学位論文

レトロウイルスベクターの抑制性因子である ZFP809の機能および特徴解析

2015年度

市田 悠

学位論文 博士 (理学)

レトロウイルスベクターの抑制性因子である ZFP809の機能および特徴解析

2015 年度

慶應義塾大学大学院理工学研究科

市田 悠

目次

第1章	序論		1
	1.1 レト	ロウイルスベクター	1
	1.1.1	レトロウイルスのゲノム構造と生活環	1
	1.1.2	レトロウイルスベクターの作製方法	3
	1.1.3	遺伝子導入法におけるレトロウイルスベクターの利点	
	お	3よび欠点	4
	1.1.4	レトロウイルスベクターの遺伝子発現抑制機構	6
	1.2 Zinc	finger protein 809 (ZFP809)	7
	1.3 本研	究について	10
	1.3.14	研究目的	10
	1.3.2	研究意義	12
	1.4 本論	文の構成	13
	1.5 参考	文献	13
第2章	ZFP80	9 によるレトロウイルスベクターの発現抑制効果を経時的	的に解
	析する	実験系の構築	18
	2.1 緒言		18
	2.2 実験	対料および方法	19
	2.2.1	細胞培養	19
	2.2.2	レトロウイルスおよびプラスミドベクターの作製	21
	2.2.3	レトロウイルス産生細胞の樹立およびレトロウイルスの	
		産生と感染方法	25
	2.2.4	フローサイトメトリー解析およびセルソーター	26
	2.2.5	RT-PCR	27
	2.2.6	Bisulfite シークエンシング	27
	2.2.7	クロマチン免疫沈降リアルタイム PCR	29
	2.2.8	データの取り扱いおよび統計処理	32
	2.3 実験	結果および考察	33
	2.3.1	遺伝子発現抑制効果を経時的に解析する実験系の構築	33

	2.3.2	ZFP809 によるレトロウイルスベクターの発現抑制効果に	
	:	おける経時的な解析	35
	2.3.3	ZFP809による MLV PBS を有するベクターの発現抑制効果(に
	:	おける経時的な解析	37
	2.3.4	ZFP809の遺伝子発現抑制効果におけるエピジェネティクス	
		修飾解析4	0
	2.4 総排	舌	15
	2.5 参	考文献	16
第3章	遺伝子	発現抑制効果に必要な ZFP809 のドメインにおける特徴解析	50
	3.1 緒言	ſ {	50
	3.2 実験	材料および方法5	1
	3.2.1	細胞培養	51
	3.2.2	ZFP809の欠損変異体の作製5	52
	3.2.3	プラスミド、レトロウイルスおよびレンチウイルスベクター	\mathcal{D}
	,	作製	35
	3.2.4	レンチウイルスの産生と感染方法	37
	3.2.5	免疫染色および共焦点レーザー顕微鏡による観察6	8
	3.2.6	免疫沈降およびウエスタンブロット6	9
	3.2.7	レポーターアッセイ7	0
	3.2.8	フローサイトメトリー解析およびセルソーター7	'1
	3.2.9	ゲルシフトアッセイ7	1
	3.2.10	shRNAベクターによる KAP1 のノックダウン	73
	3.3 実験	結果および考察	74
	3.3.1	ZFP809の欠損変異体の発現確認	74
	3.3.2	ZFP809の細胞内局在に必要なドメインの解析	75
	3.3.3	ZFP809の遺伝子発現抑制効果に必要なドメインの解析7	77
	3.3.4	ZFP809のPBS 配列への結合に必要なドメインの解析	79
	3.3.5	ZFP809の欠損変異体とKAP1との相互作用解析	33
	3.3.6	KAP1 ノックダウンにおける ZFP809 の欠損変異体の PBS	纪
	歹	1への結合能解析	36

3.3.7 レポーターアッセイによる ZFP809 の欠損変異体の発現抑制効

	果の解析	90
3.4	総括	92
3.5	参考文献	94

第4章	結論	-97
	発表論文	-102
	本論文に関する学会発表	-102

第1章 序論

1.1 レトロウイルスベクター

1.1.1 レトロウイルスのゲノム構造と生活環

レトロウイルスのゲノムは両端にプロモーター活性をもつ LTR (long terminal repeat)、その間にパッケージングシグナル配列 (*P*)、*gag* (構造タ ンパク質)、 *pol* (逆転写酵素、インテグラーゼ)、*env* (エンベロープ)遺伝子 をコードしている (Fig. 1-1)。パッケージングシグナル配列は、ウイルスゲ ノム RNA がウイルス粒子の中に包み込まれるときに必要となる。ウイルス 粒子は一本鎖 RNA ゲノムを含み、コアタンパク質(カプシド)によって囲まれ ており、逆転写酵素、インテグラーゼなども含まれている。外側は、エンベ ロープタンパク質から構成される脂質二重膜によって囲まれている[1, 2]。

レトロウイルスの生活環は、Fig. 1-2 に示すように標的細胞の受容体にエ ンベロープが結合することにより、ウイルスと細胞の膜融合が起こり、ウイ ルスが細胞に侵入する。宿主細胞内において逆転写酵素によって、RNA ゲノ ムから二本鎖 DNA が合成され、インテグラーゼにより宿主染色体に組み込 まれる。宿主染色体に組み込まれたウイルスゲノムはプロウイルスと呼ばれ、 宿主染色体の一部となるため、宿主ゲノムの複製によってプロウイルスも複 製され、細胞分裂した娘細胞に受け継がれる。プロウイルスから転写された ウイルス RNA と翻訳されたウイルス構造タンパク質は細胞膜の細胞質側に 集まり、ウイルス粒子が形成された後、細胞外に放出される[1,2]。このウイ ルスの生活環において、ウイルス由来の遺伝子が宿主染色体に組み込まれる

-1-

特徴を利用したものがレトロウイルスベクターである。

Fig. 1-1 レトロウイルスゲノムの構造

Fig. 1-2 レトロウイルスの生活環

1.1.2 レトロウイルスベクターの作製方法

レトロウイルスベクターは、LTR 間のパッケージングシグナル配列(4) 以外のウイルスの遺伝子(gag, pol, env遺伝子)を取り除き、そこに目的遺伝 子を挿入したものである(Fig. 1-3)。この作製したベクターを gag, pol, env遺 伝子を発現するプラスミドベクター(パッケージングプラスミド)と共に細胞 に導入する、または gag, pol, env遺伝子を恒常的に発現する安定発現細胞株 (パッケージング細胞)に作製したベクターを導入すると、組み換えレトロウイ ルスベクターが細胞培養上清中に産生される(Fig. 1-4)。この培養上清を回収 し、標的細胞に感染させると、通常のレトロウイルスと同様にベクター由来 の遺伝子が宿主染色体に組み込まれ、ベクターに組み込まれている目的遺伝 子の発現が起こる。最も代表的なレトロウイルスベクターとしては、哺乳類 レトロウイルス C 型に属するマウスモロニー白血病ウイルス (Moloney murine leukemia virus : MoMLV) 由来のベクターが知られている。通常の MoMLV はアミノ酸トランスポーターを認識して感染し T 細胞リンパ腫を引 き起こすウイルスである[3-5]。

Fig. 1-3 レトロウイルスベクターの構造

Fig. 1-4 レトロウイルスベクターの作製法

1.1.3 遺伝子導入法におけるレトロウイルスベクターの利点および欠点

レトロウイルスベクターによる遺伝子導入は、目的遺伝子が宿主染色体に 組み込まれるため、半永久的に渡り目的遺伝子が発現する。また、ベクター の細胞への感染指向性はエンベロープと標的細胞の受容体によって決まるの で、エンベロープタンパク質を変換することで宿主を限定したり広げたりす ることもできる。従って、遺伝子導入が困難な血球系などの浮遊細胞にも容 易に目的遺伝子を導入することができ、標的細胞への遺伝子導入を行う基礎 研究から治療用ベクターを用いて疾患の治療を行う遺伝子治療などの臨床研 究まで幅広い分野で利用されている [1, 6]。一方で、レトロウイルスベクタ

ーを利用する上で欠点もある。まず、レトロウイルスベクターを作製する際 の組み換えにより、複製可能なレトロウイルス (replication competent retrovirus: RCR)が出現する可能性があり、そのため、gag, pol, env遺伝 子は別々のプラスミドベクターに分けられている [1]。また、宿主染色体の 組み込みはランダムに行われるため、遺伝子が導入された染色体の位置によ り、細胞の生存または増殖に必要な遺伝子の発現が抑制されることや、原ガ ン遺伝子やガン抑制遺伝子の活性化あるいは不活化により、細胞が死に至る ことやガン化することもある[6,7]。さらに、レトロウイルスはウイルスゲノ ム RNA が細胞質に入った後、逆転写酵素によって二本鎖 DNA に合成され、 インテグラーゼなどのタンパク質と結合してプレインテグレーション複合体 (preintegration complex: PIC)を形成し、この複合体が核に移行して宿主染 色体への組み込みが起こるが、この複合体のサイズが大きいため、細胞分裂 における核膜の消失の後でしか核に入ることができない。そのため、分裂期 の細胞にしか遺伝子を導入することができず、神経などの分裂増殖しない細 胞への遺伝子導入には不向きである[7,8]。最も重大な問題点としては、 MoMLV 型のレトロウイルスベクターは胚性幹細胞のような未熟細胞におい てプロウイルスとして宿主染色体に組み込まれるが、プロウイルスからの発 現が抑制されてしまう遺伝子発現抑制効果を受けることである(詳細は 1.1.4 で述べる)。

- 5 -

1.1.4 レトロウイルスベクターの遺伝子発現抑制機構

MoMLV 型のレトロウイルスベクターの発現はマウスおよびヒト胚性幹細 胞のような未熟細胞において、強力に抑制されることが知られている[9-14]。 この抑制機構には LTR の下流にある primer binding site (PBS)とよばれる 18 塩基対の保存された配列を認識する転写抑制因子が深く関わっているこ とが知られており[15-18]、MLV PBS 配列に直接結合する抑制因子として、 マウス未熟細胞において Zinc finger protein 809 (ZFP809)が同定された[19]。 PBS 配列は、レトロウイルスの転写開始点であり、宿主のトランスファー RNA(tRNA)が結合し、そのtRNAを鋳型にしてプロウイルスの転写が起こ る[14-16]。この MLV のプロウイルスの抑制機構において、ZFP809 は Krüppel associated protein 1 (KAP1, TRIM28 とも呼ばれる)を介して heterochromatin protein 1 (HP1)、NuRD histone deacetylase およびH3K9 methyltransferase 4 (ESET, ERG-associated protein with SET domain)な どの抑制性タンパク質と複合体を形成し、MLV LTR の発現を抑制すること が示されている[18, 19, 20, 21] (Fig. 1-5)。Fig. 1-5 に示すように、この抑制 には ESET によるヒストンのメチル化によってヘテロクロマチンが形成され、 DNA methyltransferase (DNMT)による DNA のメチル化によってプロモー ターが不活性化するなどエピジェネティクス修飾が誘導されるが、注目すべ きはレトロウイルス由来の配列に直接結合できる ZFP809 であり、このタン パク質がこの抑制機構の発端となる(ZFP809については1.2で詳細に述べる)。

- 6 -

Fig. 1-5 ZFP809 による遺伝子発現抑制機構

KAP1; Krüppel associated protein 1, ESET; H3K9 methyltransferase 4 (ESET, ERG-associated protein with SET domain), DNMT; DNA methyltransferase.

1.2 Zinc finger protein 809 (ZFP809)

ZFP809 は Krüpple associated box containing-zinc finger proteins (KRAB-ZFPs)のファミリーに属するマウスの転写因子であり、2009年にWolf らによって同定された[19]。KRAB-ZFPsは脊椎動物における四足動物において 発現しており、最も大きな転写因子ファミリーとして知られており、800個以 上のKRAB-ZFPsの遺伝子が同定されている[21-26]。KRAB-ZFPsの構造は、 大きく分けて(1) KRABA ファミリー、(2) KRABA+Bファミリー、(3) KRAB A+bファミリーが存在し、共通してKRAB_A boxをもち、保存されたアミノ酸

配列を有する[27, 28] (Fig. 1-6)。KRAB_B boxとKRAB_b boxもKRAB_A box ほどではないが、保存されたアミノ酸配列をもつ[27, 28]。KRAB-ZFPsのドメ インの機能として、KRABドメインはKAP1との相互作用に必要であり、ZFド メインは標的DNA配列への結合に必要である[21, 22]。また、ZFドメインは DNA配列に結合するだけでなく、他のタンパク質との相互作用に関与すること が知られている[22]。一方で、KRAB_B boxとKRAB_b boxの機能については 不明である[27, 28]。Table 1にはこれまでの研究において、機能や特徴が見出 された代表的なKRAB-ZFPsを示しており、同じファミリーにもかかわらず発 現プロファイルや機能が多様であり、免疫、細胞死、発生、分化およびガン化 など様々な役割に関与している[21-26]。この多様性により、KRAB-ZFPsの機 能を予測することは難しく、ほとんどのKRAB-ZFPsの特徴や機能が不明であ る。

ZFP809はKRAB A + Bファミリーに属し、N末端にKRABドメインとC末端 に7個のzinc finger (ZF)ドメインをもち(Fig. 1-7)、マウス未熟細胞において高 い発現を示す[9]。さらに、最近の知見により、ZFP809はMoMIXのような外 因性のレトロウイルスだけでなく、マウスのゲノムにおける内在性レトロウイ ルスの発現も抑制することが報告されている[29]。また、最近の研究において、 ZFP809がErbB3-binding protein 1 (EBP1)と相互作用することが報告され、 EBP1との相互作用もZFP809の機能に必要であることが示されている[30]。こ れまでの知見からMoMLVの発現抑制においてZFP809による発現抑制機構は 大体明らかになってきたが、ZFP809の特徴に焦点を当てた研究はされておら ず、ZFP809による発現抑制がどの程度維持されるのか、また、ZFP809におけるどのドメインが発現抑制に必要なのかについては不明である。

Fig. 1-6 KRAB-ZFP ファミリーの模式図

KRAB; Krüppel associated box, ZF; Zinc Finger

AはKRAB_Abox、BはKRAB_Bbox、bはKRAB_bboxを示す。

	Metabolismに関与するKRAB-ZFPs				
Name	Species	KRAB domain	Zinc finger domain	Expression profile	Functional role
ZNF224	Human	KRABA + b	19	Ubiquitous	Lipids metabolism
ZNF236	Human	KRAB A	30	Ubiquitous	Glycolysis oxidative metabolism
Rsl1	Mouse	KRABA + B	3	Liver	Lipids homeostasis, Sexual dimorphis
Rsl2	Mouse	KRABA + B	3	Liver	Lipids homeostasis
		Develo	pment and Different	iationに関与するKR	AB-ZFPs
ZNF268	Human	KRABA + B	14	Erythrocytes	Heamatopoiesis
ZNF300	Human	KRABA + b	12	Promyelocytes	Heamatopoiesis
ZNF304	Human	KRAB A	13	Lymphocytes	Lymphocyte activation
ZNF230	Human	KRAB A	4	Testis	Spermatogenesis
ZNF463	Human	KRABA + B	12	Testis	Spermatogenesis
AJ18	Rat	KRAB A	11	Bone	Osteogenesis
NT2	Mouse	KRAB A	9	Cartilage	Development
ZNF359	Human	KRABA + B	16	Heart	Cardiogenesis
ZFP28	Human	KRAB A	14	Heart	Cardiogenesis
ZFP57	Human	KRAB A	6	Ovary, testis	Imprinting
ZFP157	Mouse	KRABA + B	11	Mammary gland	Alveologenesis
Apotosis and Cancerに関与するKRAB-ZFPs					
ZNF224	Human	KRABA + b	19	Ubiquitous	Control of apoptosis
ZNF382	Human	KRABA + B	6	Heart	Tumor suppressor gene
ZNF545	Human	KRAB A	8	Ubiquitous	Tumor suppressor gene
ZBRK1	Human	KRAB A	8	Skeletal muscle	Tumor suppressor gene
Apak	Human	KRABA + b	19	Ubiquitous	Regulation of apoptosis
Degenerative neurological diseasesに関与するKRAB-ZFPs					
ZNF746	Human	KRABA + b	4	Ubiquitous	Parkinson's disease
ZNF224	Human	KRABA	19	Ubiguitous	Alzheimer's disease

Table 1 代表的な KRAB-ZFPs の特徴および機能

Fig. 1-7 ZFP809 の各ドメイン

KRAB; Krüppel associated box, ZF; Zinc Finger

1.3 本研究について

本研究では、レトロウイルスベクターの発現抑制における ZFP809 の特徴 に焦点を当て、ZFP809 の遺伝子発現抑制効果がどの程度維持されるのか、 また、ZFP809 におけるどのドメインが遺伝子発現抑制効果に必要なのかに ついて検証した。まず、生細胞における ZFP809 によるレトロウイルスベク ターの発現抑制効果を経時的に解析するための実験系を構築し、ZFP809 に よる発現抑制効果をモニタリングすることに加えて、発現抑制効果を受けた 細胞におけるエピジェネティクス修飾の解析も行った。さらに、ZFP809 の 欠損変異体を作製し、遺伝子発現抑制効果に必要なドメインについて解析し た。

