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Abstract

The field of spintronics has increasingly become an interest because of the pos-

sibility to manipulate magnetic properties with electric current and to produce spin

currents. Spin currents are less energy-consuming than charge currents and they can

be generated in a semiconductor material by a process called spin injection, using a

ferromagnet as a spin polarizer. Due to the fact ferromagnets are usually metallic,

the efficiency of spin injection is affected by the difference of conductivity between

the ferromagnet and the semiconductor. In order to prevent such conductivity mis-

match, the creation of ferromagnetic semiconductors was proposed. Semiconductors

doped with magnetic atoms (diluted magnetic semiconductors) are excellent can-

didates as spin polarizers due to their conductivity matching. They are however

difficult to fabricate and suffer from low Curie temperatures. The use of highly

spin-polarized ferromagnetic metals, that can be grown epitaxially on doped semi-

conductors, represents a reasonable alternate choice as long as the properties at the

ferromagnet/semiconductor interface can be controlled. Mn5Ge3 has the advantage

to be grown coherently on Ge(111) with a relatively high Curie temperature and spin

polarization.

The present thesis gives a characterization of the interface between epitaxial

Mn5Ge3 thin films and their Ge substrate. The evidenced interfacial spin-glass state

is a promising result towards elucidating the interactions between ferromagnets and

spin-glasses, which could open new prospects for spintronics applications.

This thesis is composed of six chapters. Chapter 1 explains the motivations of this

thesis. Chapter 2 gives a general background about epitaxial growth and deals with

the structural characterization of the Mn5Ge3 thin films used in this work. Chapter

3 introduces the magnetic properties that are relevant to this work.

Chapter 4 provides a detailed characterization of the magnetocrystalline anisotropy
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in Mn5Ge3 by using the ferromagnetic resonance technique. It is revealed that, despite

being weak, a perpendicular anisotropy exists in such Mn5Ge3 thin films and its tem-

perature dependence is successfully determined not to follow the Callen-Callen law.

By comparing the perpendicular anisotropy with the shape anisotropy, this chapter

concludes that the weak perpendicular anisotropy does not affect the magnetization

hysteresis at low temperature.

Chapter 5 explains the presence of a thermal irreversibility in the in-plane magne-

tization of Mn5Ge3 thin films. A spin-glass-like state arising at the interface between

Mn5Ge3 and Ge considerably changes the magnetic properties of the ferromagnetic

Mn5Ge3 by introducing a slow magnetization dynamics below the Curie tempera-

ture. It is also observed that the spin-glass-like state clearly depends on the growth

conditions.

Chapter 6 concludes the results of this work.

iii
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Chapter 1

Introduction

It is a well-know fact that the materials science at nanoscale can reveal novel proper-

ties in electronics and magnetism. Nanomagnetism and spintronics form a discipline

that combines both ferromagnetism and electronics, which holds wide prospects for

technological applications and understanding new physics.

The first part of this chapter will explain the motivations of this work (section

1.1), then it will describe the organization of this thesis (section 1.2).
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1.1 Background and motivation

The effect of size confinement due to small dimensionality has an important influence

on the properties of materials. The nanostructure can be divided in three struc-

tures: thin films (2D), nanowire (1D), and nanodots (0D). This thesis focuses on the

properties of Mn5Ge3 in the form of thin films.

1.1.1 Nanomagnetism

The ferromagnetic ordering is a complex phenomenon that involves several competing

energies, each of which act on different length scales. Ferromagnetism mainly arises

from the exchange interaction between magnetic moments, whose origin is the fact

that the wave function of electrons must be antisymmetric. That is to say, for two

electrons of space and spin coordinates r1, s1 and r2, s2, the wave function must

follow this relation Ψ(r1, s1, r2, s2) = −Ψ(r2, s2, r1, s1). Due to the Pauli principle,

the wave function becomes zero when the two electrons are identical. The exchange

interaction is responsible for the ordering of the spins, and its range is limited to

neighboring spins S1 and S2: Eex = −2JS1 ·S2, with J being the exchange coupling

constant. Contrary to the exchange interaction, the dipolar interaction is a long

range interaction. Together with the spin-orbit interaction, this magnetic dipolar

interaction is responsible for the magnetocrystalline anisotropy, as will be discussed

later, and competes with the exchange interaction to form magnetic domains. The

exchange interaction favors wider domains while the magnetocrystalline anisotropy

acts towards reducing their size.

The size confinement plays a role in two-dimensional structures. For metals, fer-

romagnetism appears when the Stoner criterion [1] is verified: ID(EF ) > 1, where I
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is the exchange integral and D(EF ) is the density of state at the Fermi level. The

electronic structure at the surface of a material differs from that of the bulk because

the different coordination number of surface atoms and the presence of incomplete

bonds can alter the density of states. For example, palladium (Pd) is normally a

paramagnetic material in its bulk state, however, very thin layers of Pd have been

proved to show ferromagnetic ordering [2]. Many other non-magnetic bulk systems

have been shown to become ferromagnets at low dimensions [3, 4, 5, 6, 7]. The low

dimensionality also affects the magnetization reversal process, the properties of the

magnetic domains and the way the domain walls nucleate. Thin films will indeed

tend to form Néel wall rather than Bloch walls [8]. New kinds of magnetic anisotropy

can also arise from surface effects [9, 10].

The competition between the exchange interaction and the magnetic anisotropy

leads to the existence of a critical size below which ferromagnetic nanoparticles have

uniform magnetization and are made of a single domain. Materials including such

nanoparticles tend to lose their ferromagnetic properties and become to superparam-

agnets, due to fluctuation of magnetic moments caused by the thermal energy. The

presence of an activation energy is a sign of slow magnetization dynamics at low tem-

perature.

Another kind of magnetic materials with slow magnetization dynamics is the spin

glasses. Spin-glasses arise from random and frustrated exchange interactions among

the magnetic moments. An important fact is the possibility of formation of spin-glass

phases at surfaces or interfaces of magnetically ordered phases [11, 12, 13, 14]. Such

interfacial spin-glass phase can drastically change the magnetic properties by causing

disorder and frustration in the ordered phase. The formation of surface spin glasses

has been shown to occur mainly around ferromagnetic particles so far. A section
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of the present work experimentally demonstrates that ferromagnetically ordered epi-

taxial layers of Mn5Ge3 on Ge(111) have a slow magnetization dynamics below the

Curie point, due to the presence of a naturally formed spin-glass-like layer at the

Mn5Ge3/Ge interface. Thus, the properties of the material as a thin film are very

much different from the bulk material because of the disorder present at the interface

with the substrate.

1.1.2 Diluted magnetic semiconductors

The aim of spintronics is to exploit both charge and spin degrees of freedom of the

electrons, in order to develop faster and less power-consuming nonvolatile memory

devices. The potential of a material for spintronics applications relies on its ability

to inject spins and detect spin-polarized currents in a semiconductor [15, 16].

In ferromagnetic materials the density of states at the Fermi level for majority and

minority carriers is not the same, thus electrical currents in ferromagnets are spin-

polarized, while it is not the case in non-ferromagnetic materials. In order to obtain

spin-polarized currents in a semiconductor, spin-injection from a ferromagnet to a

semiconductor is a possible method. However, due to the fact that ferromagnets are

generally metals, the spin-injection efficiency is reduced by the conductivity mismatch

at the interface between the ferromagnet and the semiconductor. A possible solution

to the conductivity mismatch is to fabricate ferromagnetic semiconductors, which

would have both ferromagnetic ordering and lower conductivities than metals. The

growth of such materials began with the experimental and theoretical studies of di-

luted magnetic semiconductors based on rare-earth chalcogenide and chromite spinels.

Ferromagnetism was then achieved in p-type Mn-doped semiconductors from groups

IV-VI (Ref. [17]), III-V (Refs. [18, 19, 20]), and II-VI (Refs. [21, 22]). In1−xMnxAs
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[23] and Ga1−xMnxAs [19, 24, 25] are notable group III-V diluted magnetic semicon-

ductors, which Curie points ranged from 35 to 110 K. Despite their relatively low

Curie temperatures, new properties were found from the interplay between ferromag-

netism and semiconducting properties, such as the colossal magnetoresistance [26].

However, the experimental study of diluted magnetic semiconductors is hard to carry

out further, due to the difficulties related to the fabrication of those materials, despite

the use of low-temperature molecular beam epitaxy.

Diluted magnetic semiconductors based on Si or Ge would be of interest due to

their possible integration in Si or Ge-based electronics and complementary metal-

oxide semiconductor device [27, 28]. The well-known work from Park et al. (see Ref.

[29]) reported the epitaxial growth of p-type Ge1−xMnx diluted magnetic semicon-

ductors, in which the ferromagnetic order was mediated by holes. Calculations using

density functional theory indicate that the interaction between Mn atoms is antifer-

romagnetic at short range and ferromagnetic at long range, and that the long range

ferromagnetic interactions were dominant, which explains the overall ferromagnetic

order. This report from Park et al. also established that the Curie temperature in-

creases linearly with the Mn concentration in the Ge host semiconductor, however

the material suffered from low Curie temperature (20 to 120 K for 0.6% < x < 3%),

similar to group III-V ferromagnetic semiconductors. Nevertheless, this linear rela-

tionship is only valid for low Mn concentrations, because Mn has a low solubility in

Ge thus resulting in phase separations into Mn-rich phases and Ge-rich phases [30, 31]

and yielding high inhomogeneity. Some stoichiometries of such formed Mn-rich clus-

ters have ferromagnetic orders, and therefore they produce extrinsic ferromagnetism,

which is not mediated by charge carriers as it should be in diluted magnetic semicon-

ductors.
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1.1.3 The Mn-rich compound Mn5Ge3

Due to the difficulties of fabricating homogeneous diluted magnetic semiconductors

with high Curie temperatures, efforts have been concentrated on improving the spin

injection efficiency from ferromagnetic metals to semiconductors. The main challenge

is to keep the polarization of the spin while they are injected through the ferromag-

net/semiconductor interface. In order to reduce the impedance mismatch, doped

semiconductors can be used [32]. The nature of the interface is also important.

For the fabrication of a ferromagnet/semiconductor heterostructure, the metal-

lic compound Mn5Ge3 has recently become attractive for the spin injection in the

group IV semiconductor Ge. This Mn-Ge alloy has a hexagonal structure and it was

proved theoretically and experimentally to grow epitaxially on Ge(111) substrates

[33, 34, 35, 36, 37, 38], with a lattice mismatch less that 3% [39, 40]. An illustration

of the lattice of Mn5Ge3(001) on Ge(111) is given in Fig. 1-1. In the form of a thin

film, its Curie temperature is about 296 K, which is close to room temperature. More-

over, recent studies demonstrated that the Curie point can be increased by carbon

doping up to 430 K [41], thus rendering the compound more attractive for practical

applications. The spin polarization in Mn5Ge3 was evaluated to be about 54% [42].

The spin polarization is usually much lower than 100% because of the possible in-

termixing between the metallic ferromagnet and the semiconductor, the presence of

defects at the interface [43, 44, 45].

As many groups already focus on the properties of spin currents in Mn5Ge3 on

Ge(111), performing spin injection is not the direct goal of this thesis. In fact, the

characterization of the magnetic properties at the Mn5Ge3/Ge interface is an im-

portant step towards understanding and possibly optimizing the magnetic properties

of the heterostructure. Therefore the aim of this thesis is to thoroughly analyze
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fundamental properties of Mn5Ge3 epitaxial thin films that have not been clearly

explained so far, such as the magnetic anisotropy. Indeed, in-plane magnetization

hysteresis cycles show relatively weak remanence ratios, which is a sign of anisotropy.

However, this work will show that despite the presence of an out-of-plane magne-

tocrystalline anisotropy, the in-plane magnetization is actually unaffected by this

out-of-plane anisotropy. This fact motivates the measurements of zero-field-cooling

and field-cooling magnetizations in order to detect any possible nonhomogeneous in-

teractions. A thermal irreversibility in the magnetization is indeed evidenced, and

further analyses done in this work will show that the Mn5Ge3/Ge interface is, in fact,

made of a disordered magnetic phase, similar to a spin glass. Previous reports also

stated that Mn5Ge3 films of high thicknesses have magnetic properties which are very

far from that of the bulk. Thus, this work states the importance of the interfacial

magnetic interactions in the Mn5Ge3/Ge heterostructure.

Figure 1-1: Schematic of the lattice of Mn5Ge3(001) grown on Ge(111). The distances
dMn5Ge3 and dGe are the in-plane distances for Mn5Ge3 and Ge in the [010] and [112̄]
directions, respectively.
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1.2 Organization of this thesis

Chapter 1 provided the motivation for the research performed in this thesis. Chapter

2 gives a general background on epitaxial growth and a structural characterization of

Mn5Ge3(001) on Ge(111). Chapter 3 introduces the physics related to the magnetic

properties and phenomena that are relevant to this thesis.

Chapter 4 introduces the ferromagnetic resonance technique as a way to charac-

terize the magnetocrystalline anisotropy in a ferromagnet. The study of magnetocrys-

talline anisotropy in Mn5Ge3 is motivated by the fact that the magnetic hysteresis

undergoes an abrupt change between 200 and 290 K. It is shown that despite the

dominance of the shape anisotropy in Mn5Ge3 epitaxial thin films, a perpendicular

anisotropy exists due to the epitaxial relationship between Mn5Ge3(001) and Ge(111).

However, this perpendicular anisotropy is too weak to contribute to the decrease in

remanence ratio observed in the hysteresis curves at low temperatures.

Chapter 5 evidences the presence of a thermal irreversibility in the temperature

dependence of the in-plane magnetization of the Mn5Ge3 thin films. Despite being a

single crystal and having no apparent signs of randomness or frustration, the Mn5Ge3

epitaxial layers shows a slow magnetization dynamics just below the Curie point.

Such property is attributed to the presence of a “ferromagnetically dead” layer at the

Mn5Ge3/Ge interface, and the slow dynamics is caused by the interaction between

Mn5Ge3 and the interfacial layer. The analysis of the ac susceptibility measurements

indicate that the irreversible behavior is similar to that of a spin glass. It is also

demonstrated that the magnetic properties of the spin-glass-like layer are very sensi-

tive to the growth conditions. Thus the properties of the ferromagnetic Mn5Ge3 are

considerably altered by the frustrated magnetic interactions at the interface with Ge.

Chapter 6 summarizes and concludes the results obtained in this work.
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Chapter 2

Thin film growth and structural

characterization

This chapter mainly deals with the principles of epitaxial growth. Because it allows

the growth of films with high crystal quality, the molecular beam epitaxy technique is

a very important tool for this work, therefore a description of its working mechanism

will be given in section 2.1. The solid phase epitaxy is a particular case of epitaxial

growth process, which is used for Mn5Ge3 thin films in this thesis, and it will also

be explained. In section 2.2, the fundamentals of reflection high-energy electron

diffraction will be discussed, since the technique allows the in-situ characterization of

the surface of the samples. In section 2.3 a structural analysis of the Mn5Ge3 thin

films is provided, and finally, the crystallography of Mn5Ge3 for the x-ray diffraction

analysis will be described in section 2.4.
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2.1 The molecular beam epitaxy technique

2.1.1 The fundamentals of epitaxial growth

MBE apparatus The growth of epitaxial thin films has become a fascinating area

in solid state physics because of the challenge it represents to properly identify the

atomic processes and their interaction that lead to certain morphologies for the films.

The term “epitaxial growth” refers to the growth of a crystalline layer on the surface

of a crystalline substrate, where the crystalline order of the grown layer is imposed by

the crystallographic orientation of the surface of the substrate. The notion of epitaxy

and the growth mechanisms will be discussed in the next paragraph. Molecular beam

epitaxy (MBE) is a technique for epitaxial thin film deposition from molecular or

atomic beams on a crystalline substrate under ultra-high vacuum (UHV) conditions.

Typically, UHV conditions correspond to a background pressure less than 10−8 Pa,

which guaranties minimal interference between impurities and the molecular beams

or the substrate. Under such conditions, the mean free path of molecules in the MBE

chamber is at the order of several kilometers, which is way above the dimensions of

the growth chamber, thus making the MBE chamber not accountable for being a

source of impurities in the grown materials. The low growth rates used in the MBE

technique allow a precise control of the number of deposited layers and the morphol-

ogy of the surface by allowing the atoms or molecules to organize on the surface of

the substrate. Relatively low substrate temperatures can also be used to perform

out-of-equilibrium growth by decreasing the reactivity of the grown material with the

substrate, thus allowing to obtain layers in a metastable state when required. In the

case of this work, the atomic beams are generated by Knudsen-type effusion cells

[see Fig. 2-1(a)] that contain solid sources of the elements used for the growth of the
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Figure 2-1: (a) Schematic of a Knudsen-type effusion cell. (b) Schematic representa-
tion of the MBE growth chamber. The angle θ is the angle between the normal axis
of the substrate holder and the furnace axis of the Knudsen cell. The RHEED is a
method for monitoring the quality of the surface and will be discussed later.

epitaxial thin films.

The Knudsen cells have cone-shaped pyrolitic boron nitride (PBN) crucibles,

with large apertures to increase the atom flux. PBN can resist to temperatures

up to 1300◦ and starts to outgas at appreciable rates for temperatures above this

limit. Each crucible contains a solid source and is heated by a furnace pointing to-

wards the substrate. Each furnace is connected to a tungsten-rhenium thermocouple

(W0.95Re0.05/W0.74Re0.26 stable up to 2320◦C) in order to monitor and control the

temperature within the cell. The flux of the atom beam is strongly dependent on

the temperature of the Knudsen cell. Under the assumption that the size of the cell

aperture is lower than the mean free path of the vapor molecule/atom inside the cell,

one can apply the ideal gas law to evaluate the molecular/atomic flux j from the
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effusion cell. For an isotropic effusion, one obtains [1]:

j =
A

πr2

PK-cell

(2πmkBTK-cell)1/2
cos θ, (2.1)

where A is the aperture size of the cell, r is the distance between the cell and the

substrate, m is the molecular mass, kB is the Boltzmann constant, PK-cell is the equi-

librium vapor pressure in the cell and TK-cell is the cell temperature. The parameters

r and θ are defined in Fig. 2-1(b).

In reality, the effusion is not isotropic and the flux also depends on the quantity of

source remaining in the cell, more precisely on the volume occupied by the source in

the crucible. Consequently, in practice it is important to calibrate the growth rate of

each cell on a regular basis. For such calibration, some MBE machines are equipped

with a quartz microbalance, which is sensitive to the number of monolayers deposited

on the substrate. In the present work, ex-situ x-ray reflection (XRR) measurements

are performed to evaluate the thickness of the reference samples for the calibration.

The different growth modes The description of the epitaxial growth mode orig-

inally came from three distinct theories [2] that were later shown to be comple-

mentary and thus were unified. The Frank-van der Merwe model employed the

elasticity theory to describe the existence of a critical misfit, which appears in the

monolayer-by-monolayer growth mechanism [3]. The Volmer-Weber model assumed

a three-dimensional growth mode and the crystalline thin films are formed from the

three-dimensional nuclei on the substrate. The relative number of nuclei and their

growth rate depends on the surface energy of the substrate and the energy of the

interface between the substrate and the grown material [4]. The Stranski-Krastanov

model assumed that the initial step of the growth was the formation of a few two-
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dimensional layers, and then a three-dimensional growth mode occurs on top of the

two-dimensional layers [5]. The three growth modes of epitaxy are illustrated in

Fig. 2-2 and can be summarized as follows:

• The Frank-van der Merwe (FM) mode: two-dimensional, layer-by-layer growth

mode.

• The Volmer-Weber (VW) mode: three-dimensional, island growth mode.

• The Stranski-Krastanov (SK) mode: initially two-dimensional and then three-

dimensional after a critical thickness, layer-plus-island growth mode.

Figure 2-2: The three different growth modes at different stages of the growth defined
by the number of deposited monolayers (ML): (a) FM mode, (b) VW mode, and (c)
SK mode.

The unification of the three theories on the growth modes [6] was done by con-

sidering a thermodynamical approach, involving the surface tensions for the differ-

ent interfaces: γoverlayer, γsubstrate, and γinterface, which correspond to the surface free

energy at the overlayer/vacuum interface, the substrate/vacuum interface, and the
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overlayer/substrate interface respectively. The relative magnitude of those surface

energies will determine the growth mode for a given material on a given substrate.

Indeed, when γoverlayer and γinterface are small compared to γsubstrate, the formation of

the overlayer/substrate interface will be favored and the grown layer will wet and

cover the surface of the substrate, thus leading to a FM growth mode. On the con-

trary, if the relationship between the surface energies is reversed, one will obtain

layers that partially cover the surface due to the unfavorable formation of interfaces

between the overlayer and the substrate, which corresponds to a VW growth mode.

Therefore, for a film made of n monolayers, the criterion for a FM growth mode is

given by:

γoverlayer(n) + γinterface(n) ≤ γsubstrate (2.2)

Equality in Eq.(2.2) can be obtained in the case of homoepitaxy, for which an epitaxial

growth in the FM mode is usually verified if the growth is performed in the thermo-

dynamic equilibrium conditions. For the case of heteroepitaxy, since γinterface(n) is

usually non-negligible, the FM mode is only obtained for γoverlayer(n) << γsubstrate.

