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Chapter 1

Introduction

In Iwasawa theory, we study Galois actions on several arithmetic objects like ideal

class groups and Galois groups. More precisely, suppose that Zp is the ring of p-

adic integers for a prime p, and k∞/k is a Galois extension whose Galois group Γ

is isomorphic to Zp. We call such a Galois extension k∞/k a Zp-extension of k.

We study Zp-modules with Γ-action. Suppose that L∞/k∞ is the maximal abelian

pro-p extension unramified everywhere. We denote by Xk∞ the Galois group of

L∞/k∞. Then Xk∞ is a Zp-module, and Γ acts on Xk∞ by conjugation. This Xk∞

is called the Iwasawa module for k∞/k, which is regarded as a Zp[[Γ]]-module,

where Zp[[Γ]] is the completed group ring of Γ over Zp. Iwasawa proved that Xk∞

is a finitely generated torsion Zp[[Γ]]-module. Serre pointed out that Zp[[Γ]] is

isomorphic to Λ = Zp[[T ]], where Zp[[T ]] is the ring of formal power series in one

variable over Zp. Thus Xk∞ becomes a finitely generated torsion Λ-module. By

the structure theorem of finitely generated torsion Λ-modules, we can classify such

modules up to pseudo isomorphism, where a pseudo isomorphism is a morphism

with finite kernel and cokernel. Further, we can define the characteristic ideal for

a finitely generated torsion Λ-module by the structure theorem. In this thesis,

we study the problems whether one can derive more precise information on a Λ-

module than its characteristic ideal and whether one can classify Λ-modules up to

isomorphism. Out main result is to classify such modules up to isomorphism under

several assumptions. We apply our theorems to the Iwasawa modules associated

to the cyclotomic Zp-extensions of imaginary quadratic fields.
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In the following, we begin with some historical background of our thesis.

1.1 Ideal class groups

Let k∞/k be a Zp-extension of an algebraic number field k. By class field theory,

the Iwasawa moduleXk∞ for k∞/k is isomorphic to the projective limit of the ideal

class groups of algebraic number fields. For the details, see the next Section 1.2.

In number theory, the ideal class group of a number field is an important object.

First, we introduce a historical overview of the ideal class group. In the 19th

century, Kummer introduced the notion of “ideal primfactors” to study Fermat’s

Last Theorem, which was proved by Andrew Wiles [22]. Kummer’s notion was

taken up and extended by Dedekind. This led to “Ideal theory”. Dedekind defined

an ideal as a subset of a set of numbers, composed of algebraic integers that satisfy

polynomial equations with integer coefficients. He proved that non-zero ideals of

the ring of the integers of a number field can be uniquely decomposed into prime

ideals. He also defined ideal class groups. We review the definition of the ideal

class group for an algebraic number field k. We denote by I(k) and P (k) the group

of fractional ideals and the subgroup of principal fractional ideals, respectively.

The ideal class group of k is the quotient group Cl(k) = I(k)/P (k). It is known

that Cl(k) is a finite abelian group. We call the order of Cl(k) the class number

of k. If Cl(k) is trivial, by the definition of Cl(k), the ring of integers of k is a

principal ideal domain, especially a unique factorization domain. Hence the ideal

class group measures how close the ring of integers of k is to a principal ideal

domain.

1.2 Iwasawa’s class number formula

In this section, we briefly introduce a part of Iwasawa theory. Recall that, for a

finite Galois extension k/Q, the Galois group Gal(k/Q) acts naturally on Cl(k). It

is important to investigate the structure of Cl(k) including the action of Gal(k/Q).

Especially, in Iwasawa theory, one often studies ideal class groups on which the

Galois group of a Zp-extension acts. We give a typical example (Iwasawa’s class
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number formula [8]) of this idea. We introduce the Iwasawa’s class number formula

[8, Theorem 11] in the following. Let p be a prime number. Let k∞/k be a Zp-

extension. For each n ≥ 0, we denote by kn the intermediate field of k∞/k such

that kn is the unique cyclic extension over k of degree pn. Namely, we have a

tower of number fields

k0 ⊂ k1 ⊂ · · · ⊂ kn ⊂ · · · ⊂ k∞, k0 = k, k∞ =
∞∪
n=0

kn.

Let An be the p-Sylow subgroup of the ideal class group of kn. We denote the

order of An by pen . Then Iwasawa’s class number formula states that there exist

non-negative integers λ, µ, and an integer ν such that

en = λn+ µpn + ν (1.1)

for sufficiently large n. A key of his idea is not to treat each kn independently but

to treat the whole {kn}n. Put Γ = Gal(k∞/k) satisfying Γ ∼= Zp as a topological

group. Iwasawa considered the inverse limitXk∞ = lim←−
n

An, where the inverse limit

is taken with respect to the relative norms. We note that lim←−
n

An is isomorphic to

Gal(L∞/k∞), where Gal(L∞/k∞) is the maximal abelian pro-p extension unram-

ified everywhere. The module Xk∞ is called the Iwasawa module for k∞/k. Since

the Galois group Γ acts naturally on Xk∞ , it becomes a Zp[[Γ]]-module. He proved

that Xk∞ is a finitely generated torsion Zp[[Γ]]-module. The class number formula

above is proved by investigating a rough structure of Xk∞ as a Zp[[Γ]]-module.

1.3 Iwasawa modules and its properties

Put Γ = Gal(k∞/k). If k is a CM-filed, the complex conjugation ρ acts naturally

on the Iwasawa module Xk∞ . Further if p is odd, then we can decompose Xk∞

into Xk∞ = X+
k∞
⊕ X−

k∞
, where X+

k∞
= {x ∈ Xk∞ | x = ρ(x)} and X−

k∞
=

{x ∈ Xk∞ | x = −ρ(x)}. Consider the following properties (P1) and (P2) for a

Zp[[Γ]]-module M :

(P1) The module M is a finitely generated torsion Zp[[Γ]]-module.

(P2) The module M has no non-trivial finite Zp[[Γ]]-submodule.
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Iwasawa proved that the minus part X−
k∞

of Xk∞ satisfies (P1) and (P2). In

Iwasawa theory, there are many Zp[[Γ]]-modules M satisfying (P1) and (P2). We

introduce some of them here:

1: Let K be a totally real field and put k = K(ζp), where ζp is a primitive p-th

root of unity. Let k∞/k be the cyclotomic Zp-extension. Let M∞ be the maximal

abelian p-extension unramified outside p and put M = Gal(M∞/K∞). Then M

satisfies (P1) and (P2) (cf. [7, Theorem 18]).

2: Let M be a finitely generated torsion Zp[[Γ]]-module. Then the adjoint module

of M has no non-trivial finite Zp[[Γ]]-submodule (cf. [21, Proposition 15.28]).

1.4 Structure theorem and pseudo-

isomorphism classes and some invariants

As in the previous section, we put Γ = Gal(k∞/k). Let γ be a fixed topological

generator of Γ. Serre ([18]) pointed out the existence of an isomorphism Zp[[Γ]] ∼=
Zp[[T ]]. We put Λ = Zp[[T ]]. We introduce the structure theorem for finitely

generated torsion Λ-modules (cf. [21, Theorem 13.12]). This theorem was first

proved by Iwasawa in terms of the group ring Zp[[Γ]]. If M is a finitely generated

torsion Λ-module, there exists a homomorphism

M →
s⊕

i=1

Λ/(pmi)⊕
t⊕

j=1

Λ/(fj(T )
nj) (1.2)

with finite kernel and finite cokernel, where s, t,mi, nj ∈ Z≥0, and fj(T ) is an

irreducible distinguished polynomial. We note that the decomposition (1.2) is

uniquely determined by M . A Λ-module homomorphism with finite kernel and fi-

nite cokernel is called a pseudo-homomorphism. We will use the structure theorem

to prove our main theorems. We define the characteristic ideal of M by

char(M) =

(
s∏

i=1

pmi

t∏
j=1

fj(T )
nj

)
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and define the λ-invariant and µ-invariant of M by

λ(M) =
t∑

j=1

njdeg(fj(T )), µ(M) =
s∑

i=1

mi,

respectively. We also define an equivalence relation ∼ for the set of finitely gen-

erated torsion Λ-modules as follows. For M1 and M2, we write M1 ∼M2 if there

exists a pseudo-isomorphism M1 → M2. In classical Iwasawa theory, one studies

Iwasawa modules up to pseudo-isomorphism. In this thesis, we consider finitely

generated torsion Λ-modules M with µ(M) = 0 and λ(M) ≤ 4.

1.5 Modules up to isomorphism

In this thesis, we study Iwasawa modules up to Λ-isomorphism. Especially, our

aim is to generalize Sumida’s results (cf. [19], [20]).

Let E be a finite extension over the field Qp of p-adic numbers and OE the

ring of integers of E. Let π be a prime element of OE. We put ΛE = OE[[T ]],

the ring of power series in one variable over OE. For a distinguished polynomial

f(T ) ∈ OE[T ], Sumida considered finitely generated torsion ΛE-modules whose

characteristic ideals are (f(T )), and defined the setME
f(T ) by

ME
f(T ) =

 [M ]E
M is a finitely generated torsion ΛE-module,

char(M) = (f(T )) and M is free over OE

 ,

where [M ]E denotes the isomorphism class of M as a ΛE-module. We denote the

ΛE-isomorphism class of M by [M ]E or simply by [M ]. He proved in [19] that

ME
f(T ) is a finite set if and only if f(T ) is separable, where f(T ) is said to be

separable if f(T ) has no multiple roots in the algebraic closure of E. The case

of deg(f(T ))≤ 3 was treated in [4], [9], [10], [12], [19], and [20]. Sumida and

Koike classified ME
f(T ) in the case of deg(f(T ))≤ 2 ([9, Theorem 2.1] and [19,

Proposition 10]). Kurihara also classified ME
f(T ) in the case of deg(f(T ))= 2,

using higher Fitting ideals [10, Corollary 9.3].

We review the result of Sumida. He considered

f(T ) = (T − α)(T − β),
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where α and β are distinct elements of πOE. We put E = ΛE/(T −α)⊕ΛE/(T −
β). Let [M ]E be an element of ME

f(T ). Since M has no non-trivial finite ΛE-

submodule, there exists an injective ΛE-homomorphism φ : M ↪→ E with finite

cokernel. Therefore every class ofME
f(T ) can be represented by a ΛE-submodule

of E .
Now we fix a notation to express such submodules in E . First, by using

the canonical isomorphism ΛE/(T − α) ∼= OE (f(T ) 7−→ f(α)), we define an

isomorphism ι : E −→ O⊕2
E by (f1(T ), f2(T )) 7−→ (f1(α), f2(β)). We identify E

with O⊕2
E via ι. Thus an element in E is expressed as (a1, a2) ∈ O⊕2

E . Since the

rank of M over OE is equal to 2, we can write M in the form

M = ⟨(a1, a2), (b1, b2)⟩OE
⊂ E ,

where ⟨∗⟩OE
is the OE-submodule generated by ∗. Further, using this notation,

we can express the action of T ∈ ΛE by

T (a1, a2) = (αa1, βa2).

In this case, Sumida proved that

ME
f(T ) = {[⟨(1, 1), (0, πk)⟩OE

] | 0 ≤ k ≤ ordE(β − α)},

where ordE is the normalized additive valuation on E such that ordE(π) = 1 (see

Proposition 3.1.4).

1.6 Main Theorem for λ = 3

In this thesis, we classify ΛE-modules in the case of λ = 3 and that of λ = 4 with

µ = 0 (namely, ΛE-modules which are free over OE of rank 3 or 4). Here, we state

our results in the case of λ = 3. In this case, we consider

f(T ) = (T − α)(T − β)(T − γ), (1.3)

where α, β, and γ are distinct elements of the maximal ideal of OE. We put

E = ΛE/(T −α)⊕ΛE/(T −β)⊕ΛE/(T −γ). We note that E is an integral closure

of ΛE/(T − α)(T − β)(T − γ). Using the structure theorem of ΛE-modules (1.2),
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we regard a ΛE-module M satisfying [M ] ∈ ME
f(T ) as a ΛE-submodule of E . We

first prove that for each isomorphism class C ∈ME
f(T ), we can take a submodule

M(m,n, x) := ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE
(1.4)

of E with [M(m,n, x)] = C. Here m and n are non-negative integers and x is

an element of OE. The non-negative integers m and n are determined only by

[M(m,n, x)] (Corollary 4.2.2). Our first main theorem is as follows.

Theorem 1 (Theorem 4.1.5). There is a bijection Φ :

ME
f(T ) −→ Z/ ∼

∈ ∈[
M(m,n, x)

]
7−→

[
(m,n, x)

]
.

The definitions of the set Z and the relation ∼ will be given in Chapter 4.

We briefly explain the definition of the set Z here. First, we define a certain

equivalence relation ∼′ on Z≥0×Z≥0×OE and define Z ′ = (Z≥0×Z≥0×OE)/ ∼′.

Let Z be a subset of Z ′ satisfying certain conditions. An element of Z ′ is written

as (m,n, x). We also define an equivalence relation ∼ on Z and consider Z/ ∼. An
element of Z/ ∼ is written as

[
(m,n, x)

]
. By Theorem 1, we have the following

corollary, which explicitly gives a necessary and sufficient condition for the two

ΛE-modules M(m,n, x) and M(m,n, x′) to be isomorphic.

Corollary 1 (Corollary 4.1.7). Let [M(m,n, x)] and [M(m,n, x′)] be elements of

ME
f(T ). Suppose that ordE(x) < n or x = 0 and that ordE(x

′) < n or x′ = 0, where

ordE is the normalized additive valuation on E such that ordE(π) = 1. Then the

following statements are equivalent:

(i) We have M(m,n, x) ∼= M(m,n, x′) as ΛE-modules.

(ii) We have ordE(x) = ordE(x
′) and one of (I′), (II′), and (III′) holds, where

(I′), (II′), and (III′) are

(I′) m ̸= 0, x′ ̸= 0, and

min

{
ordE

(
πn

x′

)
, ordE(π

m − x′)

}
≤ ordE

( x
x′ − 1

)
,

(II′) x′ = 0, and

(III′) m = 0 and ordE(1− x) = ordE(1− x′).
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1.7 Main Theorem for λ = 4

In this section, we state our second main theorem in the case of λ = 4. More

precisely, we treat the case in which

f(T ) = (T − α)(T − β)(T − γ)(T − δ),

where α, β, γ, and δ are distinct elements of the maximal ideal of OE. In the same

way as in the case of deg (f(T )) = 3, for each isomorphism class C ∈ ME
f(T ), we

can take a submodule

M(ℓ,m, n;x, y, z) := ⟨(1, 1, 1, 1), (0, πℓ, x, y), (0, 0, πm, z), (0, 0, 0, πn)⟩OE

of ΛE/(T −α)⊕ΛE/(T − β)⊕ΛE/(T − γ)⊕ΛE/(T − δ) with [M(ℓ,m, n;x, y, z)]

= C, where ℓ,m, n are non-negative integers and x, y, z are elements of OE. We

can prove that ℓ,m, and n are determined by C (see Proposition 5.1.2). In

Chapter 5, we define the notion of “admissibility” (see Definition 5.1.5). Let

(ℓ,m, n;x, y, z) be a 6-tuple with ℓ,m, n ∈ Z≥0 and x, y, z ∈ OE satisfying the

conditions (a), (b), . . . , and (f) in Lemma 5.1.1 of Chapter 5. We prove that there

is an admissible 6-tuple (ℓ,m, n; x, y, z) such that [M ] = [M(ℓ,m, n;x, y, z)] for

each [M ] ∈ ME
f(T ) (see Proposition 5.1.6 (2)). By the definition of admissibil-

ity of (ℓ,m, n; x, y, z), we have [M(ℓ,m, n;x, y, z)] ∈ ME
f(T ) if (ℓ,m, n; x, y, z) is

admissible (see Proposition 5.1.6 (1)).