1.3.1 研究目的

MoMLV 型のレトロウイルスベクターの発現は、未熟細胞において発現が 抑制され、この抑制を引き起こす因子としてマウス未熟細胞において ZFP809 が同定された。これまでの研究により、ZFP809 による遺伝子発現 抑制機構については明らかになりつつあるが、ZFP809 の遺伝子発現抑制効 果がどの程度維持されるのか、また、遺伝子発現抑制効果に必要な ZFP809 のドメインなど、ZFP809 の特徴については十分に理解されていない。そこ で、本研究では、ZFP809 の特徴に焦点を当て、ZFP809 の遺伝子発現抑制 効果を経時的にモニタリングする実験系を構築し、ZFP809 による遺伝子発 現抑制効果がどの程度維持されるのか、また、ZFP809 のドメインにおける 欠損変異体を作製し、遺伝子発現抑制効果に必要な ZFP809 のドメインにおける 欠損変異体を作製し、遺伝子発現抑制効果に必要な ZFP809 のドメインの役 割について解析した。これまでの遺伝子発現抑制効果の解析としては、レポ ーターアッセイによる短期間で細胞を破壊する実験系で行われてきたが、こ の方法では生細胞における経時的なモニタリングは困難である。従って、本 研究では生細胞における ZFP809 の発現抑制効果を経時的に解析する実験系 を構築し、エビジェネティクス修飾の解析と併用することで ZFP809 による 遺伝子発現抑制効果を詳細に解析した。

さらに、これまでの KRAB-ZFPs の知見から ZFP809 のドメインにおいて、 KRAB ドメインは KAP1 との相互作用に必要であり、ZF ドメインは標的 DNA 配列への結合に必要であることが予測できるが、実際、ZFP809 が遺伝 子発現効果を発揮する際、どのドメインが必要であるのかは不明である。従 って、本研究では ZFP809 の各ドメインを欠損させた変異体を作製し分子生 物学的手法により、ZFP809 が機能する上で重要となるドメインの特徴解析 を試みた。

- 11 -

1.3.2 研究意義

レトロウイルスベクターの発現は未熟細胞で強力に抑制され、マウス未熟 細胞においては ZFP809 がこの発現抑制の発端となることが示さている。一 方で、ZFP809 によるレトロウイルスベクターの発現抑制効果における経時 的な解析はされておらず、ZFP809 のドメインの機能や特徴については十分 に理解されていない。そこで、生細胞における遺伝子発現抑制効果を経時的 にモニタリングする本実験系により、ZFP809 による遺伝子発現抑制効果、 それに伴うエビジェネティクス修飾の誘導など一連の遺伝子発現抑制過程を モニタリングすることができる。また、本実験系は生細胞を用いるので、発 現抑制過程におけるエビジェネティクス修飾が誘導されるタイミングも明ら かにすることが可能となり、レトロウイルスベクターの発現抑制機構の解明 に向けての有益な知見の1つとなることが期待される。そして、ZFP809 の ような転写抑制因子の影響を受けないまたはエビジェネティクス修飾が誘導 されにくい、利便性の高いレトロウイルスベクターの開発への応用に貢献す ることが期待される。

さらに、ZFP809 が属する KRAB-ZFPs ファミリーの特徴や機能のほとん どがわかっていない。KRAB ドメインは共通して KAP1 との相互作用に必要 であることがわかっているが、数個から数十個ある ZF ドメインの役割など はわかっていない。そこで、ZFP809 のドメインにおける特徴解析により、 ZFP809 と類似のドメインをもつ KRAB-ZFPs の機能や特徴を含む生物学的 意義の解明、また、ヒトにおいて、ZFP809 に相当するレトロウイルスベク

- 12 -

ターの発現抑制を引き起こす因子の同定に繋がることが期待される。

1.4 本論文の構成

第一章 レトロウイルスベクターの利点および欠点について述べ、さらに ZFP809の構造、発現および機能についてまとめ、本研究を行うことの目的と 意義について述べた。

第二章 ZFP809によるレトロウイルスベクターの発現抑制効果を経時的に 解析する実験系を構築した。この構築した実験系を用いて、生細胞における ZFP809の発現抑制効果を経時的に解析し、さらに発現抑制されたプロモータ ーにおけるエピジェネティクス解析を行った。

第三章 ZFP809が遺伝子発現抑制効果を発揮する上で重要なドメインを検証した。ZFP809の欠損変異体を作製し、細胞内局在、遺伝子発現抑制効果およびPBS配列への結合能について解析した。

第四章 本研究で得られた知見を総括した。

1.5 参考文献

- [1] 谷憲三朗・浅野茂隆 「遺伝子治療の新展開 ベクター開発と臨床応用 の最前線」羊土社 (2001).
- [2] Walter J. Burdette「知っておきたい遺伝子治療の基礎知識」(加藤郁之 進 訳) タカラバイオ (2007).
- [3] Valsesia-Wittmann. S, Morling. F.J, Hatziioannou. T, Russell S.J, Cosset. F.L, Receptor co-operation in retrovirus entry: recruitment of

an auxiliary entry mechanism after retargeted binding., EMBO J. 16, 1214-1223 (1997).

- [4] Viejo-Borbolla. A, Pizzato. M, Blair. E.D, Schulz. T.F, Insertion of targeting domains into the envelope glycoprotein of Moloney murine leukemia virus (MoMLV)-based vectors modulates the route of mCAT-1-mediated viral entry., Virus Res. 108, 45-55 (2005).
- [5] Bae. E.H, Park. S.H, Jung. Y.T, Role of a third extracellular domain of an ecotropic receptor in Moloney murine leukemia virus infection., J Microbiol. 44, 447-452 (2006).
- [6] 塙秀樹・島田隆「レトロウイルスベクターによる遺伝子治療」
 第53巻 第2号 日本ウイルス学会 (2003).
- [7] 三宅弘一・島田隆 「遺伝子導入と発現シリーズ ウイルスベクターによる遺伝子導入と発現」Vol. 8 No. 2, p150-156 日医大医会誌 (2012).
- [8] 野本明男・西山幸廣 「ウイルス研究の現在と展望」共立出版 (2007).
- [9] D'Auriol. L, Yang. W.K, Tobaly. J, Cavalieri. F, Peries. J, Emanoil-Ravicovitch. R, Studies on the restriction of ecotropic murine retrovirus replication in mouse teratocarcinoma cells., J Gen Virol. 55, 117-122. (1981).
- [10] Linney. E, Davis. B, Overhauser. J, Chao. E, Fan. H, Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells., Nature. 308, 470-472 (1984).

- [11] Stewart. C.L, Stuhlmann. H, Jahner. D, Jaenisch. R, De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells., Proc Natl Acad Sci USA. 79, 4098-4102 (1982).
- [12] Teich. N.M, Weiss. R.A, Martin. G.R, Lowy. D.R, Virus infection of murine teratocarcinoma stem cell lines., Cell. 12, 973-982 (1977).
- [13] Grez. M, Akgun. E, Hilberg. F, Ostertag. W, Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells., Proc Natl Acad Sci USA. 87, 9202-9206 (1990).
- [14] Kempler. G, Freitag. B, Berwin. B, Nanassy. O, Barklis. E, Characterization of the Moloney murine leukemia virus stem cell-specific repressor binding site., Virology. 193, 690-699 (1993).
- [15] Petersen. R, Kempler. G, Barklis. E, A stem cell-specific silencer in the primer-binding site of a retrovirus., Mol Cell Biol. 11, 1214-1221 (1991).
- [16] Haas. D.L, Lutzko. C, Logan. A.C, Cho. G.J, Skelton. D, Jin. Yu. X, Pepper. K.A, Kohn. D.B, The Moloney Murine Leukemia Virus Repressor Binding Site Represses Expression in Murine and Human Hematopoietic Stem Cells., J Virol. 77, 9439-9450 (2003).
- [17] Wolf. D, Hug. K, Goff. SP, TRIM28 mediates primer binding site-targeted silencing of Lys1,2 tRNA-utilizing retroviruses in embryonic cells., Proc Natl Acad Sci USA. 105, 12521-12526 (2008).

- 15 -

- [18] Wolf. D, Cammas. F, Losson. R, Goff. SP, Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28., J Virol. 82, 4675-4679 (2008).
- [19] Wolf. D, Goff. S.P, Embryonic stem cells use ZFP809 to silence retroviral DNAs., Nature. 458, 1201-1204 (2009).
- [20] Matsui. T, Leung. D, Miyashita. H, Maksakova. I.A, Miyachi. H, Kimura. H, Tachibana. M, Lorincz. M.C, Shinkai. Y, Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET., Nature. 464, 927–931 (2010).
- [21] Urrutia. R, KRAB-containing zinc-finger repressor proteins., Genome Biol. 4, 231 (2003).
- [22] Lupo. A, Cesaro. E, Montano. G, Zurlo. D, Izzo. P, Costanzo. P,
 KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple
 Biological Functions., Curr Genomics. 14, 268–278 (2013).
- [23] Hirasawa. R, Feil. R, A KRAB Domain Zinc Finger Protein in Imprinting and Disease., Dev Cell. 15, 487–488 (2008).
- Quenneville. S, Turelli. P, Bojkowska. K, Raclot. C, Offner. S,
 Kapopoulou. A, Trono. D, The KRAB-ZFP/KAP1 System Contributes
 to the Early Embryonic Establishment of Site-Specific DNA
 Methylation Patterns Maintained during Development., Cell Rep. 2,
 766–773 (2012).

- [25] Santoni de Sio. F.R, Kruppel-associated box (KRAB) proteins in the adaptive immune system., Nucleus. 5, 138–148 (2014).
- [26] Tan. X, Xu. X, Elkenani. M, Smorag. L, Zechner. U, Nolte. J, Engel. W, Pantakani. D.V, Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells., Stem Cell Res. 11, 1045–1059 (2013).
- [27] Abrink. M, Ortiz. J.A, Mark. C, Sanche. C, Looman. C, Hellman. L, Chambon. P, Losson. R, Conserved interaction between distinct Krüppel-associated box domains and the transcriptional intermediary factor 1 beta., Proc Natl Acad Sci USA. 13, 1422-1426 (2001).
- [28] Peng. H, Gibson. L.C, Capili. A.D, Borden. K.L, Osborne. M.J, Harper. S.L, Speicher. D.W, Zhao. K, Marmorstein. R, Rock. T.A, Rauscher. F.J 3rd, The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain., J Mol Biol. 6, 269-289 (2007).
- [29] Wolf. G, Yang. P, Füchtbauer. A.C, Füchtbauer. E.M, Silva. A.M, Park. C, Wu. W, Nielsen. A.L, Pedersen. F.S, Macfarlan. T.S, The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses., Genes Dev. 29, 538-554 (2015).
- [30] Wang. G.Z, Wolf. D, Goff. S.P, EBP1, a novel host factor involved in primer binding site-dependent restriction of moloney murine leukemia virus in embryonic cells., J Virol. 88, 1825–1829 (2014)

- 17 -

第2章 ZFP809 によるレトロウイルスベクターの発現抑 制効果を経時的に解析する実験系の確立

2.1 緒言

MoMLV 型のレトロウイルスベクターの発現は、胚性幹細胞などの未熟細胞で抑制されることが知られており、MoMLV の発現を抑制する因子として ZFP809 が同定された[1, 2]。ZFP809 は MoMLV のプロモーター(long terminal repeat: LTR)の下流に位置する 18 塩基対の primer binding site (PBS) 配列に結合し、KRAB ドメインを介して KAP1 と相互作用して H3K9 methyltransferase 4 (ESET, ERG-associated protein with SET domain), heterochromatin protein 1 (HP1)および NuRD histone deacetylase などの 核内転写抑制因子と複合体を形成し、ヒストンおよび DNA のメチル化を含 むエビジェネティクス修飾により MLV LTR の発現を抑制する[1-3]。

レトロウイルスベクターの遺伝子発現抑制は一過性ではなく長期に渡って 維持されるが、レポーターアッセイのような従来の遺伝子発現抑制効果の解 析法では短期間かつ細胞を破壊した状態で解析を行うため[4-7]、遺伝子発現 抑制効果を受けた細胞の経時的なモニタリングや細胞内の標的プロモーター におけるエピジェネティクス修飾について解析することができなかった。従 って、目的の転写因子における遺伝子発現抑制効果を詳細に解析するために は生細胞における経時的な解析に加えてエピジェネティクス修飾の解析が必 要である。本研究では、ZFP809 によるレトロウイルスベクターの発現抑制 効果を生細胞において経時的に解析するために、標的プロモーターと ZFP809のそれぞれの発現に対して異なる蛍光タンパク質を付加させ、フロ ーサイトメトリーで蛍光タンパク質の発現を解析する実験系を構築した。こ の実験系は、細胞を破壊することなく遺伝子発現抑制効果を経時的に解析で きるので、遺伝子発現抑制効果を受けた細胞における DNAのメチル化やヒ ストンのメチル化のようなエピジェネティクス修飾の解析が可能となり、目 的の転写因子における遺伝子発現抑制効果の過程を経時的かつ分子レベルで 解析することができる。

2.2 実験材料および方法

2.2.1 細胞培養

HEK293(ヒト腎臓由来、American Type Culture Collection (ATCC)から 購入)および 293gp 細胞(ウイルスパッケージング細胞株、RIKEN cell bank から購入)の培養には Dulbecco's Modified Eagle's Medium (DMEM, Sigma-Aldrich) 培地に 10% FBS (fetal bovine serum, EQUITECHBIO, INC.)と 1% Penicillin-Streptomycin-Glutamine (GIBCO)を添加したものを 使用した。これらの細胞は、10 cm Cell Culture Dish (Corning Incorporated) で 37 ℃、5% CO₂条件下のインキュベーターで培養した。

293gpg 細胞(ウイルスパッケージング細胞株、国立成育医療研究センター 成育遺伝研究部小野寺雅史部長より供与)の培養は、DMEM 培地に 10% FBS と 1% Penicillin-Streptomycin-Glutamine, 0.3 mg/ml G418 (Sigma-Aldrich), 2 µg/ml Puromycin (Sigma-Aldrich), 1 µg/ml テトラサイ クリン (Sigma-Aldrich) を添加したものを使用し、細胞は、10 cm Cell Culture Dish で 37 ℃、10% CO₂条件下のインキュベーターで培養した。

これらの細胞の継代は、培地を吸引除去した後、PBS(·) pH7.4 (GIBCO) を加えて細胞表面を洗い、0.25% Trypsin-EDTA (GIBCO)を1 ml 加え、5 分間インキュベートした後、DMEM 培地を9 ml 加えてピペッティングによ り dish から細胞を剥離した。剥離した細胞懸濁液を遠沈管に移し、1000 rpm で5分間遠心分離を行い、上清を吸引除去して DMEM を加えて懸濁し、新 しい dish に播種した。

F9 細胞(マウス胎児癌由来、RIKEN cell bank から購入)は、DMEM 培地 に 15% FBS と 1% Penicillin-Streptomycin-Glutamine を添加したものを使 用した。細胞は、10 cm Cell Culture Dish で 37 ℃、5% CO₂条件下のイン キュベーターで培養した。この細胞の継代は、培地を吸引除去した後、PBS (・) pH7.4 を加えて細胞表面を洗い、DMEM 培地を 10 ml 加えてピペッティン グにより dish から細胞を剥離した。剥離した細胞懸濁液を新しい dish に播 種した。

K562 (ヒト赤芽球様白血病細胞由来、ATCCより購入)およびWEHI (骨髄 腫細胞由来、国立成育医療研究センター成育遺伝研究部小野寺雅史部長より 供与)細胞の培養には Roswell Park Memorial Institute 1640 (RPMI 1640) 培地に 10% FBS と 1% Penicillin-Streptomycin-Glutamine を添加したもの を使用した。Ba/F3 (マウスプロ B 細胞由来、国立成育医療研究センター成育 遺伝研究部小野寺雅史部長より供与)は、マウス IL-3 (Interleukin-3)依存性 なので、培養には RPMI 1640 培地に 10% FBS と 1% Penicillin-Streptomycin-Glutamine, IL-3 を産生する WIHI 細胞上清 10% を添加したものを使用した。細胞は、10 cm Suspension Culture Dish で 37 \mathbb{C} 、 5% CO₂ 条件下のインキュベーターで培養した。これらの細胞の継代は、ピ ペッティングにより細胞をほぐし、細胞懸濁液を遠沈管に移し、1000 rpm で 5 分間遠心分離し上清を吸引除去して RPMI1640 を加えて懸濁し、新しい dish に播種した。

2.2.2 レトロウイルスおよびプラスミドベクターの作製

(i) レトロウイルスベクター

国立成育医療研究センター成育遺伝研究部小野寺雅史部長より供与して頂 いた pGCDNsam-IRES / huKO は、PCC4 cell-passaged myeloproliferative sarcoma virus (PCMV) 由来の LTR と dl587 rev 由来の PBS を有し、マー カー遺伝子として internal ribosomal entry site/humanized Kusabira-orange (IRES/huKO) が挿入されている[8, 9]。ZFP809 をコード するレトロウイルスベクターの作製を行うために、F9 細胞から RNeasy Mini Kit (QIAGEN) を用いて全 RNA 抽出し、抽出した RNA を用いて Transcriptor High Fidelity cDNA Synthesis Kit (Roche)により cDNA を合 成した。合成した cDNA を鋳型に Table 2-1 に示すプライマーと TaKaRa EX Taq Hot Start Version (TAKARA BIO)を用いて PCR を行った。94 C 1 β 1 サイクル、94 C 30 秒/56.4 C 30 秒/72 C 1 β 30 ϑ 38 サイクル、72 C 7 β 1 サイクルで PCR を行った。全てのプライマーは北海道システムサイエ ンスで合成された。

Table	e 2-1 ZFP809 のプライマー
F primer	5´-ACGCTCCCAGTCCCATCA-3´
R primer	5'-TCAAAAGTACGTTACCCCTGTGTG-3'
F; forward, R; reverse	

得られた PCR 産物を Wizard SV Gel and PCR Clean-Up System (Promega)を用いて精製し、The Original TA cloning Kit (Life technologies) によりサブクローニング(pCR2.1 TA cloning vector)を行い、シークエンシン グ (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer) (Applied Biosystems)によって塩基配列を決定した。そして、 pCR2.1 TA cloning vector から制限酵素 *Not* I と *Xho* I (TAKARA BIO)で ZFP809 を切り出し、GCDNsam-IRES/huKO ベクターに挿入し、クローニ ングを行い、シークエンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer) によって塩基配列を確認し、ベクターを大量 に得るために Genopure Plasmid Maxi Kit (Roche)を用いた。作製したベク ターを MSCV/ZFP_huKO と呼ぶ。