Thus the growth mode becomes a VW mode for γoverlayer(n) > γsubstrate.

The dependence of γoverlayer and γinterface on n takes into account the variation

of free energy due to the strain accumulation or the change in lattice constant in

the overlayer [7]. For the case of heteroepitaxial growth, the lattice mismatch be-

tween the overlayer and the substrate increases monotonously with the film thickness

until the critical thickness, given by a critical number of layers n
C
, is reached. As

a result, due to the existence of n
C
, the relation given by Eq.(2.2) changes into

γoverlayer(n) + γinterface(n) > γsubstrate for thicknesses above the critical value, thus

switching the growth mode from a two-dimensional mode to a three-dimensional one.

This phenomenon reflects an epitaxial growth in the SK mode.
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The consideration on the surface energies is valid when the growth is performed

close to the thermodynamic equilibrium. However, as mentioned above, the epitaxial

growth can be done out-of-equilibrium, thus it is ruled by kinetics rather than ther-

modynamics. The kinetic process of the growth is determined by the migration of the

atoms on the surface and energy barriers they encounter in the migration path. The

energy barriers define the diffusion rates and the morphologies of the film. A kinetic

growth process has the advantage of yielding metastable morphologies for the thin

films, which are not accessible close to the thermodynamic equilibrium. The atomic

processes at the surface are summarized in Fig. 2-3.

Figure 2-3: Atomic diffusion processes occurring at the surface during the epitaxial
growth, when the deposition is performed far from the thermodynamical equilibrium.
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2.1.2 The solid phase epitaxy

The solid phase epitaxy is a process which consists in the recrystallization of an amor-

phous layer of a material grown on a single crystal, by thermal annealing. Atoms

from the disordered layer get reconstructed on the single crystal template layer by

layer. This method proved to be convenient for the fabrication of nanometer scale

devices [8, 9, 10]. It is also an attractive process that can be used to regenerate

the crystallinity of a semiconductor locally damaged and amorphized by the ion im-

plantation doping technique [11]. However, despite its apparent simplicity, the solid

phase epitaxy is actually a complicated process, which involves many effects such

as the roughening of the amorphous-crystalline interface, the creation of defects, the

diffusion of impurities, all of which depend on the growth conditions and solid state

regrowth rate. Theoretical models [12, 13, 14] have been proposed in order to de-

scribe the mechanisms behind the migration of the amorphous-crystalline interface,

although they will not be discussed here because they depend on the nature of the

materials. Although solid phase epitaxy is a commonly used method for fabricating

Mn5Ge3 on Ge(111), mathematical models for the Mn5Ge3/Ge interface motion have

not been established so far.

In the case of amorphous silicon on crystalline silicon, the solid state regrowth

mechanism during the thermal annealing is shown to be anisotropic, i.e. to depend

on the crystalline orientation of the substrate [100], [110], and [111] (see Ref. [15]). For

the interface migration in the [100] direction, the process is quasi-planar, involving

a diffusion of atoms in the amorphous layer followed by a partial ordering at the

amorphous-crystalline interface. The propagation of the interface is done by the

incorporation of other atoms. Regarding the [110] direction, the recrystallization

front has a roughness of a few atomic planes. The solid phase epitaxy in the [111]
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direction is the most complex, involving a non-planar propagation of the interface and

the formation of defects, like twins. The recrystallization in [110] and [111] actually

involve two regrowth modes with different interface migration velocities [11].

In case of heteroepitaxy, which is of higher interest in the present work, the differ-

ence of lattice mismatch between the materials favors the formation of misfit disloca-

tions in order to relieve the strain beyond a critical thickness. As an example, for the

case of the regrowth of SiGe on Si, it is shown that there exists a defect-free region

[16, 17], whose thickness depends on the Ge concentration. Indeed incorporating more

or less Ge in SiGe has an influence on the strain in the heterostructure. During the

regrowth the amorphous part is usually considered to undergo negligible strain com-

pared to the recrystallized part. As the thickness of the recrystallized part increases

through the propagation of the amorphous-crystalline interface, it accumulates strain,

which leads to the nucleation of defects above the critical thickness thus causing the

interface to roughen and slowing down solid phase epitaxy velocity [16, 17].

This work deals with the case of Mn5Ge3 on Ge(111). The purpose of the previous

examples is to show that solid phase epitaxy actually involves a complex mechanism.

A detailed study of the solid phase epitaxy process would be necessary in order to be

able to understand the mechanism of interface propagation, to have a better control

of the thickness of epitaxial layer, and to understand the reason why a relatively flat

Mn5Ge3/Ge interface can be formed. Consequently, growth parameters such as the

annealing temperature and the annealing time have an important effect on the quality

of a film crystallized by the solid phase epitaxy technique.
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2.2 Reflection high-energy electron diffraction

RHEED instrumentation Reflection high-energy electron diffraction (RHEED)

is a technique for surface analysis, which has become widely used because of its

compatibility with methods of vapor deposition and growth of epitaxial thin films

under ultra-high vacuum, thus allowing thin film growth and analysis simultaneously.

The implementation only requires an electron gun, a phosphor screen and a clean

surface for the sample to analyze. The typical range of energy for the finely collimated

electron beam is from 8 to 20 KeV, although energies as high as 100 keV can be used

in some cases. RHEED is mainly sensitive to the structure in the first few atomic

planes of a crystal lattice, due to the interaction between the electrons and the atoms

which only allows a small penetration depth of the incident electrons. The electron

beam is directed at very low incidence angle to the surface of the sample, thus having

important effects on the resulted diffraction patterns. For example, atomic steps can

result in significant changes in the intensity and the shape of the diffracted beam.

The RHEED patterns are commonly used to extract information about [18]: the

periodicity in atomic arrangement, the flatness of the surface, the size of the grains

or domains of surface structures, epitaxial relation between the grown film and the

substrate, growth style of thin films and numbers of atomic layer grown. The RHEED

apparatus is described in Fig. 2-4. The incident angle θg of the electron beam can

be changed by deflection coils, and θg should be less than a few degrees. Due to the

grazing incidence, the RHEED pattern is usually an average in a macroscopic area.

It is also common to place a CCD camera in front of the phosphor screen in order

to record the RHEED intensity as a function of time. The RHEED intensity is a

periodic function of time and the period corresponds to the time required for the

growth of one monolayer [20, 21, 22]. However, such method was not used in the
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Figure 2-4: Representation of RHEED apparatus. The electron gun accelerates the
electrons through a small aperture. The deflection coils are used to modify the glanc-
ing angle θg of the electron beam on the surface of the sample.

present work, additional ex-situ measurements were performed instead.

Ewald construction and surface lattices The Ewald construction combines en-

ergy and momentum conservation, and establishes the relation between the reciprocal

space and the geometrical features of a RHEED pattern. The diffraction condition is

based on the occurrence of constructive interference. If one considers elastic scatter-

ing, the magnitude of the wavevector (k) is the same for incident (θg) and diffracted

(θf ) waves. The parallel components of the incident and diffracted waves must differ

by a multiple of 2π times the reciprocal lattice constant (1/a):

k cos θg − k cos θf =
2πn

a
. (2.3)

Because of the elastic scattering, the end points of the diffracted wavevectors describe

a sphere with radius k, which is called the Ewald sphere. In the hypothesis on an

elastic scattering, the center of the sphere is the common origin for all the diffracted

waves. The Ewald sphere intersects with the reciprocal lattice and results in a series
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of concentric circles, each of which corresponds to a Laue zone. In a square lattice

of equidistant atoms [see Fig. 2-5(a)], the reciprocal lattice is the intersection of the

two series of planes rotated by 90◦ to each other, which is a set of rods. As a re-

sult, when both elastic scattering and diffraction condition are verified, the RHEED

pattern emerges from the intersection between the Ewald sphere and the rods in the

reciprocal space, thus leading to diffraction spots [see Fig. 2-5(c)]. Consequently, the

diffraction spots are always located on concentric circles in the case of RHEED. The

spots can be elongated into streaks depending on the incident angle of the electron

beam and the crystal domain size at the surface of the sample. An explanation of

the RHEED streaks is given in Fig. 2-5.

Figure 2-5: Origin of the RHEED streaks. The vertical arrow defines the direction
of the electron beam. (a) Arrangement of the two-dimensional array of lattice points
in the real space. (b) Reciprocal lattice for the arrangement in (a). (c) RHEED
construction obtained from (b). The length of the streaks depend on the glancing
angle θg and the size of the domains at the surface.
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Because the coordination of atoms at the surface is not the same as in the bulk, the

atoms at the surface can undergo rearrangements in order to minimize the surface

energy, this process is called surface reconstruction. Depending on the type of re-

construction, the periodicity at the surface may differ from that of the bulk crystal.

Since the RHEED patterns only give information about a few layers from the sur-

face, one needs to define two-dimensional lattices that may be different from the full

three-dimensional lattices. Such two-dimensional lattice can be given by the vector

Rn = n1a1 + n2a2, (2.4)

where n1 and n2 are integers, and a1 and a2 are the unit mesh vectors of the surface

lattice. Similar to the case of three-dimensional lattices, a reciprocal vector can be

defined by Bm = m1a
∗
1 +m2a

∗
2, where

a∗1 = 2π
a2 × n

a1 · (a2 × n)

a∗2 = 2π
a1 × n

a2 · (a1 × n)

(2.5)

The vector n is the unit vector normal to the surface of the sample. The base

vectors of the reconstructed surface b1 and b2 can be expressed as a function of the

fundamental basis vectors a1 and a2 as follows:

b1

b2

 =

n11 n12

n21 n22


a1

a2

 (2.6)

Thus the reconstructed surface lattice and the bulk structure are related to each

other by a transformation matrix. The reconstructed surface can also be labeled in
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Wood’s notation, e.g. 2× 1 structure of Si(001). The spots on the 0th and 1st Laue

zone, called fundamental spots, are usually strong in intensity and originate from the

scattering not only from the topmost atomic layer but also several atomic layers in

the bulk region. Between the fundamental spots, one can find the superlattice spots,

which correspond to the reconstructed surface. By analyzing the spacings between

the superlattice spots and compare them with that of the fundamental spots, one can

find the periodicity of the unit cell of the reconstructed surface.

In practical cases, the surfaces of the samples are not ideal [18]. The surfaces may

not be totally flat or they possess domains with various sizes, similar to polycrystals.

Consequently, the RHEED patterns are modified from the ideal case (see Fig. 2-

6 for the most common cases), thus giving information on the nature of the surface

imperfections. The width of the reciprocal rod is inversely proportional to the average

size of the domain, so sharp patterns featuring dots imply large domain sizes [Fig. 2-

6(a)] contrary to elongated streak patterns, which correspond to smaller domain sizes

[Fig. 2-6(b)]. Steps at the surface lead to modulated patterns [Fig. 2-6(c) and (d)].

Vicinal surfaces result in inclined streaks [Fig. 2-6(e)]. A three-dimensional growth

mode in MBE is usually recognized by the presence of transmission spots in the

RHEED pattern, as illustrated in Fig. 2-6(f).

Inelastic scattering of electrons, involving phonons and plasmons [23, 24], also

have an influence on the RHEED patterns, resulting in the so-called Kikuchi lines.

The Kikuchi lines depend on the morpholology of the surface, and sharps lines are

obtained crystal for perfect surfaces and bulk lattices [19]. The formation of the

Kikuchi lines will not be discussed here.
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Figure 2-6: Schematic representation of the morphology of the RHEED patterns de-
pending on the kind of surface. Imperfections in the structure of the surface can affect
the RHEED pattern: (a) sharp spots appear for perfectly flat and single crystalline
surfaces, (b) streaks are obtained for flat surfaces with smaller domain sizes, (c) satel-
lite streaks and (d) modulated streaks correspond to multi-level steps on the surface,
(e) inclined streaks are the result of vicinal surfaces, and (f) transmission spots are
the sign of three-dimensional growth.
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2.3 The Mn5Ge3(001)/Ge(111) epitaxial relation

In this thesis, the Mn5Ge3 thin films were grown by using the MBE technique, at

a base pressure lower than 8 × 10−8 Pa. Solid phase epitaxy proved to be the most

efficient way to grow Mn5Ge3. Indeed, a codeposition of Mn and Ge requires a perfect

calibration of the relative flux of the two respective Knudsen-cells in order to get the

precise stoichoimetry. Any small deviations of flux led to unwanted stoichiometries.

The quality of the sample’s surface was monitored in-situ by RHEED, in both [110]

and [112] directions of the Ge(111) substrate. The sample’s internal structure was

observed ex-situ by transmission electron microscopy (TEM).

The substrate was degassed at 600◦C for 2 hours. A Ge buffer layer was grown

on the Ge(111) substrate at a substrate temperature Tsub of 600◦C, in order to keep

a good crystallinity. An annealing at 700◦C for 1 hour followed by a cooling below

200◦C resulted in the well-known c(2× 8) reconstruction of the clean Ge(111) surface

[Figs. 2-7(a) and 2-7(b)]. Mn was then deposited on this c(2 × 8) surface at Tsub =

40◦C. The RHEED patterns during the growth of the Mn layer revealed a three-

dimensional growth, characterized by the presence of transmission spots [Figs. 2-

7(c) and 2-7(d)]. A solid-state reaction between manganese and germanium was

activated by annealing the sample at TSPE, leading to the
√

3 ×
√

3 reconstruction,

indicating the (001) surface of Mn5Ge3 [Figs. 2-7(e) and 2-7(f)]. In this work, several

samples were grown by choosing TSPE from 150 to 450◦C. In order to prevent the

manganese germanide layer from oxidizing, which is crucial to keep its magnetic

properties, an amorphous Ge capping layer was grown with a low growth temperature

so that the segregation of Mn5Ge3 to the surface is suppressed. Such segregation was

demonstrated in Ref. [25]. The thickness of the deposited Mn layer was 11.4 or 22.8
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Figure 2-7: RHEED patterns in the [110] and [112] directions of the Ge(111) substrate,
with an acceleration energy of 12 keV, at different steps of the growth: (a) and (b)
the c(2×8) reconstructed surface of Ge buffer layer; (c) and (d) transmission patterns
after the growth of the Mn layer; (e) and (f) the

√
3×
√

3 structure of Mn5Ge3 after
the solid state reaction.
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nm, depending on the sample. During the post-Mn-deposition annealing, a part of

the Ge buffer layer was consumed for the solid-state growth to form a 17 or 33 nm

thick Mn5Ge3 layer. In order to confirm the crystallographic structure of the samples,

x-ray diffraction (XRD) patterns were measured by performing θ-2θ scans on the thin

film. A pure Ge(111) substrate was also measured by XRD, as a reference sample.

In the obtained XRD spectra shown in Fig. 2-8, we identified the peaks from the

Ge(111) substrate and the Mn5Ge3(001) film, which are consistent with the results

obtained in previous studies [26, 27]. According to this XRD pattern, the lattice

parameters were a(Ge) = 5.664 Å for the cubic Ge, consistent with the value found in

literature [28], and c(Mn5Ge3) = 5.057 Å for the hexagonal Mn5Ge3. The hexagonal

basal plane lattice parameter of Mn5Ge3 was evaluated to be a(Mn5Ge3) = 7.112 Å,

by using an off-normal angle XRD measurement. The unit cell parameters of the

Mn5Ge3 film measured in this work are close to the values found for the bulk [29] and

consistent with the previous work on thin films [30]. Energy dispersive x-ray (EDX)

measurements of the Mn-Ge layer showed a Mn:Ge composition of 62%:38%, which

corresponds to the stoichiometry in Mn5Ge3. The homogeneity of the composition

was confirmed by performing EDX measurements at many random locations in the

manganese germanide layer. The cross-sectional TEM images in Fig. 2-9 show the

structure of the Mn5Ge3 thin film on the Ge(111) buffer layer. One can see that the

growth is epitaxial, with no clusters and the interfaces are relatively smooth.

Moreover, it is found that Mn5Ge3 always forms coherently on Ge(111), with its

hexagonal [010] in-plane direction always being parallel to the cubic [112] in-plane

direction of the Ge substrate. This is likely due to the fact that the in-plane atomic

spacing dMn5Ge3 = 7.112 Å in the [010] direction of Mn5Ge3 is about the same as the

in-plane atomic spacing dGe = 6.937 Å in the [112] direction of Ge.
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Figure 2-8: An x-ray diffraction pattern for the MBE grown Mn5Ge3 thin film (red
curve), measured by θ-2θ method, using Cu Kα radiation (λ = 0.15418 nm). A pure
Ge substrate has also been measured and serves as a reference (blue curve). The peak
at 2θ = 24.6◦ corresponds to a signal coming from the germanium irradiated by Cu
Kβ radiation originating from the x-ray source.

Figure 2-9: Cross-sectional TEM images of the epitaxial Mn5Ge3 layer. (a) An
overview of the structure shows relatively smooth interfaces. (b) A close-up view
on the Mn5Ge3/Ge interface shows the epitaxial growth of Mn5Ge3(001) on Ge(111).
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Although Mn5Ge3 epitaxial layers are stable on Ge(111), the growth of epitaxial

Ge(111) on Mn5Ge3(001) is proved to be unfavored, most likely due to the respective

surface energies of Ge and Mn5Ge3, which do not allow Ge to wet on the crystalline

Mn5Ge3. A high growth temperature (Tsub = 600◦C) is used for the growth of Ge,

and such high temperature seems to favor the segregation of Mn5Ge3. In an attempt

to grow Mn5Ge3/Ge/Mn5Ge3 multilayers, the Mn5Ge3 layers tend to merge and float

above the crystalline Ge layer, as can be seen in the TEM image shown in Fig. 2-10. It

is therefore difficult to realize Mn5Ge3/Ge/Mn5Ge3 heterostructures. In Ref. [25], the

deposition of a carbon delta-layer allowed to prevent the segregation of the Mn5Ge3

epitaxial layer and an single crystalline layer of Ge could be grown on top the the

carbon delta-layer. However, the orientation of the overgrown Ge layer was [100] and

not [111].

Figure 2-10: This sample was intended to be a Mn5Ge3/Ge/Mn5Ge3 multilayer. The
TEM image shows that an epitaxial layer of Ge cannot be stabilized on Mn5Ge3,
probably due to a surface energy effect. The roughness of the Mn5Ge3/Ge interface
became high and some defects are visible in the Ge layer.
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Attempts to grow a crystalline Ge layer on Mn5Ge3 usually results in mixed c(2×8)

and
√

3×
√

3 patterns, indicating that the surface is made of mixture of Ge domains

and Mn5Ge3 domains [Fig. 2-11 (a) and (b)]. This shows that during the growth of

Ge on Mn5Ge3, the high growth temperature makes Mn5Ge3 segregate to the surface.

By comparing the c(2×8) and
√

3×
√

3 patterns in Figs. 2-7 and 2-11, one can notice

that the streaks in the
√

3 ×
√

3 pattern are elongated while the Ge(111) surface

shows sharp spots. As a result, the domain size of the Ge(111) surface is larger than

that of the Mn5Ge3(001) surface.

Figure 2-11: Mixed c(2× 8) and
√

3×
√

3 RHEED patterns in the (a) [110] and (b)
[112] directions of the Ge substrate. Such patterns indicate that both Ge domains and
Mn5Ge3 domains are present at the surface. The Ge domains do not cover the entire
surface during the growth of Ge on Mn5Ge3 at high growth temperatures, typically
600◦C.
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2.4 The crystallography of Mn5Ge3

Crystallographic notations and formulae In general, a Bravais lattice is iden-

tified by the six lattice parameters, (a, b, c) in lengths and (α, β, γ) in angles. Lattice

points R in an ideal crystal are represented with integers (X, Y, Z) as

R = Xa + Y b + Zc, (2.7)

which is noted briefly as R = [X Y Z] and used to represent a direction in the real

space. Then, the unit cell volume is described for any lattice system as follows

Vreal = (a× b) · c

= abc
√

1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ.

(2.8)

For hexagonal lattices such as the one of Mn5Ge3, the previous formula becomes

Vreal = a2c sin γ. (2.9)

A reciprocal lattice point is represented as

G = ha∗ + kb∗ + lc∗, (2.10)

in which, h, k, and l are integers and a∗, b∗, and c∗ are reciprocal lattice vector units,

which are defined as a∗ = b× c/Vreal, b
∗ = c× a/Vreal, and c∗ = a× b/Vreal, for the

real lattice vector units (a, b, c), which can be nonprimitive. This is briefly noted as

G = (h k l), which is known as the Miller index notation.
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A displacement vector d in the real space is represented with the real numbers x,

y, and z, as

d = xa + yb + zc = [x y z]. (2.11)

On the other hand, a group of periodic lattice planes in the real space can be specified

rather by a reciprocal lattice vector G = (h k l) = ha∗+kb∗+ lc∗, which is normal to

this plane and has a magnitude inverse to the distance d between these planes, i.e.,

G · d = Gd = 1, (2.12)

for any displacement d = ri − rj between an adjacent pair of planes among them.

