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 Abstract 

 

 

Damage identification based on vibration data generated by SHM systems has been 

extensively studied for several decades and the literature on the subject is rather 

immense. However, most of them are not feasible or practical for large scale civil 

structures due to the challenges such as high equipment costs, long setup time, 

difficulties in cabling and the long computation time. This thesis is devoted to 

overcome these problems by proposing a decentralized damage identification strategy 

based on the combination of substructural approach and autoregressive models, which 

is especially effective and economic for large scale shear structures. 

Firstly, an improved substructure-based damage detection approach is proposed to 

locate and quantify damages in a shear structure, which extends from a previously 

established substructure approach. To improve the noise immunity and damage 

detection robustness under different types of excitations and realistic conditions, this 

paper proposes an ARMAX model residual-based technique to correct the former 

damage indicator. The results of simulation and experimental verifications show that 

the improved procedure works much better and more robust than previous method 

especially when it is applied to realistic problems. 

Secondly, to seek the balance between the number of substructures and the 

computation intensity inside each substructure, a more flexible substructural damage 

identification approach is proposed in this study to identify structural damage 
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including its location and severity, using changes in the first autoregressive coefficient 

matrix as the damage indicator.  

Moreover, to simplify the above studied method, the diagonal elements from changes 

in the first autoregressive coefficient matrix (CFAR) are extracted to construct the 

damage indicating vector (DIV). Then simulations are conducted to investigate the 

potential of the DIV algorithm for implementation on wireless smart sensor networks 

(WSSN), where the issues of scalability of the DIV approach are undertaken by 

utilizing a decentralized, hierarchical and in-network processing strategy. 

Finally, the conclusion is given. The proposed substructural damage identification 

approach can satisfactorily locate and quantify the damage in both simulation and 

laboratory experiment. As the damage identification process can be independently 

conducted on each substructure, by utilizing some decentralized and hierarchical 

processing strategy, this method is promising and efficient for application on wireless 

smart sensor networks (WSSN) to perform SHM systems for large scale shear 

structures. 
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1 Introduction 

 

 

 

1.1 Structural Health Monitoring 

Research and development of SHM are getting strong attention for evaluating and 

maintaining structural integrity of an aging building or a suffering structure against 

natural hazards such as large earthquakes and strong winds. The process of 

implementing a damage detection and characterization strategy for engineering 

structures is referred to as Structural Health Monitoring (SHM). As an analogy, the 

concept of SHM is similar to routine checkups of human bodies to make sure their 

health and fix the disease if needed (Mita 2003). 

There three main components involved in the typical process of SHM: ① the 

constant monitoring of a structure over time using periodically measured responses 

from an array of sensors, ② the damage-sensitive features extraction from these 

measured responses, and ③ the statistical analysis of these features to evaluate the 

current condition of structural health. SHM system performed during a long period 

periodically updates and reports the information regarding the timely condition of the 

structure in order to keep them performing their intended functions upon the 



CHAPTER 1 Introduction 

2 

 

inevitable aging and degradation resulting from operational environments. After 

extreme events, such as large earthquakes, strong winds or blast loading, SHM system 

is implemented to conduct the rapid condition evaluation and then provide the real 

time and reliable information regarding the integrity of the structure (Cempel 1980; 

Hou et al. 2000; Auweraer and Peeters 2003; Farrar and Worden 2007). 

Basically, the SHM problem can be considered as one of a statistical pattern 

recognition paradigm, which can then be categorized into four fields as follows (Sohn 

et al. 2004; Hayton et al. 2007):  

1) Operational Evaluation, 

2) Data Acquisition, Fusion, and Cleansing, 

3) Feature Extraction and Information Condensation, and 

4) Statistical Model Development for Feature Discrimination. 

To reveal the damage information hidden in the outward appearance, SHM adopts a 

deep pool of mixed knowledge and interdisciplinary branches of science, as follows: 

①operational evaluation methods (such as economic analysis, statistical theory, 

intelligent optimization, etc.); ② data acquisition and signal processing techniques 

(such as excitation methods, MEMS technology, material science and technology, data 

transmission, etc.); ③ feature extraction approaches (such as structural mechanics, 

control theories, system identification, etc.); and ④ statistical discrimination 

algorithms of features for damage detection (such as information condensation, 

pattern classification, intelligence diagnosis, statistical learning theories, etc.) 

 

1.2 Definition of Damage 

Damage can be generally defined as changes taking place at a system that adversely 
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have influence on its behavior (Farrar and Cone 1995). Specifically considering civil 

engineering structures, damage can be defined as changes occurring in materials, 

connections, boundary conditions, etc., which can cause deterioration of the structure. 

Usually there are various reasons for causing damage, such as corrosion, aging, daily 

activities, etc. Many different ways such as traffic, wind loads and collisions by boats 

can all have the possibility to cause damage to bridges. These loads can also give 

extreme distress to offshore structures, associated with wave loading and corrosion 

due to seawater. Additionally, some damage sources emerge not so frequently. 

However, they can cause terrible consequences. For instance, earthquakes, tornados, 

and hurricanes can potentially cause catastrophic damage in civil engineering 

structures. 

The final goal of SHM is to estimate the remaining life of structures. This purpose is 

still an open question, and faces many obstacles to get a good answer in the current 

stage. Rytter (1993) categorized the damage identification into four different levels 

based on giving answers to these four questions as following listed in order to 

represent the increasing knowledge and difficulty of the damage identification state:  

Level 1: Damage Existence. Is there damage in the system?   

Level 2: Location. Where is the damage in the system?  

Level 3: Extent. How severe is the damage? 

Level 4: Prognosis. How much useful life remains? 

Statistical models are usually adopted to answer questions regarding the existence and 

location of damage when they are used in an unsupervised learning mode, while the 

statistical procedures can be applied to better detect the type of damage, evaluate the 

extent of damage and estimate the remaining useful life of the structure when they are 

adopted in a supervised learning mode and coupled with analytical models. The 
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statistical models are also utilized to minimize spurious alarms of damage (Farrar and 

Worden 2007).  

Spurious alarms of damage can be classified into two main categories:  

1) False-positive damage alarms (indication of damage when actually there is 

none damage existing in the structure), 

2) False-negative damage alarms (no indication of damage when actually there 

is some damage which took place in the structure).  

It is undesirable for the first type of faults, because they will cause unnecessary 

downtime and consequently result in loss of revenue together with loss of confidence 

in the SHM system. More importantly, if the second type of errors happened, it maybe 

will lead to catastrophic consequences. Many damage identification algorithms allow 

one to weigh one type of fault above the other. Normally this weighting may be one of 

the factors to be determined at the operational evaluation stage of SHM (Hayton et al. 

2007; Sohn 2007). 

 

1.3 Damage Detection Methods 

The main parts of the SHM in civil engineering are damage detection, localization and 

quantification, which are essential monitoring zones for structures after major events 

such as large earthquakes, tsunami, strong winds, etc. (Ljung 1999; Mita 2003). 

Damage identification based on vibration data generated by SHM systems has been 

extensively studied for several decades and the literature on the subject is rather 

immense. 

One of the earliest damage indicators studied is the estimated modal property from 

system identification (Alvin et al. 2003; Ljung 1999), as it is directly related to 
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structural physics according to classical dynamics theory. The basic idea is that modal 

parameters, such as frequencies, mode shapes and modal damping, are functions of 

the physical properties of the structure (mass, stiffness and damping). Therefore 

changes in the physical properties will cause changes in the modal properties. Thus 

they are often referred to as mode-based methods. 

Using Natural Frequency There are a large amount of literatures related to damage 

detection based on the shifts in natural frequencies. Salawu (1997) and He and 

Zhu(2011) provided a review on structural damage detection using changes in natural 

frequency. Generally speaking, there are two categories of frequency analysis, the 

forward identification and the inverse identification that can be adopted for damage 

identification (Hearn and Testa 1991; Ljung 1999; Vestroni and Capecchi 2000; 

Peeters et al. 2001; Kessler et al. 2002; Kim et al. 2003). Both approaches assume that 

existence of damage will result in changes in natural frequency. Cawley and Adams 

(1979) proposed frequency shifts as a damage indicator to detect damage in composite 

materials. It assumes that natural frequency alters when the physical properties change. 

A vibration test of a full-scale four-story reinforced concrete building was conducted 

by Rytter and Kirkegaard (1997) at the European Laboratory for Structural 

Assessment (ELSA). The relative changes in the modal parameters are adopted as 

inputs of the networks to detect the bending stiffness changes of the system at the 

output layer. A correlation coefficient comparing changes in a structure’s resonant 

frequencies with predictions was derived by Williams and Messina (1999), which was 

based on a frequency-sensitivity model derived from a finite element model. Wong et 

al. (2004) proposed an iterative damage detection method which can locate and 

quantify the damage in a simple structure by using the changes in the natural 

frequencies of the first several modes. 

Using Mode Shape Doebling and Farrar (1997) considered the changes in the 

frequencies and mode shapes as the damage indicator of a bridge. The application of 
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the modal assurance criterion (MAC) was recommended by West (1986) and Wolff 

and Richardson (1989) to detect the existence and the location of structural damage. 

MAC represents that the degree of correlation between two sets of modal vectors is 

uncorrelated at all or perfectly correlated respectively, which is a scale quantity 

ranging from 0 to 1.0. The basic assumption of this approach is that changes in modal 

vectors at the degrees of freedom near the damage are relatively higher than others 

remotely located from the damage. As the MAC only uses one pair of modes for 

damage localization, the problem of choosing appropriate modes for MAC calculation 

induces the similar COMAC methods for damage localization, which stands for 

Coordinate Modal Assurance (Lieven and Ewins 1988). The location where a 

COMAC value is close to zero is the possible damage location. Modal tests of a 

full-scale bridge before and after rehabilitation were conducted by Salawu and 

Williams (1995). They drew a conclusion that the natural frequencies of the bridge did 

not change much as a result of structural repairs whilst both MAC and COMAC 

performed good to indicate the location of the repairs. However, this method can work 

well only when the measurement point is close to node points for a particular mode, 

which is a limitation of this approach. A comprehensive summarization of damage 

identification techniques using changes in the vibration characteristics was presented 

by Doebling et al. (1996). 

Using Curvature/Strain Mode Compared with the method based on mode shape, the 

method using curvature or strain mode is feasible for locating the damage and higher 

order derivatives of mode shapes are considered to be more sensitive to damage. 

Pandey et al. (1991) proposed a damage detection approach adopting mode shape 

curvature as the damage indicator and it is proved that this approach can obtain 

satisfactory damage detection results for beam structures. Chance et al. (1994) 

conducted the study on the measured strain mode shape and showed that it could be 

adopted for damage localization. The changes of the mode shape curvatures was 



CHAPTER 1 Introduction 

7 

 

adopted as the damage indicator by Wang et al. (2000) in a numerical study of damage 

detection of Tsing Ma Bridge in Hong Kong SAR and this method worked quite well 

in the simulation case. Qiao et al. (2007) adopted the experimental and numerical 

curvature mode shapes to detect, locate, and quantify the delamination in structures.  

Using Modal Strain Energy Stubbs et al. (1992) are considered to be the pioneer to 

conduct the research on damage detection and localization based on Modal Strain 

Energy (MSE). Stubbs and Kim (1996) and Shi et al. (1998) made improvement to 

this approach by adopting modal strain energy to identify the location of the damage 

and quantify the damage size without baseline modal properties.  

Using Dynamic Flexibility Because higher modes are considered to contribute more to 

the system stiffness matrix than lower modes (Berman and Flannelly 1971), it is 

required to obtain a large number of dynamic modes in order to accurately estimate 

stiffness matrix or its changes. However, usually it is very difficult to obtain the 

higher frequency response due to the practical limitations. To avoid this difficulty, an 

approach based on dynamically measured flexibility matrix is developed to estimate 

the changes in structural stiffness. Bernal (2002) conducted a numerical simulation of 

a 39-DOF truss and accurately identified the modes of it. He drew a conclusion that it 

is desirable to estimate and monitor the changes in the flexibility matrix than the 

changes in stiffness matrix. Gao and Spencer (2006) investigated the issues relating to 

the comprehensiveness of modal flexibility matrix from ambient and forced vibration 

data and proposed a damage locating vector (DLV) method based on modal flexibility 

matrix for online damage localization.  

Artificial Neural Network Artificial neural network (ANN) learning methods help us 

to develop a robust approach to approximating real-valued, discrete-valued, and 

vector-valued target functions for certain types of problems, such as learning to 

interpret complex real-world sensor data. The artificial neural networks are considered 
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to be the most effective among various learning methods currently known. The 

research of artificial neural network has been inspired partly by the phenomenon that 

biological learning systems are constructed with very complicated networks of 

neurons interconnected with each other. A neural network is constituted by a group of 

artificial neurons interconnected with each other, and it adopt a connectionist 

approach to perform the computation and information processing. ANNs learning is 

suitable to problems in which the training data comes from noisy and complex sensor 

data, such as inputs from cameras and microphones. It is also appropriate to problems 

for which more symbolic representations are often used. The most commonly used 

ANN learning technique is the back-propagation algorithm. In the field of SHM, the 

advantage of ANN learning technique is that it is not required to know the physical 

relationships between the structural properties and damage occurrence. This approach 

depends on the utility of vibration measurements from a undamaged state to train a 

neural network for damage identification aims. Subsequently, the trained network is 

fed comparable vibration responses from the same structure under different states in 

order to monitor the health of the structure (Berman and Flannelly 1971; Cawley and 

Adams 1979; Cempel 1980; Qian and Mita 2008). However, the limitation of this 

method is that large training samples are necessary for accurate detection. 