さらに、MLV 由来の PBS 配列と EGFP をコードするベクターを作製する ために、*Nco* I と *Cla* I (TAKARA BIO)で処理した EGFP をコードする cDNA を GCsapMLV (MLV 由来の PBS を有するベクター)[10]にクローニングし、 このベクターを MLV/EGFP と呼ぶ。 pGCDNsam-IRES/EGFP は、国立成育医療研究センター成育遺伝研究部 小野寺雅史部長より供与して頂いた。本研究では、フローサイトメトリー解 析においてネガティブコントロールとして用いており、MLV/EGFP との比較 を行うために MSCV/EGFP と呼ぶ。

(ii) プラスミドベクター

PBS 配列をコードするプラスミドベクターを作製するために、哺乳類発現 ベクターにおいて一般的に使用されているプロモーターである Cytomegalovirus (CMV) および Elongation Factor 1-a (EF1a)プロモーター をコードするベクターに PBS 配列を挿入した。

(iii) pCMV_IRES/EGFP ベクターの作製

pCMV-SC vector は、StrataClone Mammalian Expression Vector Systems(Agilent)に付属してあるベクターであり、このベクターに IRES/EGFPをコードする cDNA を挿入し、pCMV_IRES/EGFP vector を作 製した。

(iv) pCMV_PBS/IRES/EGFP ベクター

Sac I と *Not* I (TAKARA BIO)を用いて pCMV_IRES/EGFP vector の制限 酵素処理を行い、Table 2-2 に示す MLV および dl587 PBS を挿入した。さら に、シークエンシグ (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer) によって塩基配列を確認し、ベクターを大量に得るため に Genopure Plasmid Maxi Kit (Roche)を用いた。これらのベクターをそれ ぞれ pCMV_MLV/I/EGFP と pCMV_dl587/I/EGFP と呼ぶ。

	Table 2-2 MLV と dl587 PBS のオリゴ DNA
MLV PBS F	5'-CTTTGGGGGGCTCGTCCGGGATTTGC-3'
MLV PBS R	5'-GGCCGCGAAATCCGGACGAGCCCCCAAAGAGCT-3'
dl587 PBS F	5´-CTTTGGAGGTTCCACCGAGATTTGC-3´
dl587 PBS R	5'-GGCCGCAAACCTCCAAGGTCGCTCTAAAGAGCT-3'

F; forward, R; reverse

(v) pEF1_PBS/IRES/EGFP vector

pCMV_PBS/IRES/EGFP と同様に pBApo-EF1a vector(TAKARA BIO)に おいても BamHIと Hind III (TAKARA BIO)を用いて pBApo-EF1a vector の制限酵素処理を行い、pCMV_PBS/IRES/EGFP 由来の MLV または dl587 PBS 配列と IRES/EGFP(Table 2-3)を挿入した。さらに、シークエンシグ (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer) によって塩基配列を確認し、ベクターを大量に得るために Genopure Plasmid Maxi Kit (Roche)を用いた。これらのベクターをそれぞれ pEF1_MLV/I/EGFPとpEF1_dl587/I/EGFPと呼ぶ。

Table 2-3 MLV \geq 01387 PDS $07A$ $9 \rightarrow$ DNA		
IRES/GFP F	5´-GATCCATAAGAATGCGGCCGCTAA	
	ACTATAATTCCGCCCCCCC-3'	
IRES/GFP R	5´-AGCTTTTACTTGTACAGCTCGTCCATGCC-3'	
MLV PBS F	5'-GATCCTTTGGGGGGCTCGTCCGGGATTT-3'	
MLV PBS R	5'-AGCTTTTACTTGTACAGCTCGTCCATGCC-3'	
dl587 PBS F	5´-GATCCTTTGGAGGTTCCACCGAGATTT-3´	
dl587 PBS R	5'-AGCTTTTACTTGTACAGCTCGTCCATGCC-3'	

Table 9-9 MIV & ALEOT DDC O + 11 - DNA

F; forward, R; reverse

2.2.3 レトロウイルスの産生および感染方法

ウイルスパッケージング細胞株として 293gp 細胞、水疱性口内炎ウイルス のエンベロープ (VSV-G)を産生する 293gpg 細胞を使用した。293gpg 細胞の 培地には、テトラサイクリンを添加しているが、これは VSV-G が強い細胞毒 性を有するため、その発現をテトラサイクリン薬剤誘導系(tet-off)により調 節している。作製したレトロウイルスベクターと VSV-G 遺伝子をコードする 発現ベクターとともに 293gp 細胞に transfection し、得られたウイルス上清 を 293gpg に transduction し、ウイルス産生細胞株を樹立した。

樹立した 293gpg 細胞からのウイルス産生は、80% 程度コンフルエント状 態の 293gpg 細胞を 175 cm² フラスコ (CELL STAR)に播種し、9 割ぐらい増 殖したら培地を取り除き、PBS (-) 20 ml で洗浄し、テトラサイクリンを含ま

ない10% FBSと1% Penicillin-Streptomycin-Glutamine を添加したDMEM 30 ml に交換することで VSV-G の発現を誘導し、ウイルスを産生させた。テ トラサイクリン除去後、48 時間後に新しい 10% FBS と 1% Penicillin-Streptomycin-Glutamine を添加した DMEM 30 ml に交換し、そ の後テトラサイクリン除去してから 72, 96, 120, 144 時間後に培養上清を回 収した(各時間で 30 ml 回収)。回収した培養上清から 0.45 μm filter (マイレ ックス-HV 0.45, Millipore)を用いて細胞夾雑物を取り除き、6000×g,4℃で 一晩遠心分離することでウイルスをペレット化した。遠心分離後、上清を除 去してウイルスペレットを無血清培地 (StemPro-34 SFA, GIBCO) 300 µl で 溶解(4℃、一晩撹拌)することで100倍濃縮の無血清ウイルス上清を作製し [11]、ウイルス上清は、80℃で保存した。産生したレトロウイルスの感染方 法としては、6 well plate に 1×10⁵ 個の標的細胞を播種し、そこに濃縮ウイ ルス 1/100 量加え、さらに感染効率を高めるために 1/100 量 0.8 mg/ml ポリ ブレン (Sigma-Aldrich)、40 µl HEPES (GIBCO)を加え、1000×g,60 min, 32℃で遠心分離を行い培養した。

2.2.4 フローサイトメトリー解析およびセルソーター

フローサイトメトリー解析およびセルソーターは、FACS (fluorescence activated cell sorting)Aria II (BD bioscience)を使用した。

2.2.5 RT-PCR

フローサイトメトリー解析した細胞から RNeasy Plus Mini Kit (QIAGEN)を用いて、全RNAを抽出し、抽出したRNAを鋳型にSuperScript III First-Strand Synthesis System for RT-PCR (Life Technologies)により cDNA を合成した。そして、EGFP の発現を確認するために、PrimeSTAR GXL DNA Polymerase (TAKARA BIO)と Table 2-4 に示すプライマーを用い て PCR を行い、アガロース電気泳動によりバンドの検出を行った。PCR 条 件は、98 C 1 分 1 サイクル、98 C 10 秒/62 C 15 秒/68 C 30 秒 28 サイク ル、68 C 5 分 1 サイクルで行った。ポジティブコントロールとしては SuperScript III First-Strand Synthesis System に付属してある 8-actin の プライマーを用いた。

Table 2-4 RT-PCR のプライマー

EGFP F	5´-ATCATGGCCGACAAGCAGAA-3'
EGFP R	5´-TCTCGTTGGGGGTCTTTGCTC-3´

F; forward, R; reverse

2.2.6 Bisulfite シークエンシング

フローサイトメトリー解析した細胞から DNeasy kit (QIAGEN)を用いて ゲノムを抽出した。抽出したゲノムの Bisulfite 処理および精製には、EpiTect Plus DNA Bisulfite Kit (QIAGEN)を用いた。さらに、Bisulfite 処理したゲ ノムを鋳型に CpG islands を含むプロモーター領域を Table 2-5 に示すプラ イマーと TaKaRa Taq Hot Start Version (TAKARA BIO)を用いて増幅した。 そして、得られた PCR 産物を Wizard SV Gel and PCR Clean UP System を 用いて精製し、pCR2.1 TA cloning vector でサブクローニングをおこない、 シークエンシグ (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)により塩基配列を決定し、QUantification tool for Methylation Analysis (QUMA) (<u>http://quma.cdb.riken.jp</u>)を用いてメチル化 解析の結果を模式図化した。

Table 2-5 Bisulfite シークエンシングに用いたプライマー		
MLV/EGFP F	5´-AAGGATTTGAAATGATTTTGTGTTT-3'	
MLV/EGFP R	5´-ATCAATCACTCAAAAAAAACCCCTC·3´	
MSCV/EGFP F	5'-AAGGATTTGAAATGATTTTGTGTTT-3'	
MSCV/EGFP R	5′-ATCTAAAAAAACCCCTCCCAAAAAT-3′	
CMV F	5′-TGATTTTATGGGATTTTTTTATTG-3′	
CMV R	5′-GAAATTTGGTTTTGTTTTTTGA-3′	
EF1 F	5´-GGGGGTAGTTTTAAGTTGGT-3´	
m EF1~R	5´-GAAATTTGGTTTTGTTTTTTGA-3´	

F; forward, R; reverse

2.2.7 クロマチン免疫沈降リアルタイム PCR (Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR))

(i) 固定サンプル(培養細胞)の調製

トリプシン処理して回収した細胞を 750 µl の PBS (·)で再懸濁し、懸濁液 の一部で細胞数を計った (5×10⁶ 個)。そして、16% Formaldehyde を 50 µl 添加し (最終濃度:1%)、遠沈管をゆっくりとローテーションしながら、室 温で 10 分間固定し、2 M Glycine を 100 µl 加え、同様にローテーションし ながら室温で 5 分間インキュベートした。インキュベーション後、遠心分離 (700×*g*, 4 $^{\circ}$, 5 分間) を行い、上清を取り除いたあと、PBS (·)に再懸濁し、 2×10⁶ 個の細胞を 1.5 ml チューブに分注した。再度、遠心分離を行い、上清 をできるだけ取り除いたあと、液体窒素で凍結させ、使用するまで-80 $^{\circ}$ に 保存した。

(ii) ソニケーションによるクロマチン断片化

凍結させた固定済み細胞に Protease inhibitor mix (P.I.) を加えた NP-40 buffer 500 µl を加え、ボルテックスにより懸濁し、氷上にて 10 分間インキ ュベートした。インキュベーション後、ソニケーター (Covaris S220)による ソニケーション (2 秒間)により細胞膜を破壊した。ソニケーション後、サン プルの遠心分離 (1000×g, 4 $^{\circ}$, 5 分間)を行い、上清を取り除いた。続いて、 SDS lysis buffer (+P.I.) 500 µl を加えボルテックスにより懸濁し、氷上にて 10 分間インキュベートして、細胞懸濁液 100 µl を 15 分間ソニケーションし た。そして、ソニケーション済サンプルの遠心分離を行い (10000×g, 4 $^{\circ}$, 10 分間)、使用するまで4℃に保存した。

(iii) 免疫沈降および DNA の回収

予め、input としてサンプルから 2 ul (2%)を分取し、4 ℃で保存した。 Protein LoBind tube (Eppendorf)を使用し、13 µl ソニケーション済みサン プルに 7 µl SDS lysis buffer と 180 µl ChIP dilution buffer (+P.I.) を加え て200 µl にした。さらに、anti-Histone H3 K9 trimethylation (H3K9me3) 抗体 (ab8898, Abcam)を Dynabeads Protein A (DB10001, Veritas)に吸着 させた抗体と beads の混合物 400 µl を加え、4 ℃ で 2 時間ゆっくりローテ ーションした。ネガティブコントロールとして、normal mouse IgG (Millipore, Billerica, MA)を Dynabeads M-280 Sheep anti-Mouse IgG (DB11201, Veritas)に吸着させた抗体と beads の混合物を用いた。ローテー ション後、チューブをマグネットスタンドに置き、静置後、上清を捨てた。 次に、1×RIPA buffer (150 mM NaCl)で 2 回ビーズを洗浄し(1 回目: 400 µl、 2回目: 200 µl, 5 分間ローテーション)、1×RIPA buffer (500 mM NaCl)で1 回ビーズを洗浄し (200 µl、5 分間ローテーション)、1×TE buffer (pH 8.0) で 1回ビーズを洗浄した(500 µl、5 分間ローテーション)。 洗浄後、ビーズペ レットに ChIP direct elution buffer 200 µl を加え、65 °C で一晩インキュベ ートした。さらに、保存していた input (2%) にも ChIP direct elution buffer 200 µl を加え同時にインキュベートした。次の日、20 mg/ml Proteinase K 2 µl を加え、55 ℃で2時間インキュベートした。インキュベート後、チューブ をマグネットスタンドに置き、静置後、新しいチューブに上清を回収し、

AMPure XP beads (Beckman Coulter, Inc.)360 µl を加え、ピペッティング して 10 分静置した。静置後、チューブをマグネットスタンドに置き、静置後 上清を捨て、75% エタノールで 2 回洗浄し、チューブをマグネットスタンド に置いたまま、ビーズペレットを風乾させ、精製水 45 µl を加えて DNA を溶 出し、1×TE buffer (pH 8.0)を 1/10 量加え、濃度測定を行った。すぐに使用 する場合には 4 ℃で、保存する場合には-20 ℃で保存した。

(iv) リアルタイム PCR

クロマチン免疫沈降によって得られた DNA を鋳型として、Table 2-6 に示 すプライマーを用いてリアルタイム PCR を行い、各プロモーターにおける H3K9me3 の割合を解析した。Table 2-7 には qPCR の組成を示した。デー タの解釈についてはクロマチン免疫沈降キット Red ChIP Kit (ニッポンジ ーン)のマニュアルを参照した。

Table 2-6 リアルタイム PCR のプライマー

CMV F	5′- TACCATGGTGATGCGGTTTT -3'
CMV R	5′- GGCGGAGTTGTTACGACATT-3′
MLV/EGFP,	5′- AGAACGGCATCAAGGTGAAC -3′
MSCV/EGFP F	
MLV/EGFP,	5´- TGCTCAGGTAGTGGTTGTCG -3´
MSCV/EGFP R	

F; forward, R; reverse

;
Reagents	Volume
LightCycler 480 SYBR Green Master ; 2× conc.	10 µl
Forward Primer	1 µl
Reverse Primer	1 µl
Template	5 µl
Milli-Q	3 µl
Total	20 µl

Table 2-7 リアルタイム PCR の組成

(v) データの解釈

ゲノム上の特定の遺伝子座の免疫沈降の効率は、スターティングマテリアルのパーセンテージ(% input, recovery)として定量PCR のデータから計算することができる。

% input = AE (Ct input – Ct ChIP) \times Fd \times 100%

AEは増幅効率を示し、Ct ChIPとCt inputは定量PCRの指数増幅段階から得 られた閾値、Fdは定量PCRに使ったChIPとinputのDNAの量の差のバランス をとるための希釈補正ファクターである。

2.2.8 データの取り扱いおよび統計処理

複数回測定したデータに関しては、各データの平均値を採用し、エラーバー は標準偏差値として示した。統計処理はStudent's *t*-testで行った。

2.3 実験結果および考察

2.3.1 遺伝子発現抑制効果を経時的に解析する実験系の構築

生細胞において、ZFP809 によるレトロウイルスベクターの発現抑制効果 を経時的に解析するために、Fig. 2-1 に示すようなレトロウイルスベクター を作製した (ベクターの作製方法は、第2章 2.2.2 を参照)。まず、EGFP を コードし、MLV PBS を有する MLV/EGFP または dl587 PBS を有する MSCV/EGFP ベクターを作製した。さらに、ZFP809 と humanized Kusabira Orange (huKO)をコードする MSCV/ZFP_huKO を作製した。MSCV/EGFP ベクターにおける dl587 PBS 配列は MLV PBS 配列に対して 5 bp 異なって おり、ZFP809 が結合しないことが知られているので[12]、ネガティブコント ロールとして用いた。また、huKO は Fungia concinna からクローニングさ れた遺伝子であり、橙色を示す二量体タンパク質で励起波長は 558 nm、蛍 光波長は 583 nm である[8,9]。そして、作製した MLV/EGFP および MSCV/EGFP ベクターから産生したウイルスを標的細胞に感染させ、セルソ ーターにより EGFP 陽性細胞を分離し、続いて MSCV/ZFP huKO ベクター から産生したウイルスを感染させ、フローサイトメーターにより EGFP と huKO の発現を解析した (Fig. 2-2)。フローサイトメトリー解析の結果は横 軸に EGFP、縦軸に huKO で展開した際に、1) EGFP と huKO 両陰性細胞, 2) EGFP 陽性細胞 (MSCV/ZFP huKO ウイルスの感染が起こらなかった細胞). 3) EGFP と huKO 両陽性細胞 (EGFP が発現しているので、これらの細胞集 団は ZFP809 による遺伝子発現抑制効果を示さない), 4) huKO 陽性細胞

- 33 -

(EGFP が発現していないので、これらの細胞集団は ZFP809 による遺伝子発
 現抑制効果を示す)として解釈した (Fig. 2-3)。

Fig. 2-1 作製したレトロウイルスベクターの模式図

Fig. 2-2 遺伝子発現抑制効果をモニタリングするための実験系

Fig. 2-3 フローサイトメトリー解析結果の解釈

2.3.2 ZFP809 によるレトロウイルスベクターの発現抑制効果における経時 的な解析

2.3.1 (Fig. 2-2)で構築した実験系を用いて、ZFP809 によるレトロウイルス ベクターの発現抑制効果を経時的に解析した。標的細胞としては、接着細胞 より遺伝子導入効率の低い浮遊細胞として、Ba/F3 細胞 (マウス細胞)または K562 細胞 (ヒト細胞)で行った (Fig. 2-4)。MSCV/EGFP の発現は、ZFP809 の存在下においても維持された一方で MLV/EGFP の発現は ZFP809 の発現 により低下し、その抑制効果は長期に渡って維持された (Fig. 2-4A および 2-4B)。さらに、フローサイトメトリー解析した細胞における RT-PCR によ り、MLV/EGFP の発現が抑制されていることが示された (Fig. 2-5)。

Fig. 2-4 フローサイトメトリーによる ZFP809 のレトロウイルスベクターの発現抑 制効果の経時的解析

(A, B) Ba/F3 and K562 cells transduced with MLV/EGFP or MSCV/EGFP were sorted based on EGFP expression and transduced with MSCV/ZFP_huKO, followed by the analysis of the expressions of EGFP and huKO on Day 3 and 24 after transduction.