Hence, d = xa + yb + zc satisfies

hx+ ky + lz = 1, (2.13)

indicating that the intercepts with the a, b, and c axes are x = 1/h, y = 1/k, and

z = 1/l, respectively, when the origin is set on one of these planes. Thus, the Miller

index is used to represent both the reciprocal lattice point G as in Eq. (2.10) and a

group of real lattice planes satisfying Eq. (2.13). In a general case, the directions of

G = (h k l) and d = [h k l] are different, while they coincide for cubic lattices.

G× d = (h k l)× [h k l]

= h2a∗ × a + k2b∗ × b + l2c∗ × c

+ kl(b∗ × c + c∗ × b) + lh(c∗ × a + a∗ × c) + hk(a∗ × b + b∗ × a).

(2.14)
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For an orthorhombic lattice

G× d = kl(c/b− b/c)a/a+ lh(a/c− c/a)b/b+ hk(b/a− a/b)c/c. (2.15)

Only for a cubic lattice (a = b = c), this vector vanishes for arbitrary integers h, k,

and l and then (h k l) and [h k l] are parallel to each other.

Hexagonal lattice For hexagonal lattices (a = b, α = β = 90◦, and γ = 120◦), the

four-component Miller-Bravais index may also be used in place of the three-component

Miller notation. A reciprocal lattice point, and hence the corresponding lattice planes

in the real space is denoted as:

(h k l) = (h k j l), (2.16)

where the inserted third component j = −(h + k) is redundant and is completely

determined by the first and second components and makes no change in the actual

vector G. However, this notation makes it easier to find symmetrically equivalent

reciprocal lattice points. The direction d of a hexagonal lattice point in the real

space may also be represented by the Miller-bravais notation, in which the third

component corresponds to an additional third axis (−a− b), which is symmetrically

equivalent to the first and second axes, a and b:

d = xa + yb + 0(−a− b) + zc = [x y 0 z], (2.17)

which is identical to Eq. (2.11). In the conventional Miller-Bravais notation as a

four-component index, the sum of the first three components is set to zero:
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d = x′a + y′b + (−x′ − y′)(−a− b) + zc = [x′ y′ (−x′ − y′) z]. (2.18)

For this d to be identical to d in Eq. (2.18), x = 2x′ + y′ and y = 2y′ + x′, and

inversely x′ = (2x − y)/3, y′ = (2y − x)/3, and −x′ − y′ = (−x − y)/3. This

notation is useful to find the real space vector d parallel to the reciprocal space vector

G = (x′ y′ (−x′− y′) 0) in the a∗− b∗ plane: simply given by d = [x′ y′ (−x′− y′) 0].

Scattering factor and its extinction The atomic form factor f(Q), representing

an elastic scattering by an atom, is a function of the scattering vector Q = ki − kf

of the incident (ki) and scattered (kf ) wavevectors, and is given by

f(Q) =

∫
ρ(r) exp(2iπQ · r)d3r,

= 2π

∫ +1

−1

∫ ∞
0

r2ρ(r) exp(2iπQr cos θ)dr d(cos θ),

=

∫ ∞
0

4πr2ρ(r)
sin(2πQr)

2πQr
dr,

(2.19)

in which the last equality is valid for an electron density distribution ρ(r) of the

given atom if it is spherical ρ(r). From this definition, f is real for any Q. However,

in reality, it can be complex when there is inelastic scattering, or absorption by the

atom. The structure factor F composed of the atomic form factors of all atoms in a

unit cell is

F (Q) =
∑
j

fj(Q)eiQ·rj , (2.20)

where j represents the atom species at a specific site rj. One can note that because

f is real, F (−Q) is the complex conjugate of F (Q). The x-ray diffraction intensity
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has the inversion symmetry as |F (−Q)|2 = |F (Q)|2 since it is proportional to the

absolute square |F |2 in the kinematic approximation. There is also an extinction

rule: while in general F (Q) has a finite value if and only if Q matches a reciprocal

lattice vector G, it may vanish at particular reciprocal lattice points G, depending

on the atomic positions in the given unit cell, if the given unit cell is not primitive or

contains many atoms of the same element.

The scattering factor S of an entire sample of single crystal contains the contri-

bution of the structure scattering factors from all the unit cells:

S(Q) =
∑
R

F (Q)e2iπQ·R

= F (Q)
∑
X,Y,Z

e2iπ(hX+kY+lZ),

(2.21)

where Q = ha∗ + kb∗ + lc∗. The absolute value of the last summation term for a

large number N of the lattice points (a large enough crystal V = NVreal) is

∣∣∣∣∣∑
X,Y,Z

e2iπ(hX+kY+lZ)

∣∣∣∣∣ =

 N (h, k, and l are integers.)

0 (h, k, or l is not an integer.)
(2.22)

Thus S has a finite value only if the scattering vector matches a reciprocal lattice

point Q = G = (h k l), where h, k, and l are integers. Indeed, for 0 ≤ X < N1,

0 ≤ Y < N2, and 0 ≤ Z < N3 with N = N1N2N3,
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∣∣∣∣∣∑
X,Y,Z

e2iπ(hX+kY+lZ)

∣∣∣∣∣ =

∣∣∣∣∣
N1−1∑
X=0

e2iπhX

N2−1∑
Y=0

e2iπkY

N3−1∑
Z=0

e2iπlZ

∣∣∣∣∣
=

∣∣∣∣e2iπhN1 − 1

e2iπh − 1

e2iπkN2 − 1

e2iπk − 1

e2iπlN3 − 1

e2iπl − 1

∣∣∣∣
=

∣∣∣∣sin(iπhN1)

sin(iπh)

sin(iπkN2)

sin(iπk)

sin(iπlN3)

sin(iπl)

∣∣∣∣
' N1N2N3.

(2.23)

Here, the approximation is valid if N1, N2, and N3 are large. Otherwise, i.e., if a

crystal volume is not so large, the sinc function is finite at certain fractional values

of h, k, l.

When the unit cell contains more than one atom of the same element, F (Q)

and hence S(Q) may vanish even if Q is equal to the reciprocal lattice vector G.

This condition on G = (h k l) is called an extinction rule, which depends on the

relative atomic positions in a given unit cell. The following paragraph consists in the

determination of the extinction conditions for Mn5Ge3 and Ge.

The structure of the Ge crystal Germanium has a diamond lattice with a =

5.664 Å (at room temperature), and its structure factor extinction rule is obtained

easily as follows. The atomic positions in a conventional cubic unit cell are given by

{(0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)} ⊗ {(0, 0, 0), (1/4, 1/4, 1/4)} (2.24)

in units of (a, b, c). Therefore,

F (G)/fGe(G) =
(
1 + eiπ(k+l) + eiπ(l+h) + eiπ(h+k)

)
×
(
1 + eiπ(h+k+l)/2

)
, (2.25)
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leading to

|F (G)/fGe(G)| =


8 if h, k, and l are all even with (h+ k + l) mod 4 = 0,

4
√

2 if h, k and l are all odd,

0 otherwise.

(2.26)

Figure 2-12: Top-view of the unit cell of the hexagonal Mn5Ge3 crystal. The green
large-sized balls correspond to MnI sites, including the masked MnI sites located at
c/2. The unit cell includes ten Ge atoms, four MnI atoms and six MnII atoms.

The structure of Mn5Ge3 The Mn5Ge3 crystal has a hexagonalD3
6h, i.e., P63/mcm

space-group symmetry [31]. Its crystal structure is called D88 and has the following

lattice parameters (length and angles) [32]:

a = b = 7.112 Å, c = 5.057 Å,

α = β = 90◦, γ = 120◦.

(2.27)

The unit cell, represented in Fig. 2-12, contains six Ge and ten Mn atoms [31] at the

following sites with two parameters v = 0.61 and u = 0.25 [29]:

Ge = (−v, 0, 0), (0,−v, 0), (v, 0, 1/2), (0, v, 1/2), (v, v, 0), (−v,−v, 1/2) (2.28)
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Mn =

 MnI : (−1
3
, −1

3
, 1

4
), (−1

3
, 1

3
, −1

4
), (1

3
, −1

3
, 1

4
), (1

3
, −1

3
, −1

4
);

MnII : (−u, 0, 0), (0,−u, 0), (u, 0, 1
2
), (0, u, 1

2
), (u, u, 0), (−u,−u, 1

2
).

(2.29)

Here, the Mn sites are classified into two groups MnI and MnII, in each of which all

the sites are symmetrically equivalent (transferred by symmetry operations).

For the Mn5Ge3 crystal structure, F (G) at G = (h k l) is calculated as follows:

F (G) = FGe(G) + FMnI
(G) + FMnII

(G)

=
6∑
j=1

fGe(G)eiG·rj +
10∑
j=7

fMn(G)eiG·rj +
16∑
j=11

fMn(G)eiG·rj

= fGe(G)
{
e−2πivh + e−2πivk + e2πivheπil + e2πivkeπil + e2πiv(h+k) + e−2πiv(h+k)eπil

}
+ fMn(G)

{
e−2πiuh + e−2πiuk + e2πiuheπil + e2πiukeπil + e2πiu(h+k) + e−2πiu(h+k)eπil

}
+ fMn(G)

{
e

2πi(−h+k)
3 e

πil
2 + e

2πi(−h+k)
3 e

−πil
2 + e

2πi(h−k)
3 e

πil
2 + e

2πi(h−k)
3 e

−πil
2

}
= 2fGe(G)e

iπl
2

{
cos(2πvh+

πl

2
) + cos(2πvk +

πl

2
) + cos[2πv(h+ k)− πl

2
]

}
+ 2fMn(G)e

iπl
2

{
cos(2πuh+

πl

2
) + cos(2πuk +

πl

2
) + cos[2πu(h+ k)− πl

2
]

}
+ 4fMn(G) cos[

2π(h− k)

3
] cos(

πl

2
).

(2.30)

Thus, FMnI
, corresponding to the contribution of MnI, is described by a single term:

FMnI
(G)/fMn(G) = 4 cos(2π(h− k)/3) cos(πl/2)

=



0 if l is odd,

±4 if l mod 4 = 1∓ 1 and (h− k) mod 3 = 0,

∓2 if l mod 4 = 1∓ 1 and (h− k) mod 3 = 1,

±2 if l mod 4 = 1∓ 1 and (h− k) mod 3 = 2.

(2.31)
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As a result, this term vanishes if and only if l is an odd number irrespective of the

values of h and k, because of cos(πl/2) = 0. FMnI
has a nonvanishing value 4fMn or

2fMn in its magnitude for an even number of l, as summarized in Table 2.1.

Since l appears only as the definite form πl/2 in the entire expression of F (G),

it can be classified by the remainder of l divided by 4 (l mod 4 = 0, 1, 2, or 3). If l

mod 4 = 0,

F (G) = F (h k 0) = 2fGe(G){cos(2πvh) + cos(2πvk) + cos[2πv(h+ k)]}

+ 2fMn(G){cos(2πuh) + cos(2πuk) + cos[2πu(h+ k)]}

+ 4fMn(G) cos[2π(h− k)/3].

(2.32)

For any other even values of l, i.e., l mod 4 = 2,

F (G) = F (h k 2) = 2fGe(G){cos(2πvh) + cos(2πvk) + cos[2πv(h+ k)]}

+ 2fMn(G){cos(2πuh) + cos(2πuk) + cos[2πu(h+ k)]}

− 4fMn(G) cos[2π(h− k)/3],

(2.33)

which differs from F (h k 4) only in the sign of the last term FMnI
. For any other

values of l, i.e., any odd numbers irrespective of l mod 4 = 1 or 3,

F (G) = F (h k 1) = −2ifGe(G){sin(2πvh) + sin(2πvk)− sin[2πv(h+ k)]}

− 2ifMn(G){sin(2πuh) + sin(2πuk)− sin[2πu(h+ k)]}.
(2.34)

Since the parameter u for the six MnII positions is a rational number within the ex-

perimental accuracy, the MnII part of F (G), FMnII
, vanishes for many sets of integers

(h k l), while since v = 0.61 for the ten positions of Ge is not a rational (with small

integers in the denominator and the numerator) the Ge part of F (G) should not van-
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ish except for some special cases of (h k l). These extinction conditions are derived

below.

Assuming u is exactly a rational number of 1/4, the MnII part of F (G) can be

written as

FMnII
(h k l)

fMn(h k l)
= 2eiπl/2{cos[π(h+ l)/2] + cos[π(k+ l)/2] + cos[π(h+ k− l)/2]}. (2.35)

Since the reduced angle values in the cosine terms can be only 0, ±π/2, or, π, each

cosine term can have values of only +1, 0, or −1, respectively. Therefore, FMnII
(h k l)

vanishes, either (a) if every cosine term is equal to 0 or (b) if all these values (+1, 0,

−1) appear simultaneously in these cosine terms. Case (a) is equivalent to that all of

(h+ l), (k+ l), and h+k− l are odd numbers, which means that both h and k are even

while l is odd. Case (b) occurs if (h+l), (k+l), and h+k+l have different remainders

(0,1,2) or (0,3,2), in no particular order, when divided by 4. Considering the parities

of h, k, and l, the following cases are necessary conditions for F (G) to vanish: (b-1)

all odd, or all odd except for either (b-2) h or (b-3) k, as listed in Table 2.1.

In case (b-1), h+l and k+l are even and h+k−l is odd. Hence, the even h+l and

k+ l need to have different remainders 0 and 2, when divided by 4, and thus the odd

h and k need to have different remainders 1 and 3 (equivalent to −1). This extinction

condition on (h k l) for this case (b-1) is listed in the row (b-1) in Table 2.2. A shortest

example is G = (1 1 0 ±1). The other sets of all-odd (h k l) such as (±1 ±1 ±1) not

satisfying the extinction condition give |FMnI
/fMnI

| = 4 according to Eq. (2.35). Cases

(b-2) and (b-3) are related to case (b-1) by the threefold rotations. In case (b-2), h+ l

is odd, and hence the even k+ l and h+k− l need to have different remainders 0 and

2, when divided by 4. Hence, the difference (k+ l)−(h+k− l) = 2l−h is (2l−h) mod
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4 = 2. Since l is assumed odd, i.e., 2l mod 4 = 2., h needs to have no remainder, i.e., h

mod 4 = 0. The case (b-3) is equivalent to case (b-2) as obvious by swapping h and k.

Table 2.1: Necessary conditions for the extinction of FMnII
(G) and FMnII

(G) at G =
(h k(j) l). By displaying also the third component j, it is suggested that cases (b-1),
(b-2), and (b-3) are symmetrically related to each other but distinct from case (a).

Site in Mn5Ge3 (Case) h k (j) l
MnI ∀ ∀ (∀) odd
MnII (a) even even (even) odd
MnII (b-1) odd odd (even) odd
MnII (b-2) even odd (odd) odd
MnII (b-3) odd even (odd) odd

Table 2.2: The full extinction conditions of FMnII
in the Miller-Bravais notation (j =

−h − k). (a) ω is an arbitrary odd number, and εm (m = 1, 2) are arbitrary even
numbers. (b) ε is an even number, and ω1 and ω′1 are odd numbers, satisfying ω1 +
ω′1 + 2ε = 0, and hence (ω1 + ω′1) mod 4 = 0. One can note that for the three
cases (b-1), (b-2), and (b-3) with three common parameters (ω1, ω

′
1, ε), G vectors

are symmetrically equivalent and related by C3 rotations about the c∗ axis. The
last column shows an example of G vectors selected as not satisfying the FGe shown
below.

Case h k (j) l example
(a) ε1 ε2 (−ε1 − ε2) ω

(
2 2 (4) 1

)
(b-1) ω1 ω′1 (2ε) ω

(
1 3 (4) 1

)
(b-2) 2ε ω1 (ω′1) ω

(
4 3 (1) 3

)
(b-3) ω′1 2ε (ω1) ω

(
3 8 (5) 1

)
In all the cases (a), (b-1), (b-2), and (b-3) for which FMnI

(G) vanishes, FMnII
(G)

also vanishes, and hence FMn(G) = FMnI
(G) + FMnII

(G) vanishes.

On the other hand, in cases (b-1), (b-2), and (b-3) in Table 2.1 excluded from

the relevant cases in Table 2.2, FMn does not vanish generally. Below are notable

examples,

FMn(1 1 2 ± 1)/fMn(G) = −4i for case (b-1); (2.36)
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FMn(2 1 1 ± 1)/fMn(G) = −4i for case (b-2); (2.37)

FMn(1 2 1 ± 1)/fMn(G) = −4i for case (b-3). (2.38)

As derived above, FMn cannot vanish if l is an even number. Neither the Ge part of

FGe can vanish if l is an even number, since irrespective of l mod 4 = 0 or 2

FGe(G)/fG = −2{cos(2πvh) + cos(2πvk) + cos[2πv(h+ k)]}, (2.39)

with irrational v = 0.61. Then, one considers the case of odd l below.

If l is odd including all cases in Table 2.1, the Ge part is given generally by

FGe(G)/fG = −2i{sin(2πvh) + sin(2πvk)− sin[2πv(h+ k)]}. (2.40)

This can vanish only if two of the three terms in the right hand side of equation

have a same amplitude and the other one vanishes by itself because of irrational v.

Therefore, the extinction condition is equivalent to “h = 0, k = 0, or h + k = 0”.

Thus,

FGe(h 0 l) = FGe(0 h l) = FGe(h h l) = 0 (2.41)

for an arbitrary integer h and an odd l. These three reciprocal spots with common

h and l are symmetrically equivalent as they are transferred by C3 rotations about

the c∗ axis. Otherwise, if all of h, k, and h + k have nonzero values, FGe does not

exactly vanish due to irrational v. These extinction conditions of FGe(G) are listed

in Table 2.3.
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Table 2.3: The extinction conditions for FGe(h k (j) l). ν is an arbitrary integer
(ν = −ν), and ω is an independent odd number. As in the cases (b-1), (b-2), and (b-
3), the three cases (c-1), (c-2), and (c-3) with common ν and the same ω are related
by C3 rotations about the c∗ axis. The last column shows inequivalent examples.

Case h k (j) l G
(c-1) ν 0 (ν) ω (0 0 (0) 1)
(c-2) 0 ν (ν) ω

(
0 1 (1) 3

)
(c-3) ν ν (0) ω

(
2 2 (0) 1

)

Overall extinction conditions In summary, F (G) vanishes when all the extinc-

tion conditions for FMn (see Tables 2.1 and 2.2) and FGe (see Table 2.3) are met

simultaneously. Indeed, F vanishes in the six cases listed in Table 2.4, and the whole

condition can be simply represented by symmetrically equivalent reciprocal lattice

points

{ν ν 0 ω}. (2.42)

This contains (ν ν 0 ω), (ν 0 ν ω), and (0 ν ν ω) with an arbitrary integer ν and

an arbitrary odd number ω. Thus, in diffraction spectra a half part (odd l) of the

reciprocal lattice points G located in three particular planes vanishes. All these three

planes contain the c∗ axis and either one of the other “three” reciprocal lattice basis

vectors and can be denoted by its normal orientation with the real lattice basis vectors

as d =
〈
2 1 1

〉
, each of which is parallel to G = {2 1 1}, respectively.
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Table 2.4: The extinction conditions for the total F (G). ω1 and ε1 are arbitrary odd
and even integers, respectively, and hence an arbitrary integer as a whole. ω2 is an
independent odd number. The last column shows representative examples. One can
note that these conditions reduce to Eq. (2.42) without loss of generality.

Case h k (j) l G
(b-3) and (c-1) ω1 0 (ω1) ω2

(
3 0 (3) 1

)
(b-3) and (a) ε1 0 (ε1) ω2

(
2 0 (2) 1

)
(b-2) and (c-2) 0 ω1 (ω1) ω2

(
0 3 (3) 1

)
(b-2) and (a) 0 ε1 (ε1) ω2

(
0 2 (2) 1

)
(b-1) and (c-3) ω1 ω1 (0) ω2

(
3 3 (0) 1

)
(b-1) and (a) ε1 ε1 (0) ω2

(
2 2 (0) 1

)

Experimental restrictions - Wavelength

As mentioned previously, the x-ray scattering vector Q is defined as kf = ki +

Q, in which the ki and kf are the incident and scattered wavevectors of the x-

ray, respectively. The necessary condition for x-ray diffraction is that Q matches a

reciprocal lattice vector G:

Q = kf − ki = G, (2.43)

while the diffraction intensity may vanish for specific G due to the extinction rules,

described in the previous paragraph. This diffraction condition can be visually de-

scribed in the Ewald construction. The starting point of the three involved vectors

G, kf , and −ki are set at the origin O. Any elastic scattering with a constant wave-

length λ is illustrated by kf and −ki whose ending points are located on the Ewald

sphere which center is at O and which radius is equal to K = 1/λ. The scattering

angle 2θ = [0, π] is defined by cos(2θ) = kf · ki/K2.
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Thus, for a constant wavelength, Eq. (2.43) gives

G2 = G2 = K2 +K2 − 2kf · ki = 2K2(1− cos(2θ)) = (2K sin θ)2,

kf
2 = K2 = G2 +K2 + 2G · ki,

ki
2 = K2 = G2 +K2 − 2G · kf .