The following is our second main theorem, which gives a necessary and suffi-

cient condition for the two ΛE-modules M(ℓ,m, n; x, y, z) and M(ℓ,m, n; x′, y′, z′)

to be isomorphic:

Theorem 2 (Theorem 5.3.1). Let (ℓ,m, n; x, y, z) and (ℓ,m, n; x′, y′, z′) be ad-

missible 6-tuples. Suppose that ordE(x) = ordE(x
′) and ordE(z) = ordE(z

′), where

ordE is the normalized additive valuation on E such that ordE(π) = 1. Suppose

also that ordE(1− x) = ordE(1− x′) if ℓ = 0. Then the following statements are

equivalent:

(i) We have M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules.

(ii) One of (I), (II), . . . , and (XII) holds for (ℓ,m, n;x, y, z) and (ℓ,m, n; x′, y′

, z′), where the statements (I), (II), . . . , and (XII) are described in Chapter 5.

8



We note that our assumptions ordE(x) = ordE(x
′), ordE(z) = ordE(z

′), and

ordE(1 − x) = ordE(1 − x′) are necessary conditions for the two modules to be

isomorphic (see Proposition 5.3.2, Lemma 5.3.3).

The classification in the case of λ = 4 is essentially different from that of

λ = 3. Although in the case of λ = 3, we need only one element x ∈ OE to

study M(m,n, x), we have to investigate three elements x, y, and z ∈ OE to

study M(ℓ,m, n; x, y, z) in the case of λ = 4. For a 6-tuple (ℓ,m, n;x, y, z), the

valuation ordE(y) is not uniquely determined by the class [M(ℓ,m, n; x, y, z)] (cf.

Proposition 5.3.2).

1.8 Applications to Iwasawa theory

Finally, we apply our theorems to Iwasawa theory in Chapter 7. We briefly explain

our application below. Let k be a finite, imaginary, abelian extension of Q and

k∞/k the cyclotomic Zp-extension. We denote by Xk∞ the Iwasawa module for

k∞/k. As we stated in Section 1.3, the minus part X−
k∞

of Xk∞ is a finitely

generated torsion Λ-module and has no non-trivial Λ-submodule (properties (P1)

and (P2)). Let f(T ) be a generator of the characteristic ideal char(X−
k∞

). Iwasawa

conjectured that µ(X−
k∞

) = 0 for the cyclotomic Zp-extension for any k. When k

is a finite abelian extension of Q, this was proven by Ferrero and Washington [3].

Therefore if f(T ) is a separable polynomial, then we have

[X−
k∞

] ∈MQp

f(T ).

Then we can apply our theorems to the class [X−
k∞

] for a finite imaginary abelian

extension k over Q. For a positive integer n, we put Γn = Γpn . For a Λ-module

M , we define

MΓn = M/((1 + T )p
n − 1)M.

Let A−
n be the minus part of An. We assume that exactly one prime of k is ramified

in k∞/k and this prime is totally ramified. Then we have

(X−
k∞

)Γn
∼= An

− (1.5)

9



as Zp[Gal(kn/k)]-modules. By this isomorphism, we can determine the structure

of A−
n for non-negative integer n as a Zp[Gal(kn/k)]-module if we determine the

isomorphism class of X−
k∞

.

Let us give an example. Suppose that p = 3 and k = Q(
√
−9069). Since k

is an imaginary quadratic field, we have Xk∞ = X−
k∞

. In this case, we can check

that f(T ) is separable. Using Theorem 1, we have

Xk∞ ⊗Λ ΛE
∼= M(0, 1, 1),

where E/Qp is the minimal splitting field of f(T ) and M(0, 1, 1) is defined by

(1.4). This implies that

♯M(0, 1, 1)Γn = p6n+4,

M(0, 1, 1)Γn
∼= OE/(π

2n+2)⊕OE/(π
2n)⊕OE/(π

2n+2).

By (1.5), we can determine the structure of An ⊗OE for all n ≥ 0. In particular,

we get

♯An = p3n+2,

An
∼= Z/(pn+1)⊕ Z/(pn)⊕ Z/(pn+1)

for all n ≥ 0. In this way, we get more precise information than Iwasawa’s

class number formula (1.1). We note that only knowing f(T ) does not give the

information above. For details about the computations above, see Chapter 6 and

Chapter 7.

1.9 Overview

The outline of this thesis is as follows. In Chapter 2, we briefly review some

properties of ΛE and prove the structure theorem for finitely generated torsion

ΛE-modules. In Chapter 3, we state some known results about the isomorphism

classes of ΛE-modules. In Chapter 4, we prove Theorem 1. In Chapter 5, we

introduce the notion of admissibility of a 6-tuple (ℓ,m, n;x, y, z) and give a proof

of Theorem 2. As an application, in Corollary 5.3.16 we determine the number of

the elements ofME
f(T ) when E = Qp and ordp(α−β) = ordp(β−γ) = ordp(γ−δ) =

10



ordp(δ − α) = ordp(β − δ) = ordp(α − γ)=1. Here we write ordp for ordQp . In

Chapter 6, we introduce the notion of the higher Fitting ideals and study the

relationships between ΛE-modules and their higher Fitting ideals. In Chapter

7, we determine the isomorphism classes of Iwasawa modules associated to the

cyclotomic Zp-extension of imaginary quadratic fields for p = 3, 5.
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Chapter 2

Preliminary

In this chapter, we prove the structure theorem (1.2) in Chapter 1. Let p be

a prime and E a finite extension over the field Qp of p-adic numbers. We put

Λ = O[[T ]], where O is the ring of integers of E. We denote a prime element of

E by π.

2.1 Structure theorem

First, we review some properties of the ring Λ. The following is so-called division

lemma.

Lemma 2.1.1 ([21], Proposition 7.2). Let f(T ) =
∑∞

n=1 anT
n be an element of

O[[T ]]. Assume that there exists an integer s ≥ 0 such that

a0, a1, . . . , as−1 ∈ (π), and as ∈ O×.

Then for every power series g(T ) ∈ Λ, there exist q(T ) ∈ Λ and r(T ) ∈ O[T ] such
that

g(T ) = q(T )f(T ) + r(T ), deg(r(T )) ≤ s− 1.

Definition 2.1.2 (Distinguished polynomial). Let f(T ) be a polynomial over O.
We call f(T ) a distinguished polynomial if it is of the form

f(T ) = T n + an−1T
n−1 + an−2T

n−2 + · · ·+ a1T + a0

with coefficients a0, . . . , an−1 contained in the maximal ideal of O.
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Proposition 2.1.3 ([21], Theorem 7.3, p-adic Weierstrass Preparation Theorem).

Let f(T ) ∈ Λ be non-zero element. Then f(T ) is uniquely written as

f(T ) = πnP (T )U(T ),

where P (T ) is a distinguished polynomial, U(T ) is a unit of Λ, and n is a non-

negative integer.

Proposition 2.1.4. The prime ideals of Λ are

(0), (π), (f(T )), and (π, T ),

where f(T ) ∈ O[T ] is an irreducible distinguished polynomial.

Proof. It is obvious that (π, T ) is the maximal ideal. Let f(T ) ∈ O[T ] be an

irreducible distinguished polynomial. Since π and f(T ) are irreducible elements

of Λ, (π) and (f(T )) are prime ideals. Conversely, we suppose that p is a prime

ideal. Then there exists an irreducible element h(T ) ∈ p. We assume that p ̸= (h).

We apply the following

Lemma 2.1.5. Suppose that f(T ) and g(T ) ∈ Λ are relatively prime. Then the

ideal (f, g) is of finite index in Λ.

The lemma above can be proved by using Lemma 2.1.1. We put M = Λ/p.

By Lemma 2.1.5, M is finite. Then T nM = πnM = 0 for some n ≥ 0. Hence

we have T n, πn ∈ p. Since p is a prime ideal, we have (π, T ) ⊂ p. This implies

p = (π, T ). Thus we get the conclusion.

We define the notion of pseudo-nulls and pseudo-isomorphisms.

Definition 2.1.6 (pseudo-null). Let R be a noetherian integrally closed domain.

A finitely generated R-module M is called pseudo-null if Mp = 0 for all prime

ideal p satisfying ht(p) ≤ 1, where ht(p) is the height of p.

Definition 2.1.7 (pseudo-isomorphism). Let R be a noetherian integrally closed

domain. Let f : M → N be a homomorphism between finitely generated R-

modules. We call f pseudo-isomorphism if Ker(f) and Coker(f) are pseudo-null.

By the definition of a pseudo-isomorphism, we get the following

13



Proposition 2.1.8. Let f : M → N be a homomorphism between finitely gener-

ated R-modules. Then the following statements are equivalent:

(i) The map f is a pseudo-isomorphism.

(ii) The induced map fp : Mp → Np is an isomorphism for every prime ideal p

satisfying ht(p) ≤ 1.

In the case of R = Λ, we can prove that a pseudo-null module is a finite

module. To show the fact, we prepare the following

Lemma 2.1.9. Let M be a finitely generated Λ-module. Then the following state-

ments are equivalent:

(i) There exist relatively prime elements f(T ) and g(T ) ∈ Λ such that f(T )M =

g(T )M = 0.

(ii) The module M is finite.

Proof. First, we prove (ii) ⇒ (i). Since πnM = T nM = 0 for some n ≥ 0, we

get (ii). Next, we prove (i)⇒ (ii). Since M is a finitely generated Λ-module, we

have a surjective map (Λ/(f(T ), g(T )))⊕r → M for some positive integer r. By

Lemma 2.1.5, Λ/(f(T ), g(T )) is finite. Thus we get (ii).

Proposition 2.1.10. Let M be a finitely generated Λ-module. Then the following

statements are equivalent:

(i) The module M is finite.

(ii) The module M is pseudo-null.

Proof. First, we suppose (i). Since M is finite, M is a torsion Λ-module. Hence

we have M(0) = 0. Further, using Lemma 2.1.9, we have relatively prime elements

f(T ), g(T ) ∈ Λ such that f(T )M = g(T )M = 0. Thus we have f(T ) ̸∈ p or

g(T ) ̸∈ p for every p ∈ P 1(Λ), where P 1(Λ) = {p | p is a prime ideal with ht(p) =

1}. This implies that Mp = 0 for every p ∈ P 1(Λ). Therefore we get (ii).

Next, we suppose (ii). In this case, we note that AnnΛ(M) ̸= 0 and there is

no p ∈ P 1(Λ) such that AnnΛ(M) ⊂ p. Hence we have
√

AnnΛ(M) = (π, T ).

This implies that πn, T n ∈ AnnΛ(M) for some n ≥ 0. Using Lemma 2.1.9, we get

(i).

14



Theorem 2.1.11 (Structure theorem for torsion Λ-modules). Let M be a finitely

generated torsion Λ-module. Then there exists a pseudo-isomorphism

M →
s⊕

i=1

Λ/(πmi)⊕
t⊕

j=1

Λ/(fj(T )
nj),

where ℓ, s, t,mi, and nj are integers and fj(T ) is an irreducible distinguished poly-

nomial.

Proof. First, we use the following

Lemma 2.1.12. Let M be a finitely generated module. Then

{p | Mp ̸= 0 for all p ∈ P 1(Λ)}

is a finite set.

Proof. We assume that Mp ̸= 0 for a prime p ∈ P 1(Λ). This is equivalent to

saying that sM ̸= 0 for all s ∈ Λ\p. This implies that AnnΛ(M) ⊂ p. Since

AnnΛ(M) ̸= 0, p is one of the prime factors of AnnΛ(M). Thus we get the

conclusion.

Using Lemma 2.1.12, we put

{p | Mp ̸= 0, for all p ∈ P 1(Λ)} = {p1, p2, . . . , ph}

for some positive integer h. We also put

S =
h∩

i=1

(Λ\pi).

Then the set S becomes a multiplicatively closed set and S−1Λ is a principal ideal

domain. Indeed, the maximal ideals of S−1Λ are p1S
−1Λ, p2S

−1Λ, . . . , phS
−1Λ.

By the structure theorem for finitely generated modules over a principal ideal

domain, we have

S−1M ∼=
⊕
i

S−1Λ/pi
niS−1Λ ∼= S−1

(⊕
i

Λ/pi
ni

)
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for some non-negative integers ni. Thus there exists an isomorphism

ϕ : S−1M → S−1

(⊕
i

Λ/pi
ni

)
.

We use the following

Proposition 2.1.13 ([1], Chapter II, §2, no 7, Proposition 19). Let S be a mul-

tiplicatively closed set of Λ. Assume that M and N are finitely generated torsion

Λ-modules. Then we have

S−1(HomΛ(M,N)) ∼= HomS−1Λ(S
−1M,S−1N).

By this proposition, there exists s ∈ S such that sϕ : M →
⊕

i Λ/pi
ni is a

pseudo-isomorphism. Thus we get the conclusion.
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Chapter 3

Known results about

isomorphism classes

In this chapter, we introduce some known results about isomorphism classes of

modules. Especially, we review the results of Sumida, Koike, Kurihara, and

Franks.

3.1 Sumida’s and Koike’s results

Let E be a finite extension over the field Qp of p-adic numbers. Let OE, πE, and

ordE be the ring of integers in E, a prime element, and the normalized additive

valuation on E such that ordE(πE) = 1, respectively. We put ΛE := OE[[T ]], the

ring of power series over OE.

Let M be a finitely generated torsion ΛE-module. By the structure theorem

2.1.11, there is a ΛE-homomorphism

φ : M −→

(⊕
i

ΛE/(πE
mi)

)
⊕

(⊕
j

ΛE/(fj(T )
nj)

)

with finite kernel and finite cokernel, where mi, nj are non-negative integers and

fj(T ) ∈ OE[T ] is a distinguished irreducible polynomial. We put

char(M) =

(∏
i

πE
mi

∏
j

fj(T )
nj

)

17



which is an ideal in ΛE. We denote the ΛE-isomorphism class of M by [M ]E or

simply by [M ].

For a distinguished polynomial f(T ) ∈ OE[T ], we consider finitely generated

torsion ΛE-modules whose characteristic ideals are (f(T )), and define the set

ME
f(T ) by

ME
f(T ) =

 [M ]E
M is a finitely generated torsion ΛE-module,

char(M) = (f(T )) and M is free over OE

 . (3.1)

Sumida proved the following

Proposition 3.1.1 ([19], Theorem 2). Let f(T ) andME
f(T ) be the same as above.

ThenME
f(T ) is finite if and only if f(T ) is separable.

Let E be a splitting field of f(T ). Sumida and Koike considered

f(T ) = (T − α)(T − β),

where α and β are elements of E. They classified all the elements ofME
f(T ) in [9]

and [19]. Let us introduce their results in the following. There are three cases to

consider.
(i) The polynomial f(T ) is separable and reducible over E.

(ii) The polynomial f(T ) is irreducible over E.

