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Chapter 1
Introduction

In Iwasawa theory, we study Galois actions on several arithmetic objects like ideal
class groups and Galois groups. More precisely, suppose that Z, is the ring of p-
adic integers for a prime p, and k., /k is a Galois extension whose Galois group I'
is isomorphic to Z,. We call such a Galois extension k. /k a Z,-extension of k.
We study Z,-modules with I'-action. Suppose that L., /k~ is the maximal abelian
pro-p extension unramified everywhere. We denote by X the Galois group of
Loo/koo. Then Xj_ is a Z,-module, and I' acts on Xj_ by conjugation. This Xj__
is called the Iwasawa module for k. /k, which is regarded as a Z,[[I'|]-module,
where Z,[[I']] is the completed group ring of I" over Z,,. Iwasawa proved that X}, _
is a finitely generated torsion Z,[[I']]-module. Serre pointed out that Z,[[I']] is
isomorphic to A = Z,[[T]], where Z,[[T] is the ring of formal power series in one
variable over Z,. Thus X} becomes a finitely generated torsion A-module. By
the structure theorem of finitely generated torsion A-modules, we can classify such
modules up to pseudo isomorphism, where a pseudo isomorphism is a morphism
with finite kernel and cokernel. Further, we can define the characteristic ideal for
a finitely generated torsion A-module by the structure theorem. In this thesis,
we study the problems whether one can derive more precise information on a A-
module than its characteristic ideal and whether one can classify A-modules up to
isomorphism. Out main result is to classify such modules up to isomorphism under
several assumptions. We apply our theorems to the Iwasawa modules associated

to the cyclotomic Z,-extensions of imaginary quadratic fields.



In the following, we begin with some historical background of our thesis.

1.1 Ideal class groups

Let koo/k be a Z,-extension of an algebraic number field k. By class field theory,
the Iwasawa module Xj,_ for k., /k is isomorphic to the projective limit of the ideal
class groups of algebraic number fields. For the details, see the next Section 1.2.
In number theory, the ideal class group of a number field is an important object.
First, we introduce a historical overview of the ideal class group. In the 19th
century, Kummer introduced the notion of “ideal primfactors” to study Fermat’s
Last Theorem, which was proved by Andrew Wiles [22]. Kummer’s notion was
taken up and extended by Dedekind. This led to “Ideal theory”. Dedekind defined
an ideal as a subset of a set of numbers, composed of algebraic integers that satisfy
polynomial equations with integer coefficients. He proved that non-zero ideals of
the ring of the integers of a number field can be uniquely decomposed into prime
ideals. He also defined ideal class groups. We review the definition of the ideal
class group for an algebraic number field k. We denote by (k) and P(k) the group
of fractional ideals and the subgroup of principal fractional ideals, respectively.
The ideal class group of k is the quotient group Cl(k) = I(k)/P(k). It is known
that Cl(k) is a finite abelian group. We call the order of Cl(k) the class number
of k. If Cl(k) is trivial, by the definition of Cl(k), the ring of integers of k is a
principal ideal domain, especially a unique factorization domain. Hence the ideal
class group measures how close the ring of integers of k£ is to a principal ideal

domain.

1.2 Iwasawa’s class number formula

In this section, we briefly introduce a part of Iwasawa theory. Recall that, for a
finite Galois extension k/Q, the Galois group Gal(k/Q) acts naturally on Cl(k). It
is important to investigate the structure of Cl(k) including the action of Gal(k/Q).
Especially, in Iwasawa theory, one often studies ideal class groups on which the

Galois group of a Z,-extension acts. We give a typical example (Iwasawa’s class



number formula [8]) of this idea. We introduce the Iwasawa’s class number formula
[8, Theorem 11] in the following. Let p be a prime number. Let ko /k be a Z,-
extension. For each n > 0, we denote by k, the intermediate field of k., /k such
that k, is the unique cyclic extension over k of degree p". Namely, we have a

tower of number fields

ko ChkiC- - ChkyC - Chkoo, ko=, kooIUkn-
n=0

Let A, be the p-Sylow subgroup of the ideal class group of k,. We denote the
order of A, by p°*. Then Iwasawa’s class number formula states that there exist

non-negative integers A, 1, and an integer v such that
en =n+ up" +v (1.1)

for sufficiently large n. A key of his idea is not to treat each k, independently but
to treat the whole {k,},. Put I' = Gal(k./k) satisfying I' = Z,, as a topological

group. Iwasawa considered the inverse limit X3 = I&n A,,, where the inverse limit
n
is taken with respect to the relative norms. We note that @An is isomorphic to
n

Gal(Loo/koo), where Gal(Ly, /ks) is the maximal abelian pro-p extension unram-
ified everywhere. The module Xj__ is called the Iwasawa module for k., /k. Since
the Galois group I acts naturally on Xj,_, it becomes a Z,[[I']]-module. He proved
that Xj_ is a finitely generated torsion Z,[[I']]-module. The class number formula

above is proved by investigating a rough structure of Xj_ as a Z,[[I']]-module.

1.3 Iwasawa modules and its properties

Put I' = Gal(ko /k). If k is a CM-filed, the complex conjugation p acts naturally
on the Iwasawa module Xj_. Further if p is odd, then we can decompose Xj__
into Xy, = X;- & X, where X = {z € X;_ | ¢ = p(z)} and X =
{z € X | © = —p(x)}. Consider the following properties (P1) and (P2) for a
Zy|[I']]-module M:

(P1) The module M is a finitely generated torsion Z,[[I']]-module.
(P2) The module M has no non-trivial finite Z,[[I']]-submodule.

3



Iwasawa proved that the minus part X, of Xj satisfies (P1) and (P2). In
Iwasawa theory, there are many Z,[[I']]-modules M satisfying (P1) and (P2). We
introduce some of them here:

1: Let K be a totally real field and put k = K((,), where (, is a primitive p-th
root of unity. Let ko /k be the cyclotomic Z,-extension. Let M., be the maximal
abelian p-extension unramified outside p and put M = Gal(M./Ky). Then M
satisfies (P1) and (P2) (cf. [7, Theorem 18]).

2: Let M be a finitely generated torsion Z,[[I']]-module. Then the adjoint module
of M has no non-trivial finite Z,[[[']]-submodule (cf. [21, Proposition 15.28]).

1.4 Structure theorem and pseudo-

isomorphism classes and some invariants

As in the previous section, we put I' = Gal(k./k). Let v be a fixed topological
generator of I'. Serre ([18]) pointed out the existence of an isomorphism Z,[[I']] =
Zy[T]]. We put A = Z,[[T]]. We introduce the structure theorem for finitely
generated torsion A-modules (cf. [21, Theorem 13.12]). This theorem was first
proved by Iwasawa in terms of the group ring Z,[[I']]. If M is a finitely generated

torsion A-module, there exists a homomorphism
s t
M = @A/ ™) o @A/ (1)) (1.2)
i=1 j=1

with finite kernel and finite cokernel, where s,t,m;,n; € Zso, and f;(T) is an
irreducible distinguished polynomial. We note that the decomposition (1.2) is
uniquely determined by M. A A-module homomorphism with finite kernel and fi-
nite cokernel is called a pseudo-homomorphism. We will use the structure theorem

to prove our main theorems. We define the characteristic ideal of M by

char(M) = (Hpmi 11 fj(T)”J')



and define the M-invariant and p-invariant of M by
t s
AM) = " nydeg(f5(T)),  u(M)=>_m;,
j=1 i=1

respectively. We also define an equivalence relation ~ for the set of finitely gen-
erated torsion A-modules as follows. For M; and M, we write My ~ M, if there
exists a pseudo-isomorphism M; — M. In classical Iwasawa theory, one studies
Iwasawa modules up to pseudo-isomorphism. In this thesis, we consider finitely
generated torsion A-modules M with u(M) =0 and A(M) < 4.

1.5 Modules up to isomorphism

In this thesis, we study Iwasawa modules up to A-isomorphism. Especially, our
aim is to generalize Sumida’s results (cf. [19], [20]).

Let E be a finite extension over the field Q, of p-adic numbers and O the
ring of integers of E. Let 7 be a prime element of Op. We put A = Og|[T]],
the ring of power series in one variable over Og. For a distinguished polynomial
f(T) € Og[T], Sumida considered finitely generated torsion Ag-modules whose
characteristic ideals are (f(7)), and defined the set M]]ZJ(T) by

M is a finitely generated torsion Ag-module,
My = [M]e . :
char(M) = (f(T)) and M is free over O
where [M]g denotes the isomorphism class of M as a Ag-module. We denote the
A g-isomorphism class of M by [M|g or simply by [M]. He proved in [19] that
M?(T) is a finite set if and only if f(7') is separable, where f(T') is said to be
separable if f(T') has no multiple roots in the algebraic closure of E. The case
of deg(f(T))< 3 was treated in [4], [9], [10], [12], [19], and [20]. Sumida and
Koike classified M?(T) in the case of deg(f(7))< 2 ([9, Theorem 2.1] and [19,
Proposition 10]). Kurihara also classified M?(T) in the case of deg(f(T))= 2,
using higher Fitting ideals [10, Corollary 9.3].

We review the result of Sumida. He considered
f(T)=(T - a)(T - p),
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where o and f are distinct elements of 1Op. We put € = Ag/(T —a) & Ag/(T —
B). Let [M]g be an element of M?(T). Since M has no non-trivial finite Ag-
submodule, there exists an injective Ag-homomorphism ¢ : M < £ with finite

cokernel. Therefore every class of MJ}ZJ(T) can be represented by a Ag-submodule
of £.

Now we fix a notation to express such submodules in £. First, by using
the canonical isomorphism Ag/(T — a) = O (f(T) — f(«)), we define an
isomorphism ¢ : & — 0% by (fi(T), fo(T)) — (fi(a), f2(B)). We identify &
with OF? via ¢. Thus an element in € is expressed as (a;,az) € OF°. Since the

rank of M over Og is equal to 2, we can write M in the form
M == <(a17a2)7 (blab2)>oE C g?

where (%)p,, is the Og-submodule generated by *. Further, using this notation,

we can express the action of T € Ag by
T(ay,as) = (aaq, Bag).
In this case, Sumida proved that
My = {[(1,1),(0,7))o,] | 0 < k < ordp(8 — )},

where ordg is the normalized additive valuation on F such that ordg(mw) = 1 (see

Proposition 3.1.4).

1.6 Main Theorem for \ =3

In this thesis, we classify Ag-modules in the case of A = 3 and that of A = 4 with
p = 0 (namely, Ag-modules which are free over Op of rank 3 or 4). Here, we state

our results in the case of A = 3. In this case, we consider

J(T) = (T = a)(T = B)(T =), (1.3)

where o, 3, and ~ are distinct elements of the maximal ideal of Og. We put
E=Ag/(T—a)®Ap/(T—05)®Ag/(T —~). We note that £ is an integral closure
of Ag/(T — a)(T — 5)(T — ). Using the structure theorem of Ag-modules (1.2),
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we regard a Ag-module M satisfying [M] € M?(T) as a Ap-submodule of £. We

first prove that for each isomorphism class € € M?(T), we can take a submodule
M(m,n,z) = ((1,1,1),(0,7™, z),(0,0,7")) o, (1.4)

of & with [M(m,n,z)] = €. Here m and n are non-negative integers and z is
an element of Og. The non-negative integers m and n are determined only by

[M(m,n,z)] (Corollary 4.2.2). Our first main theorem is as follows.
Theorem 1 (Theorem 4.1.5). There is a bijection P :
My — — 2/~
W w
[M(m,n,x)] — [m}
The definitions of the set Z and the relation ~ will be given in Chapter 4.

We briefly explain the definition of the set Z here. First, we define a certain
equivalence relation ~' on Zxg X Z>o X Op and define Z’ = (Z>o X Z>o x Og)/ ~'.
Let Z be a subset of Z’ satisfying certain conditions. An element of Z’ is written
as (m,n, ). We also define an equivalence relation ~ on Z and consider Z/ ~. An
element of Z/ ~ is written as [m} By Theorem 1, we have the following
corollary, which explicitly gives a necessary and sufficient condition for the two

Ag-modules M (m,n,z) and M(m,n,z’) to be isomorphic.

Corollary 1 (Corollary 4.1.7). Let [M(m,n,x)] and [M(m,n,z’)] be elements of
./\/lf(T). Suppose that ordg(z) < n orx =0 and that ordg(z’) < n oraz’ =0, where
ordg is the normalized additive valuation on E such that ordg(m) = 1. Then the
following statements are equivalent:

(i) We have M(m,n,x) = M(m,n,z") as Ag-modules.

(ii) We have ordg(z) = ordg(z’) and one of (I'), (II'), and (I1I') holds, where
(1), (I1"), and (IIT") are

(I) m#0, 2" #0, and
. " m €T
min {OrdE (?) ) OI'dE(ﬂ' - ZL'/)} < OrdE (; - 1) )
(I') 2’ =0, and
(IIT") m =0 and ordg(1l — z) = ordg(1 — 2').



1.7 Main Theorem for \ =4

In this section, we state our second main theorem in the case of A = 4. More

precisely, we treat the case in which

f(T) = (T = a)(T' = B)(T = )(T = 9),

where «, 3,7, and J are distinct elements of the maximal ideal of Og. In the same
way as in the case of deg (f(7')) = 3, for each isomorphism class € € M?(T), we

can take a submodule
M(,m,n;x,y,z) = ((1,1,1,1), (0, 7t x, v),(0,0,7™,2),(0,0,0,7")) o,

of Ag/(T—a)®Ap/(T—B)®Ag/(T —~)®Ag/(T —6) with [M (¢, m,n; x,y, z)]
= €, where ¢, m,n are non-negative integers and x,y, z are elements of Og. We
can prove that ¢,m, and n are determined by € (see Proposition 5.1.2). In
Chapter 5, we define the notion of “admissibility” (see Definition 5.1.5). Let
(¢,m,n;x,y,2) be a 6-tuple with ¢,m,n € Z>o and z,y,z € O satisfying the
conditions (a), (b),..., and (f) in Lemma 5.1.1 of Chapter 5. We prove that there
is an admissible 6-tuple (¢, m,n;z,y, z) such that [M] = [M (¢, m,n;z,y, z)] for
each [M] € M]’?(T) (see Proposition 5.1.6 (2)). By the definition of admissibil-
ity of (¢,m,n;z,y,z), we have [M({,m,n;z,y,z)] € M?(T) it (¢, m,n;z,y,z2) is
admissible (see Proposition 5.1.6 (1)).

The following is our second main theorem, which gives a necessary and suffi-
cient condition for the two Ag-modules M (¢, m,n;z,y, z) and M (£, m,n; 2’,y', 2")

to be isomorphic:

Theorem 2 (Theorem 5.3.1). Let ({,m,n; z,y,z) and (¢, m,n; ',y ,2") be ad-
missible 6-tuples. Suppose that ordg(x) = ordg(z’) and ordg(z) = ordg(z’), where
ordg is the normalized additive valuation on E such that ordg(m) = 1. Suppose
also that ordg(1 — x) = ordg(1l — ') if £ = 0. Then the following statements are
equivalent:

(i) We have M (¢, m,n;z,y,z) = M, m,n;z',y',2") as Ag-modules.

(ii) One of (I),(11),..., and (XII) holds for (¢,m,n;z,y,z) and (¢, m,n;x’,y’
,2'), where the statements (1), (I1), ..., and (XII) are described in Chapter 5.
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We note that our assumptions ordg(z) = ordg(z’), ordg(z) = ordg(z’), and
ordg(l — x) = ordg(l — 2’) are necessary conditions for the two modules to be
isomorphic (see Proposition 5.3.2, Lemma 5.3.3).

The classification in the case of A = 4 is essentially different from that of
A = 3. Although in the case of A = 3, we need only one element z € Og to
study M(m,n,z), we have to investigate three elements z,y, and z € Og to
study M(¢,m,n;x,y,z) in the case of A = 4. For a 6-tuple (¢, m,n;z,y, z), the
valuation ordg(y) is not uniquely determined by the class [M (¢, m, n; x,y, z)] (cf.

Proposition 5.3.2).

1.8 Applications to Iwasawa theory

Finally, we apply our theorems to Iwasawa theory in Chapter 7. We briefly explain
our application below. Let k be a finite, imaginary, abelian extension of Q and
ks /k the cyclotomic Z,-extension. We denote by Xj_ the Iwasawa module for
kso/k. As we stated in Section 1.3, the minus part X, of Xj is a finitely
generated torsion A-module and has no non-trivial A-submodule (properties (P1)
and (P2)). Let f(T) be a generator of the characteristic ideal char(X,_ ). Iwasawa
conjectured that p(X, ) = 0 for the cyclotomic Z,-extension for any k. When &
is a finite abelian extension of Q, this was proven by Ferrero and Washington [3].
Therefore if f(T) is a separable polynomial, then we have

_ Qp
(Xl € M-

Then we can apply our theorems to the class [X, ] for a finite imaginary abelian
extension k over Q. For a positive integer n, we put I',, = I'"". For a A-module
M, we define

My, = M/((1+T)" —1)M.

Let A, be the minus part of A,,. We assume that exactly one prime of £ is ramified

in k. /k and this prime is totally ramified. Then we have

(X, = A, (1.5)



as Z,|Gal(k,/k)]-modules. By this isomorphism, we can determine the structure
of A for non-negative integer n as a Z,|Gal(k,/k)]-module if we determine the
isomorphism class of X .

Let us give an example. Suppose that p = 3 and k = Q(+/—9069). Since k
is an imaginary quadratic field, we have X, = X,_. In this case, we can check

that f(T) is separable. Using Theorem 1, we have
Xy, Ox Ap = M(0,1,1),

where F/Q, is the minimal splitting field of f(7") and M (0,1,1) is defined by
(1.4). This implies that

ﬁM(()? 17 1)F = p6n+4’
M(0,1,1)r, = Og/(@"*?)® Og/(x™) ® Og/(7*"*?).

By (1.5), we can determine the structure of A, ® O for all n > 0. In particular,

we get

ﬂAn = p3n+27
A, = Z/"YY @ Z/(p") @ Z/ (")

for all n > 0. In this way, we get more precise information than Iwasawa’s
class number formula (1.1). We note that only knowing f(7") does not give the
information above. For details about the computations above, see Chapter 6 and
Chapter 7.

1.9 Overview

The outline of this thesis is as follows. In Chapter 2, we briefly review some
properties of Ag and prove the structure theorem for finitely generated torsion
Ag-modules. In Chapter 3, we state some known results about the isomorphism
classes of Ag-modules. In Chapter 4, we prove Theorem 1. In Chapter 5, we
introduce the notion of admissibility of a 6-tuple (¢, m, n;x,y, z) and give a proof
of Theorem 2. As an application, in Corollary 5.3.16 we determine the number of
the elements of/\/lf(T) when E' = Q, and ord,(a—f) = ord,(5—~) = ord,(y—9) =

10



ord, (0 — a) = ord,(8 — 6) = ord,(aw — v)=1. Here we write ord, for ordg,. In
Chapter 6, we introduce the notion of the higher Fitting ideals and study the
relationships between Apg-modules and their higher Fitting ideals. In Chapter
7, we determine the isomorphism classes of Iwasawa modules associated to the

cyclotomic Z,-extension of imaginary quadratic fields for p = 3, 5.
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Chapter 2
Preliminary

In this chapter, we prove the structure theorem (1.2) in Chapter 1. Let p be
a prime and £ a finite extension over the field Q, of p-adic numbers. We put
A = O[[T]], where O is the ring of integers of E. We denote a prime element of
E by 7.

2.1 Structure theorem

First, we review some properties of the ring A. The following is so-called division

lemma.

Lemma 2.1.1 ([21], Proposition 7.2). Let f(T) = >.0° a,T™ be an element of

n=1

O[[T]]. Assume that there exists an integer s > 0 such that
ag,ai,...,as_1 € (m), and ag € O*.

Then for every power series g(T) € A, there exist g(T) € A and r(T') € O[T such
that
g(T)=q(D)f(T)+r(T), deg(r(T)) <s-—1.

Definition 2.1.2 (Distinguished polynomial). Let f(7") be a polynomial over O.
We call f(T) a distinguished polynomial if it is of the form

f(T)=T"+ap T" ' +a, T *+ - +a,T +ag
with coefficients ay, ..., a,_1 contained in the maximal ideal of O.

12



Proposition 2.1.3 ([21], Theorem 7.3, p-adic Weierstrass Preparation Theorem).
Let f(T') € A be non-zero element. Then f(T') is uniquely written as

f(T) = =" P(T)U(T),

where P(T) is a distinguished polynomial, U(T') is a unit of A, and n is a non-

negative integer.

Proposition 2.1.4. The prime ideals of A are

(0), (m), (f(T)), and (7, T),
where f(T) € O[T is an irreducible distinguished polynomial.

Proof. Tt is obvious that (w,7T) is the maximal ideal. Let f(7) € O[T] be an
irreducible distinguished polynomial. Since 7= and f(7") are irreducible elements
of A, (m) and (f(T")) are prime ideals. Conversely, we suppose that p is a prime
ideal. Then there exists an irreducible element h(7") € p. We assume that p # (h).
We apply the following

Lemma 2.1.5. Suppose that f(T) and g(T) € A are relatively prime. Then the
ideal (f,q) is of finite index in A.

The lemma above can be proved by using Lemma 2.1.1. We put M = A/p.
By Lemma 2.1.5, M is finite. Then T"M = n"M = 0 for some n > 0. Hence
we have T™, 7" € p. Since p is a prime ideal, we have (7,T) C p. This implies

p = (7, T). Thus we get the conclusion. O

We define the notion of pseudo-nulls and pseudo-isomorphisms.

Definition 2.1.6 (pseudo-null). Let R be a noetherian integrally closed domain.
A finitely generated R-module M is called pseudo-null if M, = 0 for all prime
ideal p satisfying ht(p) < 1, where ht(p) is the height of p.

Definition 2.1.7 (pseudo-isomorphism). Let R be a noetherian integrally closed
domain. Let f : M — N be a homomorphism between finitely generated R-
modules. We call f pseudo-isomorphism if Ker(f) and Coker(f) are pseudo-null.

By the definition of a pseudo-isomorphism, we get the following

13



Proposition 2.1.8. Let f : M — N be a homomorphism between finitely gener-
ated R-modules. Then the following statements are equivalent:

(i) The map f is a pseudo-isomorphism.

(ii) The induced map f, : M, — N, is an isomorphism for every prime ideal p
satisfying ht(p) < 1.

In the case of R = A, we can prove that a pseudo-null module is a finite

module. To show the fact, we prepare the following

Lemma 2.1.9. Let M be a finitely generated A-module. Then the following state-
ments are equivalent:

(1) There exist relatively prime elements f(T') and g(T) € A such that f(T)M =
g(T)M = 0.

(ii) The module M is finite.

Proof. First, we prove (ii) = (i). Since 7"M = T"M = 0 for some n > 0, we
get (ii). Next, we prove (i) = (ii). Since M is a finitely generated A-module, we
have a surjective map (A/(f(T),9(T)))¥" — M for some positive integer r. By

Lemma 2.1.5, A/(f(T), g(T)) is finite. Thus we get (ii). O

Proposition 2.1.10. Let M be a finitely generated A-module. Then the following
statements are equivalent:

(i) The module M is finite.

(ii) The module M is pseudo-null.

Proof. First, we suppose (i). Since M is finite, M is a torsion A-module. Hence
we have M(g) = 0. Further, using Lemma 2.1.9, we have relatively prime elements
f(T),9(T) € A such that f(T)M = g(T)M = 0. Thus we have f(T) & p or
g(T) & p for every p € PY(A), where P'(A) = {p | p is a prime ideal with ht(p) =
1}. This implies that M, = 0 for every p € P'(A). Therefore we get (ii).

Next, we suppose (ii). In this case, we note that Anny(M) # 0 and there is
no p € PY(A) such that Anny(M) C p. Hence we have \/Anny(M) = (m,T).
This implies that 7, 7™ € Anny (M) for some n > 0. Using Lemma 2.1.9, we get
(i). O

14



Theorem 2.1.11 (Structure theorem for torsion A-modules). Let M be a finitely

generated torsion A-module. Then there exists a pseudo-isomorphism
s t
M — P A/(™) & P A/ (F(T)™),
i=1 J=1

where £, s,t,m;, and n; are integers and f;(T') is an irreducible distinguished poly-
nomaal.

Proof. First, we use the following

Lemma 2.1.12. Let M be a finitely generated module. Then

{p| M, #0 for all p € P'(A)}

is a finite set.

