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Chapter 1

Introduction

1.1 Background of This Dissertation

1.1.1 Automatic Control of Robots and Machines

Precise motion control of robots and machines has been demanded in various industrial fields for a

long time [1, 2]. Both progress of control theory and development of performance of a computer lead to

achieve accurate and rapid control of robots and industrial machines [3,4]. In general, to construct a high

performance control system, sampling time should be set as short as possible. In recent year, a control

system with 5 µs sampling time has been realized and high bandwidth motion control has been achieved

by FPGA [5]. In addition, it is now easy to construct a real-time system with about 100 µs sampling time

by using a general-purpose computer with some software such as Real-Time Application Interface [6].

With the performance improvement of a computer, control theory of industrial robots and machines has

also been developed. In particular, robust control can control accurate and rapid control of them under

existence of disturbance and modeling error. Representative methods of robust control are H∞ control

[7, 8], sliding-mode control [9–11], acceleration control based on a disturbance observer [12–14], etc.

Although a disturbance observer has a simple structure, robust control of robots and machines can be

conducted, and it is friendly to use the observer in the industrial fields. Additionally, the disturbance

observer with accurate nominal model can be used as a force sensor [15, 16]. Because the disturbance

observer omits the force sensor including some stiffness, the high-bandwidth force control system has

been realized [17]. Owing to its simplicity, the disturbance observers have been applied to various

applications [18–26].
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To improve control performance of robots and machines, not only increasing the control bandwidth but

also vibration suppression of mechanical resonances and time-delay compensation should be considered.

Particularly, if there are some mechanical constraints such as weight reduction of robots, use of gear, en-

larging size of a mechanical system to improve production efficiency, not only first-order resonance but

also higher-order resonance is often excited, which prevents the control system from further improve-

ment of control bandwidth. In addition, time delays, existing in a DA converter, a communication system

or a sensing device, which are neglected in the past should be considered because its phase-lag charac-

teristic makes the control system unstable. Therefore, this dissertation deals with vibration suppression

of mechanical resonance and time-delay compensation to realize high-performance control of robots and

machines.

1.1.2 Vibration Control of Resonant Systems

Although various types of vibration control have been researched in the past, vibration suppression

methods of mechanical resonance by a linear-control theory can be divided into two methods [27–30]:

gain-stabilization method and phase-stabilization method. The gain stabilization means that resonant

peak is suppressed by pole-zero cancellation based on small-gain theorem. The gain-stabilization method

is often realized by use of a notch filter [31, 32]. A notch filter is often implemented in industrial fields,

and typical servo drivers for the AC servo motors have function of use of a notch filter [33–35]. However,

disturbance-suppression performance of control system using a notch filter is worse than that of phase

stabilization method. In addition, performance of control based on a notch filter is weak against variation

of resonant frequency. Hence, control system using a notch filter needs assumption that there is few

disturbance at the frequency in which the notch filter is applied. Additionally, an adaptive notch filter

[36] which estimates the resonant frequency is often used. On the other hand, the phase-stabilization

method stabilizes the resonances by increasing phase margin based on the Nyquist stability criterion.

The phase-stabilization method has advantage that it has robustness against variation of resonant fre-

quency because the sensitivity function of the control system becomes low-sensitivity near the reso-

nant frequency. Examples of phase-stabilization method are a state feedback control, velocity feedback,

phase-lag or phase-lead compensator. Whether phase-lead or phase-lag compensation is appropriate for

stabilizing the resonance depends on coefficient of each vibration mode [37]. The method [38] deals with

the case that all the coefficients are same sign, and phase-lead compensation generated by the disturbance

observer is conducted to suppress the vibrations in a semi-closed-loop control of a multi-mass resonant
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system. In general, when the coefficient of vibration mode are different sign from that of neighbor vibra-

tion mode, it is difficult to realize phase stabilization of the two resonances at the same time [39]. Hence,

in this case, combination of the gain-stabilization and phase-stabilization method should be used.

It is also important to select which model is used for construction of vibration control. They can be

divided into two models: One is a lumped parameter model, the other is a distributed parameter model.

As for the lumped parameter models, there are a two-mass resonant model, a multi-mass resonant

model. A N -mass resonant model is composed of N masses and N -1 springs, which are connected in

series in general. A two-mass resonant model is the simplest model in lumped parameter models, which

considers only a first-order resonant frequency. Owing to its simplicity, there are many conventional

methods of the two-mass resonant system in the past [40, 41]. For example, there are a velocity feed-

back, state feedback control [42–44], H∞ control [45, 46], µ synthesis [47], coefficient diagram method

[48], resonance ratio control [49, 50], integral resonant control [51], self resonance cancellation control

[52, 53], etc. Those conventional methods have simple control structures. In particular, resonance ratio

control has clear physical meanings. In the field of vibration control of the two-mass resonant system,

inertia/mass ratio between motor and load is strongly related to difficulty of vibration control by velocity

feedback [54]. The resonant ratio control conducts the reaction torque/force feedback estimated by a re-

action force observer [15] to equivalently reduce the inertia/mass ratio. In addition, when the resonance

ratio, which is ratio between resonant and anti-resonant frequency, equals to
√
5, good vibration suppres-

sion performance can be attained in a position-control case, and it is proved that any two-mass resonant

system can obtain good performance under such resonant ratio. This fact has been extended to force

control of a two-mass resonant system [55–58]. According to the above, advantage of vibration control

based on a lumped parameter model is that they have simple control structure and it is easy to implement

and to adjust the control gains. However, because the lumped parameter model based control considers

the finite number of resonances, the resonance neglected in the modeling is often excited, which is named

as spillover problem [59]. The spillover problem can be solved by adding stabilizing compensator which

considers robust stability. H∞ control is good at design of robust performance and robust stability simul-

taneously, which is so-called mixed sensitivity problem. However, in this case, the controller becomes

complicated structure and it is difficult to understand physical meaning of the controller.

On the contrary, a distributed parameter model is composed of dynamics of not only time but also

space, it can consider infinite numbers of resonances. Examples of distributed parameter model for vi-

bration control of resonant system are a wave equation [60] and a equation of Bernoulli-Euler beam [61].
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Advantage of a control system based on distributed parameter models is that the spillover problem can

be avoided. Although there are various control methods of distributed parameter models [62], in general,

the control systems based on distributed parameter models are designed in time-domain [63] because

of its complexity. Although a transfer function can be obtained analytically, it is difficult to implement

a controller derived from the transfer function because the transfer function is often represented by a

fractional-order form [64]. Hence, in this case, the controller derived from a distributed parameter model

is approximated, but the spillover problem arises again. The distributed parameter based control design

in time domain sometimes suffers from implementation to actual systems. Meanwhile, the wave equa-

tion, which is limitation of number of mass in a multi-mass resonant system, has possibility to implement

the controller without approximation because a transfer function of typical wave equation is composed of

time-delay elements [60]. Actually, Y. Halevi proposed a transfer function based controller design using

a wave equation for suppressing torsional vibration [65]. In addition, H. Iwamoto proposed vibration

suppression of a flexible beam using a wave filter [66]. The method constructs a virtual transmission

system at boundary of the system, which is equivalent to insert damping with characteristic impedance

of the wave system. M. Saigo proposed application to a wave absorbing filter to suppress vibration in a

flexible structure [67]. The methods are often applied to vibration suppression of building vibrated by

disturbance.

1.1.3 Time-Delay Compensation

Time-delay compensation is also important to control a system with high performance. Time delay

has a non-minimum phase lag characteristic which is difficult to control in general [68]. Then, the phase-

lag characteristic deceases phase margin of the controlled system. Due to the difficulty, many time-delay

compensation methods have been researched actively [69–73]. Examples of time-delay compensation

methods are Smith predictor [74, 75], internal model control (IMC) [76], a communication disturbance

observer [77]. The most basic method of time delay compensation is a Smith predictor. Smith predictor

predicts a future value by using a plant model, and actual response is canceled out by the predicted value

multiplied by delay. As a result, time delay existing in a feedback loop will be omitted, controller design

can be conducted as if there does not exist time delay in the feedback loop. Although Smith predictor

needs to use both plant and time-delay models, a communication disturbance observer [78,79] proposed

by K. Natori does not use a time-delay model but use a plant model. Concept of the communication

disturbance observer is that cause of destabilization in a time-delay system is regarded as a network
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disturbance. The communication disturbance observer can estimate the network disturbance as well as a

typical disturbance observer. Then, the time-delay compensation using estimated network disturbance is

performed. Because the communication disturbance observer does not use time-delay model, the control

system utilizing the communication disturbance observer has more robust against variation of time delay

compared with Smith predictor based control system. However, the communication disturbance observer

has disadvantage that suppression performances of disturbance and modeling error in plant model is

inferior to those of Smith predictor. To improve the robustness, various methods have been proposed

before now [80, 81]. K. Natori proposed combination use of communication disturbance observer and

disturbance estimate observer [82] to improve the robustness against disturbance. A. Suzuki proposed

a low-frequency model error feedback for improvement in steady-state accuracy [83]. The method is

similar to communication disturbance observer using a band-pass filter [84]. However, the conventional

researches mainly focus on a typical rigid motor system (i.e. a second-order system). If the plant has

some mechanical resonances, implementation of time-delay compensation sometimes faces difficulty

due to their low suppression performance of the modeling error and disturbance [85].

1.2 Motivation of This Dissertation

This dissertation focuses on both vibration suppression of mechanical resonance and time-delay com-

pensation for achieving high performance control systems. Remarkable fact of vibration suppression of

a resonant system is that, based on the wave equation, the vibration on the mechanical resonant system

can be suppressed by reflected wave rejection [86,87] like time-delay compensation. The reflected wave

rejection can estimate and compensate a reflected wave which is cause of vibration in wave system. In

addition, a transfer function of the wave equation is quite similar to a feedback control system including

input-output time delay [88]. Therefore, it can be guessed that there is a similarity between mechanical

resonant and time-delay systems from the wave-transmission point of view. Although, in general, vibra-

tion suppression of a mechanical resonant system and time-delay compensation are treated in different

fields, there is possibility to construct a unified control law for the two systems by using a wave equation.

Motivation of this dissertation is to construct a generalized framework for control of wave systems

which are models for mechanical resonant and time-delay systems. Applying the wave equation to

both systems as a system model, it is shown that there is a similarity between the two systems: one is

structure which is composed of position-input system and wave transmission system, the other is that
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cause of vibration is reflected wave and elimination of reflected waves from wave systems contributes to

suppress the vibration. Therefore, this dissertation proposes a control of wave systems based on reflected

wave rejection. The advantages of the proposed method are as follows.

• The reflected wave rejection based vibration control considers the infinite number of poles because

the system is modeled by a wave equation which is one of distributed parameter models. Hence,

spillover problem can be avoided.

• The reflected wave rejection is categorized as the phase stabilization method in vibration control

methods.

• The reflected wave rejection is a simple compensator which uses time-delay elements. Hence, it is

easy to implement the compensator.

• It is easy to integrate mechanical resonant and time-delay systems because the resonant system

modeled by a wave equation can be regarded as a time-delay system.

The framework derived in this dissertation for control of wave systems will play an important role for

further improvement of performance of industrial applications.

1.3 Chapter Organization of This Dissertation

Fig. 1-1 shows the chapter organization of this dissertation. First of all, in Chapter 2, modeling of wave

systems, which are a mechanical resonant system and a time-delay system, based on a wave equation is

explained. Based on the modeling of wave, it is described that there is a similarity between two systems

from the wave-transmission point of view [88]. Additionally, it is pointed out that cause of vibration

in both two systems is a reflected wave. Then, Chapter 3 shows how to eliminate the reflected wave

from the wave system to suppress the vibration, which is called a reflected wave rejection [87]. The

reflected wave rejection is a core technique in this dissertation. It is also shown that, if the reflected wave

is eliminated from the wave system, a transfer function of the wave system at load side becomes one

time-delay element, which implies that there exists only a traveling wave. Based on the basic concept

of the reflected wave rejection, Chapters 4 and 5 describe applications and extensions of the reflected

wave rejection to various mechanical resonant systems and time-delay system, respectively. Contents

of Chapter 4 includes a reflected wave rejections [89, 90] for various resonant systems with different
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boundary conditions and wave-transmission characteristics from those in Chapter 3. Chapter 5 explains

a reflected wave rejection for a feedback system including input-output time delays [88]. In Chapter 6, a

reflected wave rejection for the system including both mechanical resonance and input-output time delay

is proposed. Firstly, a basic concept of a reflected wave rejection for an integrated resonant and time-

delay system is proposed. Next, the reflected wave rejection for the integrated resonant and time-delay

system is extended to the structures which can be implemented at controller side (not remote or plant

side) [91–93]. In Chapter 7, a wave-based disturbance observer is proposed for improving robustness

against a disturbance acting on a tip side of the wave system. In addition, force control of the wave system

by using the wave-based disturbance observer is proposed [94]. Finally, this dissertation is concluded in

Chapter 8.
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A core technique

in this dissertation

【Chapter 3】
Vibration Suppression of Wave Systems

Based on Reflected Wave Rejection

【Chapter 2】
Modeling of Wave Systems

【Chapter 1】
Introduction

【Chapter 4】
Motion Control of

 Various Resonant Systems

【Chapter 5】
Motion Control of

Time-delay Systems

【Chapter 7】
Robust Control of Wave System

【Chapter 6】
Motion Control of Integrated Resonant

and Time-delay System

【Chapter 8】
Conclusions

Fig. 1-1: Chapters constructed in this dissertation.
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Chapter 2

Modeling of Wave Systems

2.1 Introduction

In this chapter, modeling of wave systems is explained. This dissertation focuses on control of the

systems which produce the vibration due to mechanical resonance and time delay. In order to consider

high-order vibration, a wave equation is used for modeling of the systems. The wave equation is one of

the distributed parameter systems which have infinite numbers of poles.

First of all, in Section 2.2, it is mentioned that limits of a multi-mass resonant system, which is a

lumped parameter model, as numbers of mass approaches infinity is a wave equation. Then, the resonant

system is modeled by using the wave equation. Section 2.3 explains how a transfer function of the wave

equation is expressed [87]. On the other hand, Section 2.4 introduces modeling of a control system

including input-output time delay by the wave equation. Additionally, a similarity of the resonant and

time-delay systems is analyzed from the wave transmission point of view [88].

2.2 Wave Equation

2.2.1 Derivation of Wave Equation from Multi-mass Resonant System

This part shows that the limits of a multi-mass resonant system as the numbers of mass approaches to

infinity is wave equation. The model of a multi-mass resonant system is shown in Fig. 2-1. M , fm, q, k,

m, and fext
l denote the mass/inertia of motor, the force/torque generated by the motor, the displacement

(position), the lumped spring coefficient, and the lumped mass, the external force/torque acting on the tip,
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Spring Mass

Motor Load side of resonant system

Fig. 2-1: Model of multi-mass resonant system.

respectively. Subscript m and i(1 ≤ i ≤ N) stand for the motor and the number of mass, respectively.

The multi-mass resonant system is composed of the motor and the load side of resonant system. The

load side is connected with motor by the spring.

The motion equation of each mass is represented as

Mq̈m = fm − k(qm − q1)

...

mq̈i = k(qi−1 − qi)− k(qi − qi+1)

...

mq̈N = k(qN−1 − qN )− f ext
l . (2.1)

Eq. (2.1) can be transformed into

Mq̈m = fm − k(qm − q1)

...

mq̈i = k(qi−1 − 2qi + qi+1)

...

mq̈N = k(qN−1 − qN )− fext
l . (2.2)

It turns out that motion equations except those at boundary can be represented as same form, which is

shown as

mq̈i = k(qi−1 − 2qi + qi+1). (2.3)

Here, the boundary conditions for the system are represented as follow,

k(q1 − qm) = Mq̈m − fm (2.4)

k(qN − qN+1) = −f ext
l (2.5)
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Motor Load side of resonant system

Fig. 2-2: Model of multi-mass resonant system considering spring length.

where qN+1 denotes the virtual mass for considering the boundary conditions. By introducing the above

boundary conditions, the motion equations at boundaries become same form as (2.3). Hence, the motion

equations for all the masses can be expressed as (2.3).

Here, to derive a wave equation from limits of the multi-mass resonant system, the length of spring

a is introduced. The model of a multi-mass resonant system considering the spring length is shown in

Fig. 2-2. L stands for the entire length of load side of resonant system, which satisfies L = Na. It

is noted that because L is constant, N → ∞ yields a → 0. By the introduction of the length a, the

displacement of i-th mass can be represented as

qi = q(t, ia). (2.6)

Considering a → 0, the distributed position is obtained, which is represented as

qi = q(t, ia)

→ q(t, x) (2.7)

where t and x represent the time and the position of the distributed mass, respectively. On the other hand,

by using a, (2.3) can be transformed into

m

a
q̈i = ka

(qi+1 − 2qi + qi−1)

a2
. (2.8)

Applying a → 0 to (2.8), the wave equation is derived as

∂2q(t, x)

∂t2
= c2

∂2q(t, x)

∂x2
(2.9)

where c denotes the propagation velocity of the wave, which is shown as

c =

√
κ

ρ
(2.10)
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where κ = lim
a→0

ka and ρ = lim
a→0

m/a stand for the spring coefficient per unit length and the mass density,

respectively. As for the boundary conditions, (2.4) and (2.5) can be also transformed by use of a → 0,

which are represented as

∂q(t, 0)

∂x
=

1

κ
[Mq̈m − fm] (2.11)

∂q(t, L)

∂x
= −1

κ
fext
l . (2.12)

The proposed control approach is mainly based on the wave equation (2.9) and the boundary conditions

(2.11) and (2.12).

In the above modeling, dampers existing between each two masses are neglected. A wave equation

including the damper effect can be obtained by the same derivation, and the wave equation is represented

as

∂2q(t, x)

∂t2
= c2

∂2q(t, x)

∂x2
+ c2d

∂3q(t, x)

∂t∂x2
(2.13)

where cd denotes the propagation velocity of the wave caused by the damper, and it is shown as

cd =

√
d

ρ
(2.14)

where d stands for the damper per unit length.

2.2.2 Approximation of Flexible Beam to Wave Equation

This part explains how to approximate a flexible beam to the wave equation. Fig. 2-3 shows a flexible

beam dealt with in this dissertation. In Fig. 2-3, y(t, x), Fs(t, x), and Mb(t, x) denote the deflection,

the shear force, and the bending momentum, respectively. Governing equations for the flexible arm are

represented as

ρA
∂2y(t, x)

∂t2
=

∂Fs(t, x)

∂x
(2.15)

ρI
∂3y(t, x)

∂x∂t2
=

ρI

k′GA

∂2Fs(t, x)

∂t2
+ Fs(t, x) +

∂Mb(t, x)

∂x
(2.16)

∂2y(t, x)

∂x2
=

Mb(t, x)

EI
+

∂

∂x

(
Fs(t, x)

k′GA

)
(2.17)

where A, I , G, k′, and E stand for the section area, the second moment of area, the modules of rigidity,

and the longitudinal elastic modulus, respectively. It is noted that this dissertation does not consider
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Rotary

Motor

Load Side of Resonant System

(Flexible Arm)

Fig. 2-3: Flexible arm considered in this dissertation.

torsional motion (i.e. cross-section secondary polar moment and torsional stiffness are enough high). Eq.

(2.15) denotes the motion equation for the particle at x on y-axis. Eq. (2.16) denotes the motion equation

of rotation for the particle at x. Eq. (2.17) represents that the total deflection y(t, x) is superposition of

deflection caused by the shear force and the bending momentum. It is assumed that buckling phenomenon

and effect of centrifugal force are neglected in the equations. Considering control design based on the

governing equations, the control structure becomes complex because transfer functions based on the

equations are complex structures. Hence, in this dissertation, the governing equations for the flexible

arm is approximated to the wave equation. The approximation of the equation to wave equation can

be conducted by introducing following assumptions: the second moment of area I equals to infinity,

the deflection caused by the bending momentum is neglected, and the physical parameters are constant

value. By using the assumptions, the governing equations represented as (2.15), (2.16) and (2.17) can be

approximated as

ρA
∂2y(t, x)

∂t2
=

∂Fs(t, x)

∂x
(2.18)

∂y(t, x)

∂x
=

1

k′GA
Fs(t, x). (2.19)

It is noted that, by using the assumptions, (2.16) and (2.17) can be transformed into same form as (2.19).

Therefore, by (2.18) and (2.19), the wave equation can be derived as

∂2y(t, x)

∂t2
= c2b

∂2y(t, x)

∂x2
(2.20)
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where cb denotes the propagation velocity of the wave in the flexible arm, which is represented as

cb =

√
k′G

ρ
. (2.21)

In this dissertation, the rotary motor which drives flexible arm is located at x = 0. Because the

deflection y(t, L) is a variable in linear direction, the variable is transformed into a variable in rotational

direction. By using the length of the flexible arm L, the position q(t, x) and the tip position q(t, L) are

represented as

q(t, x) = qm + tan−1

(
y(t, x)

x

)
≈ qm +

y(t, x)

L
. (2.22)

q(t, L) = qm + tan−1

(
y(t, L)

L

)
≈ qm +

y(t, L)

L
. (2.23)

In the above equations, it is assumed that y(t, x)/x is enough small value. Because y(t, x) satisfies the

wave equation, q(t, x) also satisfies the wave equation under condition q(t, 0) = qm. According to the

above, in this dissertation, the flexible arm is modeled as the wave equation. However, modeling error

obviously exists due to the introduction of the assumptions for the approximation. The modeling error is

compensated by using a wave-based disturbance observer described in Chapter 7.

2.3 Transfer Function of Resonant System based on Wave Equation

In this part, a transfer function of resonant system, which is modeled as the wave equation, is derived.

For the sake of simplicity, the effects of damper and the external force are neglected in this part (i.e.

d = 0 and F ext
l ).

First of all, Laplace transformation is applied to the wave equation (2.9), which yields

s2Q(s, x) = c2
∂2Q(s, x)

∂x2
. (2.24)

When applying the Laplace transformation, the initial conditions for the resonant system are set as fol-

lows,

q(0, x) = 0 (2.25)
∂q(0, x)

∂t
= 0 (2.26)
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Motor

Load Side of

Resonant System

Fig. 2-4: Block diagram of wave system.

where above initial conditions means that position and velocity of each mass at t = 0 equal to 0. As for

the boundary conditions, (2.11) and (2.12) are transformed into

∂Q(s, 0)

∂x
=

1

κ

[
Ms2Qm − Fm

]
(2.27)

∂Q(s, L)

∂x
= 0. (2.28)

It is noted that Q(s, 0) = Qm is satisfied. Since the wave equation in Laplace domain (2.24) is a second-

order differential equation with respect to x, the general solution of is derived [95] as

Q(s, x) = C1(s)e
x
c
s + C2(s)e

−x
c
s (2.29)

where C1(s) and C2(s) represent the integral constants which are determined by the boundary conditions.