(iii) The polynomial f(T ) is inseparable.

First, we consider the case (i). Let f(T ) be a separable and reducible polynomial.

In other words, we assume that

f(T ) = (T − α)(T − β),

where α and β are distinct elements of πEOE. Let [M ]E be an element ofME
f(T ).

Since M has no non-trivial finite ΛE-submodule, there exists an injective ΛE-

homomorphism

φ : M ↪→ ΛE/(T − α)⊕ ΛE/(T − β)
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with finite cokernel. We fix the notation to express such submodules in ΛE/(T −
α)⊕ΛE/(T−β). By using the canonical isomorphism ΛE/(T−α) ∼= OE (f(T ) 7−→
f(α)), we define an isomorphism

ι : E = ΛE/(T − α)⊕ ΛE/(T − β) −→ O⊕2
E

by (f1(T ), f2(T )) 7−→ (f1(α), f2(β)). We identify E with O⊕2
E via ι. Thus an

element in E is expressed as (a1, a2) ∈ O⊕2
E . Since the rank of M is equal to two,

we can write M of the form

M = ⟨(a, b), (c, d)⟩OE
⊂ ΛE/(T − α)⊕ ΛE/(T − β),

where ⟨∗⟩OE
is the OE-submodule generated by ∗. Further, using this notation,

we can express the action of T by

T (a, b) = (αa, βb).

Remark 3.1.2. The module M = ⟨(a, b), (c, d)⟩OE
is an OE-module. A necessary

and sufficient condition for M to be a ΛE-module is the following

Lemma 3.1.3. We assume that ordE(a) ≤ ordE(c). Then an OE-module ⟨(a, b),
(c, d)⟩OE

is a ΛE-module if and only if ordE(d− a−1bc)− ordE(b) ≤ ordE(β − α).

Then Sumida proved the following

Proposition 3.1.4 ([19], Proposition 10). Let f(T ) be the same polynomial as

above. Then we have

ME
f(T ) = {[M(m)]E | 0 ≤ m ≤ ordE(β − α)},

where

M(m) = ⟨(1, 1), (0, πm
E )⟩OE

⊂ ΛE/(T − α)⊕ ΛE/(T − β).

Further, we have

M(m) ∼= M(m′)⇔ m = m′.

Next, we consider the case (ii). Let f(T ) be an irreducible polynomial. We

put

f(T ) = T 2 + c1T + c0 ∈ OE[T ].

19



By the same method as in the case (i), there exists an injective ΛE-homomorphism

φ : M ↪→ ΛE/(f(T )).

Since the rank of M is equal to two, we can write M of the form

M = ⟨aT + b, cT + d⟩OE
⊂ ΛE/(f(T )),

where a, b, c, and d are elements of OE. Further, using this notation, we can

express the action of T by

T (aT + b, cT + d) = ((b− ac1)T − ac0, (d− cc1)T − cc0).

Remark 3.1.5. The module M = ⟨aT + b, cT + d⟩OE
is an OE-module. A

necessary and sufficient condition for M to be a ΛE-module is the following:

Lemma 3.1.6. We assume that ordE(a) ≤ ordE(c). Then an OE-module ⟨aT +

b, cT + d⟩OE
is a ΛE-module if and only if ordE(a) ≤ ordE(b) and

ordE(a) ≤ ordE(d− a−1bc) ≤ ordE(a) + ordE(f(− b
a
)).

Then Koike proved the following

Theorem 3.1.7 ([9], Theorem 2.1). Let f(T ) be the same polynomial as above.

Then we have

ME
f (T ) =

{
[N ]E N =

⟨
T +

c1
2
, πx

E

⟩
OE

, 0 ≤ x ≤ 1

2
ordE(c

2
1 − 4c0)

}
.

Finally, we consider the case (iii). Let f(T ) ∈ OE[T ] be an inseparable poly-

nomial. In other words, we suppose that

f(T ) = T 2 + c1T + c0 = (T − α)2 ∈ OE[T ].

Then there exists an injective ΛE-homomorphism

φ : M ↪→ E ,

where we put E = ΛE/(T − α) or ΛE/(T − α) ⊕ ΛE/(T − α). In the case where

E = ΛE/(T−α)⊕ΛE/(T−α), it is easy to see that N ∼= ΛE/(T−α)⊕ΛE/(T−α).
In the case where E = ΛE/(T − α)2, Koike proved the following
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Theorem 3.1.8 ([9], Theorem 2.1). Let f(T ) be the same polynomial as above.

Then we have

ME
f (T ) =

{
[N ] N = N∞ or N =

⟨
T +

c1
2
, πx

E

⟩
OE

(0 ≤ x <∞)

}
,

where N∞ = ΛE/(T − α)⊕ ΛE/(T − α).

3.2 Kurihara’s results

Kurihara determined the isomorphism classes of modules, using higher Fitting

ideals. We give the definition of Fitting ideals in Chapter 6.

Lemma 3.2.1 ([10], Lemma 9.1). Put f(T ) = (T − α)(T − β) ∈ OE[T ]. Let [M ]

be an element ofME
f(T ).

(1) Suppose that α and β belong to OE. Then we have an exact sequence of

Λ-modules

0→ Λ2
E

φ→ Λ2
E →M → 0

such that the matrix Aφ corresponding to the Λ-homomorphism φ is of the form

Aφ =

(
T − α πi

E

0 T − β

)

for some i with 0 < i ≤ ordE(β − α). Here if α = β, i =∞ is allowed. Further,

the isomorphism class of M is determined by the value i.

(2) Suppose that f(T ) is irreducible. We define

a =
α + β

2
.

Then we have an exact sequence of Λ-modules

0→ Λ2
E

φ→ Λ2
E →M → 0

such that the matrix Aφ corresponding to the Λ-homomorphism φ is of the form

Aφ =

(
T − a πi

E

c T − a

)
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for some i such that 0 < i ≤ ordE(β − α) and for some c ∈ OE with ordE(c) ≥ i.

Further, the isomorphism class of M is determined by the value i.

Remark 3.2.2. 1. This lemma says that the isomorphism class [M ] ∈ ME
f(T )

is determined by the 1-st Fitting ideal Fitt1,ΛE
(M) of M . Indeed, we have

Fitt1,ΛE
(M) = (πi

E) in this lemma.

2. In general (in the case of rankOE
(M) ≥ 3), the Fitting ideals Fitti,ΛE

(M)

(i ≥ 0) do not determine the isomorphism class of M . We will state the relation-

ships between ΛE-modules and their higher Fitting ideals in Chapter 6.

3.3 Franks’s results

Chase Franks [4] studies the ΛE-isomorphism classes. He gave an algorithm to

determine whether two ΛE-modules are isomorphic or not for any separable poly-

nomial f(T ) of degree λ ≥ 0. He determined all the elements of ME
f(T ) for a

separable distinguished polynomial f(T ) with deg(f(T )) = 4 satisfying some con-

ditions [4, Section 5.3]. This algorithm is proceeded by checking whether some

matrices he defined belong to GLλ(OE), where λ =deg(f(T )) and GLλ(OE) is

the group of λ× λ matrices over OE that are invertible.

We introduce his results in the case of λ = 4 shortly. We suppose that

f(T ) = (T − α)(T − β)(T − γ)(T − δ),

where α, β, γ, and δ are distinct elements of the maximal ideal of OE. Let π be

a prime element of OE. For each isomorphism class C ∈ ME
f(T ), we can take a

submodule

M(ℓ,m, n;x, y, z) : = ⟨(1, 1, 1, 1), (0, πℓ
E, x, y), (0, 0, π

m
E , z), (0, 0, 0, π

n
E)⟩OE

of ΛE/(T −α)⊕ΛE/(T − β)⊕ΛE/(T − γ)⊕ΛE/(T − δ) with [M(ℓ,m, n;x, y, z)]

= C. Franks considered a map

φ1,2 : (O×
E)

4 −→ GL4(E)

for ΛE-modules M1 = M(ℓ1,m1, n1; x1, y1, z1) and M2 = M(ℓ2,m2, n2; x2, y2, z2).

This map is defined by φ1,2(u1, u2, u3, u4) = G−1
2 diag(u1, u2, u3, u4)G1, where
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diag(u1, u2, u3, u4) is the diagonal matrix with u1, u2, u3, and u4 ∈ O×
E along its

diagonal and

Gi =


1 0 0 0

1 πℓi
E 0 0

1 xi πmi
E 0

1 yi zi πni
E


for i = 1, 2. Franks proved the following

Theorem 3.3.1 ([4], Theorem 2.1.2). Let M1 and M2 be as above. Then M1
∼= M2

as ΛE-modules if and only if im(φ1,2) ∩GL4(OE) ̸= ∅.

In order to check this condition im(φ1,2) ∩ GL4(OE) ̸= ∅, he took some finite

set S ⊂ (O×
E)

4 and reduced this condition to φ1,2(S)∩GL4(OE) ̸= ∅. It is known
that ♯S ≤ pℓ+m+n in the case of E = Qp, where ♯S denotes the number of elements

of S. Further he reduced ♯S which have to be checked (cf. [4, Theorem 5.2.1]).

Consequently, he gave an algorithm [4, Section 5.3] which is proceeded by checking

the condition above for all elements in S. For the details about his algorithm, see

Section 5 in [4].
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Chapter 4

Proof of Theorem 1

In this chapter, we give a proof of Theorem 1. This is the generalization of

Proposition 3.1.4 in Chapter 3. Roughly speaking, Theorem 1 states that there is

an one to one correspondence betweenME
f(T ) and the equivalence classes of Z/ ∼,

where the set Z and the relation ∼ will be defined in Section 4.1.

4.1 Some results

As in Chapter 3, let E be a finite extension over the field Qp of p-adic numbers.

Let OE, π, and ordE be the ring of integers in E, a prime element, and the

normalized additive valuation on E such that ordE(π) = 1, respectively. We put

ΛE := OE[[T ]], the ring of power series over OE.

In this chapter, we consider

f(T ) = (T − α)(T − β)(T − γ) ∈ OE[T ],

where α, β, and γ are distinct elements of πOE. Let [M ]E be an element of

ME
f(T ). Since M has no non-trivial finite ΛE-submodule, there exists an injective

ΛE-homomorphism

φ : M ↪→ ΛE/(T − α)⊕ ΛE/(T − β)⊕ ΛE/(T − γ) =: E (4.1)

with finite cokernel. We write E for the right-hand side. The fact above implies

that every class ofME
f(T ) can be represented by a ΛE-submodule of E . Let M be
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an OE-submodule of E with rankOE
(M) = 3 of the form

M = ⟨(a1, a2, a3), (b1, b2, b3), (c1, c2, c3)⟩OE
⊂ E .

We put

s = min{i ∈ Z≥0| ∃a, b ∈ OE s.t. (πi, a, b) ∈M},

t = min{i ∈ Z≥0| ∃c ∈ OE s.t. (0, πi, c) ∈M}, and

u = min{i ∈ Z≥0| (0, 0, πi) ∈M}.

Then we have

M = ⟨(πs, a, b), (0, πt, c), (0, 0, πu)⟩OE
.

Suppose that (a1, a2, a3) ∈ M . Since ordE(a1) ≥ s, there exists x ∈ OE such

that a1 = xπs. Hence (a1, a2, a3) − x(πs, a, b) = (0, a2 − xa, a3 − xb) ∈ M . Since

ordE(a2 − xa) ≥ t, there exists y ∈ OE such that a2 − xa = yπt. By the same

method as above, we get (0, 0, a3 − xb − yc) ∈ M . Finally, there exists z ∈ OE

such that a3−xb− yc = zπu. Then we have (a1, a2, a3) = x(πs, a, b)+ y(0, πt, c)+

z(0, 0, πu).

The following lemma gives a necessary and sufficient condition for an OE-

module M to be a ΛE-submodule.

Lemma 4.1.1. Put M = ⟨(πs, a, b), (0, πt, c), (0, 0, πu)⟩OE
. Then the following

two statements are equivalent:

(i) The OE-module M is a ΛE-submodule.

(ii) Integers a, b, c, s, t, and u satisfy
t ≤ ordE(β − α) + ordE(a),

u ≤ ordE{(γ − α)b− (β − α)π−tac}, and

u ≤ ordE(γ − β) + ordE(c).

Proof. We first suppose that M is a ΛE-submodule. Hence M satisfies TM ⊂M
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and we have

T (πs, a, b) = (απs, βa, γb)

= α(πs, a, b) + (β − α)π−ta(0, πt, c)

+{(γ − α)b− (β − α)π−tac}π−u(0, 0, πu),

T (0, πt, c) = (0, βπt, γc)

= β(0, πt, c) + (γ − β)cπ−u(0, 0, πu).

Since these coefficients belong to OE, we get (ii). Conversely, if an OE-module

M satisfies (ii), M is naturally regarded as an OE[T ]-module by the action as

above. We show that M becomes a ΛE-module. For a positive integer n, we put

vn =
n∑

k=0

dkT
k ∈ OE[T ] and v =

∞∑
n=0

dnT
n ∈ OE[[T ]]. Then we have

vn(π
s, a, b) =

(
πs

n∑
k=0

dkα
k, a

n∑
k=0

dkβ
k, b

n∑
k=0

dkγ
k

)

=
n∑

k=0

dkα
k(πs, a, b) + a

(
n∑

k=0

dkβ
k −

n∑
k=0

dkα
k

)
π−t(0, πt, c) +{

b

(
n∑

k=0

dkγ
k −

n∑
k=0

dkα
k

)
−(

n∑
k=0

dkβ
k −

n∑
k=0

dkα
k

)
π−tac

}
π−u(0, 0, πu).

Since M is an OE[T ]-module, we have vn(π
s, a, b) ∈M . Thus we obtain

a

(
n∑

k=0

dkβ
k −

n∑
k=0

dkα
k

)
π−t ∈ OE

and {
b

(
n∑

k=0

dkγ
k −

n∑
k=0

dkα
k

)
−

(
n∑

k=0

dkβ
k −

n∑
k=0

dkα
k

)
π−tac

}
π−u ∈ OE.

Since dkα
k, dkβ

k, and dkγ
k → 0 (k → ∞),

∞∑
k=0

dkα
k,

∞∑
k=0

dkβ
k, and

∞∑
k=0

dkγ
k con-

verge in OE. Thus we have v(πs, a, b) ∈ M . For (0, πt, c) and (0, 0, πu), we can
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define the action of the elements of ΛE by the same method as above.

We use the following lemma to fix a representative of the ΛE-isomorphism

class of M .

Lemma 4.1.2 ([20], Lemma 1). Let M = ⟨(a1, a2, a3), (b1, b2, b3), (c1, c2, c3)⟩OE

be a ΛE-submodule of E. Suppose that u1, u2, and u3 are non-zero elements of OE.

Then we have

M ∼= ⟨(u1a1, u2a2, u3a3), (u1b1, u2b2, u3b3), (u1c1, u2c2, u3c3)⟩OE

as ΛE-modules.

Proof. The injective homomorphism

φ : E → E , (x1, x2, x3) 7→ (u1x1, u2x2, u3x3)

induces a ΛE-isomorphism M → φ(M). We have thus proved the lemma.