Fig. 2-5 フローサイトメトリー解析後の RT-PCR

EGFP expression was measured by RT-PCR in K562 cells analyzed with flow cytometry (Fig. 2-4B). β-actin was used for a loading control.

2.3.3 ZFP809 による **MLV PBS** を有するベクターの発現抑制効果における経時的な解析

ZFP809 と MLV PBS の関係性は、レトロウイルスベクターのプロモータ ーだけに限らず、MLV PBS を有する非レトロウイルスプロモーターにおい ても ZFP809 の発現抑制効果は起こることが知られている[13]。従って、 2.3.1(Fig. 2-4)で構築した実験系が MLV PBS を有する非レトロウイルスプロ モーターにおいても有効であるのかを検証した。非レトロウイルスプロモー ターとしては、一般的な哺乳類発現ベクターで使用されている CMV および EF1a プロモーターを用いた。まず、Fig. 2-6 に示すようにそれぞれのプロモ ーターの下流に MLV または dl587 PBS 配列を挿入した (pCMV_MLV/I/EGFP と pCMV_dl587/I/EGFP または pEF1_MLV/I/EGFP と pEF1 dl587/I/EGFP)。また、それぞれのベクターにおいて EGFP の前に IRES をコードしているが、これは PBS 配列挿入により EGFP の発現に影響 を与えないように用いた。作製したそれぞれのベクターをトランスフェクシ ョンにより HEK293 (ヒト細胞)に導入して、セルソーターによって EGFP 陽 性細胞を分離して、安定発現株を樹立した。続いて MSCV/ZFP_huKO ベク ターから産生したウイルスを感染させ、フローサイトメトリーにより EGFP と huKO の発現を解析した (Fig. 2-7)。予想通り、pCMV MLV/I/EGFP ま たは pEF1_MLV/I/EGFP を発現している細胞において、ZFP809 を発現させ ると EGFP の発現が低下した (Fig. 2-7A および 2-7B)。一方で、 pCMV dl587/I/EGFP または pEF1 dl587/I/EGFP を発現している細胞では ZFP809 の存在下においても EGFP の発現は維持された(Fig. 2-7A および 2-7B)。さらに、RT-PCR により EGFP の発現を確認した結果、フローサイ トメトリー解析の結果と一致することが示された (Fig. 2-8)。従って、これ らの結果は、これまでの知見と同様に ZFP809 は MLV PBS を有する非レト ロウイルスベクターにおいても発現抑制効果を発揮することが示された[13]。 さらに、2.3.1 (Fig. 2-2)で構築した実験系はレトロウイルスベクターだけで なく、MLV PBS を有する非レトロウイルスベクターおよび接着細胞や浮遊 細胞における遺伝子発現抑制効果の経時的な解析に有効であることが示され た。

- 38 -

PCMV_MLV/I/EGFP CMV IRES/EGFP MLV PBS
p CMV_dI587/I/EGFP CMV IIRES/EGFP ∳dI587 PBS
pEF1_MLV/I/EGFP EF1α IRES/EGFP MLV PBS
pEF1_dl587/l/EGFP EF1α IRES/EGFP ∲dl587 PBS

Fig. 2-6 MLV または dl587 PBS 配列を有する発現ベクターの模式図

Fig. 2-7 MLV PBS 配列を有する発現ベクターに対する ZFP809 の発現抑制効果 (A, B) HEK293 cells transfected with the pCMV_MLV/I/EGFP or pCMV_dl587/I/EGFP and pEF1_MLV/I/EGFP or pEF1_dl587/I/EGFP were sorted based on EGFP expression and analyzed on EGFP and huKO expression with FACSAria on Day 3 and 17 after transduction with MSCV/ZFP_huKO.

Fig. 2-8 フローサイトメトリー解析後の RT-PCR

EGFP expression was measured by RT-PCR in HEK293 cells analyzed with FACS (Fig. 2-7A). β-actin was used for a loading control.

2.3.4 ZFP809の遺伝子発現抑制効果におけるエピジェネティクス修飾解析

ZFP809 による MLV LTR の発現抑制効果は KAP1 を介して ESET による ヒストンのメチル化 (ヒストン H3 リジン 9 のトリメチル化 (H3K9me3))や DNMT による DNA のメチル化などのエピジェネティクス修飾が誘導される ことが知られている[3, 13-16]。そこで、フローサイトメトリー解析において 遺伝子発現抑制効果を受けた細胞におけるエピジェネティクス修飾の解析を 行うために、CMV あるいは EF1a プロモーターにおけるエピジェネティクス 修飾の解析を行った。まず、それぞれのプロモーターにおける DNA のメチ ル化を解析するために、Fig. 2-7 で示すように ZFP809 と共に pCMV_MLV/I/EGFP または pEF1_MLV/I/EGFP を発現する HEK293 細胞

においては huKO 陽性 EGFP 陰性細胞をセルソーターによって分離し、 ZFP809と共にpCMV_dl587/I/EGFP または pEF1_dl587/I/EGFPを発現す るHEK293細胞においてはhuKOとEGFP両陽性細胞を分離した。そして、 それぞれの細胞集団から抽出したゲノムを用いて、bisulfite シークエンシグ を行った。ここで、ZFP809 と共に pCMV_dl587/I/EGFP または pEF1 dl587/I/EGFP を発現する細胞のゲノムはネガティブコントロールと して用いた。Fig. 2-9 に示すように白丸 (o)は非メチル化シトシンを示し、黒 丸 (●)はメチル化シトシンを示している。 予想とは反して、 MLV PBS を有す る両方のプロモーターにおいて、フローサイトメトリー解析で EGFP の発現 が抑制されたにもかかわらず、DNA のメチル化は検出されなかった (Fig. 2-9; 上段は CMV, 下段は EF1a の結果である)。これまでの知見において、 MLV PBSを有する非レトロウイルスプロモーターを用いた場合でもDNAの メチル化が観察されている[13]。しかし、この報告ではレンチウイルスを用 いて非レトロウイルスプロモーターを導入しており[13]、本実験のトランス フェクションによりプラスミドベクターを導入した場合とではプロモーター の導入条件が異なる。従って、プロモーターの DNA のメチル化はウイルス 感染に依存する可能性が示唆された。実際に ZFP809 と共に MLV/EGFP ま たは MSCV/EGFP を HEK293 細胞に発現させ、発現抑制されたプロモータ ーにおける DNA のメチル化解析を行った結果、MSCV/EGFP とは対照的に MLV/EGFP で強い DNA のメチル化が検出された (Fig. 2-10)。次に、DNA のメチル化解析に用いた ZFP809 と共に pCMV MLV/I/EGFP または

- 41 -

pCMV_dl587/I/EGFP を発現する HEK293 細胞において、ZFP809 による遺 伝子発現抑制において誘導されるもう一つの代表的なエピジェネティクス修 飾であるヒストンのメチル化解析を免疫沈降リアルタイム PCR により行っ た。Fig. 2-11 に示すように pCMV_dl587/I/EGFP のプロモーターに比べて、 pCMV_MLV/I/EGFP のプロモーターで有意に高いヒストンのメチル化の割 合が検出された。このヒストンのメチル化解析の結果は、MLV/EGFP の結果 と一致している(Fig. 2-12)。これらの結果により、ZFP809による発現抑制 効果におけるエピジェネティクス修飾では、ヒストンのメチル化は共通して いるが、DNA のメチル化はプロモーターまたはウイルス感染に依存すること が示唆された。実際、レトロウイルスの感染により、宿主細胞における TLR3 (toll-like receptor 3)経路が活性化され、エピジェネティクス変化が起こるこ とが報告されていることから[17]、ウイルス感染における炎症性シグナル伝 達により、ヒストンのメチル化および DNA のメチル化の両方が誘導される のかもしれない。宿主細胞におけるレトロウイルス由来のゲノムは世代を越 えて伝播されるので、より強固にウイルスの発現を抑制するために、ヒスト ンのメチル化と DNA のメチル化という二段構えの防御機構が働くのかもし れない。

CMV_MLV/I/EGFP	CMV_dl587/l/EGFP
	$\begin{array}{c} -333330 - 0 - 333 - 0 3$
EF1_MLV/I/EGFP	EF1_dl587/l/EGFP

-0-@000@00-@00-@00-@00-@00-@00-@00-@00-	
-0-@@000@@@@_00@@00@_00-	-0-100000-000000-0000000-000000000
-0-@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	-0-11100000-1110-000000-00
-0-@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	-0-@00000-@00-000000-00
-0-@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	-0-@00000-@00-000000-00
-0-@@000@@@0-00@00@0-0	-0-@00000-@00-000000-00
-0-@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	-0-@00000-@00-000000-00
-0-@@000@@@0-00@00@0-0	-0-@00000-@00-000000-00
-0-@@000@	-0-@00000-@00-000000-00
-0-1000000-0000000-0	-0-0000000-0000000-00

Fig. 2-9 CMV および EF1α プロモーターにおける DNA メチル化解析

Open and closed circles represent unmethylated and methylated cytosines in the CMV or EF1 promoters (n=9 or 10).

Fig. 2-10 MLV または MSCV における DNA メチル化解析

Open and closed circles represent unmethylated and methylated cytosines of the CpG dinucleotides in the LTRs, respectively (n=9).

Fig. 2-11 CMV プロモーターにおけるヒストンのメチル化解析

 Error bars show a standard deviation obtained from 3 independent experiments.

Statistical P values were determined by the Student's t-test.

Fig. 2-12 MLV または MSCV におけるヒストンのメチル化解析

Error bars show a standard deviation obtained from 3 independent experiments. Statistical *P* values were determined by the Student's *t*-test.

2.4 総括

本章では、ZFP809によるレトロウイルスベクターの発現抑制効果を経時的 に解析する実験系を構築した。この実験系は2つの異なる蛍光タンパク質の 発現をフローサイトメトリーで解析する方法であり、生細胞においてZFP809 の発現抑制効果を経時的にモニタリングすることができる。この実験系によ り、ZFP809による発現抑制効果が長期に及ぶことに加えて、レトロウイルス および非レトロウイルスのプロモーターおよび接着細胞や浮遊細胞に関係な く、生細胞において経時的に発現抑制効果を解析できることが示された。ま た、フローサイトメトリー解析において、遺伝子発現抑制効果を受けた細胞 のエピジェネティクス修飾の解析により、ZFP809の発現抑制効果によるエピ ジェネティクス修飾は、プロモーターに関係なく共通してヒストンのメチル 化が誘導される一方で、DNAのメチル化はプロモーターおよびウイルス感染 に依存する可能性が示された。本研究で構築した実験系とエピジェネティク ス修飾の解析を併用することで、ZFP809における遺伝子発現抑制効果の過程 を経時的かつ分子レベルで解析することができた。

最後に、現在、ZFP809 だけでなく他の KRAB-ZFPs も遺伝子発現抑制に 関与することが報告されており[18]、本章で構築した実験系は、遺伝子発現 抑制に直接、または間接的に関与する因子の機能解析も可能であり、遺伝子 発現抑制効果をもつ他の因子の機能解析にも活用されることが期待できる。

2.5 参考文献

- [1] Wolf. D, Cammas. F, Losson. R, Goff. S.P, Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28., J Virol. 82, 4675–4679 (2008).
- [2] Wolf. D, Goff. S.P, Embryonic stem cells use ZFP809 to silence retroviral DNAs., Nature. 458, 1201–1204 (2009).
- [3] Matsui. T, Leung. D, Miyashita. H, Maksakova. I.A, Miyachi. H, Kimura. H, Tachibana. M, Lorincz. M.C, Shinkai. Y, Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET., Nature. 464, 927–931 (2010).
- [4] Witzgall. R, O'Leary. E, Leaf. A, Onaldi. D, Bonventre. J.V, The Krüppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression., Proc Natl Acad Sci USA. 91, 4514-4518 (1994).
- [5] Abrink. M, Ortiz. J.A, Mark. C, Sanchez. C, Looman. C, Hellman. L, Chambon. P, Losson. R, Conserved interaction between distinct Krüppel-associated box domains and the transcriptional intermediary factor 1 beta., Proc Natl Acad Sci USA. 98, 1422–1426 (2001).
- [6] Gebelein. B, Urrutia. R, Sequence-Specific Transcriptional Repression by KS1, a Multiple-Zinc-Finger-Krüppel-Associated Box Protein., Mol Cell Bio. 21, 928–939 (2001).

- [7] Mascle. X.H, Germain-Desprez. D, Huynh. P, Estephan. P, Aubry. M, Sumoylation of the transcriptional intermediary factor 16 (TIF16), the Co-repressor of the KRAB multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain., J Biol Chem. 282, 10190–10202 (2007).
- [8] Matsunari. H, Onodera. M, Tada. N, Mochizuki. H, Karasawa. S, Haruyama. E, Nakayama. N, Saito. H, Ueno. S, Kurome. M, Miyawaki. A, Nagashima. H, Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange., Cloning Stem Cells. 10, 313–323 (2008).
- [9] Karasawa. S, Araki. T, Nagai. T, Mizuno. H, Miyawaki. A, Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer., Biochem J. 381, 307–312 (2004).
- [10] Onodera. M, Nelson. D.M, Yachie. A, Jagadeesh. G.J, Bunnell. B.A, Morgan. R.A, Blases. R.M, Development of improved adenosine deaminase retroviral vectors., J Virol. 72, 1769–1774 (1998).
- [11] Suzuki. A, Obi. K, Urabe. T, Hayakawa. H, Yamada. M, Kaneko. S, Onodera. M, Mizuno. Y, Mochizuki. H, Feasibility of ex vivo gene therapy for neurological disorders using the new retroviral vector GCDNsap packaged in the vesicular stomatitis virus G protein., J Neurochem. 82, 953–960 (2002).

- 47 -

- Franz. T, Hilberg. F, Seliger. B, Stocking. C, Ostertag. W, Retroviral mutants efficiently expressed in embryonal carcinoma cells., Proc Natl Acad Sci USA. 83, 3292–3296 (1986).
- [13] Rowe. H.M, Friedli. M, Offner. S, Verp. S, Mesnard. D, Marquis.
 J, Aktas. T, Trono. D, De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET., Development. 140, 519–529 (2013).
- [14] Jähner. D, Stuhimann. H, Stewart. C.L, Harbers. K, Löhler. J, Simon. I, Jaenisch. R, De novo methylation and expression of retroviral genomes during mouse embryogenesis., Nature. 298, 623–628 (1982).
- [15] Lorincz. M.C, Schübeler. D, Goeke. S.C, Walters. M, Groudine. M, Martin. D.I, Dynamic analysis of proviral induction and De Novo methylation: implications for a histone deacetylase-independent, methylation density-dependent mechanism of transcriptional repression., Mol Cell Biol. 20, 842–850 (2000).
- [16] Lorincz. M.C, Schübeler. D, Groudine. M, Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation., Mol Cell Biol. 21, 7913–7922 (2001).
- [17] Lee. J, Sayed. N, Hunter. A, Au. KF, Wong. W.H, Mocarski. E.S, Pera. R.R, Yakubov. E, Cooke. J.P, Activation of innate immunity is required for efficient nuclear reprogramming., Cell. 151, 547-548

(2012).

[18] Jacobs. F.M, Greenberg. D, Nguyen. N, Haeussler. M, Ewing. A.D, Katzman. S, Paten. B, Salama. SR, Haussler. D, An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons., Nature. 516, 242-245 (2014).