(2.44)

Therefore,

G

2K
=

√
1− k̂f · k̂i

2
= sin θ,

= Ĝ · (−k̂i),

= +Ĝ · k̂f .

(2.45)

Eq. (2.45) is well-known as the Bragg condition. In this case, it is expressed by

the reciprocal lattice length G and the wavenumber K rather than the lattice plane

distance d and the wavelength λ. This tells that θ is larger for larger G and gives an

upper limit on G:

G ≤ 2K, (2.46)

indicating that G needs to be within the circle of a radius 2K centered at O. On the

other hand, Eq. (2.45) also indicates that the angles between G and −ki and between

G and kf are both equal to π/2 − θ, which is smaller than π/2 and decreases with

decreasing G, represented as a whole by

G ·K ≥ 0, (2.47)
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where K = −ki and kf . In the inequation, equality is valid only for G = 0. When

G is given, kf and −ki are along the surface of a cone whose apex angle is given by

the scattering angle 2θ and whose intersection with the Ewald sphere is a circle of a

radius
√
K2 − (G/2)2 = K cos θ at a distance of G/2. From Eq. (2.43), one can see

a limitation is imposed on diffraction due to the x-ray wavelength (λ = 1/K) and

scattering geometry (sample geometry with respect to x-ray incidence and detector).

Additionally, from the diffraction condition, one obtains

kf −G/2 = −(−ki −G/2), (2.48)

(kf −G/2) ·G = −(−ki −G/2) ·G = 0. (2.49)

According to Eq. (2.45) in the Ewald construction, K = −ki and kf are decomposed

to the parallel and perpendicular components with respect to G as

K − 1

2
G = −Ĝ× (Ĝ×K)

=
√
K2 − (G/2)2

(G×K)×G

G2K cos θ
,

(2.50)

which have the same magnitude with signs for −ki and kf .

For a wavelength of λ = 0.1542 nm, Eq. (2.45) gives a limitation on G as G <

2/(0.1542 nm) = 12.97 nm−1. For Ge, G/a∗Ge = 12.97 nm−1× 0.5664 nm = 7.34, and

hence h2 + k2 + l2 ≤ 53. For Mn5Ge3, G/a∗Mn5Ge3
= 12.97 nm−1 × 0.7112 nm = 9.22,

and hence h2 + k2 + hk + l2(c∗Mn5Ge3
/a∗Mn5Ge3

)2 = h2 + k2 + hk + 1.406l2 ≤ 86.
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Experimental restrictions - Reflection geometry

Hereafter, one considers a flat sample and the diffraction through its “front” sur-

face, whose outward normal direction is given by a unit vector n. In this geometry,

the incident and scattered waves have negative and positive cosines, respectively, with

n, thus making angles with the outward surface normal larger and smaller than π/2,

respectively:

ki · n < 0 and kf · n > 0, (2.51)

and

K · n > 0 (2.52)

as a whole. Based on this condition, derive the measurable condition on G. The tilt

of G from the surface normal n by an angle of τ is represented by

n ·G/G = cos τ. (2.53)

The geometric limitation of Eq. (2.52) provides a necessary condition:

n ·G/G = n · (kf − ki)/G > 0, (2.54)

0 ≤ τ < π/2. (2.55)

Thus it is necessary for G to be pointed outward from the surface.

Moreover, reciprocal vectors can be represented by the Cartesian coordinates

where z axis is parallel to n, x axis is parallel to G − (n · G)n = (n × G) × n,
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and hence y axis is parallel to n×G (see Fig. 2-13). Then,

n = ẑ, (2.56a)

G = G cos τ ẑ +G sin τ x̂ = 2K sin θ(cos τ ẑ + sin τ x̂), (2.56b)

K =
1

2
G +K cos θ[(− sin τ ẑ + cos τ x̂) cosφ+ ŷ sinφ]

= K [(sin θ cos τ − cos θ sin τ cosφ)ẑ + (sin θ sin τ + cos θ cos τ cosφ)x̂ + cos θ sinφŷ] .

(2.56c)

Here, for K = −ki and kf , φ shall be denoted as φi and φf , respectively. According

to Eq. (2.43), i.e., kf + (−ki) = G, Eqs. (2.56b) and (2.56c) give restriction on φi

and φf : cosφi + cosφf = 0 and sinφi + sinφf = 0, i.e.,

|φi − φf | = π, (2.57)

except for the case of θ = π/2, which corresponds to kf = −ki = G/2. Therefore,

Eq. (2.52) is equivalent to

sin θ cos τ > ± cos θ sin τ cosφ (2.58)

for both of φ = φi and φf . Together with the necessary condition given in Eq. (2.55),

0 ≤ | cosφ| < tan θ/ tan τ. (2.59)
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Thus, φ can take an arbitrary value in the case of θ > τ , while φ is limited around

π/2 in the case of θ ≤ τ . In another form,

0 ≤ tan τ < tan θ/| cosφ|. (2.60)

The last term can have a value in the range [tan θ,∞]. Thus, τ can take an arbitrary

value satisfying Eq. (2.55) for φ = ±π/2, while this range is narrowed for other values

of φ, reaching τ < θ for φ = 0, which corresponds to the case for which the scattering

plane defined by ki and kf as well as G contains also the surface normal n.

In the case of sinφi = sinφf = 0,

1 < tan θ/ tan τ. (2.61)

Thus, τ needs to satisfy τ < θ. In the opposite case, that satisfies cosφi = cosφf = 0,

i.e. K −G/2 ‖ ŷ, and 0 < tan θ/ tan τ . Thus, in this case, there is no restriction on

τ as far as Eq. (2.55).

By using

tan θ =
G√

(2K)2 −G2
(2.62)

and

tan τ =
Gt

Gn

, (2.63)

where Gn and Gt are the surface normal and tangential components of G, respectively.

With 0 ≤ τ < π/2, Eq. (2.59) can be expressed as

cos2 φ <
G2
n +G2

t

(2K)2 −G2
n −G2

t

G2
n

G2
t

. (2.64)
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This is simplified to a quadratic (in)equation of G2
n and G2

t as follows:

(G2
n)2 + cos2 φ(G2

t )
2 + (1 + cos2 φ)G2

nG
2
t − cos2 φ(2K)2G2

t > 0. (2.65)

For sinφ = 0,

G4
n +G4

t + 2G2
nG

2
t > (2K)2G2

t . (2.66)

Hence,

G2
n + (Gt −K)2 > K2. (2.67)

Note that the tangential axis is defined for Gt to be positive. This represents that

G needs to be outside of the upper-half of the semicircle, whose radius is K and the

center is at Gt = K. The reciprocal domain that satisfies this geometrical condition

(sinφ = 0) and also the Bragg condition determined by the wavelength is illustrated

in Fig. 2-14 for specific a orientation in Mn5Ge3 on Ge(111).

For cosφ = 0,

G4
n +G2

nG
2
t > 0, (2.68)

which is satisfied for any vector G.

The equation is complicated for cosφ 6= 0.

(
G2
n − 4K2 cos2 φ(1 + cos2 φ)

(1− cos2 φ)2

)2

+ cos2 φ

(
G2
t + 8K2 cos2 φ

(1− cos2 φ)2

)2

+ (1 + cos2 φ)

(
G2
n − 4K2 cos2 φ(1 + cos2 φ)

(1− cos2 φ)2

)(
G2
t + 8K2 cos2 φ

(1− cos2 φ)2

)
> (4K2 cos2 φ)2 1 + 5 cos2 φ+ 2 cos4 φ

(1− cos2 φ)3
.

(2.69)
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By a rotation of coordinates as

 x

y

 =

 cos η sin η

− sin η cos η


 G2

n − 4K2 cos2 φ(1+cos2 φ)
(1−cos2 φ)2

G2
t + 8K2 cos2 φ

(1−cos2 φ)2

 (2.70)

with

tan η =
1 + cos2 φ

1− cos2 φ
, it turns out that

x2

R2
+

+
y2

R2
−
> 1, (2.71)

with

R2
± =

2(4K2 cos2 φ)2 1+5 cos2 φ+2 cos4 φ
1−cos2 φ

1 + cos2 φ+
√

1 + cos4 φ
. (2.72)

Thus, (x, y) is outside of the ellipse of radii R±, which are functions of cos2 φi =

cos2 φf :

x = cR+ cos ζ,

y = cR− sin ζ,

(2.73)

with a prefactor c > 1 and an arbitrary angle ζ. Hence,

 G2
n

G2
t

 =
4K2 cos2 φ

(1− cos2 φ)2

 1 + cos2 φ

−2

+ c

 cos η sin η

− sin η cos η


 R+ cos ζ

R− sin ζ

 .

(2.74)
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Figure 2-13: Coordinate system used for the reflection geometry. θ is the incidence
angle, φ = φi for K = −ki and φ = φf for K = kf , with |φi − φf | = π.

Figure 2-14: Diffraction conditions for the XRD analysis. Red dots and purple dots
correspond to the allowed reflections for Mn5Ge3 and Ge, respectively. Black striped
dots correspond to the extinction conditions calculated in the previous paragraph.
The grey dots correspond to XRD limitations mentioned above. The radius of the
grey-filled semicircles is K, determined by Eq. (2.67). The radius of the yellow-filled
semicircle is 2K, given by the limitation in x-ray wavelength.
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Experimental restrictions - Transmission geometry

Transmissive diffraction can be observed in a different experimental geometry. The

observable condition on G will be obtained similarly to the case of reflective diffraction

described above. Now, both the incident and scattered waves, ki and kf , make an

angle with the “front” normal surface n larger than π/2:

ki · n < 0 and kf · n < 0, (2.75)

Here, the tilt angle τ of G is defined in Eq. (2.53), but n ·G can be nonpositive in

contrast to the case of reflection. In the case of transmission, Eq. (2.56) is also valid.

However, Eq. (2.58) is replaced by

cos θ sin τ cosφi < sin θ cos τ < cos θ sin τ cosφf , (2.76)

indicating possible ranges of values for φi ad φf as

cosφi < tan θ/ tan τ < cosφf , (2.77)

as τ is defined in [0, π] (θ ∈ [0, π/2]). Moreover, due to Eq. (2.57),

cosφf = − cosφi > tan θ/| tan τ | ≥ 0. (2.78)

Another form will be useful to find the range of τ :

| tan τ | > tan θ/ cosφf = tan θ/(− cosφi) ≥ 0. (2.79)
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One can consider a specifically important case, sinφi = sinφf = 0, in which the four

vectors (G,n,ki,kf ) are in a single plane. In this case, cosφi and cosφf need to be

−1 and +1, respectively, and thus

| tan τ | > tan θ, and therefore θ < τ < π − θ (2.80)

This is the condition opposite to the reflection case for the same values of φi and

φf as given in Eq. (2.61). On the other hand, cosφi = cosφf = 0, which allows τ

and θ in the entire range for the reflection, is not allowed at all for the transmission.

Indeed, in this case, Eq. (2.56c) is simplified into

K = K sin θ cos τ ẑ +K sin θ sin τ x̂ +K cos θ sinφŷ, (2.81)

indicating K ·n has the same sign for −ki and kf violating the transmission geometry

restriction in Eq. (2.75).

Keeping in mind that tan θ ≥ 0 and cosφf = − cosφi > 0, Eq. (2.79) can be

expressed with the components of G.

First, for both φ = φf and φi

cos2 φ| tan τ |2 > tan2 θ; (2.82)

Then,

cos2 φ
G2
t

G2
n

>
G2

(2K)2 −G2
. (2.83)
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Clearly, this condition for the transmission is the reversed condition of Eq. (2.64)

for the reflection. Therefore, the G domain that does not satisfy the reflection diffrac-

tion condition Eq. (2.64) satisfies the transmission diffraction condition Eq. (2.83),

while there are additional restrictions due to parameters such wavelength. One can

note here that τ is not restricted below π/2 in the transmission case. As a primary

example, the threshold condition for sinφ = 0 is represented by the circumferences

of the two full circles centered at |Gt| = K, with the same radius K. The purpose of

this paragraph is to emphasize the fact that TEM and XRD generally have different

regimes of diffraction spots.
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Chapter 3

Magnetometry and magnetic

properties

In this chapter, the principle of magnetometry using a superconducting quantum in-

terference device is explained. Since the magnetic characterization of Mn5Ge3 epitax-

ial layers is the major part of this work, this chapter also gives a general background

on the concepts of magnetic anisotropy and glassy magnetic behaviors, which are im-

portant for the next chapters. Section 3.1 describes the superconducting interference

device magnetometer, and discusses the possibility of having artifacts from extrinsic

contributions. Section 3.2 deals with the origins of magnetic anisotropy and section

3.3 explains the superparamagnetic and spin-glass states.
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3.1 Superconducting quantum interference device

Flux quantization According to the Bardeen-Cooper-Schrieffer (BCS) theory [1],

the superconducting state exists because the electrons can condensate in bound pairs,

called Cooper pairs, which can circulate in a material without being scattered, thus

resulting in a resistivity near zero. The Cooper pairs can be destroyed by thermal

energy above a critical temperature, by a high current density or by a magnetic

interaction above a critical field. Materials in the superconducting state are perfect

diamagnets, which means that they have high negative magnetic susceptibility and

expel any flux of magnetic field within them. Such flux expulsion is referred to as the

Meissner effect [2, 3]. In the particular case where the superconducting materials is

shaped as a ring, the flux can go through the inner side of the ring and be trapped.

Indeed, when the magnetic field is removed, a current that circulates around the ring is

induced, and due to the superconducting nature of the material, this current does not

decay (persistent current). The trapping of the magnetic flux in a superconducting

ring is illustrated in Fig. 3-1.

Figure 3-1: Meissner effect for a superconducting ring cooled under an external mag-
netic field. In the normal state, the magnetic flux can penetrate the material, which
is no longer the case in the superconducting state. When the field is turned off, a
persistent current is induced in the superconducing ring, thus trapping a magnetic
flux.

As long as the ring is kept below its critical temperature T
C
, the current continues
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to circulate and is expressed as I = Φ/L, where Φ is the flux of the magnetic field

through the ring and L is the inductance of the ring. Such trapped flux has a very

particular property, which is the fact that one can only trap discrete levels of magnetic

flux [4]. As a result, the magnetic flux is quantized and is a multiple of the flux

quantum Φ0 = π~/e = 2.068× 10−15 T.m2.

Josephson junctions The Josephson effect [5] corresponds to the possibility for

electrons to tunnel from a superconductor region to another, through a resistive bar-

rier. Because it involves the tunneling of a Cooper pair, the Josephson effect is much

different from the tunnel effect of a single electron and it is possible only for currents

lower than the critical current and for resistive barriers with a thickness smaller than

the coherence length of the superconductor. Cooper pair tunneling does not require

any excitations and can occur without applying voltage. The resistive barrier is called

“weak link” and it can be made in several ways: two superconducting phases can be

separated by an insulator, or a normal metal phase or even by natural grain bound-

aries and other imperfections in the superconducting phase. The superconducting

quantum interference device (SQUID) magnetometry makes use of the Josephson ef-

fect in order to measure very small variations of magnetic flux, and the measurement

is performed mainly by converting a magnetic flux in a voltage. A SQUID is a super-

conducting ring including one or two Josephson junctions. The structure of a SQUID

is represented in Fig. 3-2, along with its circuitry.

It is necessary to avoid hysteresis in the I-V characteristic of the SQUID, so shunt

resistors are connected in parallel to the Josephson junctions. In the superconducting

state, an electrical current can exist without voltage. A bias current Ib is applied

to the SQUID, with a value slightly higher than the critical current I
C

of the super-
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Figure 3-2: SQUID loop including two Josephson junctions. The voltage V varies
periodically as a function of the flux Φ, each period corresponds to an increase of one
quantum flux. I

C
is the critical current of the superconductor.

conductor in order to set the operating point between the superconducting and the

resistive behaviors [3]. When no external field is applied, the bias current splits equally

in both branches of the SQUID loop. Then, if a field is applied, due to the perfect

diamagnetic nature of the superconductor a screening field is induced, thus producing

a field that acts towards cancelling the external magnetic flux. When the external

magnetic flux increases to half a quantum flux Φ0/2, because of the quantization of

the flux in the SQUID, the screening current in the SQUID is reversed in order to let

the magnetic flux increase to Φ0, which is energetically more favorable. Therefore,

the screening current will reverse each time the magnetic flux equals (n+ 1
2
)Φ0, where

n is an integer. As a result, a change in the external magnetic flux induces a change

in the voltage in the SQUID loop, and this voltage varies periodically as a function

of the flux (the period being the magnetic flux quantum). Therefore, monitoring the

variation of voltage in the SQUID loop gives a measure of the magnetic flux that has

been coupled to the SQUID.



64 Chapter 3. Magnetometry and magnetic properties

SQUID magnetometer A variable temperature SQUID magnetometer, shown in

Fig. 3-3, has a Dewar with liquid helium, gas helium circuit and a heater in order

to perform measurements at several temperatures. The temperature range for such

equipment is usually from 1.8 to 400 K. The temperature in the sample space is

regulated with a flow of helium gas. The heater is placed below the sample and the

thermometer is located above the sample, thus ensuring that the whole sample region

is in thermal equilibrium before the measurement. In the case of dc measurements, the

applied magnetic field is static and the sample moves by the means of a motor attached

to the sample holder. Such SQUID magnetometer has a uniform superconducting

magnet to produce a uniform field in the sample area, between the superconducting

detection coils. The SQUID is connected in series with the detection coils, and is

shielded in a niobium cage. The variation of the flux Φ of the magnetic field in

the circuit is related to the variation of the current I induced in the circuit by the

following:

dI

dt
=

1

L

dΦ

dt
= −V

L
, (3.1)

where V and L are the voltage induced across the coils and the inductance of the

circuit, respectively. The measured quantity is actually a voltage, and when the

sample goes through a coil, the flux of the magnetic field in that coil changes by an

amount that is proportional to the magnetic moment of the sample. The detection

coils are typically made of NbTi, for which the critical field allows measurement at

fields as high as 9 T and the sensitivity is kept at 10−8 emu [3].
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Figure 3-3: The different components of a variable temperature SQUID magnetome-
ter. In this illustration, the SQUID has two Josephson junctions. The SQUID sensor
is isolated in niobium shield immersed in liquid helium, so that it can keep its super-
conducting state by being protected from the sample heater and from the magnet.
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Artifacts in SQUID magnetometry A SQUID magnetometer is actually a very

sensitive device and care must be taken for the interpretation of the data. More pre-

cisely, one must distinguish the intrinsic and extrinsic contributions of the quantities

measured by SQUID. Artifacts in the measured signals may have several origins [6],

like the contamination of the samples due to the use of improperly cleaned tweezers,

sample size effect, power supply of the magnet, which can all result in extrinsic signals

leading to conclusions such as, for example, the presence of ferromagnetic order in

diamagnetic materials [7, 8, 9, 10]. For this thesis, the main source of artifact comes

from the superconducting magnet in the SQUID magnetometer.

As mentioned in the previous paragraph, since the magnetic field is generated

by a superconducting coil, one must consider the presence pinned magnetic flux,

especially when the magnet is discharged to set the field at zero. Because the su-

perconducting material has defects, some volumes of phases in the normal state can

nucleate in the superconducting phase, and therefore allow the magnetic flux to pen-

etrate the material and be trapped after the magnet is discharged. The prediction of

the value of such trapped field is difficult. From the experiments conducted for this

thesis, the magnitude of the remanent trapped field seems to depend on the value

of the highest previously applied field. This artifact field is mainly an issue when

performing ultra-low-field measurements or when measuring magnetization cycles of

very soft ferromagnets. In the latter case, if the trapped field is negative, a “nega-

tive” (anti-clockwise) hysteresis and a negative susceptibility can be measured, thus

not representing the real behavior of the sample. Since Mn5Ge3 was found to be

a very soft ferromagnet close to its Curie point, in order to avoid misleading con-

clusions, a fluxgate magnetometer was used to remove the trapped field before each

measurement, where the information at very low field was required.
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3.2 Magnetic anisotropy

The magnetic anisotropy originates from the fact that the energy of the ground state

of a magnetic material is dependent on the direction of the magnetization vector.

There are numerous kinds of magnetic anisotropy. For example, an anisotropy effect

can arise from the rotation of the magnetization vector with respect to the crys-

tallographic axes of the material (magnetocrystalline anisotropy) or with respect to

the overall shape of the ferromagnetic sample (shape anisotropy). The easy direc-

tion of a ferromagnet is defined by the direction with minimum energy, on which

the magnetization vector lies when the applied field is switched to zero. A mate-

rial can have one or several of those directions. Conversely, a hard direction is for

a direction with maximum energy. Easy directions are usually easy axes, although

unidirectional anisotropy exists for more specific systems with an exchange bias field

[11, 12, 13, 14, 15, 16], for which anisotropy is found only on one direction of an axis.