We take M to be a ΛE-submodule of E with finite index. Then we can write

M = ⟨(πs, a, b), (0, πt, c), (0, 0, πu)⟩OE

as we explained in the beginning of this section. By Lemma 4.1.2, there exist

non-negative integers m, n, and x ∈ OE such that there is an isomorphism

M ∼= ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE

as ΛE-modules. In fact, by Lemma 4.1.2, M is isomorphic to M ′ = ⟨(1, a, b),
(0, πt, c), (0, 0, πu)⟩OE

. In the case of ordE(a) ≤ t, by Lemma 4.1.2, M is iso-

morphic to ⟨(1, 1, b), (0, a−1πt, c), (0, 0, πu)⟩OE
. On the other hand, in the case of

ordE(a) > t, since M ′ = ⟨(1, a + πt, b + c), (0, πt, c), (0, 0, πu)⟩OE
, we can proceed

by the same method as in the case of ordE(a) ≤ t. Therefore M is isomorphic to

M ′′ = ⟨(1, 1, b), (0, a′πt, c), (0, 0, πu)⟩OE
for some a′ ∈ E. By applying the same

method as above, M ′′ is isomorphic to ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE
for some

non-negative integers m,n, and x ∈ OE.

We define M(m,n, x) by

M(m,n, x) := ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE
⊂ E .
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Proposition 4.1.3. Let f(T ) ∈ OE[T ] be a distinguished polynomial. Then we

have

ME
f(T ) =

{
[M(m,n, x)]E

∣∣∣∣∣ m,n, x satisfy (∗)

}
,

where [M(m,n, x)]E is the ΛE-isomorphism class of M(m,n, x) and (∗) is as

follows:

(∗)


(A) 0 ≤ m ≤ ordE(β − α),

(B) 0 ≤ n ≤ ordE(γ − β) + ordE(x), and

(C) n ≤ ordE{(γ − α)− (β − α)π−mx}.

Proof. Let M be a ΛE-module such that [M ]E ∈ ME
f(T ). Then we see that

[M ]E = [M(m,n, x)]E for some m,n, and x satisfying (∗) by Lemma 4.1.1. We

will show the converse. We suppose that m,n, and x satisfy (∗). By Lemma

4.1.1, M(m,n, x) becomes a finitely generated ΛE-module. Since f(T ) = (T −
α)(T − β)(T − γ) annihilates M(m,n, x), it is a torsion ΛE-module. More-

over, by the definition of M(m,n, x), it is a free OE-module. Finally, we show

that char(M(m,n, x)) = (f(T )). The ΛE-module M(m,n, x) is a submodule

of E with finite index. In fact, since rankOE
(E) = rankOE

(M(m,n, x)) = 3,

E/M(m,n, x) is finite. This implies that char(M(m,n, x)) = char(E). Thus we

get [M(m,n, x)]E ∈ME
f(T ).

Remark 4.1.4. (i) If x ≡ x′ mod πn, we have M(m,n, x) = M(m,n, x′) since

(0, πm, x) = (0, πm, x′)+a(0, 0, πn) for some a ∈ OE. In particular, if ordE(x) ≥ n,

we have M(m,n, x) = M(m,n, 0). This means that we may assume that x = 0

or ordE(x) < n.

(ii) We have

(γ − α)(γ − β)

πn
=

(γ − β)x

πn
· β − α

πm
+ (γ − β) · (γ − α)− (β − α)π−mx

πn
.

Therefore if (∗) holds, we get

0 ≤ n ≤ ordE(γ − α) + ordE(γ − β).
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Let M(m,n, x) and M(m′, n′, x′) be elements of ME
f(T ). We will investi-

gate a relation among m,m′, n, n′, x, and x′ when M(m,n, x) is isomorphic to

M(m′, n′, x′) as ΛE-modules. We note that we may assume that x = 0 or

ordE(x) < n by Remark 6.1.4 (i).

First of all, we prepare some notations. For (m,n, x) and (m′, n′, x′) ∈ Z≥0 ×
Z≥0 ×OE, we define

(m,n, x) ∼′ (m′, n′, x′)⇐⇒ m = m′, n = n′ and x ≡ x′ mod πnOE.

We put Z ′ := (Z≥0 × Z≥0 ×OE)/ ∼′ and introduce a set

Z :=
{
(m,n, x) ∈ Z ′ m,n, x satisfy (∗)

}
, (4.2)

where (∗) is the inequalities (A), (B), and (C) in Proposition 4.1.3 and (m,n, x)

is the equivalence class of (m,n, x). The class (m,n, x) is determined by m, n,

and x mod πnOE. We note that the condition (∗) does not depend on the choice

of a representative of (m,n, x).

For an element x ∈ OE and z = x ∈ OE/π
nOE, we define ordE(z) =

ordE(x mod πn) as follows:

ordE(z) :=

ordE(x) if x ̸= 0,

∞ if x = 0.

For (m,n, x) and (m′, n′, x′) ∈ Z , we put k = ordE(x mod πn) and ℓ = ordE(x
′−

πm). We define (m,n, x) ∼ (m′, n′, x′) as follows.

(I) Suppose m ̸= 0.

(a) When ℓ+ k ≥ n, we define

(m,n, x) ∼ (m′, n′, x′)⇐⇒ m = m′, n = n′ and x = x′ in OE/π
nOE.

(b) When ℓ+ k < n, we define

(m,n, x) ∼ (m′, n′, x′) ⇐⇒ m = m′, n = n′ and

x = εx′ in OE/π
nOE for some ε ∈ 1 + πℓOE.
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(II) Suppose m = 0. We define

(m,n, x) ∼ (m′, n′, x′) ⇐⇒ m = m′ = 0, n = n′,

ordE(x mod πn) = ordE(x
′ mod πn) and

1− x = ε(1− x′) in OE/π
nOE for some ε ∈ O×

E .

Here, for s ≤ 0, we define 1+πsOE = O×
E . We can prove that ∼ is an equivalence

relation. The following is our first main theorem, whose proof will be given in

Section 4.2.

Theorem 4.1.5. There is a bijection Φ :

ME
f(T ) −→ Z/ ∼

∈ ∈[
M(m,n, x)

]
E
7−→

[
(m,n, x)

]
,

where ME
f(T ) is defined by (3.1) in Chapter 3, Z is defined by (4.2) after Re-

mark 4.1.4, and ∼ is the equivalence relation of Z defined above. The symbol[
M(m,n, x)

]
E
is the class of M(m,n, x) and

[
(m,n, x)

]
is the class of (m,n, x).

Remark 4.1.6. When (m,n, x) ∼ (m′, n′, x′) and ℓ+k ≤ n, we have ℓ = ordE(x
′−

πm) = ordE(x− πm).

Using Theorem 1, we get the following

Corollary 4.1.7. Let [M(m,n, x)] and [M(m,n, x′)] be elements ofME
f(T ). Sup-

pose that ordE(x) < n or x = 0 and that ordE(x
′) < n or x′ = 0. Then the

following statements are equivalent:

(i) We have M(m,n, x) ∼= M(m,n, x′) as ΛE-modules.

(ii) We have ordE(x) = ordE(x
′) and one of (I′), (II′), and (III′) holds, where

(I′), (II′), and (III′) are

(I′) m ̸= 0, x′ ̸= 0, and

min

{
ordE

(
πn

x′

)
, ordE(π

m − x′)

}
≤ ordE

( x
x′ − 1

)
,

(II′) x′ = 0,

(III′) m = 0 and ordE(1− x) = ordE(1− x′).
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Sumida [20] determined all the elements of MQp

f(T ) for f(T ) = (T − α)(T −
β)(T − γ) and ordp(α− β) = ordp(β − γ) = ordp(γ − α) = 1. We can also obtain

the same result from Theorem 1.

Corollary 4.1.8 ([20], Theorem 1). Put E = Qp and f(T ) = (T−α)(T−β)(T−γ)
with α, β, and γ ∈ Zp. Assume that ordp(α−β) = ordp(β−γ) = ordp(γ−α) = 1.

Then we have ♯Mf(T ) = 7 and

MQp

f(T ) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 2, up), (1, 1, 0), (0, 1, 2)},

where u =
γ − α

β − α
and (m,n, x) means [M(m,n, x)]Qp.

Proof. We prove this corollary by using Theorem 1. For fixed integers m and n

we put

Z(m,n) = { the equivalence class of (m,n, x) in Z/ ∼ (m,n, x) ∈ Z}.

Then by definition we have

Z/ ∼ =
⨿
m

⨿
n

Z(m,n).

We determine all the elements of Z(m,n) for each m and n in order to determine

all the elements ofMf(T ).

We first assume
[
(m,n, x)

]
∈ Z/ ∼, where

[
(m,n, x)

]
is the equivalence class

of (m,n, x). Then by Proposition 4.1.3, M(m,n, x) is a ΛE-module satisfying

(A), (B), and (C). By the inequality (A), we have 0 ≤ m ≤ 1. Now we investigate⨿
n

Z(m,n) for m = 0, 1.

(I) Suppose m = 0. In this case, by the inequalities (B) and (C), we have

0 ≤ n ≤ 1. When n ≥ 2, we get ordp(x) = 0 by (C). This contradicts (B). When

n = 0, we have (0, 0, x) = (0, 0, 0). Therefore we get Z(0, 0) =
{[

(0, 0, 0)
]}

.

When n = 1, we have

Z(0, 1) =
{[

(0, 1, 0)
]
,
[
(0, 1, 1)

]
,
[
(0, 1, 2)

]}
.

By the definition of the equivalence relation, we have (0, 1, x) ∼ (0, 1, x′) if and

only if

ordp(x mod p) = ordp(x
′ mod p) and 1− x = ε(1− x′)
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for some ε ∈ Z×
p .

By the definition of ordp(x mod p), we have

ordp(x mod p) =

0 x ̸∈ pZp,

∞ x ∈ pZp.

We investigate the case of ordp(x mod π) = 0. Suppose x = 1. Then we have[
(0, 1, 1)

]
= {(0, 1, x)| (0, 1, 1) ∼ (0, 1, x)}

= {(0, 1, x)| ordp(x) = 0, 0 = ε(1− x) for some ε ∈ Z×
p }

= {(0, 1, x)| x ≡ 1 mod p}

= {(0, 1, 1)}.

If x = 2, then we have[
(0, 1, 2)

]
= {(0, 1, x)| ordp(x) = 0, −1 = ε(1− x) for some ε ∈ Z×

p }

= {(0, 1, x)| x ̸≡ 0, 1}

= {(0, 1, 2), . . . , (0, 1, p− 1)}.

Therefore we get Z(0, 1) =
{[

(0, 1, 0)
]
,
[
(0, 1, 1)

]
,
[
(0, 1, 2)

]}
.

(II) Suppose m = 1. By Remark 4.1.4 (ii), we have 0 ≤ n ≤ 2. When n = 0,

we have Z(1, 0) =
{[

(1, 0, 0)
]}

. When n = 1, we have Z(1, 1) =
{[

(1, 1, 0)
]}

. In

fact, we suppose
[
(1, 1, x)

]
∈ Z(1, 1). Then we have x = 0 by (C). When n = 2,

we have Z(1, 2) =
{[

(1, 2, up)
]}

. Indeed, we suppose
[
(1, 2, x)

]
∈ Z(1, 2). For

some v ∈ Z×
p , we have

x =

(
1− vp2

γ − α

)
γ − α

β − α
p

≡ γ − α

β − α
p mod p2

by (C). Thus

Z/ ∼ =
{[

(0, 0, 0)
]
,
[
(0, 1, 0)

]
,
[
(1, 0, 0)

]
,
[
(0, 1, 1)

]
,
[
(1, 2, up)

]
,[

(1, 1, 0)
]
,
[
(0, 1, 2)

]}
.

We complete the proof by Theorem 1.
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Corollary 4.1.9. Put f(T ) = (T − α)(T − β)(T − γ) and E = Qp. Assume that

ordp(α−β) = ordp(β−γ) = ordp(γ−α) = 2. Then we have ♯Mf(T ) = p+18 and

MQp

f(T ) =



(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1),

(0, 2, 2), (0, 2, p), (0, 2, p+ 1), (1, 0, 0), (1, 1, 0),

(1, 1, 1), (1, 2, 0), (1, 2, p), · · · , (1, 2, (p− 1)p), (1, 3, up),

(2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 3, up2), (2, 4, up2)


,

where u =
γ − α

β − α
and (m,n, x) means [M(m,n, x)]Qp.

Proof. We use the same notation as in Corollary 4.1.8. By definition, we have

Z/ ∼ =
⨿
m

⨿
n

Z(m,n).

We determine all the elements of Z(m,n) for each m and n in order to determine

all the elements ofMQp

f(T ).

We first assume that
[
(m,n, x)

]
∈ Z/ ∼, where

[
(m,n, x)

]
is the equivalence

class of (m,n, x). Then M(m,n, x) becomes a ΛE-module satisfying (A), (B), and

(C). By the inequality (A), we have 0 ≤ m ≤ 2. Now we investigate
⨿
n

Z(m,n)

for each m.

(I) Suppose m = 0. In this case, by the inequalities (B) and (C), we have

0 ≤ n ≤ 2. In fact, if ordp(x) ≥ 1, we get n ≤ 2 by (C) and if ordp(x) = 0, then

we get n ≤ 2 by (B). When n = 0, we have (0, 0, x) = (0, 0, 0) and Z(0, 0) ={[
(0, 0, 0)

]}
. When n = 1, we have Z(0, 1) =

{[
(0, 1, 0)

]
,
[
(0, 1, 1)

]
,
[
(0, 1, 2)

]}
by the same method as in the proof of Corollary 4.1.8. When n = 2, we have

Z(0, 2) =
{[

(0, 2, 0)
]
,
[
(0, 2, 1)

]
,
[
(0, 2, 2)

]
,
[
(0, 2, p)

]
,
[
(0, 2, p+ 1)

]}
. (4.3)

In fact, if
[
(0, 2, x)

]
∈ Z(0, 2), then we have x = 0 or ordp(x) ≤ 1. We first

investigate the case of ordp(x) = 0. Then, (0, 2, x) ∼ (0, 2, x′) if and only if

0 = ordp(x) = ordp(x
′) and 1− x = ε(1− x′) for some ε ∈ Z×

p .
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By the same method as above, we get[
(0, 2, 1)

]
= {(0, 2, 1)},[

(0, 2, 2)
]

= {(0, 2, x) | x ̸= 0, 1}, and[
(0, 2, p+ 1)

]
= {(0, 2, x) | ordp(x) = 0, −p = ε(1− x) for some ε ∈ Z×

p }

= {(0, 2, 1 + x1p) | 1 ≤ x1 < p}.

Next, we investigate the case of ordp(x) = 1. We suppose x = p. Then we have[
(0, 2, p)

]
= {(0, 2, x) | ordp(x) = 1, 1− p = ε(1− x) for some ε ∈ Z×

p }

= {(0, 2, x1p) | 1 ≤ x1 < p}.

Thus we get (4.3).

(II) Suppose m = 1. By the inequalities (B) and (C), we have 0 ≤ n ≤ 3.

If ordp(x) ≤ 1, we have n ≤ 3 by (B). If ordp(x) > 1, we have n ≤ 2 by

(C). When n = 0, we have Z(1, 0) =
{[

(1, 0, 0)
]}

. When n = 1, we have

Z(1, 1) =
{[

(1, 1, 0)
]
,
[
(1, 1, 1)

]}
. If

[
(1, 1, x)

]
∈ Z(1, 1), then we have x = 0

or ordp(x) = 0. We suppose ordp(x) = 0. We have ℓ = ordp(x − p) = 0.