By using the boundary conditions (2.27) and (2.28), the integral constants can be derived as

C1(s) =
e−

2L
c
s

Den(s)
Fm (2.30)

C2(s) =
1

Den(s)
Fm (2.31)

where

Den(s) = Ms2(1 + e−
2L
c
s) +

√
ρκs(1− e−

2L
c
s). (2.32)

In this dissertation, the control design is to construct the motion control (i.e. position or force control)

for position or force at x = L. To construct the control system, the transfer functions from Fm to Q(s, 0)

and Q(s, L) are derived. The transfer functions are obtained by substituting x = 0 and x = L to (2.29)
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Motor with

Disturbance Observer

Load Side of

Resonant System

Fig. 2-5: Equivalent block diagram of wave system with disturbance observer.

with (2.30) and (2.31), which is represented as

Q(s, 0)

Fm
=

1 + e−
2L
c
s

Ms2(1 + e−
2L
c
s) +

√
ρκs(1− e−

2L
c
s)
. (2.33)

Q(s, L)

Fm
=

2e−
L
c
s

Ms2(1 + e−
2L
c
s) +

√
ρκs(1− e−

2L
c
s)
. (2.34)

The block diagram of the transfer function represented as (2.34) is shown in Fig. 2-4.

In this dissertation, the robust control of motor is conducted by using a disturbance observer [12] to

control tip response accurately. By using the disturbance observer, the reaction force F reac(s, 0) from

the wave system is canceled out. Fig. 2-5 shows the equivalent block diagram when the disturbance

observer is implemented. In this case, the transfer functions represented as (2.33) and (2.34) are changed

as

Q(s, 0)

Q̈ref
=

1 + e−
2L
c
s

s2(1 + e−
2L
c
s) + 1

Mn

s
s+gdis

√
ρκs(1− e−

2L
c
s)

(2.35)

Q(s, L)

Q̈ref
=

2e−
L
c
s

s2(1 + e−
2L
c
s) + 1

Mn

s
s+gdis

√
ρκs(1− e−

2L
c
s)

(2.36)

where gdis denotes the cut-off frequency of the disturbance observer. Under the assumption that cut-

off frequency of the disturbance observer gdis equals to ∞, the transfer function from the acceleration

reference Q̈ref , which is new input, to Q(s, x) is derived as

Q(s, x)

Q̈ref
=

1

s2
e−

x
c
s + e−

2L−x
c

s

1 + e−
2L
c
s

. (2.37)

It is noted that Qm = 1
s2
Q̈ref is realized by the disturbance observer. Block diagram of (2.37) is shown

in Fig. 2-6. In Fig. 2-6, it can be seen that there are four waves. The wave A is a wave traveling to x

– 16 –
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Reflected

Waves

A

B

D

C

Fig. 2-6: Block diagram of wave system with disturbance-observer-implemented motor with gdis = ∞
from Qm to Q(s, x).

from the left side of x (i.e. motor side). On the other hand, the wave C is approaching to x from the right

side of x (i.e. the tip side). The position Q(s, x) is generated by superposition of the waves A and C.

The waves A and C are reflected at x = L, and they are fedback to x = 0 (the motor side). In addition,

the transfer function from Q̈ref to Q(s, L) is derived as

Q(s, L)

Q̈ref
=

1

s2
2e−

L
c
s

1 + e−
2L
c
s
. (2.38)

As shown in the transfer function (2.38), there is time delay in the denominator of the transfer function.

In this case, the poles of the wave system can be analytically derived as

s =
c

2L
(2n− 1)πj (2.39)

where n is the integer number. It turns out that the poles of the wave system are located on imaginary

axis. In other words, because the poles do not have real-axis component, the response of Q(s, L) vibrates.

The block diagram of (2.38) is shown in Fig. 2-7. In Fig. 2-7, the block “2” means the waves A and C

corresponding to those shown in Fig. 2-6. In addition, the reflected wave which travels to x = 0 is

corresponding to the waves B and D. From the control-theoretical point of the view, if the time delay is

omitted from the denominator of the transfer function.
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Reflected

Waves

Fig. 2-7: Block diagram of wave system with disturbance-observer-implemented motor with gdis = ∞.

Fig. 2-8: Block diagram of feedback system including input-output time delay.

2.4 Transfer Function of Time-delay System based on Wave Equation

In previous part, the resonant system is modeled as the wave equation, and it is shown that the transfer

function of the wave equation comprises the time-delay elements. In addition, the block diagram of the

wave equation is obviously similar to that of a typical time-delay system which includes input-output

time delay. The block diagram of a time-delay system is shown in Fig. 2-8. In Fig. 2-8, C(s), G(s),

and T stand for the feedback controller, the plant, and time delay, respectively. The transfer functions

from the command to the position response and from the command to the acceleration reference are

represented as

Q(s)

R(s)
=

C(s)G(s)e−Ts

1 + C(s)G(s)e−2Ts
(2.40)

Q̈ref

R(s)
=

C(s)

1 + C(s)G(s)e−2Ts
. (2.41)

It can be guessed that there is an equivalence or similarity between wave and time-delay systems. Con-

sidering the above, the wave representation of time-delay system is introduced in this part.

First of all, it is assumed that the time-delay system satisfies the wave equation, which is represented

as

∂2q̃(t, x)

∂t2
= c̃2

∂2q̃(t, x)

∂x2
(2.42)
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where c̃ stands for the equivalent propagation velocity of the wave in the time-delay system. ⃝̃ means

the variable of the wave system corresponding to the time-delay system. The relation between the time

delay T , equivalent system length L̃, and equivalent propagation velocity of the wave c̃ is represented as

T =
L̃

c̃
. (2.43)

The boundary conditions of the time-delay system in the Laplace domain are defined as

Q̃(s, 0) =
C(s)G(s)

1 + C(s)G(s)
R(s) (2.44)

Q̃(s, L̃) = Q(s)

=
C(s)G(s)e−

L̃
c̃
s

1 + C(s)G(s)e−2 L̃
c̃
s
R(s). (2.45)

Eq. (2.44) means that the position input for the time-delay system is represented by using the wave

equation. On the other hand, (2.45) is set as the position response Q(s) and is rewritten by using the

transfer function (2.40).

Next, the transfer functions from R(s) to Q̃(s, x) and Q̃(s, L) are derived. The general solution of

(2.42) is derived as

Q̃(s, x) = C̃1(s)e
−x

c̃
s + C̃2(s)e

x
c̃
s (2.46)

where C̃1 and C̃2 stand for the integral constants. C̃1 and C̃2 are determined by the boundary conditions

(2.44) and (2.45), which are derived as

C1(s) =
1

1 + C(s)G(s)e−2 L̃
c̃
s
Q̃(s, 0) (2.47)

C2(s) =
C(s)G(s)e−2 L̃

c̃
s

1 + C(s)G(s)e−2 L̃
c̃
s
Q̃(s, 0). (2.48)

By substituting the integral constants to the general solution, the transfer function from Q̃(s, 0) to Q̃(s, x)

is derived as

Q̃(s, x)

Q̃(s, 0)
=

e−
x
c̃
s + C(s)G(s)e−

2L̃−x
c̃

s

1 + C(s)G(s)e−2 L̃
c̃
s

. (2.49)

The block diagram of (2.49) is shown in Fig. 2-9. As shown in Fig. 2-9, the block diagram of time-delay

system represented by the wave equation is a similar structure as that of resonant system expressed by
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Reflected Waves

A

B

D

C

Fig. 2-9: Block diagram of wave representation of time-delay system from R(s) to Q̃(s, x).

Fig. 2-6. The difference between them is that waves B and C are affected by C(s)G(s). As for the

transfer function from Q̃(s, 0) to Q̃(s, L̃), it can be derived by substituting x = L̃ to (2.49). The transfer

function is derived as

Q̃(s, L̃)

Q̃(s, 0)
=

e−
L̃
c̃
s (1 + C(s)G(s))

1 + C(s)G(s)e−2 L̃
c̃
s
. (2.50)

It is noted that the transfer function from R(s) to Q̃(s, 0) is represented as (2.44). Hence, the block

diagram of time-delay system in Fig. 2-8 can be transformed into an equivalent block diagram based

on the wave equation in Fig. 2-10. Fig. 2-10 shows the block diagram for the wave representation of

time-delay system. The wave representation of the time-delay system also comprises position-input and

wave-transmission systems. This structure implies that the position-input system is not affected by the

wave-transmission system which is the same situation as the resonant system with a disturbance observer.

In addition, if C(s)G(s) equal to 1 in wave-transmission system, the wave representation of time-delay

system is identical with that of resonant system. According to the above, it is clarified that there exists

the similarity between resonant and time-delay systems.
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Reflected Waves

Position Input System Wave Transmission System

Fig. 2-10: Block diagram of wave representation of time-delay system from R(s) to Q̃(s, L̃).
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2.5 Summary of Chapter 2

In this chapter, the modeling of wave systems, which are a resonant system and a time-delay system,

was conducted based on wave equation. In addition, transfer functions for both resonant and time-

delay systems are derived for controlling the system. Remarkable fact in these modelings is that both

systems are composed of the position-input system and the wave-transmission system. In addition, the

wave which is fedback from tip position to position-input system induces vibrations. Therefore, in other

words, the cause of vibrations in the wave systems is the reflected wave. Therefore, it is needed to

eliminate the reflected wave to suppress the vibrations in both systems.
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Chapter 3

Vibration Suppression of Wave Systems
Based on Reflected Wave Rejection

3.1 Introduction

In this chapter, a reflected wave rejection [86] is proposed to suppress the vibrations for wave systems.

From the point of view of the wave transmission, the vibrations occur due to superposition of traveling

and reflected waves. Therefore, elimination of the reflected wave contributes to suppress the vibrations.

The reflected wave rejection is a core technique in this dissertation.

The contents of this chapter is as follow. Section 3.2 explains a basic concept and structure of reflected

wave rejection. In Section 3.3, the reflected wave rejection is applied to the position-control of resonant

system. Section 3.4 analyzes the reflected wave rejection based on a open-loop transfer function and

sensitivity and complementary-sensitivity functions. Experiments of position control are performed to

verify the effect of the proposed method in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.2 Basic Concept of Reflected Wave Rejection

3.2.1 Structure

In this part, vibration suppression based on the reflected wave rejection is proposed. As mentioned

in the previous chapter, the cause of vibration in wave system is a reflected wave which is reflected at

tip position. Therefore, the vibration suppression is achieved if the reflected wave is eliminated from the

wave system. In this dissertation, the reflected wave is estimated and feedforward-compensated by the
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Fig. 3-1: Block diagram of wave system with reflected wave.

proposed reflected wave rejection scheme.

Before explaining the reflected wave rejection, the reflected wave in the wave system shown in Fig. 2-

7 is defined. For the sake of simplicity, although the reflected wave rejection for Fig. 2-7 is explained,

the reflected wave rejection a for time-delay system can be derived as well as that of resonant system (It

is explained in Chapter 5). In addition, it is assumed that the ideal acceleration control is achieved by the

disturbance observer (i.e. gdis = ∞).

First of all, the reflected wave, which is a cause of vibration, is derived. The transfer function repre-

sented as (2.38) is transformed into

Q(s, L) = e−
Ls
c

[
Q(s, 0) +Q(s, 0)− e−

L
c
sQ(s, L)

]
. (3.1)

In (3.1), last two terms in right hand side are defined as reflected wave in this dissertation. Therefore, the

reflected wave Qrfl is represented as

Qrfl =
[
Q(s, 0)− e−

L
c
sQ̃(s, L)

]
. (3.2)

The reflected wave defined in (3.2) includes wave B and D shown in Fig. 2-6. Fig. 3-1 shows the block

diagram of the wave system considering the reflected wave. From Fig. 3-1, if the reflected wave is

omitted from the wave system, the wave system is obviously stabilized because only one time-delay

element, which refers the traveling wave, remains at wave-transmission system.

In this dissertation, the reflected wave rejection is proposed in order to suppress the residual vibrations

on the wave system. The reflected wave rejection has a reflected-wave estimator and a feedforward

compensator for the reflected wave. The block diagram of the reflected wave rejection is shown in

Fig. 3-2. In Fig. 3-2, Q̂rfl, Q
cmp
rfl , and gr stand for the estimated reflected wave, the compensation value

for reflected wave, and the cut-off frequency, respectively. At the reflected-wave estimator, the reflected

wave is estimated by using the nominal value of the propagation time of the wave Ln/cn as follow,

Q̂rfl =
[
Q(s, 0)− e−

Ln
cn

sQ(s, L)
]
. (3.3)
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Acceleration Control

System

Fig. 3-2: Block diagram of reflected wave rejection.

The estimated reflected wave multiplied by the inverse system of the acceleration control system is

fedback to the acceleration reference to eliminate the reflected wave as same manner as disturbance

compensation by the disturbance observer. Therefore, the compensation value for the reflected wave is

generated as

Qcmp
rfl =

(
grs

s+ gr

)2

Q̂rfl. (3.4)

In calculation process of (3.4), the low-pass filter with cut-off frequency gr is used to make the inverse

system of acceleration control system (1/s2)−1 be proper transfer function. By utilizing the compen-

sation value, the actual reflected wave is canceled out by feedforward of the estimated reflected wave.

Equivalent block diagram of Fig. 3-2 is shown in Fig. 3-3. From Fig. 3-3, it is found that effect of the

reflected wave rejection is applying transfer function, which has characteristics of high-pass filter, to the

actual reflected wave. Therefore, the actual reflected waves at low-frequency area are suppressed. The

transfer function from the acceleration reference to the tip position in Fig. 3-2 is represented as

Q(s, L)

Q̈ref
=

1

s2
e−

L
c
sGr(s) (3.5)

where

Gr(s) =
2s2 + 2grs+ 2g2r
s2 + 2grs+ 2g2r

1

1− s2+2grs
s2+2grs+2g2r

e−
L
c
s
. (3.6)
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Fig. 3-3: Equivalent block diagram of Fig. 3-2.

Fig. 3-4 shows the bode diagram of the closed-loop transfer function from the acceleration reference

Q̈ref to the tip position Q(s, L) when the cut-off frequency gr changes from 0 rad/s to 1000 rad/s. From

Fig. 3-4, it turns out that the vibrations are suppressed by increasing the cut-off frequency. If the cut-

off frequency gr equals to enough high value (i.e. gr ≈ ∞) in (3.5), the transfer function from the

acceleration reference to the tip position becomes

Q(s, L)

Q̈ref
≈ 1

s2
e−

L
c
s. (3.7)

From (3.7), it is found that there is no time-delay in the denominator of the transfer function. In addition,

the transfer function expressing the wave-transmission system becomes a simple time delay. Therefore,

the wave system without the reflected wave can be regraded as equivalent time-delay system. This regard

is useful for integrating the resonant and time-delay systems, and it will be explained in Chapter 6.

3.2.2 Parameter Setting

In order to implement the reflected wave rejection, it is needed to identify the nominal propagation

time of the wave Twn = Ln/cn. This part explains how to set the nominal propagation time of the wave

Twn. First of all, from theoretical values of the poles of wave system represented as (2.39), the first-order

resonant frequency is expressed as

ω1 =
π

2Tw
. (3.8)

By using the above equation and previously-identified value of the first-order resonant frequency, the

nominal propagation time of the wave is set as

Twn =
π

2ω̃1
(3.9)

where ω̃1 denotes the identified value of the first-order resonant frequency.
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Fig. 3-4: Bode diagram of reflected wave rejection.

Wave System without

Reflected Wave

Fig. 3-5: Fully closed-loop control of equivalent time-delay system.

3.3 Application to Position Control

3.3.1 Fully closed-loop Type

In this part, fully closed-loop control of wave system is proposed. The fully closed-loop control sys-

tem is designed based on the equivalent time-delay system represented as (3.7). Block diagram of the

fully closed-loop control system is shown in Fig. 3-5. In Fig. 3-5, R(s) and C(s) denote the command

and controller, respectively. From Fig. 3-5, because there exists the time delay in the feedback loop, the

stability of the feedback system is affected by the controller bandwidth. If the wide controller bandwidth
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is required, time-delay compensation is needed to construct the stable feedback system. In this disserta-

tion, a communication-disturbance observer (CDOB) [77] is used as time-delay-compensation method.

The communication-disturbance observer has advantage whose the time-delay model is not needed for

the implementation, although a Smith predictor [74], which is the most typical time-delay-compensation

method, needs both time-delay and plant models.

Block diagram of the fully closed-loop control of wave system by using the time-delay compensation

is shown in Fig. 3-6. In Fig. 3-6, gcdob and Qcmp
cdob stand for the cut-off frequency of CDOB and compen-

sation value of CDOB, respectively. In the proposed method, the reflected wave rejection is implemented

in the inner loop to suppress the vibration and to make the wave system be the equivalent time-delay sys-

tem. Then, the CDOB-based time-delay compensation is conducted in the outer loop. The compensation

value generated by the CDOB is represented as

Qcmp
cdob =

gcdob
s+ gcdob

[
1

s2
Q̈ref −Q(s, L)

]
. (3.10)

According to the above, the acceleration reference is generated as

Q̈ref = C(s)
[
R(s)− (Q(s, L) +Qcmp

cdob)
]
. (3.11)

By applying the input expressed by (3.11), the transfer function from the command R(s) to the tip

position Q(s, L) is derived as

Q(s, L)

R(s)
=

C(s)e−
L
c
s

s2 + C(s)L(s)
Gr(s)

s2 + C(s)Lc(s)

s2 + C(s)Lc(s) + C(s)Gr(s)e
−L

c
s(1− Lc(s))

(3.12)

where

Lc(s) =
gcdob

s+ gcdob
. (3.13)

If the cut-off frequencies gr and gcdob are enough high values, the transfer function represented as (3.12)

becomes

Q(s, L)

R(s)
=

C(s)

s2 + C(s)
e−

L
c
s. (3.14)

As for the controller C(s), since C(s) will be fine if it can allocate two poles, C(s) is set as a PD

controller, which is represented as

C(s) = Kp +Kds (3.15)
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Wave SystemMotor with

DOB
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Inverse System of

Acceleration Control

System

Fig. 3-6: Whole block diagram of fully closed-loop control of equivalent time-delay system with time-de-
lay compensation.

where Kp and Kd denote the proportional gain and differential gain, respectively.

Advantage of the fully closed-loop position control with reflected wave rejection is that it is easy

to integrate the time-delay system because the the resonant system becomes the equivalent time-delay

system by reflected wave rejection. The detail of the integration of resonant and time-delay systems

are explained in Chapter 6. In contrast, disadvantage is low disturbance suppression performance due to

implementation of the time-delay compensation. If the disturbance suppression is desired to be improved,

the time-delay compensation should be omitted and the controller bandwidth should be set low value to

maintain stability, or a wave-based disturbance observer, which is proposed in Chapter 7, should be

implemented.
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Reflected Wave Rejection

Wave SystemMotor with

DOB

Reflected Wave

Estimator

Inverse System of

Position-Controlled Motor

Fig. 3-7: Block diagram of semi-closed-loop type reflected wave rejection.

3.3.2 Semi-closed-loop Type

This part proposes the semi-closed-loop type position control with reflected wave rejection. Compared

with fully closed-loop type, the semi-closed-loop type has the advantage that suppression of disturbance

acting on the motor is better than that of fully closed-loop type.

The block diagram of the semi-closed-loop type position control with reflected wave rejection is shown

in Fig. 3-7. In this case, the motor is position-controlled by a PD controller in inner loop. On the other

hand, the reflected wave rejection is implemented at outer loop. Therefore, the compensation value

generated by the reflected wave rejection is derived as

Q′cmp
rfl =

gr
s+ gr

s2 +Kds+Kp

Kds+Kp
Q̂rfl. (3.16)

The acceleration reference which is input to the motor is represented as

Q̈ref = (Kp +Kds)(Q
cmd −Q′cmp

rfl −Qm). (3.17)

By using the acceleration reference, the closed-loop transfer function from the command R(s) to the tip

position Q(s, L) is represented as

Q(s, L)

R(s)
=

Kds+Kp

s2 +Kds+Kp

2e−
L
c
s

1 + L(s) + (1− L(s))e−2L
c
s
. (3.18)
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If the cut-off frequency gr is enough high value, the transfer function becomes

Q(s, L)

R(s)
≈ Kds+Kp

s2 +Kds+Kp
e−

L
c
s. (3.19)

In the ideal condition (gr → ∞), the closed-loop transfer function expressed by (3.19) is same as that of

the fully closed-loop type represented as (3.14). On the other hand, because the semi-closed-loop position

control with reflected wave rejection has position controller implemented in inner loop, the suppression

performance of disturbance acting on the motor side is better to that of fully closed-loop type position

control with reflected wave rejection. It is noted that, although the fully closed-loop controller has

better disturbance suppression performance at tip side in general, time-delay compensation for equivalent

time-delay in the fully closed-loop control system explained in previous part degrades the suppression

performance of disturbance acting on both motor and tip sides. Therefore, if there is no input-output

time delay (e.g. sensor delay, communication delay) in the wave system, the semi-closed-loop control

with reflected wave rejection.

3.4 Analyses of Reflected Wave Rejection-based Vibration Control

The previous section explained the basic concept and structure of the reflected wave rejection to sup-

press the residual vibrations. Physical meaning of reflected wave rejection is obvious, and it is to elimi-

nate reflected wave from the wave system. However, the vibration-suppression performance is not clari-

fied from the control-theoretical point of view. This part analyzes the vibration-suppression performance

from the control-theoretical point of view.

3.4.1 Analysis Based on Open-loop Transfer Function

In order to analyze the performance of the reflected wave rejection, the block diagram of reflected

wave rejection-based position control shown in Fig. 3-7 is transformed into the equivalent block diagram

shown in Fig. 3-8. Here, blue-colored parts in Fig. 3-8 means equivalent structures of the reflected wave

rejection. From Fig. 3-8, an open-loop transfer function can be derived as

Go = −1

2
F (s)e−

Ln
cn

sGw(s) (3.20)
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Wave SystemMotor with
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Part of Reflected Wave Rejection
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Fig. 3-8: Equivalent block diagram of semi-closed-loop control with reflected wave rejection.

where

Gw(s) =
2e−

L
c
s

1 + e−
2L
c
s

(3.21)

F (s) =
2s+ 2gr
s+ 2gr

gr
s+ gr

=
2gr

s+ 2gr
. (3.22)

Here, Gw(s) and F (s) denote the transfer function from Qm to Q(s, L) and the filter caused by the

reflected wave rejection, respectively. Fig. 3-9 shows the bode diagram of Gw(s) when L
c = π

2 (i.e.

n-th pole is ωn = (2n − 1) rad/s). From Fig. 3-9, the resonant peaks can be observed at each resonant

frequency. In addition, −180 degree phase delay occurs at each resonant frequency.