Proof. We assume that M, # 0 for a prime p € P'(A). This is equivalent to
saying that sM # 0 for all s € A\p. This implies that Anny (M) C p. Since
Anny (M) # 0, p is one of the prime factors of Anny(M). Thus we get the

conclusion. O

Using Lemma 2.1.12, we put

{p | MP 7é07 for aup c P1<A>} = {p17p27'-~:ph}

for some positive integer h. We also put

h

S = (A\po).

i=1

Then the set S becomes a multiplicatively closed set and S™!A is a principal ideal
domain. Indeed, the maximal ideals of ST'A are p;S™A, paSTIA, ..., ppSTIA.
By the structure theorem for finitely generated modules over a principal ideal

domain, we have
S—lM ~ @ S_lA/piniS_lA ~ S—l (@ A/pzm)

15



for some non-negative integers n;. Thus there exists an isomorphism

¢:STIM — S (@ A/p/“) :

We use the following

Proposition 2.1.13 ([1], Chapter II, §2, no 7, Proposition 19). Let S be a mul-
tiplicatively closed set of A. Assume that M and N are finitely generated torsion

A-modules. Then we have
S~H(Homy (M, N)) = Homg 15, (S~ M, S™'N).

By this proposition, there exists s € S such that s¢ : M — @, A/p,™ is a

pseudo-isomorphism. Thus we get the conclusion. O
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Chapter 3

Known results about

isomorphism classes

In this chapter, we introduce some known results about isomorphism classes of
modules. Especially, we review the results of Sumida, Koike, Kurihara, and

Franks.

3.1 Sumida’s and Koike’s results

Let E be a finite extension over the field Q, of p-adic numbers. Let Og, 7g, and
ordg be the ring of integers in F, a prime element, and the normalized additive
valuation on £ such that ordg(7g) = 1, respectively. We put Ag := Og[[T]], the
ring of power series over Op.

Let M be a finitely generated torsion Ag-module. By the structure theorem

2.1.11, there is a Ag-homomorphism

o: M — (EB AE/(WEmi)) ® (@ AE/(fj(T)”j)>

with finite kernel and finite cokernel, where m;, n; are non-negative integers and

f;(T) € Og[T] is a distinguished irreducible polynomial. We put

Ch&I‘(M) = (H ’7TEmi H fj (T)n3>
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which is an ideal in Ap. We denote the Ag-isomorphism class of M by [M]g or
simply by [M].
For a distinguished polynomial f(7T) € Og[T], we consider finitely generated
torsion Apg-modules whose characteristic ideals are (f(7')), and define the set
B
M by

5 M is a finitely generated torsion Ag-module,
My = Mle _ . (31)
char(M) = (f(T)) and M is free over O

Sumida proved the following

Proposition 3.1.1 ([19], Theorem 2). Let f(T) and MF, be the same as above.

Then ./\/lf(T) is finite if and only if f(T) is separable.

Let E be a splitting field of f(7). Sumida and Koike considered

() = (T =) (T = p),

where o and 3 are elements of E. They classified all the elements of M?(T) in [9]
and [19]. Let us introduce their results in the following. There are three cases to

consider.

(i) The polynomial f(7') is separable and reducible over E.
(i)  The polynomial f(7T) is irreducible over E.
(iii)  The polynomial f(7') is inseparable.

First, we consider the case (i). Let f(7T) be a separable and reducible polynomial.

In other words, we assume that

f(T) = (T = a)(T - ),

where av and 3 are distinct elements of 71gOp. Let [M]g be an element of ./\/lf(T).
Since M has no non-trivial finite Ag-submodule, there exists an injective Ag-

homomorphism

o:M— Ag/(T—a)®Ag/(T - P)
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with finite cokernel. We fix the notation to express such submodules in Ag /(T —
a)®Ag/(T—03). By using the canonical isomorphism Ag/(T—a) = Op (f(T) —

f(a@)), we define an isomorphism
vi € =Ap/(T—a) @ Ag/(T - B) — OFF

by (fi(T), fo(T)) — (fi(a), f2(B)). We identify €& with O%? via . Thus an
element in & is expressed as (a1, as) € O52. Since the rank of M is equal to two,

we can write M of the form
M = {(a,b),(c,d))o, C Ap/(T —a)® Ag/(T —p),

where (%), is the Og-submodule generated by *. Further, using this notation,

we can express the action of T by
T(a,b) = (aa, Bb).

Remark 3.1.2. The module M = ((a,b), (¢,d))o, is an Og-module. A necessary

and sufficient condition for M to be a Ag-module is the following

Lemma 3.1.3. We assume that ordg(a) < ordg(c). Then an Og-module {(a,b),
(c,d))o, is a Ag-module if and only if ordg(d — a=tbc) — ordg(b) < ordg(f — a).

Then Sumida proved the following

Proposition 3.1.4 ([19], Proposition 10). Let f(T) be the same polynomial as

above. Then we have

where
M(m) =((1,1), (0, 7))o, C Ap/(T — a) & Ap/(T — B).

Further, we have

Next, we consider the case (ii). Let f(7') be an irreducible polynomial. We
put

f(T> - T2 + ClT+ Cy € OE[T]
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By the same method as in the case (i), there exists an injective A g-homomorphism

p: M= Ap/(f(T)).

Since the rank of M is equal to two, we can write M of the form
M = {(aT +b,cT +d)o, C Ag/(f(T)),

where a,b,c, and d are elements of Og. Further, using this notation, we can

express the action of T" by
T(aT +b,cT+d) = ((b—ac))T — acy, (d — cc1)T — ecy).

Remark 3.1.5. The module M = (a1 + b,cT + d)o,, is an Og-module. A

necessary and sufficient condition for M to be a Ag-module is the following:

Lemma 3.1.6. We assume that ordg(a) < ordg(c). Then an Og-module (aT +
b, T + d)o, is a Ag-module if and only if

ordg(a) < ordg(b) and
ordg(a) < ordp(d — a™'be) < ordg(a) + ordp(f(—12)).
Then Koike proved the following

Theorem 3.1.7 ([9], Theorem 2.1). Let f(T) be the same polynomial as above.

Then we have
1
M?(T) = {[N]E N = <T+ %,W§> ,0<z< §ordE(c% — 400)} :
OF

Finally, we consider the case (iii). Let f(T") € Og[T] be an inseparable poly-

nomial. In other words, we suppose that
f(T)=T*+ 1T +co = (T — ) € Og[T).
Then there exists an injective Ag-homomorphism
o: M —=E,

where we put £ = Ag/(T — a) or Ag/(T — a) ® Ag/(T — «). In the case where
E=Ag/(T—a)®Ag/(T—a),it is easy to see that N = Ap/(T—a)®Ap /(T — ).
In the case where & = Ag/(T — «)?, Koike proved the following
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Theorem 3.1.8 ([9], Theorem 2.1). Let f(T) be the same polynomial as above.

Then we have
ME(T) = {[N] N:NooorN:<T+ﬁ7rm> (0 <z < o0)
! 27 E o, VT ’

where Noo = Ap/(T — o) & Ag/(T — «).

3.2 Kurihara’s results

Kurihara determined the isomorphism classes of modules, using higher Fitting

ideals. We give the definition of Fitting ideals in Chapter 6.

Lemma 3.2.1 ([10], Lemma 9.1). Put f(T) = (T — a)(T — 5) € Og[T]. Let [M]
be an element of M?(T).
(1) Suppose that a and [ belong to Op. Then we have an exact sequence of

A-modules
0—=A2 5 AL 5 M —0

such that the matriz A, corresponding to the A-homomorphism ¢ is of the form

4, = T—a 7
0 T-3

for some i with 0 < i < ordg(f — ). Here if a = 3, i = 00 is allowed. Further,
the isomorphism class of M s determined by the value i.
(2) Suppose that f(T) is irreducible. We define

a—+p
a= )

2

Then we have an exact sequence of A-modules
0—-A2 5 AL 5 M —0
such that the matriz A, corresponding to the A-homomorphism ¢ is of the form
T—a
A, = g
c T—a
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for some i such that 0 < i < ordg(8 — «) and for some ¢ € O with ordg(c) > i.

Further, the isomorphism class of M is determined by the value i.

Remark 3.2.2. 1. This lemma says that the isomorphism class [M] € MJ]ZJ(T)
is determined by the 1-st Fitting ideal Fitt;s,(M) of M. Indeed, we have
Fitty A, (M) = (7)) in this lemma.

2. In general (in the case of rankep, (M) > 3), the Fitting ideals Fitt; 5, (M)
(¢ > 0) do not determine the isomorphism class of M. We will state the relation-

ships between Apg-modules and their higher Fitting ideals in Chapter 6.

3.3 Franks’s results

Chase Franks [4] studies the Ag-isomorphism classes. He gave an algorithm to
determine whether two A g-modules are isomorphic or not for any separable poly-
nomial f(T') of degree A > 0. He determined all the elements of Mf(T) for a
separable distinguished polynomial f(7T") with deg(f(7")) = 4 satisfying some con-
ditions [4, Section 5.3]. This algorithm is proceeded by checking whether some
matrices he defined belong to GL)(Og), where A =deg(f(T")) and GL)\(Og) is
the group of A x A matrices over Op that are invertible.

We introduce his results in the case of A = 4 shortly. We suppose that

F(T) = (T = a)(T' = BT = )T = 9),

where «, 8,7, and ¢ are distinct elements of the maximal ideal of Og. Let 7 be
a prime element of Og. For each isomorphism class € € /\/lf(T), we can take a

submodule
M<€’m7n;x’y7z) : - <(1717]" ]‘)7(077T§7m7y)7(O’O7Wg7z)7(070’0’ﬁ%)>oE

of Ap/(T—a) B A /(T —B) D Ag/(T —~) @ Ag/(T —9) with [M (¢, m,n;z,y, z)]

= €. Franks considered a map
pra: (O5)" — GLy(E)

for Ap-modules My = M ({1, mq,n1;x1,y1,21) and My = M (la, mo, no; T2, Yo, 22).

This map is defined by ¢y9(ur, us, us, us) = G5 diag(uy, ug, us, us)G1, where
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diag(uy, ug, us, ug) is the diagonal matrix with uy, us, us, and usy € O along its
diagonal and
0 0 0

T 0 0

x, wpt 0

Gi:

ng

Yi Zi Tpg

—_ = = =

for i = 1, 2. Franks proved the following

Theorem 3.3.1 ([4], Theorem 2.1.2). Let My and My be as above. Then My = M,
as Ag-modules if and only if im(p12) N GL4(Og) # 0.

In order to check this condition im(p;2) N GLy(Or) # 0, he took some finite
set S C (OF)* and reduced this condition to ¢;2(S) N GLy(OFg) # 0. Tt is known
that £S5 < p“™ in the case of E = Q,, where 1S denotes the number of elements
of S. Further he reduced §S which have to be checked (cf. [4, Theorem 5.2.1}).
Consequently, he gave an algorithm [4, Section 5.3] which is proceeded by checking
the condition above for all elements in S. For the details about his algorithm, see

Section 5 in [4].
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Chapter 4

Proof of Theorem 1

In this chapter, we give a proof of Theorem 1. This is the generalization of
Proposition 3.1.4 in Chapter 3. Roughly speaking, Theorem 1 states that there is
an one to one correspondence between ./\/lf(T) and the equivalence classes of Z/ ~,

where the set Z and the relation ~ will be defined in Section 4.1.

4.1 Some results

As in Chapter 3, let E be a finite extension over the field Q,, of p-adic numbers.
Let O, m, and ordg be the ring of integers in E, a prime element, and the
normalized additive valuation on E such that ordg(m) = 1, respectively. We put
Ag := Og[[T]], the ring of power series over Op.

In this chapter, we consider
F(T) = (T = a)(T = B)(T =) € OplT],

where «, 3, and ~ are distinct elements of 7Og. Let [M]|g be an element of
MJ}?(T). Since M has no non-trivial finite Ag-submodule, there exists an injective

A g-homomorphism
o:M—>Ag/(T—a)®Ag/(T—-p)DAe/(T—7v) =& (4.1)

with finite cokernel. We write £ for the right-hand side. The fact above implies
that every class of M}E(T) can be represented by a Ag-submodule of £. Let M be
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an Og-submodule of £ with ranke, (M) = 3 of the form

M = <(a’17a27a3)7 (blab27b3)7 (01702763)>0E C €.
We put

s = min{i € Zso| “a,b € Op s.t. (7',a,b) € M},
t = min{i € Zsg| 'c € Op s.t. (0,7,c) € M}, and
u = min{i € Zsg| (0,0,7") € M}.

Then we have
M = {((7*,a,b), (0,7, ¢), (0,0, 7))o,

Suppose that (aq,aq,a3) € M. Since ordg(a;) > s, there exists x € Op such
that a; = z7w®. Hence (a1, as,a3) — z(7®,a,b) = (0,ay — xa,as — xb) € M. Since
ordg(ay — za) > t, there exists y € Op such that as — za = yr'. By the same
method as above, we get (0,0,a3 — xb — yc) € M. Finally, there exists z € Op
such that a3 —xb—yc = z7". Then we have (aq, as, az) = x(7°,a,b) +y(0, 7", ¢c) +
2(0,0,7%).

The following lemma gives a necessary and sufficient condition for an Og-

module M to be a Ag-submodule.

Lemma 4.1.1. Put M = ((7%,a,b), (0,7, ¢),(0,0,7))o,. Then the following
two statements are equivalent:
(i) The Og-module M is a Ag-submodule.

(ii) Integers a,b,c,s,t, and u satisfy

t <ordg(f — a)+ordg(a),
u <ordg{(y—a)b— (8 —a)rtac}, and
u < ordg(y— )+ ordg(c).

Proof. We first suppose that M is a Ag-submodule. Hence M satisfies TM C M
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and we have

T(n%,a,b) = (an®, Ba,~b)
= a(r®,a,b) + (B — a)rta(0, 7", ¢)
+H (v — )b — (B = a)r ackr (0,0, 7"),
T(0,7¢c) = (0,87, ~c)
= B(0,7"¢c)+ (v — B)er (0,0, 7).

Since these coefficients belong to O, we get (ii). Conversely, if an Og-module
M satisfies (i), M is naturally regarded as an Og[T]-module by the action as

above. We show that M becomes a Ag-module. For a positive integer n, we put

Uy = deTk € Og[T] and v = ZdnT" € Ogl[T]]. Then we have

k=0 n=0

v (7%, a,b) = <7rs Z dpak, a Z d. 5%, b Z dkvk>
k=0 k=0 k=0
— deak(ws, a,b)+a (Z dp 3" — Zdw/‘“) 70,7, ¢) +

k=0 k=0 k=0

{b (Z Ayt =Y dkak> —
k=0 k=0

(Z d 3% — Z dkak> ﬂ_tac} 7 (0,0, 7).

k=0 k=0

Since M is an Og[T]-module, we have v,(7* a,b) € M. Thus we obtain
a <Z dkﬁk — deak) Tt te Og
k=0 k=0
and

{b (i dk’}/k — idkak> — <i dkﬁk — idkak> 7TtCLC} i S OE
k=0 k=0 k=0 k=0

Since dpa®, d*, and dpy* — 0 (k — o00), de(xk, deﬁk, and de’yk con-
k=0 k=0 k=0
verge in Op. Thus we have v(7°,a,b) € M. For (0,7",¢) and (0,0, 7"), we can
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define the action of the elements of A by the same method as above. m

We use the following lemma to fix a representative of the Ag-isomorphism
class of M.

Lemma 4.1.2 ([20], Lemma 1). Let M = ((ai, az, as), (b1, b2, b3), (c1,¢2,¢3))0p
be a Ag-submodule of £. Suppose that uy, us, and uz are non-zero elements of Og.

Then we have
M = ((ura1, uzaz, uzaz), (uiby, usby, uzbs), (uicy, uace, uzcs)) oy
as Ag-modules.
Proof. The injective homomorphism
p:E—=E, (x1,19,x3) = (U121, UsTs, U3T3)

induces a Ag-isomorphism M — ¢(M). We have thus proved the lemma. O

We take M to be a Ag-submodule of £ with finite index. Then we can write
M = {(*,a,b), (0,7, ¢), (0,0, 7)o,

as we explained in the beginning of this section. By Lemma 4.1.2, there exist

non-negative integers m, n, and x € O such that there is an isomorphism
M =((1,1,1),(0,7™,x),(0,0,7")) oL

as Ag-modules. In fact, by Lemma 4.1.2, M is isomorphic to M’ = ((1,a,b),
(0,7 ¢), (0,0,7"))0,. In the case of ordg(a) < t, by Lemma 4.1.2, M is iso-
morphic to ((1,1,b), (0,a"'7",¢), (0,0,7%))e,. On the other hand, in the case of
ordg(a) > t, since M’ = ((1,a + 7,b+ ¢), (0,7, ¢), (0,0, 7))o, we can proceed
by the same method as in the case of ordg(a) < t. Therefore M is isomorphic to
M" = {((1,1,b), (0,a'n", ¢), (0,0,7"))o, for some a’ € E. By applying the same
method as above, M" is isomorphic to ((1,1,1), (0,7™, z), (0,0,7"))o, for some
non-negative integers m,n, and z € Og.

We define M (m,n,z) by

M(m,n,z) = ((1,1,1),(0,7™, z),(0,0,7"))0, C €.
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Proposition 4.1.3. Let f(T) € Og[T] be a distinguished polynomial. Then we

have

M?(T) = { [M(m,n,z)|g

m,n, x satisfy (*)} ,

where [M(m,n,z)|g is the Ag-isomorphism class of M(m,n,z) and (%) is as

follows:

(A) 0<m<ordg(f— a),
()4 (B) 0<n<ordg(y— B)+ordg(r), and
(C) n<ordp{(y—a)—(8—a)r ™z}

Proof. Let M be a Ag-module such that [M]g € M?(T). Then we see that
[M]g = [M(m,n,z)]g for some m,n, and x satisfying (x) by Lemma 4.1.1. We
will show the converse. We suppose that m,n, and x satisfy (x). By Lemma
4.1.1, M(m,n,z) becomes a finitely generated Ag-module. Since f(T") = (T —
a)(T — B)(T — ) annihilates M(m,n,x), it is a torsion Ag-module. More-
over, by the definition of M (m,n,z), it is a free Og-module. Finally, we show
that char(M(m,n,z)) = (f(T)). The Ag-module M(m,n,z) is a submodule
of £ with finite index. In fact, since rankep,(€) = ranke,(M(m,n,z)) = 3,
E/M(m,n,z) is finite. This implies that char(M(m,n,z)) = char(£). Thus we

get [M(m,n,x)|g € MJIZJ(T). O
Remark 4.1.4. () If 2 = 2/ mod 7", we have M (m,n,z) = M(m,n,z") since
(0, 7™ ) = (0,7, 2")4+a(0,0,7") for some a € Of. In particular, if ordg(z) > n,
we have M(m,n,x) = M(m,n,0). This means that we may assume that z = 0

or ordg(x) < n.
(ii) We have

W—a)y=F) _(=PFz f-o

T T Tm

Therefore if (%) holds, we get
0<n<ordg(y —a)+ordg(y — fB).
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Let M(m,n,z) and M(m',n’,z') be elements of M}E(T). We will investi-
gate a relation among m,m’,n,n’,x, and ' when M (m,n,x) is isomorphic to
M(m/,n';z") as Ag-modules. We note that we may assume that = 0 or
ordg(z) < n by Remark 6.1.4 (i).

First of all, we prepare some notations. For (m,n,z) and (m’,n’,z2") € Z>¢ X

Z>p x Op, we define
(m,n,x) ~" (m',n',2") = m=m/, n=n"and z =2’ mod 7" Op.
We put Z' := (Z>¢ x Z>o x Of)/ ~' and introduce a set
Z = { W € Z' | m,n,z satisfy (%) }, (4.2)

where () is the inequalities (A), (B), and (C) in Proposition 4.1.3 and (m,n, )
is the equivalence class of (m,n,x). The class m is determined by m, n,
and x mod 7"Opg. We note that the condition (x) does not depend on the choice
of a representative of (m,n,x).
For an element * € Op and z = T € Og/n"Og, we define ordg(z) =
ordg(z mod 7") as follows:
ordg(x) if T#0,

ordg(z) :=
00 it 7=0.

For (m,n,x) and (m/,n/,2') € Z , we put k = ordg(z mod 7") and ¢ = ordg(z’ —

™). We define (m,n,z) ~ (m/,n/,z’) as follows.
(I) Suppose m # 0.
(a) When ¢+ k > n, we define

(m,n,x) ~ (m',n',2') <= m=m', n=n"and T=12' in Op/7"Op.

(b) When ¢ + k < n, we define

(m,n,z) ~(m',n',2') < m=m', n=n" and

T=cx' in Op/7m"OF for some ¢ € 1+ 7 Op.
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(IT) Suppose m = 0. We define

(m,n,x) ~ (m',n/,2') < m=m'=0, n=n/,

ordg(z mod 7") = ordg(2’ mod 7™) and

l—a2=¢(l—-2') in O/7"OF for some ¢ € OF.

Here, for s < 0, we define 1+ 7°Op = O. We can prove that ~ is an equivalence
relation. The following is our first main theorem, whose proof will be given in
Section 4.2.

Theorem 4.1.5. There is a bijection P :
w w
[M(m, n, :13)] — [(m7 n, x)] ,
E

where M?(T) is defined by (3.1) in Chapter 3, Z is defined by (4.2) after Re-
mark 4.1.4, and ~ 1is the equivalence relation of Z defined above. The symbol
[M(m,n,x)]E is the class of M(m,n,x) and [(m,n,x)} is the class of (m,n,x).

Remark 4.1.6. When (m,n,z) ~ (m/,n’,z') and {+k < n, we have £ = ordg(z'—
) = ordg(x — ™).

Using Theorem 1, we get the following
Corollary 4.1.7. Let [M(m,n,z)] and [M(m,n,z")] be elements of Mf(T). Sup-

pose that ordg(z) < n or x = 0 and that ordg(2’) < n or 2’ = 0. Then the
following statements are equivalent:

(i) We have M(m,n,x) = M(m,n,z") as Ag-modules.

(ii) We have ordg(z) = ordg(z') and one of (I'), (II'), and (I1I') holds, where
(1), (I1"), and (IIT") are

('Y m=#0, 2 #0, and

: " m x
min {ordE (;),ordbﬂ(ﬁ _ x/)} < ordy (; _ 1) ’
(1) =0,
(II") m =0 and ordg(l — z) = ordg(1 — z').
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Sumida [20] determined all the elements of M%’T) for f(T) = (T — a)(T —
B)(T — ) and ord, (o — ) = ord, (8 — v) = ord,(y — o) = 1. We can also obtain

the same result from Theorem 1.

Corollary 4.1.8 ([20], Theorem 1). Put E = Q,, and f(T) = (T—a)(T—5)(T—~)
with o, B, and v € Z,. Assume that ord,(a— ) = ord, (8 —~) = ord,(y —«) = 1.
Then we have Mgy =7 and

M(%E)T) - {(07 0, 0)’ (O’ 1, 0)7 (17 0, O)v (07 L, 1)7 <1a 2, Up), (17 L, 0)7 (O, L, 2)}7

where 4 =

and (m,n,x) means [M(m,n,z)|q, -
-«

Proof. We prove this corollary by using Theorem 1. For fixed integers m and n

we put
Z(m,n) = { the equivalence class of (m,n,z) in Z/ ~ | (m,n,z) € Z}.

Then by definition we have
zZ)~ = [[TI20nn).

We determine all the elements of Z(m,n) for each m and n in order to determine
all the elements of M ¢r).

We first assume [m} € Z/ ~, where [W] is the equivalence class
of (m,n,z). Then by Proposition 4.1.3, M(m,n,z) is a Ag-module satisfying
(A), (B), and (C). By the inequality (A), we have 0 < m < 1. Now we investigate
HZ(m,n) for m =0, 1.

(I) Suppose m = 0. In this case, by the inequalities (B) and (C), we have
0 <n <1 Whenn > 2, we get ord,(z) =0 by (C). This contradicts (B). When
n = 0, we have (0,0,2) = (0,0,0). Therefore we get Z(0,0) = {[(0,0,0)]}.

When n = 1, we have

Z(0,1) = {[(0, 1,0)], [(0, 1, 1)], [(0, 1,2)} }

By the definition of the equivalence relation, we have (0,1,z) ~ (0,1, ') if and

only if

ord,(zx mod p)=ord,(z’ mod p) and 1—z=¢(1—2a')
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for some ¢ € Z;.

By the definition of ord,(z mod p), we have

0 x & ply,

o0 T € ply.

ord,(x mod p)=

We investigate the case of ord,(x mod ) = 0. Suppose x = 1. Then we have

(01D] = {(012)] 0.1,1) ~ (0,1,2)}
= {(0,1,2)] ordy(2) =0, 0=¢(1 —z) for some ¢ € Z)}
= {(0,1,2)] =1 mod p}
= {(0,1,1)}.