This is the case where ℓ + k < n. By the definition of the equivalence relation,

(1, 1, x) ∼ (1, 1, x′) if and only if

x = εx′ for some ε ∈ Z×
p .

Here we note that ℓ = ordE(x
′ − p) = 0. Then we have[

(1, 1, x)
]

= {(1, 1, x′) | x = εx′ for some ε ∈ Z×
p }

= {(1, 1, x′) | x′ ̸= 0}.

Therefore we get Z(1, 1) =
{[

(1, 1, 0)
]
,
[
(1, 1, 1)

]}
. When n = 2, we have

Z(1, 2) =
{[

(1, 2, x)
]

x = 0, p, 2p, . . . , (p−1)p
}
. In fact, we suppose

[
(1, 2, x)

]
∈

Z(1, 2). By the inequality (C), we have

2 ≤ ordp{(γ − α)− (β − α)p−1x}.
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If ordp(x) = 0, the order of the right-hand side is 1. This is a contradiction. Thus

we may assume 1 ≤ ordp(x). If ordp(x) ≥ 2, we get
[
(1, 2, x)

]
= {(1, 2, 0)}. We

suppose ordp(x) = 1. Then (1, 2, x) ∼ (1, 2, x′) if and only if

x = x′.

Here we note that this is the case where ℓ+ k ≥ n since ℓ = ordp(x
′− p) ≥ 1. For

each x = εp, where 1 ≤ ε < p, we have[
(1, 2, x)

]
= {(1, 2, x)}.

Thus we get Z(1, 2) =
{[

(1, 2, x)
]

x = 0, p, 2p, . . . , (p − 1)p
}
. When n = 3, we

have Z(1, 3) =
{[

(1, 3, up)
]}

. In fact, we suppose
[
(1, 3, x)

]
∈ Z(1, 3). By the

same method as in the case of n = 2, we get ordp(x) = 1 and (1, 3, x) ∼ (1, 3, up)

if and only if

x = εup for some ε ∈ 1 + pZp.

Here we note that this is the case where ℓ + k < n since ℓ = ordE(up − p) = 1.

Moreover, by (C) we have

x =

(
1− vp3

γ − α

)
γ − α

β − α
p for some v ∈ Z×

p .

Since 1− vp3

γ − α
∈ 1 + pZp, we have

[
(1, 3, up)

]
= {(1, 3, x) | x = εup for some ε ∈ 1 + pZp},

where u =
γ − α

β − α
. Thus we get Z(1, 3) =

{[
(1, 3, up)

]}
.

(III) Suppose m = 2. By the same method as (I) and (II), we get

Z(2, 0) =
{[

(2, 0, 0)
]}

, Z(2, 1) =
{[

(2, 1, 0)
]}

,

Z(2, 2) =
{[

(2, 2, 0)
]}

, Z(2, 3) =
{[

(2, 3, up2)
]}

,

and Z(2, 4) =
{[

(2, 4, up2)
]}

.

Thus we complete the proof.
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4.2 Proof of Theorem 1

For any ξ ∈ ΛE, we define a map Πξ = ΠM
ξ : M −→M by Πξ(y) = ξy.

Lemma 4.2.1. Put q = ♯(OE/(π)) and M = M(m,n, x). Then we have

♯(Ker(ΠN
(T−α))/Im(ΠN

(T−β))) = q{ordE(α−β)−m} and

♯(Ker(ΠM
(T−γ))/Im(ΠM

(T−α)(T−β))) = q{ordE(γ−α)+ordE(γ−β)−n},

where N = Im(Π(T−γ)).

Proof. We first compute Ker(Π(T−γ)). For y ∈M = M(m,n, x), there exist λ1, λ2,

and λ3 ∈ OE such that

y = λ1(1, 1, 1) + λ2(0, π
m, x) + λ3(0, 0, π

n)

= (λ1, λ1 + λ2π
m, λ1 + λ2x+ λ3π

n).

Thus we have Π(T−γ)(y) = ((α− γ)λ1, (β− γ)(λ1 + λ2π
m), 0). If y ∈ Ker(Π(T−γ)),

we get λ1 = 0 and λ1 + λ2π
m = 0, since α, β and γ are distinct elements of OE.

Therefore y = (0, 0, λ3π
n) and Ker(Π(T−γ)) = (0, 0, πnOE). On the other hand, by

y = (λ1, λ1 + λ2π
m, λ1 + λ2x+ λ3π

n), we have

Π(T−α)(T−β)(y) = Π(T−α)((α− β)λ1, 0, (γ − β)(λ1 + λ2x+ λ3π
n))

= (0, 0, (γ − α)(γ − β)(λ1 + λ2x+ λ3π
n)).

Thus we have Im(Π(T−α)(T−β)) = (0, 0, πordE(γ−α)+ordE(γ−β)OE) and

♯(Ker(Π(T−γ))/Im(Π(T−α)(T−β))) = ♯(πnOE/π
ordE(γ−α)+ordE(γ−β)OE)

= q{ordE(γ−α)+ordE(γ−β)−n}.

Next, we put N = Im(Π(T−γ)). We have

Ker(ΠN
(T−α)) = (πordE(α−γ)+mOE, 0, 0) and

Im(ΠN
(T−β)) = (πordE(α−γ)+ordE(α−β)OE, 0, 0).

Therefore we get

♯(Ker(ΠN
(T−α))/Im(ΠN

(T−β))) = q{ordE(α−β)−m}.
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Corollary 4.2.2. Let [M(m,n, x)]E and [M(m′, n′, x′)]E be elements of ME
f(T ).

If [M(m,n, x)]E = [M(m′, n′, x′)]E, then we have m = m′ and n = n′.

Proof. We put M = M(m,n, x) and M ′ = M(m′, n′, x′). Since M ∼= M ′, we have

N = Im(ΠM
(T−γ))

∼= Im(ΠM ′

(T−γ)) = N ′. Therefore we have

Ker(ΠN
(T−α))/Im(ΠN

(T−β))
∼= Ker(ΠN ′

(T−α))/Im(ΠN ′

(T−β)).

This implies m = m′ by Lemma 4.2.1. We get n = n′ by the same method.

By using the canonical isomorphism ΛE/(T − α) ∼= OE (f(T ) 7−→ f(α)), we

define an isomorphism

ι : E = ΛE/(T − α)⊕ ΛE/(T − β)⊕ ΛE/(T − γ) −→ O⊕3
E

by (f1(T ), f2(T ), f3(T )) 7−→ (f1(α), f2(β), f3(γ)). Then ι induces an isomorphism

E⊗OE
E

∼→ E⊕3

such that (f1(T ), f2(T ), f3(T ))⊗ y 7−→ (f1(α)y, f2(β)y, f3(γ)y).

Proposition 4.2.3. Let [M(m,n, x)]E and [M(m,n, x′)]E be elements ofME
f(T ).

Put M = M(m,n, x) and M ′ = M(m,n, x′). Let g : M −→ M ′ be a ΛE-

isomorphism. Define an E-linear map FA by the following commutative diagram

M
g−−−→ M ′

φ⊗1

y yφ′⊗1

E⊗OE
E −−−→ E⊗OE

E

ι⊗1

y yι⊗1

E⊕3 −−−→
FA

E⊕3.

In the diagram, φ and φ′ are natural inclusions defined by (4.1). When we take

the standard basis of E⊕3, FA corresponds to a diagonal matrix
a1 0 0

0 a2 0

0 0 a3


for some a1, a2, and a3 ∈ O×

E .
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Proof. Consider the map ΠT : M −→ M . Then ΠT induces a map FB : E⊕3 −→
E⊕3 and the following commutative diagram

M
ΠT−−−→ M

φ⊗1

y yφ⊗1

E⊗OE
E −−−→ E⊗OE

E

ι⊗1

y yι⊗1

E⊕3 −−−→
FB

E⊕3.

Thus we get

(♮) FB ◦ (ι⊗ 1) ◦ (φ⊗ 1)(x) = (ι⊗ 1) ◦ (φ⊗ 1)(Tx)

for x ∈ M . Let A be the matrix corresponding to FA. By the diagram above, we

get

(♯) FA ◦ (ι⊗ 1) ◦ (φ⊗ 1)(Tx) = (ι⊗ 1) ◦ (φ′ ⊗ 1)(g(Tx)).

By (♮) and the diagrams, the left-hand side of (♯) is

FA ◦ (ι⊗ 1) ◦ (φ⊗ 1)(Tx) = FA ◦ FB ◦ (ι⊗ 1) ◦ (φ⊗ 1)(x).

The right-hand side of (♯) is

(ι⊗ 1) ◦ (φ′ ⊗ 1)(Tg(x)) = FB ◦ (ι⊗ 1) ◦ (φ′ ⊗ 1)(g(x))

= FB ◦ FA ◦ (ι⊗ 1) ◦ (φ⊗ 1)(x).

Since this holds for every x ∈ M , we have FA ◦ FB = FB ◦ FA. If we take the

standard basis of E⊕3, then FB corresponds to the matrix

B =


α 0 0

0 β 0

0 0 γ

 .
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Therefore we have

A


α 0 0

0 β 0

0 0 γ

 =


α 0 0

0 β 0

0 0 γ

A.

Since α, β, and γ are distinct elements, we get

A =


a1 0 0

0 a2 0

0 0 a3


with a1, a2, and a3 ∈ E. Since g((1, 1, 1)) = (a1, a2, a3) ∈ M ′, we have a1, a2,

and a3 ∈ OE. Furthermore, by the same argument for g−1, we have a−1
1 , a−1

2 , and

a−1
3 ∈ OE. Hence we get a1, a2, and a3 ∈ O×

E .

By the commutativity of the diagram, we obtain the following

Corollary 4.2.4. Suppose that M,FA, ι, φ and φ′ are the same as in Proposition

4.2.3. Then we have

⟨(FA ◦ (ι⊗ 1) ◦ (φ⊗ 1)(M)⟩OE
= ⟨(ι⊗ 1) ◦ (φ′ ⊗ 1) ◦ g(M)⟩OE

.

Proposition 4.2.5. Let [M(m,n, x)]E and [M(m,n, x′)]E be elements ofME
f(T ).

Then the following statements are equivalent:

(i) We have M(m,n, x) ∼= M(m,n, x′) as ΛE-modules.

(ii) There exist a1, a2, and a3 ∈ O×
E satisfying

ordE(a2 − a1) ≥ m, (4.4)

ordE(a3x− a2x
′) ≥ n, and (4.5)

ordE{a3 − a1 − (a2 − a1)π
−mx′} ≥ n. (4.6)

Proof. We put M = M(m,n, x) and M ′ = M(m,n, x′). We first prove that

(i) implies (ii). If M is isomorphic to M ′ as ΛE-modules, there exists a ΛE-

isomorphism g : M
∼→M ′. By Proposition 4.2.3, there exists a diagonal matrix

A =


a1 0 0

0 a2 0

0 0 a3


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with a1, a2, and a3 ∈ O×
E which corresponds to g. We have

FA ◦ (ι⊗ 1) ◦ (φ⊗ 1)(M) = FA(M(m,n, x))

= ⟨(a1, a2, a3), (0, a2πm, a3x), (0, 0, a3π
n)⟩OE

and

(ι⊗ 1) ◦ (φ′ ⊗ 1) ◦ g(M) = (ι⊗ 1) ◦ (φ′ ⊗ 1)(M ′)

= ⟨(1, 1, 1), (0, πm, x′), (0, 0, πn)⟩OE
.

By Corollary 4.2.4, we get

⟨(a1, a2, a3), (0, a2πm, a3x), (0, 0, a3π
n)⟩OE

= ⟨(1, 1, 1), (0, πm, x′), (0, 0, πn)⟩OE
.

Since the left-hand side is contained in the right-hand side, we have

(a1, a2, a3) = a1(1, 1, 1) + (a2 − a1)π
−m(0, πm, x′)

+{a3 − a1 − (a2 − a1)π
−mx′}π−n(0, 0, πn),

(0, a2π
m, a3x) = a2(0, π

m, x′) + (a3x− a2x
′)π−n(0, 0, πn).

Since these coefficients should belong to OE, we have (4.4), (4.5), and (4.6). It is

easy to prove that (ii) implies (i).

We can simplify the inequalities (4.4), (4.5), and (4.6). The following is easy

to see.

Lemma 4.2.6. The following conditions are equivalent:

(i) There exist a1, a2, and a3 ∈ O×
E satisfying (4.4), (4.5), and (4.6).

(ii) There exist a1 and a2 ∈ O×
E satisfying

ordE(a2 − a1) ≥ m, (4.7)

ordE(x− a2x
′) ≥ n, and (4.8)

ordE{1− a1 − (a2 − a1)π
−mx′} ≥ n. (4.9)

Corollary 4.2.7. Let [M(m,n, x)]E and [M(m,n, x′)]E be elements of ME
f(T ).

Assume that ordE(x) < n. If [M(m,n, x)]E = [M(m,n, x′)]E, then we have

ordE(x) = ordE(x
′).
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Proof. If ordE(x) < ordE(x
′), we have n ≤ ordE(a3x − a2x

′) = ordE(x) by

the inequality (4.5). This contradicts the assumption ordE(x) < n. If we as-

sume ordE(x) > ordE(x
′), we get the same contradiction. Therefore we obtain

ordE(x) = ordE(x
′).

To prove Theorem 1, we prepare a lemma and some propositions.

Proposition 4.2.8. The following statements are equivalent:

(i) We have M(m,n, x) ∼= M(m,n, 0) as ΛE-modules.

(ii) We have (m,n, x) ∼ (m,n, 0).

Proof. We show that (i) implies (ii). If ordE(x) < n, we have ordE(x) = ordE(0)

by Corollary 4.2.7, which is a contradiction. Hence we have ordE(x) ≥ n and

M(m,n, x) = M(m,n, 0). Then we have (m,n, x) = (m,n, 0) by Remark 4.1.4

(i).

Put M = M(m,n, x) and M ′ = M(m,n, x′). Now we suppose that x′ ̸= 0 and

the existence of a1, a2 ∈ O×
E satisfying (4.7), (4.8), and (4.9). By Proposition 4.2.5

and Lemma 4.2.6, M is isomorphic to M ′. From the inequalities (4.7) and (4.8),

there are s, v ∈ OE such that a2 − a1 = πms and x− a2x
′ = πnv. Thus we have

a1 =
x

x′ −
πn

x′ v − πms, (4.10)

a2 = πms+ a1 =
x

x′ −
πn

x′ v. (4.11)

By the inequality (4.9), we get

x′(x′ − πm)s− πnv + πnx′w = x′ − x (4.12)

for some w ∈ OE.

Lemma 4.2.9. Suppose that m,n ̸= 0, and ordE(x) < n. The following two

statements are equivalent:

(i) There exist a1, a2 ∈ O×
E satisfying (4.7), (4.8), and (4.9).

(ii) We have ordE(x) = ordE(x
′) and there exist s, v, and w ∈ OE satisfying

(4.12).

Proof. We have already proved that (i) implies (ii). We prove that (ii) implies

(i). We put a1 and a2 by the equalities (4.10) and (4.11). Since m,n ̸= 0 and
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ordE(x) = ordE(x
′) < n, we have a1, a2 ∈ O×

E . Then we have

a2 − a1 = πms, x− a2x
′ = πnv

and

1− a1 − (a2 − a1)π
−mx′ = πnw.

