ 0, ei = {vi−1, vi} ∈ E(G) (or ei = (vi−1, vi) ∈ E(G)) for all i = 1, . . . , k,

and e1, . . . , ek are all distinct. In this case, P is also called a v0-vk walk. If v0 = vk, P is

said to be a closed walk. A walk is called Eulerian if it is a closed walk and contains every

edge of the graph. A walk P is called a v0-vk path if vi ̸= vj for all 0 ≤ i < j ≤ k. The

vertices v0 and vk are called the end points of P . The length of walk P is defined by k.

A cycle is a walk v0, e1, v1, . . . , ek, vk with k ≥ 1 which is a closed walk and v1, . . . , vk

are all distinct. The length of the shortest cycle in a graph G is called the girth of G.

We can consider a path P as a graph whose vertex set and edge set are

V (P ) = {v0, v1, . . . , vk}, E(P ) = {e1, . . . , ek},

respectively. Similarly, we can consider a cycle as a graph.
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A directed graph G is called acyclic if it has no cycles. A chord of a cycle P in a

graph G is an edge e ∈ E(G) \ E(P ) which connects two vertices in P .

An undirected graph G is connected if there exists a u-w path for all u,w ∈ V (G). A

maximal connected nonempty subgraph is called a connected component. For a directed

graph, we also define connectivity. A directed graph G is connected if its underlying

undirected graph is connected.

At the end of this subsection, we introduce the proposition about Eulerian walks,

which is a very famous result in graph theory.

Proposition 2.1. A connected undirected graph has an Eulerian walk if and only if the

degree of each vertex is even. A connected directed graph G has an Eulerian walk if and

only if d+G(v) = d−G(v) for all v ∈ V (G).

2.2.2 Classes of graphs

We introduce some classes of graphs. In this subsection, we consider only undirected

graphs.

An undirected graph is a complete graph if any two vertices are adjacent. We denote

the complete graph with n vertices by Kn.

Let G be an undirected graph. A subset M of E(G) is called a matching of G if

e ∩ f = ∅ for any e, f ∈ M . A matching M is said to be a perfect matching if for all

v ∈ V (G), there exists e ∈M such that v ∈ e (then we say thatM covers v). A subset C

of V (G) is called a stable set of G if every two distinct vertices in C are not adjacent,

and a clique if every two distinct vertices in C are adjacent. We define the maximum

size of a clique of G, the clique number of G, by

ω(G) = max{|C| : C is a clique in G}.

A coloring of an undirected graph G is a partition of V (G) into stable sets. Then

each stable set is called a color. The chromatic number of G is the minimum number

of colors in colorings and is defined by χ(G). If χ(G) ≤ 2, G is called a bipartite
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graph. A bipartite graph G is called complete if V (G) can be partitioned into two sets

U and W (U ∪W = V (G), U ∩W = ∅) such that U and W are colors (stable sets) and

{u,w} ∈ E(G) for all u ∈ U and w ∈ W . We denote the complete bipartite graph with

color size m and n by Km,n.

A graph is called a forest if it has no cycles. A tree is a connected forest.

A chordal graph is a graph in which every cycle with length at least 4 has a chord.

Let

V (G) = {[ai, bi] : i = 1, . . . , n},

E(G) = {{[ai, bi], [aj, bj]} : i ̸= j, [ai, bi] ∩ [aj, bj] ̸= ∅},

where [ai, bi] is an interval, that is,

[ai, bi] = {x ∈ R : ai ≤ x ≤ bi}.

Then G = (V (G), E(G)) is called an interval graph. We next define a k-tree. It is defined

inductively as follows:

(i) Kk is a k-tree.

(ii) Let G be a k-tree and C be a clique in G with size k. Then a graph which is

obtained from G by adding vertex v and the edges between v and each vertex of C

is a k-tree.

Interval graphs and k-trees are special cases of chordal graphs. A partial k-tree is a

subgraph of a k-tree.

A graph which can be embedded in the plane R2 is called a planar graph. Such an

embedding is called a planar embedding. A graph is called an outerplanar graph if it

can be embedded in the plane R2 such that each vertex is in the outer boundary. A

maximal outerplanar graph is a special case of a 2-tree.

Planar graphs have the following property, which is well known in graph theory.
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Proposition 2.2. For a planar graph G = (V (G), E(G)) with |V (G)| ≥ 3, we have

|E(G)| ≤ 3|V (G)| − 6,∑
v∈V (G)

dG(v) < 6|V (G)|.

2.3 Fundamental results in discrete convex analysis

Discrete convex analysis, which is proposed by Murota [43], is a framework for discrete

optimization problems. It is based on convex analysis and matroid theory. In other

words, the framework of convex analysis is applied to discrete settings and results in

matroid theory is extended to continuous settings in discrete convex analysis.

We first consider continuous settings. We define the effective domain of f : RV →

{±∞} by

dom f = {x : −∞ < f(x) < +∞}.

The sets of minimizers and maximizers of f are denoted by argmin f and argmax f ,

respectively, that is,

argmin f = {x : f(x) ≤ f(y) (y ∈ RV )},

argmax f = {x : f(x) ≥ f(y) (y ∈ RV )}.

The following is the definition of convex functions.

Definition 2.3. A function f : RV → R ∪ {+∞} is convex if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

holds for all x, y ∈ RV and λ ∈ [0, 1].
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A set S ⊆ RV is called convex if for any x, y ∈ S, it holds that λx + (1 − λ)y ∈ S

for all λ ∈ [0, 1]. For a finite number of vectors x1, . . . , xn ∈ S,

λ1x1 + · · ·+ λnxn

(
n∑

i=1

λi = 1, λi ≥ 0 (∀i = 1, . . . , n)

)

is called a convex combination of these vectors. The convex hull of S is the smallest

convex set that contains S.

We now consider discretizing convex functions. In discrete convex analysis, two

classes of convex functions, M/M♮-convex functions and L/L♮-convex functions, play an

important role. They are conjugate to each other under the Legendre-Fenchel trans-

formation. The letters “M” and “L” stand for the first letter of “matroid” and “lattice,”

respectively.

The remain of this section is organized as follows. We first introduce the definition

of M♮/L♮-convex functions. We next introduce conjugacy theorem, and some properties

of the sum of two M♮-concave functions. Moreover, we introduce a twisted M♮-concave

function which is a variant of an M♮-concave function. We use it in the multi-unit

trading network model proposed in Section 3.1. For more information about discrete

convex analysis, see [15, 45, 46].

2.3.1 M♮-convex functions

Originally, Murota [43] proposed M-convex functions. M♮-convex functions are in-

troduced by Murota and Shioura [47]. M-convex functions and M♮-convex functions are

essentially equivalent although the class of M♮-convex functions are strictly larger than

that of M-convex functions. Therefore, we introduce only M♮-convex functions in this

subsection.

Let V be a finite set. The characteristic vector χX ∈ {0, 1}V of a subset X ⊆ V is

defined by

(χX)t =

1 (t ∈ X),

0 (t ∈ V \X).
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We use the notation χ0 = 0 and χt = χ{t}, where 0 is the all-zero vector (the vector of

which all elements are equal to 0). Consider a function f : ZV → R∪{±∞}. We define

the positive support and the negative support of a vector x = (xt|t ∈ V ) ∈ ZV by

supp+(x) = {t ∈ V : xt > 0}, supp−(x) = {t ∈ V : xt < 0}.

We are ready to introduce the definitions of M♮-convex sets and M♮-convex functions.

Definition 2.4. A nonempty set Q ⊆ ZV is called an M♮-convex set if for x, y ∈ Q and

s ∈ supp+(x− y) one of the following properties is satisfied:

(i) x− χs ∈ Q and y + χs ∈ Q;

(ii) there exists t ∈ supp−(x− y) such that x− χs + χt ∈ Q and y + χs − χt ∈ Q.

Definition 2.5. A function f : ZV → R ∪ {+∞} with dom f ̸= ∅ is an M♮-convex

function if for all x, y ∈ dom f and s ∈ supp+(x−y), there exists t ∈ supp−(x−y)∪{0}

such that

f(x) + f(y) ≥ f(x− χs + χt) + f(y + χs − χt).

A set S ⊆ ZV is called discretely convex or hole free if it holds that

S = S̄ ∩ ZV ,

where S̄ is the convex hull of S. An M♮-convex set is a discretely convex set.

M♮-convex functions have the following properties (for more detail, see [42, 45]).

Proposition 2.6 (see [45]). Let f : ZV → R ∪ {+∞} be an M♮-convex function with a

bounded nonempty effective domain. Then the following statements hold.

(i) dom f is an M♮-convex set.

(ii) argmin f is an M♮-convex set.

A function f : ZV → R∪{−∞} is called an M♮-concave function if −f is M♮-convex.

We show some examples of M♮-convex functions.
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Example 2.1. Let Q ⊆ ZV be an M♮-convex set. A function f : ZV → R ∪ {+∞}

defined by

f(x) =

0 (x ∈ Q),

+∞ (x ̸∈ Q),

is M♮-convex. We check it easily by using the above definitions.

Example 2.2. Let α ∈ R and p ∈ RV . A linear function f : ZV → R ∪ {+∞} defined

by

f(x) = α + ⟨p, x⟩ (x ∈ dom f)

of which the effective domain is an M♮-convex set is M♮-convex (also M♮-concave).

Example 2.3. Let T be a laminar family of 2V (i.e. it holds that X ∩ Y = ∅, X ⊆ Y ,

or Y ⊆ X for any X, Y ∈ T ). For any X ∈ T , we define function fX : Z → R ∪ {+∞}.

If fX is an M♮-convex function for all X ∈ T ,

f(x) =
∑
X∈T

fX(x(X)) (x ∈ ZV )

is M♮-convex, where x(X) =
∑

t∈X xt.

Finally, we describe a property of M♮-convex functions.

Proposition 2.7 ([47]). Let f : ZV → R∪ {+∞} be an M♮-convex function. For every

x, y ∈ dom f with
∑

t∈V xt <
∑

t∈V yt, there exists s ∈ supp−(x− y) such that

f(x) + f(y) ≥ f(x+ χs) + f(y − χs).

2.3.2 L♮-convex functions

We give the definition of L♮-convex functions. L♮-convex functions are introduced by

Fujishige and Murota [16]1.

1Analogous to M/M♮-convex functions, Murota [43] proposed the concept of L-convex functions before
they proposed the concept of L♮-convex functions. L-convex and L♮-convex functions are essentially
equivalent although the class of L♮-convex functions is strictly larger than that of L-convex functions.
Thus, we introduce only L♮-convex functions.
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For vectors p, q ∈ RV , we define p ∨ q, p ∧ q ∈ RV by

(p ∨ q)t = max{pt, qt}, (p ∧ q)t = min{pt, qt}.

We also define the all-one vector by 1. The followings are the definitions of L♮-convex

sets and L♮-convex functions.

Definition 2.8. A nonempty set P ⊆ ZV is called an L♮-convex set if for p, q ∈ P it

holds that

(p− α1) ∨ q, p ∧ (q + α1) ∈ P (∀α ∈ Z+).

Definition 2.9. A function g : ZV → R ∪ {+∞} with dom f ̸= ∅ is an L♮-convex

function if

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p ∧ (q + α1))

for all p, q ∈ ZV and α ∈ Z+.

Similar to the relationship between M♮-convex sets and M♮-convex functions, the

following properties are satisfied for L♮-convex sets and L♮-convex functions. Moreover,

L♮-convex set is discretely convex.

Proposition 2.10 (see [45]). Let g : ZV → R ∪ {+∞} be an L♮-convex function with a

bounded nonempty effective domain. Then the following statements hold.

(i) dom g is an L♮-convex set.

(ii) argmin g is an L♮-convex set.

We show some examples of L♮-convex functions and describe a property of them.

Example 2.4. Let α ∈ R and x ∈ RV . A linear function g : ZV → R ∪ {+∞} defined

by

g(p) = α + ⟨p, x⟩ (p ∈ dom g)

of which the effective domain is an L♮-convex set is L♮-convex.
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Example 2.5. The function g : ZV → R ∪ {+∞} defined by

g(p) = max{pt : t ∈ V }

is L♮-convex.

Proposition 2.11 (see [45]). Let g1, g2 : ZV → R ∪ {+∞} be L♮-convex functions and

assume that dom g1 ∩ dom g2 ̸= ∅. Then g1 + g2 is an L♮-convex function.

The sum of L♮-convex functions is also L♮-convex, provided its effective domain is

nonempty. However, the sum of M♮-convex functions is not M♮-convex in general.

2.3.3 M♮/L♮-convex functions defined on the set of real vectors

The effective domain of an M♮-convex (also L♮-convex) function is a set of integer

vectors. We consider M♮/L♮-convexity of functions defined on the set of real vectors. Let

f : RV → R ∪ {±∞} be a function. The epigraph of f is the set defined by

epi f = {(x, α) : x ∈ RV , α ∈ R, α ≥ f(x)} (⊆ RV ×R).

A convex function is said to be polyhedral if its epigraph can be expressed by as a

polyhedron, that is, there exists a matrix A and a vector b such that

epi f =

(x, α) : A

 x

α

 ≤ b

 .

We now define M♮/L♮-convexity of polyhedral convex functions. These concepts were

introduced in [48].

Definition 2.12. A polyhedral convex function f : RV → R∪{+∞} with dom f ̸= ∅ is

called M♮-convex if for all x, y ∈ dom f and s ∈ supp+(x− y), there exist t ∈ supp−(x−

y) ∪ {0} and α0 ∈ R+ \ {0} such that

f(x) + f(y) ≥ f(x− α(χs − χt)) + f(y + α(χs − χt))

for all α ∈ [0, α0].
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Definition 2.13. A polyhedral convex function g : RV → R∪ {+∞} with dom g ̸= ∅ is

called L♮-convex if it satisfies

g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p ∧ (q + α1))

for all p, q ∈ RV and α ∈ R+.

We now define an M♮/L♮-convex polyhedron.

Definition 2.14. A set Q ⊆ RV is an M♮-convex polyhedron if for x, y ∈ Q and

s ∈ supp+(x − y), there exist t ∈ supp−(x − y) ∪ {0} and α0 ∈ R+ \ {0} such that

x− α(χs − χt) ∈ Q and y + α(χs − χt) ∈ Q for all α ∈ [0, α0].

Definition 2.15. A set P ⊆ RV is an L♮-convex polyhedron if for p, q ∈ P , it holds

that (p− α1) ∨ q, p ∧ (q + α1) ∈ P for all α ∈ R+.

For functions f, g : RV → R ∪ {±∞}, p ∈ RV , and x ∈ RV , we define

f [−p](x) = f(x)− ⟨p, x⟩,

g[−x](p) = g(p)− ⟨p, x⟩.

We describe properties of polyhedral M♮/L♮-convex functions.

Proposition 2.16 (see [45]). Let g1, g2 : RV → R ∪ {+∞} be polyhedral L♮-convex

functions and assume that dom g1 ∩ dom g2 ̸= ∅. Then g1 + g2 is a polyhedral L♮-convex

function.

Theorem 2.17 ([48]). Let f : RV → R∪{+∞} be a polyhedral M♮-convex function with

a bounded nonempty effective domain. Then argmin f [−p] is an M♮-convex polyhedron

for all p ∈ RV .

Theorem 2.18 ([48]). Let g : RV → R∪{+∞} be a polyhedral L♮-convex function with

a bounded nonempty effective domain. Then argmin g[−x] is an L♮-convex polyhedron

for all x ∈ RV .

We next consider extending the effective domain of M♮/L♮-convex functions to a set

of real vectors. Let f : ZV → R∪{+∞} be a function defined on a set of integer vectors.
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The convex closure of f is a function f̄ : RV → R ∪ {+∞} given by

f̄(x) = sup
p∈RV ,α∈R

{⟨p, x⟩+ α : ⟨p, y⟩+ α ≤ f(y) (∀y ∈ ZV )}.

If f satisfies

f̄(x) = f(x)

for all x ∈ ZV , we say that f is convex-extensible and that f̄ is the convex extension of f .

Also, we say that f : ZV → R ∪ {−∞} is concave-extensible if −f is convex extensible.

For a convex-extensible function, the following statement holds.

Proposition 2.19 (see [45]). Let f : ZV → R ∪ {+∞} be a function with a bounded

nonempty effective domain. Then f is convex-extensible if and only if argmin f [−p] is

discretely convex for each p ∈ RV .

M♮/L♮-convex functions are convex-extensible and have the following property.

Theorem 2.20 ([42, 48, 49]). An M♮-convex function is convex-extensible. If the convex

extension of an M♮-convex function is polyhedral, it is polyhedral M♮-convex. Similarly,

an L♮-convex function is convex-extensible. If the convex extension of an L♮-convex

function is polyhedral, it is polyhedral L♮-convex.

2.3.4 Conjugacy theorem

We describe the conjugacy theorem in this subsection. The Legendre-Fenchel trans-

form of a function f : RV → R ∪ {+∞} with dom f ̸= ∅ is a function f • : RV →

R ∪ {+∞} defined by

f •(p) = sup{⟨p, x⟩ − f(x) : x ∈ RV }.

For polyhedral M♮/L♮-convex functions, the following statement, the conjugacy theorem,

holds.

Theorem 2.21 ([48]). Let f : RV → R∪{+∞} and g : RV → R∪{+∞} be a polyhedral

M♮-convex function and a polyhedral L♮-convex function. Then f • is polyhedral L♮-convex
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and g• is polyhedral M♮-convex. Moreover, f •• = f and g•• = g, that is, there is one-

to-one correspondence between the class of polyhedral M♮-convex functions and that of

polyhedral L♮-convex functions.

We next define the discrete Legendre-Fenchel transform of an integer-valued function

whose effective domain is a set of integer vectors and nonempty. For a function f : ZV →

Z∪{+∞} with dom f ̸= ∅, the discrete Legendre-Fenchel transform f • : ZV → Z∪{+∞}

of f is defined by

f •(p) = sup{⟨p, x⟩ − f(x) : x ∈ ZV }.