Wavelet Method Any signal can be decomposed by the Wavelets, and it is shown that 

the signals transformed by Wavelets method are more sensitive to local changes in 

structural properties. It can be also viewed as an extension of the traditional Fourier 

transform with adjustable window location and size. Hou et al. (2000) proposed a 

structural damage detection methodology based on wavelets, which was applied to 

simulation data generated from a simple structural model subjected to a harmonic 

excitation. The damage detection results showed the wavelet approach is promising 

for damage detection and structural health monitoring. 

Time-series-based Method The modal parameters are proved to be insensitive to local 
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damage for they are global properties of the structure while damage is a local 

phenomenon. Additionally, traditional mode-based methods, especially those that 

operate in time domain, are usually computationally intensive to implement and 

physical or finite-element models are necessarily required for those methods. In order 

to overcome these obstacles, time-series-based methods become another important 

category within the broader family of vibration-based methods for damage 

identification purposes. Comparing with the traditional mode-based methods, 

although time-series-based methods are also concerned with numerical modeling, they 

are more flexible because they are data-based rather than physics-based, which can 

use various damage features that do not necessarily have an explicit physical meaning 

(Fassois and Sakellariou 2007). 

Autoregressive Models Among the time-series-based methods, the autoregressive 

(AR) model, the autoregressive with exogenous input (ARX) model or the 

autoregressive moving average with exogenous input (ARMAX) model are 

mathematical structures that can be used to formulate various data-driven damage 

features. By adopting one of the standard algorithms, AR/ARX/ARMAX model 

parameters can be estimated from input-output datasets very efficiently. According to 

the specific feature extraction process, the damage features generated from these 

models can be classified into two categories: model coefficients based and model 

residual based. There are a lot of model coefficients based techniques that have been 

investigated during the past decades. Sohn and Farrar (2001) proposed statistical 

pattern recognition methodology in which the recorded dynamic signals were 

modeled by adopting the AR time-series models and then classified from either 

undamaged or damaged systems by statistically examining changes in AR coefficients. 

Nair et al. (2006) proposed a sensitive damage feature by only using the first three AR 

coefficients of the ARMA model. By looking into various changes in coefficients of 

the vector seasonal autoregressive integrated moving average (ARIMA) model, 
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Omenzetter and Brownjohn (2006) proposed a health monitoring algorithm for bridge 

structure by analyzing the time histories of static strain data. de Lautour and 

Omenzetter (2006) adopted an artificial neural network (ANN) to detect the extent of 

the damage by feeding the AR coefficients as input features into it. Harikrishnan et al. 

(2014) proposed a combined approach for damage characterization involving the 

fundamental mode shape and its derivatives as well as the first ARX model 

coefficients. On the other hand, model residual based methods have also been 

receiving attention and a large amount of related research has been documented and 

published. Fanning and Carden (2001) proposed a statistical process control approach 

to detect damage by using the mean and variance of the residuals of the AR model to 

form the statistical process control charts. Mattson and Pandit (2006) chose the 

standard deviation of the residual of the vector AR (VAR) model as the 

damage-sensitive index. 

Distance Measures of AR Models Distance measures are widely used tools in the field 

of speech recognition (Tohkura 1987; Itakura and Umezaki 1987). Basseville (1989) 

developed some general tools for measuring distances either between two statistical 

models or between a parametric model and a signal. The autoregressive (AR) models 

and autoregressive moving average (ARMA) models are always used to infer the 

spectral distances between different processes. Martin (2000) defined and discussed a 

metric based on ARMA models, and provided a natural measurement of the “distance” 

between two ARMA processes. Kalpakis (2001) proposed a distance measure using 

the dissimilarity and the similarity between different autoregressive integrated moving 

average (ARIMA) models. Zheng and Mita (2007; 2008; 2009) introduced the 

distance measures of AR models into civil structural damage detection by proposing a 

novel damage indicator based on the cepstral distance measure between AR models. 

Xing and Mita (2011) conducted a subsequent study to clarify how to determine the 

optimal order for distance measures and reduce the noise effect on this approach. 
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Substructure Method Though numerous damage detection methods are already 

developed for SHM systems, most of them are not feasible or practical for large-scale 

civil structures due to the challenges such as high equipment costs, long setup time, 

difficulties in cabling and the long computation time. To overcome these problems, 

some researchers have been using the substructure method for local damage detection 

of the large-scale structures. Koh et al. (1991) are considered to be the first to present 

the concept of substructure identification. In their approach, the Extended Kalman 

Filter (EKF) (Hoshiya and Saito 1984; Ljung 2002) was used as the numerical tool 

to identify unknown structural parameters. Yun and Lee (1997) applied the sequential 

prediction error method to estimate unknown parameters of each substructure with 

noisy measurements. Park et al. (1998) proposed structural damage detection methods 

based on the relative changes in localized flexibility properties, which are obtained 

either by applying a decomposition procedure to an experimentally determined global 

flexibility matrix or by processing the output signals of a vibration test in a 

substructure-by-substructure manner. Tee et al. (2005) proposed a substructure 

identification method considering both first-order and second-order models. Koh and 

Shankar (2003) proposed a substructure identification approach in frequency-domain 

without the need of interface measurement. The special techniques such as 

sub-structuring and “model order reduction” (MOR) become quite useful in the 

practical SHM systems for large-scale civil structures. Sara and Lucia (2014) 

contributed the deep discussion about the consequences on the achieved accuracy of 

adopting different model order reduction technique patterns. Several new substructure 

methods have been developed in recent years. Hou et al. (2010, 2012) proposed and 

experimentally studied a substructure isolation method which can be applied for local 

structural health monitoring and damage identification by virtually isolating the 

substructure from a large and complex global structure into a simple, small and 

independent structure. Kuwabara et al. (2013) proposed a damage detection method 



CHAPTER 1 Introduction 

12 

 

for high-rise buildings which is devised to find the story shear and bending stiffnesses 

of a specific story from the floor accelerations just above and below the specific story. 

Zhang et al. (2014) presented a loop substructure identification method to estimate the 

parameters of any story in a shear structure using the cross power spectral densities 

(CPSD) of structural responses. Lee and Eun (2014) presented a model-based 

substructuring method in which the damaged substructure is detected by tracing the 

distribution of the constraint forces at the nodes between the partitioned substructures 

and the local damage is found by the displacement curvature of the isolated 

substructure. However, there are several problems in the existing methods. These 

methods are either too complicated to require long computation time or require the 

construction of complex structure models. And for some approaches of system 

identification and damage detection, noise problems in the case of practical 

application may cause some difficulties. 

Xing and Mita (2011) proposed a substructure approach to divide a complete structure 

into several substructures in order to significantly reduce the number of unknown 

parameters for each substructure so that damage identification processes can be 

independently conducted on each substructure. Difference between squared original 

frequency and squared damaged frequency was adopted as damage indicator in the 

substructure damage detection approach. The approach can work well in the 

simulation scenarios in which the target structure is subjected to white noise 

excitation and no noise is added to the vibration signals. However, when the approach 

is applied to noise-contaminated vibration signals of a structure subjected to real 

earthquake excitation, the damage detection algorithm will become unrobust and it is 

difficult to obtain a satisfactory result. An improvement to this method based on the 

combined use of residual errors and the squared frequencies will be proposed in 

Chapter 2. 

A new algorithm which can locate and quantify the damage inside a substructure 
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without requiring the information from adjacent substructures will be proposed in 

Chapter 3. The application of the proposed algorithm for decentralized damage 

identification system will also be discussed in Chapter 3. Finally contributions of this 

thesis will be summarized in Chapter 4. 

 

1.4 Objectives 

Structural damage identification approaches based on vibration data generated by 

SHM systems have been extensively studied and applied for engineering practice for 

several decades. Because of the structural complexity and the local phenomenon 

property of damage, complete information are always required for accurately 

evaluating the structural condition for large scale structures, which means a large 

number of sensors densely distributed over the entire structure are considered 

necessary to effectively detect arbitrary deterioration in a large scale structure. 

However, the traditional way to collect data centrally from a large number of sensors 

faces many troubles and obstacles for conducting SHM system either adopting wired 

or wireless sensors. Using of traditional wired sensors has the troubles and difficulties 

such as high equipment costs, long deploying time, difficulties in cabling and the 

constant maintenance for a large wiring plant. On the other hand, it is a huge difficulty 

to send all the measured data to a certain central station using wireless sensors 

because of the power requirements and bandwidth limitations. In both cases of wired 

and wireless sensors, the SHM measurement system will generate a tremendous 

amount of data and all of them would need to be transferred to such a central station. 

It is challenging and time-consuming to manage and deal with this huge amount of 

data. Thus, the main objective of this thesis is to develop a more effective damage 

identification algorithm which can get rid of the redundant information before 

transferring data back to the central station so that the efficiency of the SHM network 
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can be raised. The damage identification algorithm proposed in this thesis aims to 

make the SHM system works more efficiently and solve the problems and difficulties 

caused by large scale structures such as high equipment costs, long deploying time, 

difficulties in cabling, and etc. 

 

1.5 Organization of Thesis 

This thesis is divided into five chapters as illustrated in Figure 1.1. 

Chapter 1 gives a brief introduction of SHM and damage detection. 

To deal with the unrobust problem when the approach is applied to 

noise-contaminated vibration signals of a structure subjected to real earthquake 

excitation, Chapter 2 proposes an improvement to the previous substructure approach 

based on the combined use of residual errors and the squared frequencies. The 

improved substructure approach adopts a corrected damage indicator involving a 

model coefficients-based as well as model residual-based technique for local damage 

detection in shear structures. Firstly, a substructure algorithm is used to divide a 

complete structure into substructures, each of which is confined to one DOF with 

overlaps. Thus the accelerations are fed into autoregressive-moving average with 

exogenous inputs (ARMAX) models to determine the model coefficients, based on 

which the modal information of each substructure is obtained afterwards (Xing and 

Mita 2012). In what follows the normalized K-S test statistical distance between 

ARMAX model residual is adopted as a correction coefficient Dks to correct the 

former damage indicator (difference between squared original frequency and squared 

damaged frequency). After presenting the proposed approach, simulation and 

experimental verifications were conducted and the results were presented and 

compared with the previous approach. Finally, conclusions and expectations were 
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discussed. 

Chapter 3 proposes a substructural approach based on changes in the first 

autoregressive coefficient matrix for local damage identification in shear structures. 

Firstly, a substructure algorithm is used to divide a complete structure into several 

substructures, each of which shares a common form of the equation of motion. Then 

the equation of motion for each substructure is rewritten in terms of ARX model with 

different inputs and outputs. In what follows, it is derived theoretically that the 

elements of changes in the first AR model coefficient matrix (hereafter will be termed 

as CFAR) corresponding to the output DOFs adjacent to the damaged location are 

proportional to the stiffness reduction in the structure, indicating the damage location 

and severity. Thus the accelerations are fed into autoregressive-moving average with 

exogenous inputs (ARMAX) models to determine the AR model coefficients for each 

substructure under undamaged and various damaged conditions, based on which the 

CFAR is obtained and adopted as the damage indicator for the proposed substructure 

damage identification approach afterwards. After presenting the proposed approach, a 

numerical simulation and an experimental verification were conducted and the results 

were presented to show the feasibility and robustness of the proposed methodology. 

Finally, conclusions and expectations were discussed.  

Next, Chapter 3 also presents a decentralized damage identification strategy (DDIS) 

that is suitable for implementation on a smart sensor network applied on shear 

structures. In this proposed strategy, the entire structure is divided into several 

substructures with some overlaps, the smart sensors inside and at the interface of the 

substructure are grouped together and only the locally measured information is used 

to evaluate the condition of local substructures; the associated damage identification 

algorithm is done in a decentralized manner. Damage identification results for these 

local substructures can then be reported back to the central station. In the sequel, to 

simplify the damage indicator (CFAR), the diagonal elements from changes in the 
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first autoregressive coefficient matrix (CFAR) are extracted to construct a vector in 

their original order and the vector is designated here as damage indicating vector 

(DIV). In each substructure, DIV can reveal the location and severity of the damage, 

which forms the basis for the decentralized damage identification strategy. Finally, 

simulations are conducted to investigate the potential of the DIV algorithm for 

implementation on wireless smart sensor networks (WSSN), where the issues of 

scalability of the DIV approach are undertaken by utilizing a decentralized, 

hierarchical and in-network processing strategy.  