If the reflected wave rejection ideally works (i.e. gr → ∞), F (s) approaches to 1. Therefore,

−1
2e

−Ln
cn

s intends a main compensator to suppress the resonance by the reflected wave rejection. The

frequency response of −1
2e

−Ln
cn

s are represented as∣∣∣∣−1

2
e−

Ln
cn

s

∣∣∣∣ =
1

2
(3.23)

∠− 1

2
e−

Ln
cn

s = π − Ln

cn
ω

= π − π

2ω̃1
ω. (3.24)

Bode diagram of −1
2e

−Ln
cn

s is shown in Fig. 3-10. From Fig. 3-10, it is found that the gain characteristic

is constant over all frequency area. On the other hand, a phase characteristic is varied from 180 degree to
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Fig. 3-9: Bode diagram of tip side of wave system Gw.

∞ degree. It is noted that a phase at low-frequency area is 180 degree because of the positive feedback.

Therefore, −1
2e

−Ln
cn

s has phase lead and lag characteristics alternately as following area,

Lead : 4(n− 1)
π

2

cn
Ln

< ω < 4

(
n− 1

2

)
π

2

cn
Ln

(3.25)

Lag : 4

(
n− 1

2

)
π

2

cn
Ln

< ω < 4n
π

2

cn
Ln

(3.26)

where n = 1, 2, 3, · · · . It is noted that, in (3.25) and (3.26), π
2

cn
Ln

corresponds to the first-order resonant

frequency ω1 as shown in (2.39). The phase compensation by −1
2e

−Ln
cn

s at each resonant frequency

(ωn = c
2L (2n− 1)π) is represented as follow,

Phase comp. value = (−1)2n−190 degree. (3.27)

Fig. 3-11 shows the Nyquist diagram of the open-loop transfer function represented as (3.20) when

frequency ω is varied from 0 rad/s to ∞ rad/s. For the sake of simplicity, the wave-transmission system
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Fig. 3-10: Bode diagram of compensator −1
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−Ln
cn

s in reflected wave rejection.

Gw is approximated by

Gw =
2e−

L
c
s

1 + e−
2L
c
s

=
2

e
L
c
s + e−

L
c
s

=
1

cosh L
c s

=
1(

1 + 1
ω2
1
s2
)(

1 + 1
ω2
2
s2
)
· · ·

≈ ω2
1ω

2
2(

s2 + ω2
1

) (
s2 + ω2

2

) . (3.28)

The approximated transfer function (3.28) considers the first-order and second-order resonant frequen-

cies. From Fig. 3-11, the resonance is expressed by the circle on Nyquist diagram. It is noted that, if

the damping ratio equals to 0, the resonance is expressed by the circle with infinite radius. In Fig. 3-11,

very small damping ratio is considered for the simplicity. As seen in trajectory of Gw drawn by blue line

in Fig. 3-11(a), it is found that the circle expressed by first-order resonant frequency gets across third

and fourth quadrants on complex plane. If the phase delay occurs at the resonant frequency, the system

becomes unstable from the point of view of the Nyquist stability criterion because the circle encloses

(−1, 0). Hence, phase-lead compensation is needed to stabilize the first-order resonance. On the other
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hand, the circle drawn by the second-order resonant frequency gets across first and second quadrants on

complex plain. In this case, if phase lead occurs at the resonant frequency, the system becomes unstable

from the point of view of the Nyquist stability criterion. Therefore, phase-lag compensation is needed

to stabilize the second-order resonance. As well as cases of the first-order and second-order resonances,

phase-lead compensations are needed for stabilizing (2n − 1)-th order resonant frequency, and phase-

lag compensations are needed for stabilizing 2n-th order resonant frequency. It is noted that, which

compensation is needed for stabilizing the resonances is related to residue of each vibration mode [37].

If the reflected wave rejection is applied to the wave system, the trajectories changes blue line to

yellow line in Fig. 3-11. The circles drawn by the first-order and second-order frequencies get across

the first and fourth quadrants on complex plain. This location is the farthest from the point (−1, 0).

At this location, phase margin is 90 degree at each resonance if there is no damper in the wave system.

Therefore, it is found that the reflected wave rejection stabilizes all of the wave system.

In the above discussion, it is assumed that the cut-off frequency of the reflected wave rejection is set as

enough high value (i.e. gr → ∞). If the cut-off frequency is finite value, phase compensation represented

as (3.27) is not realized at high-frequency area because F (s) itself has phase-lag characteristic whose it

is −90 degree at high-frequency area. In the case, the phase compensation value including the effect of

F (s) is represented as

Phase comp. value = (−1)2n−1π

2
− tan−1 ω

2gr
rad. (3.29)

Because tan−1 ω/2gr = π/2 under ω = ∞, the phase compensation value at enough-high frequency

area becomes 0. At the high-frequency area, the resonances are not stabilized, but they are not destabi-

lized, in other words they are stability limit. Therefore, it is needed to set the cut-off frequency gr enough

high value. Additionally, in practical situation, it is no problem because gain of the plant typically de-

creases at high-frequency area.
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Fig. 3-11: Nyquist diagram for analyzing performance of reflected wave rejection.
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Fig. 3-12: Block diagram of typical feedback system.

3.4.2 Performance Analysis based on Sensitivity and Complementary-Sensitivity Func-
tions

This part analyzes the performance of vibration suppression based on sensitivity and complementary-

sensitivity functions.

Preliminary

Fig. 3-12 shows block diagram of a typical feedback system. In Fig. 3-12, C(s), G(s), H(s), R(s),

Y (s), D(s), and N(s) denote the controller, the plant, the feedback compensator, the command, the

output, the disturbance, and the noise, respectively. The sensitivity function S(s) and complementary-

sensitivity function T (s) are defined as

S(s) =
1

1 +Go
(3.30)

T (s) =
Go

1 +Go
(3.31)

where Go stands for the open-loop transfer function, which is represented as

Go = C(s)G(s)H(s). (3.32)

The sensitivity function expresses the transfer function from the disturbance D(s) to the output Y (s).

Considering the above, the sensitivity function should be set 0. On the other hand, the complementary-

sensitivity function is related to the transfer function from R(s) to Y (s) or transfer function from N(s)

to Y (s). However, from (3.30) and (3.31), there is trade off between sensitivity and complementary-

sensitivity functions as

S(s) + T (s) = 1. (3.33)
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Therefore, in general, the sensitivity function should be set 0 in low-frequency area for suppressing the

disturbance. On the other hand, the complementary-sensitivity function should be 0 in high-frequency

area for considering noise effect. In addition, because a transfer function from modeling error to output

is also represented as a the complementary-sensitivity function, the complementary-sensitivity function

should have low-pass characteristic for robust stability.

It is important to maintain the nominal performance under the existence of modeling error, which is

called robust performance. Because the nominal performance is represented as a the complementary-

sensitivity function, the complementary-sensitivity function is desired not to change under existence of

modeling error. Here, the variation rates of plant and complementary-sensitivity function are defined as

∆G =
Gn(s)− G̃(s)

G̃(s)
(3.34)

∆T =
Tn(s)− T̃ (s)

T̃ (s)
(3.35)

where ⃝̃ denotes the variation. By using T̃ = CG̃/(1 + CG̃), the relationship between ∆G and ∆T is

derived as

∆T = S(s)∆G. (3.36)

Eq. (3.36) means that sensitivity function decreases the effect of variation of plant model to a complementary-

sensitivity function.

Analysis of Reflected Wave Rejection

The sensitivity and complementary-sensitivity functions of the proposed control system shown in

Fig. 3-10 are derived as

Sw(s) =
1

1− 1
2F (s)e−

Ln
cn

sGw(s)
(3.37)

Tw(s) =
−1

2F (s)e−
Ln
cn

sGw(s)

1− 1
2F (s)e−

Ln
cn

sGw(s)
. (3.38)

Fig. 3-13 shows sensitivity and complementary-sensitivity functions represented as (3.37) and (3.38)

when the cut-off frequency of the reflected wave rejection equals to infinity (i.e. F (s) ≈ 1). It is noted

that the resonant frequencies set (2n − 1) rad/s (Tw = π/2) for the sake of simplicity. In this case, the
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sensitivity and complementary-sensitivity functions are expressed as

Sideal
w = 1 + e−2Ln

cn
s (3.39)

T ideal
w = −e−2Ln

cn
s. (3.40)

According to the above equations and bode diagram, gain of the sensitivity function decreases at res-

onance frequencies. Therefore, considering (3.36), it is found that effect of variation of resonant fre-

quencies to nominal performance are decreased by sensitivity function generated by the reflected wave

rejection. However, since gain of the sensitivity function remains the constant value at low-frequency

area, steady state error occurs by the external force acting on the tip. As for the suppression of external

force, the wave-based observer, which is described in Chapter 7, is implemented. On the other hand, gain

of complementary-sensitivity function equals to 0 dB over all frequency area. It implies the good tracking

performance which does not include the vibrations, but robust stability is low because the gain remains

constant value at high-frequency area. Therefore, it is needed to set gr appropriate value considering the

robust stability of high-frequency area.

Fig. 3-14 shows the bode diagram of sensitivity and complementary-sensitivity functions when the

cut-off frequency gr is varied from 20 rad/s to 100 rad/s with step of 20 rad/s. From Fig. 3-14(a),

the characteristic of the sensitivity function does not change so much by gr. It is also found that it

is impossible to adjust the characteristic of the sensitivity function at low-frequency area by changing

gr. On the other hand, from Fig. 3-14(b), the bandwidth of the complementary-sensitivity function is

determined by gr, which is related to robust stability. From (3.38), because the complementary sensitivity

function has F (s) which is a low-pass filter, setting gr lower value leads to increase robust stability. In

contrast, vibration-suppression performance increases by setting gr higher value. Hence, it can be found

that there is a trade-off between vibration suppression performance and robust stability. According to the

trade-off, it is better to set gr higher value unless the system destabilizes.
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Fig. 3-13: Bode diagram of sensitivity and complementary-sensitivity functions of position control with
reflected wave rejection when F (s) = 1.
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Fig. 3-14: Bode diagram of sensitivity and complementary-sensitivity functions when the cut-off fre-
quency gr is varied from 20 rad/s to 100 rad/s.
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Fig. 3-15: Experimental setup.

3.5 Experiments of Position Control with Reflected Wave Rejection

3.5.1 Experimental Setup

To verify the effectiveness of the proposed method, experiments on position control of flexible arm

are performed. Experimental setup is show in Fig. 3-15. The experiments consider propagation of angle

defined by deflection which is described in section 2.2.2. The flexible arm is mounted on the direct drive

rotary motor with the encoder (resolution: 220 pulse/rev). The load position q(t, L) is obtained by the

position sensitive detector (PSD) produced by Hamamatsu Photonics K.K. The PSD detects the position

of the irradiation point which is generated by the laser diode mounted on the tip position (x = L) and

output analog voltage in proportional to the position. The analog voltage is measured by A/D converter

board. The above sensing method of tip position is same as the method [96]. The real-time control

system is realized by Linux OS with real time application interface (RTAI 3.7).

The experimental parameters are shown in Fig. 3.1. In experiments, a step command (r(t) = 0.005

rad) is applied to the system at t = 2.0.

In this experiment, the semi-closed-loop type reflected wave rejection is performed. The performance

of the proposed method is compared with that of fully closed-loop state feedback control. The block

diagram of the compared method is shown in Fig. 3-16. In Fig. 3-16, Kpm, Kvm, Kpl, Kvl denote the

state feedback gains. Kp, Ki, and Kd stand for the PID controller gain. The control method shown in

Fig. 3-16 considers first-order resonant frequency ωm and anti-resonant frequency ωa. The characteristic
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Motor Load

Fig. 3-16: Block diagram of fully closed-loop PID control with state feedback of two-mass resonant
system.

equation is represented as

Den(s) = s5 +Kvms4 + (Kpm + ω2
m)s3 + (Kvm +Kvl +Kd)ω

2
as

2 +

(Kpm +Kpl +Kp)ω
2
as+Kiω

2
a. (3.41)

The gains for pole assignment at 5-multiple roots s = −ωn and zero assignment at 2-multiple roots

s = −ωz are derived as

Ki =
ω5
n

ω2
a

(3.42)

Kp =
2Ki

ωz
(3.43)

Kd =
Ki

ω2
z

(3.44)

Kpm = 10ω2
n − ω2

m (3.45)

Kvm = 5ωn (3.46)

Kpl =
5ω4

n

ω2
a

−Kpm −Kp (3.47)

Kvl =
10ω3

n

ω2
a

−Kvm −Kd. (3.48)

3.5.2 Experimental Results

Experimental results of the compared and proposed methods when ωn = ω̃1 shown in Figs. 3-17 and

3-18. From Figs. 3-17 and 3-18, it can be found that both methods suppress the vibration well. It can be

observed in Fig. 3-18 that steady state error occurs because of sensitivity function of the proposed method
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Table 3.1: Experimental parameters for the semi-closed-loop reflected wave rejection.
Parameter Description Value

Ts Sampling time 50 µs
ω̃1(=ωa) Identified 1st resonant frequency 38 rad/s

Tw Propagation time of wave π/(2ω̃1) s
Ktn Nominal torque coefficient 1.18 Nm/A
Jn Nominal inertia of motor 0.0035 kgm2

Kp Position gain ω2
n

Kv Velocity gain 4.0ωn

Twn Nominal propagation time of wave π/(2ω1n) s
gdis Cut-off freq. of DOB 2000 rad/s
gr Cut-off freq. of reflected wave rejection 65 rad/s

as mentioned in previous part. The steady state error can be eliminated by the wave-based disturbance

observer described in Chapter 7.

Figs. 3-19 and 3-20 show the experimental results of both methods when ωn = 1.2ω̃1. From Fig. 3-

19, it is found that first-order resonance is well suppressed. However, the second-order resonance is

excited, in other words, the spillover occurs. Hence, it is difficult to improve the control bandwidth by

the fully closed-loop state feedback control shown in Fig. 3-16. On the other hand, Fig. 3-20 shows that

the reflected wave rejection suppresses both first and second order resonances. Therefore, it is possible

to improve the control bandwidth by the proposed method.
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Fig. 3-17: Experimental results of state feedback control with ωn = ω̃1.
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Fig. 3-18: Experimental results of reflected wave rejection with ωn = ω̃1.
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Fig. 3-19: Experimental results of state feedback control with ωn = 1.2ω̃1.
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Fig. 3-20: Experimental results of reflected wave rejection with ωn = 1.2ω̃1.
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3.6 Summary of Chapter 3

The basic concept and structure of reflected wave rejection were proposed in this chapter. The reflected

wave rejection is composed of reflected wave estimator and feedforward compensator for reflected wave.

By the reflected wave rejection, the actual reflected wave is canceled out by the feedforward of the

reflected wave. Then, the two types of position control of wave system with reflected wave rejection are

proposed: the fully closed-loop type and the semi-closed-loop type.

Next, effect of reflected wave rejection is analyzed by use of open-loop transfer function and Nyquist

diagram. By the analysis, effect of the reflected wave rejection is equivalent to infinite-series of phase

lag and lead compensators. Under ideal condition (gr = ∞), the reflected wave rejection gives 90 degree

phase margin to each vibration mode. In addition, the reflected wave rejection is categorized to phase

stabilization method in vibration control methods.

Moreover, the sensitivity function and complementary-sensitivity function are derived for investigat-

ing the robust stability and robust performance. From the sensitivity function, because the gain is low

near the resonant frequencies, the reflected wave rejection has some robustness against the variation of

the resonant frequency. However, because the gain at low-frequency area is constant value, it means

that steady state error occurs when disturbance acts on the tip position. Hence, an additional disturbance

compensator is needed to be implemented, which will be explained in Chapter 6.

Finally, the validity of the proposed method was confirmed by the experiments of position control

of flexible arm. Additionally, the performance of the proposed method was compared by that of fully

closed-loop state feedback control.
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Chapter 4

Motion Control of Various Resonant
Systems

4.1 Introduction of Chapter 4

This chapter describes the reflected wave rejections for various resonant systems. First of all, the

reflected wave rejection considering damper in wave system [89] is proposed. The transfer function

of wave equation including damper is shown, and it is shown that the transfer function is composed

of time-delay-like element. Due to difficulty in implementation of the time-delay-like element, the

reaction-force-based-reflected wave rejection [90] with fractional low-pass filter is constructed. Then,

the reflected wave rejection considering mass on tip is proposed. In many industrial application, some

load is mounted at tip position. It is explained that the effect of the mass on tip position equals to all pass

filter [97]. Finally, Section 4.4 summarizes this chapter.

4.2 Reflected Wave Rejection Considering Damper Effect

4.2.1 Wave Equation Considering Damper Effect

This part explains reflected wave rejection considering damper effect. The typical wave equation

which considers only distributed spring has restriction that the resonant poles are located on the imag-

inary axis at regular intervals. Consideration of damper effect is able to alleviate the restriction, which

leads to extend the range of application for the reflected-wave-rejection-based vibration control. Wave
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equation considering damper is represented as

∂2q(t, x)

∂t2
= c2k

∂2q(t, x)

∂x2
+ c2d

∂

∂t

∂2q(t, x)

∂x2
(4.1)

where ck and cd are propagation velocities of the wave, which are represented as

ck =

√
κ

ρ
(4.2)

cd =

√
d

ρ
(4.3)

where ρ, κ and d denote the density of mass, the density of the spring, and the density of damping

coefficient, respectively. Furthermore, boundary conditions are represented as

q(t, 0) = qm(t) (4.4)
∂q(t, L)

∂x
= 0. (4.5)

(4.4) means applying position input by the motor at x = 0, and (4.5) means free end at x = L. Moreover,

initial conditions are represented as

q(0, x) = 0 (4.6)
∂q(0, x)

∂t
= 0. (4.7)

Using (4.4)–(4.7), a transfer function from Q(s, 0) to Q(s, x) is derived as

G(s, x) =
Q(s, x)

Q(s, 0)

=
e
− x

c(s)
s
+ e

− (2L−x)
c(s)

s

1 + e
−2 L

c(s)
s

(4.8)

where c(s) denotes the propagation velocity of the wave, and it is represented as

c(s) =
√

c2k + c2ds

= ck
√
1 + αs. (4.9)

In (4.9), α denotes the ratio of ck and cd. From (4.9), it is found that the propagation velocity depends on

frequency due to the damper elements. Finally, a transfer function from the position input Q(s, 0) = Qm

to the tip position Q(s, L) is derived as

Q(s, L)

Qm
=

2e
− Ls

c(s)

1 + e
− 2Ls

c(s)

. (4.10)

– 49 –



CHAPTER 4 MOTION CONTROL OF VARIOUS RESONANT SYSTEMS

Fig. 4-1: Block diagram of resonant system based on wave equation.

The transfer function has infinite number of poles which are located near the imaginary axis. Therefore,

vibrations occur on response of the tip position. The block diagram of the transfer function is shown in

Fig. 4-1. In Fig. 4-1, the negative feedback represents a reflected wave. In a concept of the wave, the

vibration is caused by superposition of traveling and reflected waves. If the reflected wave is eliminated,

vibrations caused by the resonances are suppressed.

4.2.2 Reflected Wave Rejection with Fractional-Order Low-Pass Filter

In this part, a vibration control of the resonant system by using a reflected wave rejection with a

fractional-order low-pass filter is proposed. By using the fractional-order low-pass filter, the reflected

wave including the damper effect is eliminated and vibration caused by the reflected wave is suppressed.

Reflected Wave Rejection Considering Damper Effect

A basic structure of reflected wave rejection has already been shown in Chapter 3. It is possible to

construct the reflected wave rejection for the wave system considering damper by replacing a time-delay

element e−
L
c
s in Fig. 3-2 a time-delay-like element e−

L
c(s)

s. Under assumption that such element can be

implemented, the reflected wave is estimated according to

Q̂rfl = F (s)(Qm −Q(s, L)e
− L

c(s)
s
)

= F (s)
1− e

−2 L
c(s)

s

1 + e
−2 L

c(s)
s
Qm (4.11)

where F (s) denotes the low-pass filter. In the derivation of (4.11), the transfer function shown in (4.10)

is used. Now, it is assumed that F (s) = 1 for the sake of simplicity of explanation. Then, the transfer

function from position input Qm to the tip position Q(s, L) is derived as

Q(s, L)

Qm
= e

− L
c(s)

s
. (4.12)
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Fig. 4-2: Bode diagram of element like time delay expressed as (4.12).

In (4.12), there is no e
− L

c(s)
s in the denominator of the transfer function. Bode diagram of transfer

function (4.12) is shown in Fig. 4-2. From Fig. 4-2, it turns out that vibrations caused by the resonances

are suppressed. When the parameter α in c(s) equals to 0, (4.12) becomes a time delay. If α becomes

higher value, phase delay is reduced.

However, in the actual implementation, it is difficult to implement the time-delay-like element e−
L

c(s)
s

in the digital computer because it is not a pure time-delay element. Therefore, for obtaining the effect

of the reflected wave rejection, (4.11) is transformed by using a reaction force F reac(s, 0) so that the

calculation process in estimation of the reflected wave for the reflected wave does not include the time-

delay-like element.

Firstly, by applying partial differentiation of (4.8) with respect to x, the torsion at x = 0 is derived as

∂Q(s, 0)

∂x
= − s

c(s)

1− e
−2 L

c(s)
s

1 + e
−2 L

c(s)
s
Qm. (4.13)

The reaction force at x = 0 is represented as

F reac(s, 0) = (κ+ ds)
∂Q(s, 0)

∂x

= − (κ+ ds)
s

c(s)

1− e
−2 L

c(s)
s

1 + e
−2 L

c(s)
s
Qm. (4.14)
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Fig. 4-3: Block diagram of reflected wave rejection with fractional order low-pass filter.

It can be seen that there exists a same part which is composed of time-delay elements in the right side of

(4.12) and (4.14). Hence, the estimated reflected wave can be expressed by using the reaction force. By

using (4.14), the estimated reflected wave (4.11) is transformed into

Q̂rfl =
1− e

−2 L
c(s)

s

1 + e
−2 L

c(s)
s
Qm

= −c(s)

s

∂Q(s, 0)

∂x

= −c(s)

s

1

κ+ ds
(κ+ ds)

∂Q(s, 0)

∂x

= −1

s

1
√
ρκ

√
1

1 + αs
F reac(s, 0). (4.15)

In (4.15), the reaction force F reac(s, 0) is estimated by a reaction-force observer [15]. Additionally,√
1

1+αs denotes a fractional-order low-pass filter, and how to implement it is explained in a next part.

The block diagram of whole control system is shown in Fig. 4-3. As well as the reflected wave

rejection shown in Chapter 3, the estimated reflected wave multiplied by the inverse system is fedback

to the position command. Hence, the compensation value for the reflected wave is represented as

Qcmp
rfl =

gr
s+ gr

s2 +Kds+Kp

Kp +Kds
Q̂rfl. (4.16)

Finally, the transfer function from the position command R(s) to the tip position Q(s, L) is represented

as

Q(s, L)

R(s)
=

Kp +Kds

s2 +Kds+Kp
e
− L

c(s)
s
. (4.17)
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Fig. 4-4: Bode diagram of fractional order low-pass filter.