Therefore we get (4.7), (4.8), and (4.9).

Proposition 4.2.10. Suppose that m,n ̸= 0, and ordE(x) < n. Then the follow-

ing statements are equivalent:

(i) We have M(m,n, x) ∼= M(m,n, x′) as ΛE-modules.

(ii) We have (m,n, x) ∼ (m,n, x′).

Proof. We first suppose that M(m,n, x) is isomorphic to M(m,n, x′) as ΛE-

modules. Put k = ordE(x) and ℓ = ordE(x
′ − πm). By Lemma 4.2.9, we have

ordE(x) = ordE(x
′) = k and there exist s, v, and w ∈ OE such that

x′(x′ − πm)s− πnv + πnx′w = x′ − x.

We put ε = xx′−1 ∈ O×
E . Dividing the equality by x′, we have

(x′ − πm)s− πn

x′ v + πnw = 1− ε.

Thus we have

ordE(1− ε) ≥ min

{
ordE((x

′ − πm)s), ordE

(
−πn

x′ v

)
, ordE(π

nw)

}
≥ min{ℓ, n− k, n} = min{ℓ, n− k}.

In the case where ℓ ≥ n− k, we have ordE(1− ε) ≥ n− k. Thus we get x = εx′ =

x′ in OE/π
nOE. Therefore we have (m,n, x) ∼ (m,n, x′). In the case where

ℓ < n− k, we have ordE(1− ε) ≥ ℓ and x = εx′ in OE/π
nOE. Therefore we get

(m,n, x) ∼ (m,n, x′). Conversely we assume that (m,n, x) ∼ (m,n, x′). In the

case where ℓ ≥ n − k, we have x = x′ in OE/π
nOE and (x′ − x)/πn ∈ OE. Put

s = w = 0 and v = (x− x′)/πn ∈ OE. Then we get

x′(x′ − πm)s− πnv + πnx′w = x′ − x.
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By Lemma 4.2.9, M and M ′ are isomorphic as ΛE-modules. In the case where ℓ <

n−k, we have x = εx′ in OE/π
nOE for some ε ∈ 1+πℓOE. Since ordE(1−ε) ≥ ℓ,

we have (1− ε)/(x′− πm) ∈ OE. Put v = w = 0 and s = (1− ε)/(x′− πm) ∈ OE.

Then we get

x′(x′ − πm)s− πnv + πnx′w = x′ − εx′.

By Lemma 4.2.9, we get M(m,n, x) = M(m,n, εx′) ∼= M(m,n, x′).

The following propositions treat the case of m = 0 and that of n = 0.

Proposition 4.2.11. Suppose that m = 0, n ̸= 0, and ordE(x) < n. Then the

following statements are equivalent:

(i) We have M(0, n, x) ∼= M(0, n, x′) as ΛE-modules.

(ii) We have (0, n, x) ∼ (0, n, x′).

Proof. Suppose that M(0, n, x) is isomorphic to M(0, n, x′) as ΛE-modules. By

Proposition 4.2.5 and Lemma 4.2.6, there exist a1 and a2 ∈ O×
E satisfying (4.8)

and (4.9). By the inequality (4.8), we have x = a2x′. By the inequality (4.9), we

have 1− a2x′ = a1(1− x′). Therefore we get

ordE(x) = ordE(x
′) and 1− x = a1(1− x′).

Thus we get (0, n, x) ∼ (0, n, x′). Conversely we suppose that (0, n, x) ∼ (0, n, x′).

There exists a1 ∈ O×
E such that 1− x = a1(1− x′). Put a2 = x/x′. Then we have

(4.8) and (4.9). Indeed, we have 1−a1−(a2−a1)π
−mx′ = 1−a1−(a2−a1)x′ = 0.

By Proposition 4.2.5 and Lemma 4.2.6, M(0, n, x) and M(0, n, x′) are isomorphic

as ΛE-modules.

Proposition 4.2.12. Suppose that n = 0. The following statements are equiva-

lent:

(i) We have M(m, 0, x) ∼= M(m, 0, x′) as ΛE-modules.

(ii) We have (m, 0, x) ∼ (m′, 0, x′).

Proof. By Remark 4.1.4 (i), we have M(m, 0, x) = M(m, 0, x′) = M(m, 0, 0) and

(m, 0, x) = (m, 0, x′) = (m, 0, 0).

Now we can prove Theorem 1.
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Proof of Theorem 1. For [M(m,n, x)]E ∈ ME
f(T ), we may assume that x = 0 or

ordE(x) < n holds by Remark 4.1.4 (i). At first, Φ is well-defined by Corollary

4.2.2 and Propositions 4.2.8, 4.2.10, 4.2.11, and 4.2.12. The surjectivity follows

from Proposition 4.1.3 and Remark 4.1.4. On the other hand, Φ is injective by

Propositions 4.2.8, 4.2.10, 4.2.11, and 4.2.12.
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Chapter 5

Proof of Theorem 2

In this chapter, we give a proof of Theorem 2. To state the theorem, we define

the notion of “admissibility” and the describe statements (I) - (XII) in Section

4.1 and 4.2.

5.1 Some results

Let E be a finite extension over the field Qp of p-adic numbers. Let OE, π, and

ordE be the ring of integers in E, a prime element, and the normalized additive

valuation on E such that ordE(π) = 1, respectively. We put ΛE := OE[[T ]], the

ring of power series over OE.

In this chapter, we consider

f(T ) = (T − α)(T − β)(T − γ)(T − δ), (5.1)

where α, β, γ, and δ are distinct elements of πOE. As in the previous chapter, by

using the canonical isomorphism ΛE/(T − α) ∼= OE (f(T ) 7−→ f(α)), we define

an isomorphism

ι : E = ΛE/(T − α)⊕ ΛE/(T − β)⊕ ΛE/(T − γ)⊕ ΛE/(T − δ) −→ O⊕4
E

by (f1(T ), f2(T ), f3(T ), f4(T )) 7−→ (f1(α), f2(β), f3(γ), f4(δ)). Let M be an OE-

submodule of E with rank(M) = 4.

M = ⟨(a1, a2, a3, a4), (b1, b2, b3, b4), (c1, c2, c3, c4), (d1, d2, d3, d4)⟩OE
⊂ E .
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In the same way as in the previous chapter, we have

M = ⟨(πs, a, b, c), (0, πt, d, e), (0, 0, πu, f), (0, 0, 0, πv)⟩OE

for some non-negative integers s, t, u, v, and a, b, c, d, e, f ∈ OE. Further, by

Lemma 4.1.2, we may assume that a ΛE-module M is of the form

M = ⟨(1, 1, 1, 1), (0, πℓ, x, y), (0, 0, πm, z), (0, 0, 0, πn)⟩OE
⊂ E

for some non-negative integers ℓ,m, n, and x, y, z ∈ OE. We define an OE-module

M by

M(ℓ,m, n;x, y, z) := ⟨(1, 1, 1, 1), (0, πℓ, x, y), (0, 0, πm, z), (0, 0, 0, πn)⟩OE
⊂ E ,

where ℓ,m, and n are non-negative integers. We can prove the next lemma by

the same method as Lemma 4.1.1

Lemma 5.1.1. The following two statements are equivalent:

(i) The OE-module M(ℓ,m, n; x, y, z) is a ΛE-module.

(ii) The integers ℓ,m, n, and x, y, z ∈ OE satisfy

(a) ℓ ≤ ordE(β − α),

(b) m ≤ ordE{(γ − α)− (β − α)π−ℓx},

(c) n ≤ ordE

[
(δ − α)− (β − α)π−ℓy − {(γ − α)− (β − α)π−ℓx}π−mz

]
,

(d) m ≤ ordE(γ − β) + ordE(x),

(e) n ≤ ordE{(δ − β)y − (γ − β)xπ−mz}, and

(f) n ≤ ordE(δ − γ) + ordE(z).

Proposition 5.1.2. Let [M(ℓ,m, n;x, y, z)]E and [M(ℓ′,m′, n′;x′, y′, z′)]E be ele-

ments ofME
f(T ). If [M(ℓ,m, n;x, y, z)]E = [M(ℓ′,m′, n′;x′, y′, z′)]E, then we have

ℓ = ℓ′, m = m′, and n = n′.

Proof. We put M = M(ℓ,m, n;x, y, z) and M ′ = M(ℓ′,m′, n′;x′, y′, z′). For every

Λ-module M and ξ ∈ ΛE, we define a map Πξ = ΠM
ξ : M −→ M by Πξ(y) = ξy.

Then we have

♯
(
Ker

(
ΠM

(T−α)

)
/Im

(
ΠM

(T−β)

))
= q{ordE(δ−α)+ordE(δ−β)+ordE(δ−γ)−n},

♯
(
Ker

(
ΠM

(T−γ)

)
/Im

(
ΠM

(T−α)(T−β)(T−δ)

))
= q{ordE(γ−α)+ordE(γ−β)+ordE(γ−δ)−m}.
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We put N = Im
(
ΠM

(T−γ)(T−δ)

)
. Then we have

♯
(
Ker

(
ΠN

(T−β)

)
/Im

(
ΠN

(T−α)

))
= q{ordE(β−α)−ℓ}.

Since M ∼= M ′, we have Ker(ΠM
(T−γ))

∼= Ker(ΠM ′

(T−γ)) and Im(ΠM
(T−α)(T−β)(T−δ))

∼= Im(ΠM ′

(T−α)(T−β)(T−δ)). This implies m = m′. We get ℓ = ℓ′ and n = n′ by the

same method.

For M = M(ℓ,m, n;x, y, z), we put e1 = (1, 1, 1, 1), e2 = (0, πℓ, x, y), e3 =

(0, 0, πm, z), and e4 = (0, 0, 0, πn). For M ′ = M(ℓ,m, n;x′, y′, z′), we also put

e1
′ = (1, 1, 1, 1), e2

′ = (0, πℓ, x′, y′), e3
′ = (0, 0, πm, z′), e4

′ = (0, 0, 0, πn) and

G =


1 0 0 0

1 πℓ 0 0

1 x πm 0

1 y z πn

 , G′ =


1 0 0 0

1 πℓ 0 0

1 x′ πm 0

1 y′ z′ πn

 .

The matrix G is the transition matrix from the bases e1, e2, e3, and e4 to the

bases (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). The matrix G′ is the tran-

sition matrix from the basis e1
′, e2

′, e3
′, and e4

′ to the basis (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), and (0, 0, 0, 1). Let g : M −→ M ′ be a ΛE-isomorphism. Since we

have g(Tx) = Tg(x) for x ∈ M and T (1, 0, 0, 0) = (α, 0, 0, 0), T (0, 1, 0, 0) =

(0, β, 0, 0), T (0, 0, 1, 0) = (0, 0, γ, 0), T (0, 0, 0, 1) = (0, 0, 0, δ), we can prove the

next proposition by the same method as Proposition 4.2.3.

Proposition 5.1.3. Let M = M(ℓ,m, n; x, y, z) and M ′ = M(ℓ,m, n; x′, y′, z′)

be ΛE-modules satisfying [M ]E, [M
′]E ∈ ME

f(T ). Assume that g : M −→ M ′ is a

ΛE-isomorphism. Let {e1, e2, e3, e4} and {e1′, e2′, e3′, e4′} be the bases of M and

M ′, respectively. Let A be the matrix corresponding to g with respect to the bases

{e1, e2, e3, e4} and {e1′, e2′, e3′, e4′}. Then we have

G′AG−1 =


a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4


for some a1, a2, a3, and a4 ∈ O×

E .
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Put A = (aij), 1 ≤ i, j ≤ 4. Using this proposition, we have aii = ai for

i = 1, 2, 3, 4 and aij = 0 for i < j. Since we have aij ∈ OE for i > j, we get the

following proposition (cf. [12, Proposition 4.5 and Lemma 4.6] and [4, Lemma

2.1.2]). We note that we write a1, a2, and a3 for
a1
a4
, a2
a4
, and a3

a4
, respectively, in the

following

Proposition 5.1.4. Let [M(ℓ,m, n; x, y, z)]E and [M(ℓ,m, n;x′, y′, z′)]E be ele-

ments ofME
f(T ). Then the following statements are equivalent:

(i) We have M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules.

(ii) There exist a1, a2, and a3 ∈ O×
E satisfying

a2 ≡ a1 mod πℓ, (5.2)

a3 − a1 − (a2 − a1)π
−ℓx′ ≡ 0 mod πm, (5.3)

1− a1 − (a2 − a1)π
−ℓy′

−
{
a3 − a1 − (a2 − a1)π

−ℓx′} π−mz′ ≡ 0 mod πn, (5.4)

a3x ≡ a2x
′ mod πm, (5.5)

y − a2y
′ − (a3x− a2x

′)π−mz′ ≡ 0 mod πn, and (5.6)

z ≡ a3z
′ mod πn. (5.7)

Let R be a set of complete representatives in OE of the elements of the residue

field OE/(π). Namely, R is a subset of OE and each class of OE/(π) contains

a unique element in R. We assume that R contains 0, 1 and fix this set R of

complete representatives. For non-negative integers k, we set

Sk =

{
k−1∑
i=0

aiπ
i ai ∈ R for i = 0, 1, . . . , k − 1

}
if k > 0,

S0 = {0} if k = 0.

Definition 5.1.5. Let (ℓ,m, n; x, y, z) be a 6-tuple with ℓ,m, n ∈ Z≥0 and x, y, z ∈
OE satisfying the conditions (a), (b), . . . , and (f) in Lemma 5.1.1. We call a 6-tuple

(ℓ,m, n;x, y, z) admissible if x ∈ Sm and y, z ∈ Sn.
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Proposition 5.1.6. (1) If a 6-tuple (ℓ,m, n;x, y, z) is admissible, then M(ℓ,

m, n;x, y, z) becomes a ΛE-module and [M(ℓ,m, n; x, y, z)] ∈ME
f(T ).

(2) Suppose that [M ] ∈ ME
f(T ). Then there is an admissible 6-tuple (ℓ,m, n;

x, y, z) such that [M ] = [M(ℓ,m, n;x, y, z)].

Proof. Part (1) follows from Lemma 5.1.1.

Next, we prove part (2). We suppose that [M ] ∈ ME
f(T ). Since we explained

before Lemma 5.1.1, we can take a module M(ℓ,m, n; x′, y′, z′) such that [M ] =

[M(ℓ,m, n;x′, y′, z′)], where ℓ,m, n ≥ 0 and x′, y′, z′ ∈ OE. We choose x ∈ Sm

and y, z ∈ Sn satisfying x′ ≡ x mod πm, y′ + (x − x′)π−mz′ ≡ y mod πn and

z′ ≡ z mod πn. Then (ℓ,m, n;x, y, z) is admissible. Put a1 = a2 = a3 = 1. Then

equations (5.2), (5.3), (5.4), (5.5), (5.6), and (5.7) hold. By Proposition 5.1.4, we

have [M ] = [M(ℓ,m, n; x′, y′, z′)] = [M(ℓ,m, n; x, y, z)]. Thus we get (2).

5.2 The statements (I) - (XII)

In this section, we describe the statements (I), (II), . . . , and (XII) in Theorem

2. For two 6-tuples (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′), we set the following

quantities. If x′ ̸= 0, z′ ̸= 0 , we put

A =
πn

z′
x

x′y
′, B =

πm

x′ y
′ − z′,

C = −y + z

z′
x

x′y
′, D = x′ − y′,

E = πm − z′, F = πℓ − x′ + (x′ − y′)
(
1− x

x′

)
,

and G = −πm + (πm − z′)
(
1− x

x′

)
.