Note that f •(p) is integral for each p ∈ ZV by the definition.

Theorem 2.22 ([43]). Let f : ZV → Z∪{+∞} and g : ZV → Z∪{+∞} be an integer-

valued M♮-convex function and an integer-valued L♮-convex function. Then f • is an

integer-valued L♮-convex function and g• is an integer-valued M♮-convex function. More-

over, f •• = f and g•• = g, that is, there is one-to-one correspondence between the class

of integer-valued M♮-convex functions and that of integer-valued L♮-convex functions.

In this thesis, we use the following theorem in Section 3.2.

Theorem 2.23 ([7]). Let f : ZV → R∪{+∞} be an M♮-convex function with a bounded

nonempty effective domain. We define f • : RV → R ∪ {+∞} by

f •(p) = sup{⟨p, x⟩ − f(x) : x ∈ ZV }.

Then f • is a polyhedral L♮-convex function.

2.3.5 Properties of the sum of two M♮-concave functions

We focus on the sum of two M♮-concave functions2. Note that the sum of two M♮-

concave functions may not be M♮-concave. However, a maximizer of the sum of two

M♮-concave functions can be characterized as follows.

2We deal with M♮-concave functions instead of M♮-convex functions after this subsection because we
apply the M♮-concave intersection theorem in Section 3.2.
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Theorem 2.24 ([42, 44]). Let f1, f2 : ZV → R ∪ {−∞} be M♮-concave functions and

x∗ ∈ dom f1 ∩ dom f2 be a vector. Then

f1(x
∗) + f2(x

∗) ≥ f1(x) + f2(x)

for all x ∈ ZV if and only if there exists p∗ ∈ RV such that

f1[−p∗](x∗) ≥ f1[−p∗](x) (∀x ∈ ZV ),

f2[+p
∗](x∗) ≥ f2[+p

∗](x) (∀x ∈ ZV ).

In other words, there exists such a vector p∗ with

argmax(f1 + f2) = argmax f1[−p∗] ∩ argmax f2[+p
∗].

Theorem 2.24 plays an important role in the proof of the existence of competitive

equilibria in the multi-unit trading network model (see Section 3.2). We next describe

an optimality criterion of the sum of two M♮-concave functions.

Theorem 2.25 ([50]). Let f1, f2 : ZV → R ∪ {−∞} be M♮-concave functions and

x ∈ dom f1 ∩ dom f2 be a vector. Then we have

f1(x) + f2(x) ≥ f1(y) + f2(y)

for all y ∈ ZV if and only if

f1(x) + f2(x) ≥ f1(x+ χY − χZ) + f2(x+ χY − χZ)

for any Y, Z ⊆ V with −1 ≤ |Y | − |Z| ≤ 1.

Theorem 2.25 leads to the following corollary.

Corollary 2.26. Let f1, f2 : ZV → R∪{−∞} be M♮-concave functions and x ∈ dom f1∩

dom f2 be a vector. If x ̸∈ argmax(f1 + f2), then there exist Y, Z ⊆ V such that

f1(x) + f2(x) < f1(x+ χY − χZ) + f2(x+ χY − χZ).
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2.3.6 Twisted M♮-concave functions

The class of twisted M♮-concave functions is a variant of that of M♮-concave functions.

Twisted M♮-concave functions are related to some economical properties (we explain the

detail in the following chapter). The concept of twisted M♮-concave functions was first

introduced by Sun and Yang [65] as GM-concave functions. They applied to the single-

unit auction model where goods are substitutable or complementary. Their results are

extended to the multi-unit auction model by Shioura and Yang [63]. The term “twisted

M♮-concave function” was first used by Ikebe and Tamura [33].

Let W be a subset of V . We define twist(x;W ) ∈ ZV by

(twist(x ;W ))t =

xt (t ̸∈ W ),

−xt (t ∈ W ).

We are ready to give the definition of a twisted M♮-concave function.

Definition 2.27. Let W ⊆ V . Then a function f : ZV → R ∪ {−∞} is a W -twisted

M♮-concave function if there exists an M♮-concave function f̂ : ZV → R ∪ {−∞} such

that

f(x) = f̂(twist(x ;W )) (∀x ∈ ZV ).

By the definition and properties of M♮-concave functions, the following statements

hold.

Proposition 2.28. Let f : ZV → R∪{−∞} be a W -twisted M♮-concave function. Then

the following conditions hold:

(i) Let x, y ∈ dom f and s ∈ supp+(x−y)\W . Then there exists t ∈ supp−(x−y)\W

such that

f(x) + f(y) ≤ f(x− χs + χt) + f(y + χs − χt),
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or there exists t ∈ (supp+(x− y) ∩W ) ∪ {0} such that

f(x) + f(y) ≤ f(x− χs − χt) + f(y + χs + χt).

(ii) Let x, y ∈ dom f and s ∈ supp−(x−y)∩W . Then there exists t ∈ supp−(x−y)\W

such that

f(x) + f(y) ≤ f(x+ χs + χt) + f(y − χs − χt),

or there exists t ∈ (supp+(x− y) ∩W ) ∪ {0} such that

f(x) + f(y) ≤ f(x+ χs − χt) + f(y − χs + χt).

Proposition 2.29. Let f : ZV → R ∪ {−∞} be a W -twisted M♮-concave function.

For x, y ∈ dom f with
∑

t∈V (twist(x ;W ))t <
∑

t∈V (twist(y ;W ))t, at least one of the

following holds:

(i) There exists s ∈ supp−(x− y) \W such that

f(x) + f(y) ≤ f(x+ χs) + f(y − χs).

(ii) There exists s ∈ supp+(x− y) ∩W such that

f(x) + f(y) ≤ f(x− χs) + f(y + χs).

Note that if W is empty, a W -twisted M♮-concave function is equal to an M♮-concave

function. Therefore the class of twisted M♮-concave functions contains the class of M♮-

concave functions. Moreover, the following statement holds.

Proposition 2.30. Let f be a W -twisted M♮-concave function defined on ZV . Then f

is (V \W )-twisted M♮-concave.

Proof. Since f is W -twisted M♮-concave, there exists M♮-concave function f̂ such that

f(x) = f̂(twist(x ;W )) (∀x ∈ ZV ).
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We define function g by

g(x) = f̂(−x) (∀x ∈ ZV ).

Then we have

f(x) = f̂(twist(x ;W )) = g(twist(x ;V \W )) (∀x ∈ ZV ).

By the definition of an M♮-concave function, g is also M♮-concave. Therefore f is a

(V \W )-twisted M♮-concave function.

We finally describe some properties of W -twisted M♮-concave functions. The follow-

ing statement follows from the property of M♮-concave functions.

Proposition 2.31 (see [45]). Let f : ZV → R ∪ {−∞} be a W -twisted M♮-concave

function. Then the following statements hold:

(i) the sum of a W -twisted M♮-concave function and a linear function is W -twisted

M♮-concave, that is, for p ∈ RV , f [+p] is W -twisted M♮-concave.

(ii) for a, b ∈ (Z ∪ {±∞})V with a ≤ b, function f[a,b] defined by

f[a,b](x) =

f(x) if at ≤ xt ≤ bt for all t ∈ V ,

−∞ otherwise,

is W -twisted M♮-concave.

(iii) for A ⊆ V , we define function fA : ZA → R ∪ {−∞} by

fA(y) = sup{f(x) : xt = yt (∀t ∈ A), x ∈ ZV }.

If fA(y) < +∞ for all y ∈ ZA, fA is (W ∩ A)-twisted M♮-concave.

2.4 Fundamentals of Game theory

In this section, we describe fundamentals of game theory and microeconomics related

to this thesis. We first introduce the concept of a game, then we describe an extensive
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form of a game. Finally, we introduce the market game and define some economical

terminology. For more details on game theory and microeconomics, see [34, 41, 54].

There are many situations in which players interact with each other. Then players’

payoffs depend on their strategic actions. In game theory, such a situation is called a

game and represented by mathematical models. This enables us to analyze situations

with strategic actions.

A game consists of three things, players, strategies, and payoffs. We give an example

of a game.

Example 2.6 (Matching Pennies). This game is played by two players, 1 and 2. To

begin with, each player puts a penny down simultaneously. If the two pennies match

(i.e. both pennies are heads up or tails up), Player 1 wins, otherwise (i.e. one penny is

heads up and the other is tails up) Player 2 wins. The winner obtains a penny from

the other player. The game Matching Pennies can be represented by the following three

objects:

(i) Players: Player 1 and Player 2.

(ii) Strategies of each player: Heads up or tails up.

(iii) Payoffs of each player: (1,−1) (if Player 1 wins), (−1, 1) (if Player 2 wins).

2.4.1 Extensive form of a game

We next describe an extensive form of a game. An extensive form is represented by

a graph theoretic tree. We introduce an extensive form by using the following game.

Example 2.7 (Matching Pennies Ver.2). We consider another version of Matching Pen-

nies. At the beginning, Player 1 puts a penny down and covers her penny with her hand.

Then Player 2 puts a penny down. If the two pennies match, Player 1 wins, otherwise

Player 2 wins.

The extensive form of Matching Pennies Ver.2 is represented in Figure 2.1.
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Player 1

Player 2

(1,−1) (−1, 1) (−1, 1) (1,−1)
Terminal vertex

Payoff

Heads up (H) Tails up (T)

Information set

H T H T

Figure 2.1: The extensive form of Matching Pennies Ver.2.

The game starts at the initial vertex, where Player 1 puts her penny. Player 1 has

two strategies. One is putting her penny down heads up. The other is putting it down

tails up. Each strategy corresponds to an edge which connects the initial vertex and a

decision vertex of Player 2. At a decision vertex of Player 2, she chooses her strategy.

After Player 2’s move, we reach a terminal vertex and each player obtains a payoff.

In Matching Pennies Ver.2, Player 1 covers her penny with her hand after choosing

her strategy. Therefore, Player 2 does not see Player 1’s choice until the game ends. This

means that Player 2 cannot distinguish the two vertices. We represent this situation by

using an information set. A player cannot distinguish between vertices which belong to

the same information set.

An extensive form game has perfect information if all information sets are singletons.

A game is said to be a zero-sum game if the sum of the payoffs of all players is always

zero. By Figure 2.1, Matching Pennies Ver.2 is a zero-sum game.

2.4.2 Market game

We next introduce the market game, which is a cooperative game. A cooperative

game is a game where players can make groups, called coalitions.

First, we define a cooperative game by using mathematical terminology. Let N =

{1, . . . , n} be the set of players and v : 2N → R be the characteristic function of the

game. A cooperative game is represented by a pair (N, v). A subset S ⊆ N is called a
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coalition and v(S) represents the value of coalition S. We would like to know whether

players have incentives to make coalitions or not, and how to share their aggregate

payoffs.

Next we define the market game. Let N = {1, . . . , n} and L, respectively, be the

set of agents and goods. Each agent i has preference on bundles xi ∈ RL
+ which is

represented by utility function ui : R
L
+ → R. In this thesis, each ui is monotone (i.e.

ui(xi) ≤ ui(yi) for xi ≤ yi) and concave. We define the initial bundle of agent i by

wi ∈ RL
+. An allocation (x1, . . . , xn) ∈ RL

+ × · · · ×RL
+ is defined by a tuple of bundles.

We define a feasible allocation.

Definition 2.32. An allocation (x1, . . . , xn) is feasible if∑
i∈N

xil ≤
∑
i∈N

wil

for all l ∈ L.

We define v : 2N → R by

v(S) = max

{∑
i∈S

ui(xi) : (x1, . . . , xn) is a feasible allocation

}
(∀S ⊆ N).

Then the pair (N, v) is called the market game.

We next define Pareto efficiency of allocations. Pareto efficiency is an important

property in economics.

Definition 2.33. A feasible allocation (x1, . . . , xn) is Pareto efficient if there is no other

feasible allocation (x′1, . . . , x
′
n) such that ui(x′i) ≥ ui(xi) for all i ∈ N and ui(x′i) > ui(xi)

for some i ∈ N .

By the definition of a Pareto efficient allocation, it is impossible to increase someone’s

utility without decreasing utilities of the other agents. Hence a Pareto efficient allocation

is one of the “balanced” allocations.

Now we define a competitive equilibrium in the market game. We denote a price

vector by p ∈ RL
+.
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Definition 2.34. Let p∗ ∈ RL
+ be a price vector. Then (p∗, x∗1, . . . , x

∗
n), a tuple of a

price vector and an allocation, is said to be a competitive equilibrium if the following

statements hold:

(i) For any i ∈ N and xi ∈ RL
+, we have

ui(x
∗
i )− ⟨p∗, x∗i − wi⟩ ≥ ui(xi)− ⟨p∗, xi − wi⟩.

(ii)
∑

i∈N x
∗
i =

∑
i∈N wi.

The first property requires x∗i to be the best bundle for agent i, when the price of

good l is given by p∗l . The second property means that the total amount of the aggregate

supply and demand is equivalent.

We now assume that players would like to form coalition N (i.e. the best strategy for

all players is forming coalition N). Thus we focus on how to share v(N). We describe

the concept of imputations of the market game.

Definition 2.35. A vector z ∈ RN is said to be an imputation of the market game

(N, v) if the following conditions hold:

(i) zi ≥ v({i}) for all i ∈ N .

(ii)
∑

i∈N zi = v(N).

The first condition says that each player obtains more payoff by participating in a

coalition than not. The second condition means that aggregate payoff is shared thor-

oughly. In the market game, the following imputation has a good property.

Theorem 2.36 (see [41, 54]). Let (p∗, x∗1, . . . , x
∗
n) be a competitive equilibrium. We

define vector z ∈ RN by

zi = ui(x
∗)− ⟨p∗, x∗i − wi⟩ (i ∈ N).

Then z is an imputation of the market game. Furthermore, there do not exist y ∈ RN

and S ⊆ N such that

(i) v(S) ≥
∑

i∈S yi.
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(ii) yi > xi for all i ∈ S.

Imputation z has good properties because properties (i) and (ii) say that there is no

incentive for all players to leave coalition N .

Fundamental theorems of welfare economics

In microeconomics, Pareto efficiency and competitive equilibria are closely related.

Indeed, in the market game, (x∗1, . . . , x∗n) is a Pareto efficient allocation if (p∗, x∗1, . . . , x∗n)

is a competitive equilibrium. The following statement is called the first fundamental

theorem of welfare economics.

Theorem 2.37 (The first fundamental theorem of welfare economics). A competitive

equilibrium is Pareto efficient.

We can regard Theorem 2.37 as the formal description of the “invisible hand” which is

used by Adam Smith. The converse of Theorem 2.37 does not hold in general. However,

the following theorem, the second fundamental theorem of welfare economics, holds3.

Theorem 2.38 (The second fundamental theorem of welfare economics). We can achieve

a competitive equilibrium from a Pareto efficient allocation by a wealth redistribution (if

some properties are satisfied).

3To be exact, some assumptions are necessary to hold the second fundamental theorem of welfare
economics. For more information, see [41].



Chapter 3

Multi-unit Trading Network Model

3.1 Definitions and Previous Results

We deal with the multi-unit trading network model. This model is an extension of

the single-unit trading network model introduced by Hatfield et al. [27]. The model is

related to the market game. In our model, however, each agent has preference on trades

instead of bundles. In the first half of this section, we give definitions of the model.

We next review the previous results on the single-unit trading network model so that

readers can understand our results clearly.

3.1.1 Definitions of the model

The multi-unit trading network model consists of agents and trades. Agents have

their own preferences on trades and they are represented by functions. Let I and Ω,

respectively, be finite sets of agents and trades. Each agent plays as a buyer or seller in

some trades. For trade t, we define the buyer and seller by b(t) and s(t), respectively.

The relationship among the agents can be represented by a directed graph, that is, each

agent corresponds to a vertex and each trade t corresponds to a directed edge (s(t), b(t))1.

We denote by ωt ∈ Z+ the number of units of t, and by pt ∈ R the unit price for t. A

1In the model, there may exist trades t1, t2(t1 ̸= t2) such that b(t1) = b(t2) and s(t1) = s(t2). Then
we consider that the corresponding directed graph has multiple directed edges.

33
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trade vector and a price vector are respectively defined by ω = (ωt | t ∈ Ω) ∈ ZΩ
+ and

p = (pt | t ∈ Ω) ∈ RΩ. A pair (ω, p) is called an outcome.

For agent i ∈ I, we define

Ω→i = {t ∈ Ω : b(t) = i}, Ωi→ = {t ∈ Ω : s(t) = i}, Ωi = Ω→i ∪ Ωi→.

By the above definitions, Ω→i represents the set of trades in which i is a buyer and Ωi→

represents the set of trades in which i is a seller. The set of trades which is associated

with agent i is denoted by Ωi.

For a subset T ⊆ Ω, ag(T ) represents the set of agents who are involved in trades in

T , that is,

ag(T ) =
∪
t∈T

{b(t), s(t)}.

Each agent i ∈ I has a valuation function ui : Z
Ω → R ∪ {−∞} which represents

her/his preference. Throughout this paper, we assume that

ui(ω) = ui(ω
′) if ωt = ω′

t for all t ∈ Ωi, (3.1)

and

0 ∈ domui ⊆ {ω ∈ ZΩ : 0 ≤ ωt ≤M (∀t ∈ Ωi)} for some M ∈ Z+. (3.2)

Condition (3.1) requires that the value of ui depends only on trades associated with

herself/himself. Therefore, we can regard the domain of ui as ZΩi . Condition (3.2)

requires that the number of trades is finite. We think that these conditions are natural

requirements. We note that max{ui(ω) : ω ∈ ZΩ} always exists by these conditions.

We next define utility functions. The utility function U : ZΩ × RΩ → R ∪ {−∞}

associated with ui is defined by

U(ω, p ;ui) = ui(ω) +
∑

t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt.
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The second and third terms of U represent the amount of money that agent i obtains

and pays. Valuations of each agent are measured in monetary terms. The indirect utility

function V : RΩ → R associated with ui is defined by

V (p ;ui) = max{U(ω, p ;ui) : ω ∈ ZΩ}.