According to the above equation, the wave system including damper effect can be stabilized by the

reflected wave rejection shown in Fig. 4-3.

Implementation of Fractional-Order Low-Pass Filter

In this part, implementation of the fractional-order low-pass filter is explained. The conventional re-

search of fractional-order calculus proposed implementation of the fractional order lead-lag compensator

by using a broken-line approximation [64]. In this dissertation, based on the above method, the fractional

order low-pass filter is approximated by the fractional order lead-lag compensator,√
1

1 + αs
≈

(
s
ωh

+ 1
s
ωb

+ 1

)0.5

(4.18)

where ωb =
1
α . If the parameter ωh equals to enough high value, this approximation is realized. (4.18) is

realized by using the broken-line approximation, which is represented as(
s
ωh

+ 1
s
ωb

+ 1

)0.5

=

N−1∏
i=0

s
ω′
i
+ 1

s
ωi

+ 1
(4.19)
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Load 2
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Fig. 4-5: Experimental setup.

where N denotes the number of approximation order. ωi and ω′
i are represented as

ωi =

(
ωh

ωb

) i+1
4

N

ωb,

ω′
i =

(
ωh

ωb

) i+3
4

N

ωb. (4.20)

Needless to say, if N is large value, (4.19) approaches the real one, but calculation cost becomes higher.

In this dissertation, considering the calculation cost, N is set as 6. Fig. 4-4 shows the bode diagram when

ωh changes from 1000 rad/s to 10000 rad/s every 1000 rad/s. It turns out that gain characteristic matches

the real one from 0 rad/s to ωh. On the other hand, phase characteristic matches the real one form 0 rad/s

to ωh
2 Therefore, bandwidth of the reflected wave rejection is limited form 0 rad/s to ωh

2 . The parameter

ωh should be set by considering the resonances which should be suppressed.

Next, how to set the parameter α is explained. Theoretical value of the parameter α is represented as

α =
d

κ
. (4.21)

In this dissertation, the parameter α is set by first and second order resonant frequencies. By using those

resonant frequencies, the parameter α is derived as

α =
x1x2(x2 − x1)

x22ω
2
1 − x21ω

2
2

√
x2ω2

1 − x1ω2
2

x1x2(x2 − x1)
(4.22)

where ω1 and ω2 denote the first and second order resonant frequencies, and xi (i = 1, 2) is represented

as

xi =

(
(2i+ 1)π

4L

)2

. (4.23)
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Table 4.1: Experimental parameters for control with reflected wave rejection considering damper.
Parameter Description Value

Ts Sampling time 0.1 ms
Ktn Nominal torque coefficient 3.33 N/A
Mn Nominal mass 0.245 kg
Kp Proportional gain 2250
Kd Differential gain 190
1
α Cut-off frequency of 14.1 rad/s

fractional-order low-pass filter
gr Cut-off frequency of 300 rad/s

reflected wave rejection
gdis Cut-off frequency of 1000 rad/s

disturbance observer
greac Cut-off frequency of 500 rad/s

reaction force observer
ω1 First-order resonance 47 rad/s
ω2 Second-order resonance 110 rad/s
L Length of a system 0.05 m

4.2.3 Experiments

Experimental Setup

In order to verify the effectiveness of the proposed method, experiments of position control are con-

ducted in a three-mass resonant system. The control software is written in C language under RTAI 3.7.

The experimental setup is shown in Fig. 4-5. In the experiments, three linear motors connected by springs

are used. The experiments consider linear motion as shown in Fig. 2-1. The right motor is controlled.

On the other hand, the left and central motors are used as load and not controlled. Position information

of each motor is obtained by linear encoders (resolution capability: 0.1 µm).

The experimental parameters are shown in Table 4.1. The resonant frequencies are obtained by con-

ducting the preliminary frequency identification. The parameter α is calculated by the first and second

resonant frequencies. For decreasing noise effect caused by derivation, pseudo derivations are used for

calculating the motor velocity and compensation value of the reflected wave.

In these experiments, the proposed method is compared with a method with a PD controller with the

disturbance observer. Moreover, the proposal is compared with a method with the reaction-force-based
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Fig. 4-6: Experimental results by PD controller with disturbance observer.

reflected wave rejection [90] which is in the case that α = 0.

Experimental Results

Experimental results of the proposed and conventional methods are shown in Figs. 4-6–4-8. From

Fig. 4-6, it is found that the vibration occurs on the response of the tip position because anti-resonance

zero is canceled out by the disturbance observer. On the other hand, from Fig. 4-7, it can be seen

that the vibration is suppressed by the reflected wave rejection. However, the overshoot occurs because

the conventional reflected wave rejection is based on assumption that poles of the resonant system are

located on the imaginary axis at regular intervals. From the results of the proposed method shown in

Fig. 4-7, not only the first-order resonance but also second resonance are well suppressed. However,

in experimental results of the proposed method, a little vibration like chattering effect occurs at motor

side. It is not caused by the resonance but caused by a friction included in the estimated reaction force

by the reaction-force observer. Therefore, it is necessary to identify the friction more accurately and the

accurate identification of the friction reduces the chattering effect. In addition, steady state errors occur

in all the results shown in Figs. 4-6–4-8. Steady state errors are caused by disturbance acting on the tip

position such as frictions included in linear slider. The steady state errors can be compensated by using

a disturbance obsever proposed in Chapter 7.
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Fig. 4-7: Experimental results of by conventional reflected wave rejection (α = 0).
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Fig. 4-8: Experimental results of by reflected wave rejection with fractional order low-pass filter.

4.3 Reflected Wave Rejection Considering Mass on Tip Position

4.3.1 Modeling of Resonant System Considering Mass on Tip Position

This part describes the modeling of the resonant system considering mass on tip position. The resonant

system dealt with in this part is shown in Fig. 4-9. In Fig. 4-9, qm, q(t, x), L, M , and Ml stand for the

motor position (angle), the position at x = L, the length of the flexible arm, the motor mass, and the tip

mass, respectively. The resonant system shown in Fig. 4-9 represents the flexible arm mounted on the
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Fig. 4-9: Resonant system modeled as wave equation considering tip mass.

rotary motor. The motor position qm and the tip position q(t, L) are measurable variables. The control

objective is a position control of tip angle q(t, L) without the residual vibrations caused by its flexible

mechanism.

The wave equation for the system dealt with in this part is same as (2.24), but the boundary condi-

tions for Fig. 4-9 are different. The boundary conditions for the resonant system considering mass are

represented as follows,

Q(s, 0) = Qm (4.24)
∂Q(s, L)

∂x
= −Ml

κ
s2Q(s, L) (4.25)

where Ml and κ represent the tip mass and the stiffness per unit length, respectively. Eq. (4.24) represents

that the motor implementing the DOB is mounted on x = 0. On the other hand, (4.25) means that the tip

mass is mounted on x = L. The general solution of wave equation is derived as

Q(s, x) = C1e
xs
c + C2e

−xs
c (4.26)

where C1 and C2 stand for the integral constants which are determined by the boundary conditions. By

using the boundary conditions (4.24) and (4.25), the transfer function from Qm to Q(s, x) can be derived

as follow,

Q(s, x)

Qm
=

e−
x
c
s +H(s)e−

2L−x
c

s

1 +H(s)e−
2L
c
s

(4.27)
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Fig. 4-10: Block diagram of wave system considering tip mass.

where

H(s) =
1− Mlc

κ s

1 + Mlc
κ s

. (4.28)

By substituting x = L to (4.28), a transfer function is derived as

Q(s, L)

Qm
=

(1 +H(s))e−
L
c
s

1 +H(s)e−
2L
c
s
. (4.29)

From (4.29), it turns out that the denominator of transfer function includes the time-delay elements.

Therefore, the residual vibrations on the response of Q(s, L) occur due to phase lag induced by time

delays. The block diagram of the resonant system is shown in Fig. 4-10. In Fig. 4-10, the enclosed part

denotes the wave reflected at x = L. 1 +H(s) means that the superposition of the wave traveling from

x = 0 and the wave reflected at x = L. Then, the reflected wave moves to x = 0, which is described

by a negative feedback in Fig. 4-10. Because the negative feedback makes the system vibrate, vibrations

are suppressed by eliminating the reflected wave.

The typical reflected wave rejection described in Chapter 3 deals with the wave equation without

considering the tip mass, which is equivalent to (4.29) with Ml = 0 (i.e. H(s) = 1.0). In that case,

because the characteristic equation represents 1+ e−2L
c
s = 0, the poles of the wave equation are derived

as s = c
2L(2n − 1)πj. Therefore, the conventional method can be only applied for the plant whose the

poles are located on imaginary axis at regular intervals. In the proposed approach, the restriction can be

removed by considering the effect of tip mass H(s).

4.3.2 Vibration Control Based on Reflected Wave Rejection Considering Mass on Tip

Reflected Wave Rejection Considering Mass on Tip

In this part, a novel reflected wave rejection for the plant shown in Fig. 4-10 which includes the effect

of tip mass. Firstly, the transfer function (4.29) from the motor position Qm to the tip position Q(s, L)
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Fig. 4-11: Block diagram of resonant system with reflected wave.

is transformed into

(1 +H(s)e−
2L
c
s)Q(s, L) = (1 +H(s))e−

L
c
sQm. (4.30)

Then, (4.30) is transformed into

Q(s, L) = e−
L
c
s
[
(1 +H(s))Qm −H(s)e−

L
c
sQ(s, L)

]
= e−

L
c
s
[
(1 +H(s))Qm −Q′

rfl

]
(4.31)

where Q′
rfl denotes the reflect wave going back to x = L, which is defined as

Q′
rfl = H(s)e−

L
c
sQ(s, L). (4.32)

The block diagram of the resonant system with the reflected wave Q′
rfl is shown in Fig. 4-11. In this

dissertation, to reject the reflected wave, the positive feedback of reflected wave, which is equivalent to

feedforward compensation, is conducted. In order to conduct the compensation, the reflected wave is

obtained as follows,

Q̂′
rfl = Hn(s)e

−Ln
cn

sQ(s, L) (4.33)

where subscript n denotes the nominal value preliminarily identified. By using the above reflected wave,

the feedforward compensation of reflected wave is conducted as shown in Fig. 4-12. In Fig. 4-12, gr and

R(s) stand for cut-off frequency of the low-pass filter and the position command, respectively. F1(s) and

F2(s) denote the filters which make 1/(1 + H(s)) and an inverse system of position controlled-motor

be proper transfer function. Because 1 + H(s) and the inverse system are first-order and second-order

transfer functions respectively, F1(s) and F2(s) are selected as first-order and second-order low-pass

filters which are represented as

F1(s) =
gf

s+ gf
(4.34)

F2(s) =
g2r

s2 + 2grs+ g2r
(4.35)
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Fig. 4-12: Whole block diagram of semi-closed-loop control with reflected wave rejection considering
mass on tip.

where gf and gr denote the cut-off frequencies. The compensation value Qcomp
rfl for the reflected wave

rejection is calculated as

Qcomp
rfl = F2(s)

s2 +Kvs+Kp

Kp
Q̂′

rfl. (4.36)

Finally, the acceleration reference which is input to the motor with DOB is represented as

s2Qref = Kp

[
F1(s)

1 +Hn(s)
(R(s) +Qcomp

rfl )−Qm

]
−KvQm. (4.37)

In Fig. 4-12, transfer function from the position command R(s) to the tip position Q(s, L) is derived

as

Q(s, L)

R(s)
=

Kpe
−L

c
s

s2 +Kvs+Kp

F1(s)

1 +H(s)e−
2L
c
s(1− F1(s)F2(s))

. (4.38)

If the cut-off frequencies of the low-pass filters equal to enough high value (i.e. F1(s), F2(s) → 1), the

transfer function represented as (4.38) becomes as follows,

Q(s, L)

R(s)
=

Kpe
−L

c
s

s2 +Kvs+Kp
. (4.39)

From (4.39), it is found that, because there is no time delay in denominator of the transfer function, the

residual vibrations caused by the mechanical resonances are suppressed if gains Kp and Kv are set so as

to be stable.

Fig. 4-13 shows a bode diagram of closed-loop transfer function represented as (4.38) when the cut-

off frequency gr in F2(s) is varied. In calculation of the bode diagram, Kp, Kv, gf , Ml, and L/c set
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Fig. 4-13: Bode diagram of transfer function from position command R(s) to tip position Q(s, L) when
the cut-off frequency gr in F2(s) is changed.

2500 1/s2, 100 1/s, 10000π rad/s, 0.0181 kgm2, and 0.0126 s, respectively. In this case, the first, second,

third resonant frequencies are 34.5, 254.0, and 502.0, respectively. If the cut-off frequency gr equals to

0, in other words, the reflected wave is not compensated at all, it can be observed that there are some

resonances. On the other hand, if the gr set higher value, the resonance peak is gradually suppressed.

Here, the effect of the reflected wave rejection is analyzed from a control-theory point of view as well

as that in Chapter 3. A main compensator of the reflected wave rejection considering mass on tip is

represented as

Main Comp. =
Hn(s)

1 +Hn(s)
e−

Ln
cn

s. (4.40)

It is noted that, in the derivation of (4.40), the filters F1(s) and F2(s) equal to 1 for the sake of simplicity.

Bode diagram of the main compensator (4.40) is shown in Fig. 4-14. In Fig. 4-14, a nominal propagation

of wave in the reflected wave rejection without considering effect of mass is determined according to

(3.9) (i.e. Twn = π/(2ω̃1)). As for the proposed reflected wave rejection, the nominal parameter is

determined by a identification method described in a next part. From Fig. 4-14, phase-lead effect with 90

degree is realized for the first-order resonance by both methods. However, phase-lag effect with 90 degree
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Fig. 4-14: Bode diagram of the main compensator of reflected wave rejection considering mass on tip.

is not achieved for the second-order resonance by the typical reflected wave rejection because the typical

reflected wave rejection has a restriction of location of resonant frequencies: the resonant frequencies are

located on imaginary axis at a regular intervals. In contrast, the reflected wave rejection considering mass

on tip can realize phase-lag effect with 90 degree for the second-order resonant frequency. In addition,

frequency region having phase-lag effect becomes wider than that of typical reflected wave rejection.

Hence, the robustness against variation of the resonant frequency improves.

Identification of Plant Parameters

For the implementation of the proposed method shown in Fig. 4-12, it is needed to set some nominal

values: the transfer function related to the tip mass Hn(s), the propagation time of the wave Ln/cn. In

this part, a simple identification method of those parameters is introduced.

In this dissertation, the open-loop transfer function of wave system is used for the identification. The
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open-loop transfer function is represented as

Go = H(s)e−
2L
c
s

=
1− Tls

1 + Tls
e−2Tws (4.41)

where Tl = cM/κ and Tw = L/c are set for the sake of simplicity. If Tl and Tw are identified, the

proposed method can be implemented. Frequency response of the open-loop transfer function Go is

described as

|Go| = 1 (4.42)

∠Go = −
[
2 tan−1 (Tlω) + 2Twω

]
. (4.43)

Focusing on the phase characteristics (4.43), because the phases when first-resonance and second-resonance

occur equal to −π and −3π rad, the following equations can be obtained as

−
[
2 tan−1 (Tlω1) + 2Twω1

]
= −π (4.44)

−
[
2 tan−1 (Tlω2) + 2Twω2

]
= −3π (4.45)

where ω1 and ω2 are first- and second-resonant frequencies which are preliminary identified. By numer-

ically solving (4.44) and (4.45) with respect to Tl and Tw, the nominal values of Tln and Twn can be

obtained. Finally, the identification is summarized as following steps.

(1) Identifying first- and second-resonant frequencies ω1 and ω2

(2) Numerically solving (4.44) and (4.45) with respect to Tl and Tw

4.3.3 Experiments

Experimental Setup

To verify the effectiveness of the proposed method, the experiments on position control of flexible

arm are performed. Experimental setup is same system as shown in Fig. 3-15. The flexible arm is

mounted on the direct drive rotary motor with the encoder (resolution: 220 pulse/rev). The tip position

q(t, L) is obtained by the position sensitive detector (PSD) produced by Hamamatsu Photonics K.K. The

PSD detects the position of the irradiation point which is generated by the laser diode mounted on the

tip position (x = L) and output analog voltage in proportional to the position. The analog voltage is

measured by A/D converter board. The real-time control system is realized by Linux OS with RTAI 3.7.
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Table 4.2: Experimental parameters for control with reflected wave rejection considering mass.
Parameter Description Value

Ts Sampling time 50 µs
Ktn Nominal torque coefficient 1.18 N/A
Mn Nominal motor mass 0.245 kgm2

ω̃1 First-order resonant frequency 35.3 rad/s
ω̃2 Second-order resonant frequency 250.0 rad/s
Kp Proportional gain ω2

n

Kd Differential gain 4ωn

gpd Cut-off frequency of 2000.0 rad/s
pseudo derivation

gdis Cut-off frequency of 1000.0 rad/s
disturbance estimation observer

gf Cut-off frequency of 62832.0 rad/s
filter F1(s)

gr Cut-off frequency of 200.0 rad/s
filter F2(s)

Twn Nominal propagation time 0.0128 s
Tln Time constant of H(s) 0.02 s

The experimental parameters are shown in Table 4.2. The first- and second-order resonant frequencies

are identified by sweep test. According to the resonant frequencies ω1 and ω2, the control parameters

Tln and Twn are derived as 0.0582 s and 0.0128 s. However, considering the phase lag of the filter F2(s)

(cut-off frequency is gr), the parameter Tln is modified from 0.0582 s to 0.02 s.

In the experiments, performance of the proposed method is compared with that of the typical reflected

wave rejection described in Chapter 3. The nominal propagation time of the wave is set Twn = π/(2ω1).

The gains in the PD controller are same value as those of the proposed method.

Experimental Results

Figs. 4-15 and 4-16 show the experimental results of position responses when ωn = ω1. In this case,

both the proposed method and resonance ratio control suppress the vibrations effectively. In both results,

steady state errors are observed due to disturbance such as friction, cable stiffness for power suppy to the

laser diode.

Figs. 4-17 and 4-18 show the experimental results of the position responses when the bandwidth of the
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Fig. 4-15: Experimental results of the conventional reflected wave rejection (ωn = ω1).

controller is higher than that in Figs. 4-15 and 4-16 (ωn = 2.0ω1). It is found that vibrations, which is

caused by second-order resonant frequency, occurs on the responses of the typical reflected wave rejction

because of the restriction of the pole locations. On the other hand, Fig. 4-18 shows that the proposed

method can suppress both first- and second-order resonances.

Finally, Fig. 4-19 shows the experimental results of the position responses when ωn = 5ω1. It turns

out that both the first- and second-order resonance are well suppressed by the proposed method. In

theory, the bandwidth of the position controller can increase higher value in ideal case. However, in

actual case, the bandwidth of the position controller is limited by the cut-off frequencies gr, gf , and

gdis. In future work, the limitation by those cut-off frequencies will be analyzed. In addition, undershoot

phenomenon can be observed in the reponses of the proposed method. The usndershoot is caused by the

modeling error of the Hn(s), and it can be observed cleary when the higher-bandwidth controller is used.

The analysis on the undershoot will be also conducted in the future work.
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Fig. 4-16: Experimental results of the proposed reflected wave rejection (ωn = ω1).
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Fig. 4-17: Experimental results of the conventional reflected wave rejection (ωn = 2.0ω1).
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Fig. 4-18: Experimental results of the proposed reflected wave rejection (ωn = 2.0ω1).
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Fig. 4-19: Experimental results of the proposed reflected wave rejection (ωn = 5.0ω1).
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4.4 Summary of Chapter 4

In this chapter, reflected wave rejections for various resonant systems based on basic concept described

in previous chapter was proposed. First of all, the reflected wave rejection considering the damper

effect was proposed. Transfer function of typical wave equation has restriction regarding the location

of resonant poles. Consideration of damper effect alleviates the restriction, and the range of application

of reflected wave rejection can be extended. It was shown how the transfer function of wave equation

considering damper is expressed, which is composed of time-delay-like elements. Due to difficulty in

implementation of the time-delay-like element, the reaction-force-based reflected wave rejection with

fractional-order low-pass filter was proposed. Finally, the reflected wave rejection considering mass

on tip was proposed. In many industrial applications, some loads are often attached to tip position. It

was shown that effect of mass on tip position appears as all pass filter. The reflected wave rejection

is transformed to avoid amplifying noise effect by the equivalent transfer function of reflected wave

rejection including all-pass filter. As a result, the positive delay-feedback type reflected wave rejection

was derived.
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Chapter 5

Motion Control of Time-delay System

5.1 Introduction of Chapter 5

This chapter describes the reflected wave rejection for time-delay system. In Chapter 2, the time-delay

system which includes the input-output time delay was modeled by using a wave equation. It was shown

that there was a similarity between mechanical resonant system and time-delay system from the wave-

transmission point of view. Chapter 3 explained how to construct the reflected wave for stabilizing the

wave system. Based on the similarity between them, vibration control of resonant system based on the

reflected wave rejection can be applied to time-delay system. According to the above aspect, Section 5.2

explains the reflected wave rejection for time-delay system [88]. Next, Section 5.2 describes a time-delay

compensation method by an equivalent elastic force feedback [99]. Finally, Section 5.3 summarizes this

chapter.

5.2 Time-delay Compensation by Reflected Wave Rejection

This part proposes a time-delay compensation based on reflected wave rejection as well as the case of

resonant systems. The system dealt with in this chapter is shown in Fig. 2-8.

5.2.1 Reflected Wave Rejection in Time-delay System

In Chapter 2, the wave representation of time-delay system was derived and it was explained that

Fig. 2-10 is an generalized structure of the wave system. Therefore, it is possible to suppress the vibra-
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Fig. 5-1: Equivalent transformed block diagram of Fig. 2-9 by using reflected wave.

tions or to make the system stable by using reflected wave rejection as well as that in the resonant system

as shown in Chapters 3 and 4.

Before explaining how to eliminate a reflected wave, the reflected wave in the time-delay system is

derived. The reflected wave is shown in the enclosed part by green-dashed line in Fig. 2-10. It is possible

to derive the reflected wave in time-delay system. The transfer function (2.50) is transformed into a

following equation,

Q̃(s, L̃) = e−
L̃
c̃
s
(
Q̃(s, 0) + Q̃rfl

)
(5.1)

where Q̃rfl denotes the reflected wave defined in time-delay system, and it is represented as

Q̃rfl = C(s)G(s)Q̃(s, 0)− C(s)G(s)e−
L̃
c̃
sQ̃(s, L̃) (5.2)

Fig. 5-1 shows the equivalent block diagram of time-delay system by using the reflected wave. If the

reflected wave is eliminated, the transfer function from R(s) to Q̃(s, L) is represented as

Q̃(s, L̃)

R(s)
=

C(s)G(s)e−
L̃
c̃

1 + C(s)G(s)
. (5.3)

From (5.3), the system is stable because there is no time delay in the denominator of transfer function.