(I) If x′ ̸= 0, z′ ̸= 0 and ordE(A) ≤ ordE(B), then either the following (I-1), (I-2),

or (I-3) hold.
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(I-1) All of the following (I-1-a), (I-1-b), (I-1-c), and (I-1-d) are satisfied:

(I-1-a) min

{
ordE

(
πm

x′

)
, ordE(F ), ordE(G)

}
= ordE

(
πm

x′

)
,

(I-1-b) ordE(A) ≤ ordE(C),

(I-1-c) x = x′,

(I-1-d) min

{
ordE

(
D +

x′

z′
A−1BFπn−m

)
, ordE

(
E +

x′

z′
A−1BGπn−m

)
,

ordE

(
πn

y′

)}
≤ ordE

(
1− y

y′

)
.

(I-2) All of the following (I-2-a), (I-2-b), (I-2-c), and (I-2-d) are satisfied:

(I-2-a) min

{
ordE

(
πm

x′

)
, ordE(F ), ordE(G)

}
= ordE(F ),

(I-2-b) ordE(A) ≤ ordE(C),

(I-2-c) ordE(F ) ≤ ordE

(
1− x

x′

)
,

(I-2-d) min

{
ordE

(
A−1B

πn

z′
+

πm

x′ DF−1

)
, ordE(E −DF−1G),

ordE

(
πn

y′

)}
≤ ordE

(
z

z′
− 1− A−1C

πn

z′
−
( x
x′ − 1

)
DF−1

)
.

(I-3) All of the following (I-3-a), (I-3-b), (I-3-c), and (I-3-d) are satisfied:

(I-3-a) min

{
ordE

(
πm

x′

)
, ordE(F ), ordE(G)

}
= ordE(G),

(I-3-b) ordE(A) ≤ ordE(C),

(I-3-c) ordE(G) ≤ ordE

(
1− x

x′

)
,

(I-3-d) min

{
ordE

(
A−1B

πn

z′
+

πm

x′ EG−1

)
, ordE(D − EFG−1),

ordE

(
πn

y′

)}
≤ ordE

(
z

z′
− 1− A−1C

πn

z′
−
( x
x′ − 1

)
EG−1

)
.

(II) If x′ ̸= 0, z′ ̸= 0 and ordE(A) > ordE(B), then either the following (II-1),

(II-2) or (II-3) holds.

50



(II-1) All of the following (II-1-a), (II-1-b), (II-1-c), and (II-1-d) are satisfied:

(II-1-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
= ordE

(
πn

z′

)
,

(II-1-b) ordE(B) ≤ ordE(C),

(II-1-c) z = z′,

(II-1-d) min

{
ordE

(
F +

z′

x′AB
−1Dπm−n

)
, ordE

(
G+

z′

x′AB
−1Eπm−n

)
,

ordE

(
πn
(
1− x

x′

)
+ z′AB−1π

m

x′

)
, n+m− ordE(Bx′)

}
≤ ordE

(
x

x′ − 1−B−1C
πm

x′

)
.

(II-2) All of the following (II-2-a), (II-2-b), (II-2-c), and (II-2-d) are satisfied:

(II-2-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
= ordE(D),

(II-2-b) ordE(B) ≤ ordE(C),

(II-2-c) ordE(D) ≤ ordE

(
1− z

z′

)
,

(II-2-d) min

{
ordE

(
AB−1π

m

x′ +
πn

z′
D−1F

)
, ordE(G−D−1EF ),

n+ ordE

(
−
(
1− x

x′

)
+D−1F

)
, n+m− ordE(Bx′)

}
≤ ordE

(
x

x′ − 1−B−1C
πm

x′ −
( z
z′
− 1
)
D−1F

)
.

(II-3) All of the following (II-3-a), (II-3-b), (II-3-c), and (II-3-d) are satisfied:

(II-3-a) min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
= ordE(E),

(II-3-b) ordE(B) ≤ ordE(C),

(II-3-c) ordE(E) ≤ ordE

(
1− z

z′

)
,

(II-3-d) min

{
ordE

(
AB−1π

m

x′ +
πn

z′
E−1G

)
, ordE(F −DE−1G),

n+ ordE

(
−
(
1− x

x′

)
+ E−1G

)
, n+m− ordE(Bx′)

}
≤ ordE

(
x

x′ − 1− CB−1π
m

x′ −
( z
z′
− 1
)
E−1G

)
.
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(III) If ℓ ̸= 0,m ̸= 0, and n = 0, then the following (III-a) holds.

(III-a) min

{
ordE

(
πm

x′

)
, ordE(π

ℓ − x′)

}
≤ ordE

( x
x′ − 1

)
.

(IV) If ℓ ̸= 0 and m = 0, then either the following (IV-1), (IV-2), or (IV-3) holds.

(IV-1) All of the following (IV-1-a), (IV-1-b), and (IV-1-c) are satisfied:

(IV-1-a) y′ ̸= 0 and z′ ̸= 0,

(IV-1-b) ordE(y) = ordE(y
′),

(IV-1-c) min

{
n, ordE

(
(1− z′)

πn

y′

)
, ordE(π

ℓ(1− z′)− y′)

}
≤ ordE

(
z − 1− (z′ − 1)

y

y′

)
.

(IV-2) All of the following (IV-2-a), (IV-2-b), and (IV-2-c) are satisfied:

(IV-2-a) y′ ̸= 0 and z′ = 0,

(IV-2-b) ordE(y) = ordE(y
′),

(IV-2-c) min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′)

}
≤ ordE

(
y

y′
− 1

)
.

(IV-3) All of the following (IV-3-a) and (IV-3-b) are satisfied:

(IV-3-a) y′ = y = 0,

(IV-3-b) ordE(1− z) = ordE(1− z′).

(V) If ℓ ̸= 0,m ̸= 0, n ̸= 0, and z′ = 0, then either the following (V-1), (V-2),

(V-3), (V-4), or (V-5) holds.

52



(V-1) All of the following (V-1-a), (V-1-b), and (V-1-c) are satisfied:

(V-1-a) x′ ̸= 0, y′ ̸= 0, and

min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′)

}
= ordE

(
πn

y′

)
,

(V-1-b) y = y′,

(V-1-c) min

{
ordE

(
πm

x

)
,

ordE

(
πℓ − x′ − x′

x
− (πℓ − y′)

(
1− x′

x

))}
≤ ordE

(
1− x′

x

)
.

(V-2) All of the following (V-2-a), (V-2-b), (V-2-c), and (V-2-d) are satisfied:

(V-2-a) x′ ̸= 0, y′ ̸= 0 and

min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′)

}
= ordE(π

ℓ − y′),

(V-2-b) ordE(y) = ordE(y
′),

(V-2-c) ordE(π
ℓ − y′) ≤ ordE

(
y

y′
− 1

)
,

(V-2-d) min

{
ordE

(
πn

y′

(
1− x′

x

)
− πn

y′
πℓ − x′ − x′x−1

πℓ − y′

)
ordE

(
πn(πℓ − x′ − x′x−1)

πℓ − y′

)
, ordE

(
πm

x

)}
≤ ordE

(
y

y′

(
1− x

x′

)
−
(
y

y′
− 1

)
πℓ − x′ − x′x−1

πℓ − y′

)
.

(V-3) All of the following (V-3-a), (V-3-b), and (V-3-c) are satisfied:

(V-3-a) x′ ̸= 0 and y′ = 0,

(V-3-b) y = 0,

(V-3-c) min

{
ordE

(
πm

x

)
, ordE(π

ℓ − x)

}
≤ ordE

(
1− x′

x

)
.
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(V-4) All of the following (V-4-a), (V-4-b), and (V-4-c) are satisfied:

(V-4-a) x′ = 0 and y′ ̸= 0,

(V-4-b) ordE(y) = ordE(y
′),

(V-4-c) min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′)

}
≤ ordE

(
1− y

y′

)
.

(V-5) The following is satisfied:

x′ = x = 0 and y = y′ = 0.

(VI) If ℓ ̸= 0,m ̸= 0, x′ = 0, and z′ ̸= 0, then either the following (VI-1), (VI-2),

(VI-3), or (VI-4) holds.

(VI-1) All of the following (VI-1-a), (VI-1-b) and (VI-1-c) are satisfied:

(VI-1-a) y′ ̸= 0 and

min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′), ordE(z
′)

}
= ordE

(
πn

y′

)
,

(VI-1-b) y = y′,

(VI-1-c) min

{
ordE

(
πn

z′

)
, ordE(y

′), ordE(π
m − z′)

}
≤ ordE

(
1− z

z′

)
.

(VI-2) All of the following (VI-2-a), (VI-2-b), (VI-2-c), and (VI-2-d) are sat-

isfied:

(VI-2-a) y′ ̸= 0 and

min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′), ordE(z
′)

}
= ordE(π

ℓ − y′),

(VI-2-b) ordE(π
ℓ − y′) ≤ ordE

(
y

y′
− 1

)
,

(VI-2-c) min

{
ordE

(
πn

z′

)
, ordE

(
πm − z′πℓ

πℓ − y′

)}
≤ ordE

(
z

z′
− 1 +

y − y′

πℓ − y′

)
,

(VI-2-d) ordE(y) = ordE(y
′).
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(VI-3) All of the following (VI-3-a), (VI-3-b), (VI-3-c), and (VI-3-d) are sat-

isfied:

(VI-3-a) y′ ̸= 0 and

min

{
ordE

(
πn

y′

)
, ordE(π

ℓ − y′), ordE(z
′)

}
= ordE(z

′),

(VI-3-b) ordE(z
′) ≤ ordE

(
y

y′
− 1

)
,

(VI-3-c) min

{
ordE

(
πn

y′
1

z′
(πm − z′)

)
, ordE

(
πn

z′

)
,

ordE

(
−y′ + (πℓ − y′)

1

z′
(πm − z′)

)}
≤ ordE

(
z

z′
− 1 +

(
y

y′
− 1

)
1

z′
(πm − z′)

)
,

(VI-3-d) ordE(y) = ordE(y
′).

(VI-4) All of the following (VI-4-a) and (VI-4-b) are satisfied:

(VI-4-a) y = y′ = 0,

(VI-4-b) min

{
ordE

(
πn

z′

)
, ordE(π

m − z′)

}
≤ ordE

( z
z′
− 1
)
.

(VII) If ℓ = 0,m ̸= 0, n ̸= 0, x′ ̸= 0, 1, y′ ̸= 0, and z′ = 0, then the following

(VII-a) and (VII-b) hold.

(VII-a) ordE(y) = ordE(y
′), ordE(1− y) = ordE(1− y′),

(VII-b) min

{
ordE

(
πn

y′
(1− y′)

)
, ordE

(
πm

x
(1− y′)

)
,

ordE

(
πm

1− x′ (1− y′)

)
, n

}
≤ ordE

(
1− y − y

y′
x′

x

1− x

1− x′ (1− y′)

)
.

(VIII) If ℓ = 0,m ̸= 0, n ̸= 0, x′ ̸= 0, 1, y′ = 0, and z′ = 0, then the following

holds.

(VIII-a) y = 0.
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(IX) If ℓ = 0,m ̸= 0, n ̸= 0, and x′ = 0, then either the following (IX-1), (IX-2),

(IX-3), or (IX-4) holds.

(IX-1) All of the following (IX-1-a), (IX-1-b), and (IX-1-c) are satisfied:

(IX-1-a) y′ ̸= 0 and z′ ̸= 0,

(IX-1-b) ordE(y) = ordE(y
′),

(IX-1-c) min

{
ordE

(
πn

z′
(1− y′)

)
, n, ordE(π

m(1− y′)− z′)

}
≤ ordE

(
y − 1− z

z′
(y′ − 1)

)
.

(IX-2) All of the following (IX-2-a), and (IX-2-b) are satisfied:

(IX-2-a) y′ ̸= 0 and z′ = 0,

(IX-2-b) ordE(y) = ordE(y
′), ordE(1− y) = ordE(1− y′).

(IX-3) All of the following (IX-3-a), (IX-3-b), and (IX-3-c) are satisfied:

(IX-3-a) y′ = 0 and z′ ̸= 0,

(IX-3-b) y = 0,

(IX-3-c) min

{
ordE

(
πn

z′

)
, ordE(π

m − z′)

}
≤ ordE

( z
z′
− 1
)
.

(IX-4) The following is satisfied:

(IX-4-a) y = y′ = 0 and z = z′ = 0.

(X) If ℓ = 0,m ̸= 0, n ̸= 0, and x′ = 1, then either the following (X-1) or (X-2)

holds.

(X-1) All of the following (X-1-a), (X-1-b), and (X-1-c) are satisfied:

(X-1-a) z′ ̸= 0,

(X-1-b) ordE(1− y) = ordE(1− y′),

(X-1-c) min

{
ordE

(
πn

z′
y′
)
, ordE(π

my′ − z′), n

}
≤ ordE

( z
z′
y′ − y

)
.

(X-2) All of the following (X-2-a) and (X-2-b) are satisfied:

(X-2-a) z′ = 0,

(X-2-b) ordE(y) = ordE(y
′), ordE(1− y) = ordE(1− y′).

56



(XI) If ℓ = 0 and m = 0, then the following (XI-a) and (XI-b) hold:

(XI-a) ordE(y) = ordE(y
′),

(XI-b) ordE(1− y − z) = ordE(1− y′ − z′).

(XII) ℓ = 0,m ̸= 0, and n = 0.
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Remark 5.2.1. We can check the statements (I), (II), . . . , (XII) by calculating

p-adic valuations of quantities described by using 6-tuples (ℓ,m, n, x, y, z) and

(ℓ,m, n, x′, y′, z′). The following Table 5.1 is the algorithm of Theorem 5.3.1.

This table can be used when we check whether two ΛE-modules M(ℓ,m, n;x, y, z)

and M(ℓ,m, n;x′, y′, z′) are isomorphic.

Table 5.1:

ℓ = 0

m = 0 m = 0(XI) (IV)

n = 0 n = 0(XII) (III)

x′ = 0 z′ = 0(IX) (V)

x′ = 1 x′ = 0(X)
Y ES

(VI)

z′ ̸= 0 ordE(A) ≤ ordE(B) (I)

y′ = 0 (II)(VIII)

Y ES

NO

NO

(VII)

Y ES
wwooooooooooooo

NO

''OOOOOOOOOOOOO

Y ES
oo

Y ES
//

NO

��
oo //

oo //

Y ES
oo

Y ES
oo

oo

Y ES //

Y ES
oo

NO

��

NO

��

NO

��

NO

��

NO

��

Y ES //

Y ES //

Y ES //

//

NO

��

NO

��

NO

��

��

��

A =
πn

z′
x

x′y
′ and B =

πm

x′ y
′ − z′, which is defined before the statement of (I).
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5.3 Proof of Theorem 2

In this section, we prove Theorem 2:

Theorem 5.3.1. Let (ℓ,m, n; x, y, z) and (ℓ,m, n; x′, y′, z′) be two admissible 6-

tuples. Suppose that ordE(x) = ordE(x
′) and ordE(z) = ordE(z

′), where ordE is

the normalized additive valuation on E such that ordE(π) = 1. Suppose also that

ordE(1−x) = ordE(1−x′) if ℓ = 0. Then the following statements are equivalent:

(i) We have M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules.