第3章 遺伝子発現抑制効果に必要な ZFP809 のドメインにおける特徴解析

3.1 緒言

MoMLV 型のレトロウイルスベクターの遺伝子発現抑制は、ZFP809 の PBS 配列特異的な結合によって起こる。ZFP809 は、N 末端に KRAB ドメ イン、C 末端に 7 個の zinc finger (ZF)ドメインを有しており[1]、KRAB ド メインは KAP1 との相互作用に必要であり、ZF ドメインは標的 DNA 配列へ の結合に必要である[2-6]。このように ZFP809 のドメインにおける機能はこ れまでの知見から予想できる一方で、遺伝子発現抑制効果に必要なドメイン の詳細な役割についてはわかっていない。また、ZFP809 は転写因子である ことから核内に局在することが予測されるが、通常の核局在化シグナルをも たないので、なぜ核に局在するのかはわかっていない。最近の知見により、 KRAB ドメインは KAP1 との相互作用だけでなく、細胞内局在にも関与する 報告があり、実際、ヒトにおける KRAB-ZFPs である ZNF268 において、 KRAB ドメインと ZF ドメインが核局在化に対して協調的に働くことが報 告されたが[7,8]、この知見がZFP809に該当するのかは不明である。さらに、 ZFP は通常数個から十数個の ZF ドメインを有するが、全ての ZF ドメイン が標的 DNA 配列への結合するわけではない[4]。実際、ZFP809 は 7 個の ZF ドメインを有するが7個のZFドメインのうちどのドメインが PBS 配列への 結合に必要なのかはわかっていない。従って、本章では核局在化、遺伝子発 現抑制効果およびPBS配列結合に必要なZFP809のドメインを検証するため

- 50 -

に、ZFP809の欠損変異体を作製し、分子生物学的手法により ZFP809のド メイン機能について解析した。

3.2 実験材料および方法

3.2.1 細胞培養

293FT 細胞 (Life technologies から購入)の培養には Dulbecco's Modified Eagle's Medium (DMEM, Sigma-Aldrich)培地に 10% FBS (fetal bovine serum, EQUITECHBIO, INC.)と 1% Penicillin-Streptomycin-Glutamine (GIBCO)を添加したものを使用した。この細胞は、10 cm Cell Culture Dish (Corning Incorporated)で 37 ℃, 5% CO2 条件下のインキュベーターで培養 した。293gpg 細胞 (ウイルスパッケージング細胞株)の培養は、DMEM 培地 に 10% FBS と 1% Penicillin-Streptomycin-Glutamine, 0.3 mg/ml G418 (Sigma-Aldrich), 2 µg/ml Puromycin (Sigma-Aldrich)を添加したものを使用 し、細胞は 10 cm Cell Culture Dish で 37 ℃, 10% CO₂条件下のインキュベ ーターで培養した。これらの細胞の継代は、培地を吸引除去した後、PBS (-)pH7.4 (GIBCO)を加えて細胞表面を洗い、0.25% Trypsin-EDTA (GIBCO) を1 ml 加え、3 分間インキュベートした後、DMEM 培地を9 ml 加えてピ ペッティングにより dish から細胞を剥離した。剥離した細胞懸濁液を遠沈管 に移し、1000 rpm で5 分間遠心分離を行ない、上清を吸引除去して DMEM を加えて懸濁し、新しい dish に培地 10 ml を加え、培地上に播種し、dish を軽く揺さぶり細胞を dish 全体に行き渡らせた。

3.2.2 ZFP809 の欠損変異体の作製

ZFP809 の欠損変異体を作製するために、NCBI (National Center for Biotechnologies Information) (http://www.ncbi.nlm.nih.gov/)から ZFP809 の情報を取得した。ZFP809 は N 末端側に KRAB ドメイン(KRAB_A-box と KRAB_B-box)および C 末端側に 7 個の Zinc Finger (ZF)ドメインを持ち(Fig. 3-1)、それぞれのドメインの役割は、これまでの KRAB-ZFPs の知見から KRAB ドメインが KAP-1 と相互作用すること、ZF ドメインが特定の DNA 配列に結合することが予測される。Fig.3-1 に示すように、ZFP809 欠損変異 型として (1) ZF ドメイン欠損型、(2) KRAB_A-box 欠損型および (3) KRAB_A-box におけるアミノ酸置換型を設計した。また、それぞれの欠損変 異型の N 末端には FLAG-tag を付加した。

Fig. 3-1 設計した ZFP809 の欠損変異体の模式図

(i) ZF ドメイン欠損型の設計

ZFP809 の ZF ドメインを C 末端から一つずつ欠損させた ZFP809 の欠損 変異体を設計した(Fig. 3-2)。Fig. 3-2 には *Zfp809* の塩基配列を示し、C 末端 側の 18 bp 配列を欠損させたもの (ΔSD; spacer domain)、C 末端から ZF ド メインを 1 個欠損させたもの (ZF1-6, 973-1065 bp の欠損)、ZF ドメインを 2 個欠損させたもの (ZF1-5, 889-1065 bp の欠損)、ZF ドメインを 3 個欠損 させたもの (ZF1-4, 801-1065 bp の欠損)、ZF ドメインを 4 個欠損させたも の (ZF1-3, 721-1065 bp の欠損)、ZF ドメインを 4 個欠損させたも の (ZF1-3, 721-1065 bp の欠損)、ZF ドメインを 5 個欠損させたもの (ZF1-2, 637-1065 bp の欠損)、ZF ドメインを 6 個欠損させたもの (ZF1, 550-1065 bp の欠損)および全ての ZF ドメインを 6 個欠損させたもの (ZF1, 550-1065 bp の欠損)および全ての ZF ドメイン欠損させた (ΔZF, 473-1065 bp の欠損)も のを設計した。

Fig. 3-2 *Zfp809*の塩基配列における各 ZF ドメインの配列(塩基配列は NCBI より 引用)青文字は ZF ドメインを示し、下線は spacer domian (SD)を示す。

(ii) KRAB_A-box 欠損型の設計

ZFP809のKRAB ドメインは、KRAB_A-boxおよびKRAB_B-boxで構成 されているが、KRAB_A-boxは保存されているアミノ酸が多く、KAP1との 相互作用に必須であることが知られている[7]。一方で、KRAB_B-box は KAP1 との相互作用に関与することが示唆されているが、その機能について は不明な点が多い[9, 10]。そこで、KAP1との相互作用に必須であるKRAB _A-boxがZFP809の遺伝子発現抑制効果にどのように関与するのかを解析す るために、KRAB_A-boxを欠損させたΔKRAB_Aを設計した。Fig. 3-3に示 すように、KRAB_A-boxは10-129bpの部分であり(Fig. 3-3におけるGray で示す配列)、この部分を欠損させるために Fig. 3-3 に示すプライマーと PrimeSTAR Max DNA Polymerase (TAKARA BIO)を用いて、欠損型を作 製した (ΔKRAB_A)。

Fig. 3-3 ΔKRAB_A の設計図(塩基配列は NCBI より引用)

(iii) KRAB_A-box におけるアミノ酸置換型の設計

上述の KRAB_A-box 欠損型 (AKRAB_A)だけでは、解析の結果を考察する 際に、ドメイン欠損による影響であるのか、それとも KRAB_A-box 欠損によ るタンパク質の立体構造の変化による影響であるのかを区別することが困難 である。最近、ZNF268 (ヒトにおける KRAB-ZFPs)の KRAB ドメインにお いて、KAP1 との相互作用に必須なアミノ酸が同定された[7]。興味深いこと に、KRAB ドメインの 3 つのアミノ酸 置換型である ZNF268 (E16/17A-W18A)は、KAP-1 と相互作用しないことが示された[7]。そこで、
 KRAB_A-box 欠損によるタンパク質の立体構造の変化を最小限にするため、
 ZNF268 で導入された変異を ZFP809 に導入した。

まず、Fig. 3-4 に示すように ZNF268 と ZFP809 の KRAB _A-box のアミ ノ酸配列を比較し、ZNF268 の KRAB_A-box におけるアミノ酸配列 (E16, E17, W18)と同様の配列を ZFP809 の KRAB_A-box (E13, E14, W15)におい て見出した。そして、Fig. 3-5 に示すように、アミノ酸配列が E13/14A-W15A に置換されるようにプライマーを設計して、PrimeSTAR Max DNA Polymerase (TAKARA BIO)を用いて、ZFP809 の KRAB_A-box に変異を 導入した (mtKRAB)。

Consensus	SF-DV-VDFT-EEWQ-LD-AQLYR-VMLE-	-YS-LV-L
NP_001158096(ZFP809)	VSFEDVAVDFTL <u>EEWQ</u> DLDAAQRTLYRDVMLET	IYSSLVFL-
NP_001159353(ZNF268)	1 WGPL SFMDVFVDFT W <u>EEWQ</u> LLDPAQKCLYRSVMLEN	45 N YS NL V SLGY

Fig. 3-4 ZNF268 と **ZFP809** の **KRAB _A**-box のアミノ酸配列アライメント 下線 (EEW)は、**ZNF268** における **KAP1** との相互作用に必須なアミノ酸を示す。 ZFP809 derived KRAB A-box Protein VSFEDVAVDFTLEEW **Q D L D A A Q R T L Y R D V** MLETYSSLVFL mRNA gtg tcc ttt gag gat gta gcc gtg gac ttc acc ttg gag gag tgg cag gac ctg gac gct cgct cag agg acc ctg tac agg cgat gtg atg ctg gaa acc tac agc agc ctg gtg ttc ctg ZFP809 derived KRAB A-box(E13/14A-W15A) Protein VSFEDVAVDFTLAAA **QDLDAAQRTLYRDV** MLETYSSLVFL mRNA gtg tcc ttt gag gat gta gcc gtg gac ttc acc ttg gcg gcg gcg cag gac ctg gac gct cgct cag agg acc ctg tac agg cgat gtg atg ctg gaa acc tac agc agc ctg gtg ttc ctg KRAB_A-box(E13/14A-W15A) primer design Forward primer: TGGCGGCGCGCAGGACCT

Fig. 3-5 mtKRAB の設計図 上段: ZFP809 KRAB_A-box、下段: ZFP809 KRAB (E13/14A-W15A) *赤文字では置換前、青文字では置換後を示した。

Reverse primer: CTGCGCCGCCCAAGGTGAAGTCCACGGC

各 欠 損 変 異 体 は 、 p3XFLAG-CMV[™]-10 Expression vector (Sigma Aldrich)または pLVSIN/CMV/IRES/mCherry vector にクローニングした。

(iv) 各欠損変異体の p3XFLAG-CMV[™]-10 Expression vector へのクローニ ング

それぞれの欠損変異体を作製する前に、pCMV/flag_Zfp809 vector を作製

した。MSCV/ZFP_huKO ベクター (第2章2.2.2を参照)を鋳型に Table 3-1 に示すプライマーと Native Pfu DNA Polymerase(Agilent Technologies)を 用いて、94℃1分1サイクル、94℃30秒/56.4℃30秒/72℃1分30秒35 サイクル、72℃7分1サイクルで PCR を行った。

Table 3-1 pCMV	//flag_ <i>Zfp809</i> vector のプライマー
F primer	5'-GATGGGGTTGGTGTCCTTTG-3'
R primer	5′-TCAAAAGTACGTTACCCCTGTGTG-3′

F; forward, R; reverse

得られた PCR 産物を Wizard SV Gel and PCR Clean-Up System を用いて 精製し、精製した PCR 産物は StrataClone Blunt PCR Cloning Kit (Agilent Technologies)でサブクローニングを行い (pSC-B-amp-kan vector)、シーク エンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって塩基配列を決定した。そして、pSC-B-amp-kan vector から制限酵素 Not I と EcoR V (TAKARA BIO)で ZFP809を切り出し、 Not I と EcoR V で処理した p3XFLAG-CMV^{TM-}10 Expression vector (Sigma Aldrich) に挿入し、クローニングを行いシークエンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって 塩基配列を確認した。このベクターを pCMV/flag-Zfp809 vector と呼ぶ。 pCMV/flag-Zfp809 vector を鋳型として Table 3-2 に示す各欠損型のプライマ

ーと PrimeSTAR GXL DNA Polymerase を用いて PCR を行った。PCR 条件 は、98 ℃ 1 分 1 サイクル、98 ℃ 10 秒/62 ℃ 15 秒/68 ℃ 30 秒 32 サイクル、 68 ℃ 5 分で行った。得られた PCR 産物を Wizard SV Gel and PCR Clean-Up System を用いて精製し、精製した PCR 産物は StrataClone Blunt PCR Cloning Kit (Agilent Technologies) でサブクローニングを行い (pSC-B-amp-kan vector)、シークエンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって塩基配列を決定し た。そして、pSC-B-amp-kan vector から制限酵素 Not I と BamHI (TAKARA BIO) で各欠損変異体を切り出し、Not I と BamH I で処理した p3XFLAG-CMV[™]-10 Expression vector に挿入し、クローニングを行った。 KRAB_A box 欠損型または変異型に関しては、Table 3-3 に示すプライマー と PrimeSTAR Max DNA Polymerase を用いて PCR を行った。 PCR 条 件は、98 ℃ 1 分 1 サイクル、98 ℃ 10 秒/55 ℃ 15 秒/72 ℃ 2 分 32 サイクル で行った。そして、シークエンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって塩基配列を決定し、 p3XFLAG-CMV[™]-10 Expression vector にクローンニングした。また、ベク ターを大量に得るために、NucleoBond Xtra Maxi(TAKARA BIO)を用いた。 Table 3-2 p3XFLAG-CMV[™]-10 Expression vector に対する欠損型のプライマー

$\Delta \mathrm{ZF}~\mathrm{F}$	5'-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3'
$\Delta \mathrm{ZF}~\mathrm{R}$	5'-CGCGGATCCTCAGAGATTCCCATCATTGTATG-3'
ZF1 F	5′-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3′
m ZF1~R	5′-CGCGGATCCTCAGGGCTTGTACACATTATGAGTTC-3′
ZF2 F	5´-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3´
m ZF2~R	5'-CGCGGATCCTCAGATCCTCTTCCTCTGTCTGTG-3'
ZF3 F	5′-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3′
ZF3 R	5′-CGCGGATCCTCAAGGCTTCTCACCTGAATGG-3′
ZF4 F	5´-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3´
m ZF4~R	5´-CGCGGATCCTCAGGTTTTTCACCCAGGTGAG-3´
m ZF5~F	5´-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3´
m ZF5~R	5′-CGCGGATCCTCATGGTTTCTCGCCCGTATG-3′
ZF6 F	5´-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3´
m ZF6~R	5'-CGCGGATCCTCAAGGATTCTCAGATGAATGAGCA-3'
$\Delta SD F$	5´-ATAAGAATGCGGCCGCGATGGGGTTGGTGTCCTT-3´
$\Delta SD R$	$5'\text{-}\mathrm{CGCGGATCCTCAGTGTCTTTTCTGATGTGCT-}3'$

F; forward, R; reverse

Table 3-3 p3XFLAG-CMV[™]-10 Expression vector に対する KRAB_A-box 欠損型お よび変異型のプライマー

Δ KRAB F	5'- ACAAGCTTGCGGCCGCGATGGGGGTTGGACCCC -3'
ΔKRAB R	5´-ACTTAGGTTTGGCAATGCAGGGGTCCAACCCCA-3´
mtKRAB F	5´-TGGCGGCGGCGCAGGACCTGGACGCTGCT-3´
mtKRAB R	5´-CTGCGCCGCCGCCAAGGTGAAGTCCACGGC-3´

F; forward, R; reverse

(v) 各欠損変異体のレンチウイルスベクターへのクローニング

次に、各欠損変異体をレンチウイルスベクターにクローニングした。レン チウイルスベクターとしては、pLVSIN/IRES/ZsGreen1 vector (TAKARA BIO)を使用した。このベクターは、マーカー遺伝子(4 量体蛍光タンパク質で ある ZsGreen1)をコードしているので、標的遺伝子の発現としてフローサイ トメトリー解析などに利用できる。しかし、本研究におけるフローサイトメ トリー解析では EGFP を使用するため、EGFP と ZsGreen1 では識別が困難 であるため、EGFP と蛍光特性が類似しない mCherry に置換した pLVSIN//IRES/mCherry vector を作製した。

(vi) pLVSIN/CMV/IRES/mCherry vector の作製

pLVSIN/IRES/ZsGreen1 vector は IRES の下流に ZsGreen1 をコードして いる。そこで、ZsGreen1 を欠損させ、IRES の下流に簡便にレポーター遺伝 子を挿入することができる、pLVSIN/IRES/ΔZsGreen1 vector を作製した。 Table 3-4 に示すプライマーと PrimeSTAR Max DNA Polymerase を用い て PCR を行った。PCR 条件は、98 ℃ 1 分 1 サイクル、98 ℃ 10 秒/55 ℃ 15 秒/72 ℃ 2 分 32 サイクルで行った。そして、シークエンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって 塩基配列を決定した。

Table 3-4 pLVSIN/IRES/ΔZsGreen1 のプライマー

F primer5'-GAAAAACACGATGATAAT ATTTAAATACGCGT-3'R primer5'-TGATTGTTCCAGACGCGTATTTAAATATTATCAT-3'

F; forward, R; reverse

(vii) pLVSIN/CMV/IRES/mCherry vector の作製

作製した pLVSIN/CMV/IRES vector を Mlu I で制限酵素処理を行い、

Mlu I で処理した mCherry cDNA を挿入し、pLVSIN/CMV/IRES/mCherry vector を作製した。

(viii) 各欠損変異体の pLVSIN/CMV/IRES/mCherry vector へのクローニング

ZFP809 および作製した各欠損変異体をコードする p3XFLAG-CMV^{TM-10} Expression vector を鋳型として、Table 3-5 に示す 5'末端に *EcoR*I と 3'末端 に *BamH*I 認識配列を有するように設計したプライマーと PrimeSTAR GXL DNA Polymerase を用いて PCR を行った。PCR 条件は、98 ℃ 1 分 1 サイク ル、98 ℃ 10 秒/62 ℃ 15 秒/68 ℃ 30 秒 32 サイクル、68 ℃ 5 分で行った。 得られた PCR 産物を Wizard SV Gel and PCR Clean-Up System を用いて 精製し、精製した PCR 産物は StrataClone Blunt PCR Cloning Kit (Agilent Technologies)でサブクローニングを行い(pSC-B-amp-kan vector)、シークエ ンシング (BigDye Terminator v3.1 Cycle Sequencing Kit, 3130xl Genetic Analyzer)によって塩基配列を決定した。そして、pSC-B-amp-kan vector か ら制限酵素 *EcoR* I と *BamH* I (TAKARA BIO)で各欠損変異体を切り出し、 *EcoR* I と *BamH* I (TAKARA BIO)で各欠損変異体を切り出し、 クローニングを行った。さらに、ネガティブコントロールとして FLAG 配列 のみを挿入したベクターも作製した。また、ベクターを大量に得るために、 NucleoBond Xtra Maxi(TAKARA BIO)を用いた。 Table 3-5 EcoRIと BamHIの認識配列を付加した各欠損変異体のプライマー