Therefore, it is found that the reflected wave rejection achieves time-delay compensation as well as the

case of the resonant system described in Chapter 3.

In order to eliminate the reflected wave, a feedforward compensation of reflected wave is conducted

in this dissertation, and it is shown in Fig. 5-2. In Fig. 5-2, Q̃cmp
rfl denotes the compensation value for

eliminating reflected wave. The compensation value is calculated as

Q̃cmp
rfl =

1 + C(s)Gn(s)

C(s)Gn(s)
Q̃rfl. (5.4)

In this dissertation, it is assumed that there is no modeling error in the plant model Gn(s). In this case,

by using (2.40) and (2.41), the compensation value of the reflected wave is simplified as

Q̃cmp
rfl = C(s)Gn(s)R(s)− (1 + C(s)Gn(s)) e

−TsQ(s) (5.5)
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Feedforward Compensation

of Reflected Wave

Fig. 5-2: Feedforward compensation of reflected wave in time-delay system.

Reflected Wave
 Estimator

and Inverse System

Fig. 5-3: Block diagram of the proposed time-delay compensation method by using reflected wave re-
jection.

where T = L̃/c̃. The acceleration reference which is sent to the remote side is calculated as

Q̈ref = C(s)
(
R′(s) + Q̃cmp

rfl − e−TsQ(s)
)
. (5.6)

The block diagram of time-delay compensation based on the reflected wave rejection is shown in Fig. 5-3.

In Fig. 5-3, R′(s) denotes the position command and the block of “reflected wave estimator and inverse

system” means (5.5). It is noted that the reflected wave rejection for the time-delay system considers only

input-output time delays, but it does not consider packet loss and jitter appearing in a communication

system. Hence, under existence of these phenomena, performance of the proposed method degrades.
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Fig. 5-4: Block diagram of Smith predictor.

Fig. 5-5: Block diagram of communication disturbance observer.

5.2.2 Relation between the Proposal and Typical Time-delay Compensation

Lastly, relation between the proposed method and typical time-delay compensation methods, such as

Smith predictor and a communication disturbance observer, is explained. The block diagrams of Smith

predictor and a communication disturbance observer are shown in Figs. 5-4 and 5-5, respectively. The

compensation value generated by the Smith predictor is represented as

Qcmp
smith = Gn(s)(1− e−2Tns)Q̈ref

= C(s)Gn(s)R(s)− (1 + C(s)Gn(s)) e
−TsQ(s)

= Q̃cmp
rfl . (5.7)

In the above transformation, the transfer function represented as (2.40) and Q̈ref = C(s)(R(s) −

e−TsQ(s)) are used. On the other hand, the compensation value generated by the communication dis-
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Controller Side

(Padova University, Italy)

Plant Side

(Keio University, Japan)

Network

Fig. 5-6: Experimental setup.

turbance observer is represented as

Qcmp
CDOB =

gcdob
s+ gcdob

Gn(s)(Q̈
ref −G−1

n (s)Q(s)e−Ts)

=
gcdob

s+ gcdob

[
C(s)Gn(s)R(s)− (1 + C(s)Gn(s)) e

−TsQ(s)
]

≈ Q̃cmp
rfl . (5.8)

In the above transformation, Q̈ref = C(s)(R(s) − e−TsQ(s)) is used. Additionally, the cut-off fre-

quency of the communication disturbance observer assumes enough high value. It is noted that, in the

transformations, the modeling error is neglected (i.e. T = Tn and G(s) = Gn(s)) and a disturbance is

also neglected. From (5.7) and (5.8), it turns out that the compensation value of the proposed method

(5.5) are same as those of (5.7) and (5.8). Therefore, it implies that physical meanings of Smith predictor

and communication disturbance observer are elimination of reflected wave from the time-delay system

as well as the reflected wave rejection. It is noted that the above mention is correct under no existence

of disturbance and modeling error. The difference among those methods is models and variables used in

generation of the compensation values. The fact is related to trade off between disturbance suppression

performance and sensitivity of jitter effect. For example, the communication disturbance observer has

low-sensitivity against jitter because time-delay model is not used. However, the disturbance suppression

performance is the worst in three methods.
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Table 5.1: Experimental parameters for control with reflected wave rejection for time-delay system.
Parameter Description Value

Ts Sampling time 1.0 ms
Ktn Nominal torque coefficient 1.18 N/A
Jn Nominal inertia 0.0028 kg
Kp Proportional gain 2500
Kd Differential gain 100
gpd Cut-off frequency of 500 rad/s

pseudo derivation

5.2.3 Experiment

Experimental Setup

In order to confirm the validity of the proposed method, experiment of position control with com-

munication delay is conducted. The experimental setup is shown in Fig. 5-6. The position controller

implemented in the real-time computer is located at Italy, and generates the acceleration reference Q̈ref .

On the other hand, the plant is located at Japan, which is a one-link serial manipulator which is composed

of a direct drive motor with an encoder and a link. The position of the motor is obtained by the encoder

(resolution capability: 260000 pulse/rev). This manipulator is controlled via a communication system

which is constructed by User Datagram Protocol (UDP). The sending period of data is set as 1.0 ms as

same as the sampling period. As result of using ping command, packet loss rate is 0.05 % when 10000

packet is sent to remote side. Moreover, a real-time control is realized by Linux 2.6.32.11 with real-time

application interface (RTAI 3.8.1).

The experimental parameters used in this experiment are shown in Table 5.1. Each gain is set so

that characteristic equation 1 + C(s)G(s) has multiple roots which are located on a real axis. For

decreasing noise effect, the pseudo differential which has the cut-off frequency gpd is used for calculating

the acceleration reference in the PD controller. The position command is set as a step command and it is

applied at t = 5.0.

Experimental Results

First of all, Fig. 5-7 shows the response of round-trip time delay (2T ) measured by using time stamp.

The time delay means the total time delay which includes the communication, sensing, and processing
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Fig. 5-7: Measured round trip delay by using time stamp.

delays. As a result, it is found that the mean value and standard deviation of round-trip time delay are

291 ms and 0.5 ms, respectively. Hence, in this experiment, the time delay can be regarded as constant

time delay.

Experimental results of position response by using the reflected wave rejection are shown in Fig. 5-

8. From Fig. 5-8, it turns out that the controlled system is kept stable by the reflected wave rejection.

Steady state error is observed because the plant includes the Coulomb and viscous frictions. To improve

the steady state characteristic, it is possible to use the disturbance observer for time-delay system [82].
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Fig. 5-8: Experimental results of position control with reflected wave rejection.
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5.3 Equivalent Elastic Force Feedback in Time-delay System

5.3.1 Feedback of Equivalent Elastic Force

According to the wave representation of the time-delay system shown in Fig. 2-10, it is found that

the position-transmission system is not affected by the wave-transmission system at all. Hence, it is

interpreted that vibration or destabilization are caused by the robustness of the position-input system

against the wave-transmission system. This aspect comes from vibration control of the resonant system.

In general, the load position of a two-mass resonant system becomes vibrating when the mass of the

motor is greater than the mass of the load [54]. In particular, if the motor implements a disturbance

observer, the vibration occurs heavily on the load side because the equivalent mass against the reaction

force becomes infinity. Resonance ratio control [49], which is a vibration-control method for a two-mass

resonant system, introduces reaction-force feedback to reduce the equivalent mass of the motor against

the reaction force from the resonant system. As a result, the vibration is suppressed effectively by the

velocity feedback. Here, this concept of resonance ratio control is applied to the time-delay system.

Firstly, the deformation in the wave system is derived to define the elastic force in time-delay system.

The deformation is represented as the partial differentiation of the position Q̃(s, x) with respect to x:

∂Q̃(s, x)

∂x
=

−s

c̃

e−
x
c̃
s − C(s)G(s)e−

2L̃−x
c̃

s

1 + C(s)G(s)e−2 L̃
c̃
s

Q̃(s, 0). (5.9)

By using the above equation and the equivalent stiffness κ̃, the elastic force at x is derived as

F̃ reac(s, x) = −κ̃
∂Q̃(s, x)

∂x
. (5.10)

It is noted that the reason why “-1” exists in right hand of (5.10) is that the definition in sign of torsion

in the wave equation, which is lim
∆x→0

(Q(s, x+∆x)−Q(s, x))/∆x, is opposite to the definition of

two-mass resonant system used in [49, 50, 55–57, 59], which is motor position minus the load position.

Because the position-input system is located at x = 0, the elastic force acting on the position-input

system is derived as

F̃ reac(s, 0) = −κ̃
∂Q̃(s, 0)

∂x

=
sκ̃

c̃

1− C(s)G(s)e−
2L̃
c̃
s

1 + C(s)G(s)e−2 L̃
c̃
s
Q̃(s, 0). (5.11)
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Elastic Force
Feedback

Fig. 5-9: Block diagram of elastic force feedback in time-delay system expressed as wave.

The concept diagram of the elastic force feedback for vibration suppression on time-delay system is

shown in Fig. 5-9. In Fig. 5-9, Kw denotes the elastic force gain. By the feedback of the equivalent

elastic force, motion equation of the input system is changed as follow,

s2Q̃(s, 0) =
Kt

M

[
C(s)(R(s)− Q̃(s, 0))− Mn

Ktn
KwF̃

reac(s, 0)

]
. (5.12)

Therefore, an equivalent mass M̃ eq in Fig. 5-9, which means the influence on the acceleration which is

given by elastic force ˆ̃F reac(s, 0), is represented as

M̃ eq =
1

Kw
. (5.13)

It can be seen that the equivalent mass equals to infinity when there is no feedback of the elastic force

(Kw=0). In this case, the position-input system is robust against wave-transmission system, which results

to induce the vibration. It is also found that the elastic force feedback can reduce the equivalent mass

of the position-input system. Therefore, it is expected to suppress the vibration due to the time delay

because robustness of the position-input system against elastic force is reduced.

There is a problem with implementing the control system shown in Fig. 5-9: it is needed to know the

equivalent velocity of the wave c̃ and stiffness κ̃. Here, the elastic force gain is redefined as follow,

K ′
w = Kw

κ̃

c̃
. (5.14)

The gain is determined by cut and try in this dissertation. By using the above redefined elastic force gain,
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Inverse

System

Elastic Force

Feedback

Cancellation of Zero

of PD Controller

Fig. 5-10: Equivalent block diagram of elastic force feedback in time-delay system for implementation
(the proposed method).

the reaction force feedback can be conducted as follows,

Kw
ˆ̃F reac(s, 0) = Kw

sκ̃n
c̃n

1− C(s)Gn(s)e
− 2L̃n

c̃n
s

1 + C(s)Gn(s)e
−2 L̃n

c̃n
s
Q̃(s, 0)

= K ′
ws

1− C(s)Gn(s)e
− 2L̃n

c̃n
s

1 + C(s)Gn(s)e
−2 L̃n

c̃n
s
Q̃(s, 0) (5.15)

where ˆ̃F reac(s, 0) denotes an estimated equivalent elastic force. Since e−TsQ(s) can be observed at

controller side, the above equation can be transformed into the following equation not including the

time-delay model,

Kw
ˆ̃F reac(s, 0) = K ′

ws
C(s)Gn(s)

1 + C(s)Gn(s)

(
R′(s)− 2e−TsQ(s)

)
(5.16)

where R′(s) is the command including the compensation value. The block diagram of time-delay com-

pensation based on elastic force feedback for actual implementation is shown in Fig. 5-10. In Fig. 5-10,

Qcmp means the compensation value including the equivalent elastic force. The compensation value

Qcmp for time delay is calculated as

Qcmp =
1

C(s)

Mn

Ktn
Kw

ˆ̃F reac(s, 0). (5.17)
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Feedback of Qcmp to the position command makes a same effect as shown in Fig. 5-9. The acceleration

reference which is transmitted to plant side is represented as

Q̈ref = C(s)

(
C(0)

C(s)
R(s)−Qcmp − e−TsQ(s)

)
. (5.18)

It is noted that, in this dissertation, the zero of PD controller is canceled out by the feedforward com-

pensator in order to improve the performance of the vibration suppression; it has the same effect as a P

controller with velocity minor loop. In addition, the control gains (Kp, Kd, K
′
w) in the proposed method

have clear physical meanings. Therefore, it is expected to set those gains easily by cut and try.

5.3.2 Disturbance Suppression Performance of Proposed Method

This part explains the better point of proposed method compared with the other time-delay compen-

sation methods. In contrast to the well-known Smith predictor [74] and communication disturbance

observer (CDOB) [77], the proposed method maintains the feedback characteristics. If the nominal

parameters equal to actual plant parameters, the transfer function from the disturbance Fl to position

response Q(s) is represented as

GFQ =
−1

Mn

s2 + (Kd +K ′
w)s+Kp

Den(s)
(5.19)

where

Den(s) = s4 + (Kd +Kw)s
3 +Kps

2 +[
Kds

3 + (Kp +K2
d −KdKw)s

2 + (2KpKd −KpKw)s+K2
p

]
e−2Ts. (5.20)

From (5.19), it turns out that the direct-current (DC) gain of (5.19) equals to 1/(MnKp), which means

that it is same disturbance suppression performance as a typical PD controller. On the other hand, with

the CDOB and Smith predictor, instead of the control design that does not require to consider time delay,

the feedback characteristic is removed or reduced. In other words, the DC component is removed or

reduced from feedback signals by the time-delay compensation. Thus, these methods are easily affected

by the disturbance such as a friction, external forces. In contrast, the proposed method does not remove

the DC component of the feedback signals. Fig. 5-11 shows the bode diagram of each method regarding

the closed-loop transfer function from disturbance to position. From the bode diagram, DC gains of

the Smith predictor and the CDOB with low-frequency model error feedback [83] are infinite with 20

dB/dec (one pole is located at the imaginary axis), which means that steady state error does not occur
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Fig. 5-11: Bode diagram of the closed-loop transfer function from disturbance to position.

Table 5.2: Simulation parameters of motor.
Parameter Description Value

Ts Sampling time 0.2 ms
Ktn Thrust force coefficient 2.7/0.81 N/A
Mn Mass of motor 0.245 kg

by the impulse disturbance. On the other hand, DC gain of the proposed method equals to finite value,

which means that steady state error does not occur by the impulse disturbance. It is noted that if some

kinds of the disturbance observer can be implemented, steady state error does not occur by the step

disturbance. Therefore, the disturbance response becomes better than that of CDOB and Smith predictor

and the response at steady state is improved.

5.3.3 Simulations

To confirm the effectiveness of the proposed method, simulations of position control are conducted.

Simulation parameters are shown in Table 5.2. In all the simulations, step input (R(s) = 5.0 mm) is

applied to the control system.

Firstly, effect of elastic force feedback are confirmed. Fig. 5-12 shows the simulation results when
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Fig. 5-12: Simulation results when K ′
w changes from 0.0 to 24.0 (2T = 50 ms, Kp = 144, Kd = 48).

Kp = 144, Kd = 48, and Kw is varied from 0.0 to 24.0 with the step of 4.0. In this simulation,

the round-trip time delay 2T is equal to 50 ms. When K ′
w = 0, the response of the motor position is

unstable. On the other hand, when K ′
w is gradually increased, the control system is stabilized and the

vibration is gradually decreased. It is confirmed that the equivalent elastic force feedback is confirmed

to be effective at suppressing the vibration due to time delay. However, too much increasing K ′
w makes

the system unstable again. Hence, adjustment of the appropriate value of K ′
w is needed.

Fig. 5-13 shows the simulation results in the case of large round-trip time delay (2T = 200.0 ms). In

this simulation, Kp = 16, Kd = 16, and K ′
w is varied from 0.0 to 9.0 with the step of 1.5. As well as

Fig. 5-12, the feedback of elastic force can stabilize the system. Fig. 5-14 shows the simulation results

in the case of 2T = 200.0 ms with large controller gains (Kp = 25, Kd = 20). From Fig. 5-14, the

feedback of elastic force can stabilize the system. In the case of Fig. 5-14, K ′
w is varied from 9.0 to

12.0 with the step of 0.5. However, vibration still remains on the response with optimal gain. Therefore,

stability region by using the elastic force feedback depends on the value of gains in the position controller.

Figs. 5-13 and 5-14 imply that the proposed method has weak points which is the variation of time

delay (i.e. jitter). From the point of view of robustness against the jitter, performance of the proposed

method is inferior to performance of the smith predictor and communication disturbance observer based

methods. Therefore, if there exists large variation of time delay, it is needed to use some kinds of jitter
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Fig. 5-13: Simulation results when K ′
w changes from 0.0 to 9.0 (2T = 200.0 ms, Kp = 16, Kd = 16).

compensator (e.g. jitter buffer) for implementation of the proposed method.

In addition, the parameter variation in Kt and M also degrades both the control performance and the

stability because the elastic force feedback gain is equivalently changed. Fig. 5-15 shows Simulation

results when parameter variations α = (KtMn)/(KtnM), change from 0.5 to 3.0 (2T = 50.0 ms,

Kp = 148, Kd = 48, K ′
w=20). Interpreting the results shown in Fig. 5-15 roughly, if α decreases,

the damping ratio provided by the PD controller also decreases. On the other hand, if α increases,

the damping ratio increases. However, if α increases too much, the system becomes unstable because

increasing Kp and K ′
w destabilizes the system. If there exists large variation in Kt and M , a compensator

should be designed to maintain robust stability.
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Fig. 5-14: Simulation results when K ′
w changes from 9.0 to 12.0 (2T = 200.0 ms, Kp = 25, Kd = 20).
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Fig. 5-15: Simulation results when parameter variations α change from 0.5 to 3.0 (2T = 50.0 ms,
Kp = 144, Kd = 48, K ′

w=20).

– 85 –



CHAPTER 5 MOTION CONTROL OF TIME-DELAY SYSTEM
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Fig. 5-16: Experimental setup for elastic force feedback in time-delay system.

Table 5.3: Experimental parameters for control with elastic force feedback in time-delay system.
Parameter Description Value

Ts Sampling time 0.2 ms
Ktn Nominal thrust force coefficient 2.7/0.81 N/A
Mn Nominal mass of motor 0.245 kg
Kp Proportional gain 144
Kd Differential gain 48
K ′

w Elastic force gain 21.0
gpd Cut-off frequency of 2000 rad/s

pseudo derivation
gdis Cut-off frequency of 250 rad/s

disturbance estimation observer
2T = 2L̃

c̃ Time delay 50 ms

5.3.4 Experiments

Experimental Setup

In order to verify the effectiveness of the proposed method, the position control experiments are per-

formed. The schematic diagram of experimental system is shown in Fig. 5-16. A linear motor with a

optical encoder (resolution capability: 100 nm) is used as the controlled plant. A constant time delay is

artificially generated by a network emulator. Jitter of the communication delay is not considered in the

experiments. Communication system is realized by using the UDP, and the sending period is the same
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Table 5.4: Experimental parameters for CDOB and Smith predictor.
Parameter Description Value

Kp Proportional gain in Smith Predictor 324
Kd Differential gain in Smith Predictor 36
Kp Proportional gain in CDOB 225
Kd Differential gain in CDOB 60
gc Cut-off freq. of CDOB 1000.0
ge Cut-off freq. of low-freq. 2.5

model error feedback
gpd Cut-off frequency of 2000 rad/s

pseudo derivation
gdis Cut-off frequency of 250 rad/s

disturbance estimation observer

as the control period. Real-time control system is realized by using RTAI 3.7 on Linux, and the control

program is written in C language.

The performance of the proposed method is compared with that of the typical Smith predictor and a

communication disturbance observer with low-frequency model error feedback [83] when a step position

command is applied. The disturbance estimation observer [82], which is a disturbance observer for time-

delay system, is implemented in all methods for reducing the effect of the disturbance such as static

friction. The compensation current generated by the disturbance estimation observer is represented as

Icmp
dis =

g2dis
s2 + 2gdiss+ g2dis

[
KtnI

refe−Ts −Mns
2Q(s)e−Ts

]
. (5.21)

The experimental parameters are listed in Table 5.3. In this dissertation, the derivation in the PD

controller is implemented by using the pseudo derivation with cut-off frequency gpd. The parameters of

the compared methods is adjusted to coincide with the time constant of the proposed method. As a result,

the parameters of the compared methods are obtained by the cut and try as shown in Table 5.4.

Experimental Results

Figs. 5-17–5-19 compare the experimental results of the three methods. Fig. 5-17 shows that the com-

munication disturbance observer stabilizes the control system. However, the communication disturbance

observer based method is not able to eliminate the steady state error even if the low-frequency model

error feedback is implemented. Low-frequency model error feedback is effective for suppress the mod-
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Fig. 5-17: Experimental result of communication disturbance observer with low-frequency model error
feedback.

eling error, but is not effective for eliminate the disturbance such as static friction. Fig. 5-18 shows that

Smith predictor also stabilizes the control system. However, steady state error is observed due to the

disturbance. It is because Smith predictor based method also loses the feedback characteristic as same

as the communication disturbance observer based method. On the other hand, Fig. 5-19 shows the pro-

posed method can also stabilize the control system. In addition, it is found that the proposed method can

eliminate the steady state error because feedback characteristic is maintained. Validity of the proposed

method is confirmed by these experimental results.

– 88 –



CHAPTER 5 MOTION CONTROL OF TIME-DELAY SYSTEM

 0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

P
o

si
ti

o
n

 [
m

m
]

 Time [s] 

Fig. 5-18: Experimental result of Smith predictor.

 0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

P
o

si
ti

o
n

 [
m

m
]

 Time [s] 

Fig. 5-19: Experimental result of the proposed method.
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5.4 Summary of Chapter 5

In this chapter, a reflected wave rejection for time-delay system was proposed. Based on similarity

between mechanical resonant and time-delay system described in Chapter 2, the reflected wave rejection

is constructed. The reflected wave rejection for the time-delay system has same effect as that of Smith

predictor and a communication disturbance observer. In addition, based on the similarity and concept of

resonance ratio control, a time-delay compensation by equivalent elastic force feedback was proposed.

The time-delay compensation by equivalent elastic force feedback has advantage of disturbance sup-

pression performance compared with that of typical time-delay compensation methods. In contrast, the

time-delay compensation by the equivalent elastic force feedback has disadvantage of robust stability

against variation of time delay (jitter) and plant dynamics.
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Chapter 6

Motion Control of Integrated Resonant
and Time-delay System

6.1 Introduction of Chapter 6

This chapter explains reflected wave rejection for an integrated resonant and time-delay systems. Al-

though Chapters 4 and 5 deal with reflected wave rejection for mechanical resonant system and time-

delay system, respectively, this chapter treats the mechanical resonant system with input-output time

delay. As mentioned in Chapter 1, in the case of the integrated system, simple integration of vibration

suppression and time-delay compensation does not work well because typical time-delay compensation

methods are weak against the variation of the plant. On the other hand, because the reflected wave rejec-

tion is based on the transfer function of wave equation which is composed of time-delay elements, it is

easy to integrate the two systems.