In this section, the term uniaxial anisotropy will preferably be used. The magnetic

anisotropy, along with the exchange interaction, is responsible for the existence of

domain walls. The analysis of the magnetic anisotropy by the magnetic hysteresis

loops can be difficult due to the formation of magnetic domain walls.

Spin-orbit interaction The source of magnetic anisotropy typically has two con-

tributions: (i) the spin-orbit interaction and (ii) the dipole-dipole interaction. The

spin-orbit interaction includes the magnetocrystalline and magneto-elastic contribu-

tions of the magnetic anisotropy, while the dipole-dipole interaction results in the

shape anisotropy.

The orbital motion of an electron is ruled by a potential, which is imposed by

the crystal lattice of a material, thus resulting in an orbit-lattice coupling. Con-



68 Chapter 3. Magnetometry and magnetic properties

sequently, when a spin-orbit interaction occurs, the spin (i.e. the magnetization)

becomes coupled to the crystal lattice. The energy band structure of a ferromagnet

can be decomposed in a majority spin (↑) band and a minority spin (↓) band, those

two sets of bands are separated by the exchange splitting energy. By considering

the spin-orbit interaction as a perturbation of the exchange splitting energy [17], in

accordance with the perturbation theory, it is shown that the energy correction and

the orbital moment of the minority spin are related by the following relationship:

∆Espin-orbit ∝ −1
4
ξŜ · L↓, where ξ is the radial part of the spin-orbit interaction, Ŝ

is the unit-vector for the spin direction, and L↓ is the orbital angular momentum of

the minority spin. The magnetic anisotropy energy (MAE) is directly related to the

anisotropy of orbital angular momentum, which is defined as the difference of momen-

tum between the directions parallel (L↓‖) and perpendicular (L↓⊥) to an anisotropy

axis.

MAE = ∆E⊥spin-orbit −∆E
‖
spin-orbit ∝ −

1

4
ξ
(
L↓⊥ −L↓‖) (3.2)

The easy axis corresponds to the one, for which the orbital angular momentum is the

highest [17]. The relationship between the MAE and the anisotropy in orbital angular

momentum is more easily observed in thin films [18] or sub-monolayer nanostructure

[19].

Single-ion anisotropy The single-ion anisotropy is a model according to which the

orbital of a magnetic ion interacts with the surrounding crystal field. The anisotropy

in this model arises from the quenching of the orbital moment by the crystal field. The

crystal field has the same symmetry as the crystal lattice, therefore through the orbit-

lattice coupling, the orbital momentum is strongly coupled to the lattice. Because

of the spin-orbit coupling, the interaction with the crystal field is transferred to the
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spin momentum, thus weakening the coupling of the spins to the lattice. Therefore,

when an external magnetic field is applied, the orbital momentum remains coupled

to the lattice, while the spin momentum is more free to turn by the effect of the field

due to its weaker interaction with the lattice.

In magnetic thin films, the contribution of the single-ion anisotropy spreads in

the entire volume of the layer. In certain cases, the single-ion anisotropy can prevail

over the shape anisotropy, which leads to a perpendicular anisotropy. An important

aspect of this model is the fact that it allows to predict the temperature dependence

of the anisotropy, as follows:

(
Kn(T )

Kn(0)

)
=

(
MS(T )

MS(0)

)n(n+1)/2

, (3.3)

where Kn(T ) and MS(T ) are the nth order anisotropy coefficient at temperature T

and the saturation magnetization at temperature T , respectively. The relationship

given by Eq. (3.3) is known as the Callen-Callen law [20, 21, 22, 23, 24, 25]. It is

derived from models developed by Akulov [26] and Zener [27] and accounts for the

fact that the variation of the anisotropy energy has the same origin as that of the

magnetization, as explained in the previous paragraph.

The Callen-Callen law predicts that the anisotropy energy decreases much faster

than the magnetization when the temperature increases, with a power equal to 3 in

the case of uniaxial anisotropy and 10 or 21 in the case of cubic anisotropy.
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3.3 Irreversibility in the temperature dependence

of the magnetization

Magnetic systems with competitive exchange interactions among spins can lead to

a spin-blocking process, thus resulting in a nonreversible thermal magnetization. In

systems of ferromagnetic nanoparticles, superparamagnetic behavior can arise from

the random magnetization flipping due to the thermal energy. Strong random and

frustrated interactions among spins, can lead to materials in a spin-glass state. In

addition, both categories of materials exhibit time dependent effects such as the aging,

memory and rejuvenation processes.

3.3.1 Superparamagnetism

Superparamagnetism is commonly obtained in systems with weakly interacting mag-

netic nanoparticles. Below a critical size, which is about a few tens of nanometers, the

formation of magnetic domains is no longer favored so that the spins in the nanoparti-

cle rotate coherently. As a result, each nanoparticle is a single domain and behaves as

a macrospin, called superspin and the weak interaction between the superspins lead

to a superparamagnetic system. Therefore, the magnetic moment of a particle can be

considered as a classical vector. The term of superparamagnetism was introduced by

Bean and Livingston [28], due to the similarity in behavior with paramagnets. The

nature of the interaction between the magnetic domains is a dipole-dipole interaction.

In superparamagnetic materials, the randomness in the distribution of the domains

leads to a frustration in the interaction. The nanoparticles have different anisotropy

energy barriers, thus there is a broad distribution of relaxation times, which results

in the slow magnetization dynamics and the presence of a blocking temperature Tb.
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A schematic phase diagram is shown in Fig. 3-4. Above the Curie temperature, the

thermal energy overcomes any exchange interactions that could occur among the spins

and the material is behaves as a regular paramagnet. For Tb ≤ T ≤ T
C

, the nanopar-

ticles order ferromagnetically, thus forming superspins. Although the thermal energy

is weak enough to allow the ferromagnetic coupling within a particle, it is too strong

to allow any coupling between nanoparticles.

Figure 3-4: Schematic phase diagram of a superparamagnetic material. Above the
Curie temperature, the material is a regular paramagnet, where the spins behave
independently. For Tb ≤ T ≤ T

C
, the nanoparticles order ferromagnetically in single

domains. The weak interaction allows the thermal energy to orientate the suppres-
sions randomly, thus giving a super paramagnet. Below Tb, the material enter a
blocked state.

The result is that the material behaves in a similar manner as a paramagnet, ex-

cept that the magnetic moment of an entire particle, instead of a single atom, tends

to align with an external magnetic field. The energy required to rotate the magne-

tization of a nanoparticle corresponds the the magnetic anisotropy energy, defined

earlier, and it depends on the particle’s size and the nature of the material. As the

temperature decreases, the alignment of the superspins with the applied field becomes

more favorable. Below Tb, the magnetic moment of each nanoparticle is frozen, which

results in a blocking state. So, one can distinguish two regimes in a superparamag-

netic material, a superparamagnetic regime and a blocked regime.
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If one considers an effective uniaxial anisotropy K for the particles, then the en-

ergy barriers are proportional to KV , where V is the volume of a nanoparticle. The

magnetic energy for a single domain nanoparticle takes into account the anisotropy

energy and the influence of the external magnetic field.

EB = KV sin2 θM − µH cos(θH − θM), (3.4)

where θM is the angle between the magnetic moment of a superspin and the easy axis

of the particle, θH is the angle between the magnetic moment and the applied field, and

µ = Nµat is the total magnetic moment of a super spin, with N and µat the number

of spins and the atomic magnetic moment in the particle. The relaxation of the

magnetic moment in a superparamagnet follows the Arrhenius law. The characteristic

relaxation time is a function of the energy barrier as follows:

τ = τ0 exp(EB/kB
T ), (3.5)

where 1/τ0 is the attempt frequency characterizing a spin-flipping between the two

directions of the easy axis of a particle, and k
B

is the Boltzmann constant. Typical

values of 1/τ0 range from 109 to 1010 Hz [29, 30, 31]. As a result, under a magnetic

field, the energy barrier is smaller that the anisotropy energy KV .

A noticeable feature of superparamagnets is the separation of the zero-field cooling

and field-cooling magnetizations below the blocking temperature.



Chapter 3. Magnetometry and magnetic properties 73

3.3.2 Spin glasses

A spin glass can be described as a group of interacting spins whose low-temperature

state is frozen with no uniform or periodic pattern as found in ferromagnets or an-

tiferromagnets. However, this disordered state is distinct from the disordered para-

magnetic state due to its nonergodicity. Such freezing behavior is the product of the

random and competing interactions between the spins, which do not favor any single

configurations for the moments.

There has been discussions on whether such spin-glass state is only a progres-

sive freezing process or another kind of magnetic phase [11, 32]. The presence of a

cusp in the magnetic susceptibility precisely at the temperature corresponding to the

freezing process is an indication of a second order phase transition, thus encouraging

the definition of the spin-glass state as a magnetic phase. A spin-glass behavior is

characterized by the presence of many metastable configurations for the spins, sep-

arated by a distribution of energy barriers. This results in the well-known fact that

the magnetization dynamics is slow in such material, and it is usually evidenced by

the frequency dependence of the position of the cusp in the susceptibility and by the

time dependence of the remanent magnetization. Such features are very distinct from

conventional magnetically ordered systems, for which no frequency dependence of the

susceptibility is observed at the magnetic phase transition.

The time dependence of the remanent magnetization of spin glasses has been stud-

ied extensively using several models. Although no unique pattern was found, most

spin glasses were proved to follow one of the following time dependences:

• logarithm law [33]

M(t) = M0 − SRM ln(t), (3.6)
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where M0 is a constant and SRM is the magnetic viscosity accounting for the

slow response of the magnetization to a variation in the magnetic field.

• power law [34]

M(t) ∝ t−a(T,H), (3.7)

where a(T,H) is a temperature and field dependent exponent. For temperatures

relatively far from the spin-glass transition, the power law can be written as

t−a(T,H) = exp[−a(T,H) ln(t)] ' 1 − a(T,H) ln(t), thus being consistent with

the previously established logarithm law.

• stretched-exponential law [35]

M(t) ∝ exp

[
−A t1−n

1− n

]
, (3.8)

where A is a constant, n depends on the temperature. For temperatures far

from the spin-glass transition, 1 − n ' 1/3, and for temperatures close to the

transition the exponent becomes smaller.

The characteristic relaxation time in spin glasses is not verified by the Arrhenius

law, contrary to materials with superparamagnetic behaviors, because it is no longer

consistent with simple hopping over barriers and result in unphysical values. In order

to take into account the magnetic interactions in spin glasses, Vogel and Fulcher

adapted the Arrhenius law as follows [36, 37, 38]:

τ = τ0 exp

[
Ea

k
B
(T − T0)

]
, (3.9)

where Ea is the activation energy to overcome the energy barriers in the glassy state,
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T0 is a characteristic temperature, now called Vogel-Fulcher temperature, which was

added in an empirical way to account for the exchange interactions between the spins.

While the magnetization is the order parameter for ferromagnets, it is not so for

spin glasses. The spin glasses are defined by an order parameter, which is the third

order of the nonlinear susceptibility. A divergence of the nonlinear susceptibility

at the transition temperature T
F

to the glassy state is expected for a transition to

a spin-glass phase. Indeed, this has been predicted in the Edwards and Anderson

model [39, 40]:

χ3 = lim
h→0

∂M

∂h3
= +∞ (T = T

F
)

M = M
S

+ χ1h+ χ2h
2 + χ3h

3 + ...,

(3.10)

where, M
S

is the spontaneous magnetization, χ1 is the linear susceptibility, and χ2

and χ3 are the second order and third order non-linear susceptibility, respectively.

Therefore, nonlinear susceptibility measurements are one of the most efficient ways

to determine the presence of a real spin-glass phase transition.

The spin-glass behavior was first found in metallic materials, more specifically

in noble metals including a small percentage of magnetic transition metal impurities,

such as AuFe, AgMn, CuMn. The random dispersion of transition metal atoms in the

metals produced the frustration and randomness necessary for obtaining a spin-glass

state. Similar to the case of diluted metals, some diluted magnetic semiconductors

have also been found to behave like spin glasses [41]. Some system based on Ge and

Mn can also have spin-glass behavior, whether they are a disordered phase [42] or a

Ge1−xMnx diluted magnetic semiconductor [43].

Spin glasses usually undergo a transition from the paramagnetic (PM) phase to

the spin-glass (SG) state. However, some ferromagnetic (FM) materials have been



76 Chapter 3. Magnetometry and magnetic properties

proved to be able to enter a SG phase [44], thus leading to successive transitions from

PM to FM to SG. Such materials are called reentrant spin-glasses.

The phenomena of aging, rejuvenation and memory effects are common features

for spin glasses, although they will not be discussed here. Detailed studies are pro-

vided in [45, 46, 47, 48, 49, 50]. It has been recently shown that superpamagnetic

materials also show aging, rejuvenation, and memory effects [46, 51], just like spin

glasses. Consequently, the measurement of such properties is not a proper method

for distinguishing superparamagnets from spin-glasses.

Both spin glass and superparamagnetic materials show a thermal irreversibility in

the zero-field-cooling and field-cooling magnetizations at relatively low temperatures.

However, the field-cooling magnetization tends to increase monotonously for decreas-

ing temperature in the case of superparamagnets, while it remains almost constant

below the freezing temperature for spin glasses. This property is due to the fact

that the superspins are not interacting in superparamagnets, while in the case of spin

glasses, the random interactions between the spins makes it difficult for the external

field to align the spins at low temperatures, as long as the field is low enough.

This paragraph on the spin-glass phase is an introduction for the study performed

in Chapter 5 on the Mn5Ge3/Ge heterostructure.
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Chapter 4

Angular dependence of the

ferromagnetic resonance in Mn5Ge3

This chapter gives a detailed characterization of the magnetocrystalline anisotropy in

Mn5Ge3 epitaxial thin films by ferromagnetic resonance, in both in-plane and out-of-

plane geometries. Section 4.2 describes and discusses the preliminary results measured

by superconducting quantum interference device. Those results motivates an accurate

study of the magnetocrystalline anisotropy in Mn5Ge3, consequently section 4.3 will

establish the free energy of the system. Finally, section 4.4 will show experimental

and calculated results for the angular dependence of the ferromagnetic resonance field,

and establish a temperature dependence for the magnetocrystalline anisotropy.

The content of this chapter was published in Physical Review B.
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4.1 Introduction

In ferromagnetic materials, the magnetocrystalline anisotropy usually shows a depen-

dence on temperature [1, 2, 3, 4]. For practical applications, it is therefore important

to determine the behavior of the magnetocrystalline anisotropy in a wide temperature

range, especially when the ferromagnet is intended to be used at a specific tempera-

ture range. While the temperature dependence of the magnetocrystalline anisotropy

for ferromagnets with localized magnetic moments can be described quite well by

the Callen-Callen law [1, 2], which is based on a single-ion anisotropy model, there

are ferromagnetic transition metal alloys that can show more complicated behaviors

[2, 3]. In this chapter, the presence of a weak perpendicular anisotropy in addition

to the shape anisotropy is shown in a Mn5Ge3 thin film. Its contribution is studied

experimentally and analytically by ferromagnetic resonance and despite the fact that

it increases when the temperature decreases, it remains a lot weaker than the shape

anisotropy. The interesting fact in this chapter is the invalidity of the Callen-Callen

law for the Mn5Ge3 thin film [5].
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4.2 Preliminary study of the magnetization cycles

at several temperatures

The magnetic hysteresis cycles are measured by superconducting quantum interfer-

ence device magnetometry, with an external magnetic field applied in the plane of

the thin film. Measurements from 290 to 5 K are shown in Fig. 4-1. The tempera-

ture dependence of the saturation magnetization is shown in Fig. 4-2 and the Curie

temperature is evaluated to be close to room temperature T
C

= 300± 5 K, which is

consistent with the previous work on Mn5Ge3. One can notice that the remanence ra-

tio undergoes a significant change between 200 and 290 K, going from MR/MS ' 0.85

at 290 K to MR/MS ' 0.25 at 200 K [Fig. 4-1(b)-(e)], and it seems to stabilize at

a value of 0.25 when the temperature is decreased further. The square shape of the

hysteresis in the vicinity of the Curie temperature suggests that the applied magnetic

field is almost parallel to the in-plane easy axis of the ferromagnetic thin film. Since

this parallel alignment is no longer verified at lower temperature, it can reasonably

be assumed that a non-negligible change in the magnetic anisotropy occurs between

200 and 290 K, thus altering the properties of the magnetization at zero field. Since

Mn5Ge3 is in the form of a thin film in this work, the shape anisotropy is expected

to be the dominant form of magnetic anisotropy, which confines the magnetization

in the plane of the film. This fact is confirmed by the measurement of the perpen-

dicular magnetization [Fig. 4-1(f) shows the perpendicular magnetization at 30 K],

from which we conclude that the remanence and coercive field are very small, and

the saturation field is higher than for the in-plane magnetization.

The crystal lattice of Mn5Ge3 has a hexagonal structure, which makes the hexago-

nal c axis become the easy magnetization axis for the bulk material. The epitaxial re-
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Figure 4-1: Field-dependence of the magnetization at (a) 290 K, (b) 200 K, (c) 100 K,
(d) 30 K and (e) 5 K. In (a)-(e) the magnetic field in applied in the plane of the thin
film. In (f), the measurement is done at 30 K with a field is applied in the normal
axis of the thin film



84 Chapter 4. Angular dependence of the ferromagnetic resonance in Mn5Ge3

Figure 4-2: Saturation magnetization as a function of temperature, measured by
SQUID with an external applied field of 1.5 T. From this data, the Curie temperature
is evaluated to be T

C
= 300± 5 K.

lationship Mn5Ge3(001)/Ge(111) allows the ferromagnet to grow on the Ge substrate

with its easy axis parallel to the sample’s normal axis, which can hypothetically result

in a perpendicular magnetocrystalline anisotropy. Even though preliminary SQUID

measurements suggest that such perpendicular magnetocrystalline anisotropy is weak,

it is necessary to establish its temperature dependence in order to evaluate how much

it competes with the shape anisotropy for the entire temperature range. The purpose

of the following sections is to determine whether the magnetocrystalline anisotropy in

Mn5Ge3 thin films, although weak, can have an influence on the magnetization cycles

or not.
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4.3 Free energy of the system

The ferromagnetic resonance (FMR) technique is a sensitive method to analyze the

magnetocrystalline anisotropy in ferromagnetic thin films or heterostructures [6, 7, 8,

9]. In order to perform such analyses, it is essential to determine the mathematical

expression of the free energy, which is characterized by the symmetry of the mate-

rial, and that of the resonance condition. The magnetic anisotropy energy (MAE)

corresponds to the work required to rotate the magnetization from an easy axis to

another direction. According to the second principle of thermodynamics, for a closed

system, the free energy F of the magnetic material is related to the work WMAE and

to the entropy S as follows: dF = −δWMAE − SdT . FMR measurements are usually

performed at constant temperatures, which leads to the variation of the free energy

being equal to the work dF = −δWMAE. The coordinate system used in this work is

defined in Fig. 4-3.

Because Mn5Ge3 has a hexagonal lattice, the following will concentrate on the free

energy for a hexagonal symmetry. Considering that the magnetic sample is saturated

in order to suppress any effects from the magnetic domain walls, one can expand the

free energy of directive cosines αi (i = 1, 2, 3), which are defined as the projections of

the magnetization on three unit vectors determined by the crystal lattice. Therefore,

the general form of the magnetic anisotropy free energy [10] is:

FMA = biαi + bijαiαj + bijkαiαjαk + bijklαiαjαkαl + ... (4.1)

where the tensors bijkl reflect the properties of the crystal symmetry. The components

of bijkl can be transformed by a rotation of coordinate axes or can be invariant under

the specific symmetry conditions imposed by a particular crystal structure. As a
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Figure 4-3: Coordinate system used for the theoretical FMR analysis. θM and θH are
the out-of-plane magnetization angle and field angle, respectively. φM and φH are the
in-plane magnetization and field angle, respectively. The sample’s normal axis is the
[001] direction of the Mn5Ge3 crystal, and (x, y, z) is defined so that the z direction
is parallel to the magnetization.

result, the components bijkl must satisfy:

bijkl...n =
3∑
p=1

3∑
q=1

3∑
r=1

...
3∑

u=1

σipσjqσkr...σnubpqr...u. (4.2)

The matrices [σ] are generating matrices, which account for the permissive symmetry

operations required to describe a crystal structure [10, 11]. It can be shown that all

the crystal classes can be described by 10 matrices and their multiplications. The two

first matrices represent the unity matrix and the matrix of point inversion though a

unit cell, respectively. The two next matrices represent a twofold rotation parallel

and perpendicular to the z axis, respectively. The z axis is an arbitrary axis in the

crystal lattice. Similarly, the next matrices describe threefold or fourfold rotations,

the presence of a bar means that the rotation is followed by a point inversion. The last
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matrix is essentially relevant for the cubic symmetry and corresponds to a threefold

rotation parallel to the diagonal of the cubic unit cell.