Chapter 4 summarizes contributions of this thesis, and points out the direction for 

future works. 
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CHAPTER 2 

2 Substructural Damage Identification 

Based on ARMAX Model Residual 

 

 

 

2.1 Introduction 

As mentioned in Chapter 1, there are a large number of damage detection approaches 

being researched and published singly based on model coefficients or model residual. 

However, the damage feature both considering model coefficients and model residual 

has been little investigated. Much as it appears as a simple concept, damage feature 

based on both model coefficients and model residual may contain more complete 

structural damage information than those only singly considering model coefficients 

or model residual. Thus in this chapter, a new combined substructure approach 

involving a model coefficients-based as well as model residual-based technique has 

been proposed for local damage detection in shear structures. Firstly, a substructure 

algorithm is used to divide a complete structure into substructures, each of which is 

confined to one DOF with overlaps. Thus the accelerations are fed into 

autoregressive-moving average with exogenous inputs (ARMAX) models to 

determine the model coefficients, based on which the modal information of each 
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substructure is obtained afterwards (Xing and Mita 2012). In what follows the 

normalized K-S test statistical distance between ARMAX model residual is adopted as 

a correction coefficient Dks to correct the former damage indicator (difference 

between squared original frequency and squared damaged frequency). After 

presenting the proposed approach, simulation and experimental verifications were 

conducted and the results were presented and compared with the previous approach. 

Finally, conclusions and expectations were discussed. 

 

2.2 Autoregressive Models 

There are various autoregressive models existing to simulate the behavior of a linear, 

time-invariant (LTI) system. AR model is a type of random process which is often 

used to model and predict various types of time series. It is suited for describing a 

model with no input, i.e. a free vibration, with arbitrary initial conditions. The form of 

AR model is given as following (Ljung 1999; Soderstrom and Stoica 1989; Mita 

2003): 

                  
        (2.1) 

where w(t) is the output of the structure at sample index t, ak are the coefficients to be 

estimated, na is the order of the AR model, and e(t) are the residuals of the estimation 

process up to time t. 

The ARMA model is similar to the AR model except that it is capable to model a 

noise as following (Ljung 1999; Soderstrom and Stoica 1989; Mita 2003): 

                  
      

  
               (2.2) 

where w(t) is the output of the structure at sample index t, ak and ck are the 

coefficients to be estimated, na and nc are the orders of the ARMA model, and e(t) are 

the residuals of the estimation process up to time t. 
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The ARX model is an AR model with an extra input as described below (Ljung 1999; 

Soderstrom and Stoica 1989; Mita 2003): 

                                 
   

  
        (2.3) 

where w(t) and u(t) are the output and input of the structure at sample index t, 

respectively, ak and bk are the coefficients to be estimated, na, nb, and nk are the 

orders of the ARX model, and e(t) are the residuals of the estimation process up to 

time t. 

The ARMAX model is a generalization of ARX model. The form of ARMAX model 

can be written as following (Ljung 1999; Soderstrom and Stoica 1989; Mita 2003): 

                                 
   

  
      

  
               (2.4) 

where w(t) and u(t) are the output and input of the structure at sample index t, 

respectively, ak, bk, and ck are the coefficients to be estimated, na, nb, nc, and nk are 

the orders of the ARMAX model, and e(t) are the residuals of the estimation process 

up to time t. 

When you have dominating disturbances that enter early in the process, such as at the 

input, the ARMAX model proves to be an appropriate model as it has strong 

flexibility for handling the disturbance modeling and gives results which are 

satisfying and better than those of AR, ARX, and ARMA models (Ljung 1999; 

Soderstrom and Stoica 1989; Mita 2003; Stoffels et al. 2012). Xing and Mita (2012) 

show that the substructure method based on the ARX model almost does not work 

when it is applied to 5% noise contaminated data. Since the ARMAX model structure 

includes disturbance dynamics, the method based on this model has more flexibility in 

handling the disturbance modeling than the method based on the ARX model. Thus in 

this study the ARMAX model is chosen instead of ARX model to fit the input-output 

data sets. 

Akaike Information Criterion (AIC) proposed by Akaike (1974) is adopted to 
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determine the order of ARMAX model. When a model involving p independently 

adjusted parameters is fitted to data, the AIC is defined by              
    . 

where N is the number of observations to which the model is fitted, and    
  the 

estimated variance of the linear prediction error. 

Note that the term    
  decreases and therefore    

  also decreases as the order of the 

ARMAX model is increased. However, 2p increases with an increase of order p. 

Hence, a minimum value can be obtained. If we plot        against p the graph will, 

in general, show a definite minimum value, and the appropriate order of the model is 

determined by that value of p at which        attains its minimum value. 

 

2.3 Substructure Division Method 

Similarly as in the previous paper by Xing and Mita (2012), a substructure algorithm 

is adopted to divide a complete structure into substructures. In this substructure 

approach, firstly a complete structure is divided into several substructures, which have 

a considerably smaller number of degrees of freedom (DOFs) when compared with 

the entire structure, as shown in Figure 2.1. Considering strong flexibility for handling 

the disturbance modeling, ARMAX model is adopted to extract the modal information 

of each substructure. Each substructure can be treated independently. 

To illustrate the concept of substructuring, consider a shear building which is 

represented by a lumped mass system as shown in Figure 2.1. The dynamic equations 

of motion for the complete structure is: 

                               (2.5) 

where M, C and K are the mass, damping, and stiffness matrices, respectively,     , 

     , and       are the dynamic response vectors of displacement, velocity, and 

acceleration relative to the ground, respectively, r is an n×1 unit vector (        ), 
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and        is the ground acceleration. 

                      
  

  

 
 
 
 
 
 
 
 
   

  

 
  

 
    

    
 
 
 
 
 
 
 

 

  

 
 
 
 
 
 
 
 
         

           
   

               
   

               
       

 
 
 
 
 
 
 

 

  

 
 
 
 
 
 
 
 
         

           
   

               
   

               
       

 
 
 
 
 
 
 

 

By considering the equilibrium of the mi cut out of the whole structure, the motion 

equation of substructure #i (1≤i≤n-1) can be formulated as 

       
              

             
                    

          
  (2.6) 

where       is the absolute acceleration of mi-1, while   
  and     

  are the 

displacement of mi and mi+1 relative to mi-1, respectively, and when i=1,       is the 

ground acceleration    . 

Similarly, for the particular case substructure #n (the top DOF), the motion equation 

of substructure #n is obtained as 
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           (2.7) 

where       is the absolute acceleration of mn-1, and   
  is the displacement of mn 

relative to mn-1. 

 

 

Figure 2.1. Divided substructural model 

 

Introducing the difference expression 

    
     

  
         

      

  
 (2.8) 

    
     

  
          

       
      

  
 (2.9) 

where T is the sampling interval, assuming T=1 and substituting Equations 2.8 and 2.9 

into the motion equation of substructure #i, Equation 2.6 can be reformulated in the 

form of 

   
          

            
                                   

                  
               

                         (2.10) 
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where e(t-1) and e(t-2) are the prediction error terms or residuals. 

Equation 2.10 can be regarded as a two-input (      and      
 ) and single-output (   

 ) 

ARMAX model. The similar equation can be obtained by substituting Equations 2.8 

and 2.9 into the motion equation of substructures #n, then Equation 2.7 can be 

rewritten in the form of 

   
          

            
                                 

                    (2.11) 

Equation 2.11 can be regarded as a single-input (     ) and single-output (   
 ) 

ARMAX model. 

The divided substructure model with corresponding input and output for constructing 

ARMAX model is shown in Figure 2.1. 

 

2.4 Correction of Damage Indicator 

Xing and Mita (2012) adopted difference between squared original frequency and 

squared damaged frequency as damage indicator in the substructure damage detection 

approach. The approach can work well in the simulation scenarios in which the target 

structure is subjected to white noise excitation and no noise is added to the vibration 

signals. However, when the approach is applied to noise-contaminated vibration 

signals of a structure subjected to real earthquake excitation, the damage detection 

algorithm will become unrobust and it is difficult to obtain a satisfactory result. As an 

improvement to this method, a scheme is proposed to correct the previous damage 

indicator in order to obtain more accurate and robust damage detection results. 
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Figure 2.2. Flowchart for obtaining the corrected damage indicator 

 

As mentioned previously in the introduction session, the model coefficients and 

model residual both contain the information of structure damage and the information 

contained in the two has close correlation and overlap with each other, however, they 

certainly do not equate. Obviously it is impossible to include all the essential 

information necessary for damage detection based on only one aspect of the two. In 

other words, it appears as a simple and clear idea that damage features based on both 

model coefficients and model residual may contains more complete essential 

structural damage information than those only singly considering model coefficients 

or model residual. Thus, the normalized Kolmogorov-Smirnov (K-S) test statistical 

distance between ARMAX model residual error is adopted as a correction coefficient 

Dks to correct the previous damage indicator only based on the model coefficients 
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(difference between squared original frequency and squared damaged frequency). The 

corrected damage indicator will combine the information from the model coefficients 

as well as model residual by the proposed correction procedure. The flowchart for 

obtaining the corrected damage indicator is shown in Figure 2.2. 

 

2.4.1 Empirical Cumulative Distribution Function of ARMAX Model Residual 

The Burg’s (maximum entropy) method (BM) (Marple 1987) can be used to identify 

the model parameters from data                      acquired on an appropriate time 

interval          . Once the model is constructed from the baseline signal, for both 

undamaged and damaged cases, a residual e can be generated between the 

measurement output w and the predicted output    through the reference ARMAX 

model, which is ideally a Gaussian process for a stationary signal (Lee 1997). 

                
     (2.12) 

                
     (2.13) 

where       and       are the undamaged and damaged measurement output 

from the target structure, respectively, and    
     and    

     are the undamaged 

and damaged predicted output based on the ARMAX model constructed from the 

undamaged (reference) signal, respectively, which can be expressed as follows 

according to Equations 2.4, 2.12 and 2.13: 

     
         

            
                

   
  
      

   
           (2.14) 

     
         

            
                

   
  
      

   
           (2.15) 

where       and       are the input of the undamaged and damaged structure at 

sample index t, respectively,   
 ,   

 , and   
  are the ARMAX model coefficients 

estimated from the undamaged (reference) signal, na, nb, nc, and nk are the orders of 

the ARMAX model, and       and       are the residuals of the estimation process 
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of the undamaged and damaged state up to time t, respectively. 

As a general understanding, the damaged system response alters from the undamaged 

state due to the story stiffness degradation. If ARMAX model is used for time series 

modeling of the data, ARMAX model residual error will carry vital information of the 

data. In this study, an ARMAX model is constructed from the reference signal and 

model residuals can then be generated by fitting the baseline model to the signals 

collected from the undamaged case. Thereafter, for a damaged case, the reference 

model cannot produce a good fit of the damaged response data anymore. That means 

the gap between predicted response data from reference model and measurement 

response data will get bigger. From Equations 2.12 and 2.13, it also shows clearly that 

the residual error generated from the damaged response data is different from that of 

the undamaged one. 

In order to eliminate the influence of different response amplitude, the model residual 

vector are normalized to a dimensionless vector through dividing it by the norm of 

output response vector as follows: 

     
  

    
 (2.16) 

     
  

    
 (2.17) 

where    and    are the ARMAX model residual vector generated from the 

undamaged and damaged state, respectively,     and     are the normalized 

dimensionless residual vector correspondingly,      and      are the norm of 

output response vector of the undamaged and damaged state, respectively. 

In what follows the difference in the normalized dimensionless residuals between 

damaged state and undamaged state will be analyzed through an appropriate statistical 

test. In this study, a graphical visualization of empirical cumulative distribution 

function (ECDF) is adopted to check the similarity between the two distinguished data 
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sets of residual error generated from undamaged and damaged state. 

An empirical cumulative distribution function (ECDF) of the normalized 

dimensionless residuals    is defined by 

       
 

 
           
    (2.18) 

where n is the number of data points, and I is the event indicator and it can be 

expressed as 

    
                  
             

  (2.19) 

The procedure to obtain ECDF can be mainly divided into three steps (Equations 2.18 

and 2.19): (i) rearrangement of data in ascending order; (ii) evaluation of event 

indicator; and (iii) calculate and plot the ECDF. 

 

2.4.2 K-S Test on ARMAX Model Residual 

As mentioned above, it is known that the ARMAX model residual error of the 

damaged data is different from that of the undamaged one and the ECDF can help us 

to tell the difference between the two distinguished residuals in a graphical and 

visualized way. 