Section 6.2 explains a basic concept of integration scheme based on reflected wave rejection. Next,

Section 6.3 explains that reflected wave rejection form the integrated system is extended to the structure

whose all the compensator and controller are implemented at local (controller) side. Finally, Section

6.4 describes that reflected wave rejection explained in Section 6.3 is extended to a reaction-force-based

reflected wave rejection for the integrated system.
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Fig. 6-1: Block diagram of integrated resonant and time-delay system.
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Fig. 6-2: Overview of the proposed structure for control of integrated system.

6.2 System Integration by Using Reflected Wave Rejection

The block diagram of integrated resonant and time-delay system is shown in Fig. 6-1 where Ti, Tm,

Tl, Qdm, and Qd(s, L) are the input delay, the output delay at motor side, the output delay at load side,

the delayed motor position, and the delayed tip position, respectively. In this section, basic concept of

integration of two systems by reflected wave rejection is explained. Overview of the proposed method

is shown in Fig. 6-2. In the proposal, a controller and a time-delay compensator which is the proposed

method are implemented at the local side. On the other hand, at the remote side, a DOB and a reflected

wave rejection are implemented. By using the reflected wave rejection shown in Fig. 3-2 under the ideal

condition (gr = ∞), the transfer function from the acceleration reference Q̈ref to tip position Q(s, L) is

represented as

Q(s, L)

Q̈ref
=

1

s2
e−

L
c
s. (6.1)
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Integrated system

Resonant system without

reflected wave

Fig. 6-3: Block diagram of integrated time-delay system.

From (6.1), the resonant system without reflected wave can be regarded as equivalent time-delay system.

The block diagram of open-loop of the plant is shown in Fig. 6-3. Therefore, equivalent system of the

integrated system is represented as

Qd(s, L)

Q̈ref
=

1

s2
e−(L

c
+Ti+Tl)s. (6.2)

As shown in (6.2), owing two the reflected wave rejection, the plant becomes a simple time-delay system

which is second order dynamics with sum of input-output and equivalent time delays. Hence, it is easy

to design the control system by using the typical time-delay compensation methods. Total block diagram

of control of integrated resonant and time-delay system based on the reflected wave rejection is shown in

Fig. 6-4. Structure of Fig. 6-4 is equivalent to fully closed-loop type control with reflected wave rejection

introduced in Chapter 3. In addition, a CDOB is used as a time-delay compensation method. If the cut-

off frequency of a CDOB is enough high value and a PD controller is used for the position controller, the

transfer function from position command to tip position is represented as

Q(s, L)

R(s)
=

Kds+Kp

s2 +Kds+Kp
e−(L

c
+Ti)s. (6.3)

In (6.3), there is no time delay in the denominator of the transfer function. Therefore, it is possible to

suppress the vibration of integrated resonant and time-delay systems.

6.2.1 Numerical Analysis

In this section, in order to analyze the validity of the proposal, numerical simulations and analyses

are conducted. First, for confirming the performance of the proposed method, a position control of a

three-mass resonant system with input-output time delay is conducted. Next, we analyze variation of

delay of a resonant system and time-delay system.
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Resonant System
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Fig. 6-4: Block diagram of the proposed control system.
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Fig. 6-5: Simulation results by DOB (without input-output time delay).

Position Control

In this part, position control of a three-mass resonant system with input-output time delay is conducted.

The simulation parameters are shown in Table 6.1. In this simulation, step input is used as the position
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Table 6.1: Simulation parameters for reflected wave rejection for integrated system.
Parameter Description Value

Ts Sampling time 0.1 ms
Ktn Nominal force coefficient 3.33 N/A
Mn Nominal mass 0.245 kg
L
c Propagation time of wave 107 ms

Ti + Tl input-output time delays 200 ms
(Round trip delay)

ω1 First-order resonance 14 rad/s
ω2 Second-order resonance 42 rad/s
Kp Proportional gain 200
Kd Differential gain 30
gpd Cut-off frequency of 3000 rad/s

pseudo derivation
gdis Cut-off frequency of 2000 rad/s

DOB
gr Cut-off frequency of 1000 rad/s

reflected wave rejection
gw Cut-off frequency of 2000 rad/s

CDOB
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Fig. 6-6: Simulation results by the proposed method (without input-output time delay).
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Fig. 6-7: Enlarged view of Fig. 6-6.
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Fig. 6-8: Simulation results by DOB (with input-output time delay).

command. The proposed method is compared with the method based on DOB.

Firstly, for confirming the performance of the reflected wave rejection, the simulations in the case that

there is no time delay are conducted. The simulation results are shown in Figs. 6-5 and 6-6. From Fig. 6-

5, it is found that vibration from the resonant system occurs on the response of tip position Q(s, L). On

the other hand, from Fig. 6-5, it turns out that vibration caused by the resonance is well suppressed by

the reflected wave rejection and CDOB. Moreover, Fig. 6-7 shows the enlarged view of the proposed

method without time delay shown in Fig. 6-6. It can be seen that response of the tip position Q(s, L) and

– 96 –



CHAPTER 6 MOTION CONTROL OF INTEGRATED RESONANT AND TIME-DELAY SYSTEM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.5  1  1.5  2  2.5  3

P
o
si

ti
o
n
 [

m
]

 Time [s] 

Fig. 6-9: Simulation results of the proposed method (with input-output time delay).

delayed position 1
s2
Q̈refe−

L
c
s are corresponded, The fact implies that the resonant system is transformed

into an equivalent time-delay system whose time delay is L
c s by the reflected wave rejection.

Next, the simulation results in the case that there is time delay are shown in Figs. 6-8 and 6-9. From

Fig. 6-8, time delay causes the vibration on the response of both motor and tip position. On the other

hand, from results of the proposed method shown in Fig. 6-9, vibration caused by time delay from the

resonant and time-delay system is well suppressed. Fig. 6-10 shows the enlarged view of Fig. 6-9. From

Fig. 6-9, it can be also seen that response of the tip position Q(s, L) corresponds to the delayed position
1
s2
Q̈refe−(

L
c
s+Ti+Tl). Moreover, CDOB is able to suppress the effect of time delay which is sum of the

time delays from the resonant and time-delay systems.

From these results, validity of the proposed method which is composed of the reflected wave rejection

and the CDOB is verified.

Variation of Delays

In this part, simulation in the case when input-output time delays are changed is conducted. Equivalent

time delay of the resonant system shown in Table 6.1 is used. The other parameters equal to same value

shown in Table 6.1.

Fig. 6-11 shows simulation results of the tip-position response when the input-output time delays

are changed. In Fig. 6-11, sum of input-output time delays are changed from 0 ms to 1000 ms. From

Fig. 6-11, it is found that the value of input-output time delays do not affect the transient response of

– 97 –



CHAPTER 6 MOTION CONTROL OF INTEGRATED RESONANT AND TIME-DELAY SYSTEM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1

P
o
si

ti
o
n
 [

m
]

 Time [s] 

Fig. 6-10: Enlarged view of Fig. 6-9.
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Fig. 6-11: Simulation results of the tip position response when the input-output time delays are changed.

the tip position if cut-off frequency is set enough high value. These results imply that time delay is well

compensated by a CDOB.

6.2.2 Experiments

Experimental Setup

In order to verify the effectiveness of the proposed method, experiments of position control are con-

ducted in a two-mass resonant system. The control software was written in C language under RTAI 3.7.
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Table 6.2: Experimental parameters for reflected wave rejection for integrated system.
Parameter Description Value

Ts Sampling time 0.1 ms
Ktn Nominal force coefficient 3.33 N/A
Mn Nominal mass 0.245 kg
k Spring coefficient 200 N/m
c Propagation velocity of wave 1.42 m/s
a Length of a spring 0.05 m
L
c Propagation time of wave 35 ms

Ti + Tl Input-output time delays 40 ms
(Round trip delay)

Kp Proportional gain 200
Kd Differential gain 30
gpd Cut-off frequency of 2000 rad/s

the pseudo derivation
gdis Cut-off frequency of 2000 rad/s

DOB
gr Cut-off frequency of 2000 rad/s

reflected wave rejection
gw Cut-off frequency of 1000 rad/s

CDOB

Encoder

Spring LoadMotor

Fig. 6-12: Experimental setup.

The experimental setup is shown in Fig. 6-12. The experimental setup deals with linear motion as shown

in Fig. 2-1. The right motor is used as load and is not controlled. On the other hand, the left motor is

controlled according to the control program. Position information of each motor is obtained by linear

encoders (resolution capability: 0.1 µm ).

Experimental parameters are shown in Table 6.2. As roots of the characteristic equation in (6.3) are
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Fig. 6-13: Experimental results by PD controller with DOB.

multiple roots on the real axis, position and velocity gains should be set as

Kd = 2
√
Kp. (6.4)

input-output time delays are artificially generated in a computer, and jitter is not considered in the exper-

iments.

Performance of the proposed method is compared with those of a method using PD controller with a

DOB and a method using both a resonance ratio control and a CDOB. Each control gain is set to make the

time-constants of the proposed and compared methods same. A DOB and a reaction force observer in the

compared methods are implemented in the remote side. In the resonance ratio control, a reaction force

feedback is conducted at remote side. The nominal plant model which is implemented in the CDOB

is the two-mass resonant system including the reaction force feedback. It is noted that the compared

method does not use the tip position information.

Experimental Results

The experimental results of the PD controller with DOB are shown in Fig. 6-13. In Fig. 6-13, it can

be seen that the system becomes unstable because of input-output time delay.

The experimental results of the resonance ratio control with CDOB are shown in Fig. 6-14. In similar

to the results of the PD controller with the DOB, the system becomes unstable. The reason is that error

of plant model in the CDOB makes the system unstable.
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Fig. 6-14: Experimental results by resonance ratio control with CDOB.
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Fig. 6-15: Experimental results by the proposed method.

On the other hand, in results of the proposed method shown in Fig. 6-15, the system is kept stable and

vibration is well suppressed. From Fig. 6-15, a steady state error is observed at the tip position because

of the disturbance acting on the tip which is composed of coulomb and viscous frictions.
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6.3 System Integration by Using Reflected Wave Rejection Implemented
at Controller Side

6.3.1 Structure of Reflected Wave Rejection

In the previous part, the reflected wave rejection is implemented at remote (plant) side as shown in

Fig. 6-4. Although it is better to implement it at local (controller) side, it is difficult to implement the

typical reflected wave rejection if there are input and output delays. Therefore, a novel reflected wave

rejection scheme under existence of these delays is proposed.

First of all, the transfer function from Qm to Q(s, L) is transformed into

Q(s, L) = 2e−Tws 1

1 + e−2Tws
Qm

= 2e−Tws
(
1− e−2Tws + e−4Tws − e−6Tws + · · ·

)
Qm

= 2e−Tws
[
Qm − e−2TwsQm + e−4Tws

(
1− e−2Tws + e−4Tws · · ·

)
Qm

]
. (6.5)

In the aforementioned transformation, the relation of geometric series 1/(1+ r) = 1− r+ r2 − r3 · · · is

used. Furthermore, by using the relation of geometric series, (6.5) is transformed into

Q(s, L) = 2e−Tws

[
Qm − e−2TwsQm +

1

2
e−3TwsQ(s, L)

]
. (6.6)

Here, let’s re-define a reflected wave as the following equation:

Q′
rfl = −e−2TwsQm +

1

2
e−3TwsQ(s, L). (6.7)

The re-defined reflected wave corresponds to a wave at the end of negative feedback (i.e. e−TwsQ(s, L))

shown in Fig. 2-7. By using (6.7), the relation between Qm, Q(s, L) and Q′
rfl is represented as

Q(s, L) = 2e−Tws
[
Qm +Q′

rfl

]
. (6.8)

As well as the conventional reflected wave rejection, the reflected wave Q′
rfl will be canceled out by the

feedforward of the estimated reflected wave. However, because there are input and output delays, the

compensation value for eliminating the reflected wave from the resonant system must include the inverse

system of the time delays. In the proposed method, the compensation value including the inverse systems

are calculated as

Q̈′comp
rfl = e+TisQ̂′

rfl

=
gr

s+ gr

(
−e−(2Twn−Tmn−Tin)sQdm +

1

2
e−(3Twn−Tln−Tin)sQd(s, L)

)
(6.9)
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Proposed Reflected Wave Rejection

Load Side of Resonant System

Motor
with DOB

Input and

Output Delays

Inverse System of

Motor with DOB

Fig. 6-16: Block diagram of the proposed reflected wave rejection.

where Q̂′
rfl, Tin, Tmn, and Tln denote the estimated reflected wave, and the nominal time delays, respec-

tively. It is noted that, in order to calculate the above compensation value, following conditions must be

satisfied,

2Tw > Tm + Ti (6.10)

3Tw > Tl + Ti. (6.11)

If the time delays satisfy the above conditions, the proposed reflected wave rejection can be implemented.

Compared with the application range of the conventional method against value of time delay (at least

Tw > Tl should be satisfied), it is found that the application range is extended.

The block digram of the proposed reflected wave rejection is shown in Fig. 6-16. In Fig. 6-16, Q̈′cmp
rfl

denotes the compensation value in acceleration dimension, and it is calculated as

Q̈′cmp
rfl = s2

g2pd
(s+ gpd)2

e+TisQcmp
rfl . (6.12)

In (6.12), the inverse system of the motor with DOB is approximately implemented by using the pseudo

derivation. Finally, the acceleration reference injected to the motor is calculated as

Q̈′ref =
1

2
Q̈ref − Q̈cmp

rfl . (6.13)
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Proposed Reflected

Wave Rejection

Communication

Disturbance

Observer

Motor
with
DOB

Load Side
of Resonant

System

Input and

Output Delays

Fig. 6-17: Whole block diagram of the proposed position control system.

It is noted that 1/2 in the right hand of (6.13) means that cancellation of the superposition of the wave

at x = L represented by the block “2” shown in Fig. 2-7. If the cut-off frequencies gr and gpd in

the proposed reflected wave rejection are ideally high value, the transfer function from the acceleration

reference to the tip position is represented as

Q(s, L)

Q̈ref
=

1

s2
e−(Tw+Ti)s. (6.14)

From (6.14), it is found that the vibration is suppressed because the time delay has been omitted from

the denominator of the transfer function.

By using the proposed reflected wave rejection, the resonant system with input-output time delay can

be regarded as an equivalent time-delay system described as (6.14). Then, the position-control system of

(6.14) is constructed by using the position controller with a CDOB [78]. The acceleration reference is

calculated as

Q̈ref = Kp

(
R(s)−Qd(s, L)−Qcmp

cdob

)
−Kv

sgpdv
s+ gpdv

(Qd(s, L) +Qcmp
cdob) (6.15)

where R(s), Kp, Kv, gpdv and Qcmp
cdob denote the position command, the position gain, the velocity gain,

the cut-off frequency for calculation of velocity, the compensation value of CDOB, respectively. In the

proposed system, the P control with a velocity minor loop is used as a position controller. The whole

block diagram of position control of the integrated resonant and time-delay system is shown in Fig. 6-17.
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Table 6.3: Simulation parameters for reflected wave rejection without use of tip position for integrated
system.

Parameter Description Value
Ts Sampling time 0.1 ms
Ti Input delay 7.5 ms
Tm Output delay at motor 7.5 ms
Tl Output delay at load 7.5 ms
Tw Propagation time of wave 40 ms
Ktn Nominal thrust force coefficient 3.0 N/A
Mn Nominal mass of motor 0.245 kg
w1 First order resonance frequency 39.5 rad/s
w2 Second order resonance frequency 103.0 rad/s
Kp Position gain 900
Kv Velocity gain 80
gdis Cut-off frequency of DOB 500 rad/s
gr Cut-off frequency of reflected wave rejection 500 rad/s

gcdob Cut-off frequency of CDOB 1000 rad/s
gpd Cut-off frequency of pseudo derivation 500 rad/s

for reflected wave rejection
gpdv Cut-off frequency of pseudo derivation 500 rad/s

for position controller
dQ, dQ(s, L) Position sensor resolutions 65536 pulse/rev

Finally, if the cut-off frequency of the CDOB is enough large value, the transfer function from position

command R(s) to the tip position Q(s, L) is represented as

Q(s, L)

R(s)
=

Kp

s2 +Kvs+Kp
e−(Tw+Ti)s. (6.16)

It is found that because there is no time delay in the denominator of the fully closed-loop transfer func-

tion, vibrations on the integrated resonant and time-delay system are suppressed.

6.3.2 Simulation

Simulation Setup

In order to verify the validity of the proposed method, simulation of position control on a three-mass

resonant system is conducted. Plant and control parameters used in this simulation are shown in Table
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Fig. 6-18: Simulation results of the conventional reflected wave rejection.

6.3. The control goal of the simulation is that the tip position corresponds to the position command (a

step of 0.1 rad) without vibration and destabilization. Performance of the proposed method is compared

with that of the method based on the conventional reflected wave rejection. The difference between the

proposed and conventional methods is only in the structures of the reflected wave rejections, but the other

control parameters are same.

Simulation Results

The simulation results of the conventional and proposed methods are shown in Figs. 6-18 and 6-19.

From the results of the conventional method, the vibration can be observed because the performance of

the reflected wave rejection degrades due to the existence of the delays. On the other hand, it is found

that the residual vibration is well suppressed with the proposed approach.

6.3.3 Experiments

Experimental Setup

To verify the effectiveness of the proposed method, a position control of flexible arm is performed.

Experimental setup is shown in Fig. 6-20. The definitions of angles qm and q(t, L) are accordance

with those described in section 2.2.2. The control goal is that the tip position of a flexible arm q(t, L)
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Fig. 6-19: Simulation results of the proposed reflected wave rejection.

Direct Drive
Motor

Flexible Arm

Load Position Sensor
Including 

Processing delay
Maker for detecting

load position

Fig. 6-20: Experimental Setup.

corresponds to the position command r(t) without vibrations. The flexible arm is mounted on the direct

drive rotary motor (encoder resolution: 20 bit/rev). The tip position q(t, L) is obtained by the vision

sensor (frame rate: 100 Hz). Equivalent resolution of vision sensor is 1.09× 10−4 rad. Control program

is written by C language under Real time application interface 3.8 (RTAI 3.8) on Linux.

Experimental parameters are shown in Table 6.4. Output delay at load side includes processing time of

vision sensor (Tl = 20 ms). The delays Ti and Tm are artificially generated in the computer. The jitters

of input and output delays are not considered in this experiment. In this experiment, a step position
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Table 6.4: Experimental parameters for reflected wave rejection without use of tip position for integrated
system.

Parameter Description Value
Ts Sampling time 0.1 ms
Ti Input delay 5.0 ms
Tm Output delay at motor side 5.0 ms
Tl Output delay at load side 20 ms
Tw Propagation time of wave 9.6 ms
Ktn Nominal thrust force coefficient 3.0 N/A
Mn Nominal mass of motor 0.245 kg
w1 First order resonance frequency 104.0 rad/s
L Length of flexible arm 0.3 m
Kp Position gain 10000.0
Kv Velocity gain 400
gdis Cut-off frequency of DOB 1000 rad/s
gr Cut-off frequency of reflected wave rejection 200 rad/s

gcdob Cut-off frequency of CDOB 1000 rad/s
gpd Cut-off frequency of pseudo derivation 200 rad/s

for reflected wave rejection
gpdv Cut-off frequency of pseudo derivation 1000 rad/s

for calculation of velocity

command (r(t) = 0.05 rad) is applied to the control system. It is noted that, because output delay Tl is

larger than propagation time of wave Tw, the typical reflected wave rejection shown in Fig. 3-2 can not

be implemented in this experiment.

Experimental Results

The experimental results of the proposed method are shown in Fig. 6-21. From Fig. 6-21, the residual

vibration on tip position is well suppressed by the proposed method although there exist input and output

time delays. However, it is observed that there is steady state error because of the friction acting on

motor and degradation of performance of disturbance rejection when the CDOB is used. Although the

disturbance compensator is not implemented in this system for the sake of simplicity, the elimination

or reduction of steady state error is possible by using the method about disturbance rejection in CDOB

[80, 81].
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Fig. 6-21: Position response of the proposed method.

Then, validity of the proposed reflected wave rejection is confirmed.

6.4 System Integration by Using Reaction-Force-based Reflected Wave
Rejection Implemented at Controller Side

6.4.1 Structure

The method for integrated system described in previous part needs to use the tip-position information.

However, in general, it is difficult to obtain the tip-position information because of problem on sensor

mounting. Therefore, this part proposes a reaction-force-based reflected wave rejection, which uses only

motor position information. First of all, the reflected wave is rewritten by using a reaction force acting

on the motor instead of tip position. The reaction force is represented as

F reac(s, 0) = −κ
∂Q(s, 0)

∂x

=
κ

c

1− e
2L
c
s

1 + e
2L
c
s
Q(s, 0) (6.17)

where F reac(s, 0) and κ denote the reaction force acting on the motor and the stiffness of the flexible

arm, respectively. By using (6.17) and transfer function from Qm to Q(s, L), the reflected wave shown
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in (6.7) is transformed into

Q′
rfl = −1

2
e−2TwsQm − 1

2
e−2Tws 1

Ws
F reac(s, 0) (6.18)

where W denotes the characteristic impedance which is represented as

W =
√
ρκ (6.19)

where ρ represents the mass density of flexible arm. As well as the conventional reflected wave rejection,

the estimated reflected wave including the inverse system of input delay is calculated as

e+TisQ̂′
rfl =

gr
s+ gr

(
−1

2
e−TrflsQdm − 1

2Wns
e−Trfls

s

s+ ghpf
F̂ reac
d (s, 0)

)
(6.20)

where ghpf and F̂ reac
d (s, 0) denote the cut-off frequency of high-pass filter and the delayed reaction

force due to output time delay, respectively. Trfl stands for the delay implemented in the reflected wave

rejection, which is represented as

Trfl = 2Twn − Tmn − Tin. (6.21)

It is noted that, for implementation of (6.20), the delays must be satisfied following condition,

2Twn > Tmn + Tin (6.22)

In this research, the reaction force is estimated by the reaction-force observer (RFOB) [15]. However,

the reaction force estimated by RFOB often includes the disturbance, such as friction, other than reaction

force. Therefore, a high-pass filter is applied to the estimated force for eliminating DC component of

such disturbance in (6.20). Finally, the compensation value is calculated by using inverse system of the

position controlled motor as follow,

Q′comp
rfl =

g2inv
s2 + 2ginvs+ g2inv

s2 +Kvs+Kp

Kp
e+TisQ̂′

rfl (6.23)

where ginv denotes the cut-off frequency of second order low-mass filter which makes the inverse system

be proper.