If x = 2, then we have

[(O, 1, 2)} = {(0,1,7)] ordy(z) =0, =1 =¢(1 —z) for some e € Z, }

Therefore we get Z(0,1) = [(O, 1,0)}, [(0, 1,1) } [ 0,1,2 ]}
(IT) Suppose m = 1. By Remark 4.1.4 (ii), we have 0 < n < 2. When n = 0,
we have Z(1,0) = {[m}} When n = 1, we have Z(1,1) = [( O)]} In

fact, we suppose [(1, 1,1:)] € Z(1,1). Then we have T = 0 by (C'). When n = 2,
we have Z(1,2) = {[(1,2,up)]}. Indeed, we suppose [(1,2,3&)} € Z(1,2). For

some v € Z,, we have
(1-3%5)
r = |1- P
vy—a) f—a«

by (C). Thus

Z)~ = {[(0,0, 0)}, [(0, 1,0)], [(1,0,0)], [(0, 1 1)}, [(1,2,up)],
[(1, 1,0)}, [(0,1,2)] }

We complete the proof by Theorem 1. O
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Corollary 4.1.9. Put f(T) = (T — a)(T' — B)(T' — ) and E = Q,. Assume that
ord,(a— ) = ord,(8 —~v) = ord,(y — a) = 2. Then we have tM gy = p+18 and

(

(0,0,0),(0,1,0),(0,1,1),(0,1,2),(0,2,0), (0,2, 1),
MQP o (07 ) )a( ) >p>7(0 2 p+ ) (17070)7(1’1a0)7
() )
(L 17 1)’ (17 70)7 (1 2 p) (1727 (p_ 1)]7), (1,3,up),
(2,0,0),(2,1,0),(2,2,0), (2,3, up?), (2,4, up?) )

\

where u = L and (m,n,x) means [M(m,n,x)|q, -

—

Proof. We use the same notation as in Corollary 4.1.8. By definition, we have
H H Z(m,n).

We determine all the elements of Z(m,n) for each m and n in order to determine
Qp
all the elements of M -
We first assume that [(m,n,x)] € 7/ ~, where [(m,n,x)] is the equivalence
class of (m,n,x). Then M(m,n,z) becomes a Ag-module satisfying (A), (B), and
(C). By the inequality (A), we have 0 < m < 2. Now we investigate H Z(m,n)

n
for each m.

(I) Suppose m = 0. In this case, by the inequalities (B) and (C), we have
0 <n < 2. In fact, if ord,(x) > 1, we get n < 2 by (C) and if ord,(z) = 0, then
we get n < 2 by (B). When n = 0, we have (0,0,z) = (0,0,0) and Z(0,0) =
{[M} } When n = 1, we have Z(0,1) = {[(0, 1,0)], [(o, 1, 1)], [(o, 1, 2)”

by the same method as in the proof of Corollary 4.1.8. When n = 2, we have

2(0,2) = {[(0,2,0)], [(0,2, 1)}, [(0,2,2)}, [(O,Q,p)], [(O,Z,p—i— 1)} } (4.3)

In fact, if [(0,2,1‘)} € Z(0,2), then we have T = 0 or ord,(Z) < 1. We first
investigate the case of ord,(z) = 0. Then, (0,2, x) ~ (0,2, 2') if and only if

0 = ordy(z) = ord,(2') and 1—2 =¢(1 —2a’) for some ¢ € Z,.
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By the same method as above, we get

[(0,2,1): = {(0,2,1)},

| = {0,2,2) | 7#0,1}, and
(

(

—
—~
=

I

{(0,2,z) | ord,(x r) =0, —p=¢(l —x) for some ¢ € Z }

—
—~
=
0
3
N

I

= {(0,2,1+z1p) | 1 <z <p}.

Next, we investigate the case of ord,(z) = 1. We suppose z = p. Then we have

[(0,2,]9)] = {(0,2,z) |ordy(z) =1, T—p=2e(1 —z) for some e € Z)}

= {(0,2,21p) | 1 <y < p}.

Thus we get (4.3).

(IT) Suppose m = 1. By the inequalities (B) and (C), we have 0 < n < 3.
If ord,(z) < 1, we have n < 3 by (B). If ord,(z) > 1, we have n < 2 by
(C). When n = 0, we have Z(1,0) = {[M}} When n = 1, we have
Z(1,1) = {[(1,1,0)}, [(1,1,1)}}. If [m} € Z(1,1), then we have T = 0
or ord,(T) = 0. We suppose ord,(Z) = 0. We have ¢ = ord,(z — p) = 0.
This is the case where ¢ 4+ k < n. By the definition of the equivalence relation,
(1,1,2) ~ (1,1,2") if and only if

T = ex’ for some ¢ € Zy.

Here we note that ¢ = ordg(z’ — p) = 0. Then we have

@1e)] = (@
= {(1.L,2)
Therefore we get Z(1,1) {[ 1,1,0] [1,1,1)]}. When n = 2, we have

Z(1,2) = { [(1, 2,:5)] ‘x =0,p,2p,...,(p—1)p } In fact, we suppose [(1, 2,:5)} €
Z(1,2). By the inequality (C), we have

a') | T =ex’ for some e € Z}

/) | 2/ #0}.

2 <ord,{(y—a) — (B—a)p 'z}
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If ord,(z) = 0, the order of the right-hand side is 1. This is a contradiction. Thus

we may assume 1 < ord,(x). If ord,(z) > 2, we get |(1,2,2)| = {(1,2,0)}. We
4 4

suppose ord,(z) = 1. Then (1,2,x) ~ (1,2,2') if and only if
T=a

Here we note that this is the case where £+ k > n since ¢ = ord,(z' —p) > 1. For

each x = ep, where 1 < e < p, we have

[(1,2,@] — (2,2}

Thus we get Z(1,2) = {[(1,2,1:)] ‘ x=0,p,2p,...,(p— 1)p}. When n = 3, we
have Z(1,3) = {[(1,3,up)] } In fact, we suppose [(1,3,9&)] € Z(1,3). By the

same method as in the case of n = 2, we get ord,(z) =1 and (1,3,z) ~ (1, 3, up)

if and only if

T =cup for some e € 1+ pZ,.

Here we note that this is the case where ¢ + k < n since ¢ = ordg(up — p) = 1.
Moreover, by (C') we have

3 _
x:(l— P )7 ap for some v € Z).

Since 1 — € 1+ pZ,, we have

V-«

[(1,3,up)] ={(1,3,2) | T =cup for some € € 1+ pZ,},

where u = g—_oz. Thus we get Z(1,3) = {[(1,3,1@]0)] }

-«
(IIT) Suppose m = 2. By the same method as (I) and (II), we get

Z(2,0) = {:(2,0,0)”,2(2,1)={[(2,1,0)”,
22,2) = {|@20)]}. 223 = {|@3w)]}.
and Z(2,4) = {W]}

Thus we complete the proof. O
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4.2 Proof of Theorem 1

For any £ € Ag, we define a map Il = Hé‘/f : M — M by ¢ (y) = &y.
Lemma 4.2.1. Put q = §(Og/(7)) and M = M(m,n,x). Then we have
ﬁ(Ker(HéVT_a))/Im(Hé\}_B))) = glordsla=f=m} and
Jj(Ker(H%—’)’))/Im<H?’I{—a)(T—ﬂ))) — q{ordE(V—a)—l—ordE(v—B)—n}’
where N = Im(IIi7_)).

Proof. We first compute Ker(ILr_,)). Fory € M = M(m,n,x), there exist A;, Ao,
and A3 € Op such that

Yy = /\1(171,1)+/\2(0,7Tm,1‘)+)\3(0,0777'n)
= ()\1,)\1+>\27rm,)\1+>\2x+)\37rn).

Thus we have Ii7_)(y) = ((a —7)A1, (B —7) (A + Ae1™),0). If y € Ker(ILir_)),
we get Ay = 0 and A; + X\om™ = 0, since «, f and v are distinct elements of Og.
Therefore y = (0,0, A37") and Ker(Ilip_)) = (0,0, 7"Og). On the other hand, by
Y= (A, A1+ X A1 + Aoz + A37™), we have

Hir-ayr—p(y) = Hir_a((a—=B)A1,0,(y = B)(A1 + Aoz + Az7™))
= (0,0,(y —a)(v = B) (A1 + daw + Azm")).

Thus we have Im(ILi7_a)7—g)) = (0,0, 7ordeO=)+orde(=HOp) and

ﬁ(Ker(H(T—'y))/Im(H(T—a)(T—ﬁ))> = ﬁ(ﬂ-“OE/ﬂ.ordE(’Y*a)JrordE(’Y*ﬁ)OE)

q{ordE (y—a)+ordg(y—F)—n} .

Next, we put N = Im(II(p_,)). We have

Ker(Hf\}_a)) = (gordel@=)tmOL 0,0) and
Im(IIYy_g) = (rordela=mtorde(a=A ), 0 0).

Therefore we get

H(Ker (I o)/Im(IIY._g)) = glord=le=A=m 0
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Corollary 4.2.2. Let [M(m,n,x)|g and [M(m/',n',2’)|g be elements of M}E(T).

If [M(m,n,z)|g = [M(m/,n',2")|g, then we have m =m' and n =n'.

Proof. We put M = M(m,n, z) and M' = M(m’,n’,2"). Since M = M’ we have
N =Im(Il}7_ ) = Im(IT1X"__) = N’. Therefore we have

(T— (T—)

Ker(I1{_ o)) /Im(IT7Y._ ) = Ker(I1_ o)) /Im (I ).
This implies m = m’ by Lemma 4.2.1. We get n = n’ by the same method. O]

By using the canonical isomorphism Ag/(T — a) = O (f(T) — f(«)), we

define an isomorphism
1:E=Ag/(T—a)®Ap/(T—B)®Ag/(T —~) — OF
by (f1(T), f2(T), f3(T)) — (f1(«), f2(B8), f3(7)). Then ¢ induces an isomorphism

EQoE 5 E93

such that (fi(T), f2(T), f5(T)) @ y — (fi(a)y, f2(B)y, f3(7)y).

Proposition 4.2.3. Let [M(m,n,x)|g and [M(m,n,z")|g be elements of M?(T).
Put M = M(m,n,z) and M' = M(m,n,z'). Let g : M — M’ be a Ap-

1somorphism. Define an E-linear map Fa by the following commutative diagram
M s M

<p®ll lgﬂ@l

5®0EE R 5®@EE

L®ll J/L@l

E@S \ E@?’.
Fa

In the diagram, ¢ and ¢ are natural inclusions defined by (4.1). When we take

the standard basis of E®3, Fy corresponds to a diagonal matriz

ay 0 0
0 a9 0
0 0 as

for some ay,ay, and az € OF.
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Proof. Consider the map Il : M — M. Then Iy induces a map Fg : B9 —

E®3 and the following commutative diagram

Mo Mty

<,0®1l lg@@l

(€®(9EE ? €®OEE

L®1l lug)l

EEBS s EEB3_
Fp

Thus we get
() Fgo(t@l)o(p®@1)(x) = (t®1)o(p®@1)(Tx)

for z € M. Let A be the matrix corresponding to F4. By the diagram above, we
get

(%) Fao(t@l)o(p@)(Tr) = (@1)o (¢ @1)(g(Tx)).

By (4) and the diagrams, the left-hand side of (f) is
Fao(t®1)o(p®1)(Tx)=F40Fgo(t®1)o(p®1)(x).
The right-hand side of (f) is

t@lo(¢@1)(Tg(x)) = Fpo(t®l)o (¢ ®@1)(g(z))
= FpoFao(t®1)o(p®1)(x).

Since this holds for every x € M, we have Fy o Fig = Fgo Fy. If we take the

standard basis of E®3, then Fz corresponds to the matrix

™

Il
o o 9
o ™ o
=2 o o
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Therefore we have

a 0 0 a 0 0
Al 0O g0 |=]10p01]A
0 0 v 0 0 «v
Since «a, 3, and v are distinct elements, we get
aq 0 0
A= 0 (45} 0
0 0 as

with a1, a9, and a3 € E. Since g((1,1,1)) = (a1,a2,a3) € M’, we have ay, as,

and a3 € Op. Furthermore, by the same argument for g=', we have a; ', a; !, and
agl € Og. Hence we get ay, ag, and a3 € OF. O

By the commutativity of the diagram, we obtain the following

Corollary 4.2.4. Suppose that M, Fx, 1, ¢ and ¢ are the same as in Proposition
4.2.3. Then we have

(Fac(t®@1)o(p@1)(M))o, =(t®@1) e (¢ ®@1)og(M))o, O

Proposition 4.2.5. Let [M(m,n,x)|g and [M(m,n,z’)|g be elements of M}E(T).
Then the following statements are equivalent:
(i) We have M(m,n,x) = M(m,n,x’) as Ag-modules.

(ii) There exist a1, asz, and az € O satisfying

ordg(ay — ay) > m, (4.4)
ordg(asx — agz’) > n, and (4.5)
ordg{az —a; — (ay — ay)7 "2’} > n. (4.6)

Proof. We put M = M(m,n,z) and M’ = M(m,n,z’). We first prove that
(i) implies (ii). If M is isomorphic to M’ as Ag-modules, there exists a Ap-

isomorphism ¢ : M = M’. By Proposition 4.2.3, there exists a diagonal matrix

a1 0 0
A= 0 a9 0
0 0 as
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with ay, as, and a3 € O which corresponds to g. We have

Fao(t®@1)o(p@1)(M) = Fsa(M(m,n,zx))

= <<a’1> as, 0,3), (07 a27rm7 ag.T), (07 07 a3ﬂ-n)>oE
and

(t@1)o(¢®@1)og(M) = (®1)o (¢ @1)(M)
= ((1,1,1),(0,7™,2"), (0,0, 7))o,

By Corollary 4.2.4, we get
<(CL1, az, a?))a (Oa a27rma agﬂf), (Oa 07 a37rn)>OE = <(17 17 1)7 (07 7Tma Z'/), (07 07 Wn)>OE-

Since the left-hand side is contained in the right-hand side, we have

(a1,a9,a3) = ai1(1,1,1) + (ag — a)7 ™0, 7™, z')
+{az — a1 — (ag — ay)m ™'} 7"(0,0,7"),
(0,a9m™,azz) = ag(0,7™,2") + (azx — agx’)w (0,0, 7").

Since these coefficients should belong to O, we have (4.4), (4.5), and (4.6). It is
easy to prove that (ii) implies (i). O
We can simplify the inequalities (4.4), (4.5), and (4.6). The following is easy

to see.

Lemma 4.2.6. The following conditions are equivalent:
(i) There exist a1, az, and ag € Of, satisfying (4.4), (4.5), and (4.6).

ii) There exist ay and ay € OF, satisfying
E

ordg(as — ay) > m, (4.7)
ordg(z — azz’) > n, and (4.8)
ordg{l —a; — (ag — a;)7 "2’} > n. (4.9)

Corollary 4.2.7. Let [M(m,n,z)|g and [M(m,n,x')|g be elements of M?(T).
Assume that ordg(z) < n. If [M(m,n,x)lp = [M(m,n,2’')|g, then we have

ordg(z) = ordg(z’).
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Proof. 1If ordg(z) < ordg(z’), we have n < ordg(azz — ax’) = ordg(z) by
the inequality (4.5). This contradicts the assumption ordg(z) < n. If we as-
sume ordg(z) > ordg(a’), we get the same contradiction. Therefore we obtain
ordg(x) = ordg(2'). O

To prove Theorem 1, we prepare a lemma and some propositions.
Proposition 4.2.8. The following statements are equivalent:

(i) We have M(m,n,x) = M(m,n,0) as Ag-modules.

(ii) We have (m,n,z) ~ (m,n,0).

Proof. We show that (i) implies (ii). If ordg(z) < n, we have ordg(z) = ordg(0)
by Corollary 4.2.7, which is a contradiction. Hence we have ordg(z) > n and
M(m,n,x) = M(m,n,0). Then we have (m,n,z) = (m,n,0) by Remark 4.1.4
(i). O

Put M = M(m,n,z) and M’ = M(m,n,z"). Now we suppose that 2’ # 0 and
the existence of a1, as € OF satistying (4.7), (4.8), and (4.9). By Proposition 4.2.5
and Lemma 4.2.6, M is isomorphic to M’. From the inequalities (4.7) and (4.8),

there are s,v € Of such that as — a; = 7™s and x — asx’ = 7™v. Thus we have

T "

ay = ; - ?U — 7Tm5, (410)
m x
s = T s+a1:;—?v. (4.11)
By the inequality (4.9), we get
@ —a™)s —mv+ v =2 —x (4.12)

for some w € Op.

Lemma 4.2.9. Suppose that m,n # 0, and ordg(x) < n. The following two
statements are equivalent:

(i) There exist ay,as € Of satisfying (4.7), (4.8), and (4.9).

(ii) We have ordg(z) = ordg(x’) and there exist s,v, and w € O satisfying
(4.12).

Proof. We have already proved that (i) implies (ii). We prove that (ii) implies
(i). We put a; and ap by the equalities (4.10) and (4.11). Since m,n # 0 and
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ordg(x) = ordg(2’) < n, we have a1, as € Of. Then we have
ay —ay =7"s, T —ax =71

and

1—a; — (ag — a7 ™2’ = 7 w.

Therefore we get (4.7), (4.8), and (4.9). O
Proposition 4.2.10. Suppose that m,n # 0, and ordg(z) < n. Then the follow-
ing statements are equivalent:

(i) We have M(m,n,x) = M(m,n,z’') as Ag-modules.

(ii) We have (m,n,z) ~ (m,n,z’).

Proof. We first suppose that M(m,n,z) is isomorphic to M(m,n,x’) as Ag-
modules. Put k£ = ordg(z) and ¢ = ordg(z’ — ™). By Lemma 4.2.9, we have

ordg(x) = ordg(z’) = k and there exist s,v, and w € O such that
(' —7™)s — v+ 1w =2 — .

We put ¢ = 22/~ ' € O%. Dividing the equality by z’, we have
7Tn
(2 —7™)s — ?v+7r”w: 1—e.

Thus we have

ordg(l —¢) > min {ordE((x' —7™)s),ordg (—%v) ,ordE(ﬂ"w)}
> min{{,n — k,n} = min{l,n — k}.

In the case where £ > n — k, we have ordg(1 —¢) > n— k. Thus we get T = ca’ =

2 in Op/mOp. Therefore we have (m,n,z) ~ (m,n,2’). In the case where

¢ <n—k, we have ordg(l —¢) > ¢ and T = e/ in Op/7"Op. Therefore we get

(m,n,x) ~ (m,n,z’'). Conversely we assume that (m,n,z) ~ (m,n,z’). In the
case where £ > n — k, we have T = 2/ in Og/n"Of and (2’ — z)/7" € Op. Put

s=w=0andv=(xr—2)/m" € Op. Then we get
(@ —7")s — 7"+ 7w =2 — x.
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By Lemma 4.2.9, M and M’ are isomorphic as Ag-modules. In the case where ¢ <
n—k, we have T = ex’ in O /7" Of for some ¢ € 1+7°Op. Since ordp(1—¢) > 1,
we have (1—¢)/(2/ —7™) € Op. Ptv=w=0and s = (1—¢)/(z’ —7™) € Op.
Then we get

(@ —a™)s — 7"+ th'w = o’ —ex’.
By Lemma 4.2.9, we get M(m,n,x) = M(m,n,ex’) = M(m,n, ). ]

The following propositions treat the case of m = 0 and that of n = 0.

Proposition 4.2.11. Suppose that m = 0,n # 0, and ordg(x) < n. Then the
following statements are equivalent:

(i) We have M(0,n,x) = M(0,n,2") as Ag-modules.

(ii) We have (0,n,z) ~ (0,n,x’).

Proof. Suppose that M(0,n,z) is isomorphic to M(0,n,z') as Ag-modules. By
Proposition 4.2.5 and Lemma 4.2.6, there exist a; and as € Of satisfying (4.8)
and (4.9). By the inequality (4.8), we have T = ao2’. By the inequality (4.9), we

have 1 — asx’ = a1(1 — 2’). Therefore we get

ordg(z) = ordg(z’) and 1 — x = a1(1 — 7).

Thus we get (0,n,2) ~ (0,n,z’). Conversely we suppose that (0,n,z) ~ (0,n,z’).
There exists a; € O} such that T — z = a;(1 — 2/). Put ay = 2/2’. Then we have
(4.8) and (4.9). Indeed, we have 1 —a; — (az —a;)7 ™2’ = 1—a; — (ag—a; )2’ = 0.
By Proposition 4.2.5 and Lemma 4.2.6, M (0,n,z) and M (0, n,z") are isomorphic

as Ag-modules. O

Proposition 4.2.12. Suppose that n = 0. The following statements are equiva-
lent:

(i) We have M(m,0,x) = M(m,0,2') as Ag-modules.

(ii) We have (m,0,x) ~ (m’/,0,2").

Proof. By Remark 4.1.4 (i), we have M (m,0,z) = M(m,0,2") = M(m,0,0) and
(m,0,2) = (m,0,2') = (m,0,0). O

Now we can prove Theorem 1.

43



Proof of Theorem 1. For [M(m,n,x)|g € /\/lf?(T), we may assume that x = 0 or
ordg(z) < n holds by Remark 4.1.4 (i). At first, ® is well-defined by Corollary
4.2.2 and Propositions 4.2.8, 4.2.10, 4.2.11, and 4.2.12. The surjectivity follows
from Proposition 4.1.3 and Remark 4.1.4. On the other hand, ® is injective by
Propositions 4.2.8, 4.2.10, 4.2.11, and 4.2.12. O
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Chapter 5

Proof of Theorem 2

In this chapter, we give a proof of Theorem 2. To state the theorem, we define
the notion of “admissibility” and the describe statements (I) - (XII) in Section
4.1 and 4.2.

5.1 Some results

Let E be a finite extension over the field Q, of p-adic numbers. Let Op, 7, and
ordg be the ring of integers in F, a prime element, and the normalized additive
valuation on E such that ordg(m) = 1, respectively. We put Ag := Ogl[T]], the
ring of power series over Op.

In this chapter, we consider

F(T) = (T = a)(T' = )T —y)(T = 9), (5.1)
where «, 5,7, and § are distinct elements of 7Og. As in the previous chapter, by

using the canonical isomorphism Ag/(T — «) = O (f(T) — f(a)), we define

an isomorphism
1:E=Ag/(T—a)®Ag/(T —B) @ Ag/(T —~) D Ap/(T — ) — OF*

by (F1i(T), f2(T), f5(T), f(T)) = (f(@), f2(B), fs(7), fa(0)). Let M be an Op-
submodule of & with rank(M) = 4.

M: <(a17a’27a37a4)7(blub27b3ab4)7(617027637C4>7(d17d27d37d4>>0E - g
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In the same way as in the previous chapter, we have
M = <(7TS’ a? b’ C)’ (07 7Tt7 d7 6)7 (O’ 07 7Tu7 f)? (07 07 O’ 7TU)>OE

for some non-negative integers s,t,u,v, and a,b,c,d,e, f € Opg. Further, by

Lemma 4.1.2, we may assume that a Ag-module M is of the form
M = <(17 17 1? )7 (077rﬁvx7 y)7 (07 077Tm7 Z)a (Oa 07 077Tn)>OE C 8

for some non-negative integers ¢, m,n, and x,y, z € Og. We define an Og-module
M by

M, m,n;x,y,z) = ((1,1,1,1), (0, 7t z,y),(0,0,7™, 2),(0,0,0, 7))o, C &,

where ¢, m, and n are non-negative integers. We can prove the next lemma by

the same method as Lemma 4.1.1

Lemma 5.1.1. The following two statements are equivalent:
(i) The Og-module M (¢, m,n;x,y,z) is a Ag-module.
(ii) The integers ¢, m,n, and x,y,z € Op satisfy

;

(a) ¢ <ordg(B—a),

(b) m <ordp{(y—a)—(8—a)r‘z},

© n <ordy[(6—a) = (8—a)ry—{(7—a)— (8 a)n-ta}rs]
(d) m <ordg(y—B)+ordg(x),

(©) n  <ordp{(5— Ay — (7 — Harmz}, and

(f) n <ordg(d —7)+ ordgr(z).