The value of V (p ;ui) means the maximum utility of agent i under the price p.

We then introduce the demand correspondence and choice correspondence. For a

price vector p, we define the demand correspondence D(p ;ui) of agent i by

D(p ;ui) = argmax{U(ω, p ;ui) : ω ∈ ZΩ}.

For an outcome (ω, p), we define the choice correspondence C(ω, p ;ui) of agent i by

C(ω, p ;ui) = argmax{U(ω′, p ;ui) : ω
′ ≤ ω, ω′ ∈ ZΩ}.

The demand correspondence D(p ;ui) is the set of trade vectors which maximizes utility

of agent i under the price p. On the other hand, the choice correspondence C(ω, p ;ui)

is the set of trade vectors which maximizes utility of agent i under the price p when

available trades are given by ω. Since the model is determined by Ω and ui (i ∈ I), we

represent the model by the pair (Ω, {ui}i∈I), and call it an economy.

We next give definitions of stable outcomes and competitive equilibria. These con-

cepts play an important role in the model. For this, we define individual rationality and

blocking sets.

Definition 3.1. An outcome (ω, p) is said to be individually rational if ω ∈ C(ω, p ;ui)

for all i ∈ I.

Individual rationality means that no agent has an incentive to cancel some trades when

taking ω under the price p.

Definition 3.2. A pair (z, p′) is said to be a blocking set of (ω, p) in economy (Ω, {ui}i∈I)

if the following conditions hold:

(i) z ∈ ZΩ
+ \ {0}.
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(ii) p′ ∈ RΩ and p′t = 0 for all t ∈ Ω with t ̸∈ supp+(z).

(iii) for all i ∈ ag(supp+(z)) and ω′ ∈ C(ω+ z, p+ p′ ;ui), we have ω′
t = (ω+ z)t for all

t ∈ supp+(z) ∩ Ωi.

Since the definition of blocking sets is complicated, we give an intuition of a blocking

set. We assume that (z, p′) is a blocking set of (ω, p) and consider the case where the

number of available units of trade t increases by zt and the unit price for t changes from

pt to pt+p′t for all t ∈ supp+(z). Then each agent i ∈ ag(supp+(z)) strictly prefers taking

(ω+ z)t trades for all t ∈ supp+(z)∩Ωi. In other words, all agents in ag(supp+(z)) take

all additional units of trades. Therefore we regard (ω, p) as blocked by the pair (z, p′).

By the definition of blocking sets, it holds that

U(ω′, p+ p′ ;ui) > U(ω, p+ p′ ;ui)

for all ω′ ∈ C(ω + z, p + p′ ;ui) when (z, p′) is a blocking set of (ω, p). We are ready to

define stable outcomes and competitive equilibria in economy (Ω, {ui}i∈I). Both are one

of the balanced situations.

Definition 3.3. An outcome (ω, p) is stable in economy (Ω, {ui}i∈I) if the following

conditions hold:

(i) (ω, p) is individually rational.

(ii) (ω, p) does not have any blocking sets.

Definition 3.4. An outcome (ω, p) is said to be a competitive equilibrium in economy

(Ω, {ui}i∈I) if ω ∈ D(p ;ui) for all i ∈ I. Then the vectors ω and p are called a compet-

itive equilibrium trade vector and a competitive equilibrium price vector, respectively.

By Definition 3.4, if (ω, p) is a competitive equilibrium, taking ω is the best choice

for all agents under the price p. In other words, no player has incentive to increase (de-

crease) the number of trades without changing prices. This corresponds to property (i)

in Definition 2.34. Moreover, the total amount of the aggregate supply and demand is

equivalent for any competitive equilibrium, which corresponds to property (ii) in Defi-
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Table 3.1: The valuations of agents in Example 3.1.

(t1, t2) ua(·) ub(·) uc(·)
(0, 0) 0 0 0

(1, 0) 3 −1 0

(0, 1) 4 0 −1

(1, 1) 2 −1 −1

nition 2.34. Thus Definition 3.4 can be regarded as an adaptation of Definition 2.34 to

the multi-unit trading network model.

We give an example to explain stable outcomes and competitive equilibria.

Example 3.1. There are three agents, a, b, and c and two types of trades, t1 and t2

such that b(t1) = a, s(t1) = b, b(t2) = a, and s(t2) = c. Valuation functions of each

agent are given in Table 3.1. We consider outcome (ω, p) = ((1, 0), (2, 0)). Although

this outcome is individually rational, it has a blocking set (z, p′) = ((0, 1), (0, 2)). In

this case, there exists a competitive equilibrium. In fact, ((0, 1), (1, 1)) is a competitive

equilibrium because (0, 1) ∈ D((1, 1) ;ui) for all i ∈ {a, b, c}.

Finally, we give the definition of efficient trade vectors.

Definition 3.5. A trade vector ω is efficient on {ui}i∈I if∑
i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ ZΩ).

Here, “efficient” is equal to Pareto efficient. In fact, for an efficient trade vector ω,

there is no trade ω′ such that ui(ω′) ≥ ui(ω) for all i ∈ I and ui(ω′) > ui(ω) for some

i ∈ I. Furthermore, if there exists τ ∈ ZΩ such that
∑

i∈I ui(τ) >
∑

i∈I ui(ω), (ω, p) is

not stable for all p ∈ RΩ (see Section 3.3).

A big difference between the multi-unit trading network model and the single-unit

trading network model is about valuation functions. They are defined on ZΩ in the multi-

unit trading network model whereas they are defined on the power set of Ω in the single-

unit trading network model. In the multi-unit trading network model, a vector whose
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elements are 0 or 1 can be regarded as a subset of trades. In fact, if domui ⊆ {0, 1}Ω

for all i ∈ I, the multi-unit trading network model represents the single-unit trading

network model in [27] and the definitions of stable outcomes and competitive equilibria

in [27] coincide with the above definitions in the multi-unit trading network model.

3.1.2 Review of the previous works

As mentioned in the last paragraph in Subsection 3.1.1, if domui ⊆ {0, 1}Ω for

all i ∈ I, we regard the multi-unit trading network model as the single-unit trading

network model. In this subsection, we describe the results concerning the single-unit

trading network model which were shown by Hatfield et al. [27]. We first explain the

definitions of the full substitutes condition and the laws of aggregate supply and demand.

Full substitutes condition and laws of aggregate supply and demand

The formal definition of the full substitutes condition is given by as follows.

Definition 3.6 ([27]). A valuation function ui : {0, 1}Ω → R∪{−∞} of agent i satisfies

the full substitutes condition if the following conditions hold:

(i) For any p ∈ RΩ, t ∈ Ωi→, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p+ δχt ;ui)

such that

ωs ≥ τs (∀s ∈ Ωi→ \ {t}), ωs ≤ τs (∀s ∈ Ω→i).

(ii) For any p ∈ RΩ, t ∈ Ω→i, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p− δχt ;ui)

such that

ωs ≥ τs (∀s ∈ Ω→i \ {t}), ωs ≤ τs (∀s ∈ Ωi→).

The first condition in Definition 3.6 says that when the price of t ∈ Ωi→ increases,

the following statements hold:

• agent i’s supply of trades other than t does not increase.

• agent i’s demand does not decrease.
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We consider the situation where the price of t ∈ Ωi→ increases to obtain an intuition.

Then agent i has no incentives to decrease the amount of trade t. The first statement

requires that agent i never has incentives to increase the amount of trades in Ωi→ \ {t}.

This means that agent i views trades in Ωi→ as substitutes. Moreover, by the second

statement, agent i may increase the amount of trades in Ω→i in this situation. The

second condition in Definition 3.6 is symmetric to the first condition. It requires that

when the price of t ∈ Ω→i decreases, the following statements hold:

• agent i’s supply does not decrease.

• agent i’s demand of trades other than t does not increase.

In summary, agent i views trades in which she/he is a buyer (seller) as substitutes, and a

trade in Ωi→ and one in Ω→i as complements if ui satisfies the full substitutes condition.

The full substitutes condition contains the gross substitutes condition. Indeed, if

Ωi→ = ∅, the full substitutes condition coincides with the gross substitutes condition

(we can regard hiring a worker i with salary p as buying from i with price p). We next

give the definition of the laws of aggregate supply and demand.

Definition 3.7 ([27]). A valuation function ui : {0, 1}Ω → R∪{−∞} of agent i satisfies

the law of aggregate supply if for every p ∈ RΩ, t ∈ Ωi→, ω ∈ D(p ;ui), and δ > 0, there

exists τ ∈ D(p+ δχt ;ui) such that∑
s∈Ωi→

τs −
∑

s∈Ωi→

ωs ≥
∑

s∈Ω→i

τs −
∑

s∈Ω→i

ωs.

Similarly, ui satisfies the law of aggregate demand if for every p ∈ RΩ, t ∈ Ω→i,

ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p− δχt ;ui) such that∑
s∈Ω→i

τs −
∑

s∈Ω→i

ωs ≥
∑

s∈Ωi→

τs −
∑

s∈Ωi→

ωs.

The laws of aggregate supply and demand are conditions about the amount of increase

of trades. Two inequalities in Definition 3.7 represent the relationship between the

amount of trades in Ωi→ and Ω→i. The law of aggregate supply means that when the

price of t ∈ Ωi→ increases, the amount of increase of trades in Ω→i does not exceed that
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of increasing trades in Ωi→. Similarly, the law of aggregate demand means that when

the price of t ∈ Ω→i decreases, the amount of increase of trades in Ωi→ does not exceed

that of increasing trades in Ω→i.

The laws of aggregate supply and demand were first introduced by Hatfield and

Kominers [26]. Hatfield et al. [27] applied these concepts to the single-unit trading

network model. For the above conditions, the following statement holds.

Theorem 3.8 ([27]). If ui satisfies the full substitutes condition it satisfies the laws of

aggregate supply and demand.

Previous results

The full substitutes condition plays an important role in the single-unit trading net-

work model. Under the full substitutes condition, there exists a competitive equilibrium.

Theorem 3.9 ([27]). Suppose that every ui : {0, 1}Ω → R∪{−∞} satisfies the full sub-

stitutes condition. Then there exists a competitive equilibrium in economy (Ω, {ui}i∈I).

The full substitutes condition is necessary to guarantee the existence of competitive

equilibria. If a preference of only one agent does not satisfy the full substitutes condi-

tion, we cannot guarantee the existence of competitive equilibria. We next explain the

relationship between competitive equilibria and efficiency of trade vectors.

Theorem 3.10 ([27]). Let (ω, p) be a competitive equilibrium in (Ω, {ui}i∈I). Then ω

is efficient on {ui}i∈I , that is,∑
i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ {0, 1}Ω).

Theorem 3.11 ([27]). Suppose that every ui satisfies the full substitutes condition and

consider the economy (Ω, {ui}i∈I). Then for any competitive equilibrium (ω, p) and ef-

ficient trade vector ω′ on {ui}i∈I , (ω′, p) is also a competitive equilibrium. Moreover,

the set of competitive equilibrium price vectors forms a lattice, that is, if p and q are

competitive equilibrium price vectors, p ∧ q and p ∨ q are also competitive equilibrium

price vectors.
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In other words, Theorem 3.10 and the first part of Theorem 3.11 say that the fun-

damental theorems of welfare economics hold under the full substitutes condition.

Finally, we describe the relationship between stable outcomes and competitive equi-

libria in the single-unit trading network model.

Theorem 3.12 ([27]). If an outcome (ω, p) is a competitive equilibrium in (Ω, {ui}i∈I),

then it is stable.

Theorem 3.13 ([27]). Suppose that every ui satisfies the full substitutes condition and

(ω, p) is stable in (Ω, {ui}i∈I). Then there exists q ∈ RΩ such that (ω, q) is a competitive

equilibrium and qt = pt for all t ∈ supp+(ω).

Theorem 3.12 holds without assumptions that preferences of all agents satisfy the full

substitutes condition. This means that competitive equilibria are always stricter prop-

erties than stable outcomes. However, in the single-unit trading network model, these

properties are essentially equivalent under the full substitutes condition. Theorem 3.13

says that we can construct a competitive equilibrium from a stable outcome by changing

prices of trades which are not taken.

3.2 Existence and Lattice Structure of Competitive

Equilibria

We now consider the existence of competitive equilibria. We first introduce the

generalized full substitutes condition, which plays a central role in the multi-unit trading

network model. The important fact is that the generalized full substitutes condition

is equivalent to twisted M♮-concavity. By using this fact, we show the existence of

competitive equilibria under the generalized full substitutes condition. Moreover, we

prove that the set of competitive equilibrium price vector is an L♮-convex polyhedron.

The results in this section can be found in [32].



Multi-unit Trading Network Model 42

3.2.1 Generalized full substitutes condition

The full substitutes condition is defined on a valuation function whose effective do-

main is contained in {0, 1}Ω. In this subsection, we consider extending the full substi-

tutes condition to the multi-unit trading network model, that is, we define the analogous

condition on a function whose effective domain is a set of integer vectors.

Definition 3.14. A valuation function ui : Z
Ω → R ∪ {−∞} of agent i satisfies the

generalized full substitutes condition if the following conditions hold:

(i) D(p ;ui) is a discretely convex set for all p ∈ RΩ.

(ii) For any p ∈ RΩ, t ∈ Ωi→, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p+ δχt ;ui)

such that

ωs ≥ τs (∀s ∈ Ωi→ \ {t}), ωs ≤ τs (∀s ∈ Ω→i), (3.3)∑
s∈Ωi→

τs −
∑

s∈Ωi→

ωs ≥
∑

s∈Ω→i

τs −
∑

s∈Ω→i

ωs. (3.4)

(iii) For any p ∈ RΩ, t ∈ Ω→i, ω ∈ D(p ;ui), and δ > 0, there exists τ ∈ D(p− δχt ;ui)

such that

ωs ≥ τs (∀s ∈ Ω→i \ {t}), ωs ≤ τs (∀s ∈ Ωi→), (3.5)∑
s∈Ω→i

τs −
∑

s∈Ω→i

ωs ≥
∑

s∈Ωi→

τs −
∑

s∈Ωi→

ωs. (3.6)

The first condition is essentially equivalent2 to the condition that ui is concave-

extensible by Proposition 2.19. We see from Definition 3.14 that the generalized full

substitutes condition is a natural combination of the full substitutes condition and the

laws of aggregate supply and demand introduced in Subsection 3.1.2.

2The word “essentially” means that there is a possibly that this statement does not hold because
domui is not bounded in our setting (note that ui is defined on not ZΩi but ZΩ). However, when
we regard ui as a function defined on ZΩi , it is concave-extensible.
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Obviously, the generalized full substitutes condition implies the full substitutes con-

dition. On the other hand, the converse does not hold in general, while it turns out that

the converse holds true for a valuation function ui with domui ⊆ {0, 1}Ω.

The generalized full substitutes condition is closely related to twisted M♮-concavity

of a valuation function. This is not a surprising fact because Fujishige and Yang [19]

showed that a valuation function satisfies the gross substitutes condition, which is in-

cluded in the generalized full substitutes condition, if and only if it is M♮-concave on

the unit hypercube. Their results were extended by several researchers. For instance,

Ikebe and Tamura [33] showed that if domui ⊆ {0, 1}Ω, an Ωi→-twisted M♮-concave

function satisfies the full substitutes condition. Recently, Shioura and Yang [63] showed

that twisted M♮-concavity of a valuation function is equivalent to the generalized gross

substitutes and complements (GGSC) condition, which is used in auction models (for

more detail, see [62]). In this thesis, we show the following statement.

Theorem 3.15. A valuation function ui : ZΩ → R∪{−∞} of agent i satisfies the gen-

eralized full substitutes condition if and only if it is an Ωi→-twisted M♮-concave function.

Recall that a valuation function ui satisfies condition (3.1). Therefore, if ui is an Ωi→-

twisted M♮-concave function it is also an A-twisted M♮-concave function where Ωi→ ⊆

A ⊆ Ω \ Ω→i. Unless otherwise noted, a valuation function of agent i is simply said to

be a twisted M♮-concave function if it is an Ωi→-twisted M♮-concave function.

As we mentioned above, Shioura and Yang [63] proved that the GGSC condition

is equivalent to twisted M♮-concavity. In the proof, they used the following property,

(GGS±). Let ûi : ZΩi → R ∪ {−∞} be a function whose effective domain is bounded.

(GGS±)

(i) For all p ∈ RΩi , D̃(p ; ûi) is a discretely convex set where

D̃(p ; ûi) = argmax

{
ûi(ω)−

∑
s∈Ωi

ps · ωs : ω ∈ ZΩi

}
.
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(ii) Let p ∈ RΩi , δ > 0, and ω ∈ D̃(p ; ûi).

a) For all t ∈ Ωi→, there exists τ ∈ D̃(p+ δχt ; ûi) such that

τs ≥ ωs (∀s ∈ Ωi \ {t}),
∑
s∈Ωi

τs ≤
∑
s∈Ωi

ωs.

b) For all t ∈ Ω→i, there exists τ ∈ D̃(p− δχt ; ûi) such that

τs ≤ ωs (∀s ∈ Ωi \ {t}),
∑
s∈Ωi

τs ≥
∑
s∈Ωi

ωs.

The condition (GGS±) is equivalent to M♮-concavity.

Theorem 3.16 ([63]). A function ûi : ZΩi → R ∪ {−∞} whose effective domain is

bounded satisfies (GGS±) condition if and only if it is an M♮-concave function.

By condition (3.1), we can regard a valuation function in our model as a function

defined on ZΩi . Then the effective domain of a valuation function is bounded by condi-

tion (3.2). By the definition of an Ωi→-twisted M♮-concave function and Theorem 3.16,

the following statement holds.

Corollary 3.17. Let ui : ZΩi → R ∪ {−∞} be a function whose effective domain is

bounded. Then ui is an Ωi→-twisted M♮-concave function if and only if the following

conditions hold.