Whole block diagram of the proposed method is shown in Fig. 6-22. In Fig. 6-22, block of “reflected

wave rejection” denotes the calculation based on (6.20). It is noted that the control system shown in

previous part is a fully closed-loop control system, but the control system shown in Fig. 6-22 is a semi-

closed-loop control system. In the case of the proposed method, tip-position information can not be used
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Communication
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Fig. 6-22: Whole block diagram of the proposed position control system.

for control of the integrated system. According to the above, CDOB designed for position controlled

motor without consider load side of resonant system is located in inner loop. In outer loop, vibration

suppression of mechanical resonances is achieved by the proposed reflected wave rejection. The com-

pensation value (6.20) for the reflected wave is fed back to the position command with multiplying the

inverse system of the position controlled motor without delay. Because the CDOB with band-pass filter

is implemented at inner loop, the cut-off frequencies bl and gh must be satisfied following conditions,

bl < gh. (6.24)

If the condition (6.24) is not satisfied, the drift effect occurs due to the integrator in the proposed reflected

wave rejection. Finally, the acceleration reference which is transmitted to the plant is represented as

Q̈ref = Kp

(
1

2
R(s)−Qdm −Qcmp

cdob −Q′cmp
rfl

)
−Kv

sgpdv
s+ gpdv

(Qdm +Qcmp
cdob). (6.25)
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Table 6.5: Experimental parameters for reaction-force-based reflected wave rejection for integrated sys-
tem.

Parameter Description Value
Ts Sampling time 0.1 ms
Ti Input delay 5.0 ms
Tm Output delay at motor side 5.0 ms
Tl Output delay at load side 20 ms
Tw Propagation time of wave 12.5 ms
Ktn Nominal torque coefficient 1.18 Nm/A
Mn Nominal mass of motor 0.0029 kgm2

w1 First order resonance frequency 125 rad/s
W Characteristic impedance 3.1 Ns/m
L Length of flexible arm 0.3 m
Kp Position gain ω2

1

Kv Velocity gain 2ω1

(CDOB based method) 3ω1

gdis Cut-off frequency of DOB 1000 rad/s
gr Cut-off frequency of reflected wave rejection 300 rad/s
gh Cut-off frequency of CDOB 1000 rad/s
gl Cut-off frequency of CDOB 25 rad/s

ghpf Cut-off frequency of high-pass filter 50 rad/s
gpd Cut-off frequency of pseudo derivation 300 rad/s

for reflected wave rejection
gpdv Cut-off frequency of pseudo derivation 2000 rad/s

for calculation of velocity

6.4.2 Experiments

Experimental Setup

To verify the effectiveness of the proposed method, a position control of flexible arm is performed.

Experimental setup is same flexible arm system as shown in Fig. 6-20. The control goal is that the tip

position of a flexible arm q(t, L) corresponds to the position command r(t) without vibrations. The

flexible arm is mounted on the direct drive rotary motor (encoder resolution: 20 bit/rev). The tip position

q(t, L) is obtained by a vision sensor (frame rate: 100 Hz). Equivalent resolution of tip position obtained

by the vision sensor is 1.09 × 10−4 rad. Control program is written by C language under Real time
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Fig. 6-23: Experimental results (without reflected wave rejection).
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Fig. 6-24: Experimental results by the conventional reflected wave rejection.

application interface 3.8 (RTAI 3.8) on Linux.

Experimental parameters are shown in Table 6.5. Output delay at load side includes processing time of

vision sensor (Tl = 20 ms). The input and output delays without the image processing delay is artificially

generated in the computer. The jitters of input and output delays are not considered in this experiment.

In this experiment, a step position command (r(t) = 0.01 rad) is applied to the control system.

The proposed method is compared with the conventional reflected wave rejection shown in Fig. 6-17.
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Fig. 6-25: Experimental results by the proposed reflected wave rejection.

Experimental Results

The experimental results are shown in Figs. 6-23–6-25. Fig. 6-23 shows the experimental results of

the CDOB based method which does not implement vibration suppression for mechanical resonances. It

is found that time delay is compensated and the system is stabilized, but vibration occurs at load side due

to mechanical resonances.

Figs. 6-24 and 6-25 shows the results of the conventional and proposed reflected wave rejections. It

turns out that the vibrations due to time delay and mechanical resonance are well suppressed by both

two methods. Therefore, the proposed method achieves same vibration suppression performance as the

conventional reflected wave rejection although the tip-position information is not used for control. In both

two methods, the undesired overshoots are observed on the position responses. It is because the CDOB’s

filter degrades the transient performance instead of the performance of disturbance suppression. It is

noted that, in these experiments, the results of the conventional and proposed reflected wave rejections

do not have steady state error because those methods implements the high-pass filters in the CDOBs,

which can suppress impulse disturbances. If there exists a step disturbance, steady state errors occur in

responses of both methods.

Validity of the proposed reflected wave rejection is confirmed by these experimental results.
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6.5 Summary of Chapter 6

This chapter explained the reflected wave rejection for an integrated resonant and time-delay system.

In basic concept of the proposed approach, the mechanical resonant system implements the reflected

wave rejection. Hence, the resonant system can be regarded as equivalent time-delay system because

the transfer function of wave equation with reflected wave omitted is expressed as a time delay. Then, a

second-order system (i.e. motor dynamics) with sum of actual and equivalent time delays is an equivalent

plant model for the integrated system. The time delay in the above mentioned equivalent plant can

be compensated by typical time-delay compensation methods at the same time. In addition, the basic

concept for control of the integrated system was extended to the reflected wave rejection for integrated

system which can be implemented at local (controller) side. Finally, the reaction-force-based reflected

wave rejection for the integrated system was derived, which has advantage that control system can be

implemented by using only motor position.
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Chapter 7

Robust Control of Wave System

7.1 Introduction of Chapter 7

This chapter explains a wave-based disturbance observer for robust enhancement against disturbance.

In the previous chapters, suppression of the disturbance acting on the tip is not considered in design

of control with the reflected wave rejection. On the the other hand, it is noted that the disturbance

acting on the motor is suppressed by the disturbance observer. Sensitivity function of typical reflected

wave rejection shown in Chapter 3 implies that disturbance acting on the tip induces a steady state error.

Hence, to realize robust control system, additional disturbance compensator should be implemented. The

wave-based disturbance observer proposed in this chapter is an extension of arm disturbance observer

[98] which is used in the field of control of a two-mass resonant system.

The contents of this chapter are as follows. Section 7.2 explains the modeling of the wave system

considering disturbance acting on the tip. Section 7.3 describes the structure of wave-based disturbance

observer. The control of wave system with reflected wave rejection and wave-based disturbance ob-

server is analyzed in Section 7.4. Section 7.5 explains force control of wave system using wave-based

disturbance observer as force estimator [100]. Finally, this chapter is summarized in Section 7.6.

Henceforth, the disturbance acting on the tip position is called a load disturbance.

7.2 Modeling of Wave System Considering Load Disturbance Position

The resonant system dealt with in this chapter is a one-link flexible arm shown in Fig. 7-1. In Fig. 7-

1, q(t, x), qm, L, and f ext
l denote the distributed position at x in t, the motor position, the length of
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Rotary

Motor

Load Side of

Resonant System

(Flexible Arm)

Fig. 7-1: Modeling of the resonant system based on wave.

Reflected

Waves

Fig. 7-2: Block diagram of resonant system modeled by wave equation.

the flexible arm, and the external load force acting on x = L, respectively. The controlled system

is composed of a motor and one-link flexible arm. The control objective for the system is that the

tip position q(t, L) tracks the position command R(s) without residual vibration and steady state error

caused by the external force.

Firstly, modeling for the load side of the resonant system is explained. Load side of the resonant

system means the one-link flexible arm without the motor located at boundary. It is assumed that the re-

sponse of motor is not affected by the response of the load side because motor implements an acceleration

control based on the DOB.

In this research, the resonant system is modeled by the wave equation, which is one of the distributed

parameter model, in order to consider high-order vibrations. The wave equation is expressed as

∂2q(t, x)

∂t2
= c2

∂2q(t, x)

∂x2
(7.1)

where c denotes the propagation velocity of the wave. The boundary conditions for the resonant system
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shown in Fig. 7-1 are represented as

q(t, 0) = qm(t) (7.2)
∂q(t, L)

∂x
= −1

κ
f ext
l (7.3)

where κ denotes the spring coefficient per unit length. (7.2) means that the motor position, which is

regarded as the input for the load side, is applied at x = L. It is noted that the motor position is not

affected by the response of load side owing to the implementation of the DOB as shown in Chapter 2.

On the other hand, (7.3) means that the external load force is applied at x = L. By using the above

boundary conditions and wave equation, a transfer function can be derived as

Q(s, L) = G(s)Qm +H(s)F ext
l (7.4)

where

G(s) =
2e−Tws

1 + e−2Tws
(7.5)

H(s) = − 1

s
√
ρκ

1− e−Tws

1 + e−2Tws
(7.6)

where s and ρ stand for the Laplace operator and the inertia/mass per unit, respectively. Tw stands for the

propagation time of the wave, which is represented as Tw = L
c . From transfer functions (7.5) and (7.6),

it turns out that there are time delay in the denominators of the transfer functions, and the tip position

will vibrate. Block diagram of the load side of resonant system modeled as the wave equation is shown

in Fig. 7-2. In Fig. 7-2, the negative feedback and block “2” mean the reflected waves. In addition, the

reflected wave which is negative feedback part in Fig. 7-2 is a cause of the vibration. Therefore, if the

reflected wave is rejected from the resonant system, the vibration will be suppressed as shown in the

previous chapters.

If the reflected wave rejection is applied for the vibration suppression, the transfer function becomes

Q(s, L) =
Kp

s2 +Kvs+Kp
e−TwnsR(s)− 1

s
√
ρκ

(1− e−2Twns)F ext
l . (7.7)

According to the above equation, both transfer functions represented as (7.5) and (7.6) are stabilized by

the reflected wave rejection. However, (7.7) implies that steady state error occurs by step disturbance

F ext
l because lim

s→0
(1− e−2Tws)/(s

√
ρκ) = 2Tw/

√
ρκ.
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7.3 Wave-based Disturbance Observer

As mentioned before, the vibration can be suppressed by using the reflected wave rejection-based

vibration control under existence of disturbance acting on the tip. However, the reflected wave rejection

does not have suppression of the external force and it leads to the steady state error. In addition, if

there exists the error in Twn, the performance of the reflected wave rejection degrades. Considering the

above, this paper proposes the wave-based DOB for compensation of the external force and the parameter

variation. Here, a load (arm) DOB is one of the DOB which is used in a two-mass resonant system. In

other words, the wave-based DOB is a load (arm) DOB for wave equation which is resonant system

comprising infinite numbers of mass and spring.

7.3.1 Structure

Before explaining the wave-based DOB, the load disturbance is defined. First of all, (7.4) is trans-

formed into

(
1 + e−2Tws

)
Q(s, L) = 2e−TwsQm − 1

s
√
ρκ

(
1− e−Tws

)
F ext
l . (7.8)

Here, by introducing nominal time delays e−Twns and e−2Twns, (7.8) can be transformed into

(
1 + e−2Twns

)
Q(s, L) = 2e−TwnsQm − 1

s
√
ρκ

(
1− e−Tws

)
F ext
l +Qerr. (7.9)

where Qerr denotes the equivalent position response caused by the parametric uncertainty, and it is

represented as

Qerr = 2e−Tws
(
1− e−(Twn−Tw)s

)
Qm − e−2Tws

(
1− e−2(Twn−Tw)s

)
Q(s, L). (7.10)

Finally, the following equation can be derived as

Q(s, L) =
2e−Twns

1 + e−2Twns
Qm − 1

1 + e−2Twns
Qdis

l (7.11)

where Qdis
l is defined as a load disturbance in the wave system, which is represented as

Qdis
l =

1

s
√
ρκ

(
1− e−Tws

)
F ext
l − (1 + e−2Twns)Qerr. (7.12)

The above disturbance leads to degrade the vibration suppression performance. In addition, the dis-

turbance induces the steady state error. To compensate the load disturbance represented as (7.12), the
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Fig. 7-3: Block diagram of load disturbance rejection based on the wave-based DOB.

wave-based DOB (WDOB) is proposed. The load disturbance is estimated through a low-pass filter L(s),

and the estimated load disturbance is represented as

Q̂dis
l = L(s)

(
2e−TwnsQm − (1 + e−2Twns)Q(s, L)

)
. (7.13)

Block diagram of the load disturbance rejection based on the WDOB is shown in Fig. 7-3. The compen-

sation value for the load disturbance, which is the estimated load disturbance multiplied inverse system

of the resonant system without reflected wave and motor, is fed back to the position command. The

compensation value is generated as

Qcmp
ldis =

g2inv
s2 + 2ginvs+ g2inv

s2 +Kvs+Kp

Kp
e+TwnsQ̂dis

l . (7.14)

Then, the actual load disturbance and estimated load disturbance are cancelled out. However, it is difficult

to implement the control system shown in Fig. 7-3 due to difficulty of realization of the inverse system

of time delay. If the inverse system of the time delay approximates “1”, the compensation value is

represented as

Q̃cmp
ldis =

g2inv
s2 + 2ginvs+ g2inv

s2 +Kvs+Kp

Kp
e+TwnsQ̂dis

l . (7.15)

By using the above compensation value, the steady state error caused by the external force can be elimi-

nated, but the effect of parametric uncertainty can not be compensated well.
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Fig. 7-4: Block diagram of the proposed control system with finite-approximated wave-based DOB for
implementation (case of n = 1).

7.3.2 Implementation of Approximated WDOB

In this part, approximation of WDOB for robust enhancement of the parametric uncertainty is ex-

plained. In the approximation of WDOB, the compensation value for the load disturbance is directly

calculated. the compensation value (7.14) without inverse system of the motor is represented as

e+TwnsQ̂dis
l = e+TwnsL(s)

(
2e−TwnsQm − (1 + e−2Twns)Q(s, L)

)
= L(s)

(
2Qm − (e+Twns + e−Twns)Q(s, L)

)
. (7.16)

Here, the infinite product expansion of the hyperbolic cosine is introduced,

coshTwns =
e+Twns + e−Twns

2

=
∞∏
i=1

(
1 +

T 2
wn

π2(n− 1
2)

2
s2

)
. (7.17)

By using the above, (7.16) is represented as

e+TwnsQ̂dis
l = 2L(s)

[
Qm −

∞∏
n=1

(
1 +

T 2
wn

π2(n− 1
2)

2
s2

)
Q(s, L)

]
. (7.18)
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Table 7.1: Simulation parameters for wave-based DOB.
Parameter Description Value

Ts Sampling time 50 us
ω1, ω2 1st/2nd resonant frequencies 50, 150 rad/s
Tw Propagation time of wave π/(2ω1) s
Ktn Nominal force coefficient 1.18 Nm/A
Jn Nominal inertia of motor 0.0035 kgm2

Kp Position gain ω2
1n

Kv Velocity gain 2.0ω1n

Twn Nominal propagation time of wave π/(2ω1n) s
gdis Cut-off frequency of DOB 3000 rad/s
gr Cut-off frequency of reflected wave rejection 2000 rad/s
gwl Cut-off frequency of WDOB 500 rad/s
gpd Cut-off frequency of pseudo derivation 2000 rad/s

for velocity calculation
ginv Cut-off frequency of pseudo derivation 1000 rad/s

for inverse system

If n equals to 1 in (7.18), approximated WDOB corresponds to the load DOB including the inverse

system for a two-mass resonant system. Therefore, in other words, the WDOB is a generalized load

DOB for the resonant system. In this part, the approximated WDOB with n = 1 is introduced, and the

compensation value is represented as

Qcmp2
ldis =

g2inv
s2 + 2ginvs+ g2inv

s2 +Kvs+Kp

Kp
2L2(s)

[
Qm −

(
1 +

4T 2
wn

π2
s2
)
Q(s, L)

]
(7.19)

where L2(s) denotes the low-pass filter which makes (7.19) be proper, and which is represented as

L2(s) =
g2wl

(s+ gwl)2
(7.20)

where gwl denotes the cut-off frequency. The whole block diagram of the proposed method is shown

in Fig. 7-4. Stability of the load disturbance compensations based on (7.14) and (7.19) are discussed in

Section 7.4.
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7.3.3 Numerical Results

Simulation Setup

In order to verify the effectiveness of the proposed method, simulations of position control on a three-

mass resonant system are conducted. In this simulation, a step position command (0.005 rad/s) is applied

to the controlled system. In order to check effect of the external force, the external force (0.01 Nm) is

applied on the load side at t = 0.25. Simulation parameters are shown in Table 7.1. In order to check

compensation of parameters, a nominal tip-position response, which is an equivalent time-delay system,

in other words, is simulated. A nominal tip-position response is defined as

Qnom
l =

Kp

s2 +Kvs+Kp
e−TwnsR(s). (7.21)

Simulation Results

Fig. 7-5 shows the simulation results of the reflected wave rejection when there is no difference be-

tween nominal and actual plant parameters. From Fig. 7-5, it is found that vibration on the load side

is suppressed by the reflected wave rejection. In addition, the responses of tip position corresponds to

the nominal equivalent time-delay system, which is written by a pink line. This means that the resonant

system can be regarded as a equivalent time-delay system owing to the reflected wave rejection. After

t = 0.3, steady state error is observed due to the external load force.

Fig. 7-6 shows the simulation results when the nominal 1st-order resonant frequency is 0.9 times as

actual one. From Fig. 7-6(a), performance of vibration suppression degrades due to the parameter error.

On the other hand, Fig. 7-6(b) shows that the wave-based observer compensates for both the parameter

error and the external load force.

Fig. 7-7 shows the simulation results when the nominal 1st-order resonant frequency is 1.1 times as

actual one. From Fig. 7-7(a), performance of vibration suppression degrades due to the parameter error

as well as the results in Fig. 7-6(a). On the other hand, Fig. 7-6(b) shows that the wave-based observer

compensates for the parameter error and the external load-force. Compared with results in Fig. 7-6,

stability of the controlled system is decreased and vibration occurs. In actual implementation, it is better

that nominal 1st-order resonant frequency is set smaller value than actual one from the point of view of

the stability.
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Fig. 7-5: Simulation results by the reflected wave rejection.

Table 7.2: Experimental parameters for wave-based DOB.
Parameter Description Value

Ts Sampling time 50 us
ω̃1 Identified 1st resonant frequency 34.5 rad/s
ω1n Nominal 1st resonant frequency 1.5ω1 rad/s
Tw Propagation time of wave π/(2ω1n) s
Ktn Nominal force coefficient 1.18 Nm/A
Jn Nominal inertia of motor 0.0035 kgm2

Kp Position gain ω2
1n

Kv Velocity gain 3.0ω1n

Twn Nominal propagation time of wave π/(2ω1n) s
gdis Cut-off frequency of DOB 2000 rad/s
gr Cut-off frequency of reflected wave rejection 175 rad/s
gwl Cut-off frequency of WDOB 60 rad/s
ginv Cut-off frequency of pseudo derivation 150 rad/s

for inverse system

7.3.4 Experiments

Experimental Setup

In this section, the experiments are conducted to verify the validity of the proposed method. The

flexible arm system used in this experiments is same as the flexible arm shown in Fig. 3-15. The tip
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(b) With WDOB

Fig. 7-6: Simulation results by reflected wave rejection with/without wave-based DOB (ω1n = 0.9ω1).

position is obtained by using the position sensitive detector (PSD) and laser diode. The motor position

is measured by position encoder. The real-time control system is realized by Linux OS with real-time

application interface (RTAI 3.7).

The experimental parameters are shown in Fig. 7.2. In the experiments, a step command (r(t) = 0.005

rad) is applied to the system at t = 2.0.
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(b) With WDOB

Fig. 7-7: Simulation results by reflected wave rejection with/without wave-based DOB (ω1n = 1.1ω1).

Experimental Results

Experimental results of the reflected wave rejection with/without WDOB are shown in Fig. 7-8. From

Fig. 7-8(a), the performance of the reflected wave rejection degrades because the nominal propagation

time is different from the actual (identified) one. On the other hand, from Fig. 7-8(b), it is found that the

WDOB compensates for the parametric uncertainty in the propagation time and the tip-position response
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(b) With WDOB

Fig. 7-8: Experimental results by reflected wave rejection with/without WDOB.

Q(s, L) is close to the response Qnom
l . In addition, it also turns out that WDOB can eliminate the

steady state error. The root mean square errors between Q(s, L) and Qnom
l of Figs. 7-8(a) and (b) are

2.1739× 104 rad and 1.4703× 104 rad, respectively. Therefore, the validity of the proposed method can

be confirmed by the experimental results.
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7.4 Analysis and Experimental Validation of WDOB-Based Disturbance
Rejection with Approximation

7.4.1 Analysis based on Frequency Response

As mentioned in previous part, the reflected wave rejection-based control does not have load distur-

bance suppression performance at low-frequency area. This part analyzes sensitivity and complementary

sensitivity functions of reflected wave rejection control with WDOB. The two methods are analyzed as

follow,

• Method 1: WDOB, shown in Fig. 7-3, with an approximated inverse system eTwns ≈ 1,

• Method 2: Approximated WDOB, shown in Fig. 7-4, by using the finite-order model (7.19).

The open-loop transfer functions of the methods 1 and 2 are represented as

GWDOB
o =

1

2

Fr2Gm

1− Fr2Lwe−Twns
Gw(s)G

inv
m

[
LinvLw(1 + e−2Twns)− Fr1e

−Twns
]

(7.22)

G̃WDOB
o =

1

2

Fr2Gm

1− Fr2Lw
Gw(s)G

inv
m (LinvLwG̃

inv
w − Fr1e

−Twns) (7.23)

where

Fr1 =
gr

s+ gr
(7.24)

Fr2 =
2s+ 2gr
s+ 2gr

(7.25)

Gw(s) =
2e−Tws

1 + e−2Tws
(7.26)

Gm =
Kp +Kds

s2 +Kvs+Kp
(7.27)

Ginv
m =

s2 +Kvs+Kp

Kp +Kds
(7.28)

Linv =
g2inv

s2 + 2ginvs+ g2inv
(7.29)

G̃inv
w =

(
1 +

4T 2
wn

π2
s2
)
. (7.30)

By using the above, the sensitivity and complementary sensitivity function of each method can be calcu-

lated.

Fig. 7-9 shows the bode and Nyquist diagrams of sensitivity and complementary sensitivity functions

of the methods 1 and 2. In case of Fig. 7-9, the cut-off frequency gw is set as lower value than the
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first-order resonant frequency (gw = 0.5ω1). In this case, Fig. 7-9(a), both methods 1 and 2 realize good

sensitivity function which has a gain at low-frequency area is small. Therefore, it is found that the load

disturbance can be suppressed by both WDOB. In addition, from Figs. 7-9(a) and (b), complementary

sensitivity function and stability does not degrade so much. Fig. 7-10 shows the bode and Nyquist dia-

grams of the methods 1 and 2 when the cut-off frequency gw is set as higher value than the first-order

resonant frequency (gw = 1.5ω1). In this case, from Fig. 7-10(a) and (b), it is found that both com-

plementary sensitivity and sensitivity functions of method 2 degrades. In addition, stability of method

2 gets worse than case of gw = 0.5ω1 from Fig. 7-10(c). On the other hand, the method 1 dose not

degrade the stability and sensitivity sensitivity function compared with case of gw = 0.5ω1. However,

complementary sensitivity function at low-frequency area degrades compared with case of gw = 0.5ω1.