Proposition 5.1.2. Let [M({,m,n;z,y,2)|g and [M(0',m/',n';2',y, )| be ele-
ments of /\/lf(T). If [M(0,m,n;x,y,2)|p = [MW,m' n;2'y, 2] e, then we have
(=0, m=m' andn=n'.
Proof. We put M = M (¢, m,n;x,y,z) and M' = M ', m',n';2',y, 2"). For every
A-module M and & € Ap, we define a map ITg = [T : M — M by II(y) = &y.
Then we have
Jj (Ker (Hé\é{—a)> /Im (H%{—ﬁ))) — q{ordE(6—04)+ordE(5—B)+ordE(§—'y)—n},
(e () 0 () = et
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We put N =Im (H%—'y)(T—d)>‘ Then we have
¢ (Ker (I0_g)) /Im (IIY_,))) = qlordet@=e)=,

Since M 22 M’ we have Ker(II){_,) = Ker(II}f_)) and Im(II}}_ ) 75 7_s)
= Im(H%’_a)(T_B)(T_(S)). This implies m = m/. We get £ = ¢' and n = n’ by the
same method. O]

For M = M({,m,n;x,y,z2), we put e; = (1,1,1,1), eo = (0,7, 2,7), e5 =
(0,0,7™,2), and e4 = (0,0,0,7"). For M’ = M({,m,n;2',y,2"), we also put
er’ = (1,1,1,1), e = (0,7, 2',y/'), es’ = (0,0, 7™, 2"), e,/ = (0,0,0,7") and

10 0 O 1 0 0 O
o | ! ™ 0 0 - L 7 0 0
1 z «™ 0 1 2 a™ 0
1 y =z 7" 1 4 2 "

The matrix G is the transition matrix from the bases ey, es, 3, and e4 to the
bases (1,0,0,0),(0,1,0,0),(0,0,1,0), and (0,0,0,1). The matrix G’ is the tran-
sition matrix from the basis e;’, €5, e3’, and e’ to the basis (1,0,0,0), (0, 1,0,0),
(0,0,1,0), and (0,0,0,1). Let g : M — M’ be a Ag-isomorphism. Since we
have g(Tx) = Tg(x) for x € M and T(1,0,0,0) = («,0,0,0),7(0,1,0,0) =
(0,3,0,0),7(0,0,1,0) = (0,0,7v,0), 7(0,0,0,1) = (0,0,0,0), we can prove the

next proposition by the same method as Proposition 4.2.3.

Proposition 5.1.3. Let M = M({,m,n; x,y,z) and M' = M({,m,n;2',y', 2")
be Ap-modules satisfying [M|g, [M'|r € M}E(T). Assume that g : M — M' is a
Ag-isomorphism. Let {e1,es,e3,e4} and {e1’,es’ €3’ e4'} be the bases of M and
M', respectively. Let A be the matrixz corresponding to g with respect to the bases

{e1,€e9,€3,e4} and {e1',ed’ €3’ e4'}. Then we have

@ 0 0 0
g1 | 0 e 00
0 0 ag 0
0 0 0 a

for some ay,as, a3, and ay € OF.
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Put A = (a;;), 1 < 4,5 < 4. Using this proposition, we have a;; = a; for
it =1,2,3,4 and a;; = 0 for ¢« < j. Since we have a;; € O for i > j, we get the
following proposition (cf. [12, Proposition 4.5 and Lemma 4.6] and [4, Lemma
2.1.2]). We note that we write ay, az, and ag for Z—i, Z—i, and g—i, respectively, in the

following

Proposition 5.1.4. Let [M({,m,n;z,y,2)|g and [M({,m,n; 2",y , 2" )|g be ele-
ments of M?(T). Then the following statements are equivalent:
(i) We have M (¢, m,n;z,y,z) = M({l,m,n;2',y, 2") as Ag-modules.

(ii) There exist ay,aq, and az € O satisfying

as =a; mod 7 (5.2)

‘2’=0 mod ™, (5.3)

az —a; — (ag —ay)mw-

1—a; — (ay — al)ﬂ_éy'

— {ag —a; — (ag — al)ﬂ_ex/} 7" =0 mod 7", (5.4)
azr = axxr’ mod 7™, (5.5)
y—asy — (azx —asx’ )7~z =0 mod 7", and (5.6)
z=az? mod 7" (5.7)

Let R be a set of complete representatives in O of the elements of the residue
field Og/(m). Namely, R is a subset of Op and each class of Og/(7) contains
a unique element in R. We assume that R contains 0, 1 and fix this set R of

complete representatives. For non-negative integers k, we set

k—1
Sy = {Zami

1=0

Sy = {0} ifk=0.

a; € R for i:O,l,...,k—l} if k>0,

Definition 5.1.5. Let (¢, m,n;z,y, z) be a 6-tuple with £, m,n € Zs¢and x,y, z €
Og satisfying the conditions (a), (b), ..., and (f) in Lemma 5.1.1. We call a 6-tuple
(¢,m,n;z,y, z) admissible if z € S, and y, z € 5.
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Proposition 5.1.6. (1) If a 6-tuple ({,m,n;x,y,2) is admissible, then ML,
m,n;x,y,z) becomes a Ap-module and [M(¢,m,n;z,y,z)] € M}E(T).

(2) Suppose that [M] € M?(T). Then there is an admissible 6-tuple (¢, m,n;
x,y,z) such that [M] = [M({,m,n;z,y, z)].

Proof. Part (1) follows from Lemma 5.1.1.

Next, we prove part (2). We suppose that [M] € M?(T). Since we explained
before Lemma 5.1.1, we can take a module M (¢,m,n;a’,y/,2") such that [M] =
[M(¢,m,n;2',y, 2")], where {,m,n > 0 and 2/,y', 2" € Op. We choose = € S,
and y,z € S, satisfying ' =z mod 7™, ¥ + (z — 2/)7~™2 =y mod 7" and
2/ =z mod 7". Then (¢, m,n;x,y, 2) is admissible. Put a; = ay = ag = 1. Then
equations (5.2), (5.3), (5.4), (5.5), (5.6), and (5.7) hold. By Proposition 5.1.4, we
have [M] = [M(¢,m,n; 2.y, 2" )] = [M (¢, m,n;z,y, z)]. Thus we get (2). ]

5.2 The statements (I) - (XII)

In this section, we describe the statements (I), (II), ..., and (XII) in Theorem
2. For two 6-tuples (¢,m,n;x,y,z) and (¢,m,n;z',y,2"), we set the following

quantities. If 2’ #£ 0,2 # 0, we put

¢ = —y+§§y’, D=z -y,
E = 7" -2, F:’iTe—CL’/—f—({L‘/—y,)(l—%),
and G = —7Tm—|—(7rm—zl)<1—§).

(I) If 2" # 0, 2" # 0 and ordg(A) < ordg(B), then either the following (I-1), (I-2),
or (I-3) hold.
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(I-1) All of the following (I-1-a), (I-1-b), (I-1-c), and (I-1-d) are satisfied:

(I-1-a) min {ordE (W—/) 7ordE(F),ordE(G)} = ordg (W—/) ,
x x
(I-1-b) ordg(A) < ordg(C),
(I-1-c) r=u1a,
. ¥ _ z _
(I-1-d) min < ordg | D + ?A BF7"™™ ) Jordg | F + ZA BGa"™™ ),

ordg (W—/)} < ordg (1 — EI) .
Yy Y

(I-2) All of the following (I-2-a), (I-2-b), (I-2-c), and (I-2-d) are satisfied:

(I-2-a) min {ordE (%) ,ordE(F),ordE(G)} = ordg(F),
(I-2-b) ordg(A) < ordg(C),
(I-2-¢) ordg(F) < ordg (1 — %) :

(I-2-d) min 4 ordg (AlB— + W—,DFl) ;ordg(E — DF'G),
T

Z/

ordg (W—/>} < ordg (i/ -1- A’lC’W—/ — <£, - 1> DF1> .
Y z z x
(I-3) All of the following (I-3-a), (I-3-b), (I-3-¢), and (I-3-d) are satisfied:

(I-3-a) min {ordE (7;—17> ,ordE(F),ordE(G)} = ordp(G),
(I-3-b) ordg(A) < ordg(C),
(I-3-¢) ordg(G) < ordg (1 - E/) ,

T
"

(I-3-d) min ¢ ordg (AlB— + W—IEG1> ;ordp(D — EFG™1),
x

Zl

ord (_)} < ordy (3, ey LAY EG—I) |
Y z z x
(IT) If 2" # 0,2" # 0 and ordg(A) > ordg(B), then either the following (II-1),
(I1-2) or (II-3) holds.
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(1I-1) All

of the following (II-1-a), (II-1-b), (II-1-¢), and (II-1-d) are satisfied:

min {ordE (W—,> ,ordE(D),ordE(E)} = ordg (W—,> ,
z z

OI'dE(B) S OI‘dE(C),

z2=12,

/ /
min {ordE (F + Z—/AB_IDWm_") ,ordg <G + z—,AB_lEﬂm_") ,
x x
n z / —17rm !
ordg (7r <1——/>—|—ZAB —/),n—l—m—ordE(Bm)}
x x

< ordg (21 —1- B_lc’ﬂ—/) )
x x

(I1-2) All of the following (II-2-a), (II-2-b), (II-2-c), and (II-2-d) are satisfied:

(11-2-a)
(I1-2-b)
(11-2-c)

(I1-2-d)

min {ordE (”7”) ~ordp(D), ordE(E)} — ordp(D),
ordg(B) < ordg(C),

ordg(D) < ordg (1 — 5) ;

min {ordE (AB_NT— + W—/D_lF) ,ordg(G — D™'EF),
2

:E/

n + ordg (_ (1 _ f) + D‘1F> n4+m— ordE(Bx’)}

:C/

< ordp (f ~1-B7C% - (5 -1) D-1F> .
T T z

(I1-3) All of the following (II-3-a), (II-3-b), (II-3-¢), and (II-3-d) are satisfied:

(11-3-a)
(11-3-b)
(I1-3-¢)

(11-3-d)

min {ordE (Z—/) ,ordE(D),ordE(E)} = ordg(FE),
ordg(B) < ordg(C),

ordp(E) < ordp (1- =)

min {ordE (AB_NT—/ + W—/E_1G> ;ordp(F — DET'G),
T z

n + ordg (— (1 — %) + E’1G> N+ m— ordE(Bw’)}
< ordg (3 -1- CB*lﬁ — (3, — 1) ElG) .

x! T z
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(III) If £ # 0,m # 0, and n = 0, then the following (III-a) holds.

m

(I1I-a) min {ordE (W—/> cordg(mh — x')} < ordg (2 _ 1) '
x

:L-/
(IV) If £ # 0 and m = 0, then either the following (IV-1), (IV-2), or (IV-3) holds.
(IV-1) All of the following (IV-1-a), (IV-1-b), and (IV-1-c) are satisfied:

(IV-1-a) y #0 and 2’ #0,
(IV-1-b) ordp(y) = ordg(y'),

(IV-1c)  min {n ordp <<1 - z’)Z—/) Jordp(nf(1— ') — y')}
< ordp (z—l—(z’—l)y>.

v
(IV-2) All of the following (IV-2-a), (IV-2-b), and (IV-2-c) are satisfied:

(IV-2-a) y #0 and 2’ =0,
(IV-2-b) ordp(y) = ordg(y'),

(IV-2-¢) min {ordE (W—/) ,ordE(Wf _ y/)} < ordg (2/ — 1) )
Yy Y

(IV-3) All of the following (IV-3-a) and (IV-3-b) are satisfied:

(IV-3-a) ¢ =y =0,
(IV-3-b) ordg(l — z) = ordg(1 — 2').

(V) If ¢ # 0,m # 0,n # 0, and 2z’ = 0, then either the following (V-1), (V-2),
(V-3), (V-4), or (V-5) holds.
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(V-1) All of the following (V-1-a), (V-1-b), and (V-1-c) are satisfied:

(V-1-a) 2 #0,y #0, and

min {ordE (W—/> ,ordp(mt — y’)} = ordg (W—,) ,
Yy Yy

(V-1-b)  y =1y,
(V-1-c) min {ordE (W—) :
x

ordg (Wﬁ—xl—i—(ﬂ'e—y,) (1—£>)}§ord}3 (1—£>.
T T T

(V-2) All of the following (V-2-a), (V-2-b), (V-2-¢), and (V-2-d) are satisfied:

(V-2-a) 2 # 0,y # 0 and

min {ordE (Z—T) ,ordp(mt — y’)} = ordg(r" — /),
(V-2-b) ordg(y) = ordg(y),
(V-2-¢) ordp(n® — ') < ordg (5 — 1) ;

n / n L __ 0 -1
(Vo) min{ords (W_, (1_2)_U v )
Yy

wt—a — !
=)

(V-3) All of the following (V-3-a), (V-3-b), and (V-3-c) are satisfied:

A

o

=

o,

&
7 N
@\|<@

—

—_

|
H\| )
~—
|
N
Qd\|c@
|

(V-3-a) ' #0 and 3y =0,
(V-?)-b) Y= 07

m /
(V-3-¢) min {ordE (W—> ,ordp(mt — x)} < ordg (1 — £> )
x x
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(V-4) All of the following (V-4-a), (V-4-b), and (V-4-c) are satisfied:

(V-4-a) ¥'=0 and 3y #0,
(V-4-b) ordg(y) = ordg(y),

(V-4-c) min {ordE <7T—,) ,ordp(rt — y')} < ordg (1 - E/) ,
) Y
(V-5) The following is satisfied:

/

¥=z2z=0 and y=19' =0.

(VI) If £ #0,m # 0,2’ = 0, and 2’ # 0, then either the following (VI-1), (VI-2),
(VI-3), or (VI-4) holds.
(VI-1) All of the following (VI-1-a), (VI-1-b) and (VI-1-c) are satisfied:

(VI-1-a) y #0 and

min {ordE (7;—7) ,ordg(mf — y,),OTdE(Z/)} = ordg <7;_7) ’
(VI-1-b)  y=1,
(VI-1-¢) min {ordE (2—7;) yordg(y'), ordp(n™ — Zl)} < ordp <1 B 5) '

(VI-2) All of the following (VI-2-a), (VI-2-b), (VI-2-¢), and (VI-2-d) are sat-
isfied:

(VI-2-a) y' # 0 and
min {ordE <7T—,) ,ordg(mt — y’),ordE(z')} = ordg(r" — /),
)

(VI-2-b) ordp(r" —y') < ordp (ﬂ — 1) :
)

/

n 1.0
(VI-2-¢) min {ordE <7T—/) ,ordg <7rm - fﬂ /) }
2 -y

z —a
ordE<_,_1+3€__yy,),

(VI-2-d) ordg(y) = ordg(y').

IN
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(VI-3) All of the following (VI-3-a), (VI-3-b), (VI-3-¢), and (VI-3-d) are sat-
isfied:

(VI-3-a) y #0 and
min {ordE (%) ,ordg(rt — y’),ordE(z’)} = ordp(?),

(VI-3-b) ordg(z') < ordg (2/ — 1> ,
Y
n 1 n
(VI-3-c) min {ordE (W—/—/(Wm — z’)) ,ordp (W—/) :
Yz z

ordg (—y’ + (nf - y');(ﬂm - 2’)) }

z Yy 1, ..
OI'dE‘ (—/ -1+ (? — 1) ;(ﬂ' _Z/)),

(VI-3-d) ordg(y) = ordg(y).

IN

(VI-4) All of the following (VI-4-a) and (VI-4-b) are satisfied:
(VI-4-a) y=1y =0,

(VI-4-b) min {ordE (Z—/) yordg(m™ — z’)} < ordg (g - 1) :

(VII) If ¢ = 0,m # 0,n # 0, 2’ # 0,1, ¥ # 0, and 2’ = 0, then the following
(VII-a) and (VIL-b) hold.

(VII-a) ordp(y) = ordp(y’), ordg(l—y) = ordg(1l—y),
(VILb)  min {ordE (ga - y')) ordg (ga — y')) ,
ord (17imx,(1 - y')) n}
< ode (1-9- 22220 )).

(VIIT) If £ = 0,m # 0,n # 0, 2’ # 0,1, ¥ = 0, and 2’ = 0, then the following
holds.

(VIII-a) y = 0.
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(IX) If £ =0,m # 0,n # 0, and 2’ = 0, then either the following (IX-1), (IX-2),
(IX-3), or (IX-4) holds.
(IX-1) All of the following (IX-1-a), (IX-1-b), and (IX-1-c) are satisfied:

(IX-1-a) y' #0and 2’ #0,

(IX-1-b) ordg(y) = ordg(y'),

(IX-1-¢) min {ordE (7;—/(1 - y’)) ,nyordg(7™(1 —y') — z/)}
z
< —1—- = - .
< ordg (y 1 v (y 1))
(IX-2) All of the following (IX-2-a), and (IX-2-b) are satisfied:

(IX-2-a) y' # 0 and 2’ =0,
(IX-2-b) ordg(y) = ordg(y'), ordg(l —y) =ordg(l —1vy').

(IX-3) All of the following (IX-3-a), (IX-3-b), and (IX-3-c) are satisfied:

(IX-3-a) y'=0and 2’ #0,
(IX-3-b)  y=0,

(IX-3-¢) min {ordE (W—/) ,ordg (™ — z')} < ordg (i _ 1) .
z

Z/

(IX-4) The following is satisfied:
(IX-4-a) y=9y' =0 and z=2=0.

(X) If £ =0,m # 0,n # 0, and 2’ = 1, then either the following (X-1) or (X-2)
holds.
(X-1) All of the following (X-1-a), (X-1-b), and (X-1-c) are satisfied:

(X-1-a) 2 #0,

(X-1-b) ordg(l —y) = ordp(l —¢'),

(X-1-¢) min {ordE (%y') ;ordp(7™y" — z/),n} < ordg <§y' - y) .
(X-2) All of the following (X-2-a) and (X-2-b) are satisfied:

(X-2-a) 2’ =0,
(X-2-b) ordg(y) = ordg(y’), ordg(l —y)=ordg(l —1).
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(XI) If £ =0 and m = 0, then the following (XI-a) and (XI-b) hold:
(XI-a) ordg(y) = ordg(y/),

XI-b ordg(l —y — 2) =ordg(l — vy — 7).
(XI-b) (1-y—2) (1-y

(XII) £ =0,m # 0, and n = 0.
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Remark 5.2.1. We can check the statements (I), (II),..., (XII) by calculating
p-adic valuations of quantities described by using 6-tuples (¢, m,n,z,y,z) and
(6,;m,n, 2’y 2"). The following Table 5.1 is the algorithm of Theorem 5.3.1.
This table can be used when we check whether two Ag-modules M (¢, m,n;x,y, z)

and M (¢,m,n;2’,y, 2') are isomorphic.

Table 5.1:

(VI 55—y = 0] (1)

NO
(VII)
™ x ™, .
A= Y and B = Y= which is defined before the statement of (I).
z
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5.3 Proof of Theorem 2

In this section, we prove Theorem 2:

Theorem 5.3.1. Let (¢, m,n; x,y,2) and (¢,m,n; ',y 2") be two admissible 6-
tuples. Suppose that ordg(z) = ordg(z’) and ordg(z) = ordg(z'), where ordg is
the normalized additive valuation on E such that ordg(m) = 1. Suppose also that
ordg(l—2) = ordg(1—2a') if ¢ = 0. Then the following statements are equivalent:
(i) We have M(¢,m,n;z,y,2z) = M, m,n; 2,y 2") as Ag-modules.
(ii) One of (I),(II),..., and (XII) holds for (¢,m,n;x,y,z) and (¢, m,n;z’,y’
,2'), where the statements (1), (II), ..., and (XII).

We fix notation. Let M,,,(E) be the set of m x n matrices with entries in F
and GL,,(Og) the group of m x m matrices over O that are invertible. For A
and B € M,,,(E), we write A ~ B if there is a matrix P € GL,,(Og) such that
PA = B. This is an equivalence relation on M,,,(E).

First, we give necessary conditions for the two modules M (¢, m,n;z,y, z) and
M, m,n;x' vy, 2") to be isomorphic.

Proposition 5.3.2. Let ({,m,n;x,y,2) and ({,m,n;2',y,2") be admissible. As-
sume that M (£,m,n;x,y,z) = M,m,n;z',y',2") as Ag-modules. Then we have

ordg(z) = ordg(z’) and ordg(z) = ordg(2’).

~

Proof. We assume that M (¢, m,n;x,y,z) = M({,m,n; 2.y, 2") as Ag-modules.
Then we have (5.5) and (5.7) by Proposition 5.1.4. If ordg(x) > ordg(z’), then
we get ordg(asx — asx’) = ordg(z’) > m by (5.5). Since (¢,m,n; 2',y',2’) is
admissible, this implies ' = 0. This contradicts ordg(z) > ordg(z’). By the same
reason, ordg(x) < ordg(z’) does not hold. Therefore, we have ordg(z) = ordg(z’).

In the same way, we get ordg(z) = ordg(z’). O

Further in the case ¢ = 0, we have the following

Lemma 5.3.3. Let ({,m,n;z,y,2) and ({,m,n;x',y', 2") be admissible. Then the
following statements are equivalent:
(i) We have M = M’ as Agp-modules.
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(ii) There exist ay,as, and az € O satisfying (5.4), (5.5), (5.6), and (5.7) in
Proposition 5.1.4 and

az(1—2)=a; (1 —2') mod 7™ (5.8)
In particular, if (1) holds, then we have
ordg(l — z) = ordg(1 — ).

Proof. The conditions (5.8) and (5.3) are equivalent under the condition (5.5).

Hence we get the conclusion. O

Proof of Theorem 5.3.1. By the Table 5.1 in Remark 5.2.1, for given two 6-tuples
(6,m,n;x,y,z) and (¢,m,n;z’,y’, '), we have only to apply one statement among
(I), (II), - - -, and (XII). Using the following Propositions 5.3.4, 5.3.6, and 5.3.10,
we can prove Theorem 5.3.1 in the case (I), (III), and (VII). By the same method

as these Propositions, we can prove the remaining cases. This implies that our
Theorem 5.3.1 holds. 0

Let [M(¢,m,n; x,y, z)] be an element of /\/lf(T). We fix non-negative integers

£, m, and n.

Proposition 5.3.4. Let (¢, m,n;x,y,2) and (¢, m,n;z’',y', 2") be admissible. As-
sume that ' # 0,2 £ 0 if £ # 0 and that ' # 0,1,z £ 0 if £ = 0. Suppose that
ordg(z) = ordg(z’), ordg(z) = ordg(z') and, ordg(A) < ordg(B), where A, B
are defined before the statement (1). Suppose also that ordg(1l —x) = ordg(1l — ')
if £ =0. Then the following statements are equivalent:

(i) We have M (¢, m,n;z,y,z) = M,m,n;z',y',2") as Ag-modules.

(ii) The statement (1) holds for (¢,m,n;x,y,z) and ({,;m,n;z',y’, 2").

Proof. First, we prove (i) = (ii). Let A,B,C,D,E,F, and G € Op be the

elements defined before the statement (I). We note that these elements are all in
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Opg. By Proposition 5.1.4, we have units ay, as, and a3 € Oj, satisfying
ay —a; = v, (5.9)
az — a; — (ay — ay)7 ‘2’ = 7w, (5.10)

1—a; — (ag —a)) 7Yy

—{az— a1 — (az —ay)n 2’} o =71, (5.11)
asr — asx’ = "€, (5.12)
y—agy — &2 =7"¢,, and (5.13)
z—azz =7"¢E, (5.14)
for some v, w,n,&;,&,, and &, € Op. By the equations (5.9), (5.12), and (5.14),
we have
z m" x " ’
ar = (;—?fz) ;—7&—7”):
z n" x "
ay = <_, - _,£z> — _,gam and
2z ¥
z o
as — ; — 7£z
By the equations (5.10), (5.11), (5 13), we have
T z,
O (= w—rw=2(E 1), (515
T % et —ap-rw =201, (515)
™ x z
?;@ 550 (7' — Yo — 2w — 7" n—Z;—l, (5.16)
™ x 7rm Z T
T Vet (Y =G - = Sy . (5.17)
By the equations (5.15), (5.16), and (5.17), we obtain
3
Su-p T Hew o .
B m v
T o -y = -1 0
n m w
may Dy 0 0 0 -
n
&y
-5(1-3)
= | 21
5y —y
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Therefore, the augmented matrix for the system of the equations (5.15), (5.16),
and (5.17) is

-Z(1-2%) = wf—2 —™ 0 0 bh
Teo Doy - 0 b |, (59)
A B 0 0 0o - C
where by = —5(1 — %) and by = 55 — 1. Performing row operations, the matrix
in (5.18) is equivalent to
-Z(1-2) == -2 —gm 0 by
7;—7 0 2/—y am—2 —7" 0 by
A B 0 0 0 - C
A B 0 0 0 —n" C
~ = 0 D E - 0 £ -1
-Z(1-%) = rf—2 -1 0 —Z(1-%)
A B 0 O 0 - C
~ ™ 0 D E —qn 0 - , (5.19)
0 = F G —-m(1-2%) z 1

where by = % — 1. By the matrix (5.19), we get AS, + B, — 7§, = C.
Since &,,&,,&: € Op and ordg(A) < ordg(B), we have min {ordg(A), n} <
ordg(C). Further we have ordg(A) < ordg(C). Indeed, if ordg(y') > ordg(2’),
we have ordg(B) = ordg(z’) < n, since we assume that (¢,m,n;z,y,z) and
(6,m,n;a’ Y, 2") are admissible. If ordg(y’) < ordg(2’), we have ordg(A4) < n.
Thus we get ordg(A) < ordg(C). We prove that the statement (I) holds for
(6,;m,n;x,y,z) and (¢,m,n;x',y',2"). First, we note that either (I-1-a), (I-2-a)
or (I-3-a) holds. We suppose that (I-2-a) holds. By the matrix (5.19), we have
28+ Fo+Guw—7"(1 — £)p= £ — 1. Since we suppose (I-2-a), we get min

{ordE (7;—m) ,ordE(F),ordE(G)} — ordg(F),

This implies ordg(F) < ordg(% — 1). Thus we get the condition (I-2-c). Since
ordg(A) < n and ordg(F) < m, we have A # 0 and F # 0. Performing row
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operations for (5.19), we have

1 A~'B 0 0 0 —A" 1 o

0 —A'BT D E —nm AT g

0 ZXF' 1 GF' —a"(1-2%)F 0 c3

1 A7'B 0 0 0 —A7l ¢
~ o ZF*t 1 GF! —n"(1—Z)F! 0 e |

0 U 0 E-GF'D S ATt T

Z/

where T'= —A7'/CT + 2 -1 — (£ —1)F7'D, S=—1"+a"(1—- 2)F'D, U =
—A*1B2—7 — 7‘a%,n}?’*lD, e =A1C, ¢y = —A*102—7 +Z—-1,and s = (& —1)F L.
By the matrix above, we have

2n

Ue, + (E — GF~'D)yw + Sn + A—lz—,gy =T

This implies that min{ordg(U),ordg(E — DFLG), ordg(S), ordp(A™! Tr)} <

ordg(T). Since we have ordE(A_lﬂj,") = ordE(T;—T,L), this is the condition (I-2-d).
The condition (I-2-b) is already obtained after (5.19). Therefore (I-2) holds. We
can prove the case of (I-1) and that of (I-3) by the same method. Thus we have
obtained (ii).