ZFP809 F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ZFP809 R	5'-CGCGGATCCTCAGCTATCCCCATACTG-3'
$\Delta \mathrm{ZF}~\mathrm{F}$	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
$\Delta \mathrm{ZF}~\mathrm{R}$	5'- CGCGGATCCTCAGAGATTCCCATCATTGTATG-3'
m ZF1~F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ZF1 R	5'- CGCGGATCCTCAGGGCTTGTACACATTATGAGTTC-3'
ZF2 F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ZF2 R	$5' \cdot \mathrm{CGCGGATCCTCAGATCCTCTTCCTCTGTCTGTG} 3'$
ZF3 F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ZF3 R	5´-CGCGGATCCTCAAGGCTTCTCACCTGAATGG-3´
ZF4 F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ZF4 R	5'-CGCGGATCCTCAGGTTTTTCACCCAGGTGAG-3'
m ZF5~F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
m ZF5~R	$5'\text{-}\mathrm{CGCGGATCCTCATGGTTTCTCGCCCGTATG}\text{-}3'$
ZF6 F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
m ZF6~R	5´-CGCGGATCCTCAAGGATTCTCAGATGAATGAGCA-3´
$\Delta SD F$	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
$\Delta SD R$	5´-CGCGGATCCTCAGTGTCTTTTCTGATGTGCT-3´
ΔKRAB F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
ΔKRAB R	5'-CGCGGATCCTCAGCTATCCCCATACTG-3'
mtKRAB F	5'-CCGGAATTCGCCACCATGGACTACAAAGACCATGACGG-3'
mtKRAB R	5'-CTGCGCCGCCGCCAAGGTGAAGTCCACGGC-3'

F; forward, R; reverse

3.2.3 プラスミド、レトロウイルスおよびレンチウイルスベクターの作製(i) プラスミドベクターの作製

レポーターアッセイを行うために pGL4.50 vector (Promega)に MLV ある いは dl587 PBS を挿入した。pGL4.50 vector を *Hind* III (TAKARA BIO)で 制限酵素処理して、Table 3-6 に示す *Hind* III で切断された配列を有するプ ライマーを用いてアニーリングしたオリゴ DNA として MLV あるいは dl587 PBS を挿入し、それぞれ pCMV/MLV/luc または pCMV/dl587/luc と呼ぶ。

Table 3-6 MLV \geq 01367 PDS $OA = DN$: dl587 PBS のオリゴ DNA
--	----------------------

MLV PBS F	5'-AGCTTTTTGGGGGGCTCGTCCGGGATTTA-3'
MLV PBS R	5´-AGCTTAAATCCGGACGAGCCCCCAAAA-3´
dl587 PBS F	5'-AGCTTTTTGGAGGTTCCACCGAGATTTA-3'
dl587 PBS R	5′-AGCTTAAACCTCCAAGGTCGCTCTAAAA-3′

F; forward, R; reverse

(ii) レトロウイルスベクターの作製

本章ではレトロウイルスベクターとして MLV/EGFP および MSCV/EGFP を用いたが、MLV/EGFP の作製方法および MSCV/EGFP の入手については、 第2章 2.2.2 を参照。

(iii) レンチウイルスベクターの作製

KAP1 のノックダウンを行うために、KAP1 に対する shRNA を設計し、 その shRNA を発現するレンチウイルスベクターを作製した。pLKO.1 vector

- 65 -

(Thermo Scientific)は、U6 プロモーターを有しており、一般的に shRNA を 発現させるのに用いられるベクターである。このベクターは、puromycin 耐 性遺伝子をコードしているが、セルソーターによって容易に選別できるよう に EGFP と入れ替えた。pLKO.1 vector を *Kpn*I と *BamH*I (TAKARA BIO) で制限酵素処理し、*Kpn*I と *BamH*I で制限酵素処理した EGFP cDNA を挿 入した。そして、pLKO.1-EGFP vector における U6 プロモーターの下流に KAP1 またはネガティブコントロール(negative control: NC)の shRNA をコ ードするオリゴ DNA を挿入するために、Table3-7 に示すプライマーと PrimeSTAR Max DNA Polymerase を用いて *Age*I (TAKARA BIO)認識配列 を付加させた。そして、*Age*I と *EcoR*I で制限酵素処理した pLKO.1-EGFP vector に Table 3-8 に示す shRNA をコードするオリゴ DNA を挿入した。こ れらの shRNA は、siDirect website (http://sidirect2.rnai.jp/)により設計した。

Table 3-7 Age I 認識配列付加に用いたプライマー

Age I F	5′-ACACCGGTACACTCGAGCACTTTTTG-3′
Age I R	5′-CGAGTGTACCGGTGTTTCGTCCTTTC-3′

F; forward, R; reverse

KAP1 F	5'-CCGCGCAATTCAACAAGTTAACTGACTC
	$GAGTCAGTTAACTTGTTGAATTGCTTTTTG{\cdot} 3'$
KAP1 R	5´-AATTCAAAAAGCAATTCAACAAGTTAACT
	${\rm GACTCGAGTCAGTTAACTTGTTGAATTGC}{\cdot} 3'$
NC F	5'-CCGCGCCTAAGGTTAAGTCGCCCTCCT
	CGAGGAGGGCGACTTAACCTTAGGCTTTTTG-3′
NC R	5'-AATTCAAAAAGCCTAAGGTTAAGTCGCC
	CTCCTCGAGGAGGGGGGGACTTAACCTTAGGC-3′

Table 3-8 KAP1 と NC の shRNA をコードするオリゴ DNA 配列

F; forward, R; reverse

3.2.4 レンチウイルスの産生と感染方法

レンチウイルスの産生は以下のように行った。レンチウイルスベクター (24.2%)、pLP1 (28.2%), pLP2 (19.35%)および pLVSV-G (28.2%)を lipofectamine LTX (Life technologies)を用いて、293FT 細胞にトランスフェ クションして、24 時間後、ウイルス上清を 0.45 µm filter (マイレックス・HV 0.45, Millipore)に通して回収した。6 well plate に予め播種した標的細胞に回 収したウイルス上清を添加してウイルスを感染させた。あるいは、ろ過済み のウイルス上清を 6000×*g*, 4 ℃で一晩遠心分離することでウイルスをペレッ ト化した。遠心分離後、上清を除去してウイルスペレットを無血清培地 (StemPro-34 SFA,GIBCO) 300 µl で溶解 (4 ℃、一晩撹拌)することで 100 倍濃縮の無血清ウイルス上清の作製を行い、使用するまで - 80 ℃で保存した。 そして、6 well Plate に標的細胞を播種し、濃縮ウイルス 1/100 量を加え、
さらに感染効率を高めるために 1/100 量の 0.8 mg/ml ポリブレン (Sigma-Aldrich), HEPES (GIBCO)40 µl を加え、6000×g, 60 min, 32 ℃で 遠心分離をおこない、その後培養した。

3.2.5 免疫染色および共焦点レーザー顕微鏡による観察

免疫染色前日に chamber slide (Thermo Scientific Nunc Lab-Tek II CC2) に細胞を播種して培養した。次の日、chamber slide (Thermo Scientific Nunc Lab-Tek II CC2)の底に細胞が接着していること確認し、chamber から培地 を除去し PBS-T (0.05 % Triton X-100)500 µl で 3 回洗浄し、 Paraformaldehyde (PFA, Wako) 500 µl を加えて、4 ℃で 30 分間インキュベ ーションした。インキュベーション後、PBS-T (0.05 % Triton X-100) 500 µl で3回洗浄し、核膜を破壊するために透過液 PBS-T (0.5 % Triton X-100) 500 µl を加え、室温で 15 分間インキュベーションした。その後、PBS-T (0.05 % Triton X-100) 500 µl で 3 回洗浄し、ブロッキングをするために 10 % BlockAce (DS PHARMA BIOMEDICAL)を含む PBS-T (0.05 % Triton X-100) 500 µl を加えて室温で1時間インキュベーションした。次に、溶液を 除去し、2 % BlockAce を含む PBS-T (0.05 % Triton X-100)を用いて 250 倍 希釈した一次抗体を加え、4 ℃で一晩インキュベーションした。一次抗体と しては、anti-FLAG monoclonal antibody (F1804, Sigma-Aldrich), anti-KAP1 polyclonal antibody (ab10484, Abcam) または anti-Fibrillarin polyclonal antibody (#2639, Cell Signaling)を用いた。次の日、PBS-T (0.05% Triton X-100) 500 µl で 3 回洗浄し、2 % BlockAce を含む PBS-T (0.05 %

Triton X-100)に 250 倍希釈した二次抗体を加え、室温で 2 時間インキュベー ションした。二次抗体としては、Cy5-donkey anti-rabbit IgG または Cy3-donkey anti-mouse IgG antibody (Jackson ImmunoResearch)を用いた。 その後、PBS-T (0.05 % Triton X-100) 500 µl で 3 回洗浄し、退色防止溶液と して VECTASHIELD Mounting Medium with DAPI (Vector Laboratories) を加えた。免疫染色後の細胞の観察は、共焦点レーザー顕微鏡 FV1000 (OLYMPUS)を用いて倍率 60 倍で行った。

3.2.6 免疫沈降およびウエスタンブロット

Extraction buffer (5× IP buffer(Life technologies), 20 mM NaCl, 2 mM MgCl₂, 1 mM DTT)を用いて、細胞からタンパク質を抽出し、Qubit Protein Assay Kit (Life technologies)を用いて濃度を測定した。次に Dynabeads protein G kit (Invitrogen)を用いて免疫沈降を行った。方法は商品に付属し てあるマニュアルに沿って行った。タンパク質と抗体は、室温で 15 分間反応 させた。免疫沈降に用いた抗体は、anti-KAP1 polyclonal antibody (ab10484, Abcam)および anti-FLAG monoclonal antibody (F1804, Sigma-Aldrich)で ある。続いて、免疫沈降したサンプルを 4・20 % Mini-PROTEAN TGX Precast Gels (BIORAD)により SDS-PAGE をおこない、Trans-Blot Turbo Mini PVDF Transfer Packs (BIORAD)により転写をおこなった。転写後、PVDF 膜を Bloking One (NACALAI TESQUE)で室温 30 分間インキュベーション した。そして、Blocking One を Tris-buffered saline-Tween (TBS-T) (1× TBS and 0.1 % Tween 20)で 20 倍希釈 した溶液を用いて、1000 倍希釈した一次抗

体 (anti-DDDDK-tag mAb-HRP-DirecT (MBL)、anti-KAP1 monoclonal (ab22553, Abcam)あるいは polyclonal (ab10484, Abcam) antibodies)に PVDF 膜を浸して、4 ℃ 一晩で反応させた。次の日、PVDF 膜を TBS-T で 5 分間 3 回洗浄し、二次抗体として、anti-Mouse IgG, HRP-linked whole Ab Sheep および anti-Rabbit IgG, HRP-linked whole Ab Donkey (GE Healthcare Life Sciences, Blocking One を TBS-T で 20 倍希釈した溶液で 5000 倍希釈した)に浸して、2 時間室温で反応させ、TBS-T で 5 分間 3 回洗 浄し、発色基質として ECL Prime (GE Healthcare Life Sciences)を加えて、 LAS4000 (GE Healthcare Life Sciences)で検出した。

3.2.7 レポーターアッセイ

293FT 細胞を 96 well plate に 2×10⁴ 個/well 播種して培養した。次の日、 Lipofectamine LTX (life technologies)を用いて、pCMV/MLV/Luc または pCMV/dl587/Luc 10 ng, Renilla luciferase control plasmid vector (pGL4.74 ベクター, Promega; pGL4.74 ベクターにおける TK プロモーターは、CMV プロモーターより活性が低いので、pGL4.50 vector に対する内部標準ベクタ ーとして pGL4.74 vector を選択した) 10 ng, そして、pCMV/flag-*Zfp809* ま たは pCMV/flag-X (X は各変異型である ΔZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, ΔSD, ΔKRAB あるいは mtKRAB を示す) 45 ng を細胞にトラ ンスフェクションした。 24 時間後に Dual-GloTM Luciferase Assay System(Promega)を用いてレポーターアッセイを行い、発光シグナルは、マ ルチラベルリーダー2030 ARVOX (Perkinelmer)を用いて測定した。また、 遺伝子発現効果を評価するために Normalized Fold Change in Activity (ΔFold Activity)値を算出した。そして、多重比較法である *Bonferroni* 法を 用いて統計学的処理を行った。

(i) Δ Fold Activity

レポーターアッセイの際に培養細胞の数や生存率、トランスフェクション 効率および細胞溶解の効率の違いにより、well 間でレポータータンパク (Firefly: F)の発現が変化することがある。これらの要因を取り除くために、 サンプルベクター (Firefly: F)と内部標準ベクター (Renilla: R)を同時にト ランスフェクションし、Firefly の活性を Renilla の活性で標準化する。そし て、実験間のデーターを比較するために、コントロール (empty vector)に対 するサンプル (欠損変異型 ZFP809)の相対値を求めた。この値が ΔFold Activity であり、等式を下記に示した。

 $\Delta Fold Activity = \frac{(F/R)sample}{(F/R)control}$

3.2.8 フローサイトメトリー解析およびセルソーター

フローサイトメトリー解析およびセルソーターは、FACS Aria II (BD bioscience)を使用した。

3.2.9 ゲルシフトアッセイ Electrophoretic Mobility Shift Assay (EMSA)

レンチウイルスにより pLVSIN/CMV/flag-X/IRES/mCherry (X は各変異型 である ΔZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, ΔSD, ΔKRAB あるい は mtKRAB を示す)ベクターを安定に発現する 293FT 細胞から Nuclear/Cytosol Fractionation Kit (BioVision)を用いて核内タンパクの抽 出を行い、抽出した核内タンパク質の濃度測定は Qubit Protein Assay Kit で行った。MLV のオリゴ DNA 配列は Table 3-9 に示す。

Table 3-9 MLV のオリゴ DNA

MLV PBS F primer	5´ -TTTGGGGGGCTCGTCCGGGATTT - 3´
MLV PBS R primer	5´ - AAATCCGGACGAGCCCCCAAA - 3´

F; forward, R; reverse

標的配列のアニーリングは、オリゴ DNA を 20 µg 混和し、10 µl の 10×annealing buffer と滅菌水で 100 µl として、95 \mathbb{C} 5 分間加温後、一晩放 置することで行った。ラジオアイソトープ (RI)標識したプローブの作製は、 アニーリングしたオリゴ DNA を 10× annealing buffer で 50 ng/µl とし、こ のうち 1 µl の DNA 末端を T4 ポリヌクレオチドキナーゼと γ -³²P ATP を用 いて 37 \mathbb{C} で 30 分間インキュベートし、MicroSpin G-25 Columns (GE Healthcare)を用いて精製した。抽出した核内タンパク質 10 µg を 4 µl 5×binding buffer (100 mM HEPES pH7.9, 250 mM KCL, 5 mM EDTA, 5 mM DTT, 15 mM MgCl₂, 5% glycerol)、3 µl FCS、2 µl poly (dI/dC) (Sigma-Aldrich)と氷中で 20 分間反応させ (必要に応じて非標識 competitor (ds-oligo DNA) 1 µl あるいは Mouse monoclonal anti-FLAG M2 antibody (Sigma-Aldrich) 2 µl も加えた)、RI 標識されたプローブを加えてさらに室温 で 20 分間反応させた。反応後、サンプル溶液 20 µl に 5× Loading Dye 4 µl (QIAGEN)を加えてサンプル調製を行った。8% または 10% poly acrlyamide gel ゲルは、ゲル板からスペーサーを外し、電気泳動槽にセットして 1×TBE を電気泳動槽に注ぎ込み、コームのウエルをシリンジでよく洗浄し、サンプ ルを全量アプライした。電気泳動槽とパワーサプライを接続し 8% gel の場合 は 200 V で 3 時間、10% gel の場合は 200 V で 1.5 時間電気泳動した。泳動 後、ゲル板からゲルを剥がし、ろ紙の上にのせラップをかけて、BAS フィル ムカセットにセットし、数日後 FLA-7000 (FUJIFILM)で検出した。

3.2.10 shRNA ベクターによる KAP1 のノックダウン

3.2.3 (iii)で作製した KAP1 に対する shRNA あるいはネガティブコントロ ール配列をコードする shRNA を発現する pLKO.1-EGFP vector を安定に発 現する 293FT 細胞の安定発現株を樹立し、ウエスタンブロットにより KAP1 の発現確認を行った。 抗体としては anti-KAP1 monoclonal antibody (ab22553, Abcam) および anti-6-Actin pAb-HRP-DirecT (MBL)を用いた。 KAP1 のノックダウンを示した安定発現株にレンチウイルスにより pLVSIN/CMV/flag-Zfp809 あるいは ΔKRAB_A/IRES/mCherry ベクターを 発現させ、FACS Aria II によりセルソーターを行い、EGFP と mCherry の両 方を発現する安定発現株を樹立し、ゲルシフトアッセイに供した。

3.3 実験結果および考察

3.3.1 ZFP809 の欠損変異体の発現確認

3.2.2 において作製した pLVSIN/CMV/flag-X/IRES/mCherry vector (X は 各変異型である ΔSD, ΔZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, ΔKRAB あるいは mtKRAB を示す)ベクターから産生したウイルスを 293FT 細胞に感 染させ、mCherry 陽性細胞をセルソーターによって分離し、それぞれの欠損 変異体の発現をウエスタンブロットにて確認した (Fig. 3-6)。

Fig. 3-6 各欠損変異体の模式図とウエスタンブロットによる発現確認

(A) Schematic representation of the domain structures of the intact ZFP809 protein (1), a series of truncated/mutated proteins (2-11). ZF and SD denote zinc finger and spacer domain, respectively. (B) Confirmation of the size of the proteins expressed from the 11 vector constructs shown in Fig. 3-6A. The asterisk indicates non-specific bands.