[
σunit

]
=


1 0 0

0 1 0

0 0 1

 [
σinv
]

=


−1 0 0

0 −1 0

0 0 −1


[
σ2⊥z] =


−1 0 0

0 1 0

0 0 −1

 [
σ2‖z] =


−1 0 0

0 −1 0

0 0 1


[
σ2̄⊥z

]
=


1 0 0

0 −1 0

0 0 1


[
σ2̄‖z

]
=


1 0 0

0 1 0

0 0 −1


[
σ3‖z] =


−1

2

√
3

2
0

−
√

3
2
−1

2
0

0 0 1

 [
σ4‖z] =


0 1 0

−1 0 0

0 0 1


[
σ4̄‖z

]
=


0 −1 0

1 0 0

0 0 −1

 [
σ3dia

]
=


0 1 0

0 0 1

1 0 0



Hexagonal symmetry The free energy of Mn5Ge3 will be deduced by the expres-

sion of the free energy of a hexagonal structure in the [001] direction. In this work,

the anisotropy energies K are indexed by the anisotropy order, for example K2 will

correspond to a second order uniaxial anisotropy energy and K4 will correspond to
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a fourth order cubic anisotropy energy. For the hexagonal symmetry, the generating

matrices are [σinv], [σ2⊥[001]], [σ2‖[001]], and [σ3‖[001]]. The matrix [σ3‖[001]] is essential

to describe the threefold rotation along the [001] axis of Mn5Ge3, and the product

σhex of all the matrices gives a sixfold symmetry. The use of [σinv] means that the unit

cell is centrosymmetrical, therefore all the odd order anisotropy terms must vanish.

The matrix [σ2⊥[001]] used along with Eq. (4.2) implies that the components of σhex

are non zero for i = p, or j = q, or · · · or n = u. Moreover, the product σipσjqσkr...σnu

equals to −1 when the index 2 appears an odd number of times, which means that

the terms that include the index 2 an odd number of times must vanish as well. In

a similar manner, [σ2‖[001]] implies that all the coefficients that contain the index 3

must vanish [11]. Taking all those restrictions into account, the first nonvanishing

term is the second order anisotropy energy bijαiαj = b11(α2
1 + α2

2). Expanding to the

sixth order, the magnetocrystalline anisotropy free energy of the hexagonal structure

is given by:

FMA = K0 +K2⊥(α2
1 + α2

2) +K4⊥(α2
1 + α2

2)2 +K6⊥(α2
1 + α2

2)3

+K6‖(α
2
1 − α2

2)(α4
1 − 14α1α2 + α4

2).

(4.3)

One can notice that in the hexagonal symmetry, an in-plane magnetocrystalline

anisotropy only appears from the sixth order. By using the system coordinate shown

in Fig. 4-3, the free energy can be re-written as:

FMA = K2⊥ sin2 θM +K4⊥ sin4 θM +K6⊥ sin6 θM +K6‖ sin6 θM sin(6ϕM). (4.4)

Since FMA is an energy, the constant term can be set to zero. For this work, only the

second order is kept (K2⊥ will be noted K⊥) for the magnetocrystalline anisotropy,
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therefore one has

FMA = −K⊥ cos2 θM . (4.5)

Beside the magnetocrystalline contribution of the anisotropy, one must take into

consideration the presence of the shape anisotropy, since Mn5Ge3 is in the form of

a thin film. The shape of a thin films induces a translational symmetry breaking

of the ferromagnet, leading to an in-plane distortion in the volume. By using the

approximation that the thin film is an infinite plane, the shape anisotropy energy,

which favors the alignment of the magnetization in the plane of the thin film can be

expressed as:

Fshape = 2πM2 cos2 θM . (4.6)

In addition, the interactions existing at the interface between Mn5Ge3 and the Ge

substrate can cause the existence of an uniaxial in-plane anisotropy term:

Funiaxial = −1

2
MH‖ sin2 θM cos2

(
ϕM −

π

3

)
, (4.7)

where the angle π/3 accounts for the hexagonal symmetry and H‖ is the in-plane

uniaxial anisotropy field.

Finally, by including the contribution of the Zeeman energy due to the external

magnetic field, the total free energy Fhexagonal is given by the following expression:

Fhexagonal = FZeeman +Fshape−
1

2
MH⊥ cos2 θM−

1

2
MH‖ sin2 θM cos2

(
ϕM −

π

3

)
, (4.8)

where FZeeman = −HM [cos θM cos θH+sin θM sin θH cos(ϕM−ϕH)] andH⊥ = 2K⊥/M .

This total free energy is used for the characterization by ferromagnetic resonance

discussed in the next section.
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4.4 Resonance condition for the angular depen-

dent FMR in the hexagonal symmetry

The ferromagnetic resonance technique detects the magnetic excitations occurring

in the microwave regime. The resonance condition is found by deriving the free

energy and the Landau-Lifshitz-Gilbert (LLG) equation. The theoretical model does

not take into account the presence of domain wall dynamics, therefore during the

experiments, care has been taken so that the ferromagnetic resonance field is higher

than the saturation field of the sample. This ensures that the magnetization in

Mn5Ge3 can be considered as a macrospin. The LLG equation for the dynamics of

the magnetization M(t) is

dM (t)

dt
= −γM (t)×Heff +

α

MS

M (t)× dM (t)

dt
, (4.9)

where γ is the gyromagnetic ratio, α is the damping constant, and MS is the saturation

magnetization. Only the first term is required to study the angular dependence of the

resonance field. The second term, which involves the damping constant, is related to

the angular dependence of the linewidth of the FMR signals. As discussed in detail

in [12, 13, 14], the resonance condition is determined by deriving the LLG equation

and the following relationship with the free energy is established as follows:

(
ω

γ

)2

=
1

M2
S

∂2Fhexagonal

∂θ2
M

(
1

sin2 θM

∂2Fhexagonal

∂ϕ2
M

+
cos θM
sin θM

∂Fhexagonal

∂θM

)
− 1

M2
S

(
1

sin θM

∂2Fhexagonal

∂θM∂ϕM
− cos θM

sin2 θM

∂Fhexagonal

∂ϕM

)2

.

(4.10)



Chapter 4. Angular dependence of the ferromagnetic resonance in Mn5Ge3 91

By using Eq. (4.10), the final form of the resonance condition for a Mn5Ge3 thin film

is established:

(
ω

γ

)2

= [HFMR × a1 + b1] [HFMR × a1 + b2]− b2
3, (4.11)

where HFMR is the resonance field, ω is the microwave frequency, and the terms a1,

b1, b2, b3 are calculated to be:

a1 = cos θM cos θH + sin θM sin θH cos (ϕM − ϕH),

b1 = −
[
4πMS −H⊥ +H‖ cos2 (ϕM − π

3
)
]

cos (2θM),

b2 = −(4πMS −H⊥) cos2 θM

−H‖
[
(cos θM cos (ϕM −

π

3
))2 − cos 2(ϕM −

π

3
)
]
,

b3 = H‖ cos θM sin (ϕM − π
3
) cos (ϕM − π

3
).

The calculations using Eq. (4.11) and the experimental results will allow to determine

the values of the anisotropy fields. The experiments are carried out using X-band

electron paramagnetic resonance spectrometer (microwave frequency of 9.08 GHz)

using both in-plane and out-of-plane geometries, as illustrated in Fig. 4-4.

In-plane geometry The in-plane FMR spectra are measured for several tempera-

tures between 18 and 300 K. The spectra at 295 and 100 K are shown in Fig. 4-5 and

no angle dependence of the ferromagnetic resonance field is visible. The same result

is obtained for the whole range of temperature.
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Figure 4-4: In-plane and out-of-plane configurations for the ferromagnetic resonance
measurements. The normal direction of the thin film corresponds to the [111] direction
of the Ge substrate.

Therefore, with those experimental results, it can be inferred that the plane of the

thin film has no magnetic anisotropy, since all the directions seem to be equivalent and

the orientation of the magnetic field does not affect the resonance. The consequence

for the in-plane uniaxial anisotropy, defined in the previous paragraph, is H‖ = 0

thus making the in-plane uniaxial anisotropy free energy term [Eq. (4.7)] vanish.

This result is important for the analysis of the out-of-plane FMR spectra because

it significantly simplifies the resonance condition, given in Eq. (4.11), and results in

ϕM = ϕH .
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Figure 4-5: FMR signals recorded as the first derivative of the microwave absorption
in the in-plane geometry at (a) 295 K and (b) 100 K. The in-plane measurements
show no variation of resonance field as a function of angle, so magnetocrystalline
anisotropy is absent in the sample’s plane. The in-plane FMR measurements were
performed by applying a magnetic field in the sample’s plane and rotating it along
its normal axis.
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Out-of-plane geometry The effective magnetic field Heff includes the external

magnetic field and a field HM , which takes into account the contributions of the

perpendicular anisotropy H⊥ and the demagnetizing field induced by the magnetiza-

tion M (t). It is defined as Heff = H + HM and can be expressed in the (x, y, z)

coordinate system, where

H = H


0

sin (θM − θH)

cos (θM − θH)

 , (4.12)

HM = −(4πMS −H⊥) cos θM


0

sin θM

cos θM

 . (4.13)

Since the demagnetizing field and the perpendicular anisotropy have the same sym-

metry in the thin film, it is natural to include them in the same contribution. The

out-of-plane field angle dependence of the ferromagnetic resonance field is obtained

from the static equilibrium condition M ×Heff = 0, and the ferromagnetic resonance

condition. Those two conditions lead to the following set of equations:



2H sin (θH − θM) + 4πMeff sin 2θM = 0

(
ω

γ

)2

= [HFMR cos (θH − θM)− 4πMeff cos (2θM)]

× [HFMR cos (θH − θM)− 4πMeff cos2 θM ],

(4.14)

where 4πMeff = 4πMS − H⊥ is the effective magnetization. An out-of-plane FMR

series of spectra is given in Fig. 4-6, and it can be seen that a higher magnetic fields
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are necessary in order to obtain resonance in the out-of-plane directions. Although the

maximum of resonance field is in the perpendicular direction, the spectra themselves

give no information about the perpendicular anisotropy.

Figure 4-6: FMR spectra in the out-of-plane geometry for the Mn5Ge3 thin film,
measured at 200 K. One can see that a higher external magnetic field is required in
order to obtain the resonance as the direction of the field gets closer to the normal
axis of the sample.

According to the above-mentioned model, since the sample has no in-plane magne-

tocrystalline anisotropy, the only possible form of magnetocrystalline anisotropy is an

uniaxial perpendicular anisotropy. Concerning the out-of-plane FMR measurements

(Fig. 4-6), the presence of the demagnetizing field makes it difficult to distinguish

the contribution of the perpendicular uniaxial anisotropy from that of the demagne-

tizing field regarding the shift of the resonance field position, when the direction of

the field approaches the normal axis of the thin film. For that reason, the values of

4πMeff obtained by FMR are compared with the values of 4πMS obtained by SQUID

in the previous section. A difference between the two magnetizations will show the

presence of a perpendicular anisotropy. One can also note in Fig. 4-6 that although

the FMR spectra for angles close to 90◦ have a derivative Lorentzian lineshape, the
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spectra close to the [001] direction have an asymmetric lineshape. The lineshape of

the FMR spectra is sensitive to inhomogeneity in the out-of-plane directions, and

this inhomogeneity probably comes from defects due to the lattice mismatch or to

the nonhomogeneous composition at the Mn5Ge3/Ge interface [15].

The angular dependencies of the out-of-plane ferromagnetic resonance fields are

shown in Fig. 4-7. One can see that, for each temperature, there is a match between

the experimental angular dependence ofHFMR and the solutions of the set of equations

(4.14), so the total free energy was defined in a correct manner and the assumption

that H‖ = 0 is reasonable. By solving the set of equations 4.14, one obtains the

effective magnetization for each temperature, as summarized in Table 4.1.

Temperature dependence of the magnetocrystalline anisotropy The exper-

imental anisotropy coefficients are plotted as a function of temperature along with

the theoretical behavior predicted by the Callen-Callen law [Eq. (3.3)] in Fig. 4-8

(red curve). One can clearly notice that the anisotropy coefficients obtained by FMR

deviate from the cubic magnetization law for almost the entire temperature range.

Therefore, the Callen-Callen law is not applicable to this case. However, although a

Table 4.1: Comparison between the saturation magnetization obtained by SQUID and
the effective magnetization obtained by FMR. The perpendicular anisotropy field
is calculated by subtracting the two magnetizations. K⊥ is deduced from H⊥ =
2K⊥/MS.

T 4πMeff 4πMS H⊥ K⊥
(K) (A/m) (A/m) (A/m) (A2/m2)
18 4.4× 105 6.2× 105 1.8× 105 5.6× 1010

100 4.0× 105 5.8× 105 1.8× 105 5.2× 1010

200 3.4× 105 5.1× 105 1.7× 105 4.3× 1010

230 3.1× 105 4.7× 105 1.6× 105 3.8× 1010

295 1.1× 105 2.2× 105 1.1× 105 1.2× 1010
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Figure 4-7: Resonance field as a function of the field angle to the normal axis of the
sample for different temperatures. The experimental data is given by the black dots
and the solutions of the set of equations (4.14) are given by the red curves. The ef-
fective magnetizations at each temperature are calculated from the above-mentioned
model. The theoretical model for FMR in Mn5Ge3 fits well the experimental mea-
surements.
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Figure 4-8: The red curve represents the calculated prediction from the Callen-Callen
law for a second order uniaxial anisotropy, and the blue curve represents the calcu-
lated temperature dependence of the anisotropy energy coefficient assuming that it
varies as the cubic square root of the magnetization. The calculations are based on
the results given in Fig. 4-2. A cubic square root law seems to be more adapted to
describe magnetocrystalline anisotropy in Mn5Ge3 than the cubic relationship pre-
dicted by the Callen-Callen law. The Callen-Callen law appears to be valid only at
low temperatures (< 40 K). The fact that the experimental values of the magne-
tocrystalline anisotropy energy still follow a power law of the magnetization suggests
that a coupling between the crystal field and the magnetization still exists, however
in a different way than suggested by the single-ion anisotropy model.
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cubic law is not valid for Mn5Ge3, the experimental points seem to vary as the cubic

square root of the magnetization. A relatively good fit with the corresponding curve

can be seen in Fig. 4-8 (blue curve). The red and blue curves in Fig. 4-8 are calcu-

lated from the temperature dependence of the magnetization measured by SQUID in

Fig. 4-2. In ferromagnets, the magnetocrystalline anisotropy usually decreases much

faster than the magnetization when the temperature increases, with exponents equal

to 10 or 21 for cubic anisotropies and 3 for uniaxial anisotropy [16, 17, 18, 19, 20]. In

the present case, the perpendicular anisotropy energy still decreases faster than the

magnetization but at a slower pace than what can be found in literature. According

to Eq. (4.8) and the result deduced from Fig. 4-8, the perpendicular anisotropy energy

can be written as:

F⊥ = K⊥(18 K)

(
MS(T )

MS(18 K)

)1.5

cos2 θM . (4.15)

As a result, the temperature dependence of the perpendicular anisotropy to shape

anisotropy energy ratio is given by the following relationship:

F⊥
FShape

∝ 1√
MS(T )

(4.16)

Such temperature dependence shows that the out-of-plane anisotropy energy actually

becomes a lot weaker than that of the shape anisotropy when the temperature de-

creases. Consequently, although the presence of a perpendicular magnetocrystalline

anisotropy has been evidenced by FMR, it does not explain why the in-plane rema-

nence ratio of the Mn5Ge3 thin film decreases at low temperatures. We can thus

infer that the decrease of the in-plane remanence ratio has another origin, such as the

variation of the strain in the Mn5Ge3 crystal, when the temperature decreases.
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4.5 Summary

This chapter showed that the squareness of the in-plane magnetization curve changes

from a value close to 1 in the Curie temperature range to a much lower value at low

temperatures. An out-of-plane magnetocrystalline anisotropy was thought to be the

most reasonable candidate to induce such property. The analysis conducted by FMR

indicated that a perpendicular anisotropy exists in the Mn5Ge3 thin film, however it

is shown to be too weak to contribute to the change of the in-plane magnetization

at zero field. Knowing that the bulk material has an easy magnetization axis along

the hexagonal c axis, the perpendicular anisotropy in the thin film is allowed to exist

due to the epitaxial relationship Mn5Ge3/Ge(111). Even though the perpendicular

anisotropy is not the direct cause of the decrease of the in-plane remanence ratio,

its temperature dependence shows interesting and unusual features. It has been re-

ported that the temperature dependence of the magnetocrystalline anisotropy given

by the Callen-Callen law represents a relatively good model for ferromagnets with lo-

calized magnetic moments [21]. This is because it is based on a single-ion anisotropy

model, as described in the previous chapter. In this work, the perpendicular uniaxial

anisotropy still follows a power law, but the power is lower than the predicted value.

The ferromagnetism in Mn5Ge3 has been theoretically predicted to originate from

interactions between Mn sites [22]. Due to the half-filled 3d electron shell, Mn atoms

have a zero orbital angular momentum, thus making the magnetic moments be lo-

calized. In the Mn5Ge3 compound, the different coordinations of both Mn sites may

be the origin of the metallic properties of the material, but the localized character of

the magnetic moments would normally allow the single-anisotropy model to be valid.

Since Mn is alloyed with Ge in this case, some hybridization between p orbitals of Ge

and 3d orbitals of Mn sites can decrease the degree of localization of the magnetic
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moment, thus contributing to reducing the exponent in the anisotropy energy. It has

also been established in a previous study that itinerant ferromagnetism can induce

a decrease of the exponent in the power law [21], a notable case is the L10 phase of

FePt, for which the exponent in the temperature dependence is 2.1 instead of 3 for the

uniaxial anisotropy [21, 23, 24]. Such temperature dependence has successfully been

modeled by using a relativistic description of the electronic structures, which gives a

better description of the spin-orbit interaction [23, 24]. The magnetic properties of

Mn5Ge3 are different from FePt, so the deviation from the Callen-Callen law may not

be explained by the same mechanism in both materials. So, the reason why the expo-

nent is decreased from 3 to 1.5 in Mn5Ge3 remains to be studied more thoroughly. A

Curie-Weiss fitting of high temperature susceptibility measurements could bring more

information about the degree of localization of the magnetic moments provided by

the Mn sites. However, such measurement at high temperatures may not be straight-

forward to realize, since it can alter the crystal quality of Mn5Ge3 during the process.

In addition, one can also note that the assumptions made in the Callen-Callen model

do not take into account the variations of internal magnetostriction with thermal ex-

pansion [2, 18, 19]. Internal magnetostrsiction can destroy the power law given by the

Callen-Callen model, by introducing lower and higher power terms in the anisotropy

energy [25]. When the temperature varies, the c/a ratio of the hexagonal Mn5Ge3

can also change and lead to the presence an internal magnetostriction, which repre-

sents a magnetic anisotropy that is intrinsic to the material. Further investigations

need to be carried out to verify if the internal magnetostriction in Mn5Ge3 and the

hybridization of the orbitals can be the reason why the temperature dependence of

its perpendicular uniaxial anisotropy deviates from the Callen-Callen law.
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Chapter 5

Interfacial spin-glass-like state in

Mn5Ge3/Ge(111)

This chapter deals with the fact that despite having no in-plane anisotropy, as demon-

strated by the FMR measurements, the Mn5Ge3/Ge(111) heterostructure has a ther-

mal irreversibility in the in-plane magnetization. Such irreversibility is attributed to

a spin-glass-like behavior, which is the result of the interaction between the ferromag-

netic Mn5Ge3 and a spin-glass region at the Mn5Ge3/Ge interface. The interfacial

spin-glass region is reasonably assumed to correspond to the “magnetic dead layer”

formed at the Mn5Ge3/Ge interface. Section 5.2 describes the samples used for the

characterization of the spin-glass-like behavior. It is followed by the analysis of the

magnetic properties under dc and ac field (section 5.3). Finally, it is shown that the

glassy behavior in the present system is dependent on the growth conditions and the

thickness of the ferromagnetic Mn5Ge3 layer (section 5.4).

The content of this chapter was published in Physical Review B.
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5.1 Introduction

Recently, the emergence of exchange bias was reported for a spin-glass/ferromagnet

hybrid system [1, 2]. The exchange bias in spin glasses can lead to the unique property

of inverted bias effect [2, 3], which causes the exchange bias field to change sign for

a temperature range below the blocking temperature. Interactions of spin currents

with spin glasses are also investigated actively [4]. Such phenomena are expected

to play important roles in the wide range of future spintronics applications. One of

routes to form nanoscale spin-glass/ferromagnet systems are making use of the so-

called naturally formed spin-glass layers. Recent studies have shown that a spin-glass

behavior can arise at the surface or interface of a magnetically ordered phase due to

a surface effect, or a translational symmetry breaking of the lattice [5, 6, 7, 8, 9].