We next prove (ii) = (i). Then either (I-1), (I-2), or (I-3) holds. We suppose
that (I-2) holds. By the condition (I-2-d), there exist integers &,, w,n, and §, € O
satisfying

2n

Ué, + (E — DF~'\G)w + Sy + A‘lﬂz—/fy — T

We put

x _ T _ n T
v o= (;—1)171—7}7 16— GF w1 )Py,

£, = AT'C—-AT'Bg, + ATang,.

By (I-2-a), (I-2-b), and (I-2-c), we have v, ¢, € Op. By the converse operation of
the proof of (i) = (ii), &, &y, &, w, n, and v satisty (5.15), (5.16), and (5.17). We
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also set

z " T Tm
¢
w = \Z-F7%) g
z z T
z " T Tm
az = ;——,fz ;—m,fxa
z ik
and a3 = — — —&,.
z z

Then ay, as, and ag satisfy (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14). In the
case where ¢ # 0, we can check aj,ay, and az € O since we have ordg(z) =

ordg(x’), ordg(z) = ordg(2’), and 2’ # 0. In the case of £ = 0, we have

z1—=x ™1 —x T

gl—x’_yl—x’gz—i_l—x’

a1 =

We note that we have ordg (%) > 0 since z € S,,. Thus we have a; € Op.
By the same method, we can show ay and a3 € Of. Then ay,as, and ag satisfy
equalities (5.2), (5.3), (5.4), (5.5), (5.6), and (5.7). By Proposition 5.1.4, we
obtain (i). If (I-1) or (I-3) holds, we can prove (i) by the same method. O

Proposition 5.3.5. Let ({,m,n;x,y,2) and ({,m,n;2',y,2") be admissible. As-
sume that ' # 0,2 #£0 if £ # 0 and that ' # 0,1,2" £ 0 if £ = 0. Suppose that
ordg(x) = ordg(a’), ordg(z) = ordg(z'), and ordg(A) > ordg(B), where A, B
are defined before the statement (I). Suppose also that ordg(l — z) = ordg(1 — 2’)
if £ =0. Then the following statements are equivalent:

(i) We have M (€, m,n;z,y,z) = M(,m,n;z',y',2") as Ag-modules.

(ii) The statement (II) holds for (¢,m,n;x,y,z) and ({,;m,n;z' Y, 2").

Proof. First, we assume (i). Let A,B,C,D,E, F, and G € Of be the same el-
ements, which is defined before the condition (I). By Proposition 5.1.4, we have
units a1, az, and ag € Oy satisfying (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14).

In the same way as Proposition 5.3.4, we have the matrix (5.19), which is equiv-
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alent to

AB™* 1 0 0 0 —r"B~! CB7!
= 0 DE - =1
0 = F G —7m(1-2%) z -1
AB™1 1 0 0 0 —7"B™' CB!
~ l 0 D E —x" 0 -1 |, (5.20)
—~AB7'T2 0 F G ¢ B_”’;# 4
where ¢y = £ — 1 - CB™'Z2 and ¢, = —7"(1 — £). By the same methods as

Proposition 5.3.4, we have ordg(B) < ordg(C'). We will prove that the statement
(IT) holds for (¢,m,n;z,y,z) and (¢, m,n;x',y',2z"). We note that either (II-1-a),
(II-2-a) or (II-3-a) holds. Then we have z = z’. Indeed, by the matrix (5.20)
above, we have

Ol"dE(g) = min {ordE (WZ—T) ,ordE(D),ordE(E)} < ordE(g —1).
Since we suppose z and 2z’ € S, this implies that z = 2. Further the matrix

above (5.20) is equivalent to

AB™!
1

1 0 0 0 —mB~Y ¢
0

-AB7'T2 0 F G —n"(1-%) a"BT'IE g
0

AB™' 1
~ 1 0 2D ZE —2 0 0 |,
0 0 V. W X "B 'I% ¢

where V. = F + ZDAB '™ W = G+ ZEAB'Z, X = —7"(1 - 2) -
ZYAB7IT cs = CB™!, and ¢ = &z —1- CB~'T7. Therefore there exist v, w,n,

! !

and ¢, € Op satisfying
1T x o
VU"‘WU}‘FX??‘I’T(Bl?gy:;—]_—CB 17.

This implies that
min {ordE(V), ordg(W), ordg(X), ordg (W"B—l 7;_/) }

< ordg (E/ —1- CB“T—,) )
x x
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Thus the condition (II-1-d) is satisfied. Therefore (II-1) holds. We can prove the
case (II-2) and that of (II-3) by the same method. Thus we have obtained (ii).

Conversely, we prove (ii) = (i). Then either (II-1), (II-2), or (II-3) holds.
We suppose that (II-1) holds. By the condition (II-1-d), there exist v, w,n, and
&y € Op satistying

Vot+Ww+Xn+7m"B ¢ =2 _1-cB!
T T

/

ﬂ.m

x

Set ¢, = —Z Dv — ZEw + z'n and &, = CB™' — AB™'¢, + 7" B~1¢,. We put

ﬂ.n
n m
s x
¢
a, = (1— ,fz) - — &, — T,
z

x x!
" x a"
a = |1=-—& | 5 ——&, and
z x x
7Tn
a3z = 1— 752-

Then ay, aq, and ag satisfy (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14). In the
case where ¢ # 0, we can check ay,as, and a3 € O since ordg(x) = ordg(z'),
' #0, and 2’ # 0. In the case of ¢ = 0, we have ay,as, and a3 € OF in the same
way as Proposition 5.3.4. Then ay, as, and a3 satisfy equalities (5.2), (5.3), (5.4),
(5.5), (5.6), and (5.7). By Proposition 5.1.4, we have (i). If (II-2) or (II-3) holds,

we can prove (i) by the same method. O

Next, we treat the case where ¢ # 0 and n = 0. In this case, we havey = 2 = 0

for every admissible (¢, m,n;z,y, z).

Proposition 5.3.6. Suppose that (¢,m,0;x,0,0) and (¢,m,0;z',0,0) are admis-
sible. Assume that ordg(z) = ordg(z’) and ¢ # 0. Then the following statements
are equivalent:

(i) We have M(¢,m,0;2,0,0) = M(¢,m,0;2',0,0) as Ag-modules.

(ii) The statement (I11) holds for (¢, m,0;z,0,0) and (¢,m,0;2’,0,0).

Proof. We prove that (i) = (ii). By Proposition 5.1.4, we have units a;, as, and
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as € O satisfying

as =a; mod 7T£,

14

1—a;—(ag —a)7m 2’ =0 mod 7™, and

T =asx’ mod 7.

By [12, Proposition 4.5 and Lemma 4.6], this is equivalent to saying that M (¢, n, z)
>~ M(l,n,2"), where M(¢,n,z) = ((1,1,1), (0,7 2), (0,0,7") Yo, C Ag/(T —
a) @ Ag/(T — B) & Ag/(T — ) is defined in Section 4.1. By Corollary 1, this
implies that (I') or (II) holds. This is the same as the statement (III). Hence we

have (ii).
Next, we suppose (ii). Then we obtain M (x,0,0) = M(2’,0,0) by Theorem
1. Thus we have (i). O

Next, we consider the case where ¢ # 0 and m = 0. In this case, we have x = 0

for every admissible (¢, m,n;z,y, z).

Proposition 5.3.7. Let (¢,0,n;0,y,z) and (¢,0,n;0,y’,2") be admissible. Sup-
pose that ordg(z) = ordg(z’) and ¢ # 0. Then the following statements are
equivalent:

(i) We have M(¢,0,n;0,y,z) = M(£,0,n;0,y',2") as Ag-modules.

(ii) The statement (IV) holds for (£,0,n;0,y, z) and (£,0,n;0,y, 2').

Proof. First, we assume (i). We show (ii). We note that either (IV-1-a), (IV-2-a),
or ¥ = 0 holds. We suppose that (IV-a-1) holds. By Proposition 5.1.4, we have
units ay, as, and ag € O, satistying (5.2), (5.4), (5.6), and (5.7). By the equation
(5.2), (5.6), and (5.7), we have

3

Yy 7 ‘
a, = ? - ?§y — T, (521)
y «"
o = ? — ?ény, and (522)
z a"
as = o 7@ (5.23)



for some v,§,, and £, € Op. By (5.22), we get ordg(y) = ordg(y’). This is the
condition (IV-1-b). Further by the equation (5.4) we obtain

e, 1 (1 — z')”y—fgy F (1= ) — oo — 7
— 1 (z’—l)%. (5.24)

This implies that

n

, ) sordp(m’(1 —2') - y')}

)

This is the condition (IV-1-c¢). Therefore (IV-1) holds. We can prove the case of
(IV-2) and that of (IV-3) by the same method.

Conversely, we prove that (ii) = (i). Then either (IV-1), (IV-2), or (IV-3)
holds. We suppose that (IV-1) holds. By the condition (IV-1-c), we have (5.24)
for some ¢, &, v, and n € Op. We put ay, as, and a3 the same as (5.21), (5.22),

| e

min {n,ordE ((1 — 2

<

< ordE(z—l—(z’—l)

<

and (5.23), respectively. Then a1, as, and a3 are units and satisfy equalities (5.2),
(5.4), (5.6), and (5.7) since we have ordg(y) = ordg(y’) and ordg(z) = ordg(2’).
By Proposition 5.1.4, we obtain (i). We can show the conclusion by the same
method when (IV-3) holds. Finally, we suppose that (IV-2) holds. In this case,
we have M (¢, m,n;z,y,z) = M(£,0,n;0,y,0) = ((1,1,1), (0,7, y), (0,0, 7))z, &
((0,0,1,0))z,. Therefore (i) is equivalent to saying that

((1,1,1), (0,7, y), (0,0, 7))z, = ((1,1,1), (0,7, ¢/), (0,0, 7))z,

By Theorem 1, this is the same as the condition (IV-2). O

Next, we treat the case where £ # 0,n # 0, and 2/ = 0. Let ({,m,n;z,vy, 2)
and (£,m,n;z,y’,0) be admissible. If we assume that ordg(z) = ordg(z’), then

we have z = 0.

Proposition 5.3.8. Suppose that (¢,m,n;x,y,0) and (¢,m,n;z’',y',0) are ad-
missible. Assume that ordg(x) = ordg(z’), £ # 0, m # 0, and n # 0. Then the

following statements are equivalent:
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(i) We have M (¢, m,n;z,y,0) = M({,m,n;z',y',0) as Ag-modules.
(ii) The statement (V) holds for (¢, m,n;z,y,0) and (¢,m,n;z’,y’,0).

Proof. First, we prove that (ii) = (ii). We suppose (i). By Proposition 5.1.4, we
have units a1, as, and ag € Of, satisfying (5.2), (5.3), (5.4), (5.5), and (5.6). By
the equations (5.2), (5.5), and (5.6), we have

y ™ ¢
a; = ? - ?gy — T, (525)
,n_n

a; = 5— —&y, and (5.26)

yx  wta ™
= YT Tl T 5.27
as Y Y xgy + T 3 ( )
for some v,&,, and £, € Op. By (5.26), we get ordg(y) = ordg(y’). By the

equations (5.3) and (5.4) we obtain

n / m /
W—/(l—x—) y—i-ﬂ—ém—i-(we—:c’)v—ﬂmw:%<1—£>,
Yy T T Yy T

n

n )
?§y+(ﬂg—yl)v—ﬂ 77:?—1

for some n and w € Opg. In the same way as Proposition 5.3.4, we write the

augmented matrix for the system of the equations above:

<§(1—%) A L 5(1-@))

71'_" é_/ - n E_

7 0 =« Y 0 T " 1
0o = d —rm (1 —-%) 1-Z

N ! (1=3%) z | (5.28)
7 0 mt—y 0 —7" g1

Ce —(mt =y (1 — %) We prove that the statement (V) holds for

(¢,m,n;x,y,0) and (¢, m,n;2’',y’,0). Then we note that (V-1-a), (V-2-a), (V-3-a),
(V-4-a), or (V-5-a) holds. We suppose that (V-1-a) holds. Then we get ordE(’;—7)
< ordE(ﬁ — 1) by (5.28). This implies y = ¢ since y and ¢’ € S,,. Further the

where dy =7

matrix (5.28) is equivalent to

0 == d —™m (1l - % 1-z
v v o (=g ). (5.29)
10 (r"=y)& 0 -y (F-D&



Thus we have

=-1- =, (5.30)

T

This implies that

min {ordE (g) ,ordg (7?4 — 1 — (n — y’)(l — %))} < ordg (1 — %) )

Thus we get (V-1-¢). Therefore we have obtained (ii). Next, we suppose that
(V-2-a) holds. Then we have ordp(7‘ —3/) < ordg () —1) by (5.28). Further the

matrix (5.28) is equivalent to

(7;—( —%) = gt—a —am 0 5(1—%) )
0 v

i —gn_1 oy qy_1_
1 O m ﬂ'é*y’ (y/ ]-)WZ, /

y/ We,y/

where dy = 7;—7(1 — ) T and dy = 2 (1 — %) — (% —1)==2 This implies

T y' wt

that
" v, mwt—a ot —a "
minqordg | —(1 - ) — ———— | ,ordg ( 7" ——— | ,ordg | —
y x/ y 7T£_y/ ﬂ.é_y/ T
4 /
y x Yy T —x

<orts (5 (- 5) - (1) =)

Thus we get (V-2-d). Therefore we have obtained (ii). The remaining cases are

< I

also showed by the same method as above.

Conversely, we prove that (ii) = (i) holds. We suppose that (ii) holds. Then
(V-1), (V-2), (V-3), (V-4), or (V-5) holds. We assume that (V-1) holds. Espe-
cially we assume that (V-1). By the condition (V-1-c), there exist &, v,w, and 7
satisfying (5.30). We put

and set a1, az, and as the same as (5.25), (5.26), and (5.27), respectively. Then
ai, az, and az are units and satisfy equalities (5.2), (5.3), (5.4), (5.5), (5.6), and
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(5.7). By Proposition 5.1.4, we have (i). The remaining cases are proved by the

same method as above. O

Further we treat the case where ¢ # 0,m # 0,2/ = 0, and 2z’ # 0. Let
(6,m,n;x,y,z) and (¢,m,n;0,y’, 2’) be admissible. If we assume that ordg(z) =
ordg(z’), then we have = 0. In the same way as Proposition 5.3.8, we can show

the following.

Proposition 5.3.9. Suppose that (¢,m,n;0,y,z) and (¢,m,n;0,y,2") are ad-
missible. Assume that ordg(z) = ordg(z’), £ # 0, m # 0, and n # 0. Then the
following statements are equivalent:

(i) We have M(¢;m,n;0,y,2z) = M(¢,m,n;0,y,2") as Ag-modules.

(ii) The statement (V1) holds for M(¢,m,n;0,y, z) and M(¢,m,n;0,y, 2").

From now on, we treat the case of £ = 0 and 2z’ = 0. Let (0,m,n;z,y, z) and
(0,m,n;2',y’,0) be admissible. If ordg(z) = ordg(z’), then we have z = 0.
Proposition 5.3.10. Suppose that (0,m,n;x,y,0) and (0,m,n;z’',y’,0) are ad-
missible. Assume that ordg(xz) = ordg(x’), ordg(l —z) = ordg(1l — 2’), 2’ # 0,1,
and y' # 0. Then the following statements are equivalent:

(i) We have M(0,m,n;z,y,0) = M(0,m,n;x’,y,0) as Ag-modules.

(ii) The statement (VII) holds for (0,m,n;x,y,0) and (0,m,n;z',y’,0).

Proof. First we assume (i). By Lemma 5.3.3, we have units aj,as, and ag €
O5 satisfying (5.8), (5.4), (5.5), (5.6), and (5.7). By (5.6), we have ordg(y) =
ordg(y’). Further using (5.4) and (5.6), we get

l—y=a(1—%) mod 7" (5.31)

Hence we have (VII-a). We show (VII-b). By (5.8), (5.5), and (5.6), we obtain

y " " l—x T
— LA 3 e — , .32
“ {(y/ y’§y>x+ :L‘g}l—x’ l—x’w (5-32)
y 7
o = ? — ?é—y, and (533)
y " ™
as = (? Ty fy) e (5:34)



for some &,,¢,, and w' € Op. By (5.31), we have 1 —y — ay(1 —y') = =" for
some 1 € Og. This implies that

™1 —xa ™1 —x m .
_zl_x/;(l_y/)gy—i_?1_I,<1_y/)§'x+ l_x,(l—y')w'—i-ﬂ n
yax'l—ux
= oy (5.35)

This implies that (VII-b). Conversely, we suppose that (ii) holds. By (VII-b),
there exist &, §,, w', and n € Op satisfying (5.35). We put ay, az, and as as (5.32),
(5.33), and (5.34), respectively. Since (0,m,n;z,y,0) and (0,m,n;2’,y',0) are
admissible and (VII-a) holds, as, a3 € Op. Using ordg(l — z) = ordg(1l — '), we
have a; € Oy. It is easy to check that a; and aq, and as satisty (5.8), (5.3), (5.4),
(5.5), (5.6), and (5.7). By Lemma 5.3.3, we get (i). O

Let (0,m,n;x,y, z) and (0,m,n;2’,0,0) be admissible. If ordg(z) = ordg(2’),

then we have z = 0. In the same way as Proposition 5.3.10, we have the following.

Proposition 5.3.11. Suppose that (0, m,n;z,y,0) and (0,m,n;z’,0,0) are ad-
missible. Assume that ordg(z) = ordg(z’), ordg(l — z) = ordg(l — 2’), m #
0,n #£0, and ' # 0,1. Then the following statements are equivalent:

(i) We have M(0,m,n;z,y,0) = M(0,m,n;z’,0,0) as Ag-modules.

(ii) The statement (VIII) holds for (0,m,n;x,y,0) and (0, m,n;z’,0,0).

Next, we consider the case where £ = 0, m # 0, n # 0, and 2’ = 0. Let
(0,m,n;z,y,2) and (0,m,n;0,vy,2’) be admissible. If ordg(z) = ordg(z’), then
we have x = 0.
Proposition 5.3.12. Suppose that (0,m,n;0,y,z) and (0,m,n;0,vy',7") are ad-
missible. Assume that ordg(z) = ordg(z’), m # 0, and n # 0. Then the following
statements are equivalent:

(i) We have M(0,m,n;0,y,2) = M(0,m,n;0,y,2") as Ag-modules.

(ii) The statement (IX) holds for (0,m,n;0,y, z) and (0,m,n;0,y,2’).

Proof. First, we assume (i). We prove that (IX) holds for (0,m,n;0,y,z) and

(0,m,n;0,y’,7"). By Lemma 5.3.3, we have units ay, a2, and a3 € O}, satisfying
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(5.8), (5.4), (5.6), and (5.7). By (5.8), we put ag — a; = 7™w. By the equation
(5.6), (5.7), and (5.8), we have

3

z ™ m

ay = ; - 762 — T w, (536)
y 7

ay = ? — ?éuy, and (537)
z "

as = ;_7£z (538)

for some &,,&,, and w € Op. Using (5.37), we have ordg(y) = ordg(y’). We note
that (IX-1-a), (IX-2-a), (IX-3-a), or (IX-4-a) holds. We assume that (IX-1-a)
holds. By (5.4), we have 1 —ay — (ag — a1)y’ — wz’ = n"n for some n € Og. This
implies that

ﬂ-n n m n
7(1—y’)€z+7f &+ {n"(1—y) =2 }w — 7"y

= y—l—g(y/—l). (5'39)

Thus we have (IX-1-c¢) and get the conclusion. Therefore we have proved (ii). We
can prove the remaining cases by the same method.

Conversely, we suppose that (ii) holds. Then either (IX-1), (IX-2), (IX-3),
(IX-4), or (IX-5) holds. We assume that (IX-1) holds. By (IX-1-c), there exist
&y, &, w, and 7 satisfying (5.39). We define a4, as, and a3 by (5.36), (5.37), and
(5.38), respectively. It is easy to check that a;, az, and ag satisfy (5.8), (5.4),
(5.5), (5.6), and (5.7). By Lemma 5.3.3, we get (i). We can prove the remaining

cases in the same way:. U

Next, we consider the case where m # 0,m # 0,n # 0, and 2/ = 1. Let
(0,m,n;z,y,z) and (0,m,n; 1,9, 2") be admissible. If ordg(1 —x) = ordg(1 —2’),
then we have x = 1.

Proposition 5.3.13. Suppose that (0,m,n;1,y,z) and (0,m,n;1,y',2") are ad-
missible. Assume that ordg(z) = ordg(z'), m # 0, and n # 0. Then the following
statements are equivalent:

(i) We have M(0,m,n;1,y,2) = M(0,m,n;1,y,2") as Ag-modules.

(ii) The statement (X) holds for (0,m,n;1,y,2) and (0,m,n; 1,y 2").
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Proof. First, we assume (i). We prove that (ii) holds. We note that (X-1) or (X-2)
holds. We assume that (X-1) holds. By Lemma 5.3.3, we have units a;, as, and
as € Oy satisfying (5.8), (5.4), (5.5), (5.6), and (5.7). Further using (5.4) and
(5.6), we obtain

l—y=a;(1-%) mod =" (5.40)

These imply (X-1-b). By (5.40), we put 1 —y —ay(1 —y') = 7"n for some n € Op.
By the equation (5.4) and (5.5), we have

n

11—y m

= — 5.41
al 1 _ y, 1 _ y/n7 ( )

z a" m
ay = ; — 7£z - T fz, and (542)

z a
as = ; — 752 (543)
for some &, and &, € Og. By (5.6), we have

7Tn / m, / / n _ z / 44
7y€z+(ﬂ-y_z)§m_7r§y_;y_y- (5.44)

This implies (X-1-¢). Thus we have conclusion. We can prove the case of (X-2)

in the same way. It is easy to check that (ii) implies (i). O]

Next, we consider the case of £ = 0 and m = 0. If (0,0,n;z,y,2) and

(0,0,n;2',y, 2') are admissible, then we have r = 2/ = 0.

Proposition 5.3.14. Suppose that (0,0,n;0,y,2) and (0,0,n;0,y’,2") are ad-
missible. Assume that ordg(z) = ordg(z'). Then the following statements are
equivalent:

(i) We have M(0,0,n;0,y,2) = M(0,0,n;0,vy,2") as Ag-modules.

(ii) The statement (XI) holds for (0,0,n;0,y,z) and (0,0,n;0,v', ).

Proof. First, we assume (i). We prove the statement (XI) holds for (0,0,n;0,y, 2)
and (0,0,n;0,y, z/). By Lemma 5.3.3, we have units ay, as, and a3 € O} satisfying
(5.4), (5.6), and (5.7). By (5.4) and (5.6), we have (XI-a). By (5.7), we have
l—y—2=a(l —y — %) mod 7n". This implies (XI-b). Thus we get the
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conclusion. It is easy to see that (ii) implies (i). O

Finally, we treat the case where ¢ = 0, m # 0, and n = 0. If (0,m,0;x,y, 2)

and (0,m,0;2,1y/, ') are admissible, then we have y =y =z = 2/ = 0.

Proposition 5.3.15. Suppose that (0,m,0;2,0,0) and (0,m,0;2',0,0) are ad-
missible. Assume that ordg(z) = ordg(x’), ordg(l — z) = ordg(l — 2’), and
m # 0. Then the following statements are equivalent:

(i) We have M(0,m,0;x,0,0) = M(0,m,0;2",0,0) as Ag-modules.