Furthermore, in statistics the Kolmogorov-Smirnov (K-S) test (Wang and Makis 2009; 

Kar and Mohanty 2004) is a nonparametric test that can be used to determine whether 

two underlying probability distributions differ or not based on the properties of the 

ECDF. There is no prior assumption towards the distribution pattern required for K-S 

test as it is a kind of nonparametric test; In addition, K-S test is sensitive to 

differences in both location and shape of the ECDF of two samples. It was shown that 

the K-S test has many advantages when compared with the conventional statistics 

such as mean, variance, kurtosis and skewness (Wang and Makis 2009; Kar and 
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Mohanty 2004). Furthermore, the K-S test is more sensitive at points near the median 

of the distribution while the Anderson-Darling test better captures the discrepancy for 

the tails. In this study, the residual discrepancy between damaged and undamaged 

state around the median is bigger that the tails, thus K-S test is more optimal for 

quantifying the residual discrepancy. Because of these advantages, K-S test has been 

considered to be one of the most preferred and extremely powerful statistical signal 

processing tool in time domain signal analysis. The K-S test based signal processing 

technique compares two samples and tests the hypothesis that the two samples have 

the same probability distribution. The K-S statistic quantifies a distance between the 

ECDF of two samples. The null distribution of this statistic is calculated under the 

hypothesis that both samples are drawn from the same underlying distribution for a 

particular significance level. Using this technique, it is possible to quantitatively 

determine the difference between the two samples. Therefore, by comparing a given 

vibration signature to a baseline signature (i.e. the signature from known undamaged 

state), it is possible to detect, locate and quantify damage existing in the structure 

from the given vibration signal. 

The K-S test considers the null hypothesis H that the ECDF of the target distribution 

is the same as the ECDF of the reference distribution. Hence, it is possible to compare 

two vibration signatures, and assess if both have the same ECDFs (Wang and Makis 

2009; Dilena and Morassi 2004). Note that the application of this test for damage 

detection assumes that the damage existing in the structure is strong enough to vary 

the ECDF of the original vibration signature, which will be shown in the following 

numerical studies section. In this paper, the proposed algorithm adopt two-sample K-S 

test to check the similarity and quantify the distance between the ARMAX model 

residual errors of the undamaged and damaged data sets. First of all, an ARMAX 

model is constructed from the known reference signal and the residual error, denoted 

by       , is calculated for the undamaged state, which is chosen to represent the 
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reference distribution. Thereafter, for a damaged state, the residual error is calculated 

utilizing the deviation of the damaged response data from the reference ARMAX 

model data and it is denoted by       , chosen to represent the target distribution. 

Thus, the ECDF of the reference distribution and the target distribution are denoted by 

       and       , respectively. In this nonparametric hypothesis test, the K-S test 

statistical distance plays a vital role, which decides whether the null hypothesis H is to 

be rejected for a given confidence interval. Accordingly, when applying a two-sample 

K-S test, the null hypothesis H can be shown as the following form: 

    
         
         

  (2.20) 

The K-S test statistical distance, which means the distance between two ECDFs 

       and       , is calculated as: 

                 
         

        (2.21) 

where N1 and N2 are the data length of the first and second sample, respectively. Let 

   
    

     
 (2.22) 

The null hypothesis H that the two distributions are equal is rejected, at significance 

level  , if    
        is greater than the corresponding critical value   , 

where    is found from 

              (2.23) 

where K is a random variable obeying the Kolmogorov distribution as following: 

                    (2.24) 

where      is the Brownian bridge. The cumulative distribution function of K is 

given by 
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    (2.25) 

Xing and Mita’s paper (2012) adopted difference between squared original frequency 

and squared damaged frequency as the damage indicator in the substructure damage 

detection approach. As an improvement to this method, the normalized K-S test 

statistical distance is established and adopted as a correction coefficient Dks to correct 

the previous damage indicator. Consequently, the corrected damage indicator (DI) can 

be expressed as: 

          
    

   (2.26) 

where,    and    are the damaged and undamaged natural frequency respectively. 

The correction coefficient Dks is the normalized K-S test statistical distance between 

two ECDFs of the ARMAX model residual errors in the baseline undamaged 

condition and the unknown condition. 

 

2.5 Performance Verification by Simulation 

A simulation of a five-story shear building model was performed to show the 

feasibility and advantage of the proposed scheme for damage detection. The building 

is simplified into a 5-DOF structural system as shown in Figure 2.3. 

The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 

MN/m, respectively. The damping ratio of all modes was chosen as 3%. The data 

sampling frequency was 200 Hz. The undamaged natural frequencies of the structure 

were 4.5, 13.2, 20.8, 28.6, and 30.5 Hz for the 1
st
, 2

nd
, 3

rd
, 4

th
, and 5

th
 modes, 

respectively. The 5-DOF system was simulated to be subjected to two types of 

excitations, including white noise excitation and the 1940 El Centro ground motion 

(N-S acceleration at the Imperial Valley Irrigation District substation in El Centro, CA, 

during the 1940 Imperial Valley earthquake), and the noise contributing to 5% of the 
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signal RMS value was added to the acceleration responses of the structure. The story 

stiffness reduction was regarded to be damage to the structure. Five damage cases 

(damage in the 1
st
, 2

nd
, 3

rd
, 4

th
, or 5

th
 story) with five different damage severities (10%, 

20%, 30%, 40%, and 50% lateral stiffness reduction) were studied. Hence, there were 

25 different damage scenarios in total. 

 

Figure 2.3. Five-story shear building 

 

Figure 2.4. Structural division 
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Firstly, according to the substructure division method described in section 2.3, the 

whole structure was divided into substructures, as shown in Figure 2.4. Then, ARMAX 

model is developed to model each substructure for the undamaged state and unknown 

state. The i
th

 substructure (except the 5
th

 substructure) can be modeled as a two-input 

one-output ARMAX model. The relative acceleration of mi+1 to mi-1 (     
 ) and the 

absolute acceleration of mi-1 (     ) are used as the input, and the relative acceleration of 

mi to mi-1 (   
 ) is used as the output. 

The 5
th

 substructure can be modeled as a one-input one-output ARMAX model. The 

absolute acceleration of m4 (   ) are used as the input, and the relative acceleration of m5 

to m4 (   
 ) is used as the output. 

The Burg’s (maximum entropy) method (BM) were used to identify the ARMAX 

model coefficients from input-output data sets for each substructure and each damage 

scenario. It is easy to obtain the natural frequency of each substructure based on the 

estimated ARMAX model coefficients. Then model residuals were generated by fitting 

the baseline model to the signals collected from the undamaged and damaged cases. 

The ECDF of ARMAX model residual errors for the undamaged and damaged states 

were calculated and plotted to indicate the damage existing in the structure. Figures 2.5 

and 2.6 provide plots of ECDF for each substructure in undamaged state and 25 

different damaged scenarios subjected to white noise excitation and El Centro 

earthquake excitation, respectively. 

From Figures 2.5 and 2.6, it is shown that the undamaged state is associated with a 

steepest curve and the curve becomes more and more gentle with the increase of the 

damage intensity, which indicates the damage existence and damage extent. 

Additionally, it can also be observed from Figures 2.5 and 2.6 that only the ECDF plots 

of ARMAX model residual errors for the substructures containing the damaged floors 

alter considerably, while those for the substructures without the damaged floors remain 
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unchanged, which indicates the damage location. 

However, it is difficult to exactly quantify the gap between the ECDF curves of 

different damaged scenarios without the help of some statistical tools. That is the reason 

why it is necessary to introduce the K-S statistic Dks, a powerful statistical signal 

processing tool which quantifies a distance between the ECDF of two samples. Then in 

the next step the K-S statistic Dks is combined with the difference between squared 

original frequency and squared damaged frequency to form the new damage indicator 

which can exactly locate and quantify the damage. 

Tables 2.1 and 2.2 show the values of normalized K-S test statistical distance Dks for 

each substructure with various damage severities subjected to white noise excitation 

and El Centro earthquake excitation, respectively. From Tables 2.1 and 2.2, it can be 

clearly observed that the Dks value tends to 1 when the substructure contains the 

damaged floor. On the other hand, the Dks value tends to 0 for the substructure without 

the damaged floor. It means that the Dks value shows a quite good capability in damage 

localization. 

And even more important, it is shown in Tables 2.1 and 2.2 that the Dks value is 

sensitive to damage, immune to noise and robust under different types of excitations. 

Even when it is applied to noise-contaminated vibration signals of a structure subjected 

to real earthquake excitation, the Dks value can still indicate perfect damage localization 

results, with the spurious damage detection results at a very low level. Therefore, the 

normalized K-S test statistical distance Dks is adopted as a correction coefficient to 

correct the previous damage indicator (difference between squared original frequency 

and squared damaged frequency). The corrected damage indicator combines the 

information from the model coefficients as well as model residual, possessing both 

robustness in damage localization from Dks and high efficiency in accurate damage 

quantification from the natural frequency shift. 
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Figure 2.5. ECDF of dimensionless residual error (white noise excitation, 5% noise, ARMAX 

model, data length=2000, na=2, nb=3, nc=3, nk=1) 
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Figure 2.6. ECDF of dimensionless residual error (El Centro earthquake excitation, 5% noise, 

ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 
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Table 2.1. Correction coefficient Dks (normalized K-S test statistical distance) (white noise 

excitation, 5% noise, ARMAX model, data length=2000, na=2, nb=3, nc=3, nk=1) 

Damage(%) Sub. #1 Sub. #2 Sub. #3 Sub. #4 Sub. #5 

1
st
 Story 

10 1.0000  0.0162  0.0000  0.0365  0.0243  

20 1.0000  0.0124  0.0131  0.0267  0.0000  

30 1.0000  0.0082  0.0043  0.0016  0.0000  

40 1.0000  0.0060  0.0000  0.0120  0.0014  

50 1.0000  0.0049  0.0014  0.0066  0.0000  

2
nd

 Story 

10 1.0000  0.9492  0.0000  0.0197  0.0066  

20 1.0000  0.8965  0.0007  0.0215  0.0000  

30 1.0000  0.9128  0.0003  0.0024  0.0000  

40 1.0000  0.9646  0.0000  0.0074  0.0003  

50 1.0000  0.9201  0.0000  0.0026  0.0022  

3
rd

 Story 

10 0.0071  1.0000  0.9929  0.0000  0.0142  

20 0.0089  1.0000  0.9618  0.0150  0.0000  

30 0.0135  1.0000  0.9883  0.0211  0.0000  

40 0.0036  1.0000  1.0000  0.0000  0.0078  

50 0.0084  0.9943  1.0000  0.0031  0.0000  

4
th

 Story 

10 0.0150  0.0234  0.9363  1.0000  0.0000  

20 0.0000  0.0005  0.9224  1.0000  0.0077  

30 0.0060  0.0000  0.9288  1.0000  0.0144  

40 0.0074  0.0052  0.9961  1.0000  0.0000  

50 0.0066  0.0000  0.9941  1.0000  0.0052  

5
th

 Story 

10 0.0104  0.0000  0.0032  0.9352  1.0000  

20 0.0054  0.0000  0.0018  0.9831  1.0000  

30 0.0021  0.0000  0.0026  0.9393  1.0000  

40 0.0032  0.0000  0.0030  0.9136  1.0000  

50 0.0000  0.0019  0.0031  0.9026  1.0000  
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Table 2.2. Correction coefficient Dks (normalized K-S test statistical distance) (El Centro 

earthquake excitation, 5% noise, ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 

Damage(%) Sub. #1 Sub. #2 Sub. #3 Sub. #4 Sub. #5 

1
st 

Story 

10 1.0000  0.0304  0.0000  0.0679  0.0515  

20 1.0000  0.0449  0.0275  0.0487  0.0000  

30 1.0000  0.0173  0.0006  0.0035  0.0000  

40 1.0000  0.0135  0.0094  0.0249  0.0000  

50 1.0000  0.0090  0.0049  0.0116  0.0000  

2
nd 

Story 

10 1.0000  0.8703  0.0000  0.0574  0.0436  

20 1.0000  0.8814  0.0624  0.0083  0.0550  

30 1.0000  0.8641  0.0000  0.0079  0.0058  

40 1.0000  0.8331  0.0000  0.0145  0.0066  

50 1.0000  0.8833  0.0000  0.0033  0.0010  

3
rd 

Story 

10 0.0238  0.9762  1.0000  0.0102  0.0000  

20 0.0277  1.0000  0.8616  0.0626  0.0000  

30 0.0169  1.0000  0.9574  0.0272  0.0000  

40 0.0024  1.0000  0.9972  0.0000  0.0055  

50 0.0075  1.0000  0.9901  0.0012  0.0000  

4
th 

Story 

10 0.0000  0.0302  0.8798  1.0000  0.0211  

20 0.0000  0.0096  0.8920  1.0000  0.0056  

30 0.0051  0.0000  0.8830  1.0000  0.0125  

40 0.0163  0.0000  0.9543  1.0000  0.0070  

50 0.0061  0.0000  0.9939  1.0000  0.0052  

5
th 

Story 

10 0.0333  0.0000  0.0240  0.9427  1.0000  

20 0.0097  0.0020  0.0000  0.9949  1.0000  

30 0.0023  0.0000  0.0089  0.9230  1.0000  

40 0.0028  0.0000  0.0084  0.8910  1.0000  

50 0.0000  0.0004  0.0067  0.8711  1.0000  
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Figure 2.7. Damage indicator without correction coefficient Dks (white noise excitation, 5% noise, 

ARMAX model, data length=2000, na=2, nb=3, nc=3, nk=1) 

 

Figures 2.7 and 2.8 are bar charts of the damage indicator for each substructure before 

and after correction with Dks, respectively, in 25 different damaged scenarios subjected 

to white noise excitation. As mentioned beforehand, the vertical axis stands for the 

damage indicator. And the damage indicator before correction is the difference 

between squared original frequency and squared damaged frequency, while the 

corrected damage indicator is adopted as the product of the correction coefficient Dks 

and the difference between squared original frequency and squared damaged 

frequency. The error bars show the standard deviation of the damage indicator under 95% 

confidence interval. The results in Figure 2.7 show that when the noise contributing to 5% 

of the signal RMS value was added, the method based on the former damage indicator 
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without correction can get a satisfactory result, however, some spurious damage 

detection results occur on undamaged story, which shows the unrobustness of this 

method when it is applied to noise contaminated data. On the other hand, it is shown in 

Figure 2.8 that the method based on the corrected damage indicator after correction 

with Dks can obtain excellent results, with the spurious damage detection results almost 

close to zero. The standard deviation under 95% confidence interval is quite small, 

which proves the robustness of this corrected damage indicator. 