This leads to spin frustration and competing magnetic interactions in the ordered

phase. Understanding of such competing interactions at the surface or interface is

of great importance because it can significantly alter the properties of magnetic thin

films. In this chapter, it is demonstrated that Mn5Ge3 in the form of a thin film

on Ge(111) does not show simple ferromagnetism in the entire range of temperature

below its Curie point. The zero-field-cooling (ZFC) and field-cooling (FC) curves in-

dicate the presence of an irreversibility in the thermal magnetization. This property is

unexpected since Mn5Ge3 grows epitaxially on Ge(111) with no disordered secondary

phases [10, 11, 12, 13, 14, 15]. The characterization of the ac susceptibility leads to

the conclusion that the nature of the irreversibility is similar to that of a spin glass,

despite the fact that no apparent signs of disorder or frustrated interactions can be

found in such thin films. The spin-glass-like behavior is attributed to the presence

of a “ferromagnetically dead” layer at the Mn5Ge3/Ge interface. Indeed, thickness

dependence of the ferromagnetism in Mn5Ge3/Ge(111) has shown that a thickness of
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approximately 1.7 nm of the thin film from the Mn5Ge3/Ge interface does not con-

tribute to the total magnetic moment [16]. However, no magnetic characterization

of such “ferromagnetically dead” layer was performed in the past. The present work

shows that the spin-glass nature attributed to the “dead” layer explains the frustrated

interactions observed in the ferromagnetic part of the film. It is also shown that the

temperature dependence of the stability of the spin-glass-like state in a magnetic field

follows the de Almeida-Thouless line. Although high spin injection efficiency was pre-

dicted theoretically [17], the interfacial spin-glass-like behavior shown experimentally

in this work could have an influence on the properties of spin currents.

5.2 Experimental details and structural character-

ization

In this chapter, three specific samples are analyzed, as presented in Table 5.1. Their

relative growth conditions are important for the following study. Sample A will be the

reference sample and its magnetic properties will be compared to that of sample B,

which was grown with a higher growth temperature, and sample C, which is thicker.

The following brief structural characterization confirms that the variation of thickness

or growth temperature leads to the same structure for the Mn5Ge3 layers. The solid

state reaction between the Ge single crystal and the deposited Mn is triggered by

annealing the samples at 150 (samples A and C) or 200◦C (sample B) and leads to

the formation of Mn5Ge3. The annealing process yields the well-established
√

3×
√

3

structure of the Mn5Ge3(001) surface, as can be seen from the RHEED patterns in

Fig. 5-1(a). The in-plane atomic distances are evaluated to be dMn5Ge3 = 7.112 Å in

the [010] direction of the hexagonal Mn5Ge3 and dGe = 6.937 Å in the [112̄] direction
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of the cubic Ge substrate, thus leading to a lattice mismatch of about 2.4%, which is

in agreement with the previous work [18]. Transmission electron microscope confirms

the epitaxial growth of Mn5Ge3 on the Ge single crystal and the absence of clusters

of other stoichoimetries in either layers [see Fig. 5-1(b)]. The XRD patterns shown

in Fig. 5-1(c), confirm the epitaxial relationship Mn5Ge3(001)/Ge(111) and do not

detect the presence of crystals other than Mn5Ge3. The in-plane distances dMn5Ge3

and dGe were evaluated from off-normal angle XRD measurements. The XRD and

RHEED patterns obtained for the three samples are identical.

The temperature dependence of the magnetic properties of the sample at very low

field were measured by superconducting quantum interference device magnetometry.

As mentioned earlier, due to the high sensitivity of the Mn5Ge3 thin films to negative

fields trapped in the SQUID, the residual fields were removed by using a fluxgate

magnetometer in a magnetic shield of permalloy in order to perform ultra-low field

measurements.

Table 5.1: List of the samples studied in this work. TSPE is the growth temperature
and refers to the annealing temperature used for the solid phase epitaxy of Mn5Ge3.
The final thickness of Mn5Ge3 layer is tMn5Ge3 . The variation of the Curie temperature
T

C
will be discussed in Section 5.4.

Name Deposited Mn TSPE tMn5Ge3 T
C

(nm) (◦C) (nm) (K)
Sample A ∼ 11.4 150 ∼ 17 294
Sample B ∼ 11.4 200 ∼ 17 290
Sample C ∼ 22.8 150 ∼ 29.5 288
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Figure 5-1: (a) RHEED patterns of the
√

3 ×
√

3 structure of Mn5Ge3 in the [11̄0]
and [112̄] directions of the Ge substrate. (b) TEM image of Mn5Ge3(001) on Ge(111).
(c) An XRD pattern of the Mn5Ge3 layer (red curve) and a pure Ge sample (blue
curve) measured using Cu Kα radiation. The peak at 2θ = 24.6◦ is the signal from
Ge under Cu Kβ radiation originating from the x-ray source.
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5.3 Characterization of the irreversible thermal mag-

netization

5.3.1 Zero-field-cooling and field-cooling magnetization curves

In this section, the field and temperature dependencies of the magnetization are

studied on sample A, using a static dc field. The properties of samples B and C

will be discussed in Section 5.4. The magnetic hysteresis curves undergo a change of

squareness depending on the temperature, as discussed in the previous chapter (also

see [19]). In the vicinity of the Curie temperature [Fig. 5-2(a)], the magnetization

switching is mainly driven by irreversible domain wall motion. However, for lower

temperatures, the magnetization process is driven by coherent rotation [see Fig. 5-

2(b)]. The remanence ratio is close to unity close to the Curie point, but decreases

and stabilizes at a lower value (MR/MS ' 0.50) below 200 K. The strong variation in

remanence ratio between 290 and 200 K suggests that a sudden change in the in-plane

magnetic anisotropy or in the exchange interaction occurs [20]. However, the analysis

by ferromagnetic resonance conducted in the previous work [19], detected no in-plane

magnetic anisotropy in Mn5Ge3 thin films.

The temperature dependence of the magnetization is measured under the ZFC

and FC conditions, as shown in Fig. 5-3. The ZFC (FC) curves are measured by

warming the sample from 10 to 350 K after cooling it from room temperature at

zero field (at the measuring field). A thermal irreversibility clearly appears for fields

below 2000 Oe, as evidenced by the non-zero difference between the FC and ZFC

magnetizations. For each field, the presence of a Hopkinson maximum [21, 22, 23]

is observed. The FC curves do not vary monotonously; they initially decrease with
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Figure 5-2: Hysteresis curves measured at temperatures (a) close to the Curie tem-
perature and (b) from 5 K to 200 K. In the vicinity of the Curie point, the coercivity
is low and the remanence ratio is high, while it is the opposite for lower temperatures.
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temperature and increase before reaching the maximum and finally decrease again

once the maximum is passed, due to the transition to the paramagnetic phase. This

behavior is related to the increase of magnetic domain wall mobility at low magnetic

field upon heating, thus leading to an increase in the ZFC magnetization activated by

a thermal process. The results in Fig. 5-3 indicate that the interactions between spins

becomes non-homogenous below a certain temperature depending on the applied field.

Moreover, one can notice a kink in the magnetization at about 65 K for each FC curve

(marked by an arrow in Fig. 5-3 only for the curve at 800 Oe). The position of this

sudden increase in magnetization for decreasing temperature seems not to be field

dependent, although the effect gets weaker at higher fields. Its physical meaning will

be discussed later. The thermal irreversibility in the ZFC and FC magnetizations

shows that the ferromagnetic order in epitaxial Mn5Ge3 on Ge(111) is affected by

some glassy behavior [24].

Figure 5-3: ZFC and FC curves for different values of dc magnetic field, open symbols
are for ZFC curves, and full symbols are for FC curves. Notice the presence of a kink
(marked by the arrows for the curve at 800 Oe) at about 65 K for each ZFC and FC
curves.
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The thermoremanent magnetization (TRM) is measured by cooling down from the

paramagnetic state to a measurement temperature Tm, in the field cooling condition

under a field of 800 Oe. When Tm is reached, the applied dc field is turned off and

the magnetization is measured as a function of time. In the present case, Tm = 100

and 270 K. The reference time corresponds to the time at which the magnetic field

is removed. The decay of the thermoremanent magnetization is best fitted with a

logarithm function for the laboratory timescale, as seen in Fig. 5-4, by using the

following relation:

M(t) = M0 − SRM ln (t), (5.1)

where M0 is a constant and SRM is the temperature-dependent magnetic viscosity

[25].

Figure 5-4: Time dependence of the TRM at 100 K and 270 K. The black lines are
fits using the logarithm law given in Eq. (5.1).

Although used in some spin-glass systems [26, 27, 28, 29], a stretched exponential

function does not give any satisfactory fits in this case. The magnetic viscosity in the

time dependence of the magnetization shown in Fig. 5-4, corresponds to a lag between

the changes in magnetization in response to the changes in the applied field. It occurs
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when energy barriers need to be overcome for the magnetization to decrease when

the field is removed. Such slow decay of the TRM is consistent with a spin-glass-like

behavior, for which the energy barriers are uniformly distributed [29, 30, 31, 32].

5.3.2 Analysis of the ac susceptibility in Mn5Ge3

The ac susceptibility of the Mn5Ge3 thin films is measured by applying a driving

field H(t) = Hac cos(ωt), where Hac and ω/2π are the driving amplitude and driving

frequency, respectively. Measurements of the real part (χ′) and imaginary part (χ′′)

of the susceptibility are performed both without and with a bias dc field, in the

zero-field cooling condition. The measurement at zero dc field in Fig. 5-5(a) clearly

shows a divergent peak in the real susceptibility at about 294 K. This temperature is

consistent with the Curie point, therefore the peak matches with the paramagnetic

(PM) to ferromagnetic (FM) transition. In addition to the sharp and intense peak at

294 K, a broad peak with less intensity, whose maximum is located at about 275 K,

is also observed. The presence of a maximum in the imaginary part at a temperature

slightly lower than that of the real part is a sign of a relaxation process. Interestingly,

one can notice that the imaginary part of the ac susceptibility at zero dc field is of the

same order of magnitude as the real part, and bigger in absolute value. To our best

knowledge, no previous work reported that the contribution of the out-of-phase term

could be higher than that of the in-phase term, for a certain range of temperature.

The imaginary part represents magnetic losses or irreversible process induced by an

energy absorption from the ac magnetic field. In the present case, some unusual

energy dissipation may occur at the irreversibility point. In the Mn5Ge3 thin film,

both real and imaginary parts are sensitive to the presence of a superimposed dc

field, even as small as 2 Oe [see Fig. 5-5(b)]. Due to the bias dc field, the intensity
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Figure 5-5: ac susceptibility measurements performed using a driving field of 1 Oe
with no dc field [(a) and (c)] and with superimposed dc field of 2 Oe [(b) and (d)]. A
driving frequency of 10 Hz was used in (a) and (b), for which both real and imaginary
parts are shown. The frequency dependence of the real part χ′ is shown with (c) zero
dc field and (d) with a dc field of 2 Oe, in a temperature range close to the Curie
point. The spin-freezing temperature shifting with higher frequency is indicated by
a dashed arrow. The dependence of the ac susceptibility on the dc static field is
measured (e) at 270 K in three steps: 1) initial step, 2) hysteresis loop for unloading
field, and 3) hysteresis loop for loading field.
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of the peak of the PM to FM transition substantially decreases, and what was seen

as a small broad peak in Fig. 5-5(a) appears as a distinct feature in Fig. 5-5(b). The

imaginary susceptibility in Fig. 5-5(b) is severely reduced to be one order of magnitude

smaller than the real component. The maximum of the secondary peak of the real

susceptibility is slightly shifted to a lower temperature (∼ 265 K) in the presence of

the static field. This observation is consistent with the fact that the irreversibility

temperature decreases with increasing field (see Fig. 5-3). In Figs. 5-5(c) and 5-5(d),

it is evidenced that the ac susceptibility is dependent on the frequency of the driving

field, which is a sign of a slowing down in the magnetization dynamics. In the data

in Fig. 5-5(d), one can notice that the peak at 294 K is independent on frequency,

which is expected for a transition to a long-range-ordered phase, such as the PM

to FM transition, while the other peak is frequency dependent. The maximum of

the secondary peak shifts towards higher temperatures with increasing frequencies,

which is a common feature seen in spin glasses [33]. In summary, the results in Fig. 5-5

suggest that when the Mn5Ge3 thin film is cooled down from above room temperature,

it undergoes a PM to FM transition at 294 K. Further decrease in temperature leads

to a slow magnetization dynamics occurring in the immediate vicinity of T
C

at low

fields. The scaling laws are employed in order to quantify the frequency dependence of

the spin-glass transition temperature T
F
. Here, the freezing temperature shift (δT

F
)

per decade of frequency is given by

δT
F

=
∆T

F

T
F
∆[log(ω/2π)]

. (5.2)

From the results in Fig. 5-5(d), we estimate δT
F
' 0.005. Previous reports state

that δT
F

usually ranges from 0.0045 to 0.06 for canonical spin glasses (e.g. CuMn),
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and δT
F
≥ 0.1 for systems with noninteracting clusters, such as superparamagnets

[33, 34, 35, 36, 37]. Consequently, the value of δT
F

for our system is of the same order

of magnitude as that of a canonical spin glass.

Figure 5-6: (a) Log-log plot of the critical exponent law for the frequency dependence
of the freezing temperature, (b) Vogel-Fucher law, both fitted by using the data in
Fig. 5-5(d). (c) H2/3 as a function of T

F
. The irreversibility temperatures are obtained

from the ZFC and FC curves, by calculating the difference between the FC and ZFC
magnetizations and determining the onset of non-zero difference.

The hypothesis of a spin-glass-like behavior in our system is further supported by

the fit of the frequency dependence of the susceptibility maxima, using the critical

exponent law:

τ = τ crit
0

(
T

F
− T

SG

T
F

)−zν
, (5.3)

where 1/τ = ω/2π is the driving frequency, τ crit
0 is the characteristic relaxation time

for a single spin-flip, T
SG

is the spin-glass transition temperature at zero frequency,

and zν is the dynamical exponent. Figure 5-6(a) shows a log-log plot corresponding

to Eq. (5.3), the best fit is obtained with zν ' 6.5, 1/τ crit
0 ' 1.1 × 1012 Hz, and

T
SG

= 266.5 K. The value of zν in the present case is included in the typical range
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of values found for spin glasses (between 4 and 12) [35, 36, 38], and the value of

1/τ crit
0 is close to the highest values of characteristic frequency reported for spin

glasses (108 ≤ 1/τ crit
0 ≤ 1012 Hz) [35, 38, 39]. The Arrhenius law for the frequency

dependence of the ac susceptibility maximum 1/τ = 1/τ0 exp(−Ea/kB
T

F
), which

accounts for the time scale to overcome energy barriers by an activation process,

is not adapted to describe the frequency dependence of the freezing temperature in

our sample because it results in the unphysical values of 1/τ0 ∼ 10193 Hz and the

activation energy term Ea/kB
= 1.2 × 105 K. Ea and k

B
are the activation energy

and the Boltzmann constant, respectively. This invalidity of the Arrhenius law is

consistent with the fact that the epitaxial Mn5Ge3 thin film does not contain any

noninteracting magnetic clusters [34]. In order to take into account the fact that the

spins in the glassy state are interacting with each other and get an estimation of the

activation energy, we use the phenomenological Vogel-Fulcher law:

1

τ
=

1

τ0

exp

[
−Ea

k
B
(T

F
− T0)

]
, (5.4)

where τ0 has the same physical meaning as τ crit
0 , and T0 is the empirical Vogel-Fulcher

temperature, often interpreted as being related to the strength of the exchange inter-

action in the material [35, 40, 41, 42]. The best fit, shown in Fig. 5-6(b), is obtained

with 1/τ0 ' 1.2 × 1012 Hz, which is consistent with the value found by the crit-

ical exponent law [Eq.(5.3)] and an activation energy of Ea/kB
' 433.2 K, which

is a relatively high value compared to other spin-glass systems. The Vogel-Fulcher

temperature is determined to be T0 ' 254.3 K. The relatively high value of the Vogel-

Fulcher temperature suggests that the exchange interaction in the glassy state in the

Mn5Ge3/Ge(111) heterostructure is stronger than that of the spin glasses reported in
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the literature, for which T0 is usually below 100 K [33, 34, 37]. A relationship between

the Vogel-Fulcher and the critical exponent laws was established in [39], and one can

find the dynamical exponent using the activation energy:

ln

(
40k

B
T

F

Ea

)
∼ 25

zν
. (5.5)

This relation gives zν ' 7, which is close to 6.5 obtained directly by the critical

exponent law. As a result, both scaling laws are consistent with each other.

The dependence of the onset of irreversibility on the applied dc field is calculated

using the onset of nonzero difference between the FC and ZFC magnetizations. The

ac susceptibility vanishes at fields as small as a few Oe [step 1) in Fig. 5-5 (e)], thus

making it difficult to probe the properties at higher fields. For Ising spin glasses, the

mean-field theory predicts the existence of a transition line in the H-T plane, called

the de Almeida-Thouless (AT) line [43, 44, 45, 46]. The AT relation is derived from

the Sherrington-Kirkpatrick theory for the free energy of a spin glass [47]. The field

dependence of the onset of irreversibility [47, 48, 8] can be analytically written as:

HAT

∆J
∝
[
1− T

F

T
F
(H = 0)

]3/2

, (5.6)

where ∆J is the width of distribution of exchange energy interaction and T
F
(H = 0)

is the freezing temperature at zero field. A reasonable fit with the theoretical AT line

is found for this system and gives a zero-field freezing temperature T
F
(H = 0) ' 275

K, as can be seen in Fig. 5-6(c). A magnetic phase diagram in the H-T plane for

the spin-glass-like state characterized above is suggested in Fig. 5-7. The AT line

normally represents the transition from an ergodic phase to a nonergodic phase, with

no change in symmetry [44, 45, 46]. Therefore, the AT line separates a spin-glass phase
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Figure 5-7: The irreversible behavior is characterized by a H-T magnetic phase di-
agram showing an AT line, which separates the spin-glass-like state from the para-
magnetic phase. The AT line is determined experimentally (black dots) using the
data from the ZFC and FC measurements and calculated (blue line) using a zero-
field freezing temperature of 275 K and a zero-temperature critical field of 2220 Oe
in Eq.(5.6).

Figure 5-8: The stability domain of the spin-glass-like state shares a common inter-
val of temperature and field with the stability domain of the ferromagnetic state of
Mn5Ge3. The slow magnetization dynamics of the sample happens due to the cou-
pling between spin-glass region (FDL) and the ferromagnetic region. In the green
region of the diagram, the material behaves as a pure ferromagnet.
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(nonergodic) from a paramagnetic phase (ergodic). We find a relatively good match

between the theoretical fit of the de Almeida-Thouless line and the results obtained by

experiments. One can see that for almost the entire the range of temperature from 0

K to T
C
, the FM order of Mn5Ge3 overlaps with the stability domain of the spin-glass-

like state, provided the magnetic field is low enough. The Curie temperature is barely

20 K above the zero-field spin-glass transition temperature. This means that there is

a small range of temperature (between 275 and 294 K), for which the system behaves

as a pure ferromagnet, as shown in Fig. 5-8. This fact explains why in the vicinity of

the Curie temperature, the magnetization hysteresis curve [see Fig. 5-2(a)] has a high

remanence ratio, due to the high intrinsic in-plane anisotropy of the ferromagnetic

phase in the thin film, and below a certain temperature, which is T
F
(H = 0) ' 275

K, the hysteresis has a weaker remanence ratio [see Fig. 5-2(b)] due to the influence

of a spin-glass-like state. In Fig. 5-5(e), one can see that the coercive field at 270 K

is small and comparable to the values close to T
C
, despite the entry in the spin-glass

phase. The influence of the spin-glass state on the ferromagnetic phase may not occur

immediately below the glass transition, due to the thermal energy at 270 K, which

weakens the frustrated interactions between the spin glass and the ferromagnet.