(ii) The statement (XII) holds for (0,m,0;x,0,0) and (0,m,0;2’,0,0).

Proof. In the same way as Proposition 5.3.6, (i) is equivalent to saying that
M(0,m,z) = M(0,m,z’), where

M(0,m,z) C Ap/(T —a) & Ap/(T = B) ® Ap/(T — ).

By Corollary 1, this is the condition (XII). O

As an example, we classify all the elements of M) in the case of £ = Q,
and ord,(a — ) = ord,(8 — v) = ord,(y — §) = ord,(6 — ) = ord,(8 — ) =
ord,(cv—)=1, where we write M y(7) for M%’T) and ord,, for ordg,. This example
was also treated by C.Franks. We note that there is no distinguished polynomial
which has this property in the case of p = 2 and 3. In the following, we take
R = {0,1,...,p — 1}, which is a set of complete representatives in Z, of the
elements of the residue field Z,/pZ,.

Corollary 5.3.16. Suppose that p > 5. Let f(T) be the same polynomial as
(5.1) and put E = Q,,. Assume that ord,(c — ) = ord,(8 — ) = ord,(y — ) =
ord,(6 — a) = ord,(8 — §) = ord,(a — ) = 1. Then we have §M gy = 2p + 36.

We note that this corollary holds for every totally ramified extensions of Q,.

Sketch of the proof of Corollary 5.5.16. For fixed non-negative integers ¢, m, and

n, we put
M?(T) (67 m, TL) = {[M(Elu mlu TL,; Y, Z)] € M?(T) r,Y,z € Z’p}
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By Proposition 5.3.2, we have

MGy =TT TT T MFery (£ msm). (5.45)
L n m

Using the conditions of Lemma 5.1.1, we have 0 < ¢ < 1, 0 < m < 2, and
0 < n < 3. Indeed, by (a), we have 0 < ¢ < ord, (8 — o) = 1. If ord,(z) > 2,
we have m < 1 by (b). If ord,(xz) < 1, we obtain m < 2 by (d). These imply
0 < m < 2. We can prove that 0 < n < 3 by Lemma 5.1.1. In fact, by (f), we
have n < 3 in the case of ord,(z) < 2. We suppose ord,(z) > 3. In the case of
ord,(y) <1, we have n < 2 by (e). If ord,(y) > 2, we have n < 1 by (c). Thus
we get 0 < n < 3.

We denote M (¢,m,n;x,y,z) by M(z,y,z) for the fixed triple ¢,m, and n.
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M?(T) (07 07 O)
M?(T) (07 Oa 1)

MF1(0,1,0)

Then we get the following:

r.0.011,
[ (M(0,2,p — 1)],[M(0,1,1)], [M(0,0,0)],
(M(0,0,1)], [M(0,0,2)], [M(0, 1,0)],
[M(0,2,0)

]
\ ]
{[M(0,0,0)],[M(1,0,0)], [M(2,0,0)]}.
( .
]
]

[M(2,2,0)],...,[M(p—1,2,0)], [M(p — 2,4,0)],

My (0.1,1) = ¢ [M(1,1,0)], [M(1,2,0)], [M(2,1,0)], [M(1,0,0)],
| [M(0,0,0)], [M(0,1,0)], [M(0,2,0)],[M(2,0,0)]
( [Mooup] M(0,p, 2=2p),

M) (0,1,2) = ¢ [M(1,1+p,25p)], [M(Ll,ﬁi—gp) :
= 2]

MF)(1,0,0) = {[ (0, 0)]}

M?(T)(lvoal) = {[ ( 0)]7[M(0>071)]7[M(0>072)]}7

E o Y 0—«

Min.0.2) = { 0. 5720|3052 200},

M?(T)(lalvo) = {[M(O’OO)]}

MEZ(1,1,1) = §[M(0,0,0)], {M(O,E:Z,l)}},

7




MGy (1,2,1) = { (g:ZP,0,0)}}
Min.22) = {[MG=2 5= %00] ).
sin 2 = { Gt =i t=a )|

The following table is the number of elements of M?(T) (¢,m,n) for each (¢, m,n).
We pick up the case of (¢,m,n) = (1,0,0) and that of (0,1,1) and determine

l,m,n) f(T (f,m,n)

p+7

1
7
3
+
3
1
3
2
1
2
D
1
1
1
1

MJIZJ( (1,0,0) and ./\/lE 1(0,1,1), using our Theorem 2. The remaining cases are
proved by the same method as the case of (1,0,0) and that of (0,1,1). First, we
consider the former. This is the simplest case. Since we have m = 0 and n = 0,
we get M(z,y,z) = M(x,0,0) = M(0,0,0). Thus we obtain the conclusion.
Next, we consider the case (¢,m,n) = (0,1, 1). This is one of the most compli-

cated cases. If (0,1, 1;x,y, ) is admissible, then we have z = 0. Indeed we suppose
that (0,1, 1;x,y, 2) is admissible. Then z,y, and z satisfy (a), (b), (c), (d), (e), and
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(f) in Lemma 5.1.1. We have ordg(zz) > 1 by (e). We have also ordg(z) > 1 by
(¢). Since z € Sy, we have z = 0. We classify all the elements of./\/l?(T) (0,1,1). We
note that (0,1, 1;z,y,0) is admissible for every z and y € S;. Let (0,1,1;2,y/,0)

be admissible. We consider the following two cases:
(i) 2" €{0,1} or ¢y €{0,1},
(ii)) 2’ ¢{0,1} and ¥ & {0, 1}.
(i) We suppose that 2’ € {0,1} or ¢/ € {0,1}. Then we have
M(z,y,0) = M(2',y',0) < ordg(z) =ordg(z’),ordg(l — z) = ordg(1l — 2'),

ordg(y) = ordg(y'), and
ordg(l —y) = ordg(1l — ¢').

Indeed, by the Table 5.1 in Remark 5.2.1, the 6-tuple (0, 1, 1; 2,4, 0) corresponds
to (VII), (VIII), (XI), or (X). Therefore the isomorphism classes of M (z,y,0)
satisfying (i) are

[M(0,0,0)], [M(0,1,0)], [M(0,2,0)], [M(1,0,0)],

[M(L L, 0)]7 [M(L 2, O)L [M(Qv 0, O)]v [M(Zv L, 0)]

(ii) We suppose that =’ € {0,1} and v’ ¢ {0,1}. Then we have the following

Lemma 5.3.17. Suppose (ii). Then we have

M(%yao)gM(ﬂi/,y/,O) < x#0,1,y #0,1 and
l—z y _1-2" y
r 1l—y 2 1-—y

/

- mod p.

Further we have

( 2
2—2mod p
1—2" _ if (2/,y) = (k,2),
g - mod p =
Yy 2 mod p
if (/,y") = (p—2,4).
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Proof. Since we suppose (ii), the 6-tuple (0,1, 1;2’,4',0) corresponds to (VII) by
the Table 5.1. Since we assume that 2’ # 0,1 and 3’ # 0, 1, the condition (VII-a)
says that x # 0,1 and y # 0,1. By the same reason, the condition (VII-b) says

that
l—2 vy 1—2" vy d
= mod p.
r 1—y 2 1—-vy b

Thus we get the former. It is easy to show the latter. [

By Lemma 5.3.17, the isomorphism classes of M (x,y,0) satisfying (ii) are
Therefore we obtain ijJ]ZJ(T)(O, L)=p+T,

[M(2,2,0)],...,[M(p—1,2,0)],[M(p—2,4,0)],
Mf(T)(O’ 1’ 1) - [M<1a 17 0)]’ [M(l 2 O)]? [ (27 17 0)]7 [M<1> 07 O)]>
[M(0,0,0)], [M(0,1,0)], [M(0,2,0)], [M(2,0,0)]
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Chapter 6

Higher Fitting ideals and

A-modules

In this chapter, we state the relationships between Ag-modules and their higher
Fitting ideals. By Lemma 3.2.1 in Chapter 3, the isomorphism class of a finitely
generated torsion Ag-module M with ranke, (M) = 2 is determined by the Fitting
ideals Fitto s, (M) and Fitty o, (M). However, in general, Fitt; o, (M) (: > 0) do
not determine the isomorphism class of M (see Remark 6.1.1). In this chapter, we
define Ag-invariants m(M) and n(M) for a Ag-module M. Our aim is to prove
that Fitty o, (M), m(M), and n(M) determine the isomorphism class [M]g €
M?(T) (Theorem 6.1.2) for a fixed distinguished separable polynomial f(7T") with
degf(T) = 3.

6.1 Higher Fitting ideals

In this chapter, we will use the higher Fitting ideals. For a commutative ring R

and a finitely presented R-module M, we consider the following exact sequence
AN LN N 0,

where m and n are positive integers. For an integer ¢+ > 0 such that 0 < i < n, the
i-th Fitting ideal of M is defined to be the ideal of R generated by all (n—i)x (n—1)
minors of the matrix corresponding to f. We denote the ¢-th Fitting ideal of M by
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Fitt; r(M). This definition does not depend on the choice of the exact sequence
above (see [16]).
We also define a notation. For A and B € M3(Ag), we define

A~ B<= PAQ =B for some P,Q € GL3(Ag).
This is an equivalence relation on M3(Ag).

Remark 6.1.1. In general, Fitt; (M) (¢ > 0) do not determine the isomorphism
class of M. Indeed, suppose that f(T') = (T — a)(T — 5)(T — 7) with «, 5, and
v € Z,. We assume that ord,(o — ) = ord,(8 — v) = ord,(y — a) = 1. For
[M(0,1,2)] and [M(1,1,0)] € M, we have
Fittl,A@p (M<07 17 2)) = Fittl,/\@p (M(lv 17 0)) = (pa T)
However, by Corollary 4.1.8, we have [M (0, 1,2)] # [M(1,1,0)].
In the following, we write Fitt;(M) for Fitt; o, (M) for simplicity. The main

theorem in this chapter is the following, whose proof will be given in Section 6.2.

Theorem 6.1.2. Let [M(m,n,z)|g and [M(m/',n',;2')|g be elements of ./\/lf(T).
Put M = M(m,n,z) and M' = M(m/,n',z"). The following statements are
equivalent:

(i) We have M = M" as Ag-modules.

(ii) We have m(M) = m(M'), n(M) = n(M'), and Fitt;(M) = Fitt,(M'),
where m(M) and n(M) are defined by

m(M) =ordg(f —a) —m, n(M)=ordg(y— )+ ordg(x) — n.
To prove Theorem 6.1.2, we prepare the following
Lemma 6.1.3. There exists an exact sequence of Ag-modules
0—=AL 5 AL - M—0
such that the matriz A, corresponding to the Ag-homomorphism ¢ is of the form

T—« 0 0
A, = U1 T-p 0 (6.1)
w uy IT'—ry

for some uy, us, and w € Of.
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Proof. There exists an exact sequence
0= Ap®o, M3 Ap ®o, M5 M — 0,
where ® and U are defined as follows:

Pla®@m) = Ta®m—a® Tm,
V(ie®@m) = am.

We take (1,1,1), (0,7™,x), and (0,0, 7™) as a basis of M. Then we have

T(1,1,1) = o(1,1,1)4+ (8 —a)n ™(0,7™, z)
+{y—a—(8—a)r "x}r "(0,0,7")
70,7, x) = (0,67™, ~x)
= B0, 7", z) + (v — B)er "(0,0,7"), and
T7(0,0,7") = ~(0,0,7").

Therefore the matrix corresponding to ® is

T—a« 0 0
—(B—a)yr™™ T—-p5 0 : (6.2)
fy—a—(B-a)r e} —(y- far T—1
Take uy = —(f—a)m ™, us = —(y—pF)en ", and w = —{y—a—(f—a)7 "x}r "

Since Ap ®p, M = A%3, we get the conclusion. O

Remark 6.1.4. (i) By elementary row and column operations, we can more

simplify the matrix A, and get

T -« 0 0
Ag~ | 7 T=p 0 |, (6.3)
z " T —r
where m and n are non-negative integers and x € Op. Indeed, let u; = uv)7™ and

ug = upm™, where u; and us € O™ and m,n are non-negative integers. Then we
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(ii) If m > ordg(f — «) in the matrix (6.3), using elementary row and column

operations, we find that A, is equivalent to

T—« 0 0
WordE(B—a) T — 5 0 ,
* ™ T —v

WOTdE(ﬁ—Oc) N am . .
¥ = ——m—m — .
f—a U \B=a )"

Thus we always may assume that 7™ # 0 in other words, m # oc. This implies

where

that 0 < m < ordg(aw — ). By the same argument above, we may assume that
n#ooand 0 <n <ordg(f —7).
(iii) By elementary row and column operations for the matrix (6.2), we get

the matrix

T—a 0 0
A= (B—a)yr™ T-8 0 : (6.4)
—{v—a-(B-ap e (y=flar" T -~

In the following, we suppose ordg(z) < n and x # 0 for a module M (m,n, z).

Proposition 6.1.5. Let [M(m,n,x)|g be an element of M}E(T). If we have a

matriz corresponding to M(m,n,x) of the form

T—« 0 0

then we get
m' =ordg(f —a) —m, n' =ordg(y—B)+ ordg(z) — n.

Proof. We put M = M(m,n,z). By assumptions, there is a basis of M ey, e,

and e3 satisfying

(T —a)ey, = —1™ey—ales,
(T —B)e; = —n"es, and
(T'—~)es = 0.
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It is easy to see that
Fitt, (M) = (T = B)(T =), (T = a)(T = p), (T = a)(T =),
Tt (T = B), 7™ (T — ), 7" (T — a)). (6.5)
Since (T'— Bes = (v — B)es and n' < ordg(y — ), we have (T'— g)M = (T —
Bei, (T — B)es). Further we have
T(T —Bley = (T —B)(ae; — 7™ ey — a'es)

= a(T - Bley — 7™ (T — Bes + 1 g

i

(T — B)ey
= a(T - Be; — (Wm/ - %x’) (T — B)ea,
T(T - Bley = (T — B)(Bea —7"es)
= BT = Bles — 7" (v — Bes
= (T - B)es.

Thus we obtain

Fitt;((T — B)M) = (T — 7,y —a, ™ — 1 _/ﬁx') : (6.6)

7TTL

Next, we take (1,1,1), (0, 7™, z), and (0,0,7") as a basis of M. Then we have the

matrix (6.4) corresponding to a finite presentation of M and

Fitt, (M) = (T = a)(T = 5), (T = a)(T =), (T = S)(T =),
(6 =) ™(T' =), (y = Blar (T — ), A(T)),  (6.7)

AT) =B -a)r ™y =Blar" +(T' = ){y —a— (- a)r "} "
Since we have ordg(z) < n, (T'— )M is generated by
{(aﬁ,oryﬁ) and (0,0,(y— B)z)  if x £0,

(a_ﬁaovfy_ﬂ) and (0707(7_6)’””) if =0

and we obtain

T(a—p,0,y—08) = ala—p5,0,v—p5)+(y—a)z"'((0,0, (y — B)x)),
T(OJO’('Y_B):E) = ’7(0’07(7_5)'1;)'
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Thus we get

Fitt;((T — B)M) = (T — v, (y — a)z ™). (6.8)

To get the conclusion, we consider the following case (I) and case (II).

(I) We suppose that ordp(y — o) < ordg(r™ — =£2/). First, we show n/ =

ordg(y — ) —n + ordg(z). By (6.6), we have ’
Fitt, (7' = B)M) = (T = v,7 — «).
On the other hand, by (6.8), we get
Fitt; (T — B)M) = (T =7, (v —a)z™").

Thus we obtain ordg(z) = 0. Further by (6.7) and A(y) = (v — 8)(y — a)n™™ we

have
Fitt; (M) mod (T' =) = ((y —a)(y = B)7 ") (6.9)

and we get

/

Fitt, (M) mod (T —~) = ((v — e)7")

by (6.5) and the assumption ordg(y—a)+n' < ordg(m’+n'—(y—pF)x"). Therefore
we obtain n’ = ordg(y — ) —n = ordg(y — B) — n + ordg(z). Next, we show
m’ = ordg(f — ) —m. By (6.7) and ordg(z) < n, we have

Fitt; (M) mod (T — 8) = (8 — a)m ™8 — y)ar ™)

and we get
Fitt; (M) mod (T — ) = (z™*")

by (6.5), m < ordg(a — f) and n’ < ordg(y — B). Therefore we obtain m’ +n' =
ordg(f — a) —m+ordg(y — 8) + ordg(z) — n and m’' = ordg(8 — a) — m.

(I) We suppose that ordg(y — a) > ordp(z7™ — Z;L'/Bx/). First, we show n’ =
ordg(y — ) —n+ ordg(x). By (6.6), we have

Fitt, (T — B)M) = (T —y, ™ - Vﬂ_ ”Bx’) :

n/
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On the other hand, by (6.8), we get
Fitty (T — §)M) = (T — 5, (7 — a)a™).

Thus we obtain ordg(y — a) — ordg(x) = ordp(7™ — =£2'). Further, by (6.7),

T

we have
Fitt;(M) mod (T'—v)=((y —a)(y = B)m ")
and by (6.5), we get

Fitt; (M) mod (T —~) = <7r”, (ﬂ'm/ - ’yﬁ_n,ﬁx')) :

Therefore we obtain n’ = ordg(y — ) — n + ordg(z). Finally, we show m’ =
ordg(f — a) — m. By (6.7), we have

Fitty (M) mod (T — ) = (8 — )7 ™(B —y)ar™")
and by (6.5) we get
Fitt; (M) mod (T — B) = (#™+).
Therefore we obtain m/ +n’' = ordg (8 — a) — m+ordg(y — 5) + ordg(z) — n and

m’ = ordg(f — o) — m. O
By Proposition 6.1.5, we have the following

Corollary 6.1.6. Let [M(m,n,z)|g be an element of M?(T). If the matrices
T — « 0 0
T T -7 0
X1 " T —v

and
T—« 0 0

a2 T —p 0
T ™ T —v
present the module M, then we get
miy =mg and Ny = No.
Put M = M(m,n,x). By Corollary 6.1.6, we denote m;, nq, and z; by m(M),
n(M), and z(M), respectively. By Proposition 6.1.5, we have

m(M) = ordg(f —a) —m, n(M)=ordg(y— B)+ ordg(z) —n.
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6.2 Proof of Theorem 6.1.2

In this section, we prove Theorem 6.1.2. First, by [12, Lemma 4.1], we get the

following

Proposition 6.2.1. Let [M]g and [M'|g be elements of M}E(T). If M is isomor-
phic to M as a Ag-module, then we have m(M) = m(M') and n(M) = n(M'").
Lemma 6.2.2. Let [M(m,n,x)|g and [M(m/,n’;2")| g be elements OfM?(T). Sup-
pose that m(M) = m(M'), n(M) = n(M"), and Fitty (M) = Fitty(M’). Then we
have m =m/, n =n', and ordg(z) = ordg(z’).

Proof. We put M = M(m,n,z) and M' = M'(m’,n', 2’). First, we show m = m'.
By Proposition 6.1.5, we have ordg(f — a) — m = ordg(f — o) = m/. Thus we
obtain m = m’. Next, we show n = n’ and ordg(z) = ordg(z’). By Proposition
6.1.5, we have

ordg(z) —n =ordg(z") — n'.

By the equation (6.9), we have
Fitt, (M) mod (T' =) = ((v —a)(y = B)7").

Since Fitt;(M) = Fitty(M'), we get n = n'. Therefore we have ordg(z) =
ordg(z'). O
Lemma 6.2.3. Suppose that [M(m,n,x)|g, [M(m',n',2')|g € M?(T). Put M =
M(m,n,z) and M' = M'(m/,n',;2"). If m(M) = m(M'), n(M) = n(M'), and
Fitty (M) = Fitt1(M'), then there exist s,v, and w € Of satisfying

(2 —7™)s — v+ 1w =2 — . (6.10)

Proof. By assumptions and Lemma 6.2.2, we have m = m/, n = n/, and ordg(z) =
ordg(z'). We consider the following case (I) and case (II).
(I) We suppose ordg(f — a)m~™ < ordg(y — B)xn™", in other words m(M) <
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n(M). In this case, by (6.7), we obtain

Fitt; (M) = ((8— )7 ™T —7),

(v = B)am (v — ), A(T), (T = a)(T = 7)),
Fitt,(M') = ((8—a)r ™(T —7),

(

AT) = B-a)ym"(y=Par "+ (T =p{y—a—-(f—a)r "a}r ",
AT) = B-a)yr"(y=B)a'nm " +(T = B){y—a—(B—a)r "a'}x "

AT) = (T—-y){v—a-(B-a)r "z} ™"

+Hy—a)(y = B)r ", (6.11)
AT = T-D{v-a-B-a)r "}
+y—a)(y =B (6.12)

Since A(T') € Fitty(M'), there exist h;(T) € A (i = 1,2, 3, 4) satisfying
A(T) = m(T)(B—a)r™(T =) + hao(T)(y = B)a'n"(y — a)
+h3(T)A(T) + ha(T)(T — @)(T — 7). (6.13)

By the equation (6.11), we have A(y) = (v — a)(y — )7~ ". By (6.13), we get

(v —a)(y = B) " = ha(7)(y = B)a'm " (v — @) + ha(V) (v — ) (v = f)m "
Thus we obtain

1= ha(7)z + hs(7).

Therefore, there exists a polynomial g(T') € A such that

ha(T) =1 = ho(T)2" = (T' = 7)g(T). (6.14)
Since A(5) = (8 — a)m ™ (y — B)zm™", by (6.13), we get
(B—a)r ™ (y=Blar™" = M(B)(B—a)m (B —7)

+ho(B)(y = B)'n " (v — @)
+h3(B)(B — a)m " (y — B)a’m "
+ha(B)(B — a)(B — 7).
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Therefore we have

(B—a)re = —h(B)(B —a)r 7" + ha(B)2' (v — a)
+hs(B)(8 — a)r "2’ — ha(B)(B — a)7".

Since h3(B) =1 — hao(B)x" — (B —v)g(B) by (6.14), we get

B-a)r e = —m(B)(B—a)r """ + hy(B)2' (v — )
{1 = ha(B)2" — (B —7)g(B)}(B — )™
—ha(B)(B — a)m™.

Thus we have

(@ =2) = m(B)" — (B — ) — )"
Hha(B)2 + (5 = 1)g(B)}a’ + ha(Hr"n
= (= () (14322 )
Hha(B)2 + (5 — )oY}’ + ha(Br"n
2 — T )ha(B)
— (—mw) @+ T gy

Put s = he(B), v = —h1(B) — hya(B)7™ + g:—ihg(ﬁ)x’wmﬁf’l, and w = 0. We note
that we have s € O by the assumption (I). Thus we get the conclusion.

(IT) We suppose the case ordg (8 — a)n~™ > ordg(y — f)zm~". In this case, the
1-st Fitting ideals of M and M’ are

Fitt; (M) = ((B—a)m ™(a—7),(y = B)ar (T — a),
A(T) (T = a)(T — 7)),

Fitt;(M') = ((8—a)n " (a—7),(y = B)a'm " (T — o),
A(T) (T — a)(T — 7).

Since A(T') € Fitty (M), there exist hi(T) € A for i = 1,2, 3,4 satisfying

AT) = B(T)(B—a)r ™(a—7) +hy(T)(y = B’ (T — a)
HRY(T)A(T) + By(T)(T — a)(T — 7). (6.15)
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By (6.15), we get

(Y—a)(y=B)m™" = hi(7)(B—a)m " (a—7) +hy (V) (v = B)a'm " (v — @) + hs(7).

Thus we obtain

(6 — a)ﬂ-im -n
1= —hﬁ(V)W + hy ()2 + hy(V)(y —a)(y = B)m "
We note that we have ((i :(;,))7;:7: € Op by the assumption (IT). Therefore, there
exists a polynomial ¢'(T") € A such that
(6 —a)m™

hy(T) =1+ RY(T) — hy(T)a" + ¢ (T)T — 7). (6.16)

(y =B
Since we have A(a) = (a —¥)(f — a)(1 — 7 ™x)7~ " and (6.15), we obtain

(=B -a)l—7"2)r™" = h()(f-a)r "(a=7)
+hy(a)(a =) (B —a)(1 =7 "2 )"

Therefore we have

(1—7""z)n ™" = hj(a)m ™ + hy(a)(l — 7 ™2 )yr "

Since hfy(a) = 14 b} (a)E=2"" _ b/ (a)z’ + ¢'(o) (o — ) by (6.16), we get

(y=B)m—m

(" —x) = W) )

{1 @ =G~ i+ e - ) " - 2

Thus we have

@ —z) = {h&@)% ~ (o)’ + () e~ 7)} (x" — a)

+h) ()"

= o= m {h @) S ) - (et - )
+7"h ().