 

 

Figure 2.8. Damage indicator with correction coefficient Dks (white noise excitation, 5% noise, 

ARMAX model, data length=2000, na=2, nb=3, nc=3, nk=1) 
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Figure 2.9. Damage indicator without correction coefficient Dks (El Centro earthquake excitation, 

5% noise, ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 
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noise-contaminated vibration signals of a structure subjected to real earthquake 

excitation. The low values of standard deviation under 95% confidence interval also 

show the robustness of the corrected damage indicator. 

 

 

Figure 2.10. Damage indicator with correction coefficient Dks (El Centro earthquake excitation, 5% 

noise, ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 
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2.6.1 Experimental Setup 

The model structure is depicted in Figure 2.11(a). This experimental setup imitates a 

five-story shear frame building. The story mass was provided by the weight of 

aluminium floor slabs, bronze columns and sensors, which is 4.360 kg for the 1
st～4

th 

story and 3.544 kg for the 5
th

 story. The interfloor stiffness was decided by the bronze 

plate springs which are shown in Figure 2.11(b). The Young’s modulus of bronze is 

1.010
11

 N/m
2
. The cross section size and the theoretical stiffness in the weak-axis of 

each column are shown in Table 2.3 and Figure 2.11(c). The structure was initially 

healthy with all original columns intact (Column type 0). The damage was introduced 

in the experiment by replacing two original columns in the diagonal position of one 

story with two weak ones. Three types of weaker columns were used in the 

experiment as shown in Figure 2.11(b) and Table 2.3. The undamaged natural 

frequencies of the specimen were 2.2, 7.0, 10.8, 12.6, and 14.6 Hz for the 1
st
, 2

nd
, 3

rd
, 4

th
, 

and 5
th

 modes, respectively. 

 

Table 2.3. Parameters of five-story building model 

 
Column size  

hbl (m) 

Theoretical 

stiffness (N/m) 

Column type 0 0.00250.030.24 3.410
3
 

Column type 1 0.0030.0140.24 2.710
3
 

Column type 2 0.0030.0100.24 2.010
3
 

Column type 3 0.0030.0060.24 1.210
3
 

 

The building model was placed on a shake table, as shown in Figure 2.11(a). The 

basement of the structure was set on bearings so that the structure could experience 

input motion. The force input to the structure was provided with an electrodynamic 

shaker. Accelerometers were installed on each floor plate to measure the acceleration 
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response, and one was installed on the basement to measure the input motion. 

 

 

 

 

 

Figure 2.11. Experimental setup of five-story building model 
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frequency of 200 Hz. Then they were decimated into 100 Hz. A part of one typical 

acceleration time history measured is shown in Figure 2.12. An 8-order low-pass 

Butterworth filter with cut-frequency 40 Hz was applied to the measured responses in 

order to remove the effects of noise. 

 

 

Figure 2.12. Input excitation 
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measured data to detect both location and severity of damages in the test building 

model. Table 2.4 shows the values of normalized K-S test statistical distance Dks of 

each substructure for all 15 damaged scenarios. The results in Table 2.4 show that the 

Dks value is still robust to locate the damage when applied to the realistic experimental 

data. Figures 2.13 and 2.14 show bar plots of the damage indicator of each 

substructure before and after correction with Dks, respectively. By comparing the two 

results, it shows that the spurious damage detection results were significantly 

circumvented and the damage detection performance was highly improved after 

correction with Dks, which experimentally verifies and confirms the strong robustness 

and advantage of the improved methodology. Therefore, it is concluded that the 

improved method is applicable to realistic problems. 

 

Table 2.4. Correction coefficient Dks (normalized K-S test statistical distance) (Experimental 

measured data, ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 

Damage(%) Sub. #1 Sub. #2 Sub. #3 Sub. #4 Sub. #5 

1
st 

Story 

10 1.0000  0.0134  0.0000  0.0496  0.0031  

20 1.0000  0.0188  0.0031  0.0859  0.0000  

30 1.0000  0.0214  0.0086  0.0426  0.0000  

2
nd 

Story 

10 1.0000  0.9638  0.0000  0.0362  0.0217  

20 1.0000  0.9775  0.0051  0.0288  0.0000  

30 0.9989  1.0000  0.0000  0.0279  0.0000  

3
rd 

Story 

10 0.0626  0.9903  1.0000  0.0644  0.0000  

20 0.0762  1.0000  0.9958  0.0095  0.0000  

30 0.0951  1.0000  1.0000  0.0845  0.0000  

4
th 

Story 

10 0.0237  0.0073  0.9740  1.0000  0.0000  

20 0.0155  0.0166  0.9876  1.0000  0.0000  

30 0.0298  0.0000  0.9979  1.0000  0.0168  

5
th 

Story 

10 0.0290  0.0000  0.0184  1.0000  0.9939  

20 0.0844  0.0000  0.0133  1.0000  0.9764  

30 0.0248  0.0000  0.0092  0.9867  1.0000  
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Figure 2.13. Damage indicator without correction coefficient Dks (Experimental measured data, 

ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 
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Figure 2.14. Damage indicator with correction coefficient Dks (Experimental measured data, 

ARMAX model, data length=4000, na=2, nb=3, nc=3, nk=1) 

 

2.7 Conclusions 

To circumvent the false detection and unrobust problem existing in the former method, 

a new combined substructure approach involving a model coefficients-based as well 

as model residual-based technique has been proposed for local damage detection in 

shear structures. The improved technique realizes the combination of damage 

information contained in model coefficients and model residuals by correcting the 

previous damage indicator (difference between squared original frequency and 

squared damaged frequency). The correction coefficient is defined as the normalized 

Kolmogorov-Smirnov (K-S) test statistical distance between the two distinguished 

1 2 3 4 5
0

50

1
st

 Story Damage 

1 2 3 4 5
0

50

2
nd

 Story Damage 

1 2 3 4 5
0

50

3
rd

 Story Damage 

D
k

s|
d2
-

02
| 
 (

H
z2

)

1 2 3 4 5
0

50

4
th

 Story Damage 

Sub. #1 Sub. #2 Sub. #3 Sub. #4 Sub. #5
0

50

5
th

 Story Damage 

 

 

10% 20% 30%



CHAPTER 2 Substructural Damage Identification Based on ARMAX Model Residual 

49 

 

data sets of ARMAX model residual generalized from undamaged and damaged states. 

A numerical simulation of a five-story shear building model has been conducted to 

verify the performance of the improved approach. The results are compared with the 

previous method, which show that the improved approach works much better and 

more robust than the previous method especially when it is applied to 

noise-contaminated vibration signals of a structure subjected to real earthquake 

excitation. In advance, the strong robustness and advantage of the improved 

methodology have been verified and confirmed with realistic shake table experimental 

data. As the structure is divided into substructures, which have a considerably smaller 

number of degrees of freedom (DOFs), thus the analysis on each substructure needs 

fewer data and less computation time. It may also be noted that evaluation of the 

correction coefficients involves only statistical calculation, which is not significant 

additional computation. These means that the improved approach is easy, efficient and 

robust for local substructure damage detection of shear structures. Moreover, as the 

damage detection process can be independently conducted on each substructure, this 

method is promising for application in a parallel and decentralized damage detection 

system. 

Following can be expected as some limitations of the proposed substructural damage 

identification approach based on ARMAX model residual. Figure 2.1 shows that this 

method requires the targeted n-DOF structure to be divided into n separated one DOF 

substructures. This means that the total number of the substructures will be very large 

when this method applied to a complex structure with a large number of DOFs. Thus 

it is required to develop a more flexible substructural damage identification algorithm 

in advance for the sake of seeking the balance between the number of substructures 

and the computation intensity inside each substructure. The second limitation of the 

approach based on ARMAX model residual can be seen from damage identification 

results shown in Figures 2.7 to 2.10, Figures 2.13 and 2.14, Tables 2.1, 2.2 and 2.4. 
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The results show that it requires the damage identification information from two 

adjacent substructures to locate the damage. For instant, if the damage indicator 

attains large value in substructure #3, the damage might occur in the 3
rd

 story or 4
th

 

story, which depends on the damage indicator of substructure #2 or #4 attaining large 

value. 
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CHAPTER 3 

3 Substructural Damage Identification 

Using Changes in the First 

Autoregressive Coefficient Matrix 

 

 

 

3.1 Introduction 

To break through the limitations of the proposed substructural damage identification 

approach based on ARMAX model residual as previously mentioned in Chapter 2, it 

is in need of developing a more flexible substructural damage identification algorithm 

in advance for the sake of seeking the balance between the number of substructures 

and the computation intensity inside each substructure. It is also needed to develop an 

algorithm which can locate and quantify the damage inside a substructure without 

requiring the information from adjacent substructures, which will minimize the 

communication traffic in the sensor network. Thus in this chapter, a substructural 

approach based on changes in the first autoregressive coefficient matrix has been 

proposed for local damage identification in shear structures. Firstly, a substructure 

algorithm is used to divide a complete structure into several substructures, each of 

which shares a common form of the equation of motion. Then the equation of motion 
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for each substructure is rewritten in terms of ARX model with different inputs and 

outputs. In what follows, it is derived theoretically that the elements of changes in the 

first AR model coefficient matrix (hereafter will be termed as CFAR) corresponding 

to the output DOFs adjacent to the damaged location are proportional to the stiffness 

reduction in the structure, indicating the damage location and severity. Thus the 

accelerations are fed into autoregressive-moving average with exogenous inputs 

(ARMAX) models to determine the AR model coefficients for each substructure 

under undamaged and various damaged conditions, based on which the CFAR is 

obtained and adopted as the damage indicator for the proposed substructure damage 

identification approach afterwards. After presenting the proposed approach, a 

numerical simulation and an experimental verification were conducted and the results 

were presented to show the feasibility and robustness of the proposed methodology. 

Finally, conclusions and expectations were discussed. 

 

3.2 Proposed Method 

To illustrate the concept of substructuring, consider a shear building which is 

represented by a lumped mass system as shown in Figure 3.1(a). The dynamic 

equation of motion for the complete structure is shown as Equation 2.1 in Chapter 2. 

Without loss of generality, considering the complete structure divided into three parts 

such as the substructure I (the lower DOFs), the substructure II (the middle DOFs) 

and the substructure III (the upper DOFs), as shown in Figure 3.1(b), the dynamic 

equation of motion (Equation 2.1) can be written in the following partition form: 
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    (3.1) 

where the subscripts, l, m and u, denote inner DOFs of the divided substructures 

corresponding to the lower, the middle and the upper parts. And the subscripts, i and j, 

denote interface DOFs of the substructures. 

Extracting the row m from Equation 3.1 and moving the interaction force between the 

interface and the middle substructure to the right-hand side, the dynamic equations of 

motion for the middle substructure can be rewritten as follows: 

                                 

                                                         (3.2) 
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Figure 3.1. Complete and sub-structural dynamic system 

 

From the terms in the right-hand side, it can be found that the interaction effects at the 

interface ends can be treated as “input” so the new input to the substructure includes 

two parts: the system input and the interface force input. And the computation of the 

interface force input requires the measurements of velocities and displacements at the 

interface DOFs. However, in reality it is usually much easier and preferred to measure 

accelerations (by accelerometers) than velocities and displacements. Therefore, for 

practicability, to eliminate the requirement of velocities and displacements, the idea of 

“quasi-static displacement” vector  proposed by Koh et al. (2003) is adopted. The 

displacement relative to the ground DOF is split into a quasi-static displacement term, 

  
    , and a displacement term relative to the interface ends,   

    , i.e. 
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     (3.3) 

The former term can be obtained by solving Equation 3.2 while ignoring all 

time-derivative terms and the dynamic excitation: 

   
          

                
            (3.4) 

Substituting Equations 3.3 and 3.4 into Equation 3.2 leads to the dynamic equations of 

motion for the middle substructure: 

       
            

           
                           

              

        
                           

                            
              (3.5) 

Similarly for the lower and upper substructures, the dynamic equations of motion can 

be obtained as follows: 

       
            

           
      

                       
                           

              (3.6) 

       
            

           
      

                       
                           

              (3.7) 

where the dynamic response terms with the superscript r,   ,     and    , denote the 

dynamic responses relative to the interface ends. The subscripts, m, l and u, denote the 

DOFs corresponding to the middle, the lower and the upper substructure. 