3.3.2 ZFP809 の細胞内局在に必要なドメインの解析

ZFP809 は転写因子であることから核内に局在することが予測されるが、 一般的な核局在シグナルを持たない。最近の研究により、ZNF268(ヒトにお ける KRAB-ZFPs)における KRAB ドメインと ZF ドメインが核局在化に対 して協調的に働くことが報告された[8]。そこで、ZFP809の核局在化に対し て KRAB ドメインと ZF ドメインがどのような役割をもつのかを検証した。 Fig. 3-6 と同様に各欠損変異体を発現する細胞を用いて、各欠損変異体にお ける細胞内局在を解析した (Fig. 3-7)。細胞内局在解析は、各欠損変異体を 染色するために anti-FLAG monoclonal antibody, 核小体を染色するために anti-Fibrillarin polyclonal antibody, 核を染色するために DAPI を用いた。 局在解析の結果、ZFP809 は核小体を除く核に局在することが示され、ΔSD, ZF1-2, ZF1-3, ZF1-4, ZF1-5 および ZF1-6 も同様の結果を示した(Fig. 3-7)。 以前の研究により、KRAB-ZFPs は核小体に発現しないことが報告されてお り[11]、本研究で得られた結果はこの知見と一致している。一方で、ΔZF と ZF1 は核小体を除く核に加えて細胞質にも局在することが示された(Fig. 3-7)。 さらに興味深いことに、 Δ KRAB_A と mtKRAB は、核小体を含む核に局在 することが示された(Fig. 3-7)。この結果は、Wangらの文献と一致しており、 彼らの報告では、ZNF268 (E16/17A-W18A) が核小体を含む核に局在するこ とが示されており、これは ZNF268 (E16/17A-W18A)が KAP-1 と相互作用で きないことに起因すると考察している[8]。実際に、本章で作製した 10 種類 の欠損変異体のうち KAP-1 との相互作用を無効にする変異体は ΔKRAB A

- 75 -

と mtKRAB である。従って、ZFP809 は N 末端から 2 つ以上の ZF ドメイ ンと KRAB ドメインを介して KAP-1 と相互作用することで、核小体に局在 することなく、正確な核局在化を示すことが明らかとなった。Fig. 3-8 では、 ZFP809 の欠損変異体の細胞内局在解析結果の模式図を示した。

Fig. 3-7 各欠損変異体の細胞内局在解析

Sub-nuclear localization of intact and truncated/mutated ZFP809 proteins exogenously expressed from lentiviral vectors in 293FT cells was detected by immunostaining using the anit-FLAG antibody followed by confocal microscopic analysis. Anti-fibrillarin antibody was also used as a nucleolus marker. Scale bars indicated 10 µm.

Fig. 3-8 細胞内局在解析結果のまとめ

3.3.3 ZFP809の遺伝子発現抑制効果に必要なドメインの解析

作製した各欠損変異体の遺伝子発現抑制効果を解析するために、第2章で 構築した実験系(Fig. 2·2)を用いて各欠損変異体の発現抑制効果を解析した。 Fig. 3·9 に示す MLV/EGFP および MSCV/EGFP ベクターから産生したウイ ルスを 293FT 細胞に感染させ、セルソーターによって EGFP 陽性細胞の分 離を行い、pLVSIN/CMV/flag-X/IRES/mCherry (X は各変異型である Δ SD, Δ ZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, Δ KRAB あるいはmtKRAB を 示す)ベクターから産生したウイルスを EGFP 陽性細胞に感染させ、EGFP と mCherry の発現をフローサイトメトリーにより解析した (Fig. 3·10)。 mCherry の発現におけるネガティブコントロールとしては FLAG 配列のみ をコードする pLVSIN/CMV/flag/IRES/mCherry を用いた。 Δ SD, ZF1-5 およ びZF1-6は、ZFP809と同様に感染後4日から遺伝子発現抑制効果を示し(Fig. 3-10A)、その効果は感染から 15 日経過しても維持されることが示された (Fig. 3-10B)。一方で、他の欠損変異体では遺伝子発現抑制効果が示されなか ったことから、KRAB ドメインとN末端の1つ目から5つ目のZFドメイン が遺伝子発現抑制効果に関与することが示された。

Fig. 3-9 フローサイトメトリー解析に用いたレトロウイルスベクター

Fig. 3-10 フローサイトメトリーによる各欠損変異体の発現抑制効果の解析 (A, B) The expression levels of EGFP and mCherry were analyzed at day 4 (A)

and day 15 (B) after transduction.

3.3.4 ZFP809の PBS 配列への結合に必要なドメインの解析

MLV PBS 配列への結合に必要なドメインを検証するために、各欠損変異 体を用いてゲルシフトアッセイ(Electrophoretic Mobility Shift Assay: EMSA)を行った。この方法は、標的タンパク質が任意の DNA 配列に結合す るのかを確認できる実験であり、標的タンパク質が任意の DNA 配列に結合 すると、タンパク質と DNA の複合体として検出される。また、単一のタン パク質だけでなく、標的タンパク質が多量体もしくは複合体を形成する場合、 その複合体における結合タンパク質の検出も可能である。ただ、これはおお

よそ結合するタンパク質が判明していることが条件であり、その結合するタ ンパク質を検出する抗体を用いることでわかる。Fig. 3-6 に示すように pLVSIN/CMV/flag-X/IRES/mCherry (X は各変異型である ΔSD, ΔZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, ΔKRAB あるいは mtKRAB を示す)を 発現する 293FT 細胞から核内タンパク質を抽出して、抽出したタンパク質と ラジオアイソトープ標識した MLV PBS 配列と反応させ、ゲルシフトアッセ イに供した。コントロールとしては FLAG 配列のみをコードする pLVSIN/CMV/flag/IRES/mCherry 発現する 293FT 細胞から抽出した核内タ ンパク質を用いた。各欠損変異体において、ΔSD, ZF1-5 および ZF1-6 が ZFP809と同様に MLV PBS への結合を示した (Fig. 3-11A; レーン 2, 3, 9 お よび 10)。さらに、ZF1-6 に焦点を当て、Fig. 3-11A で示されたバンドが目的 のタンパク質であるのかを証明するために、非標識 MLV PBS (competitor) を加えて競合阻害、つまりバンドの強度が減少するのか、または FLAG 抗体 または KAP1 抗体を用いてバンドのスーパーシフトが検出されるのかを検証 した (Fig. 3-11B)。ポジティブコントロールとして用いた ZFP809 と同様に、 ZF1-6 は competitor を加えることでバンドの強度が減少し FLAG 抗体また は KAP1 抗体を加えることでスーパーシフトを示したことから、このバンド が ZF1-6 であること、そして、KAP1 と相互作用することが示された (Fig. 3-11B; レーン 9, 10, 11 および 12)。これらの結果は、Fig. 3-10 の結果と一 致して、発現抑制効果をもつ ΔSD, ZF1-5 および ZF1-6 において PBS への結 合能が示された。さらに興味深いことに、Fig. 3-11A に示すように ΔKRAB_A においても低位置にバンドが検出された一方で mtKRAB においてはバンド が検出されなかった(Fig. 3-11A; レーン 11 および 12)。そこで、AKRAB_A および mtKRAB に焦点を当て、Fig. 3-11B と同様に competitor と FALG お よび KAP1 抗体を加えてゲルシフトを行った(Fig. 3-12A)。ΔKRAB_A は competitor を加えるとバンドの強度が減少し、さらに FLAG 抗体を加えると スーパーシフトを示したが、KAP1 抗体を加えてもスーパーシフトは起こら なかった(Fig. 3-12A; レーン 5, 6, 7 および 8)。一方で、mtKRAB において は全くバンドが検出されなかった(Fig. 3-12A; レーン 9, 10, 11 および 12)。 つまり、この結果により、ΔKRAB A は MLV PBS への結合を示すが、KAP1 と相互作用できないために、低位置でバンドが検出されることが示された。 また、mtKRABは $\Delta KRAB_A$ と同じ数のZFドメインを持つにもかかわらず、 MLV PBS に結合しないことが示された。従って、より鮮明な結果を得るた めに、これまでのゲルシフトアッセイに用いたポリアクリルアミドゲルの組 成を 8%から 10%に変更して、再度 ΔKRAB A と mtKRAB においてゲルシ フトアッセイを行った(Fig. 3-12B)。結果として、ΔKRAB_Aにおいては強度 の高いバンドが検出された一方で(Fig. 3-12B; レーン 4)、mtKRAB において はバンドが検出されなかった(Fig. 3-12B; レーン 6)。つまり、PBS 配列への 結合にはN末端の1つ目から5つ目のZFドメインが関与することが示され たが、mtKRAB は結合に関与する ZF ドメインを持つにもかかわらず、PBS への結合を示さなかった。つまり、KAP1 との相互作用に必須な KRAB_A box が ZF ドメインの MLV PBS への結合能および不安定なタンパク質の構造変

- 81 -

化に影響を与えている可能性が示唆された。

Fig. 3-11 ゲルシフトアッセイによる各欠損変異体の MLV PBS に対する結合能解析 (A) EMSA of the MLV-PBS sequence with the series of intact/truncated/mutated ZFP809 proteins (8% gel). Asterisks indicate non-specific bands. (B) EMSA of the MLV-PBS sequence with the intact ZFP809 and ZF1-6 proteins in the presence of cold competitor DNA, anti-FLAG antibody, or anti-KAP1 antibody (8% gel).

Fig. 3-12 ΔKRAB_Aと mtKRABの MLV PBS に対する結合能解析

(A, B) EMSA of the MLV-PBS sequence with the Δ KRAB_A and mtKRAB proteins in the presence of cold competitor DNA, anti-FLAG antibody, or anti-KAP1 antibody electrophoresed on 8% gel (A) and 10% gel (B). Asterisks indicate non-specific bands.

3.3.5 ZFP809 の欠損変異体と KAP1 との相互作用解析

KRAB ドメインは KAP1 との相互作用に必須であることが知られている。 そこで、本研究で用いた KRAB ドメインの欠損型と変異型が KAP1 と相互作 用するのかを検証するために、免疫染色および免疫沈降とウエスタンブロッ トを行った。免疫染色は、各欠損変異体を染色するのに anti-FLAG monoclonal antibody, 内在性 KAP1 を染色するのに anti-KAP1 polyclonal antibody, 核を染色するのに DAPI を用いた (Fig. 3-13)。免疫染色の結果は、 AZFとZF1の一部はKAP1と相互作用しないで細胞質に漏れ込んでいること、 また、AKRAB_A および mtKRAB の一部は核小体に局在しており、KAP1 と相互作用していないことを示した (Fig. 3·13)。これらの結果は Fig. 3·7 と 一致している。従って、より詳細に KAP1 との相互作用を解析するために、 AZF, AKRAB_A および mtKRAB における免疫沈降およびウエスタンブロッ トを行った (Fig. 3·14)。免疫沈降の結果により、KRAB ドメインを欠損して いる AKRAB_A および KRAB ドメインに変異をもつ mtKRAB は、KAP·1 と相互作用しないことが示された(Fig. 3·14A および B)。一方で、全ての ZF ドメインを欠失している AZF は KAP1 と相互作用できることから、ZF ドメ インの有無は、KAP·1 との相互作用に影響を及ぼさないことが示された。ま た、この免疫沈降は FLAG に対する抗体と内在性 KAP1 に対する抗体を用い ており、両方の抗体において一致した結果を得た。

Fig. 3-13 免疫染色による各欠損体と KAP1 との相互作用解析

The localization of intact and truncated/mutated ZFP809 proteins exogenously expressed from lentiviral vectors in 293FT cells was detected by immunostaining using the anit-FLAG antibody and anti-KAP1 antibody followed by confocal microscopic analysis. Scale bars indicated 10 µm.

Fig. 3-14 免疫沈降による各欠損体と KAP1 との相互作用解析 (A, B)Immunoprecipitation (IP) followed by Western blot analysis to assess the interaction of intact, truncated and mutated ZFP809 proteins with KAP1.

3.3.6 KAP1 ノックダウンにおける **ZFP809** の欠損変異体の **PBS** 配列への結 合能解析

3.3.4 の結果から ZFP809 の MLV PBS への結合能において、ZF ドメイン の数に加えて KRAB_A box も影響を与える可能性が示唆された。また、3.3.5 の結果から KRAB_A box は KAP1 との相互作用に必須であることから、 KAP1 と KRAB_A box の相互作用が ZFP809 の MLV PBS 配列への結合能に 影響を与える可能性がある。従って、KAP1 のノックダウンにおける ZFP809 および ΔKRAB_A の MLV PBS への結合能を検証した。KAP1 のノックダウ ンは、KAP1 に対する shRNA を発現するレンチウイルスによって行った。

なぜなら、KAP1 は広範囲の細胞種および組織において高い発現を示すので [12]、恒常的なノックダウンを示すレンチウイルスを用いた。KAP1 に対す る shRNA を発現するレンチウイルスを 293FT 細胞に感染させ、さらに、こ のウイルスは EGFP も発現するので、セルソーターによって EGFP 陽性細胞 の分離を行った。ネガティブコントロールとして、どの遺伝子のノックダウ ンにも影響しない配列を用いた。そして、KAP1 のノックダウンはウエスタ ンブロットにより確認した (Fig. 3-15)。次に、KAP1 のノックダウンを示し た細胞に、pLVSIN/CMV/flag-ZFP809 または ΔKRAB_A/IRES/mCherry ベ クターから産生したウイルスを感染させ、mCherry と EGFP 陽性細胞をセ ルソーターによって分離した。そして、分離した mCherry と EGFP 陽性細 胞から核内タンパク質を抽出して、抽出したタンパク質とラジオアイソトー プ標識した MLV PBS 配列と反応させ、ゲルシフトアッセイに供した (Fig. 3-16)。コントロールとしては FLAG 配列のみをコードする pLVSIN/CMV/flag/IRES/mCherry 発現する 293FT 細胞から抽出した核内タ ンパク質を用いた。さらに、ポリアクリルアミドゲルの組成は 8% (Fig. 3-16A)および 10% (Fig. 3-16B)で行った。興味深いことに、KAP1 のノック ダウンにおいて、ZFP809 は MLV PBS に結合しなかった(Fig. 3-16A, B; レ ーン 9 および 10)。一方で、ΔKRAB は KAP1 のノックダウンに関係なく、 MLV PBS に結合した(Fig. 3-16A, B; レーン 11 および 12)。つまり、KAP1 の存在下において、ZFP809 は KRAB Abox と KAP1 の相互作用により、ZF ドメインが MLV PBS 配列に結合できるようになる一方で、KAP1 の非存在

- 87 -

下においては ZFP809 の構造変化が起こり、KRAB_A box は ZF ドメインを マスキングして、ZF ドメインの MLV PBS 配列への結合能を阻害する可能性 が示唆された(Fig. 3-17)。従って、ZFP809 の MLV PBS への結合には ZF ド メインの数に加えて、KAP1 と KRAB_A box の相互作用も重要であることが 示された。

Fig. 3-15 ウエスタンブロットによる KAP1 のノックダウンの確認

Fig. 3-16 KAP1 ノックダウンにおける ZFP809 と ΔKRAB_A の MLV PBS への結合 能解析

(A, B) EMSA of the MLV-PBS sequence with the intact ZFP809 and Δ KRAB_A proteins in the presence of cold competitor DNA on an 8% gel (A) and a 10% gel (B). Asterisks indicate non-specific bands.

Fig. 3-17 KAP1 依存的な KARB_A box による構造変化

3.3.7 レポーターアッセイによる ZFP809 の欠損変異体の発現抑制効果の解 析

AKRAB_A の MLV PBS への結合能が遺伝子発現抑制効果に影響を与える のかについて検証するために、ルシフェラーゼを用いたレポーターアッセイ を行った。レポーターアッセイはエピジェネティクス修飾など他の要因に関 係なく、目的タンパク質の抑制効果を直接解析できる。レポーターアッセイ に用いたベクターは Fig. 3-18 に示すようにルシフェラーゼをコードするベ クターの CMV プロモーターの下流に MLV または dl587 PBS 配列を挿入し た pCMV/MLV-luc または pCMV/dl587-luc vector である。ここで、dl587 PBS は第 2 章で述べたように MLV PBS と 5 bp 異なる配列であり、ZFP809 が結合できないことから、ネガティブコントロールとして用いた。さらに luc 活性を測定する上で内部標準となる Renilla luciferase をコードする pGL4.74[hRluc/TK] vector も用いた。そして、これらの作製したベクターと 共に pCMV/flag-X vector (X は各変異型である ΔZF, ZF1, ZF1-2, ZF1-3, ZF1-4, ZF1-5, ZF1-6, ΔSD, ΔKRAB あるいは mtKRAB を示す)ベクターを用 いてレポーターアッセイを行った(Fig. 3-19)。まず、ネガティブコントロー ルである pCMV/dl587-luc vector のプロモーター活性は、有意に変化しない ことが示された(Fig. 3-19A)。Fig. 3-10 のフローサイトメトリー解析結果と 一致して、ΔSD, ZF1-5 および ZF1-6 の発現は、pCMV/MLV-luc vector のプ ロモーター活性を ZFP809 と同程度に低下させることが示された(Fig. 3-19B)。一方で、ΔKRAB_AはMLV PBS 配列に結合できるにもかかわらず、 pCMV/MLV-luc vector のプロモーター活性に影響を与えなかった(Fig. 3-19B)。

Fig. 3-19 各欠損変異体のレポーターアッセイ

RRR (relative response ratio) represents the value of the firefly luciferase activity relative to that of the *Renilla* luciferase activity (control) at 24 hours after transfection. Error bars show the standard deviation obtained from four independent experiments. Asterisks indicate statistical significance (P < 0.05) with *Bonferroni* correction.