Put s = —h’l(a)% + hy(a) — ¢'(a)(a — y)2'™t € O and v = h}(«). Thus

we get the conclusion. O]
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Lemma 6.2.4. Let [M|g and [M'|g be elements of /\/lf(T). Suppose that M =
M(0,n,x) and M" = M'(0,n',2"). Suppose also that n(M) = n(M') and Fitt, (M)
= Fitt1(M"). Then we have 1 —x =¢(1 — ') mod 7" for some ¢ € Of.

Proof. By Lemma 6.2.2, we have n = n/ and ordg(z) = ordg(z’). By (6.7), we

have

Fitt, (M) mod (T — a) = ((a — ) (@ — ). (@ — B)(or = ) (1 — 2)7™)
and
Fitt, (M') mod (T — a) = ((a — f)(a — 7). (a — A)a —7)(1 —a)x ™).
Since Fitt, (M) = Fitt, (M), we get
l—2=0 mod 7" <= 1—2"=0 mod 7".

Hence if 1 —2 =0 mod 7", then we obtain 1 —z = ¢(1 — 2’) mod 7" for some
e € Op. If1—2 # 0 mod 7", then we have (a—8)(a—v)(1—2)7" = e(a—p)(a—

¥)(1 —a")m=" for some ¢ € Of. Therefore we get 1 —z =¢(1 —2’) mod 7. O

Proof of Theorem 6.1.2. We show that (ii) implies (i). Put M = M (m,n,z) and
M = M'(m/,n’,2"). By Lemma 6.2.2, we have m = m/, n = n/, and ordg(x) =
ordg(z’). Suppose that m,n # 0, and ordg(x) # n. Then we get M = M’,
using Lemma 6.2.3 and [12, Lemma 4.9]. Suppose m = 0 and n # 0. Then
we get M = M’ by Lemma 6.2.4 and [12, Proposition 4.11]. Suppose n = 0.
Since M(m,0,x) = M(m,0,0), we have M(m,0,x) = M(m,0,2") = M(m,0,0).

Therefore we get the conclusion. O

6.3 Complementary Properties

In this section, we show some propositions in order to determine the Iwasawa
module associated to an imaginary quadratic field in Chapter 7.

For a non-negative integer n, we put w, = w,(T) = (1 +T)?" — 1.
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Proposition 6.3.1. For a distinguished polynomial f(T) € Z,[T], let E be the
splitting field of f(T') over Q,. Then the natural map

U My — Mgy (M) [M ®1 Ag]i)
1S injective.
Proof. We suppose that M @5 Ag = M’ @, Ag for [M] and [M'] € M%T). Since
M @p Ap = M™ as A-modules, we get M™ = M as A-modules, where n is the
degree of the extension E/Q,.

We assume that M % M’ as A-modules. Since M is a finitely generated A-
module, M is a profinite module and we have M = limM /m" M, where m = (7, T).
Since M % M’, there exists a positive integer ¢ such that M/m‘M % M’ /m® M’
[19, Proposition 5]. Since both M/m‘M and M'/m*M’ are of finite length, we can

decompose these modules into indecomposable modules

M/mEM = @Nlﬂ?ei’ M’/meM’ _ @Ni@e;a

where N;’s are indecomposable modules, N; # N; (i # j) and e;, e} are non-
negative integers. By Krull-Remak-Schmidt’s theorem, there exists ¢ such that
e; # e,. Furthermore we have

(M/mZM)n _ @ Nj@nei’ (Ml/mZMl)n _ @ Ni@neg‘

Thus we get ne; # ne; for some i. By Krull-Remak-Schmidt’s theorem, we have
(M/mM)™ 2 (M’ /m*M’)". This implies M™ 2 M™. This contradicts our as-
sumption. ]
Let f(T') € Z,[T] be a distinguished polynomial and E the splitting field of
f(T). We put
F(T) = (T = a)(T = B)(T — ),
where «, 5, and v € 7Og.

Proposition 6.3.2. Let E and f(T) be the same as above. Suppose that [M]g €
M?(T). If M is a cyclic Ag-module, then we have

M= M(ordE(ﬂ — Oé), OI"dE(’}/ — Oz) + OI‘dE<f)/ — 5), uﬂ.ordE(,B*a))

e’

as Ag-modules, where u = )
—
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Proof. Suppose that M = M (m,n,z) C €. Suppose also that M is cyclic and
put

M = {(a,b,c))r, CE
for some a, b, and ¢ € Op. Since (1,1,1) € ((a,b,¢))r,, we have (1,1,1) =
h(T)(a,b,c) = (h(a)a, h(B)b, h(y)c) for some h(T) € Ag. Therefore we get a, b,
and ¢ € Oy. Since (0,7, z) and (0,0,7") € ((a,b,c))r,, we have

(07 ", I) = Q(T)(av b, C) = <Q(a>a7 Q(ﬁﬂ)a Q(7>C>7
(07 0, ﬂ-n) = T<T) (&7 b, C) = (T(O‘)aa T(ﬂ)ba T(V)C)

for some ¢(T") and r(T") € Ag. Since (T'—«)|q(T) and (T —a)(T' — B)|r(T), we get
m = ordg(q(B)) > ordg(f —«) and n = ordg(r(y)) > ordg(y —a) +ordg(y — f).
On the other hand, by Proposition 4.1.3 and Remark 6.1.4, we have m < ordg(5—
a) and n < ordg(y — a) + ordg(y — ). Therefore we obtain m = ordg(f — «)
and n = ordg(y — a) + ordg(y — B). Furthermore,

(T_a)(lvlvl) = (076_0477_04)
= (B—a)r "™(0,7", x)
+H{y—a—(B—a)r "z}r"(0,0,7").

g_awm(l— T ) for
—« v -«

M(m,n,z) = M(ordg(8 — a),ordg(y — a) + ordg(y — B), ur®4eB=2)

Since ordg{y — a — (8 — a)r ™z} > n, we have x =

some v € Og. By Remark 6.1.4 (i) , we get

Proposition 6.3.3. Let f(T') be the same as above. Assume that ordg(a — ()
=ordg(8 — ) = ordg(y — a) = 1 and ordg(«a) > ordg(B) > ordg(y). Then, we

have

My ={(0,0,0),(0,1,0), (1,0,0), (0,1,1), (1,2,un), (1,1,0), (0,1,2)},

where u = —2 and (m,n,x) means [M(m,n,z)|g. The following is the table

of the structure of Og-modules M /woM for Ag-modules M.
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M M JwoM
M(0,0,0) | Og/(a)® Or/(B) ® Or/(7)
M(0,1,0) Or/(B) ® Op/(ay)
M(0,1,1) Or/(a) ® Og/(B7)
M(0,1,2) Or/(B) ® Og/(ay)
M(1,0,0) Or/(7) ® Or/(ap)
M(1,1,0) Or/(7) ® Or/(aB)

M(1,2, ur) Or/(afy)

Proof. The former is Corollary 4.1.8. We show the latter. Let [M]g be an element

of Mf(T). There exist m,n, and = such that
M ={((1,1,1),(0,7™,x), (0,0, 7)) 0.
Hence we have
woM = ((a, 8,7), (0, B7™, 7)., (0,0,77")) 0,5

Since OF is a principal ideal domain, we can use the structure theorem over
the principal ideal domain. We consider the map II,, : M — M and take
(1,1,1),(0,7™, ), and (0,0,7™) as a basis of M. Then we have

T1,1,1) = ol,1,1)+ (8 —a)r ™(0,7™, x)

+H{y—a—(8—a)r "x}r"(0,0,7"), (6.17)
T, 7™, z) = (0,87™, ~vx)
= B0, 7™, z) + (v — B)ar"(0,0,7"). (6.18)

By the equalities (6.17) and (6.18), the matrix corresponding to II,,, is

o 0 0
(B—a)r™m B 0
fy—a—(B—a)yrma}r" (y—Blar™ 4

In order to verify the table, we have only to transform this matrix by elementary

row and column operations. For example, in the case of M = M (0,1,0), we get
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the matrix

« 0 0
8-« 5 0
(y—a)rt 0 ~

By the elementary row and column operations, we have

1 0
0 0
0

o ™ o

ary

Hence we get M/woM = Op/(8) ® Og/(ay). The remaining cases of the table
can be checked by the same method. O]

Proposition 6.3.4. Put f(T) = (T — a)g(T'), where o € pZ,. Let g(T) € Z,[T]
be a distinguished irreducible polynomial of degree 2 and E the splitting field of
g(T) over Q,. If [M(m,n,x)|g € Image (¥ : M%’T) — Mf(T) ([M] —
[M ®@a Ag|g)), we have

ordg(z) = m.

Proof. Let [M] be an element of M%’T). We suppose that M @Ag = M(m,n,z) C

E. There is a natural injective map
M — N (f(T)) — AT — o) ® A/(9(T))
[21, Lemma 13.8]. By this injective map, we have
M = ((a1,0:T + c1), (az, b2T + c2), (as, bsT + c3))z, C A(T — o) @ A/(9(T))
for some a;,b;, and ¢; € Z,. Since we have
M ®@p Ag = ((a1,01T + 1), (a2, 02T + ¢3), (a3, b3T + ¢3)) o,
by the same argument before Lemma 5.1.1, we can write
M @n Ap = ((ay, 00T + 1), (0,651 + &), (0, &5)) o,

for some al, b}, and ¢, € Z,. Furthermore there is an injective map [21, Lemma
13.8]

Ap/(T —a) & Ap/(g(T)) — &, (s(t), u(t)) — (s(a), u(B), u()),
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where 5 and 7 are the roots of ¢(T") in E. By this map, M ®, Ag is isomorphic

to the module
M' = {((a}, b\ + ¢}, b1y + 1), (0,058 + ¢4, byy + ¢5), (0,5, ¢5)) o, C E.

Since § and v are conjugate, we have ordg(b|f8 + ¢|) = ordg(b)y + ;) and
ordg(by5 + ) = ordg(byy + ¢,). By the same arguments after Lemma 4.1.2,
we get

M = {(1,1,1),(0,7™, x), (0,0, 7))o,

for some m,n, and = which satisfy m = ordg(x). Indeed, we may assume that
ordg(by0 + ¢4) < ordg(c;). By Lemma 4.1.2, we have

M = <(1’ bllﬁ + Cll? bll’y + Cll)? (07 b/25 + 6/2’ bl27 + 0/2)’ (07 Cé’ C/3)>OE‘
In the case of ordg (V)5 + ¢}) < ordg(by5 + ¢,), we have
b/ﬁ + ! !
M/g 1.1 b/ / 0 2 2 b/ / 0 3 / )
<(7 71’}/+Cl),(,b/15+0/172’y+02 ) 7b,1/3+0,1703 on

Since ordg(b)y + ¢}) < ordg(byy + ¢,) < ordg(d,), we get

N blﬁ—i—C/ bl’y—I—CI . .
o= (), (002 G (0 B )
B+ by + B+ iy +a Op
= <<17171)7S7t>(9E7

where
. ( by + ¢4 %7+%)
B+ Tyt
: — (o0 4 byt
Wy b8+, Viy+d )
Thus we get

and

= ord Vo3 + ¢ x:ﬁ%%ﬁ+d_%v+%
P+ ) Wa+cy Uy+e;’

n = ordE( 0'3 — Cg -blﬂ+d2>.
biy+c¢, B+, biy+d
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Therefore we obtain m = ordg(x). On the other hand, in the case of ordg (V|3 +
ch) > ordg(by58 + ¢4), we have

M = ((a, (b = 05)B + (1 — &), (B = B3)y + (c) — &5)),
Since ordg (b} + ¢ — (by8 + ¢)) = ordg(by5 + ¢), we get the same conclusion as
in the case of ordg(b} 8 + ¢}) < ordg(by5 + ). O

Proposition 6.3.5. Suppose that f(T) = (T—a)g(T), where o € pZ,. Let g(T) €
Z,|T] be an Eisenstein irreducible polynomial of degree 2 and E the splitting field
of g(T') over Q,. Assume that ordg(av — ) = ordg(f —v) = ordg(y — o) =1,

M/woM 2 7/p'7 ® Z/p L (i,7 € Zs1).
Then we have
U(M) =M@y Ap =2 M(0,1,1) 2 Ag/(T — ) ® A /(T — B)(T — 7).

Proof. Since M /woM = Z/p'Z & Z/p'Z, we have M/woM @, Ap = Og/(7%) ®
Og/(7%). Since E/Q, is a totally ramified extension, ordg(a) = 2ord,(a) > 2.
Thus we get ordg(8) = ordg(y) = 1. Since ordg(7*) = 2i and ordg(7¥) = 2j
are even, we get

M @ Ap = M(0,1,1)

by the table of the Proposition 6.3.3. The isomorphism M (0,1,1) = Ag/(T —
a) ® Ag/(T — B)(T — ~) is proved in [20, Lemma 3]. O

Corollary 6.3.6. Let f(T),g(T), and E be the same as in Propositions 6.3.5.
Suppose that [M]g, € M%T). Suppose also the same conditions of Proposition
6.3.5. Put g(T) =T?+ 1T + co. Then the following (a) and (b) hold.

(a) Suppose p > 5. Forn >0, we have

jj(M/wnM ® AE) _ pordE(wn(a)wn(ﬂ)wn('y)) — p6n+2+ordE(Oc)‘
Further we have
M/wnM ® AE ~ OE/(WordE(a)—&—%z) @ OE/(W2n+2) ® OE/(ﬂ_Qn)
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(b) Suppose that p =3 and (co,c1) # (3,3). Forn > 1, we have

( pordE (wn(@)wn (B)wn (7)) — p6n+ordE (a)+4ordz(co—3)—2

if Ol"dg(Co — 3) < OI'dg(Cl - 3),

f(M/w, M @ Ag) =
pordE(wn(a)wn(ﬁ)wn('y)) pGn—l—ordE( a)+4ords(c1 —3)

if ords(co —3) > ords(c; — 3).

Further we have

OE/( ordE(a)+2n) o0 /( 20rd3(c0—3)+2n)@

Op/ (m2ords(co=3)+2n-2 if ords(cy — 3) < ords(c; — 3),
PN [ ) J(e0 —3) < oxdfer —3)

OE/( ordE(a)+2n) D O /( 2ords(c1— 3)+2n)@

| Op/(rm?ordslco=3)+2m) if ordz(co — 3) > ordsz(c; — 3).

Proof. Put N = ((1,1,1),(0,1,1),(0,0,7))o, C €. We have M ®y Agp = N as
Ag-modules by Proposition 6.3.5. Thus we have

as Ag/w,Ap-modules. By the same method as Proposition 6.3.3, we consider the
map II,,, : N — N and take (1,0,0),(0,1,1) and (0,0, 7) as a basis of N. The

matrix corresponding to Il is

wn (@) 0 0
Wn(ﬁ) 0
0 (wn(B) — wn(7)>7r_1 wn ()

We first consider the case (a). We have ordg(w,(8) — wn(y)) = ordg(8 — ) +
nordg(3) = 2n + 1 (cf. [9, Lemma 2.5]). Furthermore, we have ordg(w,(a)) =
2n + ordg(a) and we get ordg{(w,(B) — wn(7))7 '} = 2n < ordg(w,(B)) since

ordg(w,(8)) = ordg(w,(y)) = 2n + 1. Thus we can transform the matrix above

into
q2ntordp (a) 0 0
0 2" 0
0 0 2n+2



This implies N/w,N = O /(2" de(@)) @ O /(7%") @ Og/(7?"F?).
Next, we prove the case (b). For n > 1, we have

20rds(co —3)+2n—1 if ords(cy — 3) < ordz(cy — 3),
OrdE(“n(ﬂ)) =

201‘d3<01 — 3) + 2n if OI'dg(CO — 3) > ord3(61 — 3)

On the other hand, for n > 1, we have

(: 201"(13(C0 - 3) +2n—1

if OI'dg(CO — 3) < OI'dg(Cl — 3),
ordp(wn(f) —wa(7))
> 2ordz(c; — 3) +2n

if ords(co — 3) > ords(c; — 3)

\

(cf. [9, Lemma 2.5]). The case (b) can be proved by the same method as the case
(a). O

Proposition 6.3.7. Suppose that f(T) = (T — a)g(T), where o € pZ,. Let
g(T) € Z,[T] be an irreducible polynomial of degree 2 and E the splitting field of
g(T) over Q,. Let [M]g be an element of M?(T). Put M = M(m,n,z).

(1) Assume that m =0 and (y — B)zn™™ € Of. Then we have

(T — o, (= B)(a =) if w=1,
(T —o,(a—=B)a—y)(1—a)r ™) if x#1.

Fitt, (M) =

(2) Assume that n =0 and (8 — a)n™™ € OF. Then we have

Fitty (M) = (T — v, (a — )8 — 7).

(3) We have
(T —B,(B—7)m™) if n<ordg(n™ —x),
Fi T—a)M) = _
ity A (( ) M) <T — 8, ;m —i) if n>ordg(n™ —x).
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Proof. By the action of T', we have
11 = (a5,7)
= o(1,1,1)+ (B —a)r "(0,7™, )
+{y—a—-(B—-a)r e} (0,0,7"),
70,7, xz) = (0,87™, ~x)
= B0, 7", z)+ (y — B)er "(0,0,7"), and
T(0,0,7") = ~(0,0,7").

Then we get the following matrix

T—a —(B-a)r™ —{(y—a)—(B—a)r "a}r"
0 T-p —(y = B)zr"
0 0 T—~

We first show (1). Under the assumption of (1), the matrix is

T-—a —f+a —{(y—a)=(F-a)r}r™"

0 T-5 —(y =B
0 0 T —~
By elementary row and column operations, we can transform the matrix above
into
T—a (a=y)(A—-x)7™(T—-05) 0
0 (T-B(T -7 0
0 0 1

Therefore we get
Fitty A (M) = (T — o, (a = f)(a =7), (a = f)(a = B)(1 —x)7™")

{<Ta,(aﬁ)(a7)) T
a—pB)a—y)(l—z)r™") it o2 #1.

~
|
S

Next, we show (2). Under the assumption of (2), the matrix is

T—a —(f-a)r™ —(y—a)+(B—a)m ™
0 T-5 —(y—=p)z
0 0 T —~
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By elementary row and column operations, we can transform the above matrix

into

Therefore we get

Fittya (M) = (T — a)(T = 3), (T = B)(T =), (T — a)(T =), (T — 7))
= (T =7, (a=7)(B—7))-

Finally, we show (3). We note that

(T—Oé)M: <(07ﬁ 77_05)7 07( ) m:(’y_a)x%(oaov (V_Q)ﬂ-n))(’)f:

(
(((0,8 = a,7 —a), (0,0, (v — )7"))o,

if n< OI‘dE(ﬂ'm ),

<(0> p—a, Y= O‘)v <O7 0, (7 - O‘)(Wm - x))>OE

if n>ordg(n™ — x).

In the case of n < ordg(7n™ — x), by the action of T', we have

T(O,ﬁ—a,’}/—@) = (07ﬁ(ﬂ_a)7’7(’7_a))
= B0,f—a,y—a)+(y=B)x (0,0, (y —a)"),
T(0,0,(v—a)r") = (0,0, (y — a)r").

Thus we get the following matrix
T—p —(y=B)r™"
0 T—~ ’

Fitty s(T —a)M) = (T —B,T—~,(y—B)x ")
= (T=B8,(v=8)7").

Therefore we get
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In the case of n > ordg(n™ — z), by the same method as above, we get the

following matrix

Therefore we get

Fitty o (T — a)M) = (T—ﬂ,T—% 7_52)

T —
_ (T _ B, 7;11__53:) . O

Next, we consider the case of degf(T') = 4. Let f(T) € Z,[T] be a distinguished
polynomial with degf(7") = 4. Then we have the following

Proposition 6.3.8. Let E be the splitting field of f(T') over Q,. Let [M|g be an
element of M}E(T). Put M = M, m,n;z,y,z). Then we have

Fittya, (M) mod (T —6) = ((6—-a)(6=F)(0—7)7"),

(7= )7 = B)(y = §)zm—m—n)
Fitty o, (M) mod (T —7v) = toz70,
(v=—a)(v=B)(y—)m™)
\ if z=0.
Proof. We put
er = (1,1,1,1),
eo = (0,7 x,y),
es = (0,0,7™, 2), and
es = (0,0,0,77).
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By the action of T', we have

Te; = (a,f8,7,0)

= ae;+ (B—a)tlea+ {y—a—(B—a)r ‘zln e

[0 - 0) ~ (8- a)n~ty — {(y @) — (8~ a)r"a}rz]

Tey = (0,B7% vz, dy)

= Peat (v —Blam Mes +{(0 = By — (v = Blam "z}r ey,
Tes = (0,0,y7™,dz)

= ez + (0 —y)zm "ey, and
Tes = Odey.

Then we get the following matrix

T—a —B-a)rt —{y—a—-(B—a)rta}r™ a14
0 r-p —(y = B)ar™™ Q24
0 0 T —~ —( =)z |
0 0 0 T—56
where
{m = {6~ By~ (v~ Aam e},
i == [(6—a) = (B— )ty —{(v—a) - (B — a)rtakr ] m .

We prove the former part. By the definition of Fitting ideals, we obtain
Fitty o, (M) mod (T —9)
= (a1, (6 = a)(6 = B)(6 —v)zm ™", (6 — ) (6 = B)(0 — )7 "y),

where
—B-a)rt —{y—a—-(B—a)rtx}r ™ aiq
ay; = det T—-75 —(y=pB)em™™ 24
0 T—~ —(0—y)zm "

Since we have
az; mod (T'—0)=(0—a)(0—p)(d—~)r " mod (T —19),

we obtain the conclusion. We can also prove the latter equation by the same

method above. O
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Proposition 6.3.9. Suppose that f(T) = g(T)(T —0), where 6 € pZ,. Let g(T) €
Zy|T] be an Eisenstein polynomial of degree 3 and E the splitting field of g(T") over
Qp. Suppose that [M]q, € M%’T) and [M @ Ag] = [M({,m,n;z,y,z)] € M?(T).
Assume that ordg(0 — a) = ordg(d — ) = ordg(d —v) =1 and

M/TM = Z/p'Z®Z/pPZ (4,7 € Z>1).

Then we have n = 0.

Proof. We have Fitty o, (M) # Ag,, since Fitty z,(M/TM) = (p™™1*7}). By our
assumption, ¢g(7") is an Eisenstein polynomial. Hence we have Fitt,,, (M ®
Ag) mod (T —§) = (7%) for some 7 > 1. Using Proposition 6.3.8, we obtain
Fitty o, (M ® Ag) mod (T —4) = (x#3"). This implies that 3i = 3 — n. Thus

we have n = 0. O
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Chapter 7
Examples

In this chapter, we apply our Theorem 1 and Theorem 2 to Iwasawa Theory. We
determine the isomorphism classes of Iwasawa modules associated to the cyclo-

tomic Zs-extension of imaginary quadratic fields.

7.1 Numerical examples for A = 3

In this section, we introduce some numerical examples which were computed using
PARI/GP. We put A = Z,[[T]].

We consider the case of p = 3 and k = Q(v/—d), where d is a positive square-
free integer. For simplicity, let d Z 2 mod 3. Our assumption d # 2 mod 3
implies that p = 3 is inert or ramifies in k. This assumption is also needed to get
the isomorphism (7.1) below. In this section, we determine the A-isomorphism
class of the Iwasawa module associated to k = Q(\/—_d) in the range 1 < d <
10° with A\, (k) = 3, where \,(k) is the Iwasawa A-invariant with respect to the
cyclotomic Z,-extension. There are 1109 imaginary quadratic fields satisfying
these properties.

Let kw/k be the cyclotomic Z,-extension. For each n > 0, we denote by
k, the intermediate field of k../k such that k, is the unique cyclic extension
over k of degree p". Let A, be the p-Sylow subgroup of the ideal class group of
kn. We put X = @nAn, where the inverse limit is taken with respect to the

relative norms. Then Xy becomes a Z,[[Gal(k/k)]]-module. Since there is a
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ring isomorphism between A = Z,[[T]] and Z,[[Gal(kw/k)]] which depends on the
choice of a topological generator of Gal(kw./k), X, becomes a finitely generated
torsion A -module. Let f(T') be the distinguished polynomial which generates
char(Xy_. ). It is known that X} _ is a free Z,-module thus [X;_]q, € M?(”T) and
we can apply Theorem 1 to the Iwasawa module Xj__.

We can calculate the polynomial f(7') mod p" for small n numerically. Let x
be the Dirichlet character associated to k, w be the Teichimiiler character, and
fo be the least common multiple of p and conductor of xy. By the Iwasawa main

conjecture, there exists a power series g,-1,(7") € A such that

char(Xj,. ) = (9y-1.(T)).