Since damping force is usually much smaller compared to inertia force in typical civil 

engineering structures, the velocity-dependent components in the interface motion 

forces are assumed to be negligible (Koh et al. 2003). Hence, Equations 3.5 to 3.7 can 

be simplified as following: 

        
            

           
             (3.8) 
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             (3.9) 

        
            

           
             (3.10) 

where      ,       and       are the input vectors for the middle, lower and 

upper substructures, respectively, and                                 
 ,       

                 
 ,                        

 , it can be seen that there are 3 inputs for the 

middle substructure and 2 inputs for the lower and upper substructures;   ,    and 

   are the input coefficient matrices for the middle, lower and upper substructures, 

respectively, and                    
              

       , 

                   
       ,                    

       . 

Equations 3.8 to 3.10 show that the equations of motion for the middle, lower and 

upper substructures take the same form as following: 

        
            

           
             (3.11) 

where the subscript s can be replaced with m, l and u, denoting all the three types of 

substructures. 

Equation 3.11 can be rewritten as 

    
             

            
              (3.12) 

where           
      ,           

      , and         
    . 

The knowledge of dynamics tells us that the mass normalized stiffness       can be 

expressed as       
 , where    and    are the mass normalized mode shape and 

natural (circular) frequency matrices for the corresponding substructure, respectively. 

Lu and Gao (2005) proves that Equation 3.12 can be written in terms of ARX model 

as following: 
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           (3.13) 

where    
     is the predicted signal,              

 

      
 ,      ,       , 

                

 

       
    , and             

 

      
     with Δt being the 

sampling period of the dynamic response measurement and I being the identity 

matrix. 

Obviously, the ARX model coefficients are governed by the structural parameters (i.e., 

mass, stiffness etc.) as shown by Lu and Gao (2005). Hence any sorts of deterioration 

in structural properties will lead to a change in the ARX model coefficients. Now, let 

us consider a shear structure which has undergone some damage. Thus, the first AR 

model coefficient matrices corresponding to the undamaged and damaged states can 

be termed as   
  and   

 , respectively. 

We have             
      

 

   

 

   
      

 

   
     

 

   
       

 

   
   . It 

follows that     

 

   
       

 

 . Now the first AR model coefficient matrix can be 

expressed as follows: 

             

 

      
            

 

     

     
 

  
       

  
 

  
     
     

 

  
     
         (3.14) 

Thus the change in the first AR model coefficient matrix from the undamaged state to 

the damaged state can be expressed as 

      
    

  

  
 

  
      

       
      

 

  
       

          
        

 

  
       

          
            

        
 

     
 
          

          
         (3.15) 
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Now, assuming that the damage occurred on the f
th

 story of the shear structure 

building, it can be simulated as a stiffness reduction of that story by an amount of 

    from its original stiffness,   . Considering the damaged story locating in three 

different substructures, the modified stiffness matrix of the damaged substructure 

takes the forms in three different cases as following: 

1) 1≤f≤i, in case of damaged story in lower substructure 

          
  

 
 
 
 
 
 
 
 
 
         

           
   

                           

                           
   

                   
              

 
 
 
 
 
 
 
 

 (3.16) 

2) i+1≤f≤j, in case of damaged story in middle substructure 

     
  

 
 
 
 
 
 
 
 
 
               

                   
   

                           

                           
   

                   
              

 
 
 
 
 
 
 
 

 (3.17) 

3) j+1≤f≤n, in case of damaged story in upper substructure 

        
  

 
 
 
 
 
 
 
 
 
               

                   
   

                           

                           
   

               
       

 
 
 
 
 
 
 
 

 (3.18) 

In a uniform way, the stiffness matrix of the damaged substructure in all three cases 

above can be expressed as,      
       

      with          , and    can be 

written in matrix form in three different cases as following: 

1) in case of damaged story nonadjacent to the interface end 
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 (3.19) 

2) in case of damaged story adjacent to the bottom interface end 

    

 
 
 
 
 
 
 
 
    
   

   
   

   
   

   
    

 
 
 
 
 
 
 

 (3.20) 

3) in case of damaged story adjacent to the top interface end 

    

 
 
 
 
 
 
 
 
   
   

   
   

   
   

   
     

 
 
 
 
 
 
 

 (3.21) 

By representing      
  with      

 ,    and    , the term        
          

     of 

Equation 3.15 can be rewritten as follows: 

        
          

          
        

        
       

 
       

       
       

  
 
     

  
    (3.22) 

where   
 
 denotes the usual binomial coefficient and   

 
 

  

        
. 

Substituting Equation 3.22 into Equation 3.15 leads to: 
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    (3.23) 

For small value of story stiffness degradation on the f
th

 story (   ), the higher order 

terms of     can be neglected, i.e., only the term with q=1 is retained leading 

Equation 3.23 into the following form: 

           
 

     
 
          

           
      

   (3.24) 

Similarly, for small time step,      turns to be negligible as p increases. Thus, only 

the term with p=1 is kept and one can write: 

            
           

        (3.25) 

Utilizing the expressions of    in Equations 3.19 to 3.21, the change in the first AR 

model coefficient matrix from the undamaged state to the damaged state can be 

expressed in matrix form in three different cases as following: 

1) in case of damaged story nonadjacent to the interface end 

     

 
 
 
 
 
 
 
 
 
   
   

   
              

              

   
   

    
 
 
 
 
 
 
 
 

 (3.26) 

2) in case of damaged story adjacent to the bottom interface end 

     

 
 
 
 
 
 
 
 
        

   
   

   
   

   
   

    
 
 
 
 
 
 
 

 (3.27) 
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3) in case of damaged story adjacent to the top interface end 

     

 
 
 
 
 
 
 
 
   
   

   
   

   
   

   
         

 
 
 
 
 
 
 

 (3.28) 

Equations 3.26 to 3.28 show that the absolute value of     will be a null matrix with 

four non-zero terms at element locations corresponding to the output DOFs (f-1, f-1), 

(f-1, f), (f, f-1) and (f, f) in case of damaged story nonadjacent to the interface end; 

with one non-zero term at element location corresponding to the output DOF (f, f) in 

case of damaged story adjacent to the bottom interface end; and with one non-zero 

term at element location corresponding to the output DOF (f-1, f-1) in case of 

damaged story adjacent to the top interface end. This information depicts the damage 

location on the f
th

 story. Additionally, the absolute value of the non-zero term of     

is directly proportional to the story stiffness degradation. Thus, the damage can be 

localized and quantified by identifying these four (or one) high-valued elements in the 

matrix,    . Therefore, the changes in the first AR model coefficient matrix can be 

used as a damage indicator for the proposed substructural damage identification 

approach. For the sake of simplicity, the changes in the first AR model coefficient 

matrix is abbreviated as CFAR hereafter. 

 

3.3 Performance Verification by Simulation 

A simulation of a 12-story shear building model was performed to show the feasibility 

of the proposed scheme for damage identification. The building is simplified into a 

12-DOF lumped mass structural system as shown in Figure 3.2. 
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The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 

MN/m, respectively. The damping ratio of all modes was chosen as 3%. The first 

three undamaged natural frequencies of the structure were calculated as 2.0, 6.0, and 

9.8 Hz for the 1
st
, 2

nd
, and 3

rd
 modes, respectively. The 12-DOF system was simulated 

to be subjected to white noise excitation, and the noise contributing to 5% of the signal 

RMS value was added to the acceleration responses of the structure. The acceleration 

responses at different DOFs were recorded for 50 seconds with a sampling frequency 

of 200 Hz. The story stiffness reduction was regarded to be damage to the structure. 

Twelve damage cases (damage in each story from the 1st story through the 12th story) 

with five different damage severities (10%, 20%, 30%, 40%, and 50% lateral stiffness 

reduction) were studied. Hence, there were 60 different damage scenarios in total. 

Firstly, according to the substructure division method described in section 3.2, the 

whole structure was divided into 3 substructures, as shown in Figure 3.3. 

Considering strong flexibility for handling the disturbance modeling, the 

autoregressive moving average with exogenous inputs (ARMAX) model was adopted 

to model each substructure and further obtain the AR coefficient matrix for the 

undamaged and unknown states. According to Equation 3.13 and the expression of the 

input vector      , Substructure I can be modeled as a 2-input 3-output ARMAX 

model. The ground acceleration (   ), and the acceleration of the 4
th

 DOF relative to 

the ground (   ) were used as the inputs, and the relative acceleration of the 1
st
, 2

nd
 and 

3
rd

 DOF to the 4
th

 DOF (   
 ,    

  and    
 ) were used as the outputs. 

Similarly, Substructure II can be modeled as a 3-input 4-output ARMAX model. The 

ground acceleration (   ), the acceleration of the 4
th

 and 9
th

 DOF relative to the ground 

(    and    ) were used as the inputs, and the relative acceleration of the 5
th

, 6
th

, 7
th

 

and 8
th

 DOF to the 4
th

 DOF (   
 ,    

 ,    
 , and    

 ) were used as the outputs. 

Substructure III can be modeled as a 2-input 3-output ARMAX model. The ground 
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acceleration (   ) and the acceleration of the 9
th

 DOF relative to the ground (   ) were 

used as the inputs, and the relative acceleration of the 10
th

, 11
th

, and 12
th

 DOF to the 

9
th

 DOF (    
 ,     

 , and     
 ) were used as the outputs to construct the ARMAX model. 

 

 

Figure 3.2. 12-story shear building 
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Figure 3.3. Structure division for 12-story shear building 

 

The Burg’s (maximum entropy) method (BM) was used to identify the ARMAX 

model coefficients from input-output data sets for each substructure and each damage 

scenario. The changes in the first AR model coefficient matrix (CFAR) from the 

undamaged state to the damaged states were estimated. Figure 3.4 shows a 

three-dimensional bar plot of the CFAR against output DOFs for Substructure II in the 

case of 10% damage occurring in 5
th

 story, 6
th

 story, 7
th

 story, 8
th

 story, and 9
th

 story, 

respectively. The absolute values of CFAR are listed in Table 3.1 for Substructure I in 

the case of 10% damage occurring in 1
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nd
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 story, and 4
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 story, 
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double underlined values in Tables 3.1 and 3.2 mean the large values compared to the 

rest of the elements of CFAR. It can be observed from Figure 3.4, Tables 3.1 and 3.2 

that the CFAR attains large values at the output DOFs next to the damaged location 

while the values in the rest of the positions are close to zero. Taking Substructure II as 

an example, the CFAR shows large value at the element (m8, m8) when damage taking 

place in 9
th

 story, and in the case of damage in 8
th

 story, large values of CFAR appear 

at two diagonal elements (m8, m8), (m7, m7) and two off-diagonal elements (m7, m8), 

(m8, m7). This is in good agreement with the theoretical conclusion that the elements 

of CFAR corresponding to the output DOFs adjacent to the damaged location are 

proportional to the stiffness reduction in the structure, as shown in Equations 3.25 to 

3.28. 

Figure 3.5 shows a three-dimensional bar plot of the CFAR against output DOFs for 

Substructure II in the case of 10%, 20%, 30%, 40%, and 50% damage occurring in 7
th

 

story, respectively. In addition, Figure 3.6 shows a plot of peak value of CFAR with 

five different damage intensities for all the three substructures. It is revealed from 

Figures 3.5 and 3.6 that there is a linear relationship between the peak values of 

CFAR and the damage intensities. This is in perfect accordance with the conclusion 

drawn from Equations 3.25 to 3.28, which were deduced by ignoring the higher order 

terms. Thus, it is clearly reasonable that a first order approximation as derived earlier 

in Equations 3.25 to 3.28 is satisfactory to reveal the linear relationship between the 

peak values of CFAR and the damage intensities even in the case of a high intensity of 

damage. Therefore, one can draw a conclusion that the proposed substructural damage 

identification approach based on changes in the first AR Model coefficient matrix 

(CFAR) is able to detect both location and severity of damage for shear structure in 

the simulation. 
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Figure 3.4. Changes in the first AR model coefficient matrix for Substructure II (10% damage) 
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Figure 3.5. Changes in the first AR model coefficient matrix for Substructure II 

(damage in 7
th

 story) 
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Figure 3.6. Linear relationship between CFAR and damage intensity 

Table 3.1. Changes in the first AR model coefficient matrix for Substructure I (10% damage) 

DOF m1 m2 m3 

 
Damage in 1

st
 story 

m1 0.0230 0.0004 0.0003 

m2

 
0.0010 0.0003 0.0001 

m3

 
0.0006 0.0003 0.0001 

Damage in 2
nd

 story 

m1 0.0228 0.0227 0.0008 

m2

 
0.0209 0.0207 0.0013 

m3

 
0.0004 0.0006 0.0012 

 
Damage in 3

rd
 story 

m1 0.0001 0.0004 0.0002 

m2

 
0.0016 0.0209 0.0210 

m3

 
0.0007 0.0218 0.0229 

Damage in 4
th

 story 

m1 0.0007 0.0001 0.0002 
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0.0006 0.0004 0.0011 
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0.0008 0.0015 0.0235 

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

11

12

Damage Intensity (%)

P
ea

k
 V

al
u

es
 o

f 
C

F
A

R
 (

x
1

0-2
)

 

 

Substructure III with damage in 12
th

 story

Substructure II with damage in 7
th

 story

Substructure I with damage in 3
rd

 story



CHAPTER 3 Substructural Damage Identification Using CFAR 

69 

 

Table 3.2. Changes in the first AR model coefficient matrix for Substructure III (10% damage) 

DOF m10  m11 m12 

 
Damage in 10

th
 story 

m10 0.0219 0.0006 0.0013 

m11

 
0.0004 0.0004 0.0005 

m12

 
0.0010 0.0001 0.0003 

Damage in 11
th

 story 

m10 0.0206 0.0209 0.0018 

m11

 
0.0224 0.0227 0.0003 

m12

 
0.0016 0.0015 0.0009 

 
Damage in 12

th
 story 

m10 0.0011 0.0012 0.0012 

m11

 
0.0003 0.0230 0.0220 

m12

 
0.0014 0.0222 0.0228 

 

 

3.4 Experimental Verification 

In this section, the measured data from a shake table experiment of a five-story frame 

structure was utilized to verify the performance of our proposed methodology. The 

experimental setup and procedure are the same as Section 2.6. 