(i) For all p ∈ RΩi, D(p ;ui) is a discretely convex set where

D(p ;ui) = argmax

{
ui(ω) +

∑
s∈Ωi→

ps · ωs −
∑

s∈Ω→i

ps · ωs : ω ∈ ZΩi

}
.

(ii) Let p ∈ RΩi, δ > 0, and ω ∈ D(p ;ui).

a) For all t ∈ Ωi→, there exists τ ∈ D(p+ δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ωi→ \ {t}), ωs ≤ τs (∀s ∈ Ω→i),∑
s∈Ωi→

τs −
∑

s∈Ωi→

ωs ≥
∑

s∈Ω→i

τs −
∑

s∈Ω→i

ωs.
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b) For all t ∈ Ω→i, there exists τ ∈ D(p− δχt ;ui) such that

ωs ≥ τs (∀s ∈ Ω→i \ {t}), ωs ≤ τs (∀s ∈ Ωi→),∑
s∈Ω→i

τs −
∑

s∈Ω→i

ωs ≥
∑

s∈Ωi→

τs −
∑

s∈Ωi→

ωs.

By Corollary 3.17 and condition (3.1), we verify that Theorem 3.15 is satisfied.

3.2.2 Existence of competitive equilibria

We consider competitive equilibria in the multi-unit trading network model under

the generalized full substitutes condition, which is equivalent to twisted M♮-concavity

of a valuation function. Since the concept of twisted M♮-concave functions is a variant

of M♮-concave functions, the existing results for M♮-concave functions in discrete convex

analysis can be applied to show the existence of competitive equilibria.

Theorem 3.18. Suppose that every ui satisfies the generalized full substitutes condition,

that is, ui is twisted M♮-concave for all i ∈ I. Then there exists a competitive equilibrium

in economy (Ω, {ui}i∈I).

Proof. We divide each trade t ∈ Ω into two trades tb and ts, and define

Ω̃ =
∪
t∈Ω

{tb, ts}, Ω̃i = {tb : t ∈ Ω→i} ∪ {ts : t ∈ Ωi→} (i ∈ I).

Since there are exactly one buyer and one seller for each trade t ∈ Ω, it holds that

Ω̃j ∩ Ω̃k = ∅ (j ̸= k). (3.7)

We now construct two M♮-concave functions u and f defined on ZΩ̃. For each i ∈ I,

we define a function ũi : ZΩ̃i → R ∪ {−∞} by

ũi(ω̃) = ui(Ti(ω̃)) (∀ω̃ ∈ ZΩ̃i), (3.8)
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where ui is a valuation function defined on ZΩ and Ti(ω̃) ∈ ZΩ is defined by

(Ti(ω̃))t =


ω̃tb if t ∈ Ω→i,

−ω̃ts if t ∈ Ωi→,

arbitrary if t ̸∈ Ωi.

Although Ti(ω̃) is not unique for each ω̃ ∈ ZΩ̃i , the value of ui(ω̃) is unique. This is

because the value of ui depends only on the number of trades in Ωi. By the definition

of ũi, it is an M♮-concave function. Let u : ZΩ̃ → R ∪ {−∞} be defined by

u(ω̃) =
∑
i∈I

ũi(ω̃
Ω̃i) (ω̃ ∈ ZΩ̃), (3.9)

where ω̃Ω̃i is the restriction of ω̃ on Ω̃i. Namely, u is the sum of all ũi which implies that

u is also an M♮-concave function (note that (3.7) holds). Moreover, domu is bounded

by condition (3.2). We next define f : ZΩ̃ → R ∪ {−∞} by

f(ω̃) =

0 if ω̃tb + ω̃ts = 0 for all t ∈ Ω,

−∞ otherwise.
(3.10)

It is easy to check that dom f is an M♮-convex set. Hence f is an M♮-concave function.

Let ω̃∗ be a maximizer of u+ f . Such a maximizer exists because domu is bounded

and domu ∩ dom f ̸= ∅ (note that 0 ∈ domu ∩ dom f). We apply Theorem 2.24 to u

and f . Then there exists p̃∗ ∈ RΩ̃ such that

u(ω̃∗)−
∑
k∈Ω̃

ω̃∗
k · p̃∗k ≥ u(ω̃)−

∑
k∈Ω̃

ω̃k · p̃∗k (∀ω̃ ∈ ZΩ̃), (3.11)

f(ω̃∗) +
∑
k∈Ω̃

ω̃∗
k · p̃∗k ≥ f(ω̃) +

∑
k∈Ω̃

ω̃k · p̃∗k (∀ω̃ ∈ ZΩ̃). (3.12)
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By (3.12), it holds that ω̃∗ ∈ dom f , which means ω̃∗
tb
+ ω̃∗

ts = 0 for all t ∈ Ω. We claim

that p̃∗tb = p̃∗ts for all t ∈ Ω. If p̃∗tb > p̃∗ts for some t ∈ Ω, we have

f(ω̃∗ + χtb − χts) +
∑
k∈Ω̃

(ω̃∗ + χtb − χts)k · p̃∗k = f(ω̃∗) +
∑
k∈Ω̃

ω̃∗
k · p̃∗k + p̃∗tb − p̃∗ts

> f(ω̃∗) +
∑
k∈Ω̃

ω̃∗
k · p̃∗k.

This contradicts (3.12). We also obtain a contradiction from the assumption that p̃∗tb <

p̃∗ts . Therefore ω̃
∗
tb
+ ω̃∗

ts = 0 and p̃∗tb = p̃∗ts for all t ∈ Ω.

We define ω∗ ∈ ZΩ and p∗ ∈ RΩ by

ω∗
t = ω̃∗

tb
(= −ω̃∗

ts), p∗t = p̃∗tb (= p̃∗ts) (∀t ∈ Ω).

We finally show that (ω∗, p∗) is a competitive equilibrium in (Ω, {ui}i∈I), that is, ω∗ ∈

D(p∗ ;ui) for all i ∈ I. By (3.7), we obtain

∑
i∈I

ũi(ω̃
Ω̃i)−

∑
k∈Ω̃

ω̃k · p̃∗k =
∑
i∈I

ũi(ω̃Ω̃i)−
∑
k∈Ω̃i

ω̃k · p̃∗k

 .

This fact and (3.11) imply that

ũi(ω̃
∗Ω̃i)−

∑
k∈Ω̃i

ω̃∗
k · p̃∗k ≥ ũi(ω̃

Ω̃i)−
∑
k∈Ω̃i

ω̃k · p̃∗k (∀i ∈ I, ω̃ ∈ ZΩ̃). (3.13)

Furthermore, for all i ∈ I and ω̃ ∈ ZΩ̃ we have

ũi(ω̃
Ω̃i)−

∑
k∈Ω̃i

ω̃k · p̃∗k = ui(Ti(ω̃
Ω̃i)) +

∑
t∈Ωi→

(Ti(ω̃
Ω̃i))t · p∗t −

∑
t∈Ω→i

(Ti(ω̃
Ω̃i))t · p∗t

= U(Ti(ω̃
Ω̃i), p∗ ;ui). (3.14)

From (3.13) and (3.14), it follows that

U(ω∗, p∗ ;ui) ≥ U(ω, p∗ ;ui) (∀i ∈ I, ω ∈ ZΩ).

Thus ω∗ ∈ D(p∗ ;ui) for all i ∈ I, that is, (ω∗, p∗) is a competitive equilibrium.
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3.2.3 Lattice structure of the set of competitive equilibrium

price vectors

In this subsection, we consider the structure of the set of competitive equilibrium

price vectors under the generalized full substitutes condition. Similar to the single-unit

trading network model, the set of competitive equilibrium price vectors forms a lattice

in our model.

Theorem 3.19. Suppose that every ui satisfies the generalized full substitutes condition

and consider economy (Ω, {ui}i∈I). Then the set of competitive equilibrium price vectors

forms a lattice.

Before we prove Theorem 3.19, we provide the following proposition. We often use

this proposition to prove our results.

Proposition 3.20. For all p ∈ RΩ, we have∑
i∈I

U(ω, p ;ui) =
∑
i∈I

ui(ω).

Proof. Since each trade t ∈ Ω is associated with exactly one buyer and one seller, we

have ∑
i∈I

U(ω, p ;ui) =
∑
i∈I

(
ui(ω) +

∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt

)

=
∑
i∈I

ui(ω) +
∑
i∈I

( ∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt

)
=
∑
i∈I

ui(ω).

We now prove Theorem 3.19. We roughly describe the idea of the proof. We first show

that the sum of indirect utility functions
∑

i∈I V (· ;ui) is a polyhedral L♮-convex function

(Proposition 3.21). Then we prove that p is a competitive equilibrium price vector if

and only if p is a minimizer of
∑

i∈I V (· ;ui) (Proposition 3.22). By Theorem 2.18, we

verify that the set of competitive equilibrium price vectors forms a lattice because it is

an L♮-convex polyhedron.
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Proposition 3.21. Suppose that ui is twisted M♮-concave for all i ∈ I. Then
∑

i∈I V (· ;ui)

is a polyhedral L♮-convex function.

Proof. By Proposition 2.16, the sum of polyhedral L♮-convex functions is also polyhedral

L♮-convex. It suffices to show that each indirect utility function V (· ;ui) is polyhedral

L♮-convex. By Proposition 2.30, ui is Ω→i-twisted M♮-concave (where ui is defined on

ZΩi). Thus there exists an M♮-concave function vi : ZΩi → R ∪ {−∞} such that

ui(ω) = vi(twist(ω ; Ω→i)).

We consider the Legendre-Fenchel transform of −vi. It is represented by

(−vi)•(p) = sup
{
⟨p, ω⟩ − (−vi(ω)) : ω ∈ ZΩi

}
= sup

{
⟨p, ω⟩+ ui(twist(ω ; Ω→i)) : ω ∈ ZΩi

}
= sup

{
⟨p, twist(ω ; Ω→i)⟩+ ui(ω) : ω ∈ ZΩi

}
= sup

{
ui(ω) +

∑
t∈Ωi→

pt · ωt −
∑

t∈Ω→i

pt · ωt : ω ∈ ZΩi

}

= max

{
ui(ω) +

∑
t∈Ωi→

pt · ωt −
∑

t∈Ω→i

pt · ωt : ω ∈ ZΩi

}
,

where the last equality follows from the fact that domui is bounded. On the other hand,

for p ∈ RΩ, we have

V (p ;ui) =
{
U(ω, p ;ui) : ω ∈ ZΩ

}
= max

{
ui(ω) +

∑
t∈Ωi→

pt · ωt −
∑

t∈Ω→i

pt · ωt : ω ∈ ZΩi

}
= (−vi)•(pΩi).

By Theorem 2.23, V (· ;ui) is a polyhedral L♮-convex function.

We next show that the set of minimizers of V (· ;ui) coincides with the set of com-

petitive equilibrium price vectors.

Proposition 3.22. Suppose that there exists a competitive equilibrium. Then p is a

competitive equilibrium price vector if and only if p is a minimizer of
∑

i∈I V (· ;ui).
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Proof. Let (ω∗, p∗) be a competitive equilibrium and p ∈ RΩ. By the definition of

V (· ;ui), we have

V (p∗ ;ui) = U(ω∗, p∗ ;ui) (∀i ∈ I), (3.15)

V (p ;ui) ≥ U(ω∗, p ;ui) (∀i ∈ I). (3.16)

By (3.15) and (3.16), we have∑
i∈I

V (p ;ui) ≥
∑
i∈I

U(ω∗, p ;ui)

=
∑
i∈I

ui(ω
∗)

=
∑
i∈I

U(ω∗, p∗ ;ui) =
∑
i∈I

V (p∗ ;ui), (3.17)

where the first and second equalities follow from Proposition 3.20. This shows that p∗

is a minimizer of
∑

i∈I V (· ;ui).

We then assume that p is a minimizer of
∑

i∈I V (· ;ui). Since p∗ is also a minimizer,

we have ∑
i∈I

V (p ;ui) =
∑
i∈I

V (p∗ ;ui).

Hence (3.16) holds with equality, which implies that ω∗ ∈ D(p ;ui) for all i ∈ I, that is,

p is a competitive equilibrium price vector.

By Proposition 2.18, the set of competitive equilibrium price vectors is an L♮-convex

polyhedron. Thus it forms a lattice. This concludes the proof of Theorem 3.19.

3.3 Competitive equilibria, efficiency, and stability

In this section, we consider the connection among competitive equilibria, efficiency,

and stability in the multi-unit trading network model. We generalize most of the re-

sults in Subsection 3.1.2 concerning the single-unit trading network model, while Theo-

rem 3.13 in Subsection 3.1.2 does not admit a generalization. The results in this section

are also based on [32].
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3.3.1 Competitive equilibria and efficiency

We first show the relationship between competitive equilibria and the efficiency of

trade vectors.

Theorem 3.23. Let (ω, p) be a competitive equilibrium in economy (Ω, {ui}i∈I). Then

ω is efficient on {ui}i∈I .

Proof. By the definition of competitive equilibria, we have

ui(ω) +
∑

t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt = U(ω, p ;ui)

≥ U(ω′, p ;ui)

= ui(ω
′) +

∑
t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt

for all i ∈ I and ω′ ∈ ZΩ. Since {Ωi→ : i ∈ I} and {Ω→i : i ∈ I} are partitions of Ω, by

summing these inequalities over all i ∈ I we have∑
i∈I

ui(ω) ≥
∑
i∈I

ui(ω
′) (∀ω′ ∈ ZΩ).

Therefore ω is efficient on {ui}i∈I .

Theorem 3.24. Let (ω, p) be a competitive equilibrium in economy (Ω, {ui}i∈I). For

any efficient trade vector ω′ on {ui}i∈I , (ω′, p) is also a competitive equilibrium.

Proof. By the efficiency of ω′ and Proposition 3.20, it holds that∑
i∈I

U(ω′, p ;ui) =
∑
i∈I

ui(ω
′)

≥
∑
i∈I

ui(ω) =
∑
i∈I

U(ω, p ;ui).

On the other hand,

U(ω, p ;ui) ≥ U(ω′, p ;ui)
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holds for all i ∈ I because (ω, p) is a competitive equilibrium. From these inequalities,

we obtain

U(ω, p ;ui) = U(ω′, p ;ui) (∀i ∈ I).

Therefore ω′ ∈ D(p ;ui) for all i ∈ I, that is, (ω′, p) is a competitive equilibrium.

Theorem 3.23 says that a competitive equilibrium trade vector is always efficient

on {ui}i∈I . This theorem can be regarded as the first fundamental theorem of welfare

economics. Theorem 3.24 says that the pair of an efficient trade vector and a competitive

equilibrium price vector is a competitive equilibrium. We can regard Theorem 3.24 as

the second fundamental theorem of welfare economics3. Note that no assumptions are

required for preferences of agents in these two theorems (however, there may not exist

a competitive equilibrium).

3.3.2 Competitive equilibria and stable outcomes

We next consider the connection between competitive equilibria and stable outcomes.

We show that a competitive equilibrium is always stable.

Theorem 3.25. If an outcome (ω, p) is a competitive equilibrium in economy (Ω, {ui}i∈I),

then it is stable.

Proof. Suppose that (ω, p) is not stable. We prove that (ω, p) is not a competitive

equilibrium, that is, ω ̸∈ D(p ;uj) holds for some j ∈ I. This fact leads to Theorem 3.25.

We first consider the case where (ω, p) is not individually rational. Then, there exists

j ∈ I such that ω ̸∈ C(ω, p ;uj). Thus it holds that

U(ω′, p ;uj) > U(ω, p ;uj) (∀ω′ ∈ C(ω, p ;uj)),

which implies ω ̸∈ D(p ;uj).

3The fundamental theorems of welfare economics are well known in microeconomics. For more infor-
mation, see [41].
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We next consider the case where (ω, p) is individually rational and there exists a

blocking set (z, p′) of (ω, p). We denote J = ag(supp+(z)). By the definition of blocking

sets, we have

ωi
t = (ω + z)t (t ∈ supp+(z) ∩ Ωi)

for i ∈ J and ωi ∈ C(ω + z, p+ p′ ;ui). This means that ω ̸∈ C(ω + z, p+ p′ ;ui) for all

i ∈ J , implying that

U(ω, p+ p′ ;ui) < U(ωi, p+ p′ ;ui) (∀i ∈ J).

By summing these inequalities over all i ∈ J , we obtain∑
i∈J

U(ω, p+ p′ ;ui) <
∑
i∈J

U(ωi, p+ p′ ;ui). (3.18)

As shown below, it holds that∑
i∈J

U(ω, p+ p′ ;ui) =
∑
i∈J

U(ω, p ;ui), (3.19)

∑
i∈J

U(ωi, p+ p′ ;ui) =
∑
i∈J

U(ωi, p;ui). (3.20)

By (3.18), (3.19), and (3.20), we have∑
i∈J

U(ω, p ;ui) <
∑
i∈J

U(ωi, p ;ui). (3.21)

By (3.21), there exists j ∈ J such that U(ωj, p ;uj) > U(ω, p ;uj). Hence, ω ̸∈ D(p ;uj)

holds and (ω, p) is not a competitive equilibrium.

We need to prove the equations (3.19) and (3.20) for the correctness of the proof.

We first prove the equation (3.19). By Proposition 3.20, we have∑
i∈I

U(ω, p ;ui) =
∑
i∈I

ui(ω) =
∑
i∈I

U(ω, p+ p′ ;ui). (3.22)
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Since p′t = 0 for all t ∈ Ω \ supp+(z), it holds that∑
i∈I\J

U(ω, p ;ui) =
∑
i∈I\J

U(ω, p+ p′ ;ui). (3.23)

The equation (3.19) follows from (3.22) and (3.23).

We finally show that the equation (3.20) holds. For all t ∈ supp+(z) ∩Ωi and i ∈ J ,

we have ωi
t = (ω + z)t. Moreover, p′t = 0 for all t ∈ Ω \ supp+(z). Therefore, it holds

that ∑
i∈J

( ∑
t∈Ωi→

ωi
t · p′t −

∑
t∈Ω→i

ωi
t · p′t

)

=
∑
i∈J

(∑
t∈Ωi→

(ω + z)t · p′t −
∑

t∈Ω→i

(ω + z)t · p′t

)
= 0.