According the above analytical results, considering the stability, method 1 is superior to method 2. In

contrast, under the condition of gw < ω1, the method 2 has good robust performance. However, if there

is variation in ω1 and gw < ω1 is not satisfied, the stability of method 2 becomes worse.
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Fig. 7-9: Bode and Nyquist diagrams of reflected wave rejection with WDOBs (gw = 0.5ω1).
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Fig. 7-10: Bode diagram of sensitivity and complementary function of reflected wave rejection with
WDOBs (gw = 1.5ω1).
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Table 7.3: Parameters for experimental validation of wave-based DOB with approximations.
Parameter Description Value

Ts Sampling time 50 us
ω̃1 Identified 1st resonant frequency 38.5 rad/s
ω1n Nominal 1st resonant frequency 1.0ω1 rad/s
Tw Propagation time of wave π/(2ω1n) s
Ktn Nominal force coefficient 1.18 Nm/A
Jn Nominal inertia of motor 0.0035 kgm2

Kp Position gain ω2
1n

Kv Velocity gain 3.0ω1n

Twn Nominal propagation time of wave π/(2ω1n) s
gdis Cut-off frequency of DOB 2000 rad/s
gr Cut-off frequency of reflected wave rejection 55 rad/s
ginv Cut-off frequency of pseudo derivation 80 rad/s

for inverse system
ωn Poles design by state feedback control 48.0

7.4.2 Experimental Validation

Experimental Setup

In this part, the analytical results shown in previous part are confirmed by experiments. The ex-

perimental setup is same as the system shown in Fig. 3-15. In this experiment, the step command

(r(t) = 0.01 rad) is applied to the control system.

Experimental parameters are shown in Table 7.3. In this experiment, performances of the method 1 and

the method 2 are compared. The method 2 uses a first-order approximation (n = 1) in (7.18). In addition,

the fully closed-loop state feedback control shown in Fig. 3-16 is also compared with the proposed

method. The control gains in the fully closed-loop state feedback control are determined according to

(3.42)–(3.48), and ωn is set so that time constant equals to that of the proposed method.

Experimental Results

Fig. 7-11 shows the experimental results of method 1 and method 2 when the cut-off frequency of

WDOB is lower than the first-order resonant frequency (gw = 20.0 ≈ 0.5ω1). It is found that the

vibrations are well suppressed by the reflected wave rejection and steady state error is eliminated in both

two methods. Fig. 7-12 shows the experimental results of method 1 and method 2 when the cut-off
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frequency of WDOB is closed to the first-order resonant frequency (gw = 40.0 ≈ 1.0ω1). In this case,

it can be observed that the response of method 2 becomes worse compared with Fig. 7-11(a). These

experimental results correspond to the analytical results.

Next, the proposed method is compared with the fully closed-loop state feedback control. Experimen-

tal results of the fully closed-loop state feedback control are shown in Fig. 7-13. From Fig. 7-13, the

time constant of the state feedback control is almost same as the response of proposed method shown in

Fig. 7-12(a). Additionally, the steady state error does not occur owing to the integrator. However, it is

found that the second order resonant frequency is excited, which means the spillover occurs. Hence, the

fully closed-loop state feedback control shown in Fig. 3-16 is needed to design additional stabilization

compensator for control of this plant, which makes the system complex.

According to the above, it is confirmed that, considering the stability, the method 1 should be used for

the wave system because the spillover problem can be avoided.
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Fig. 7-11: Experimental results of position responses when cut-off frequency is gw = 20.0 ≈ 0.5ω1.
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Fig. 7-12: Experimental results of position responses when cut-off frequency is gw = 40.0 ≈ 1.0ω1.
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Fig. 7-13: Experimental results of state feedback control (ωn = 1.2).
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7.5 Application to Force Control

The WDOB which is described in previous section can estimate the load disturbance including the

load-external force. Therefore, by using the estimated load-external force, the force control of load-

external force can be constructed. This section introduces how to design the force control system of

wave system based on WDOB.

7.5.1 Estimation of Environmental Force Based on WDOB

In this section, estimation of the environmental force is explained. First of all, it is assumed that there

is no modeling error of the propagation time of the wave. By using the assumption, the load disturbance

can be represented as

Qdis
l =

1

s
√
ρκ

(
1− e−Tws

)
F env
l . (7.31)

Here, it is assumed that the environmental force is a step force (sF env
l = 0). Therefore, (7.31) can be

transformed into

Qdis
l =

Tws− 1
2(Tws)

2 + · · ·
s
√
ρκ

F env
l

=
Tw − 1

2T
2
ws+ · · ·

√
ρκ

F env
l

≈ Tw√
ρκ

F env
l . (7.32)

Therefore, the environmental force is estimated by

F̂ env
l =

√
ρκn

Twn
Q̂dis

l

=
cn
√
ρnκn

Ln
Q̂dis

l . (7.33)

7.5.2 Force Control of Wave System

Structure

The whole block diagram of the proposed force control of wave system is shown in Fig. 7-14. Kf ,

F cmd, and Ze(s) stand for the force gain and the force command, and the environmental impedance,
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Wave-based
Disturbance
Observer

Reflected Wave

Rejection

Motor
with DOB

Inverse System

of Motor with DOB

and velocity feedback

Fig. 7-14: Whole block diagram of the proposed force control of wave system.

respectively. The proposed force control utilizes the reflected wave rejection in inner loop, and the load

disturbance rejection based on WDOB. The force controller represents a proportional controller, the

acceleration reference applied to the motor is represented as

Q̈ref = Kf (F
cmd − F̂ env

l )−KvsQm + Q̈cmp
ldis − Q̈cmp

rfl . (7.34)

If the each cut-off frequency is enough high value, the transfer function from F cmd to F env
l is represented

as

F env
l

F cmd
=

KfZe(s)

s2 +Kvs+KfZe(s)e−Twns
. (7.35)

From (7.35), there is a time delay in the denominator of the transfer function. Therefore, there exists

possibility of making the controlled system unstable. It is noted that, if the environmental impedance

can be known, we can utilize the time-delay compensation method (e.g. a CDOB). However, in general,

environmental impedance is unknown parameter in force control systems.

Parameter Design

This part explains the design of control parameters (Kv and Kf ). The control gains are determined

based on open-loop transfer function. If the cut-off frequencies of reflected wave rejection and WDOB
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are enough high values, the open-loop transfer function is derived as

Go =
KfZe(s)

s(s+Kv)
e−Twns. (7.36)

For the sake of simplicity, it is assumed that Ze(s) = Ke where Ke denotes the stiffness of the envi-

ronment. If Kv equals to ∞, it can be approximated as Go ≈ G̃o = KeKfe
−Twns/s. In this case,

because Twn = π
2ω1

, phase delay at first-order resonant frequency equals to -180 degree. In addition,

phase characteristics of the approximated transfer function is represented as

∠G̃ = −π

2
− Twnω. (7.37)

Therefore, if the desired phase margin is set as Pm degree, the force gain should be set as

Kf =
1

KeTwn

(
−π

2
+ Pm

π

180

)
. (7.38)

In actual case, because the environment has often the damper term, the above gain is very conservative.

Therefore, after conducting the performance test with gain (7.38), the force gain should be increased

by cut and try. The design of the control gains are following procedure:1) The velocity is set as higher

value than the first-order resonant frequency ω1, 2) The maximum stiffness of the environment Ke is set,

3) The force gain is set as (7.38), 4) The force gain increases as long as relative stability of the control

system is satisfied.

The advantage of the proposed method is that high-order resonances are suppressed by the reflected

wave rejection. However, as mentioned in the above, bandwidth of the force control of the wave system

is limited to up to the first-order resonant frequency. In addition, the maximum stiffness which can be

dealt with in force control system is also limited. The method which increases the bandwidth of the force

control is that the nominal value Twn in the WDOB should be changed to smaller value than the actual

one. However, it leads to violate the stability of the control system. The stability of the change of the

nominal value will be considered in the future work.

7.5.3 Experiments

Experimental Setup

In order to verify the effectiveness of the proposed method, force control of the flexible arm is con-

ducted. In this experiment, the step force command (0.05 Nm) is applied to the system and tip position

contacts to an environment. A sponge is used as the environment in the experiments. Experimental setup
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Table 7.4: Experimental parameters for force control of wave system.
Parameter Description Value

Ts Sampling time 50 us
ω1n 1st resonant frequency 40.1 rad/s
ω2n 2nd resonant frequency 250.1 rad/s
Tw Propagation time of wave π/(2ω1) s
Ktn Nominal force coefficient 1.18 Nm/A
Jn Nominal inertia of motor 0.0035 kgm2

Kf Force gain 100.0
Kv Velocity gain 1.5ω1n

Twn Nominal propagation time of wave π/(2ω1n) s
gdis Cut-off frequency of DOB 2000 rad/s
gr Cut-off frequency of reflected wave rejection 65 rad/s
gwl Cut-off frequency of WDOB 50 rad/s
gpd Cut-off frequency of pseudo derivation 2000 rad/s

for velocity calculation
ginv Cut-off frequency of pseudo derivation 150 rad/s

for inverse system
cn

√
ρk

Ln
Conversion gain for 4.22 Nm/rad
estimation of environmental force

is shown in Fig. 7-15. The definitions of angles qm and q(t, L) are accordance with those described in

section 2.2.2. The flexible arm is mounted on the direct drive rotary motor. The motor position qm is

obtained by the encoder (220 pulse/rev.). The tip position q(t, L) is obtained by the position sensitive

detector (PSD). Control program is running on the Linux OS with RTAI 3.8.1.

Experimental parameters are shown in Table 7.4. The proposed method is compared with force control

based on the resonant ratio control with load DOB [57]. The control parameters are adjusted by cut and

try so that time constant of the conventional method are same as that of the proposed method. The

parameters are shown in Table 7.5.

Experimental Results

Experimental results of force control are shown in Figs. 7-16 and 7-17. From Fig. 7-16, the first-order

order resonance is well suppressed by the resonant ratio control. However, it is found that vibrations due

to the second-order resonance are excited because the conventional method does not consider the high-
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Rotary Motor
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Fig. 7-15: Experimental setup.

Table 7.5: Control parameters for the conventional method.
Parameter Description Value

Ksn Nominal spring coefficient 8.44 Nm/rad
Jln Nominal load inertia Ksn/ω

2
1n kgm2

Kf Force gain 500.0
Kv Velocity gain 4.0ω1n

Kr Reaction force gain 5.0/Jln

gdis Cut-off frequency of DOB 2000 rad/s
gl Cut-off frequency of Load DOB 50 rad/s
ginv Cut-off frequency of pseudo derivation 100 rad/s

for inverse system

order vibrations. Therefore, it is needed for the conventional method to decrease the force gain in order

to suppress the vibration. On the other hand, Fig. 7-17 shows that the proposed method suppresses both

first-order and second-order vibrations, although the time constant is same as that of the conventional

method. Therefore, the validity of the proposed method is verified.
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Fig. 7-16: Experimental results of the conventional force control by resonant ratio control [57].
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Fig. 7-17: Experimental results of force control by the proposed method.
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7.6 Summary of Chapter 7

In this chapter, a wave-based disturbance observer (WDOB) was proposed for robust enhancement

against the disturbance acting on the tip which is called load disturbance in this chapter. The WDOB

is a extension of arm DOB which is used in the field of control of two-mass resonant system or multi-

mass resonant system. However, there is difficulty in the implementation because the WDOB based

disturbance compensation includes the inverse system of time delay e+Twns. Hence, two approximation

methods are described: one is to approximate the inverse system of time delay to 1, the other is use of

finite-dimension approximation. The WDOB with those approximation is analyzed by the sensitivity

and complementary sensitivity functions and Nyquist diagram. Although WDOB with finite-dimension

approximation has better robust performance than approximation of e+Tws ≈ 1 because the approxima-

tion includes the phase-lead effect of e+Tws, the cut-off frequency of WDOB should be set lower than

maximum-order resonant frequency which is considered in the approximation, otherwise control system

becomes unstable. Considering variation of resonant frequency, the WDOB with approximated inverse

system of time delay 1 should be used.

– 143 –



Chapter 8

Conclusions

This dissertation proposed a control of wave systems based on the reflected wave rejection. Recent

progress in performance of computer and control techniques has contributed to rapid and accurate con-

trol of industrial machines and robots. However, the rapid movements excites the mechanical resonances,

which prevents the machines and robots from further improvement of rapidness and accuracy. Although

typical vibration-control methods, such as control of a two-mass resonant system, have clear physical-

meaning and simple control structure, the compensator considering spillover, which is to make the con-

trol system vibrate by neglected high-order vibrations, has to be designed. As a result, a total controller

including stabilizing compensator for spillover has often become complex and high order. In addition,

time delay included in communication system or DA converter decreases phase margin of the controlled

system, and it also induces vibrations. Although time-delay can be neglected at low-frequency area,

it should be considered at high-frequency area for realizing fast and accurate tracking control system.

Therefore, in order to realize the further rapid and accurate motion of machines and robots, vibration

suppression of mechanical resonance and time-delay compensation should be considered in control de-

sign. Under such background, in this dissertation, both the mechanical resonant and time-delay systems,

which induce vibrations, are modeled as wave systems based on the wave equation. By using the wave

equation in modeling of those systems, the infinite number of resonances (or poles) can be considered.

In addition, the modeling based on the wave equation clarifies the similarity between those systems:

the wave systems are composed of a position-input system and a wave-transmission system, a cause of

vibration is a reflected wave in the wave systems. Therefore, to suppress the vibrations, the reflected

wave rejection is proposed for both mechanical resonant and time-delay systems. The reflected wave
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rejection is a core technique in this dissertation. In addition, owing to apply the reflected wave rejection

to the mechanical resonant system, there exists only traveling wave in the system which implies that the

mechanical resonant system can be regarded as an equivalent time-delay system. Hence, it is easy to

integrate the mechanical resonant system and time-delay system. Then, the integrated resonant and time-

delay system can be compensated by typical time-delay compensation methods (e.g. Smith predictor,

communication disturbance observer). The above items are main contributions of this dissertation.

In Chapter 2, both mechanical resonant and time-delay systems were modeled by using a wave equa-

tion. As for the mechanical resonant system, application of a disturbance observer makes the transfer

function simple, which is composed of time-delay elements. Structures of wave transmission in both sys-

tems were revealed from the transfer functions, and it was explained that there exists similarity between

mechanical resonant and time-delay systems from the wave-transmission point of view. In addition, it

was clarified that causes of vibrations are reflected waves in the wave systems.

In Chapter 3, a basic structure of how to eliminate the reflected wave from the wave systems to sup-

press the vibrations was proposed. The reflected wave rejection scheme is composed of a reflected wave

estimator and a feedforward compensator for the reflected wave. Because the estimator and compen-

sator use time-delay elements and the inverse system of motor, it is possible to implement the infinite-

dimensional compensator without finite-dimensional approximation. Hence, the spillover problem can

be avoided in the proposed method. Additionally, the effect of the reflected wave rejection is analyzed

from both physical and control-theoretical points of view. From the theoretical point of view, the re-

flected wave rejection is equivalent to infinite series of phase lead and lag compensators. Therefore, its

sensitivity function implies that the reflected wave rejection scheme has some robustness against vari-

ation of resonant frequencies, which is different from that of gain-stabilization method such as a notch

filter.

In Chapter 4, the reflected wave rejection was applied to various mechanical resonant systems which

have different boundary conditions and wave-transmission characteristics. In addition, the appropriate

structures of reflected wave rejection for such resonant systems were proposed. First of all, the reflected

wave rejection considering damper effect was proposed. Considering the damper in wave equation, time-

delay elements change to time-delay-like elements whose time delay depends on frequency. For the

implementation, a reaction-force-based reflected wave rejection with fractional-order low-pass filter was

described. By using the proposed method, flexibility in control design improves because consideration of

damper effect alleviates a restriction in wave model whose the poles (resonances) are located at regular
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intervals on the imaginary axis. In the design of the reflected wave rejection, the compensation value

generated by the typical reflected wave rejection is transformed by using a estimated reaction force from

the wave system. Owing to the transformation, it is possible to calculate the compensation value for the

reflected wave including damper effect by using the fractional-order low-pass filter. Finally, the reflected

wave rejection considering mass on tip was proposed. In the industrial application, there exist cases that

some loads are mounted on the drive system. Considering the above cases, the tip mass was considered

in boundary condition at the end of wave system. The effect of mass produces a transfer function having

all-pass characteristic. Therefore, a proposed reflected wave rejection in this part includes the all-pass

filter generated by effect of mass. In addition, considering amplifying noise effect by the derivation,

positive delay-feedback structure is introduced.

In Chapter 5, the reflected wave rejection for time-delay system is proposed. The relevance between

the proposal and typical time-delay compensation methods, which are Smith predictor and communica-

tion disturbance observer, were clarified. It turned out that, from the point of view of wave, the proposal

and typical time-delay compensation methods are same because the compensation value for time delay in

each method is same, but the disturbance suppression performance and robust stability against variation

of time delay are different. Furthermore, based on the similarity between resonant and time-delay sys-

tems mentioned in Chapter 2, time-delay compensation by an equivalent elastic force feedback was also

proposed. It can be interpreted that a cause of vibration in time-delay system is robustness of the position-

input system against the wave-transmission system. This interpretation comes up from a resonance ratio

control which is one of vibration control of a two-mass resonant system. In such field, mass/inertia ratio

between motor and load is strongly related to vibration-suppression performance, and vibration increases

at load side when mass of motor is heavier than mass of load. If the disturbance observer is implemented

to motor, which means that equivalent mass/inertia against torsional force becomes infinity, vibration oc-

curs heavily. Considering such condition, the resonance ratio control conducts a reaction-force feedback

to decrease equivalent mass of the motor. Because the equivalent elastic force (reaction force) can be

defined in the wave system by wave equation, the idea is applied to the time-delay system. It is con-

firmed that equivalent elastic force feedback stabilizes the time-delay system by both simulations and

experiments.

In Chapter 6, the reflected wave rejection for an integrated resonant and time-delay system was pro-

posed. For realization of the precise control system, not only mechanical resonances but also time delay,

for example time delays in a communication system and a DA converter, should be considered. For an
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integrated resonant and time-delay systems, there is a case that it is difficult to stabilize the system by

simple combination use of vibration control and time-delay compensation. Hence, compensation of the

integrated resonant and time-delay systems based on the reflected wave rejection was proposed. In the

proposed method, the resonant system is transformed into an equivalent time-delay system, in which

there only exists traveling wave, by reflected wave rejection in inner loop. Hence, equivalent transfer

function of the integrated system becomes the second order system, which represents the motor dynam-

ics, with sum of time delays which are input-output time delay and transmission delay of the wave. As

for the outer loop, actual and equivalent time-delays are simultaneously suppressed by the typical time-

delay compensation. Based on the basic structure, the reflected wave rejection which uses a reaction

force from the wave system instead of load position was also proposed.

Chapter 7 explained a wave-based disturbance observer for enhancing robustness against disturbance

acting on the tip position and modeling error. The wave-based disturbance observer is an extension of

arm disturbance observer which is used in control of a two-mass resonant system. For the implemen-

tation of wave-based disturbance observer, inverse system of time-delay element is needed to be imple-

mented. Hence, two approximation methods are introduced: one is simple approximation e+Twns ≈ 1,

the other is use of finite-dimensional approximation. The first-order finite-dimensional approximation of

the wave-based disturbance observer is completely same as the arm disturbance observer. Additionally,

the wave-based disturbance observer with those approximations were analyzed by use of sensitivity and

complementary sensitivity functions. Finite-dimensional approximation of the wave-based disturbance

observer performs better robust performance which means that nominal performance is maintained under

existence of modeling error. However, finite-dimensional approximation-based wave-based disturbance

observer needs to set the cut-off frequency of the observer lower value than maximum-order resonant

frequency which is considered in the observer. If the cut-off frequency becomes higher value than the

maximum-order resonant frequency due to variation of the resonant frequency, the stability of the control

system becomes drastically worse. Therefore, considering the stability of the controlled system, it can

be said that the wave-based disturbance observer with the approximation eTwns ≈ 1 should be used.

Moreover, in Chapter 7, the force control of wave system by using the wave-based disturbance observer

as estimator for force acting on tip position was proposed. If the modeling error of the wave system in

the observer design does not exist, the wave-based disturbance observer can be used as the observer for

the external force acting on the tip position. The proposed force control of wave system is composed of

the reflected wave rejection and wave-based disturbance observer. In the inner loop, the reflected wave
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rejection suppresses the vibrations of wave system, and wave-based disturbance observer compensates

for the disturbance acting on the tip. Equivalent system of inner loop becomes the simple model which is

a second-order system with time-delay. In the outer loop, feedback of the estimated force acting on the

tip is conducted. Because the equivalent time delay decreases the phase margin of the control system,

the force controller implements the phase lead compensator and local velocity feedback for increasing

the phase margin. As for the improvement of force-control bandwidth, it is possible to set the nomi-

nal transmission time of the wave to higher value than actual value in the wave-based load disturbance

observer.

Although this dissertation succeeded in developing the fundamental theory for the control of wave

systems based on the reflected wave rejection, there exist issues which should be solved to extend appli-

cability and generality of the proposed method as the future work. Firstly, because this dissertation has

dealt with one-dimensional wave equation with respect to space which only considers x direction, the

control of wave systems based on the reflected wave rejection should be extended to control of multi-

dimensional wave systems which are governed by multi-dimensional wave equations. For example, there

is a two-dimensional wave equation which expresses dynamics of a membrane. The flexible arm dealt

with in this dissertation can be expressed by the two-dimensional wave equation whose input is applied

at boundary line which is orthogonal to x axis (i.e. y axis). If the input at the boundary does not satisfy

uniformity and stiffness on y axis is not enough high, the dynamics on y axis can not be neglected. In

the case, in order to construct higher control-performance system, the interference between dynamics on

different axes should be considered. Secondly, control of wave systems with multi-input-multi-output

(MIMO) should be studied. For example, there is a roll-to-roll system involving a flexible plastic or

a metal foil. The roll-to-roll system requires realization of both tension control and winding control.

One of the solutions is control design based on modal transformation for the two different functions.

Hence, control design of wave systems with appropriate modal transformation will be studied for MIMO

systems. Finally, a control of multi-degrees-of-freedom (multi-DOF) system will be studied for realiza-

tion of multi-DOF motions. In the case, relationship between kinematics and flexible structure should

be considered. As stated above, although there exist the future work for improvement of versatility of

the proposed method, the contents described in this dissertation are expected to make a contribution to

progress in the academic field dealing with control engineering for realizing high-performance control

systems.
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