Then the similar procedures as the simulation cases were performed on the 

experimental measured data to detect both location and severity of damages in the test 

building model. First of all, following the substructure division rules described in 

section 3.2, the whole structure was divided into 2 substructures, as shown in Figure 

3.7. 
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Figure 3.7. Structure division for 5-story experimental building model 

 

According to Equation 3.13, Substructure I was modeled as a 2-input 2-output 

ARMAX model. The ground acceleration (   ) and the acceleration of the 3
rd

 DOF 

relative to the ground (   ) were used as the inputs, and the relative acceleration of the 

1
st
 and 2

nd
 DOF to the 3

rd
 DOF (   

  and    
 ) were used as the outputs. 

Similarly, Substructure II was also modeled as a 2-input 2-output ARMAX model. The 

ground acceleration (   ) and the acceleration of the 3
rd

 DOF relative to the ground (   ) 

were used as the inputs, and the relative acceleration of the 4
th

 and 5
th

 DOF to the 3
rd

  

DOF (   
  and    

 ) were used as the outputs to construct the ARMAX model. 

Next the changes in the first AR model coefficient matrix (CFAR) from the undamaged 

state to the damaged states were estimated to depict the damage existing in the 

experimental building model. As shown in Figure 3.8, the absolute values of CFAR are 

plotted against output DOFs in the form of a three-dimensional bar chart for 

Substructure I in the case of 10% damage occurring in 1
st
 story, 2

nd
 story and 3

rd
 story, 

respectively. Table 3.3 provides the absolute values of CFAR for Substructure II with 

10% damage in 4
th

 story and 5
th

 story, respectively, in which the large values are double 

underlined. From Figure 3.8 and Table 3.3, it can be observed that large CFAR values 
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are found at the output DOFs next to the damaged location, which is consistent with the 

previous theoretical derivation and the results of simulation verification. 

Figure 3.9 presents the three-dimensional bar plot of the CFAR against output DOFs for 

Substructure I in the case of 10%, 20%, and 30% damage occurring in 1
st
 story, 

respectively. And Figure 3.10 shows a plot of peak value of CFAR with three different 

damage intensities for Substructure I and II. One can also notice from Figures 3.9 and 

3.10 that the peak values of CFAR increase linearly with the damage intensities. This is 

also in good agreement with the previous theoretical derivation and the results of 

simulation verification. 

It is therefore clear that the proposed substructural damage identification approach 

based on changes in the first AR Model coefficient matrix (CFAR) can still successfully 

locate and quantify the damage when applied to the experimental data. After 

experimentally verifying and confirming the feasibility and robustness of the proposed 

methodology as discussed above, the conclusion can be drawn that it can obtain 

satisfactory damage identification results in both simulation and laboratory experiment. 

 

Table 3.3. Changes in the first AR model coefficient matrix for Substructure II (10% damage) 

DOF m4  m5 

 
Damage in 4

th
 story 

m4 0.0162 0.0010 

m5

 
0.0029 0.0027 

 Damage in 5
th

 story 

m4 0.0201 0.0158 

m5

 
0.0189 0.0188 
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Figure 3.8. Changes in the first AR model coefficient matrix for Substructure I (10% damage) 
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Figure 3.9. Changes in the first AR model coefficient matrix for Substructure I 

(damage in 1
st
 story) 
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Figure 3.10. Linear relationship between CFAR and damage intensity 
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damage/deterioration in a large scale structure. However, centrally acquiring data 

from a large number of sensors will cause significant limitations for conducting SHM 

either using wired or wireless sensors. Utility of traditional wired sensors needs to 

face the challenges such as high equipment costs, long deploying time, difficulties in 

cabling and the constant maintenance for a large wiring plant. On the other hand, 

power requirements and bandwidth limitations bring huge difficulty to sending all the 

measured data to a certain central station using wireless sensors. In both cases of 

wired and wireless sensors, the SHM measurement system will generate a tremendous 

amount of data and all of them would need to be transferred to such a central station. 

It is challenging and time-consuming to manage and deal with this huge amount of 

data. Thus, in order to raise the efficiency of the SHM network, it is necessary to get 

rid of the redundant information through data aggregation. 

In recent years, smart sensor technology has been rapidly developed, which makes 

SHM system with a dense array of sensors more feasible and practical. Spencer et al. 

(2002, 2004) carefully reviewed state of the art of current smart sensing technologies. 

Usually the five essential feature of a smart sensor are: ① on-board microprocessor, 

②  sensing capability, ③  wireless communication, ④  battery-powered, and ⑤ 

low cost. 

The most important difference between smart sensors and standard integrated sensors 

are their ‘smart’ characteristics, which are always achieved through the on-board 

microprocessors. The sensor’s microprocessors embedded with certain programs grant 

these sensors the capability of saving data locally, conducting desired computations, 

making decisions, scanning necessary information, transmitting results promptly, 

communicating with neighboring sensors, etc. By adopting the substructure concept, 

the computation necessary for the damage detection of a whole complex structure can 

be divided into several components and the component part of the computation can 

then be performed locally at the sensor level for each substructure. So that redundant 
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information can be eliminated, which will significantly cut down on the information 

to be sent back to the central station. It is also worthy to note that all the smart sensors 

to date communicate with each other through a wireless link. However, damage 

identification algorithms applicable to the decentralized computing environment 

offered by smart sensor technologies are limited at the present moment. Thus it is 

urgently needed to develop damage identification algorithms which can take 

advantage of the decentralized computing environment. 

Next step a decentralized damage identification strategy (DDIS) is presented and it is 

suitable for implementation on a smart sensor network applied on shear structures. In 

this proposed strategy, the entire structure is divided into several substructures with 

some overlaps, the smart sensors inside and at the interface of the substructure are 

grouped together and only the locally measured information is used to evaluate the 

condition of local substructures; the associated damage identification algorithm is 

done in a decentralized manner. Damage identification results for these local 

substructures can then be reported back to the central station. Continuous online 

monitoring of a structure can be done without relying on central data processing. In 

the sequel, to simplify the damage indicator (CFAR) proposed previously, the 

diagonal elements from changes in the first autoregressive coefficient matrix (CFAR) 

are extracted to construct a vector in their original order and the vector is designated 

here as damage indicating vector (DIV). In each substructure, DIV can reveal the 

location and severity of the damage, which forms the basis for the decentralized 

damage identification strategy. Finally, simulations are conducted to investigate the 

potential of the DIV algorithm for implementation on wireless smart sensor networks 

(WSSN), where the issues of scalability of the DIV approach are undertaken by 

utilizing a decentralized, hierarchical and in-network processing strategy. 
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3.5.1 Damage Indicating Vector (DIV) 

In section 3.2, the relationship between changes in the first AR model coefficient 

matrix and the stiffness reduction in the substructure is derived theoretically. Recall 

that, the change in the first AR model coefficient matrix from the undamaged state to 

the damaged state takes the matrix form in three different cases as shown in Equations 

3.26 to 3.28. 

By extracting the diagonal elements from the matrix     and arranging their values 

in the original order, a row vector is constituted as following which is designated here 

as damage indicating vector (DIV) Adiv for the proposed decentralized damage 

identification strategy (DDIS): 

                (3.29) 

where diag( ) signifies the arithmetic operator which formulates a row vector by 

extracting the diagonal elements from a matrix and arranging them in the row vector 

as their original order. Utilizing the expressions of     in Equations 3.26 to 3.28, 

damage indicating vector (DIV) Adiv can be expressed in three different cases as 

following: 

1) in case of damaged story nonadjacent to the interface end 

                           (3.30) 

2) in case of damaged story adjacent to the bottom interface end 

                      (3.31) 

3) in case of damaged story adjacent to the top interface end 

                      (3.32) 

In the case that the damage occurs on the f
th

 story which is between two adjacent 
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DOFs, (f-1)
th

 DOF and f
th

 DOF, Equation 3.30 shows that the damage indicating 

vector (DIV) Adiv will be a null vector with two non-zero terms at element locations 

corresponding to the (f-1)
th

 and f
th

 output DOFs; In the case of damage occurring on 

the f
th

 story between the f
th

 DOF and the bottom interface, it is shown in Equation 

3.31 that the damage indicating vector (DIV) Adiv will be a null vector with only the 

first element non-zero which corresponds to the f
th

 output DOF; And if the damage 

occurs on the f
th

 story which is between the top interface and the (f-1)
th

 DOF, 

Equation 3.32 reveals that the damage indicating vector (DIV) Adiv will be a null 

vector with only the last element non-zero corresponding to the (f-1)
th

 output DOF. 

This information depicts the damage location on the f
th

 story. Additionally, the value 

of the non-zero term of the damage indicating vector (DIV) Adiv is directly 

proportional to the story stiffness degradation    . Thus, the damage indicating 

vector (DIV)      can indicate the location and severity of the damage occurring in 

the substructure by identifying the high-valued elements in it. 

 

3.5.2 Decentralized Damage Identification Strategy (DDIS) 

3.5.2.1 Hierarchical Organization 

To implement the proposed substructural DIV algorithm on wireless smart sensor 

networks (WSSN), an appropriate network topology must be considered. Three 

network topologies and data processing schemes are generally considered for WSSN, 

i.e. centralized data acquisition, independent data processing on each node, and 

hierarchical system as shown in Figure 3.11 (Nagayama and Spencer 2007). 
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Figure 3.11. Network topologies (Nagayama and Spencer 2007) 

Among these topologies, the hierarchical system possesses efficiency in network 

communication without losing the ability to capture spatial structural response 

information. By consulting the conceptual hierarchical organization of the 

decentralized computing strategy approach proposed by Gao et al. (2006), a 

hierarchical organization suitable for the proposed substructural DIV algorithm is 

designed as shown in Figure 3.12. Traditional SHM algorithms normally require all 

the sensors to be connected to a certain central station so that all the measured 

information to be transferred to it. In marked contrast to the traditional centralized 

algorithm, the proposed decentralized computing strategy will locally aggregate the 

measured information by a selected sensor within the substructural sensor group, 

termed the manager sensor, and redundant information will be discarded so that only 

limited information is sent back to the central station to provide the condition of the 

corresponding substructure. In each substructure, small numbers of smart sensors are 

grouped to form different communities, and each sensor can belong to more than one 
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community. For each community, the manager sensor collects measured responses 

and implements the substructural DIV algorithm for this community. Adjacent 

manager sensors need to communicate with each other to exchange the necessary 

information. 

The manager sensor first locally aggregates the measured response and then decides 

what kind of information is necessary to be transferred to the central station. In the 

proposed strategy, each of the communities without damage occurring only sends an 

‘ok’ signal to the central station, which is shown by the dotted line connection in 

Figure 3.12. The communities in which damage took place need to send the damage 

information including the damage location and damage intensity about the 

corresponding substructure, which is shown by the solid line connection in Figure 

3.12. In this way, the redundant information is eliminated and only limited 

information needs to be transferred between sensors throughout the entire structure. 

This strategy will significantly cut down the communication traffic and the associated 

power requirement in the sensor network. 

 

 

Figure 3.12. Sketch of hierarchical organization 
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3.5.2.2 Strategy Implementation 

The 15-story shear building shown in Figure 3.13 is employed to illustrate the details 

of the implementation of the proposed SHM strategy. 

 

3.5.2.3 Substructure Division and Community Formation 

Firstly, the entire structure is divided into 7 substructures and the corresponding 

sensor communities are formed. A single community includes a set of adjacent 

lumped masses, sensors on these masses, and columns between these masses. Figure 

3.14 shows an example of how substructures and the corresponding sensor 

communities can be formed. Different substructures and communities are developed 

from bottom to up in the shear structure. To facilitate efficient communication among 

the smart sensors, the masses within the same community should be close to each 

other, that means the dimension of the substructure should not be large. As an 

example, substructure 4 in Figure 3.14 includes masses [m6 m7 m8 m9 m10] and 

columns [k7 k8 k9 k10]. 