Hence, we can obtain (3.20) as follows:

∑
i∈J

U(ωi, p ;ui) =
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · pt −

∑
t∈Ω→i

ωi
t · pt

)

=
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · pt −

∑
t∈Ω→i

ωi
t · pt

)

+
∑
i∈J

(∑
t∈Ωi→

ωi
t · p′t −

∑
t∈Ω→i

ωi
t · p′t

)

=
∑
i∈J

(
ui(ω

i) +
∑

t∈Ωi→

ωi
t · (p+ p′)t −

∑
t∈Ω→i

ωi
t · (p+ p′)t

)

=
∑
i∈J

U(ωi, p+ p′ ;ui).

The converse of Theorem 3.25 does not hold even if preferences of all agents satisfy

the generalized full substitutes condition, as shown in the following example.

Example 3.2. Consider an economy with two agents, a and b, and only one trade ω.

Agent a is the buyer and agent b is the seller. Valuation functions of each agent are

given in Table 3.2.
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Table 3.2: The valuations and utilities of agents in Example 3.2.

ω ua(ω) ub(ω) U(ω, 2 ;ua) U(ω, 2 ;ub)

0 0 0 0 0

1 4 −1 2 1

2 7 −2 3 2

3 0 −3 −6 3

4 −∞ −∞ −∞ −∞

We can easily check that ua and ub are twisted M♮-concave functions. Thus prefer-

ences of all agents satisfy the generalized full substitutes condition. In this example, we

can verify that (ω, p) = (2, 2) is a stable outcome. However, (2, 2) is not a competitive

equilibrium because it holds that

2 ̸∈ D(2 ;ub) = {3}.

Furthermore, Example 3.2 shows that the following statement, a generalization of

Theorem 3.13, does not hold in the multi-unit trading network model:

Statement A. Suppose that every ui satisfies the generalized full substi-

tutes condition. If an outcome (ω, p) is stable in economy (Ω, {ui}i∈I), then

there exists q ∈ RΩ such that (ω, q) is a competitive equilibrium and qt = pt

for all t ∈ supp+(ω).

This shows an obvious gap between competitive equilibria and stable outcomes with

respect to price vectors in the multi-unit trading network model. In fact, stable outcomes

are strictly wider concept than competitive equilibria. On the other hand, stability is

closely related to the efficiency of a trade vector.

Theorem 3.26. Suppose that every ui satisfies the generalized full substitutes condition.

If an outcome (ω, p) is stable in economy (Ω, {ui}i∈I), then ω is efficient on {ui}i∈I .

We prove Theorem 3.26 in the next subsection. By Theorems 3.24 and 3.26, we have

the following weaker statement than Statement A.
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Table 3.3: The valuations of agents in Example 3.3.

(t1, t2) ua(·) ub(·) uc(·)
(0, 0) 0 0 0

(1, 0) 4 −1 0

(0, 1) 4 0 −1

(1, 1) 0 −1 −1

Corollary 3.27. Suppose that every ui satisfies the generalized full substitutes condition.

If an outcome (ω, p) is stable in economy (Ω, {ui}i∈I), then there exists q ∈ RΩ such that

(ω, q) is a competitive equilibrium in (Ω, {ui}i∈I).

Corollary 3.27 says that we can construct a competitive equilibrium from a stable

outcome by changing prices of trades. Unlike the single-unit trading network model,

competitive equilibria and stable outcomes are not essentially equivalent in the multi-

unit trading network model.

By Theorem 3.26, a price vector of a stable outcome is efficient. We can easily check

that the converse of Theorem 3.26 does not hold. Indeed, if p is sufficiently large, (ω, p)

does not satisfy the individual rationality. In addition, even if ω is efficient on {ui}i∈I
and (ω, p) is individually rational, (ω, p) may not be stable (see Example 3.3).

Example 3.3. Let a, b, and c be three agents, and t1 and t2 be two types of trades such

that b(t1) = a, s(t1) = b, b(t2) = a, and s(t2) = c. Valuation functions of each agent are

given in Table 3.3. Then (ω, p) = ((1, 0), (3, 0)) has a blocking set (z, p′) = ((0, 1), (0, 2))

while ((1, 0), (3, 0)) is individually rational and (t1, t2) = (1, 0) is efficient on {ui}i∈I .

3.3.3 Proof of Theorem 3.26

We give the proof of Theorem 3.26. Suppose that (ω, p) is individually rational.

We show that (ω, p) has a blocking set if ω is not efficient on {ui}i∈I . We first define

a new valuation function. For a nonempty A ⊆ Ω we define the valuation function
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uAi (· ; (ω, p)) : ZA → R ∪ {−∞} of agent i by

uAi (τ ; (ω, p)) = max

{
ui(ω

′) +
∑

t∈Ωi→\A

ω′
t · pt −

∑
t∈Ω→i\A

ω′
t · pt :

ω′
t ≤ ωt (t ∈ Ω \ A), ω′

t = τt (t ∈ A), ω′ ∈ ZΩ

}
.

For convenience, we define max{−∞} = −∞. By Proposition 2.31, uAi (· ; (ω, p)) is

(Ωi→ ∩ A)-twisted M♮-concave (note that we can replace “max” with “sup” by condi-

tions (3.1) and (3.2)). Function uAi (· ; (ω, p)) is helpful in investigating the relationship

between the efficiency and stability. In fact, the following lemma holds.

Lemma 3.28. Suppose that every ui is twisted M♮-concave and (ω, p) is individually

rational in economy (Ω, {ui}i∈I). Then ωA is not efficient on {uAi (· ; (ω, p))}i∈I for some

A ⊆ Ω if and only if there exists a blocking set of (ω, p). Furthermore, if ωA is not

efficient on {uAi (· ; (ω, p))}i∈I , then there exists a blocking set (z, p′) of (ω, p) such that

z ∈ {0, 1}Ω and supp+(z) ⊆ A.

If ω is not efficient on {ui}i∈I , ωΩ is not efficient on {uΩi (· ; (ω, p))}i∈I (note that

ωΩ = ω and uΩi (· ; (ω, p)) = ui). Therefore, Theorem 3.26 follows from Lemma 3.28. The

proof of Lemma 3.28 is given in the last part of this subsection.

Before proving Lemma 3.28, we discuss the inefficiency of trade vectors and some

properties of uAi (· ; (ω, p)). Some propositions and lemmas in this subsection are used in

the proofs of the next section.

Inefficiency of trade vectors

We discuss the inefficiency of trade vectors. We show that if ω is not efficient on

{ui}i∈I , there exists ω′ such that
∑

i∈I ui(ω) <
∑

i∈I ui(ω
′) and maxt∈Ω |ω′

t − ωt| ≤ 1.

Lemma 3.29. Suppose that ui is twisted M♮-concave for all i ∈ I and ω is not efficient

on {ui}i∈I . Then there exist A,B ⊆ Ω such that A ∩B = ∅, and∑
i∈I

ui(ω) <
∑
i∈I

ui(ω + χA − χB).
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Proof. Let u and f be functions defined by (3.9) and (3.10), respectively. Recall that

these functions are M♮-concave. It is easy to check that∑
i∈I

ui(ω
′) = u(T̃ (ω′)) + f(T̃ (ω′)) (∀ω′ ∈ ZΩ), (3.24)

where T̃ (ω′) ∈ ZΩ̃ is defined by

(T̃ (ω′))tb = ω′
t, (T̃ (ω′))ts = −ω′

t (∀t ∈ Ω). (3.25)

Since ω is not efficient on {ui}i∈I , T̃ (ω) ̸∈ argmax{u+f}. By Corollary 2.26, there exist

U,W ⊆ Ω̃ such that

u(T̃ (ω)) + f(T̃ (ω)) < u(T̃ (ω) + χU − χW ) + f(T̃ (ω) + χU − χW ). (3.26)

This inequality means f(T̃ (ω) + χU − χW ) > −∞. Therefore for each t ∈ Ω we have

tb ∈ U ⇔ ts ∈ W, tb ∈ W ⇔ ts ∈ U. (3.27)

By (3.24), (3.25), and (3.27), we have

u(T̃ (ω) + χU − χW ) + f(T̃ (ω) + χU − χW ) =
∑
i∈I

ui(ω + χA − χB),

where

A = {t ∈ Ω : tb ∈ U} (= {t ∈ Ω : ts ∈ W}),

B = {t ∈ Ω : ts ∈ U} (= {t ∈ Ω : tb ∈ W}).

Therefore, it holds by (3.26) that∑
i∈I

ui(ω) = u(T̃ (ω)) + f(T̃ (ω))

< u(T̃ (ω) + χU − χW ) + f(T̃ (ω) + χU − χW )

=
∑
i∈I

ui(ω + χA − χB).
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Properties of uA
i

We next describe some properties of uAi (· ; (ω, p)) used in the proof of Lemma 3.28.

Let ωA ∈ ZA and pA ∈ RA be restrictions of ω and p on A, respectively. Propositions

we introduce below state the relationship between two kinds of valuation functions,

ui and uAi (· ; (ω, p)). We define the utility function associated with uAi (· ; (ω, p)) by

U(·, · ;uAi (· ; (ω, p))), that is,

U(τ, q ;uAi (· ; (ω, p))) = uAi (τ ; (ω, p)) +
∑

t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt. (3.28)

Proposition 3.30. For τ ∈ ZA and q ∈ RA, it holds that

U(τ, q ;uAi (· ; (ω, p)))

= max
{
U(ω′, q′ ;ui) : ω

′
t ≤ ωt (t ∈ Ω \ A), ω′

t = τt (t ∈ A), ω′ ∈ ZΩ
}
, (3.29)

where q′ ∈ RΩ is the vector such that q′t = qt (∀t ∈ A) and q′t = pt (∀t ∈ Ω\A). Moreover,

the following statements hold:

(i) Suppose that (z, p′) is a blocking set of (ω, p) in (Ω, {ui}i∈I) and define A =

supp+(z). Then, for i ∈ ag(A) and τ ≤ ωA + zA with τ ̸= ωA + zA, we have

U(τ, (p+ p′)A ;uAi (· ; (ω, p))) < U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))).

(ii) Suppose that (ω, p) is individually rational in economy (Ω, {ui}i∈I). Then for each

A ⊆ Ω, we have

U(ωA, pA ;uAi (· ; (ω, p))) = U(ω, p ;ui), (3.30)∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

ui(ω). (3.31)

(iii) U(·, · ;uAi (· ; (ω, p))) is a constant function if Ωi ∩ A = ∅, that is, the value of

U(τ, q ;uAi (· ; (ω, p))) does not depend on τ and q.
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Proof. The equation (3.29) follows immediately from the definitions of a utility function

and uAi (· ; (ω, p)). Indeed, we have

U(τ, q ;uAi (· ; (ω, p))) = uAi (τ ; (ω, p)) +
∑

t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt

= max

{
ui(ω

′′) +
∑

t∈Ωi→\A

ω′′
t · pt −

∑
t∈Ω→i\A

ω′′
t · pt

: ω′′
t ≤ ωt (t ∈ Ω \ A), ω′′

t = τt (t ∈ A), ω′′ ∈ ZΩ

}
+

∑
t∈Ωi→∩A

τt · pt −
∑

t∈Ω→i∩A

τt · pt

= max

{
ui(ω

′′) +
∑

t∈Ωi→\A

ω′′
t · pt −

∑
t∈Ω→i\A

ω′′
t · pt

+
∑

t∈Ωi→∩A

τt · qt −
∑

t∈Ω→i∩A

τt · qt

: ω′′
t ≤ ωt (t ∈ Ω \ A), ω′′

t = τt (t ∈ A), ω′′ ∈ ZΩ

}

= max
{
U(ω′, q′ ;ui) : ω

′
t ≤ ωt (t ∈ Ω \ A),

ω′
t = τt (t ∈ A), ω′ ∈ ZΩ

}
.

We then prove the claim (i). Since (z, p′) is a blocking set of (ω, p), we have

ω∗
t = (ω + z)t (∀t ∈ supp+(z) ∩ Ωi) (3.32)

for each ω∗ ∈ C(ω + z, p+ p′ ;ui). By (3.29) and (3.32), it holds that

U(τ, (p+ p′)A ;uAi (· ; (ω, p))) < U(ω∗, p+ p′ ;ui),

U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))) = U(ω∗, p+ p′ ;ui).

Hence we obtain the claim (i).
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We show the claim (ii). Suppose that (ω, p) is individually rational in (Ω, {ui}i∈I),

that is,

ω ∈ C(ω, p ;ui) = argmax{U(ω′, p ;ui) : ω
′ ≤ ω, ω′ ∈ ZΩ} (∀i ∈ I).

Since

ω ∈ {ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \ A), ω′

t = ωt (t ∈ A)} ⊆ {ω′ ∈ ZΩ : ω′ ≤ ω},

it holds that

ω ∈ argmax{U(ω′, p ;ui) : ω
′
t ≤ ωt (t ∈ Ω \ A), ω′

t = ωt (t ∈ A), ω′ ∈ ZΩ} (∀i ∈ I).

Hence we have

U(ωA, pA ;uAi (· ; (ω, p))) = max
{
U(ω′, p ;ui) : ω

′
t ≤ ωt (t ∈ Ω \ A),

ω′
t = ωt (t ∈ A), ω′ ∈ ZΩ

}
= U(ω, p ;ui). (3.33)

By (3.33) and Proposition 3.20, we obtain∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

U(ωA, pA ;uAi (· ; (ω, p))) =
∑
i∈I

U(ω, p ;ui) =
∑
i∈I

ui(ω).

We finally consider the case where Ωi ∩ A = ∅. By (3.28), we have

U(τ, q ;uAi (· ; (ω, p))) = uAi (τ ; (ω, p)) (∀q ∈ RA).

By the definition of uAi (· ; (ω, p)) and the fact that the value of ui depends only on trades

in Ωi, the claim (iii) holds.
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Proposition 3.31. Let A and A′ be subsets of Ω with A ⊇ A′. Then for all τ ∈ ZΩ

with τt ≤ ωt (∀t ∈ Ω \ A′) and q ∈ RΩ with qt = pt (∀t ∈ Ω \ A′), it holds that

U(τ, q ;ui) ≤ U(τA, qA ;uAi (· ; (ω, p))) ≤ U(τA
′
, qA

′
;uA

′

i (· ; (ω, p))), (3.34)∑
i∈I

ui(τ) ≤
∑
i∈I

uAi (τ
A ; (ω, p)) ≤

∑
i∈I

uA
′

i (τA
′
; (ω, p)). (3.35)

Proof. The equation (3.34) follows from the equation (3.29) in Proposition 3.30 and

τ ∈ {ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \ A), ω′

t = τt (t ∈ A)}

⊆ {ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \ A′), ω′

t = τt (t ∈ A′)}

for all A ⊇ A′. The equation (3.35) follows from (3.34) and Proposition 3.20.

The next statement shows a useful inequality for the value
∑

i∈I u
A
i (· ; (ω, p)) under

the individual rationality.

Proposition 3.32. Suppose that (ω, p) is individually rational in economy (Ω, {ui}i∈I).

For τ ≤ ωA, we have ∑
i∈I

uAi (τ ; (ω, p)) ≤
∑
i∈I

uAi (ω
A ; (ω, p)).

Proof. By Proposition 3.20 and the equation (3.29) in Proposition 3.30, we have∑
i∈I

uAi (τ ; (ω, p)) =
∑
i∈I

U(τ, pA ;uAi (· ; (ω, p)))

=
∑
i∈I

max
{
U(ω′, p ;ui) : ω

′
t ≤ ωt (t ∈ Ω \ A),

ω′
t = τt (t ∈ A), ω′ ∈ ZΩ

}
≤
∑
i∈I

max
{
U(ω′, p ;ui) : ω

′ ≤ ω, ω′ ∈ ZΩ
}
,

where the last inequality follows from

{ω′ ∈ ZΩ : ω′
t ≤ ωt (t ∈ Ω \ A), ω′

t = τt (t ∈ A)} ⊆ {ω′ ∈ ZΩ : ω′ ≤ ω}.
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By the individual rationality, Proposition 3.20, and (3.35) in Proposition 3.31, we have∑
i∈I

max
{
U(ω′, p ;ui) : ω

′ ≤ ω, ω ∈ ZΩ
}
=
∑
i∈I

U(ω, p ;ui)

=
∑
i∈I

ui(ω)

≤
∑
i∈I

uAi (ω
A ; (ω, p)).

Hence, we have ∑
i∈I

uAi (τ ; (ω, p)) ≤
∑
i∈I

uAi (ω
A ; (ω, p)).

Proof of Lemma 3.28

We now prove Lemma 3.28. We first show the “if” part of Lemma 3.28.

Proposition 3.33. If (ω, p) has a blocking set, there exists A ⊆ Ω such that ωA is not

efficient on {uAi (· ; (ω, p))}i∈I .

Proof. Let (z, p′) be a blocking set of (ω, p). We denote A = supp+(z). By the claim (i)

in Proposition 3.30, we have

U(ωA, (p+ p′)A ;uAi (· ; (ω, p))) < U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))) (3.36)

for all i ∈ ag(A). Since Ωi ∩ A = ∅ for each i ∈ I \ ag(A), by the claim (iii) in

Proposition 3.30, we have

U(ωA, (p+ p′)A ;uAi (· ; (ω, p))) = U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p))) (3.37)

for all i ∈ I \ ag(A). By (3.36), (3.37), and Proposition 3.20, we obtain∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

U(ωA, (p+ p′)A ;uAi (· ; (ω, p)))

<
∑
i∈I

U(ωA + zA, (p+ p′)A ;uAi (· ; (ω, p)))

=
∑
i∈I

uAi (ω
A + zA ; (ω, p)).
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Hence, ωA is not efficient on {uAi (· ; (ω, p))}i∈I .