Here, gy-1,(T") is the p-adic L-function constructed by Iwasawa. We can approx-

imate g,-1,(T") such as

g-1w(T) = —zf(l)pn > axw H(a)(1+T)" mod w,,
0<a< fop™,(a,fop™)=1

where 4,(a) is the unique integer such that aw='(a) = (1 4+ p)"(®@ mod p"*!
and 0 < i,(a) < p". By Weierstrass preparation theorem ([21, Theorem 7.3],
there exists u,-1, € A* such that g,-1,(T) = f(T)uy-1,(T). Thus we can get
f(T) approximately (|21, Proposition 7.2]. For the detail about computation of
x-1(T), see [2] and [6]. We computed f(T") by Mizusawa’s program Iwapoly.ub
([14, Research, Programing, Approximate Computation of Iwasawa Polynomi-
als by UBASIC]), and referred Fukuda’s table for the A-invariants of imaginary
quadratic fields [5].

Now we classify the Iwasawa module Xj__. There are two cases

(I) Ap is a cyclic group

(IT) Ag is not a cyclic group .

In order to determine the structure of Xj__, we use the following fact. In our
case, exactly one prime ramifies in k. /k and it is totally ramified. Hence there
are A-isomorphism

Xkoo/wnXkoo = An (71)
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for any non-negative integers [21, Proposition 13.22].

We determine the A-isomorphism class of X _ by the information on the
structures of A,, for some n > 0.

There are 1015 fields whose Aq are cyclic groups among 1109 fields. First of all,
we determine the isomorphism classes in the case (I). In this case, X;_ becomes
a Ag-cyclic module by Nakayama’s Lemma. Thus we can use Proposition 6.3.2

to get
M = M(ordg(B8 — a),ordp(y — a) + ordp(y — B), um=#=)),

In the range of d above, no f(T') splits completely in Q,[7], thus we have to
consider the minimal splitting field £ of f(T"), which is quadratic over Q,.

Example 1. Put k = Q(1/—886). Then we have Ay = Z/9Z (cf. [17]). By

using Mizusawa’s program [14], we have
f(T) = (T —195)(T? + 291T + 429) mod 3°.
By Hensel’s Lemma, there exist o € Z,, and ¢g(T") € Z,[T] such that

f(T) = (T — a)g(T),

where @ = 195 mod 3° and g(T) = T? + 48T + 186 mod 3°. Since g(7T) is an
Eisenstein polynomial, £/Q, is a totally ramified extension. Let E be the minimal
splitting field of ¢(T"). We put ¢(T") = (7' — 5)(T" — ~y), where § and v € E. Since
By = 186 mod 3°, we get ordg(8) = ordg(y) = 1, and ordg(a—7v) = ordg(a—v) =
1. Since (8 —7)* = (8+7)* — 4By = 1560 mod 3°, we have ordg(8 —v) = 1. By

Proposition 6.3.1 and 6.3.2, we get X @ Ag = M(1,2,ur), where u = g_ e
—«

Next, we determine the isomorphism classes in the case (II). There are 94 fields

whose Ag are not cyclic groups. There are 66 fields whose A, are not cyclic groups
and whose f(T') is reducible. We will determine [Xj_]g, for these 66 fields. We
can determine the A-isomorphism class of Xj__ for 60 fields by Proposition 6.3.5.
The following example is the case where we can determine the A-isomorphism

class of Xj__ by Proposition 6.3.5.
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Example 2. Put &k = Q(+/—6583). In this case, we have Ay = Z/3Z & Z/3Z
(cf. [17]). We have

f(T) = (T —96)(T? + 96T + 696) mod 3°.
By Hensel's Lemma, there exist a € Z, and g(T") € Z,[T] such that

F(T) = (T = a)g(T),

where o = 96 mod 3° and ¢(T') = T% + 967 + 210 mod 3°. Let E be the minimal
splitting field of ¢(T"). We put g(T") = (T — B)(T — ), where § and v € E. Then,
E/Q, is a totally ramified extension and we get ordg(ov — ) = ordg(f —7) =
ordg(y — a) = 1, ordg(a) = 2, and ordg() = ordg(y) = 1. Therefore we get
Xk.. ®a Ag = M(0,1,1) by Proposition 6.3.5.

There are remaining 6 fields which we cannot determine the structure of Xj__

by Proposition 6.3.5. For these fields, we have to investigate the action of the
group Gal(k;/k). Explicitly, the remaining 6 fields are Q(v/—9574), Q(v/—30994),
Q(v—41631), Q(v/—64671), Q(v/—82774), and Q(1/—92515).

Example 3. Put k = Q(v/—9574). In this case, we have Ay = Z/3Z & Z/9Z
(cf. [17]) and A} = Z/3Z & Z/9Z & Z/27Z. We have

f(T) = (T —192)(T? + 1173T + 1422) mod 3".
By Hensel’s Lemma, there exist o € Z,, and ¢g(T") € Z,[T] such that

f(T) = (T = a)g(T),

where o = 192 mod 3° and ¢(T') = T%+201T+207 mod 3°. Let E be the splitting
field of g(T'). We put g(T) = (T — B)(T — ), where 8 and v € E. Since the
discriminant of ¢(7') is 3% -4397 mod 37 and 4397 is a quadratic nonresidue, F/Q,
is an unramified extension. Since the discriminant of f(T) is 2% - 3% .43 -89 - 1039
mod 37, we get ordg(a — 38) = ordg(8 — ) = ordg(y — @) = 1 and ordg(a) =
ordg(B) = ordg(y) = 1. By checking the structures of Ay and A; as Og-modules,

we get
Xk, @pa Ap = M(0,1,1), M(0,1,2), M(1,0,0), or M(1,1,0).
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Now we investigate the structure of A; as a Gal(k;/k)-module. We have an iso-
morphism Ay = Z/277Z & Z/9Z @ Z/3Z. Furthermore, PARI/GP gives explicit
generators which give this isomorphism. Let a1, as, and a3 be the generators which

was computed. (We do not write down a;, as, and az because they are compli-
cated.) Let o be the generator of Gal(k;/k), which was computed by PARI/GP.

We compute,
(U — 1)0[1 = 3&2 — as,
(0 —1)ag = 6ay, and
(0 —1)ag = 18a; + Gas.

There is a topological generator & € Gal(k,,/k) such that & is an extension of o.

By this topological generator, we have the isomorphism
Zp||Gal(ks/k)]] = A = Zy[[T]] such that 6 <> 14T

We regard Xj_ as a A-module by this isomorphism. We note that f(7") depends

on the choice of &, but we can easily check that M?(T) does not depend on the
choice of 6. Because Z,[[Gal(k/k)]] = AJwiA, we get

Tﬂl = 3&2-&3,
Tﬂg = 6Cl2, and

Tag = 18ﬂ1+6ﬂ2,

where T = T mod w;. Now we have

(T? + 18)a; +6ay = 0,
(T —6)ay = 0,
3Ty = 0,
27a; = 0, and
9a, = 0.

Therefore we can calculate the 1-st Fitting ideal of A; ® Og;
Fittl,AE/wlAE (Al X OE) = (T, 3) mod w1,
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where Fitty a,jw,a, (A1 ® Op) is the 1-st Fitting ideal of A; ® Op as a Ag/wiAp-
module. On the other hand, by Proposition 6.3.7 (1) and (2) for M(0,1,2),
M(1,0,0), and M(0,1,1), we have
(T,3) mod wy it M =M(0,1,2),
Fitty Ay fuapg (M/wiM) = < (T —~,9)  mod w, it M= M(1,0,0),
(T —«,9) mod w if M= M(0,1,1).

Therefore we have

Xi. @ Ap = M(0,1,2) or M(1,1,0).

We investigate the module (T — a)(M/wy M). By Proposition 6.3.7 (3), for
M(0,1,2) and M(1,1,0) we get
(T,3) mod w; if M = M(0,1,2),

Fitty ap o (T — @) (M/wi M) =
AE/wlAE if M= M(l, ].,O)

We can compute the following from the data above
Fitty A, jwa, (T — a)A1 ® Op) = (T,3) mod w.

Therefore, we get Xj ®a Ap = M(0,1,2).

By the same method as above, we can determine the isomorphism classes of

Xp... of Q(v/—30994), Q(v/—82774), and Q(v/—92515). For the 3 fields, we can
show that Xy @ Agp = M(0,1,2).

Finally, we determine the structure of Xj,__ for remaining 2 fields Q(1/—41631)
and Q(y/—64671).

Example 4. Put £ = Q(v/—41631). In this case, we have Ay = Z/3%Z @ Z/3Z
(cf. [17]) and A, X Z/3'Z & Z/3*Z & 7Z./37 by PARI/GP. We have

f(T) = (T — 42)(T* — 279T + 594) mod 3",
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By Hensel’s Lemma, there exist a € Z, and g(T") € Z,[T] such that

J(T) = (T = a)g(T),

where a = 42 mod 3° and ¢(T) = T? + 36T + 108 mod 3°. Let E be the minimal
splitting field of ¢(7"). We put ¢g(T') = (T' — B)(T" — ), where § and v € E.
Then E/Q, is a totally ramified extension with ordg(a — ) = ordg(y — a) = 2,
ordg(f — ) = 3, ordg(a) = 2, and ordg(f) = ordg(y) = 3. Let 7 be a prime
element of E. In this case, the elements M(m,n,z) € M?(T) which satisfy the

conclusion of Proposition 6.3.4 are

((0,0,0),(0,1,1),(0,1,2), (0,2,1), (0,2,2), (0,2,1 + ), (0,3, 1),
) (0,3,1+7),(0,3,1+72),(1,0,0), (1,1,0), (1,1, 1), (1,2, 7),
(1,2,2m),(1,3,7), (1,3, 7 +72), (1,3, 7 + 27%), (1,4, uw),
(

2,0,0),(2,1,0),(2,2,0),(2,3,ur?), (2,4,ur?), (2,5, ur?)

\

v -«
where u =

. By checking the structures of Ay and A; as Og-modules, we

get

X, @ Ap = M(0,3,1), M(0,3,1+m), M(0,3,1+ 7%,
M(1,3, 7+ 7%), M(1,3, 7+ 27%) or M (2,3, un?).

We have an isomorphism A = Z /817 & 7/9Z © Z/3Z. Let ay, ag, and az be the
generators which were computed by PARI/GP. Further we have:

(0‘ — 1)&1 = 54&1 + 6asy + as,
(0’ — 1)Cl2 = 54(11, and
(O' — 1)a3 = b54a; + 3a2,

for a certain generator o of Gal(k;/k) by PARI/GP. By the same method as
k= Q(v/—9574), we fix a topological generator & € Gal(ky,/k) such that & is an
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extension of 0. Because Z,[[Gal(ki/k)]] = AJ/wi A, we have

(T%2 — 54T — 54)a; — 3ay = 0,
5Ma —Tay = 0,
3Ta, = 0,
81lay = 0, and
9a, = 0,

where T = T mod wy. Therefore we get the 1-st Fitting ideal of A; ® Og;
Fittl,AE/wlAE (Al & OE) = (T, 3) mod wi.

On the other hand, by Proposition 6.3.7 (1) and (2), we have

(T — «,9) mod w; if M = M(0,3,1),
Fitty Ap furap (M/wi M) = < (T, 3) mod wy  if M = M(0,3,1+7),
(T —a,m) modw if M=M(0,3,1+7?)

for M(0,3,1), M(0,3,1+ ), and M(0, 3,1 + 72). Therefore we have

X @aAp =2 M(0,3,1+m), M(1,3, 7 +%), M(1,3,7+27%), or M(2,3,ur?).

As in the case where k = Q(1/—9574), we investigate the structure of (7" —
a)(M/wM). By Proposition 6.3.7 (3), we get
((7,3) mod wy if M =M(0,3,1+7),

. AE/wlAE lf M:M ]_,377T+7Tz>,
Fitt1 A g fwap (T — ) (M /w1 M)) =

(
(
(T,7) mod w; if M= M(1,3,7 +27?),
(Ap/wiAg it M= M(2,3,ur?).

We can compute from the data above
Fitti A, jwa, (T — a)A ® Op) = (T,3) mod w.
Therefore we get Xy ®x Ap = M(0,3,1+ 7).
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We can determine the structure of Q(1/—64671) by the same method as above.
For Q(+/—64671), we can show that X, ®x Ag = M(0,3,1+ ).

In the end of this chapter, we write down the table of the X, ® Ag for p =3
and for the fields such that Ay is not cyclic and f(7') is reducible. On the table,
m,n,x represent Xy ® Ag = M(m,n,z), and ram./unram. means that E/Qs is
ramified /unramified extension, respectively. We marked (%) on the remaining 6

fields for which we determined the structures in Example 3 and 4.
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7.2 Numerical examples for A\ =4

Here, we consider the case of p = 3 and k = Q(v/—d), where d = 5142, 12453,
23683, 28477, and 78730. We also consider the case of p = 5 and k = Q(v/—15658).
In this case, p does not split in k& and we have \,(k) = 4, where (k) is the Iwasawa
A-invariant with respect to the cyclotomic Z,-extension of k. As in the previous
section, we determine the isomorphism class of Xj__.

For a non-negative integer n, we put w, = w,(T) = (1 +T)?" — 1.

Example 5. Put p = 3 and k£ = Q(v/—12453). In this case, we have A, =
Z)3Z & ZJ37 (cf. [17]). We have

f(T) = (T? 4 204T? + 567T + 426)(T + 525) mod 3°.

By Hensel’'s Lemma, there exist § € Z, and an irreducible polynomial g(7T") €
Z,|T) such that
f(T) = g(T)(T =),

where § = 204 mod 3° and g(T') = T° + 204T% + 81T + 183 mod 3°. Let E be the
minimal splitting field of ¢(7"). We put ¢(7') = (T'— «a)(T — 8)(T —y), where «, 3,
and v € E. Then [E : Q,] = 3 and the ramification index is 3 in £/Q,. Indeed,
let d(g) be the discriminant of g(T). Then we have d(g) = (—1)-3%-13- 104
= —162 mod 3°. Thus we have y/d(g) € Q,. This implies that [F : Q,] =
3 and E£/Q, is a totally ramified extension. Further we have ordg(a — ) =
ordg(f — ) = ordg(y — @) = 2, ordg(av — ) = ordg(f — ) = ordg(y — 6) = 1,
ordg(a) = ordg(B) = ordg(y) = 1 and ordg(d) = 3. Suppose that [X;  ®sAg] =
[M(¢,m,n;z,y,2)] € M?(T). By Proposition 6.3.9, we have n = 0. Therefore we
may assume that X ®aAg] = [M(¢,m,0;2,0,0)] = [M(¢,m,2)®((0,0,0,1))z,],
where M (¢,m,z) are defined before Theorem 1. Since we have X _/TX; ®
Op 2 Ay®0p = Og/(m®)®Og/(3), M(¢,m,x)/TM({,m,x) is a cyclic module.
Then M becomes a Ag-cyclic module by Nakayama’s Lemma. Using Proposition
6.3.2, we have M({,m,x) = M(2,4,un?), where u = i

B —
Xk, @A Ap = M(2747 0; U7T2a 0, O) = AE/(T - 5) D AE/(Q(T)>-

. Hence we obtain

o
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By the same method as above, we can determine the isomorphism classes of

Xk, of Q(v/—5142), Q(1/—23683), and Q(+/—28477). Next we consider the case

of p=>5.

Example 6. Put p = 5 and £ = Q(+/—15658). In this case, we have A, =
Z/5Z & ZJ5Z (ct. [17]). We have

f(T) = (T? + 117407 + 8565T + 14160)(T + 3295) mod 5°.

By Hensel’'s Lemma, there exist § € Z, and an irreducible polynomial g(7") €
Z,|T] such that

F(T) = g(T)(T =),
where § = 3295 mod 5% and ¢(T) = T° + 1174072 + 8565T + 14160 mod 5°. In

the same way as in the proof of Example 5, we obtain
Xioo @0 Ap = Ap/(T —0) ® Ap/(9(T)),

where E' is the minimal splitting field of g(7').

The following is an example that we have to investigate the action of the group
Gal(ky /E).

Example 7. Put p = 3 and k£ = Q(+/—78730). In this case, we have A, =
Z)9Z & ZJ3Z (ct. [17]). We have

F(T) = (T? 4 4068T + 5317)(T + 3189)(T + 888) mod 3°.

By Hensel’'s Lemma, there exist v, § € Z,,, and an irreducible polynomial ¢(7") €
Z,[T] such that

f(T) = g(T)NT —)(T =),
where v = 84 mod 3°, § = 213 mod 3°, and ¢(T) = T? + 180T + 228 mod 3°.
Let E be the minimal splitting field of ¢(T"). We put ¢(T') = (T' — a)(T — 5),
where a and € E. Since g(7T) is an Eisenstein polynomial, the extension F/Q,
is a totally ramified extension. Therefore, we have ordg(a) = ordg(5) = 1,
ordg(y) = ordg(d) = 2, ordg(y — §) = 2, and ordg(av — B) = ordg(f — ) =
ordg(f — 9) = ordg(a — 0) = ordg(y — @) = 1. By Proposition 6.3.8, we obtain

116



Fitty a,(Xp, ® Ag) mod (T —4§) = (7). Since we have Ay = Z /97 & Z/3Z,
we obtain Fitt; o(Xg,) mod (T'—9) # A. We put Fitty o(Xg,) mod (T —9)
= (p%) for some i > 1. Then we have (7*~") = (7%)). This implies 4 — n = 2i.
Clearly, we have n = 0 or n = 2. Using Proposition 6.3.8, we get
' (ﬂ_ordE(z)Jr4fmfn> if 2 ?é 07
Fitty o, (Xg, ® Ap) mod (T'—7) =
(m=m) if z=0.

Therefore we may consider the only three cases

n=2 and m = ordg(z),
(1M 3n=2 and z=0, and
n = 0.

The isomorphism classes of Ag-module M (¢, m,n;x,y, z) satistying (f)are

4 )

[M(0,1,2;0,0,m)],[M(0,1,2;0,7,m)], [M(0,1,2;1,1,7)],
(M(0,1,2:1,1 +m,7)], [M(0,1,2:2,2,7)], [M(0,1,2: 2,2 + 7, 7)),
[M(0,1,2:2,2 + 2, 7)), [M(1,0,2:0,0,1)], [M(1,0,2: 0,7, 2)],
[M(1,0,2;0,0,1+7)],[M(1,1,2;0,7,2m)],[M(1,1,2;0,0, )],
[M(

| [M(1,0,2;0,27,0)], [M(1, 2, 2;27, 27, 0)]
U { [N®Ap/(T —6)Ag] | IN] € M{Z_ayr_pyr—}
U {[M(0,0,2;0,y,2)] | ordg(z) = 0}. (7.2)

It is easy to see that M = N & Ag/(T — §)Ag does not satisty M/TM =

Op/m*0Op & Op/m*0Or if N % M(1,2,ur), where u = g—a‘ We note that

M(,2,ur) 2 Ag/(T—a)(T—B)(T—~)Ag by Proposition 6.3.2. O{Ne can also check
M/TM % Ogp/7*Op ® O /n*OF for [M] € {[M(0,0,2;0,y,2)] | ordg(z) = 0}
and [M(0,1,2;0,0,7)], [M(0,1,2;1,1,7)], and [M(1,1,2;0,0,)].

Now we investigate the structure of A; as a Gal(ky/k)-module. We have an iso-
morphism Ay = Z/277 & 7./97 & Z./97 & Z/3Z. Furthermore, PARI/GP gives

explicit generators which give this isomorphism. Let aq, as, az, and ay be the

generators PARI/GP computed. (We do not write down ay, as, as, and ay be-
cause they are complicated.) Let o be a generator of Gal(k;/k). By PARI/GP,

117



we compute

(0 — 1oy
(0 —1)ay
(0 —1)as
(0 —1)ay

= 060y —as + ag,
= 3ay + 4as,
= 9a; + 6ay + 6as, and

= 6&2.

There is a topological generator ¢ € Gal(k/k) such that & is an extension of o.

By this topological generator, we have an isomorphism

Z,|[Gal(ks/k)]] = A = Z,[[T]] such that ¢ <> 1+ T.

We regard X as a A-module by this isomorphism. Since Z,[Gal(k,/k)] =

AJwiA, we get

Tay =
Tay, =
Tag =
Tay, =

6a; — as + as,
3as + 4as,
9a, + 6as + 6as, and

6Cl2,

where T = T mod w;. Now we have

(

\

(T? = 12T)a; + (T — 12)ay, =0,

AT —24)a, — (T —Tay =0,

6ay — Tay =0,

27ay =0, (7.3)
97wy =0,

9a, =0, and

3ay =0.

Therefore, we can calculate the 1-st Fitting ideal of A; ® Og;

Fitti A/ (A1 ® Op) mod 9= (T,3) mod (wy,9), (7.4)
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where Fitty a, /w4, (A1 ® Op) is the 1-st Fitting ideal of Ay ® Op. Then M (0, 1, 2;
0,m,m), M(1,0,2;0,0,1), M(1,0,2;0,0,1+7), and M(1,1,2;0,m,27) do not sat-
isfy (7.4). Therefore we get

X, OaAp = M(0,1,2;2,2+ 7, 7), M(0,1,2;1,14+x,m), M(1,0,2;0,m7,2),
M(0,1,2;2,2,m),M(0,1,2;2,2 4 2m,7), M(1,0,2;0,27,0),
M(1,2,2;2m,27,0),0or M(1,2,0;ur,0,0).

Further, using the above relations (7.3), we get

Fitt1 Ay jwiny (T —7)A1 ® Op) mod 9 = (T,3) mod (w1,9), (7.5)
Fitt1 A, jwa, (T —=0)A; ® Op) mod 9 = (7,3) mod (w,9). (7.6)

Then only M(1,0,2;0,m,2) satisfies (7.5) and (7.6). Hence we obtain X ®aAp =
M(1,0,2;0,m7,2).
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Table 7.1:

d ordg(ae—B) | ordg(B—=) | orde(y

—a)

E/Qs

6583 1

ram.

8751

ram.

9069

ram.

(x) | 9574

unram.

12118

ram.

16627

ram.

21018

ram.

23178

ram.

24109

ram.

25122

ram.

29569

ram.

29778

ram.

29994

ram.

() | 30994

unram.

31999

ram.

34507

ram.

34867

ram.

35539

ram.

37213

ram.

37237

ram.

38226

ram.

38553

ram.

38926

ram.

40299

ram.

41583

ram.

() | 41631

ram.

41671

ram.

45210

ram.

45753

ram.

45942

ram.

46198

ram.

47199

ram.

el il e i e N e e e e e e e e e e
e e e e e Ll R e e e e R R e N e T e T e T I T e e e I O B I IO I = B
el el i B R e e B e e B e e e e e e S N el el e e e T

48667

ram.

e N I e e e U e N e S R e e e e e e e e e e e R S N S S N

el e e e e e e e e R N e N e e i e N B I A A Y
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Table 7.2:

d | ordga—p) | odp(B—7) | orde(v—a) | E/Q3 |m | n | =z Ao
49074 1 1 ram. 011 1 (3,3)
51142 1 1 1 ram. | 0 |1 1 (3,3)
52858 1 1 1 ram. | 0 |1 1 (3,3)
53839 1 1 1 ram. | 0 |1 1 (3,3)
53862 1 1 1 ram. | 0 |1 1 (3,3)
54319 1 1 1 ram. 011 1 (3,3)
54853 1 1 1 ram. | 0 |1 1 (3,3)
56773 1 1 1 ram. | 0 | 1 1 (3,3)
59478 1 1 1 ram. | 0 |1 1 (3,3)
59578 1 1 1 ram. | 0 |1 1 (3,3)
60099 1 1 1 ram. | 0 |1 1 (3,3)

() | 64671 2 3 2 ram. | 0 | 3| 1+7 | (3%3)
68314 1 1 1 ram. | 0 |1 1 (3,3)
72591 1 1 1 ram. | 0 |1 1 (3,3)
75273 1 1 1 ram. | 0 |1 1 (3,3)
75354 1 1 1 ram. 011 1 (3%,3)
75790 1 1 1 ram. | 0 |1 1 (3,3)
75841 1 1 1 ram. 011 1 (3,3)
78181 1 1 1 ram. | 0 |1 1 (3%,3)
80233 1 1 1 ram. | 0 |1 1 (3,3)
80242 1 1 1 ram. 011 1 (3%,3)
80746 1 1 1 ram. | 0 |1 1 (3,3)

() | 82774 1 1 1 unram. | 0 | 1 2 (3%,3)
87727 1 1 1 ram. | 0 |1 1 (3,3)
87979 1 1 1 ram. | 0 |1 1 (3%,3)
88134 1 1 1 ram. 011 1 (3%,3)
88242 1 1 1 ram. | 0 |1 1 (3,3)

() | 92515 1 1 1 wram. | 0 | 1| 2 | (3%3)
94998 1 1 1 ram. 011 1 (3,3)
95691 1 1 1 ram. | 0 | 1 1 (3,3)
97555 1 1 1 ram. | 0 |1 1 (3,3)
98277 1 1 1 ram. | 0 |1 1 (3,3)
98929 1 1 1 ram. 011 1 (3,3)
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