To allow some computational redundancy, adjacent substructures are recommended to 

have some overlaps so that each column is monitored by more than a single 

community. 

 

3.5.2.4 Data Aggregation 

To minimize the communication traffic in the sensor network, measured data need to 

be transferred to the manager sensor for data processing. 

Clocks of smart sensors in the same community are first synchronized with each other. 

After the measured responses are collected, they will be transferred to the manager 

sensor for data processing and algorithm computation. To make the communication 
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easier, the manager sensor should be located at the central area to the other sensors in 

the community. For example, in Figure 3.14, the sensors at mass m10 is selected as the 

manager sensor for substructure 5. As can be seen from the figure, some sensors may 

need to transfer information to more than one manager sensors. This situation occurs 

when the smart sensors participate in different communities. 

After the data have been sent to the manager sensor, damage identification algorithm 

can be implemented using the on-board microprocessor to locate and quantify the 

damage within the community. The proposed substructural DIV algorithm presented 

in Section 3.5.2 is incorporated in this SHM strategy to identify the location and 

severity of the damage in each community. The flow chart for damage aggregation in 

a community is shown in Figure 3.15. 
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Figure 3.13. 15-story shear building 

 

3.5.2.5 Decision Making 

After the data aggregation is done, decision should be made for a community. If there 

is no damage identified in a community, the manager sensor does not trigger the  

communication with other manager sensors. Instead, it just transmit a simple ‘ok’ 

signal back to the central station. If there is some damage identified in a community, 
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the manager sensor initiates to send inquiries to its counterpart in adjacent 

communities. Three possibilities can happen after sending the inquiries: 

 The damage candidate in community i does not belong to any adjacent 

community. The manager sensor in community i transmits the damage 

information back to the central station. 

 The damage candidate in community i belongs to other communities and has 

already been identified as the potentially damaged location consistently in all of 

these communities. This damage candidate is then confirmed and reported to the 

central station by these communities. 

 The damage candidate identified by community i belongs to other communities, 

but there are some conflicts in the damage identification results of the different 

communities. It is necessary to recollect data for these communities, and then 

data aggregation and decision making process should be re-conducted until all the 

communities can obtain the consistent damage identification result. 

A flow chart for the decision making is shown in Figure 3.15. 

 

3.5.3 Performance Verification by Simulation 

The proposed substructural DIV algorithm is verified using the shear structure shown 

in Figure 3.13. 

The mass of every floor and the lateral stiffness were assumed to be 100 kg and 1 

MN/m, respectively. The damping ratio of all modes was chosen as 3%. The first 

three undamaged natural frequencies of the structure were calculated as 1.6, 4.8, and 

8.0 Hz for the 1
st
, 2

nd
, and 3

rd
 modes, respectively. The 15-DOF system was simulated 

to be subjected to white noise excitation, and the noise contributing to 5% of the signal 

RMS value was added to the acceleration responses of the structure. The acceleration 
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responses at different DOFs were recorded for 50 seconds with a sampling frequency 

of 200 Hz. The story stiffness reduction was regarded to be damage to the structure.  

Firstly, according to the substructure division method described in section 3.5.2.3, the 

whole structure was divided into 7 substructures, as shown in Figure 3.14. 

Considering strong flexibility for handling the disturbance modeling, the 

autoregressive moving average with exogenous inputs (ARMAX) model was adopted 

to model each substructure and further obtain the AR coefficient matrix for the 

undamaged and unknown states. According to Equation 3.13 and the expression of the 

input vector      , Substructures 1 and 7 can be modeled as a 2-input 3-output 

ARMAX model, Substructures 2~6 can be modeled as a 3-input 3-output ARMAX 

model.
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Figure 3.14. Structure division and community formation for 15-story shear building 
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Figure 3.15. Data aggregation and decision making 
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Two damage cases are considered: 

Case 1: single damage scenario--20% stiffness reduction at column 10. 

Case 2: multiple damage scenario--20% stiffness reduction in columns 4 and 14. 

 

3.5.3.1 Single Damage Scenario 

By applying the proposed substructural DIV algorithm for each community, the 

damage identification is conducted. The results of the DIV values for substructure 4 

and 5 when column 10 has a 20% stiffness reduction is displayed in Figures 3.16 and 

3.17. Results from substructure 4 show that the DIV values for column 10 (output 

DOF No.9) is considerably higher than other elements being monitored. Similarly, 

results from substructure 5 show that the DIV values for column 10 (output DOF No.s 

9 and 10) are also considerably higher than other elements being monitored. Therefore, 

column 10 is confirmed as a damage location in these substructures. Results from 

other substructures show no elements having a high DIV values. The manager sensors 

in communities 4 and 5 send the damage information to the central station, while 

other communities only send an ‘ok’ signal back to the central station. 

 

3.5.3.2 Multiple Damage Scenario 

Figures 3.18 to 3.21 show the results when columns 4 and 14 have a 20% stiffness 

reduction. Again, substructures 1 and 2 determine column 4 as a possibly damaged 

element; substructures 6 and 7 identify column 14 as a damage candidate. 

In both cases, substructures 1, 2, 6, and 7 report the damage information back to the 

central station; while other communities having no damage only send back an ‘ok’ 

signal. 



CHAPTER 3 Substructural Damage Identification Using CFAR 

89 

 

 

Figure 3.16. DIV values for substructure 4: damage at column 10 

 

 

Figure 3.17. DIV values for substructure 5: damage at column 10 
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Figure 3.18. DIV values for substructure 1: damage at columns 4 and 14 

 

 

Figure 3.19. DIV values for substructure 2: damage at columns 4 and 14 
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Figure 3.20. DIV values for substructure 6: damage at columns 4 and 14 

 

 

Figure 3.21. DIV values for substructure 7: damage at columns 4 and 14 
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3.6 Conclusions 

In this work, a substructural damage identification approach is presented to locate and 

quantify damages in a shear structure based on changes in the first AR model 

coefficient matrix (CFAR). At first, the mathematical derivation draws a conclusion 

that the elements of CFAR corresponding to the output DOFs adjacent to the damaged 

location are proportional to the stiffness reduction in the structure, indicating the 

damage location and severity. After that, a numerical simulation of a 12-story shear 

building model and an experiment of a five-story metal building model have verified 

that the proposed approach can satisfactorily locate and quantify the damage in both 

simulation and laboratory experiment. As the structure is divided into substructures, 

which have a considerably smaller number of degrees of freedom (DOFs), thus only 

the structural responses related to the substructure being detected are required in the 

substructural damage identification procedure, and it is not necessary to monitor the 

responses of all DOFs of the structure simultaneously, greatly reducing the 

computation time and cost of SHM systems. It may also be noted that the evaluation 

of the AR model coefficient matrix involves only very easy and simple computation, 

without having to take long time to identify the mass, stiffness and damping matrices 

of the structure. These means that the proposed approach is easy, efficient and robust 

for local substructural damage identification of shear structures. Moreover, as the 

damage identification process can be independently conducted on each substructure, 

this method is promising for application in a parallel and decentralized damage 

identification system (e.g., using wireless mobile sensor network to perform SHM).  

In the following step, a new decentralized damage identification strategy (DDIS) for 

SHM is proposed that is suitable for implementation on a network of wireless SHM 

system for shear structures. First, the basic concept of the substructural DIV algorithm 

was briefly introduced. Then numerical studies using the propose strategy to detect 
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damage were conducted. The proposed DDIS approach differs from the traditional 

SHM algorithms because it does not rely on central acquisition and data processing. 

In the proposed approach, adjacent smart sensors are grouped together to form sensor 

comminutes to monitor the local substructures. Extraneous information is discarded 

before damage information is sent to the central station, therefore only limited 

information needs to be transferred wirelessly. Numerical simulations with noise 

included in measurements have been conducted. Structural damage has been 

consistently identified using locally measured data from sensor communities. These 

results have shown the proposed DDIS approach promising for practical SHM with a 

densely distributed sensor network.
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4.1 Conclusions 

The main contributions of this thesis are that it made improvements on the damage 

assessment based on autoregressive models and substructure approach. This thesis is 

devoted to overcome the problems such as high equipment costs, long setup time, 

difficulties in cabling and the long computation time by proposing a decentralized 

damage identification strategy based on the combination of substructural approach 

and autoregressive models, which is especially effective and economic for large scale 

shear structures. The proposed method is suitable for use in a parallel and 

decentralized damage detection system and can work more efficiently for large scale 

structures.  

Firstly, an improved substructure-based damage detection approach is proposed to 

locate and quantify damages in a shear structure, which extends from a previously 

established substructure approach. Similarly as in the previous approach, a 

substructure approach is adopted in the improved procedure to divide a complete 

structure into several substructures. To improve the noise immunity and damage 
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detection robustness under different types of excitations and realistic conditions, this 

paper proposes an ARMAX model residual-based technique to correct the former 

damage indicator. The correction coefficient is defined as the normalized 

Kolmogorov-Smirnov (K-S) test statistical distance between the two distinguished 

data sets of ARMAX model residual generalized from input-output data process for 

undamaged and damaged states. To better assess the performance of the improved 

procedure, simulation and experimental verifications of the proposed approach have 

been conducted and the results are compared with the previous method. It shows that 

the improved procedure works much better and more robust than previous method 

especially when it is applied to realistic problems. 

Secondly, to seek the balance between the number of substructures and the 

computation intensity inside each substructure, a more flexible substructural damage 

identification approach is proposed in this study to identify structural damage 

including its location and severity, using changes in the first autoregressive coefficient 

matrix as the damage indicator. First of all, a more flexible substructure division 

scheme is adopted in the procedure to divide a complete structure into several 

substructures in three different types. To establish a relation between changes in 

autoregressive coefficients and structural damage for each substructure, a theoretical 

derivation is presented. Thus the accelerations are fed into ARMAX models to 

determine the autoregressive coefficients for each substructure under undamaged and 

various damaged conditions, based on which changes in the first autoregressive 

coefficient matrix (CFAR) are obtained and adopted as the damage indicator for the 

proposed substructural damage identification approach. In what follows a numerical 

simulation and an experimental verification of the proposed approach are then carried 

out and the results show that the proposed procedure can successfully locate and 

quantify the damage in both simulation and laboratory experiment. 

Moreover, to simplify the above studied method, the diagonal elements from changes 
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in the first autoregressive coefficient matrix (CFAR) are extracted to construct the 

damage indicating vector (DIV). Then simulations are conducted to investigate the 

potential of the DIV algorithm for implementation on wireless smart sensor networks 

(WSSN), where the issues of scalability of the DIV approach are undertaken by 

utilizing a decentralized, hierarchical and in-network processing strategy. 

The proposed substructural damage identification approach can satisfactorily locate 

and quantify the damage in both simulation and laboratory experiment. As the 

structure is divided into substructures, which have a considerably smaller number of 

degrees of freedom (DOFs), thus only the structural responses related to the 

substructure being detected are required in the procedure, and it is not necessary to 

monitor the responses of all DOFs of the structure simultaneously, greatly reducing 

the computation time and cost of SHM systems. It may also be noted that the 

evaluation of the autoregressive coefficient matrix involves only very easy and simple 

computation, without having to take long time to identify the mass, stiffness and 

damping matrices of the structure. These means that the proposed approach is easy, 

efficient and robust for local substructural damage identification of shear structures. 

Moreover, as the damage identification process can be independently conducted on 

each substructure, by utilizing some decentralized and hierarchical processing strategy, 

this method is promising and efficient for application on wireless smart sensor 

networks (WSSN) to perform SHM systems for large scale shear structures. 

 

4.2 Future Studies 

With the previously mentioned conclusions and contributions, it is considered that the 

objectives given for the study at the current stage are fulfilled and suitable for 

applying to large scale shear building structures. Although this research has 

successfully addressed some of the challenges for application of damage identification 
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algorithm to large scale buildings based on the combination of substructure approach 

and autoregressive models, a few directions for further study in the future should be 

considered. 

Firstly, in this study the laboratory experimental data is still from a simplified 

structure subject to linear damages in a controlled operational and environmental 

condition. In the further study, more realistic conditions involving operational and 

environmental variations in the data should be taken into consideration, in order to 

challenge the damage identification and to test the robustness of the algorithm. 

In addition, the decentralized damage identification strategy (DDIS) is proposed that 

provide robust estimates of damage locations and severities for large scale shear 

building structures. However, the efficacy of the developed strategy is only verified 

by simulations, in future study it should also be verified using a real wireless sensor 

network. 

Moreover, the damage identification algorithm and strategy proposed in this thesis is 

only applicable to shear structures with conventional shape. However, there are a lot 

of structures in real application, which have more complex shapes and types. Thus it 

is necessary to extend the algorithm and strategy to structures with more complicated 

shapes and types. 

Finally, the proposed algorithm is only able to identify damage in the story level. If 

the approach can be extended to identify damage in element level, it will be extremely 

promising for the structural health monitoring practice. 
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