Proposition 3.33 holds even if the preferences of agents do not satisfy the generalized

full substitutes condition. We then prove the “only if” part of Lemma 3.28.

Proposition 3.34. Suppose that every ui is twisted M♮-concave and (ω, p) is individually

rational in economy (Ω, {ui}i∈I). If ωA is not efficient on {uAi (· ; (ω, p))}i∈I for some

A ⊆ Ω, there exists a blocking set (z, p′) of (ω, p) with z ∈ {0, 1}Ω and supp+(z) ⊆ A.

Proof. For A ⊆ Ω, we define

µA
i (τ) ≡ uAi [0,ωA+1](τ ; (ω, p)) =

uAi (τ ; (ω, p)) if τ ∈ [0, ωA + 1],

−∞ otherwise.

We consider the economy (A, {µA
i }i∈I). Note that µA

i is (Ωi→ ∩ A)-twisted M♮-concave

by Proposition 2.31. Therefore we can apply Lemma 3.29 to µA
i , that is, there exist

U,W ⊆ A such that U ∩W = ∅ and∑
i∈I

µA
i (ω

A) =
∑
i∈I

uAi (ω
A ; (ω, p))

<
∑
i∈I

uAi (ω
A + χU − χW ; (ω, p)) =

∑
i∈I

µA
i (ω

A + χU − χW ).

This implies that ωA is not efficient on {µA
i }i∈I . Let A∗ be a minimal subset of Ω such

that ωA∗ is not efficient on {µA∗
i }i∈I . Note that A∗ ̸= ∅. By (Ωi→ ∩ A∗)-twisted M♮-

concavity of µA∗
i and Theorem 3.18, there exists a competitive equilibrium (τ ∗, p∗) in

economy (A∗, {µA∗
i }i∈I).

We now describe the outline of the rest of the proof. We first show that τ ∗ is uniquely

given by τ ∗ = ωA∗
+ 1. Then we introduce a new function ūi, which is a perturbation

of µA∗
i , and show that there exists q ∈ RA∗ such that (τ ∗, q) is a competitive equilibrium

in (A∗, {ūi}i∈I). Finally, we construct a blocking set of (ω, p) by using τ ∗ and q.

We claim that τ ∗ = ωA∗
+1. By Theorem 3.23, τ ∗ is efficient on {µA∗

i }i∈I . Since ωA∗

is not efficient on {µA∗
i }i∈I by assumption, it holds that∑

i∈I

µA∗

i (ωA∗
) <

∑
i∈I

µA∗

i (τ ∗). (3.38)
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Let A′ = {t ∈ A∗ : τ ∗t = ωt + 1}. Then by Proposition 3.32, A′ ̸= ∅ holds. Since τ ∗t ≤ ωt

for all t ∈ A∗ \ A′, by Proposition 3.31, we have∑
i∈I

µA∗

i (τ ∗) ≤
∑
i∈I

µA′

i (τ ∗A
′
). (3.39)

Furthermore, by the equation (3.31) in Proposition 3.30, we have∑
i∈I

µA∗

i (ωA∗
) =

∑
i∈I

ui(ω) =
∑
i∈I

µA′

i (ωA′
). (3.40)

From (3.38), (3.39), and (3.40), it follows that∑
i∈I

µA′

i (ωA′
) <

∑
i∈I

µA′

i (τ ∗A
′
).

That is, ωA′ is not efficient on {µA′
i }i∈I . Due to the minimality of A∗, we have A′ = A∗.

Thus τ ∗ = ωA∗
+ 1.

We then define the new valuation function ūi as

ūi(τ) = µA∗

i (τ)− δ
∑

t∈A∗∩Ωi

τt (i ∈ I),

where δ is a sufficiently small positive number. Since τ ∗ is the unique competitive

equilibrium trade vector in the economy (A∗, {µA∗
i }i∈I), τ ∗ is also the unique efficient

trade vector by Theorem 3.24. We assume that δ is sufficiently small so that τ ∗ is the

unique efficient trade vector in economy (A∗, {ūi}i∈I). By Proposition 2.31, each ūi is

(Ωi→∩A∗)-twisted M♮-concave, which means that there exists a competitive equilibrium

(ω̄∗, q) in economy (A∗, {ūi}i∈I) by Theorem 3.18. Then it follows from Theorem 3.23

that ω̄∗ = τ ∗.

Finally, we claim that (z, p′) given by

zt =

1 if t ∈ A∗,

0 otherwise,
p′t =

qt − pt if t ∈ A∗,

0 otherwise,

is a blocking set of (ω, p). It suffices to show that for all j ∈ ag(A∗) and ϕ ∈ C(ω +

z, p+ p′ ;uj), we have ϕt = ωt + 1 = τ ∗t for all t ∈ A∗ ∩ Ωj.
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In this setting, ϕt ≤ ωt and p′t = 0 hold for all t ∈ Ω \A∗. By using Proposition 3.31,

we have

U(ϕ, p+ p′ ;uj) ≤ U(ϕA∗
, (p+ p′)A

∗
;µA∗

j ) = U(ϕA∗
, q ;µA∗

j ). (3.41)

Moreover, by the equation (3.29) in Proposition 3.30, there exists ψ ∈ ZΩ such that

ψ ≤ ω + z and

U(τ ∗, q ;µA∗

j ) = U(ψ, p+ p′ ;uj). (3.42)

Since (τ ∗, q) is a competitive equilibrium in (A∗, {ūi}i∈I), we have

U(τ ∗, q ; ūj) ≥ U(ϕA∗
, q ; ūj).

This can be rewritten as

U(τ ∗, q ;µA∗

j )− δ
∑

t∈A∗∩Ωj

τ ∗t ≥ U(ϕA∗
, q ;µA∗

j )− δ
∑

t∈A∗∩Ωj

ϕt,

which, together with (3.41) and (3.42), implies that

δ
∑

t∈A∗∩Ωj

(ϕt − τ ∗t ) ≥ U(ϕ, p+ p′ ;uj)− U(ψ, p+ p′ ;uj) ≥ 0,

where the last inequality follows from ϕ ∈ C(ω+z, p+p′ ;uj). Since ϕA∗ ≤ ωA∗
+zA

∗
= τ ∗,

we have ϕt = τ ∗t for all t ∈ A∗ ∩ Ωj. Hence, (z, p′) is a blocking set of (ω, p) and we

complete the proof of Proposition 3.34.

Lemma 3.28 follows from Propositions 3.33 and 3.34. This implies that Theorem 3.26

holds.

3.4 Relationship among three stability concepts

We study stability concepts in the multi-unit trading network model. Although we

define stable outcomes in Subsection 3.1.1, another stability concepts in trading networks

were also being considered by several researchers.
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In this section, we focus on stability, strong group stability, and chain stability in the

multi-unit trading network model. While these stability concepts are different in general,

they are equivalent in the case where preferences of all agents satisfy the generalized full

substitutes condition. The results in this section is found in [32].

3.4.1 Strong group stability

We first consider the concept of strong group stability. Strong group stability was

originally introduced by Hatfield et al. [27] in the single-unit trading network model, as

a combination of strong stability by Hatfield and Kominers [25] and group stability by

Roth and Sotomayor [57].

Before giving the definition of strong group stability, we make preparation. For i ∈ I,

an outcome (ω, p), z ∈ ZΩ
+ \ {0}, and p′ ∈ RΩ, we define

∆(z, p′ ;ui, (ω, p)) = max
{
U(ω′, p ;ui) : ω

′ ≤ ω + z, ω′
t = (ω + z)t (t ∈ supp+(z))

}
+
∑

t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui).

The value ∆(z, p′ ;ui, (ω, p)) can be understood as follows: when an agent i takes zt

more trades with price p′t for all t ∈ supp+(z) (and may cancel some trades which are

not in supp+(z)) she/he can increase her/his utility by up to ∆(z, p′ ;ui, (ω, p)). The

value ∆(z, p′ ;ui, (ω, p)) can be represented by an alternative formulation:

∆(z, p′ ;ui, (ω, p)) = max

{
ui(ω

′) +
∑

t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt

: ω′ ≤ ω + z, ω′
t = (ω + z)t (t ∈ supp+(z))

}
+
∑

t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui).

Definition 3.35. Let (ω, p) be an outcome. A pair (z, p′) is a strong group blocking set

of (ω, p) in economy (Ω, {ui}i∈I) if the following conditions hold:

(i) z ∈ ZΩ
+ \ {0}.

(ii) p′ ∈ RΩ and p′t = pt for all t ∈ Ω with t ̸∈ supp+(z).
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(iii) for all i ∈ ag(supp+(z)), ∆(z, p′ ;ui, (ω, p)) > 0.

Definition 3.36. An outcome (ω, p) is strong group stable in (Ω, {ui}i∈I) if the following

conditions hold:

(i) (ω, p) is individually rational.

(ii) (ω, p) does not have any strong group blocking sets.

The strong group stability defined above coincides with the original strong group

stability in [27] when applied to the single-unit trading network model. Strong group

stability is a more restricted condition than stability.

Proposition 3.37. Let (ω, p) be an outcome.

(i) If (ω, p) has a blocking set, then it also has a strong group blocking set.

(ii) If (ω, p) is strong group stable, then it is stable.

Proof. We prove the claim (i). The claim (ii) immediately follows from the claim (i).

Let (z, p′) be a blocking set of (ω, p) and define J = ag(supp+(z)). Then for i ∈ J and

ω′ ∈ C(ω + z, p+ p′ ;ui), we have ω′
t = (ω + z)t for all t ∈ supp+(z)∩Ωi. Thus, it holds

that

U(ω′, p+ p′ ;ui) > U(ω, p+ p′ ;ui).

By the definition of a utility function, we have

U(ω′, p+ p′ ;ui)− U(ω, p+ p′ ;ui)

= ui(ω
′) +

∑
t∈Ωi→

ω′
t · (pt + p′t)−

∑
t∈Ω→i

ω′
t · (pt + p′t)

−

(
ui(ω) +

∑
t∈Ωi→

ωt · (pt + p′t)−
∑

t∈Ω→i

ωt · (pt + p′t)

)

= ui(ω
′)− ui(ω) +

∑
t∈Ωi→

(ω′
t − ωt) · pt +

∑
t∈Ωi→

zt · p′t

−
∑

t∈Ω→i

(ω′
t − ωt) · pt −

∑
t∈Ω→i

zt · p′t (3.43)
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for all i ∈ J . On the other hand, we obtain

∆(z, p+ p′;ui, (ω, p)) ≥ ui(ω
′) +

∑
t∈Ωi→

ω′
t · pt −

∑
t∈Ω→i

ω′
t · pt +

∑
t∈Ωi→

zt · p′t −
∑

t∈Ω→i

zt · p′t

−

(
ui(ω) +

∑
t∈Ωi→

ωt · pt −
∑

t∈Ω→i

ωt · pt

)

= ui(ω
′)− ui(ω) +

∑
t∈Ωi→

(ω′
t − ωt) · pt +

∑
t∈Ωi→

zt · p′t

−
∑

t∈Ω→i

(ω′
t − ωt) · pt −

∑
t∈Ω→i

zt · p′t (3.44)

for all i ∈ J . By (3.43) and (3.44), we have

∆(z, p+ p′;ui, (ω, p)) ≥ U(ω′, p+ p′ ;ui)− U(ω, p+ p′ ;ui) > 0 (∀i ∈ J).

This means that (z, p+ p′) is a strong group blocking set of (ω, p).

By Proposition 3.37, strong group stable outcomes are always stable. Although

strong group stability and stability are not equivalent in general, the following statement

holds.

Proposition 3.38 ([27]). For the single-unit trading network model, strong group sta-

bility is equivalent to stability if preferences of all agents satisfy the full substitutes con-

dition.

We can extend Proposition 3.38 to the multi-unit trading network model. In fact,

stability leads to strong group stability under the generalized full substitutes condition.

Theorem 3.39. Suppose that every ui satisfies the generalized full substitutes condition.

Let (ω, p) be an outcome.

(i) Suppose that (ω, p) is individually rational. If (ω, p) has a strong group blocking

set, then it also has a blocking set.

(ii) If (ω, p) is stable, then it is strong group stable.
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Proof. We prove the claim (i). The claim (ii) immediately follows from the claim (i).

Let (z, p′) be a strong group blocking set of (ω, p) and define A = supp+(z) and J =

ag(A). By the definition of ∆(z, p′;ui, (ω, p)), the equation (3.29), and the claim (ii) in

Proposition 3.30, we have

∆(z, p′;ui, (ω, p)) = U(ωA + zA, pA ;uAi (· ; (ω, p))) +
∑

t∈Ωi→

zt · (p′t − pt)

−
∑

t∈Ω→i

zt · (p′t − pt)− U(ω, p ;ui)

= U(ωA + zA, pA ;uAi (· ; (ω, p)))− U(ωA, pA ;uAi (· ; (ω, p)))

+
∑

t∈Ωi→

zt · (p′t − pt)−
∑

t∈Ω→i

zt · (p′t − pt).

Since ∆(z, p′;ui, (ω, p)) > 0, we obtain

U(ωA + zA, pA ;uAi (· ; (ω, p)))

> U(ωA, pA ;uAi (· ; (ω, p))) +
∑

t∈Ω→i

zt · (p′t − pt)−
∑

t∈Ωi→

zt · (p′t − pt). (3.45)

Moreover, it holds by the definition of J that

∑
i∈J

(∑
t∈Ω→i

zt · (p′t − pt)−
∑

t∈Ωi→

zt · (p′t − pt)

)
= 0. (3.46)

It follows from (3.45) and (3.46) that∑
i∈J

U(ωA + zA, pA ;uAi (· ; (ω, p))) >
∑
i∈J

U(ωA, pA ;uAi (· ; (ω, p))). (3.47)

On the other hand, Ωi ∩ A = ∅ holds for all i ∈ I \ J . Thus, by the claim (iii) in

Proposition 3.30 we have

U(ωA + zA, pA ;uAi (· ; (ω, p))) = U(ωA, pA ;uAi (· ; (ω, p))) (∀i ∈ I \ J). (3.48)
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Table 3.4: The valuations and utilities of agents in Example 3.4.

ω ua(ω) ub(ω) U(ω, 3 ; ua) U(ω, 3 ; ub) U(ω, 1.5 ; ua) U(ω, 1.5 ;ub)

0 0 0 0 0 0 0

1 4 −1 1 2 2.5 0.5

2 8 −2 2 4 5 1

3 10 −3 1 6 5.5 1.5

4 −∞ −∞ −∞ −∞ −∞ −∞

By (3.47) and (3.48), we obtain∑
i∈I

uAi (ω
A + zA ; (ω, p)) =

∑
i∈I

U(ωA + zA, pA ;uAi (· ; (ω, p)))

>
∑
i∈I

U(ωA, pA ;uAi (· ; (ω, p)))

=
∑
i∈I

uAi (ω
A ; (ω, p)).

This inequality implies that ωA is not efficient on {uAi (· ; (ω, p))}i∈I . By Lemma 3.28,

(ω, p) has a blocking set.

From Proposition 3.37 and Theorem 3.39, strong group stability and stability are

equivalent under the generalized full substitutes condition.

Example 3.4. Let ω be a trade and a and b be two agents. Agent a is the buyer and

agent b is the seller. Valuation functions of each agent are given in Table 3.4.

We can easily check that ua and ub satisfy the generalized full substitutes condition.

We consider outcome (ω, p) = (2, 3). It is not stable because it has a blocking set

(z, p′) = (1,−1.5). This means that {3} = C(3, 1.5 ; ua) and {3} = C(3, 1.5 ;ub). It is

doubtful that agent b prefers choosing (3, 1.5) to choosing (2, 3) because it holds that

4 = U(2, 3 ; ub) > U(3, 1.5 ; ub) = 1.5.

However, Theorem 3.39 guarantees that (2, 3) has a strong group blocking set (for in-

stance, (1, 1.5) is a strong group blocking set of (2, 3)). This implies that both a and b

can increase their utilities by taking new trades.
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3.4.2 Chain stability

We consider another stability concept, chain stability. This concept was first intro-

duced by Ostrovsky [55] in the supply chain network, then extended to the single-unit

trading network model by Hatfield et al. [28]. The definition of chain stability in the

multi-unit trading network model is similar to that in [28]. We first give the definition

of a chain.

Definition 3.40. A trade vector z ∈ {0, 1}Ω is a chain if there exists an ordering

t1, . . . , tk of elements in supp+(z) such that s(tl+1) = b(tl) for all l = 1, . . . , k− 1, where

k = |supp+(z)|. A blocking set (z, p′) is called a blocking chain if z is a chain.

Note that a chain is a 0-1 vector. Chain stable outcomes are defined as follows.

Definition 3.41. An outcome (ω, p) is chain stable in (Ω, {ui}i∈I) if the following con-

ditions hold:

(i) (ω, p) is individually rational.

(ii) (ω, p) does not have any blocking chains.

Trivially, chain stability is a weaker condition than stability since a blocking chain is

a blocking set. However, under the generalized full substitutes condition, chain stability

is equivalent to stability.

Theorem 3.42. Suppose that every ui satisfies the generalized full substitutes condition.

Let (ω, p) be an outcome.

(i) Suppose that (ω, p) is individually rational. If (ω, p) has a blocking set, then it has

a blocking chain.

(ii) (ω, p) is stable if and only if it is chain stable.

The proof of Theorem 3.42 is given in Subsection 3.4.3. For a blocking chain z ∈

{0, 1}Ω, there may exist j ∈ I such that |supp+(z) ∩ Ωj→| > 1 or |supp+(z) ∩ Ω→j| > 1.

This condition cannot be reduced. In fact, there is a case where (ω, p) is not stable when

there is no blocking chain (z, p′) such that |supp+(z)∩Ωj→| ≤ 1 and |supp+(z)∩Ω→j| ≤ 1

for all j ∈ I (see Example 3.5).
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Table 3.5: The valuations of agents in Example 3.5.