3.4 総括

本章では ZFP809 の欠損変異体を作製し、ZFP809 における核局在化、遺 伝子発現抑制効果および PBS 配列結合に必要なドメインの特徴解析を行っ た。結論として、ZFP809 が遺伝子発現抑制効果を発揮する上で数個の ZF ド メインに加えてとりわけ KRAB_A box が重要であることが示された。また、 KRAB_A box の欠損型および変異型である ΔKRAB_A および mtKRAB は同 じ数の ZF ドメインをもつにかかわらず、ΔKRAB_A だけが MLV PBS 配列 への結合を示した。ΔKRAB_A および mtKRAB は KAP1 と相互作用しない ことから、KRAB_A box と KAP1 の相互作用が MLV PBS の結合能に影響

を与える可能性が示唆された。KAP1 のノックダウン実験を行った結果、 ZFP809 は KAP1 依存的に MLV PBS 配列に結合した。つまり、KAP1 の非 存在下においては ZFP809の構造変化が起こり、KRAB A box は ZF ドメイ ンをマスキングして、ZF ドメインの MLV PBS 配列への結合能を阻害するこ とが示唆された。一方で、ΔKRAB A は MLV PBS 配列に結合できるにもか かわらず、遺伝子発現抑制効果を示さなかった。つまり、ZFP809 は ZF ドメ インを介して MLV PBS 配列に結合し、 KRAB ドメインを介して KAP1 と 相互作用することから足場タンパク質として機能し、単に MLV PBS に結合 するだけでは抑制効果を示さないことが明らかになった。最近の知見により、 KRAB-ZFPs における ZF ドメインは DNA 結合だけでなく、他のタンパク質 との相互作用に関わることが報告されている [4]。実際、ZFP809 も ErbB3-binding protein 1 (EBP1)と相互作用することが報告されている[13]。 従って、本研究で特徴付けられなかった他のドメインが EBP1 との相互作用 に関わっているのかもしれない。今後、より詳細な解析を行うことで、ZFP809 における機能ドメインの役割が明らかになり、この知見から類似の KRAB-ZFPs の特徴や機能が明らかになり、また ZFP809 と同様にレトロウ イルスベクターの発現を抑制するヒトにおける KRAB-ZFPs の同定に繋がる ことが期待される。

3.5 参考文献

- [1] Wolf. D, Goff. S.P, Embryonic stem cells use ZFP809 to silence retroviral DNAs., Nature. 458, 1201–1204 (2009).
- [2] Urrutia. R, KRAB-containing zinc-finger repressor proteins., Genome Biol. 4, 231(2003).
- [3] Groner. A.C, Meylan. S, Ciuffi. A, Zangger. N, Ambrosini. G, Dénervaud. N, Bucher. P, Trono. D, KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading., PLoS Genet. 6, e1000869 (2010).
- [4] Lupo. A, Cesaro. E, Montano. G, Zurlo. D, Izzo. P, Cosranzo. P, KRAB-Zinc Finger Proteins: A Repressor Family Displaying Multiple Biological Functions., Curr Genomics. 14, 268–278 (2013).
- [5] Corsinotti. A, Kapopoulou. A, Gubelmann. C, Imbeault. M, Santoni. de. Sio. F.R, Rowe. H.M, Mouscaz. Y, Deplancke. B, Trono. D, Global and Stage Specific Patterns of Krüppel-Associated-Box Zinc Finger Protein Gene Expression in Murine Early Embryonic Cells., PLoS One. 8, e56721 (2013).
- [6] Nisole. S, Stoye. J.P, Saïb. A, TRIM family proteins: retroviral restriction and antiviral defence., Nat Rev Microbiol. 3, 799–808 (2005).

- [7] Wang. W, Cai. J, Wu. Y, Hu. L, Chen. Z, Li. W, Guo. M, Huang. Z, Novel activity of KRAB domain that functions to reinforce nuclear localization of KRAB-containing zinc finger proteins by interacting with KAP1., Cell Mol Life Sci. 70, 3947–3958 (2013).
- [8] Wang. W, Cai. J, Lin. Y, Liu. Z, Ren. Q, Hu. L, Huang. Z, Guo. M, Li. W, Zinc fingers function cooperatively with KRAB domain for nuclear localization of KRAB-containing zinc finger proteins., PLoS One. 9, e92155 (2014).
- [9] Abrink. M, Ortiz. J.A, Mark. C, Sanche. C, Looman. C, Hellman. L, Chambon. P, Losson. R, Conserved interaction between distinct Krüppel-associated box domains and the transcriptional intermediary factor 1 beta., Proc Natl Acad Sci USA. 13, 1422-1426 (2001).
- [10] Peng. H, Gibson. L.C, Capili. A.D, Borden. K.L, Osborne. M.J, Harper. S.L, Speicher. D.W, Zhao. K, Marmorstein. R, Rock. T.A, Rauscher. F.J 3rd, The structurally disordered KRAB repression domain is incorporated into a protease resistant core upon binding to KAP-1-RBCC domain., J Mol Biol. 6, 269-289 (2007).
- [11] Andersen. J.S, Lam. YW, Leung. A.K, Ong. S.E, Lyon. CE, Lamond. A.I, Mann. M, Nucleolar proteome dynamics., Nature. 433, 77–83 (2005).
- [12] Cheng. C.T, Kuo. C.Y, Ann. D.K, KAPtain in charge of multiple missions: Emerging roles of KAP1., World J Biol Chem. 26, 308-320

- 95 -

(2014).

[13] Wang. G.Z, Wolf. D, Goff. S.P, EBP1, a novel host factor involved in primer binding site-dependent restriction of moloney murine leukemia virus in embryonic cells., J Virol. 88, 1825–1829 (2014).

第4章 結論

MoMLV 型のレトロウイルスベクターは、未熟細胞において遺伝子発現抑制 効果を受け、その発現が抑制される。この発現抑制を引き起こす因子として ZFP809 が同定された。ZFP809 は KRAB-ZFPs ファミリーに属し、N 末端に KRAB ドメイン、C 末端に 7 個の zinc finger (ZF)ドメインを有し、マウス未熟 細胞において高発現していることが知られている。MoMLV の発現抑制におい て、ZFP809 は MLV LTR 下流にある 18 塩基対のプライマー結合部位(PBS) に結合し、KRAB ドメインを介して KAP1 と相互作用することで他の核内転写 抑制因子と複合体を形成し、LTR 周囲のヒストン修飾や DNA メチル化などの エピジェネティクス修飾を誘導し、LTR 活性を抑制する。このように ZFP809 による MoMLV の発現抑制機構は大体明らかとなってきたが、ZFP809 の遺伝 子発現抑制効果がどの程度維持されるのか、また、ZFP809におけるどのドメイ ンが遺伝子発現抑制効果に必要なのかについては不明である。本研究では、 ZFP809の遺伝子発現抑制効果を経時的にモニタリングできる実験系を構築し、 ZFP809による発現抑制効果が長期に及ぶことを見出した。さらに、ZFP809の 欠損変異体を作製し、ZFP809 が遺伝子発現抑制効果を発揮する上で必要なドメ インを明らかにした。

第一章 レトロウイルスベクターの利点および欠点について述べ、さらに ZFP809の構造、発現および機能についてまとめ、本研究を行うことの目的と意 義について述べた。

第二章 ZFP809 によるレトロウイルスベクターの発現抑制効果を経時的に解 析する実験系を構築した。この実験系は、蛍光タンパク質の発現をフローサイ トメトリーで解析するものであり、生細胞を用いて経時的に ZFP809 の発現抑 制効果をモニタリングすることが可能である。この構築した実験系により、 ZFP809の発現抑制効果が長期に及ぶこと、レトロウイルスベクターおよび非レ トロウイルスベクターのプロモーターに関係なく、また接着細胞および浮遊細 胞においても解析が可能であることが示された。

さらに、ZFP809により発現抑制されたプロモーターにおけるエピジェネティ クス解析を行った結果、ヒストンのメチル化はレトロウイルスベクターのプロ モーターだけでなく、非レトロウイルスベクターのプロモーターにおいても見 出されたが、DNAのメチル化はレトロウイルスベクターのプロモーターに特異 的であった。従って、ZFP809によって誘導されるエピジェネティクス修飾にお いて、ヒストンのメチル化はプロモーターの種類に関係なく共通して生じる一 方で、DNAのメチル化はプロモーターの種類およびウイルス感染に依存にして 誘起されることが示唆された。つまり、構築した実験系とエピジェネティクス 修飾の解析を併用することで、ZFP809による遺伝子発現抑制効果の過程を経時 的かつ分子レベルで解析することが可能になった。

第三章 ZFP809 が遺伝子発現抑制効果を発揮する上で重要なドメインを検証 した。ZFP809 は N 末端に KRAB ドメインおよび C 末端に 7 個の ZF ドメイン を有するため、C 末端から ZF ドメインを 1 個ずつ欠損させたもの、KRAB_A box の欠損または変異を導入した欠損変異体を作製し、細胞内局在、遺伝子発現抑 制効果および PBS 配列への結合能について解析した。そして、ZFP809 が遺伝 子発現抑制効果を発揮するには数個の ZF ドメインに加えて KRAB_A box が重 要であることが明らかとなった。

本研究により以下の2点の重要な知見が得られた。

(1) ZFP809 による遺伝子発現抑制効果を生細胞において経時的にモニタリング

する実験系が構築され、ZFP809の遺伝子発現抑制効果が長期的に起こることが 示された。さらに、構築した実験系とエビジェネティクス修飾の解析を併用す ることで、ZFP809による一連の遺伝子発現抑制効果の過程を詳細に解析するこ とができた。

(2) ZFP809 の欠損変異体を用いた核局在化、遺伝子発現抑制効果および PBS 配列への結合能解析により、ZFP809 による遺伝子発現抑制効果には、数個の ZF ドメインとすべての機能に共通して KRAB_A box が重要であることが示さ れた。

これまでの研究において、ZFP809 によるレトロウイルスベクターの遺伝子発 現抑制効果はレポーターアッセイのような短期間で解析されてきたが、遺伝子 発現抑制効果は長期に及ぶものであり、その効果がどの程度維持されるのかを 検証することが重要である。実際に、生細胞において経時的に遺伝子発現抑制 効果を解析することで、ZFP809による発現抑制効果は長期に渡って維持される ことが示された。さらに、この構築した実験系では生細胞を用いることができ るので、エピジェネティクス修飾の解析のような他のアプリケーションにも利 用できる。レトロウイルスの遺伝子発現抑制にはエピジェネティクス修飾が誘 導されるので、目的の転写因子による発現抑制効果の解析と併せて、エピジェ ネティクス修飾の解析を行うことで、詳細な遺伝子発現抑制効果の過程を解析 することができる。実際に、本研究で得た知見により、ウイルス感染自体がエ ビジェネティクス修飾に関与することが示唆された。本研究で構築した実験系 とエピジェネティクス修飾解析の併用により、ウイルス感染からウイルスの遺 伝子発現抑制効果、それに伴うエピジェネティクス修飾を解析することが可能 となり、エピジェネティクス修飾がどの段階で誘導されるかなど、詳細な遺伝 子発現抑制機構の解明が期待される。また、レトロウイルスの遺伝子発現抑制

にはタンパク質複合体が関与することから、本研究で構築した実験系により、 遺伝子発現抑制効果を受けた細胞において、タンパク質複合体を単離して質量 分析などにより、複合体を構成するタンパク質を明らかにすることができる。 そして、この実験系によりこれまでの解析では見出されなかった発現抑制効果 をもつ因子の解析や新たに発現抑制効果をもつ因子の同定にも利用されること が期待される。

さらに、ZFP809におけるドメインの特徴解析により、ZFP809が遺伝子発現 抑制効果を発揮する上で KRAB_A box と ZF ドメインの協調的な働きが重要で あることが明らかとなった。最近の知見により、ZF ドメインは DNA 結合だけ でなく、他のタンパク質との相互作用に関わることが報告されており、実際、 ZFP809 も EBP1 と相互作用することが報告されている。従って、PBS 配列へ の結合に関与しない ZF ドメインが EBP1 との相互作用に関わっているのかも しれない。今後、より詳細なドメイン解析により、他のタンパク質との相互作 用に必要なドメインも明らかになるに違いない。ZFP809 の特徴解析により、 KRAB_A box の重要性に加えて、ZF ドメインごとに特徴が異なることが示唆さ れた。ZF ドメインは単に DNA 配列に結合するだけでないことから、ZF ドメイ ンを構成するアミノ酸配列を詳細に調べることで、細胞内局在、標的 DNA 配列 への結合およびタンパク質との相互作用に必要な ZF ドメインを見出すことが 可能になるだろう。

ZFP809 が属する KRAB-ZFPs は非常に大きなファミリーとして知られてい るが、そのほとんどの機能や特徴が不明である。KRAB-ZFPs における KRAB ドメインは保存性が高いことから、単なる相同性から特徴、機能および KRAB-ZFPs 間の類似性を見出すことは困難である。従って、本研究で行った ドメインの特徴解析を他の KRAB-ZFPs においても行うことで、ZF ドメインを 構成するアミノ酸配列からその機能や特徴を予測し、結合する標的 DNA 配列や ZFドメインの類似性によって KRAB-ZFPs を機能や特徴ごとに分類することが 可能となる。また、ヒト未熟細胞においてもレトロウイルスベクターの遺伝子 発現抑制効果が起こることから、KRAB-ZFPs の特徴解析により ZFP809 と同 様の機能をもつヒトにおける KRAB-ZFPs の同定にも繋がることが期待される。

本論文に関する原著論文

 Yu Ichida, Yuko Utsunomiya, Junko Tomikawa, Kazuhiko Nakabayashi, Toshinori Sato, Masafumi Onodera.

Long time-course monitoring of ZFP809-mediated gene silencing in transgene expression driven by promoters containing MLV-derived PBS. Bioscience, Biotechnology, and Biochemistry (in press).

(2) <u>Yu Ichida,</u> Yuko Utsunomiya, Toru Yasuda, Kazuhiko Nakabayashi, Toshinori Sato, Masafumi Onodera.

Functional domains of ZFP809 essential for nuclear localization and gene silencing. PLoS One (in press).

本論文に関する学会発表

(1) <u>Yu Ichida</u>, Yuko Utsunomiya, Toshinori Sato, Masafumi Onodera. Characterization of domains within ZFP809 essential for nuclear localization and gene silencing 21th of Annual Meeting of Japan Society of Gene Therapy, Osaka, 2015 July 24-26.

(2) <u>Yu Ichida</u>, Yuko Utsunomiya, Toshinori Sato, Masafumi Onodera. Characterization of domains within ZFP809 required for gene silencing of retroviral vectors. 67th of Annual Meeting of Japan Society of Cell Biology, Tokyo, 2015 June 30-July 2.

(3) <u>Yu Ichida</u>, Yuko Utsunomiya, Toshinori Sato, Masafumi Onodera. Sequential process of gene silencing for the transgene expression in the sequence-specific binding of ZFP809 to the primer-binding site. The 37th Annual Meeting of the Molecular Biology Society of Japan, Yokohama, Japan, 2014 November 25-27. <u>Yu Ichida</u>, Yuko Utsunomiya, Toshinori Sato, Masafumi Onodera. Sequential process of gene silencing for the transgene expression was primed in the sequence-specific binding of ZFP809 to the primer-binding site. 20th of Annual Meeting of Japan Society of Gene Therapy, Tokyo, 2014 August 6-8.
<u>Yu Ichida</u>, Toshinori Sato, Masafumi Onodera. The effect of ZFP809 on gene silencing depends on primer binding site located downstream of MoMLV type retroviral vectors. The 36th Annual Meeting of the Molecular Biology Society of Japan, Kobe, Japan, 2013 December 3-6.

(6) <u>Yu Ichida</u>, Toshinori Sato, Masafumi Onodera. The effect of ZFP809 on gene silencing depends on primer binding site located downstream MoMLV type retroviral vectors. 19th of Annual Meeting of Japan Society of Gene Therapy, Okayama, 2013 July 4-6.

(7) <u>Yu Ichida</u>, Toshinori Sato, Masafumi Onodera. The effect of ZFP809 on gene silencing of retroviral vectors depends on PBS located downstream of 5' LTR. 18th of Annual Meeting of Japan Society of Gene Therapy, Kumamoto 2012 June 28-30.

(8) <u>Yu Ichida</u>, Toshinori Sato, Masafumi Onodera. Direct binding of the transcription factor, ZFP809 to the primer-binding site primed gene silencing of MoMLV type retroviral vectors. 17th of Annual Meeting of Japan Society of Gene Therapy, Fukuoka 2011 July 15-17.

(9) <u>Yu Ichida</u>, Toshinori Sato, Masafumi Onodera. Direct binding of the transcription factor, ZFP809 to the primer-binding site primed gene silencing of MoMLV type retroviral vectors. The 34th Annual Meeting of the Molecular Biology Society of Japan, Yokohama, Japan, 2011 December 13-16.
本研究を遂行するにあたり、多くの方々からご指導、ご教示をいただきました。ここに深甚なる謝意を表します。

特に、慶應義塾大学理工学部生命情報学科 佐藤智典教授には熱心なご指導と 激励をいただきました。

本論文をまとめるに際し、慶應義塾大学理工学部生命情報学科 井本正哉教授、 土居信英准教授、慶應義塾大学理工学部応用化学科 清水史郎准教授および国立 成育医療研究センター成育遺伝研究部 小野寺雅史部長には貴重なご指導とご 意見を賜り、厚く御礼申し上げます。

国立成育医療研究センター周産期病態研究部 中林一彦室長には実験技術に 関して多くの知識や示唆をいただき、投稿論文の執筆に関して多大なご協力お よびご助言いただきました。ここに感謝の意を表します。

日常の議論を通じて多くの知識や示唆をいただいた国立成育医療研究センター成育遺伝研究部および慶應義塾大学理工学部生命情報学科 佐藤研究室の皆様に感謝致します。