The previous results are actually not sufficient to claim that the Mn5Ge3 thin film

undergoes a true spin-glass phase transition. It can only be claimed that the behavior

under the AT line is spin-glass-like. In order to determine whether an actual spin-

glass phase transition takes place or not, it is necessary to measure the nonlinear

susceptibility of the sample. Unfortunately, the magnitude of the linear susceptibility

is already quite small, and because of the fact that the nonlinear contribution is at

least one order of magnitude smaller, the non-linear susceptibility measurement is

difficult in the present case.
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5.3.3 Possible origin of the spin-glass-like behavior

Since the coexistence of the frustration and randomness is required for the spin-glass

behavior, observation of the magnetic irreversibility in the single crystalline, i. e.,

ordered Mn5Ge3 is somewhat puzzling. However, as mentioned earlier, Mn5Ge3 on

Ge(111) has a “ferromagnetically dead” layer at the Mn5Ge3/Ge interface [16]. There-

fore it is possible that this “dead layer”, resulting most likely from the intermixing

between the ferromagnetic Mn5Ge3 and Ge and from the lattice mismatch between

the two materials, can possess the disorder needed for the spin-glass-like behavior,

especially since there has been a previous report that disordered Mn-Ge compounds

could demonstrate the spin-glass behavior [49]. Thus the hypothesis here is that the

system is actually made of two magnetic layers, one of which is ferromagnetic and the

other is spin glass. The overall glassy behavior of the sample is due to the interaction

between the ferromagnetic Mn5Ge3 with the thin spin-glass-like region. By using sam-

ples grown in the same conditions as samples A and C with different thicknesses, we

estimated the thickness of the “ferromagnetically dead” layer to be 1.9±0.2 nm. The

presence of the sudden increase in magnetization at 65 K for decreasing temperature

in Fig. 5-3 can be seen as the consequence of the exchange coupling at the interface

between the spin-glass region and the FM phase. The kink in the FC magnetization

happens at a temperature that is relatively low compared to the zero-field spin-glass-

like transition temperature. In previous reports, a noticeable feature of many metallic

spin-glasses (such as CuMn, AgMn, AuFe, Ni-Mn alloys) was the occurrence of uni-

directional anisotropy [50, 51, 52, 53, 54, 55] for T << T
F

(typically T < T
F
/3, see

Ref.[50]). In our case, the presence of a low temperature unidirectional anisotropy

can create an additional easy axis in the FM phase along the applied field during

the FC process, thus increasing the magnetization below a certain temperature. A
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widely used criterion for evaluating the presence of a unidirectional anisotropy is the

presence of an exchange bias field. However, in our case the spin-glass region may

be too small to induce a measurable exchange bias field in the FM region. Such

a low temperature kink in the FC magnetization has also been observed below the

spin-glass transition temperature in ferromagnetic systems that share interfaces with

spin-glasses, such as γ-Fe2O3, La2/3Sr1/3MnO3 and La0.7Ca0.3MnO3, and the behavior

was attributed to the effect of spin-glass interfaces [6, 8, 9, 59]. In Refs.[6, 8, 9], the

magnetization kink was also the onset of exchange bias. In addition, temperature-

dependent magnetization curves measured at fields as high as 104 Oe have no kink

at 65 K. The kink in the FC magnetization is visible only below the AT line, which

confirms its relationship to the spin-glass-like state.

The irreversible behavior of the thermal magnetization in the Mn5Ge3/Ge(111)

heterostructure can be explained as follows. Under the ZFC condition, the directions

of the spins in the spin-glass region are randomly oriented and thus the spins in the

spin-glass region are randomly coupled with the spins of the FM region near the in-

terface. Such random coupling makes the motion of the domain walls unfavorable. As

a result, for decreasing temperature the ZFC magnetization becomes small [Fig. 5-3]

and the coercive field becomes large [Fig. 5-2(b)]. Under the FC condition, the direc-

tions of the spins in the spin-glass region tend to align more with the external field, so

the randomness in the magnetic coupling between the FM and the spin-glass regions

is diminished. Consequently, the magnetic domains move more easily, allowing the

FC magnetization to become large. However, the coercivity remains large because

the directions of the spins in the spin-glass region are still random, even under the

FC condition.

Since the scaling laws showed that the spin-glass-like region at the Mn5Ge3/Ge
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interface behaves like a canonical spin glass, it is reasonable to assume that this region

is made of Mn atoms embedded in a Ge-rich phase, thus making a case comparable

to the above-mentioned spin glasses. Considering that the interactions between Mn

atoms in the spin-glass region are mediated by conduction electrons, the Ruderman-

Kittel-Kasuya-Yoshida (RKKY) model [51, 52, 56, 57] allows to evaluate the freezing

temperature as follows T
F
∼ V0S

2d−3 [56], where V0 is the RKKY coupling constant,

S is the spin of Mn, and d is the average distance between Mn atoms. Consequently,

the high spin-glass transition temperature in our system can be interpreted as the

fact that the average distance between Mn atoms in the spin-glass region is relatively

small. Therefore, this picture suggests that the spin-glass-like behavior is induced by

an inhomogeneous composition for the “dead” layer.

According to the previous description of the nature of the spin-glass layer, it would

be natural to consider that its properties are dependent on the thin film growth con-

ditions. The magnetic properties of samples B and C (described in Table 5.1) are

discussed in the following section. Although the structural characterizations of sam-

ples B and C give the same results as those for sample A, the annealing temperature

employed for the solid phase epitaxy and the film thickness have an influence on the

thermal irreversibility of the magnetization in Mn5Ge3 on Ge(111).
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5.4 Influence of the growth conditions on the spin-

glass-like behavior

5.4.1 Influence of the solid phase epitaxy temperature

Sample B was fabricated using a higher annealing temperature than that for sample A.

The ZFC and FC magnetizations of sample B [Fig. 5-9(a)] are substantially different

from the ones shown for sample A in Fig. 5-3. The temperature dependence of the real

part of the susceptibility [Fig. 5-9(b)] has distinct features from the case of sample

A; the Curie point is lower than that of sample A by four degrees (T
C
' 290 K).

From the ZFC and FC curves, one can see that the onset of irreversibility, marked

by Tirr, occurs at a temperature higher than the Curie point. This is a consequence of

the higher growth temperature, which broadens the spin-glass transition temperature

region, as evidenced by the observation of a frequency dependence of the real part of

the susceptibility both below and above T
C

in Fig. 5-9(b). Thus, a small portion of

the spin-glass region has a transition temperature at around Tirr but a large portion of

the spin-glass region has its transition at around T
F
. As for sample A, the difference

between the ZFC and FC magnetizations is due to the interaction between the spin-

glass region and the FM region. The weak irreversibility just below Tirr in the ZFC

and FC curves may be attributed to the sole contribution of the spin-glass region,

which has a smaller size compared to the overall size of the sample. The difference

between the FC and ZFC magnetizations becomes significant when Mn5Ge3 enters

the FM phase. From the data in Fig. 5-9(b), we obtain δT
F
' 0.005, which is in

agreement with sample A. As for sample A, the low temperature kink in the FC

magnetization is visible in sample B, accounting for the same effect discussed above.
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Figure 5-9: (Color online) (a) ZFC and FC curves measured at a dc field of 100
Oe for sample B. (b) Frequency dependence of the in-phase component of the ac
susceptibility, using a driving amplitude of 1 Oe and a bias dc field of 5 Oe. The Curie
point is about 290 K and the peak corresponding to the irreversible behavior seems to
overlap with the frequency-independent peak, as suggested by the eye-guiding dashed
curve in (b). The sudden increase in FC magnetization is marked by an arrow at 80
K.
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However, the onset of the kink in sample B is at about 80 K, which is higher than

that of sample A.

5.4.2 Influence of the thickness

Sample C is grown in the same conditions as sample A but its thickness is larger.

Similar to sample B, the spin-glass region in sample C shows the transition from

PM to spin glass above the Curie temperature of the FM phase [see Fig. 5-10(a)].

This is confirmed by the relative positions of the two maxima in the real part of the

susceptibility [Fig. 5-10(b)], from which we estimate T
C
' 288K and Tirr = 295 K.

The position of the maximum of χ′′ shows that the most visible relaxation process

occurs just below T
C
, while no maximum of comparable magnitude is present in the

vicinity of Tirr. So, the main relaxation process occurs in the FM state. This behavior

is similar to that of sample B. A sudden increase of FC magnetization is observed

at 80 K as well. The main feature of sample C is the larger difference between the

FC and ZFC magnetizations at low temperature, compared to the case of sample A.

This is due to the fact that the ferromagnetic volume in sample C is larger than that

in sample A, but the spin-glass volume around the interface is kept the same in both

cases.

Despite demonstrating the quantitative variation in the magnetic properties de-

pending on the growth conditions, samples A, B and C share common traits, which

are the presence of the slow magnetization relaxation close to the Curie point, and the

low temperature kink in the FC magnetization. The susceptibility measurements for

samples B and C imply that the spin-glass region alone is too small to induce a visi-

ble maximum in χ′′, however for decreasing temperature, a clear slow magnetization

dynamics is obtained when the FM state is reached, thus evidencing the interaction
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Figure 5-10: (Color online) (a) ZFC and FC curves measured at a dc field of 100 Oe
for sample C. (b) Real and imaginary parts of the ac susceptibility measured without
bias dc field. The Curie point is about 288 K, which is slightly lower than that of
sample B. The irreversibility temperature is higher than the Curie point Tirr ' 295
K. The sudden increase in FC magnetization is marked by an arrow at 80 K.
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between the two regions. In sample A, since the spin-glass transition occurs below

the Curie point, the slow dynamics is obtained at the transition point, i.e. Tirr and

T
F

are identical for sample A. The origin of the spin-glass-like behavior itself is ex-

trinsic to the ferromagnetic Mn5Ge3 thin film. However, the spin-glass-like nature

of the interface layer significantly affects the temperature-dependent behavior of the

magnetization of the Mn5Ge3/Ge(111) heterostructure. It was reported in previous

literatures [60, 16, 61] that the remanence ratio decreased with increasing thickness

for both in-plane and perpendicular magnetizations. Since the easy axis of the bulk

material is along the hexagonal c axis, one would expect larger perpendicular re-

manences for larger thicknesses of thin films. The interfacial glassy behavior shown

in the present work is very likely to explain the great differences between the bulk

material and Mn5Ge3 films on Ge(111) at higher thicknesses.
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5.5 Summary

To summarize this chapter, Mn5Ge3 epitaxial thin films on Ge(111) do not show a

simple ferromagnetic ordering contrary to the bulk Mn5Ge3. Films grown at 150 ◦C

via solid phase epitaxy undergo a transition to a spin-blocked state, for which the

transition temperature at zero field is relatively close to the Curie point. The analysis

of the ac susceptibility indicates that the spin-blocked state is spin-glass-like. Such

transition to the glassy state explains the very different shapes of the magnetization

cycles in the vicinity of T
C

from the ones at low temperature. This spin-glass-like

behavior is attributed to the presence of a “ferromagnetically dead layer” or more

directly the spin-glass-like layer at the Mn5Ge3/Ge interface that is formed during

the solid phase epitaxy process. Thus the Mn5Ge3 film is separated into two layers,

one of which is ferromagnetic. The spin-glass-like nature attributed to the interface-

side layer explains the presence of the thermal irreversibility in the magnetization

due to the frustrated interactions with the ferromagnetic Mn5Ge3. The spin-glass-

like nature for the “ferromagnetically dead layer” is supported by the scaling laws.

The fact that the magnetization irreversibility in Mn5Ge3 thin films is affected by

the growth temperature and the thickness of the FM region, while the structure

of the Mn5Ge3 layer remains the same, supports the hypothesis on a variation of

magnetic properties due to the Mn5Ge3/Ge interface rather than the FM region. At

higher growth temperature (200 ◦C), the Curie point becomes slightly lower and the

irreversibility occurs above T
C
. For a larger thickness (33 nm), the irreversibility also

occurs above T
C
, but the FC and ZFC magnetizations show the larger difference at

low temperatures. Despite the FM behavior at high temperature and the glassy state

at low temperature, the system is much different from a reentrant spin-glass because

of the extrinsic character of the spin-glass state.
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[23] F. H. Salas, M. Maribal-Garćıa, Phys. Rev. B 41, 10859 (1990). [Cited on
page(s) 109.]

[24] A. Truong, A. O. Watanabe, P. A. Mortemousque, K. Ando, T. Sato,
T. Taniyama, and K. M. Itoh, Phys. Rev. B 91 214425 (2015). [Cited on page(s) 6,
96, and 111.]

[25] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986). [Cited on page(s) 74
and 112.]

[26] P. Nordblad, P. Svedlindh, L. Lundgren, and L. Sandlund, Phys. Rev. B 33,
645(R) (1986). [Cited on page(s) 112.]

[27] M. A. Continentino, A. P. Malozemoff, Phys. Rev. B 33, 3591(R) (1986). [Cited
on page(s) 112.]

[28] R. V. Chamberlin, G. Mozurkewich, and R. Orbach, Phys. Rev. Lett. 52, 867
(1984). [Cited on page(s) 74 and 112.]



132 Chapter 5. Interfacial spin-glass-like state in Mn5Ge3/Ge(111)

[29] S. D. Tiwari, and K. P. Rajeev, Phys. Rev. B 72, 104433 (2005). [Cited on
page(s) 112 and 113.]

[30] D. X. Li, S. Nimori, Y. Shiokawa, Y. Haga, E. Yamamoto, and Y. Onuki, Phys.
Rev. B 68, 012413 (2003). [Cited on page(s) 113.]

[31] D. X. Li, S. Nimori, Y. Shiokawa, Y. Haga, E. Yamamoto, and Y. Onuki, Phys.
Rev. B 68, 172405 (2003). [Cited on page(s) 113.]

[32] C. N. Guy, J. Phys. F: Met. Phys. 8, 1309 (1978). [Cited on page(s) 113.]

[33] Y. T. Wang, H. Y. Bai, M. X. Pan, D. Q. Zhao, and W. H. Wang, Phys. Rev.
B 74, 064422 (2006). [Cited on page(s) 115, 116, and 118.]

[34] V. K. Anand, D. T. Adroja, and A. D. Hillier, Phys. Rev. B 85, 014418 (2012).
[Cited on page(s) 116, 117, and 118.]

[35] J. A. Mydosh, Spin Glass: An Experimental Introduction (Taylor and Francis,
London, 1993). [Cited on page(s) 116 and 117.]

[36] Z. Fu,Y. Zheng, Y. Xiao, S. Bedanta, A. Senyshyn, G. G. Simeoni, Y. Su,
U. Rucker, P. Kogerler, and T. Bruckel. Phys. Rev. B 87, 214406 (2013). [Cited
on page(s) 116 and 117.]

[37] L. Ma, W. H. Wang, J. B. Lu, J. Q. Li, C. M. Zhen, D. L. Hou, and G. H. Wu,
Appl. Phys. Lett. 99, 182507 (2011). [Cited on page(s) 116 and 118.]

[38] P. C. Hohenberg and B. I. Halpcrin, Rev. Mod. Phys. 49, 435 (1977). [Cited on
page(s) 117.]

[39] J. Souletie and J. L. Tholence, Phys. Rev. B 32, 516 (1985). [Cited on page(s) 117
and 118.]

[40] S. Shtrikman, and E. P. Wohlfarth, Phys. Lett. A 85, 467 (1981). [Cited on
page(s) 117.]

[41] C. A. Cardoso, F. M. Araujo-Moreira, V. P. S. Awana, E. Takayama-Muromachi,
O. F. de Lima, H. Yamauchi, Phys. Rev. B 67, 020407(R) (2003). [Cited on
page(s) 117.]

[42] J. L. Tholence, Solid State Commun. 35, 113 (1980). [Cited on page(s) 117.]

[43] H. Aruga Katori, and A. Ito, J. Phys. Soc. Jpn. 63, 3122 (1994). [Cited on
page(s) 118.]

[44] A. P. Young, and H. G. Katzgraber, Phys. Rev. Lett. 93, 207203 (2004). [Cited
on page(s) 118.]



Chapter 5. Interfacial spin-glass-like state in Mn5Ge3/Ge(111) 133

[45] H. G. Katzgraber, and A. P. Young, Phys. Rev. B 72, 184416 (2005). [Cited on
page(s) 118.]

[46] H. G. Katzgraber, D. Larson, and A. P. Young, Phys. Rev. Lett. 102 177205
(2009). [Cited on page(s) 118.]

[47] J. R. L. de Almeida, and D. J. Thouless, J. Phys. A: Math. Gen. 11, 5 (1978).
[Cited on page(s) 118.]

[48] M. Gruyters, Phys. Rev. Lett. 95, 077204 (2005). [Cited on page(s) 118.]

[49] J. J. Hauser, J. Magn. Magn. Mater. 15-18, 1387 (1980). [Cited on page(s) 75
and 121.]

[50] F. Hippert and H. Alloul, J. Phys. (Paris) 43, 691 (1982). [Cited on page(s) 67,
73, and 121.]

[51] J. B. Staunton, B. L. Gyorffy, J. Poulter, and P. Strange, J. Phys.: Condens.
Matter 1, 5157 (1989). [Cited on page(s) 67, 121, and 123.]

[52] P. M. Levy, C. Morgan-Pond, and A. Fert, J. Appl. Phys. 53, 2168 (1982). [Cited
on page(s) 67, 121, and 123.]

[53] T. Sato, Phys. Rev. B 41, 2550 (1989). [Cited on page(s) 67 and 121.]

[54] Y. Öner and H. Sari, Phys. Rev. B 49, 5999 (1994). [Cited on page(s) 67 and 121.]

[55] J. S. Kouvel, W. Abdul-Razzaq, and Kh. Ziq, Phys. Rev. B 35, 1768 (1987).
[Cited on page(s) 67 and 121.]

[56] S. N. Lyakhimets, IEEE Trans. Magn. 30, 840 (1994). [Cited on page(s) 123.]

[57] P. M. Levy and A. Fert, Phys. Rev. B 23, 4667 (1981). [Cited on page(s) 123.]

[58] A. Stroppa, M. Peressi, Mater. Sci. Semicond. Process 9, 841 (2006). [Cited on
page(s) 100.]

[59] P. Dey, T. K. Nath, P. K. Manna, and S. M. Yusuf, J. Appl. Phys. 104, 103907
(2008). [Cited on page(s) 3 and 122.]

[60] A. Spiesser, S. F. Olive-Mendez, M. T. Dau, L. A. Michez, A. Watanabe,
V. Le Thanh, A. Glachant, J. Derrien, A. Barski, M. Jamet, Thin Solid Films
518, S113 (2010). [Cited on page(s) 29 and 128.]

[61] V. Le Thanh, A. Spiesser, M. T. Dau, S. F. Olive-Mendez, L. A. Michez, and
M. Petit, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 043002 (2013). [Cited on
page(s) 128.]



Chapter 6

Conclusion

The main focus of this thesis was to characterize the magnetic anisotropy and deter-

mine the origin of the thermal irreversibility in the magnetization of Mn5Ge3 epitaxial

thin films on Ge(111). Previous works have theoretically predicted that Mn5Ge3 can

be a potential candidate for spin injection in the group IV semiconductor Ge. Due

to its ability to grow epitaxially on Ge(111) with a relatively sharp interface, and the

possibility to increase its Curie temperature by carbon doping, Mn5Ge3 on Ge(111)

is increasingly becoming attractive. However, some features in the magnetization

were not clearly understood, such as the relatively low in-plane remanence ratio at

low temperature and the decrease of both in-plane and out-of-plane remanence ratios

with increasing thicknesses of the thin films.

Chapter 4 evidenced the presence of an out-of-plane contribution for the magnetic

anisotropy, which origin is the Mn5Ge3(001)/Ge(111) epitaxial relation. Despite be-

ing a candidate for explaining the low in-plane remanence ratio, the out-of-plane

anisotropy was shown not to have a sufficient magnitude to affect the in-plane mag-

netization. Although it has no direct effects on the magnetization cycles at low
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temperatures, the out-of-plane magnetocrystalline anisotropy displays an interesting

temperature dependence, which does not follow the Callen-Callen law. Despite not

following the Callen-Callen law, the magnetocrystalline anisotropy in Mn5Ge3 thin

films is still related to the magnetization by a power law, which reveals that the mag-

netic ions still interact with the crystal field but in a different manner than that given

by the single-ion anisotropy model. The lower power in the temperature dependence

of the magnetocrystalline anisotropy energy may be due to the hybridization between

p orbitals from Ge sites and 3d orbitals from Mn sites, which decrease the degree of

localization of the magnetic moment in the compound. However, such mechanism

related to the deviation from the Callen-Callen model remains to be clarified. The

single-ion anisotropy model is valid for localized spins, and it is not yet known how

much the spins are localized in the Mn5Ge3 compound. Internal magnetostriction

may also be a candidate to explain such discrepancy.

The existence of a thermal irreversibility in the Mn5Ge3/Ge heterostructure was

very intriguing and unexpected because no disorder was detected in either layers by

structural characterization. The zero-field-cooling and field-cooling magnetization

measurements, along with the ac susceptibility characterization determined that a

slow magnetization dynamics occurs immediately after the material enters the ferro-

magnetic state, for decreasing temperature. The scaling laws indicate that the slow

magnetization dynamics is similar to that observed in canonical spin glasses. A sud-

den increase of the field-cooling magnetization at low temperature implies that the

origin of the spin-glass behavior is a surface effect arising from the coupling between

two magnetic layers of different natures, thus suggesting that the “ferromagnetically

dead” layer is a spin-glass. The shape of the ZFC and FC curves, and the position of

the spin-glass transition depend on the growth conditions. The analysis of samples
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annealed at higher temperature and samples with a higher thickness allowed to prove

that the main relaxation process does not occur at the spin-glass transition, but just

below the Curie temperature independently on the growth conditions. Thus, such

slow magnetization dynamics is the result of the interplay between the ferromagnetic

Mn5Ge3 and the spin-glass-like layer.

The region at the Mn5Ge3/Ge interface is therefore characterized as a disor-

dered magnetic phase, which has nonnegligible influence on the properties of the

Mn5Ge3 epitaxial thin film, despite having a relatively small size compared to the

rest of the film. Understanding the mechanism of the natural formation of such

interfacial spin-glass can open new possibilities for spintronics device using the cou-

pling between ferromagnets and spin glasses. The properties of spin currents in the

Mn5Ge3(001)/Ge(111) heterostructure may be altered within the stability domain of

the spin-glass state.