(t1, t2, t3) ua(·) ub(·) uc(·)
(0, 0, 0) 0 0 0

(0, 0, 1) −2 0 −2

(0, 1, 0) 0 0 −4

(0, 1, 1) −2 0 1

(t1, t2, t3) ua(·) ub(·) uc(·)
(1, 0, 0) 1 −2 0

(1, 0, 1) 3 −2 −2

(1, 1, 0) 1 −2 −4

(1, 1, 1) 3 −2 1

Example 3.5. Let a, b, and c be three agents, and t1, t2, and t3 be three types of

trades such that b(t1) = a, s(t1) = b, b(t2) = a, s(t2) = c, b(t3) = c, and s(t3) = a.

Valuation functions of each agent are given in Table 3.5. Then valuation functions

of each agent satisfy the generalized full substitutes condition. We consider outcome

(ω, p) = ((0, 0, 0), (0, 0, 0)). It is not stable because ω is not efficient on {ui}i∈{a,b,c}.

Since (ω, p) is individually rational, there exists a blocking set (z, p′) of (ω, p). By

Table 3.5, we have∑
i∈{a,b,c}

ui((0, 0, 0)) >
∑

i∈{a,b,c}

ui(ω) (∀ω ∈ {0, 1}3 \ {(1, 1, 1)}).

This implies that z = (1, 1, 1) must hold. Then it follows that |supp+(z) ∩ Ω→a| > 1.

By Proposition 3.37 and Theorems 3.39 and 3.42, we obtain the equivalence among

the three stability concepts under the generalized full substitutes condition.

Corollary 3.43. Suppose that every ui satisfies the generalized full substitutes condition.

Then stability, strong group stability, and chain stability are equivalent.

3.4.3 Proof of Theorem 3.42

Since the claim (ii) follows from the claim (i), we prove the claim (i). Suppose that

(ω, p) is individually rational. Let (z, p′) be a blocking set of (ω, p) such that z ∈ {0, 1}Ω

and supp+(z) is minimal among all blocking sets of (ω, p). Such a blocking set exists

because of Lemma 3.28. We claim that z is a chain.
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We denote A = supp+(z). We consider the directed graph G = (ag(A), E(A)) where

E(A) = {(s(t), b(t)) : t ∈ A}.

The graph G must be a connected directed graph. If G is not connected, that is, there

are more than one connected components in G, we can construct a blocking set of

(z′, q) such that supp+(z′) ⊊ A. In fact, by condition (3.1), for a connected component

(ag(A′), E(A′)) of G, (z′, q) is a blocking set where

z′t =

zt (t ∈ A′),

0 (t ̸∈ A′),
qt =

p′t (t ∈ A′),

0 (t ̸∈ A′).

This contradicts the minimality of A.

We show that there is a walk in G such that all directed edges in G are contained in

the walk, which means that z is a chain. We first consider the case where

|Ω→i ∩ A| = |Ωi→ ∩ A| (∀i ∈ ag(A)).

Then we have d+G(i) = d−G(i) for all i ∈ ag(A). By Proposition 2.1, G = (ag(A), E(A))

has an Eulerian walk, implying that z is a chain.

We next consider the case where there exists k ∈ ag(A) with

|Ω→k ∩ A| < |Ωk→ ∩ A|. (3.49)

For each i ∈ I, we define the function Ui : Z
A → R ∪ {−∞} by

Ui(τ) = U(τ, (p+ p′)A ;uAi (· ; (ω, p))) (i ∈ I).

By the definition of Ui and condition (3.1), we can regard the domain of Ui as ZΩi∩A. By

Proposition 2.31, Ui is (Ωi→ ∩A)-twisted M♮-concave. By showing that z is a chain, we

use the following algorithm, FIND_CHAIN. This algorithm is valid (prove later) and

always returns a chain z∗.
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FIND_CHAIN

Step 1. Take k ∈ ag(A) with (3.49) and t ∈ Ωk→ ∩A with Uk(ω
A) < Uk(ω

A + χt). Set

j := b(t) and ẑ := χt (ẑ ∈ {0, 1}A).

Step 2. While Uj(ω
A) ≥ Uj(ω

A + ẑ) do {

Take t ∈ supp+(zA− ẑ)∩Ωj→ so that Uj(ω
A) < Uj(ω

A+ ẑ+χt) holds, and

set j := b(t) and ẑ := ẑ + χt.
}.

Step 3. Set z∗t = ẑt for each t ∈ A and z∗t = 0 for each t ̸∈ A, and return z∗.

FIND_CHAIN terminates in a finite number of iterations because supp+(zA − ẑ) is

strictly reduced in each update of ẑ. Moreover, it is easy to check that z∗ is a chain if

FIND_CHAIN works correctly. We claim that Step 1 works.

Proposition 3.44. For k ∈ ag(A) satisfying (3.49), there exists t ∈ Ωk→ ∩ A such that

Uk(ω
A) < Uk(ω

A + χt).

Proof. Recall that Uk is (Ωk→ ∩ A)-twisted M♮-concave. By (3.49), we have∑
s∈Ωk∩A

(twist(ωA + zA ; Ωk→ ∩ A))s <
∑

s∈Ωk∩A

(twist(ωA ; Ωk→ ∩ A))s.

Moreover, it follows that

supp−(zA) \ (Ωk→ ∩ A) = ∅, supp+(zA) ∩ (Ωk→ ∩ A) = Ωk→ ∩ A.

By Proposition 2.29, there exists t ∈ Ωk→ ∩ A such that

Uk(ω
A + zA) + Uk(ω

A) ≤ Uk(ω
A + zA − χt) + Uk(ω

A + χt). (3.50)

By the claim (i) in Proposition 3.30, it holds that

Uk(ω
A + zA) > Uk(ω

A + zA − χt). (3.51)

Therefore, by (3.50) and (3.51), we have

Uk(ω
A) < Uk(ω

A + χt).
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We next show that Step 2 works.

Proposition 3.45. FIND_CHAIN preserves the following properties:

(a) at the beginning of each while-loop of Step 2, if Uj(ω
A) ≥ Uj(ω

A + ẑ) there exists

t ∈ supp+(zA − ẑ) ∩ Ωj→ such that Uj(ω
A) < Uj(ω

A + ẑ + χt).

(b) at the end of Step 1 and each while-loop, we have

Ui(ω
A) = Ui(ω

A + ẑ) (∀i ∈ I \ ag(supp+(ẑ))), (3.52)

Ui(ω
A) < Ui(ω

A + ẑ) (∀i ∈ ag(supp+(ẑ)) \ {j}). (3.53)

Proof. Since supp+(ẑ) ∩ Ωi = ∅ for all i ∈ I \ ag(supp+(ẑ)), (3.52) always holds by

the claim (iii) in Proposition 3.30. At the end of Step 1, (3.53) holds because of the

definition of k and ag(supp+(ẑ)) \ {j} = {k}. If property (a) is preserved, we obtain

(3.53). Therefore it suffices to show property (a).

We assume that Uj(ω
A) ≥ Uj(ω

A + ẑ) and (3.53) hold before the last update of ẑ

and j. Let t′ ∈ Ω→j ∩A be the trade which is added to ẑ in the last update of ẑ; such t′

always exists. From the above assumption, it follows that

Uj(ω
A) ≤ Uj(ω

A + ẑ − χt′). (3.54)

By Proposition 2.28, there exists t ∈ (supp+(z − ẑ) ∩ (Ωj→ ∩ A)) ∪ {0} such that

Uj(ω
A + zA) + Uj(ω

A + ẑ − χt′) ≤ Uj(ω
A + zA − χt′ − χt) + Uj(ω

A + ẑ + χt). (3.55)

On the other hand, by the claim (i) in Proposition 3.30, we have

Uj(ω
A + zA) > Uj(ω

A + zA − χt′ − χt). (3.56)

By (3.54), (3.55), and (3.56), we have

Uj(ω
A) ≤ Uj(ω

A + ẑ − χt′) < Uj(ω
A + ẑ + χt).

Since Uj(ω
A) ≥ Uj(ω

A + ẑ), t ̸= 0 must hold.
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We now prove z∗ = z. At Step 3, it holds by Proposition 3.45 that

Ui(ω
A) = Ui((ω + z∗)A) (∀i ∈ I \ ag(supp+(z∗))), (3.57)

Ui(ω
A) < Ui((ω + z∗)A) (∀i ∈ ag(supp+(z∗))). (3.58)

We define A∗ = supp+(z∗). By (3.57) and (3.58), we have∑
i∈I

Ui(ω
A) <

∑
i∈I

Ui((ω + z∗)A). (3.59)

It follows from Proposition 3.20 and the claim (ii) in Proposition 3.30 that∑
i∈I

Ui(ω
A) =

∑
i∈I

uAi (ω
A ; (ω, p)) =

∑
i∈I

uA
∗

i (ωA∗
; (ω, p)). (3.60)

Moreover, by Propositions 3.20 and 3.31, it holds that∑
i∈I

Ui((ω + z∗)A) =
∑
i∈I

uAi ((ω + z∗)A ; (ω, p)) ≤
∑
i∈I

uA
∗

i ((ω + z∗)A
∗
; (ω, p)). (3.61)

By (3.59), (3.60) and (3.61), we have∑
i∈I

uA
∗

i (ωA∗
; (ω, p)) <

∑
i∈I

uA
∗

i ((ω + z∗)A
∗
; (ω, p)),

which implies that ωA∗ is not efficient on {uA∗
i (· ; (ω, p))}i∈I . By Lemma 3.28, there

exists a blocking set (z̃, p̃) of (ω, p) such that z̃ ∈ {0, 1}Ω and supp+(z̃) ⊆ A∗. By the

minimality of A, we have supp+(z̃) = A∗ = A. Hence, z∗ = z. We can similarly show

that z is a chain when |Ω→k ∩ A| > |Ωk→ ∩ A| for some k ∈ ag(A).



Chapter 4

Marking Game

4.1 Preliminaries

We study the game coloring number of graphs. The game coloring number is defined

through the marking game and it is often used to analyze the game chromatic num-

ber, which is defined through the chromatic game. In this section, we give the formal

definitions of the game chromatic number and the game coloring number.

4.1.1 Game chromatic number

We first define the chromatic game and the game chromatic number. The chromatic

game is played by two players, Alice and Bob.

Given an undirected graph G = (V (G), E(G)) and a color set C. Alice and Bob

take turns coloring vertices of G with a color in C (at the beginning, Alice colors a

vertex of G). In each turn, she/he colors only one uncolored vertex of G so that any two

adjacent vertices are colored with different colors. If all vertices are colored properly,

Alice is the winner of the chromatic game. Otherwise, Bob is the winner (then there

exists an uncolored vertex u such that u has a neighbor colored with c for any c ∈ C).

The game chromatic number of G, defined by χg(G), is the smallest number of colors

such that Alice has a winning strategy in the chromatic game. The game chromatic

number was formally introduced by Bodlaender [2].

78
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For a class of graphs H, we also define the game chromatic number of the class. We

denote the game chromatic number of H by

χg(H) = max {χg(G) : G ∈ H} .

4.1.2 Game coloring number

We next define the marking game and the game coloring number. The marking

game is also played by two players, Alice and Bob. The marking game is similar to the

chromatic game. However, players just “mark” vertices of a graph in the marking game

instead of coloring them.

Given an undirected graph G = (V (G), E(G)) and k ∈ Z+ which is called an upper

limit on the score. Alice and Bob take turns marking vertices of G until all vertices are

marked (at the beginning, Alice marks a vertex of G). In each turn, she/he marks only

one unmarked vertex of G. When all vertices are marked, we calculate the score of the

game. The score s of the marking game is defined by

s = 1 + max
v∈V (G)

b(v),

where b(v) is the number of neighbors of v which are marked before v. If the score s is

at most k, Alice is the winner of the game. Otherwise, Bob is the winner.

The game coloring number of G, defined by colg(G), is the smallest number k such

that Alice has a winning strategy in the marking game. The game coloring number

was formally introduced by Zhu [74]. He used it as a tool to study the game chromatic

number. We define the game coloring number of a class of graphs H by

colg(H) = max {colg(G) : G ∈ H} .

We define payoffs of each player in the marking game by

(Alice’s payoff) =

1 if Alice wins,

−1 if Bob wins,
(Bob’s payoff) =

1 if Bob wins,

−1 if Alice wins.
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Alice

Mark v1 Mark vn

Bob

Alice

Mark v2

Alice wins Bob wins Alice wins Bob wins
(1,−1) (−1, 1) (1,−1) (−1, 1)

Payoff
(Alice, Bob)

Figure 4.1: Extensive form of the marking game.

Then the marking game is represented by an extensive form. We give the extensive form

of the marking game on G in Figure 4.1 (where V (G) = {v1, . . . , vn}). By the rule of

the game, both players see all vertices during the game. This means that all information

sets of the marking game are singletons. Moreover, since the sum of the payoffs is always

zero, the marking game is a 2-person zero-sum game with perfect information.

4.1.3 Previous results

In this subsection, we describe previous results of the game chromatic number and

the game coloring number. We first explain the relationship between the game chromatic

number and the game coloring number. It is easy to show the following proposition.

Proposition 4.1. For any undirected graph G, we have

χg(G) ≤ colg(G).
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By Proposition 4.1, we can estimate an upper bound for the game chromatic num-

ber to analyze the game coloring number. We can handle the game coloring number

more easily than the game chromatic number for several reasons. One of them is the

monotonicity of the game coloring number.

Proposition 4.2 ([72]). Let H be a subgraph of G. Then

colg(H) ≤ colg(G).

Proof. Obviously, the statement holds if V (H) = V (G). Indeed, if Alice takes an optimal

strategy forG in the game onH, the score is at most colg(G). We show that colg(G−x) ≤

colg(G) for all x ∈ V (G) where

V (G− x) = V (G) \ {x},

E(G− x) = {{u,w} : {u,w} ∈ E(G), u, w ∈ V (G) \ {x}}.

We define a vertex which Alice marks next when she uses an optimal strategy for G by

S(W ), where W ⊆ V (G) is the set of marked vertices. We assume that Alice and Bob

play the game on G− x. We construct the strategy S ′.

Strategy S′

Alice first setsW := ∅. She maintainsW until the game finishes. She marks a vertex

by using the following strategy. Let b ∈ V (G−x) be the vertex which is marked by Bob

in his last turn.

1. Set W :=W ∪ {b} (in her first turn, this step is skipped).

2. If she can mark S(W ), she marks it and sets W :=W ∪ S(W ).

3. If S(W ) = x, she sets W := W ∪ {x, y1}, where y1 is a vertex whose degree is

minimum in V (G− x) \W . Then she marks S(W ).

4. If S(W ) is already marked, that is, Bob marks yi in his last turn, she sets W :=

W ∪{yi+1}, where yi+1 is a vertex whose degree is minimum in V (G−x)\W . Then

she marks S(W ).
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By the definition of S ′, b(v) ≤ colg(G)−1 holds for each vertex v ∈ V (G−x)\{y1, . . . }.

Moreover, we have

dG(yi) ≤ colg(G)− 1

for each yi. Otherwise, b(u) ≥ colg(G) holds for the vertex u which is marked at the

end of the game. This means that the score is at least colg(G) + 1, a contradiction.

Therefore by using S ′, the score is at most colg(G) which means colg(G− x) ≤ colg(G)

for all x ∈ V (G). Applying this inequality inductively, we have

colg(H) ≤ colg(G)

for any subgraph H of G.

By Proposition 4.2, when we study the game coloring number of a class of graphs H,

we focus on the game coloring number of maximal graphs inH. Unlike the game coloring

number, the game chromatic number does not have the monotonicity. This is one reason

why handling the game chromatic number is difficult. In fact, for a complete bipartite

graph Kt,t and a perfect matching M of Kt,t, it holds that

χg(Kt,t) = 3, χg(Kt,t −M) = t,

where Kt,t −M = (V (Kt,t), E(Kt,t) \M).

We next explain previous results of the game coloring number. For several classes of

graphs, the exact values of the game coloring numbers are known.

Theorem 4.3 ([12, 22, 37, 72, 75]). The exact values of the game coloring numbers of

forests, interval graphs, outerplanar graphs, and partial k-trees are as follows:

• colg(F) = 4 (F : the family of forests).

• colg(Ik) = 3k − 2 (Ik: the family of interval graphs with clique number k).

• colg(Q) = 7 (Q: the family of outerplanar graphs).

• colg(PT k) = 3k + 2 (PT k: the family of partial k-trees (k ≥ 2)).
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We next describe previous results of the game coloring number of planar graphs,

which was shown by several researchers.

Theorem 4.4 ([30, 38, 69, 72, 76]). Let Pk be the family of planar graphs with girth at

least k. Then the following statements hold:

(i) 11 ≤ colg(P3) ≤ 17.

(ii) colg(P5) ≤ 8.

(iii) colg(P6) ≤ 6.

(iv) colg(P8) ≤ 5.

In this thesis, we study the game coloring number of planar graphs with a given

girth. In particular, we study the game coloring number of planar graphs with girth 4

and 5.

4.2 Upper bounds for the game coloring number

We study upper bounds for the game coloring number of planar graphs with girth 4.

We consider Alice’s strategy, called the activation strategy, to analyze an upper bound for

the game coloring number. Therefore we first explain the activation strategy introduced

by Kierstead [36]. Then we show that the game coloring number of planar graphs with

girth 4 is at most 13.

4.2.1 Activation strategy

We explain the activation strategy introduced by Kierstead [36]. This strategy is

helpful to analyze upper bounds for the game coloring number.

For an undirected graph G = (V (G), E(G)), we define the set of total orders on

V (G) by Π(G). The orientation of G with respect to L ∈ Π(G) is a directed graph

GL = (V (G), EL) where

EL = {(u, v) : {u, v} ∈ E(G), u ⪰L v}.
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For a vertex u ∈ V (GL), we define

V +
GL

(u) = {v ∈ V (GL) : v ⪯L u}, V −
GL

(u) = {v ∈ V (GL) : v ⪰L u}.

Furthermore, let

N+
GL

[u] = N+
GL

(u) ∪ {u}, N−
GL

[u] = N−
GL

(u) ∪ {u},

V +
GL

[u] = V +
GL

(u) ∪ {u}, V −
GL

[u] = V −
GL

(u) ∪ {u}.

We now explain the activation strategy S(L,G) with respect to L ∈ Π(G). For every

turn, Alice marks a vertex according to the following rule.

Activation strategy S(L,G)

Alice first sets A := ∅. She maintains A until the game ends. In her first turn, she

marks the minimum vertex v with respect to L and updates A := {v}. Otherwise, she

decides which vertex to mark by using the following algorithm. Let U be the set of

unmarked vertices and b ∈ V (G) be the vertex which is marked by Bob in his last turn.

Step 1. Set A := A \ {b} and x := b.

Step 2. While x ̸∈ A do:

A := A ∪ {x}, s(x) := minL

(
N+

GL
[x] ∩ (U ∪ {b})

)
, x := s(x).

Step 3. If x ̸= b then mark x.

Else { y := minL U.

If y ̸∈ A then A := A ∪ {y}.

Mark y.}

A vertex u is said to be activated if u ∈ A. Intuitively, the above algorithm works as

follows. Alice first activates b. Then she moves to s(x) which is the minimum vertex with

respect to L among neighbors of x. If s(x) is not activated, she repeats this operation

until she finds an activated vertex. When she finds an activated vertex, she marks it.

Since the activation strategy is a little complicated, we give an example below.

Example 4.1. We explain the activation strategy by using the graph G in the left side

of Figure 4.2. This example was introduced in [59]. We define partial order L on V (G)
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G

1 2 3 95

4 11 10

876

GL

Figure 4.2: Graph G and the orientation of G with respect to L.

as in the right side of Figure 4.2. In other words, we define L such that u ⪯L v if and

only if u ≤ v for u, v ∈ V (G). We consider the situation where Alice takes the activation

strategy S(L,G).

(i) At the beginning of the game, Alice marks 1, the minimum vertex with respect

to L (see Figure 4.3).

(ii) We assume that Bob marks 10 after Alice marks 1. At this time, she first ac-

tivates 10 and calculate s(10). Since s(10) = 3 and 3 ̸∈ A, she activates 3. In

the same way, she activates 2 because s(3) = 2. After activating 2, she moves to

Step 3, and marks 2 (see Figure 4.4). In Figure 4.4, black squares represent marked

vertices and underlined numbers represent activated vertices (the same applies in

Figure 4.5 and 4.6).

(iii) We assume that Bob marks 9 after (ii). Then, Alice first activates 9 and calculate

s(9). Since s(9) = 3 and 3 ∈ A, she marks 3 (see Figure 4.5).

(iv) We assume that Bob marks 8 after (iii). Alice activates 8 and calculate s(8). Since

s(8) = 8 holds and 8 is already marked, she marks 4, the minimum unmarked

vertex with respect to L (see Figure 4.6).

By using the activation strategy, we can estimate upper bounds for the game coloring

number. We first define the matching number.

Definition 4.5. Let A,B ⊆ V (G). We say that a matching M of G is a matching from

A to B if M covers all vertices in A and each edge in M connects a vertex in A and a

vertex in B \ A.
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1 2 3 95

4 11 10

876

(i)

Figure 4.3: Beginning of the game.

1 2 3 95

4 11 10

876

(ii)

Figure 4.4: Alice’s second turn.

1 2 3 95

4 11 10

876

(iii)

Figure 4.5: Alice’s third turn.

1 2 3 95

4 11 10

876

(iv)

Figure 4.6: Alice’s fourth turn.

Definition 4.6. Let L ∈ Π(G) be a total order on V (G). For u ∈ V (G), we consider

Z ⊆ N−
GL

[u] which satisfies the following condition.

(*) There exists a partition Z = X ∪ Y such that there exist a matching from

X to V +
GL

(u) and a matching from Y to V +
GL

[u].

The matching number m(u, L,G) of G with respect to L is defined to be the maximum

size of Z satisfying the condition (*).

For graph G, L ∈ Π(G), and u ∈ V (G), we define

r(u, L,G) = d+GL
(u) +m(u, L,G).

Moreover, we define

r(L,G) = max
u∈V (G)

r(u, L,G), r(G) = min
L∈Π(G)

r(L,G).

Then the following theorem holds.

Theorem 4.7 ([36]). Let G be an undirected graph and L ∈ Π(G). If Alice uses the

activation strategy with respect to L, the score will be at most 1+ r(L,G). In particular,

colg(G) ≤ 1 + r(G).
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Proof. Assume that Alice uses the activation strategy S(L,G). We consider the situation

just before Alice marks a vertex v. We define the set of activated vertices by A. Then

all marked vertices and v are activated by the definition of the activation strategy. We

show that

|N−
GL

(u) ∩ A| ≤ m(u, L,G)

for any unmarked vertex u. This fact leads colg(G) ≤ 1 + r(G).

We define

P = {x ∈ A : x is activated before s(x)},

Q = {x ∈ A : x is activated after s(x)},

where s(x) is defined by S(L,G) (note that s(x) is already calculated for all x ∈ A).

Then the following proposition holds.

Proposition 4.8. For x, y ∈ P with x ̸= y, we have s(x) ̸= s(y). Similarly, for x, y ∈ Q

with x ̸= y, we have s(x) ̸= s(y).

Proof. Let x, y ∈ P with x ̸= y. We assume that x is activated before y. Then s(x) is

activated just after x. This implies that y = s(x) or s(x) is activated before y. Since

y ∈ P , s(x) is activated before s(y). Therefore s(x) ̸= s(y). We next prove the latter

statement. Let x, y ∈ Q with x ̸= y. We assume that x is activated before y. Then

s(x) is marked just after x is activated because x ∈ Q. Therefore s(x) is already marked

before y is activated. This means that s(x) ̸= s(y).

We define

P ′ = N−
GL

(u) ∩ P, Q′ = N−
GL

(u) ∩Q.

We have s(x) ∈ V +
GL

[u] and s(x) ̸= x for all x ∈ N−
GL

(u) ∩ A because s(x) ⪯L u holds.

This means that P ′ ∪Q′ = N−
GL

(u) ∩ A. Furthermore,

SP ′ = {{x, s(x)} : x ∈ P ′}, SQ′ = {{x, s(x)} : x ∈ Q′}
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are matchings from N−
GL

(u) to V +
GL

[u] by Proposition 4.8. We now construct sets X

and Y by using P ′ and Q′. We consider two cases.

Case 1. There do not exist x ∈ P ′ and y ∈ Q′ such that s(x) = u = s(y).

In this case, at least one of SP ′ and SQ′ does not cover u. If SP ′ does not cover u, we

set X = P ′ and Y = Q′, otherwise X = Q′ and Y = P ′.

Case 2. There exist x ∈ P ′ and y ∈ Q′ such that s(x) = u = s(y).

Since x is activated before y and u is unmarked, we have s(u) ̸= u. If u ∈ P we set

X = (P ′ \ {x}) ∪ {u}, Y = Q′,

otherwise we set

X = (Q′ \ {y}) ∪ {u}, Y = P ′.

We denote SX and SY by

SX = {{x, s(x)} : x ∈ X}, SY = {{y, s(y)} : y ∈ Y }.

In both cases, SX is a matching from N−
GL

[u] to V +
GL

(u) and SY is a matching from

N−
GL

(u) to V +
GL

[u]. Hence, we have

|N−
GL

∩ A| = |P ′|+ |Q′| ≤ m(u, L,G).

4.2.2 Planar graphs with girth 4

By using Theorem 4.7, we show that the game coloring number of planar graphs with

girth at least 4 is at most 13. The following result is based on [60].

Theorem 4.9. If G is a planar graph with girth at least 4, then colg(G) ≤ 13. Hence

colg(P4) ≤ 13, where P4 is the family of planar graphs with girth at least 4.
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Proof. It suffices to show that there exists a total order L such that r(L,G) ≤ 12. We

fix a planar embedding of G. We choose a vertex of G according to the following rule for

every turn. We repeat this operation until all vertices are chosen. Then, we construct L

so that u ⪯L v if and only if v is chosen earlier than u.

We now explain the rule of choosing a vertex. Let C,U ⊆ V (G) be the set of chosen

vertices and unchosen vertices of G, respectively. If C is empty, we choose a vertex

whose degree is at most 5 (such a vertex exists by Proposition 2.2). We consider the

case where C is not empty. We now construct a new graph from G. First, we delete all

edges connecting vertices in C and all vertices x ∈ C such that |NG(x) ∩ U | ≤ 3. Then

we add edges between any two nonadjacent vertices in U that are adjacent to the same

deleted vertex x. We define this graph by H. Then H is a planar graph.

We define

S = {{x, y} ∈ E(G) : x, y ∈ U},

S ′ = {{x, y} ∈ E(H) \ E(G) : x, y ∈ U},

A = {{x, y} ∈ E(H) : x ∈ C, y ∈ U, 4 ≤ dH(x) ≤ 5},

B = {{x, y} ∈ E(H) : x ∈ C, y ∈ U, dH(x) ≥ 6}.

By the construction of H and the definitions of S, S ′, A, and B, we have

E(H) = S ∪ S ′ ∪ A ∪B. (4.1)

We next define the charge of a vertex v by c(v). At the beginning, we set c(v) = dH(v)

for all v ∈ V (H). We consider transferring the charges among vertices of H. For each

edge {x, y} ∈ A (x ∈ C, y ∈ U), y gives 1/2 to x. Let the new charge of a vertex v

be c′(v). Note that the total charge is unchanged. Therefore, it holds by Proposition 2.2

that ∑
v∈V (H)

dH(v) =
∑

v∈V (H)

c(v) =
∑

v∈V (H)

c′(v) < 6|V (H)|. (4.2)
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Furthermore, by the construction of H, we have c′(v) ≥ 6 for all v ∈ C ∩ V (H). Hence

by (4.2) and the half integrality of c′, there exists a vertex u ∈ U such that c′(u) ≤ 5.5.

We choose such u.

Let

σ = |{y ∈ U : {u, y} ∈ S}|, σ′ = |{y ∈ U : {u, y} ∈ S ′}|,

α = |{x ∈ C : {u, x} ∈ A}|, β = |{x ∈ C : {u, x} ∈ B}|.

Then by (4.1), we have

c′(u) = σ + σ′ +
1

2
α + β ≤ 5.5. (4.3)

We claim that r(u, L,G) ≤ σ + 2σ′ + α + β + δ + 1, where

δ =

0 if σ = 0,

1 if σ ≥ 1.

It suffices to show that m(u, L,G) ≤ 2σ′ + α + β + δ + 1 because d+GL
(u) = σ holds.

We consider a set Z ⊆ N−
GL

[u] with |Z| = m(u, L,G) such that there exists a partition

Z = X ∪ Y and there exist matchings M from X to V +
GL

(u) and N from Y to V +
GL

[u].

Since the girth of G is at least 4, there is no edge connecting a vertex in N−
GL

(u) and

one in N+
GL

(u). This implies that the number of edges of a matching from {v ∈ N−
GL

(u) :

|N+
GL

(v) ∩ V +
GL

[u]| ≤ 3} to V +
GL

(u) is at most σ′. Therefore we have

|X \ {v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4}| ≤ σ′ + δ, (4.4)

|Y \ {v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4}| ≤ σ′ + 1. (4.5)

Moreover, it holds that

|{v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4} ∩ Z| ≤ α + β. (4.6)
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By (4.4), (4.5), and (4.6), we have

m(u, L,G) = |Z| = |X|+ |Y |

= |X \ {v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4}|

+ |Y \ {v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4}|

+ |{v ∈ N−
GL

(u) : |N+
GL

(v) ∩ V +
GL

[u]| ≥ 4} ∩ Z|

≤ σ′ + δ + σ′ + 1 + α + β

≤ 2σ′ + α + β + δ + 1.

Hence r(u, L,G) ≤ σ + 2σ′ + α + β + δ + 1. We finally show r(u, L,G) ≤ 12.

Case 1. σ = 0.

In this case, it follows that δ = 0. By (4.3), we have

c′(u) = σ′ +
1

2
α + β ≤ 5.5.

Since σ′, α, and β are nonnegative integers, we obtain

σ + 2σ′ + α + β + δ + 1 = 2σ′ + α + β + 1 ≤ 12.

Case 2. σ ≥ 1.

In this case, it follows that δ = 1. Let σ∗ = σ − 1. Then we have

c′(u) = σ + σ′ +
1

2
α + β = σ∗ + σ′ +

1

2
α + β + 1 ≤ 5.5,

implying that

σ∗ + σ′ +
1

2
α+ β ≤ 4.5.

Since σ∗, σ′, α, and β are nonnegative integers it holds that

σ + 2σ′ + α + β + δ + 1 = σ∗ + 1 + 2σ′ + α + β + 1 + 1

= σ∗ + 2σ′ + α + β + 3

≤ 12.

In both cases, r(u, L,G) ≤ 12 is satisfied. Hence colg(G) ≤ 13.
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4.3 Lower bounds for the game coloring number

We focus on lower bounds for the game coloring number of planar graphs with girth

4 and 5. The results in this section is also based on [60].

4.3.1 Planar graphs with girth 4

We consider the game coloring number of planar graphs with girth 4. We prove the

following theorem.

Theorem 4.10. There exists a planar graph G with girth 4 such that colg(G) ≥ 7.

Proof. We consider the graph G = (A ∪B ∪ C,EA ∪ EB ∪ EC) where

A = {ai,j : i, j ∈ {1, 2, . . . , 15}} ,

B = {bi,j : i ∈ {2, 4, . . . , 14}, j ∈ {1, 2, . . . , 14}} ,

C = {ci,j : i, j ∈ {1, 2, . . . , 15}} ,

EA = {{ai,j, ai,j+1} : ai,j, ai,j+1 ∈ A} ∪ {{ai,j, ai+1,j} : ai,j, ai+1,j ∈ A} ,

EB = {{bi,j, ai+1,j} : bi,j ∈ B, ai+1,j ∈ A} ∪ {{bi,j, ai,j+1} : bi,j ∈ B, ai,j+1 ∈ A} ,

EC = {{aij, cij} : i, j ∈ {1, 2, . . . , 15}} .

We give a sketch of G in Figure 4.7 (we omit the vertices of C and the edges of EC).

Then G is a planar graph and its girth is 4. We show that colg(G) ≥ 7, that is, Bob has

a strategy such that the score is at least 7.

We define

B′ = B ∪ {ai,j ∈ A : i ∈ {1, 15} or j ∈ {1, 15}}.

Bob marks the vertices of B′ as soon as possible. By the definition of B′, we have

154 = |B′| < |A \B′| = 169. (4.7)
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a1,1

a15,1 a15,15

a1,15

b2,1 b2,2 b2,3

b4,3b4,2b4,1 b4,14

b2,14

Figure 4.7: The graph G which satisfies colg(G) ≥ 7.

It follows from (4.7) that all the vertices of B′ can be marked before all the vertices

of A \ B′ are marked. We consider Bob’s turn immediately after all the vertices of B′

are marked. Then there is at least 14 unmarked vertices of A \ B′. Let ai1,j1 , . . . , aik,jk
be such vertices of A \ B′ where k is the number of unmarked vertices of A \ B′. Bob

has a strategy such that ci1,j1 , . . . , cik,jk are marked before ai1,j1 , . . . , aik,jk are marked.

Therefore there exists a vertex v ∈ A \ B′ which satisfies 1 + b(v) ≥ 7 (note that v has

4 neighbors in A, 1 neighbor in B and 1 neighbor in C). Hence colg(G) ≥ 7.

4.3.2 Planar graphs with girth 5

We focus on planar graphs with girth 5.

Theorem 4.11. There exists a planar graph G with girth 5 such that colg(G) ≥ 6.

Proof. Let H1 be the cycle of length 6 (we say that H1 is a regular hexagon). We

construct Hn (n ≥ 2) from Hn−1 by adding 6(n− 1) regular hexagons around Hn−1 (see

Figure 4.8).

We label the vertices of a regular hexagon f by vf1 , . . . v
f
6 in the clockwise order from

the upper left. For each regular hexagon f of Hn, we add a vertex af and add edges

{af , vf1} and {af , vf4}. Furthermore, we add a vertex bv for each v ∈ V (Hn), and add an
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H1

H2

· · ·

Figure 4.8: The construction of graph Hn.

af

vf1 = vf
′

5

vf4

af ′

Figure 4.9: The graph Gn which satisfies colg(Gn) ≥ 6.

edge between bv and v. The resulting graph is defined by Gn and it is given in Figure 4.9

(we omit bv and an edge which connects b(v) and v for all v ∈ V (Hn)). Then it follows

that Gn is a planar graph and its girth is 5. We show that colg(Gn) ≥ 6 if n ≥ 7.

We define

A = {af : f is a regular hexagon of Hn}, B = {bv : v ∈ V (Hn)},

VI = {v ∈ V (Hn) : v is not in the outer boundary}, VO = V (Hn) \ VI .

Then we have

|A| = 3n2 − 3n+ 1, |VI | = 6n2 − 12n+ 6, |VO| = 12n− 6.
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Therefore it follows that

|A|+ |VO|+ 1 < |VI | (∀n ≥ 7). (4.8)

Bob marks the vertices of A and VO as soon as possible. By (4.8), Bob has a strategy

such that all the vertices of A and VO are marked before all the vertices of VI are marked.

Each vertex of VI has 3 neighbors in V (Hn), 1 neighbor in A, and 1 neighbor in B. In

the same way as the proof of Theorem 4.10, we verify that there exists a vertex v ∈ VI

which satisfies 1 + b(v) ≥ 6. Hence colg(Gn) ≥ 6.

By Theorems 4.4, 4.9, 4.10, and 4.11, we obtain the following statement.

Corollary 4.12. Let Pk be the family of planar graphs with girth at least k. Then the

following statements hold:

(i) 7 ≤ colg(P4) ≤ 13.

(ii) 6 ≤ colg(P5) ≤ 8.
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