(ii) One of (I), (II), . . . , and (XII) holds for (ℓ,m, n;x, y, z) and (ℓ,m, n; x′, y′

, z′), where the statements (I), (II), . . . , and (XII).

We fix notation. Let Mmn(E) be the set of m× n matrices with entries in E

and GLm(OE) the group of m ×m matrices over OE that are invertible. For A

and B ∈ Mmn(E), we write A ∼ B if there is a matrix P ∈ GLm(OE) such that

PA = B. This is an equivalence relation on Mmn(E).

First, we give necessary conditions for the two modules M(ℓ,m, n;x, y, z) and

M(ℓ,m, n;x′, y′, z′) to be isomorphic.

Proposition 5.3.2. Let (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′) be admissible. As-

sume that M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules. Then we have

ordE(x) = ordE(x
′) and ordE(z) = ordE(z

′).

Proof. We assume that M(ℓ,m, n; x, y, z) ∼= M(ℓ,m, n; x′, y′, z′) as ΛE-modules.

Then we have (5.5) and (5.7) by Proposition 5.1.4. If ordE(x) > ordE(x
′), then

we get ordE(a3x − a2x
′) = ordE(x

′) ≥ m by (5.5). Since (ℓ,m, n; x′, y′, z′) is

admissible, this implies x′ = 0. This contradicts ordE(x) > ordE(x
′). By the same

reason, ordE(x) < ordE(x
′) does not hold. Therefore, we have ordE(x) = ordE(x

′).

In the same way, we get ordE(z) = ordE(z
′).

Further in the case ℓ = 0, we have the following

Lemma 5.3.3. Let (ℓ,m, n; x, y, z) and (ℓ,m, n; x′, y′, z′) be admissible. Then the

following statements are equivalent:

(i) We have M ∼= M ′ as ΛE-modules.
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(ii) There exist a1, a2, and a3 ∈ O×
E satisfying (5.4), (5.5), (5.6), and (5.7) in

Proposition 5.1.4 and

a3(1− x) ≡ a1(1− x′) mod πm. (5.8)

In particular, if (i) holds, then we have

ordE(1− x) = ordE(1− x′).

Proof. The conditions (5.8) and (5.3) are equivalent under the condition (5.5).

Hence we get the conclusion.

Proof of Theorem 5.3.1. By the Table 5.1 in Remark 5.2.1, for given two 6-tuples

(ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′), we have only to apply one statement among

(I), (II), · · · , and (XII). Using the following Propositions 5.3.4, 5.3.6, and 5.3.10,

we can prove Theorem 5.3.1 in the case (I), (III), and (VII). By the same method

as these Propositions, we can prove the remaining cases. This implies that our

Theorem 5.3.1 holds.

Let [M(ℓ,m, n; x, y, z)] be an element ofME
f(T ). We fix non-negative integers

ℓ,m, and n.

Proposition 5.3.4. Let (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′) be admissible. As-

sume that x′ ̸= 0, z′ ̸= 0 if ℓ ̸= 0 and that x′ ̸= 0, 1, z′ ̸= 0 if ℓ = 0. Suppose that

ordE(x) = ordE(x
′), ordE(z) = ordE(z

′) and, ordE(A) ≤ ordE(B), where A,B

are defined before the statement (I). Suppose also that ordE(1−x) = ordE(1−x′)

if ℓ = 0. Then the following statements are equivalent:

(i) We have M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules.

(ii) The statement (I) holds for (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′).

Proof. First, we prove (i) ⇒ (ii). Let A,B,C,D,E, F, and G ∈ OE be the

elements defined before the statement (I). We note that these elements are all in
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OE. By Proposition 5.1.4, we have units a1, a2, and a3 ∈ O×
E satisfying

a2 − a1 = πℓv, (5.9)

a3 − a1 − (a2 − a1)π
−ℓx′ = πmw, (5.10)

1− a1 − (a2 − a1)π
−ℓy′

−
{
a3 − a1 − (a2 − a1)π

−ℓx′} π−mz′ = πnη, (5.11)

a3x− a2x
′ = πmξx, (5.12)

y − a2y
′ − ξxz

′ = πnξy, and (5.13)

z − a3z
′ = πnξz (5.14)

for some v, w, η, ξx, ξy, and ξz ∈ OE. By the equations (5.9), (5.12), and (5.14),

we have

a1 =

(
z

z′
− πn

z′
ξz

)
x

x′ −
πm

x′ ξx − πℓv,

a2 =

(
z

z′
− πn

z′
ξz

)
x

x′ −
πm

x′ ξx, and

a3 =
z

z′
− πn

z′
ξz.

By the equations (5.10), (5.11), (5.13), we have

πn

z′
(
x

x′ − 1)ξz +
πm

x′ ξx + (πℓ − x′)v − πmw =
z

z′
(
x

x′ − 1), (5.15)

πn

z′
x

x′ ξz +
πm

x′ ξx + (πℓ − y′)v − z′w − πnη =
z

z′
x

x′ − 1, (5.16)

πn

z′
x

x′y
′ξz + (

πm

x′ y
′ − z′)ξx − πnξy =

z

z′
x

x′y
′ − y. (5.17)

By the equations (5.15), (5.16), and (5.17), we obtain


−πn

z′
(1− x

x′ )
πm

x′ πℓ − x′ −πm 0 0
πn

z′
x
x′

πm

x′ πℓ − y′ −z′ −πn 0
πn

z′
x
x′y

′ πm

x′ y
′ − z′ 0 0 0 −πn





ξz

ξx

v

w

η

ξy



=


− z

z′
(1− x

x′ )
z
z′

x
x′ − 1

z
z′

x
x′y

′ − y

 .
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Therefore, the augmented matrix for the system of the equations (5.15), (5.16),

and (5.17) is 
−πn

z′
(1− x

x′ )
πm

x′ πℓ − x′ −πm 0 0 b1
πn

z′
x
x′

πm

x′ πℓ − y′ −z′ −πn 0 b2

A B 0 0 0 −πn C

 , (5.18)

where b1 = − z
z′
(1− x

x′ ) and b2 =
z
z′

x
x′ − 1. Performing row operations, the matrix

in (5.18) is equivalent to
−πn

z′
(1− x

x′ )
πm

x′ πℓ − x′ −πm 0 0 b1
πn

z′
0 x′ − y′ πm − z′ −πn 0 b4

A B 0 0 0 −πn C



∼


A B 0 0 0 −πn C
πn

z′
0 D E −πn 0 z

z′
− 1

−πn

z′
(1− x

x′ )
πm

x′ πℓ − x′ −πm 0 0 − z
z′
(1− x

x′ )



∼


A B 0 0 0 −πn C
πn

z′
0 D E −πn 0 z

z′
− 1

0 πm

x′ F G −πn(1− x
x′ ) 0 x

x′ − 1

 , (5.19)

where b4 = z
z′
− 1. By the matrix (5.19), we get Aξz + Bξx − πnξy = C.

Since ξx, ξy, ξz ∈ OE and ordE(A) ≤ ordE(B), we have min {ordE(A), n} ≤
ordE(C). Further we have ordE(A) ≤ ordE(C). Indeed, if ordE(y

′) ≥ ordE(z
′),

we have ordE(B) = ordE(z
′) < n, since we assume that (ℓ,m, n;x, y, z) and

(ℓ,m, n;x′, y′, z′) are admissible. If ordE(y
′) < ordE(z

′), we have ordE(A) < n.

Thus we get ordE(A) ≤ ordE(C). We prove that the statement (I) holds for

(ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′). First, we note that either (I-1-a), (I-2-a)

or (I-3-a) holds. We suppose that (I-2-a) holds. By the matrix (5.19), we have
πm

x′ ξx + Fv +Gw − πn(1− x
x′ )η = x

x′ − 1. Since we suppose (I-2-a), we get min{
ordE

(
πm

x′

)
, ordE(F ), ordE(G)

}
= ordE(F ).

This implies ordE(F ) ≤ ordE(
x
x′ − 1). Thus we get the condition (I-2-c). Since

ordE(A) < n and ordE(F ) < m, we have A ̸= 0 and F ̸= 0. Performing row
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operations for (5.19), we have
1 A−1B 0 0 0 −A−1πn c1

0 −A−1B πn

z′
D E −πn A−1 π2n

z′
c2

0 πm

x′ F
−1 1 GF−1 −πn(1− x

x′ )F
−1 0 c3



∼


1 A−1B 0 0 0 −A−1πn c1

0 πm

x′ F
−1 1 GF−1 −πn(1− x

x′ )F
−1 0 c3

0 U 0 E −GF−1D S A−1 π2n

z′
T

 ,

where T = −A−1C πn

z′
+ z

z′
− 1− ( x

x′ − 1)F−1D, S = −πn + πn(1− x
x′ )F

−1D, U =

−A−1B πn

z′
− πm

x′ F
−1D, c1 = A−1C, c2 = −A−1C πn

z′
+ z

z′
− 1, and c3 = ( x

x′ − 1)F−1.

By the matrix above, we have

Uξx + (E −GF−1D)w + Sη + A−1π
2n

z′
ξy = T.

This implies that min{ordE(U), ordE(E − DF−1G), ordE(S), ordE(A
−1 π2n

z′
)} ≤

ordE(T ). Since we have ordE(A
−1 π2n

z′
) = ordE(

πn

y′
), this is the condition (I-2-d).

The condition (I-2-b) is already obtained after (5.19). Therefore (I-2) holds. We

can prove the case of (I-1) and that of (I-3) by the same method. Thus we have

obtained (ii).

We next prove (ii) ⇒ (i). Then either (I-1), (I-2), or (I-3) holds. We suppose

that (I-2) holds. By the condition (I-2-d), there exist integers ξx, w, η, and ξy ∈ OE

satisfying

Uξx + (E −DF−1G)w + Sη + A−1π
2n

z′
ξy = T.

We put

v =
( x
x′ − 1

)
F−1 − πm

x′ F
−1ξx −GF−1w + πn(1− x

x′ )F
−1η,

ξz = A−1C − A−1Bξx + A−1πnξy.

By (I-2-a), (I-2-b), and (I-2-c), we have v, ξz ∈ OE. By the converse operation of

the proof of (i)⇒ (ii), ξx, ξy, ξz, w, η, and v satisfy (5.15), (5.16), and (5.17). We
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also set

a1 =

(
z

z′
− πn

z′
ξz

)
x

x′ −
πm

x′ ξx − πℓv,

a2 =

(
z

z′
− πn

z′
ξz

)
x

x′ −
πm

x′ ξx,

and a3 =
z

z′
− πn

z′
ξz.

Then a1, a2, and a3 satisfy (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14). In the

case where ℓ ̸= 0, we can check a1, a2, and a3 ∈ O×
E since we have ordE(x) =

ordE(x
′), ordE(z) = ordE(z

′), and z′ ̸= 0. In the case of ℓ = 0, we have

a1 =
z

z′
1− x

1− x′ −
πn

z′
1− x

1− x′ ξz +
πm

1− x′ ξx −
πm

1− x′w.

We note that we have ordE

(
πm

1−x

)
> 0 since x ∈ Sm. Thus we have a1 ∈ O×

E .

By the same method, we can show a2 and a3 ∈ O×
E . Then a1, a2, and a3 satisfy

equalities (5.2), (5.3), (5.4), (5.5), (5.6), and (5.7). By Proposition 5.1.4, we

obtain (i). If (I-1) or (I-3) holds, we can prove (i) by the same method.

Proposition 5.3.5. Let (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′) be admissible. As-

sume that x′ ̸= 0, z′ ̸= 0 if ℓ ̸= 0 and that x′ ̸= 0, 1, z′ ̸= 0 if ℓ = 0. Suppose that

ordE(x) = ordE(x
′), ordE(z) = ordE(z

′), and ordE(A) > ordE(B), where A,B

are defined before the statement (I). Suppose also that ordE(1−x) = ordE(1−x′)

if ℓ = 0. Then the following statements are equivalent:

(i) We have M(ℓ,m, n;x, y, z) ∼= M(ℓ,m, n;x′, y′, z′) as ΛE-modules.

(ii) The statement (II) holds for (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′).

Proof. First, we assume (i). Let A,B,C,D,E, F, and G ∈ OE be the same el-

ements, which is defined before the condition (I). By Proposition 5.1.4, we have

units a1, a2, and a3 ∈ O×
E satisfying (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14).

In the same way as Proposition 5.3.4, we have the matrix (5.19), which is equiv-
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alent to 
AB−1 1 0 0 0 −πnB−1 CB−1

πn

z′
0 D E −πn 0 z

z′
− 1

0 πm

x′ F G −πn(1− x
x′ ) 0 x

x′ − 1



∼


AB−1 1 0 0 0 −πnB−1 CB−1

πn

z′
0 D E −πn 0 z

z′
− 1

−AB−1 πm

x′ 0 F G c′4 B−1 πm+n

x′ c4

 , (5.20)

where c4 = x
x′ − 1 − CB−1 πm

x′ , and c′4 = −πn(1 − x
x′ ). By the same methods as

Proposition 5.3.4, we have ordE(B) ≤ ordE(C). We will prove that the statement

(II) holds for (ℓ,m, n;x, y, z) and (ℓ,m, n;x′, y′, z′). We note that either (II-1-a),

(II-2-a) or (II-3-a) holds. Then we have z = z′. Indeed, by the matrix (5.20)

above, we have

ordE(
πn

z′
) = min

{
ordE

(
πn

z′

)
, ordE(D), ordE(E)

}
≤ ordE(

z

z′
− 1).

Since we suppose z and z′ ∈ Sn, this implies that z = z′. Further the matrix

above (5.20) is equivalent to
AB−1 1 0 0 0 −πnB−1 c5

1 0 z′

πnD
z′

πnE −z′ 0 0

−AB−1 πm

x′ 0 F G −πn(1− x
x′ ) πnB−1 πm

x′ c6



∼


AB−1 1 0 0 0 −πnB−1 c5

1 0 z′

πnD
z′

πnE −z′ 0 0

0 0 V W X πnB−1 πm

x′ c6

 ,

where V = F + z′

πnDAB−1 πm

x′ , W = G + z′

πnEAB−1 πm

x′ , X = −πn(1 − x
x′ ) −

z′AB−1 πm

x′ , c5 = CB−1, and c6 =
x
x′ − 1− CB−1 πm

x′ . Therefore there exist v, w, η,

and ξy ∈ OE satisfying

V v +Ww +Xη + πnB−1π
m

x′ ξy =
x

x′ − 1− CB−1π
m

x′ .

This implies that

min

{
ordE(V ), ordE(W ), ordE(X), ordE

(
πnB−1π

m

x′

)}
≤ ordE

(
x

x′ − 1− CB−1π
m

x′

)
.
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Thus the condition (II-1-d) is satisfied. Therefore (II-1) holds. We can prove the

case (II-2) and that of (II-3) by the same method. Thus we have obtained (ii).

Conversely, we prove (ii) ⇒ (i). Then either (II-1), (II-2), or (II-3) holds.

We suppose that (II-1) holds. By the condition (II-1-d), there exist v, w, η, and

ξy ∈ OE satisfying

V v +Ww +Xη + πnB−1π
m

x′ ξy =
x

x′ − 1− CB−1π
m

x′ .

Set ξz = − z′

πnDv − z′

πnEw + z′η and ξx = CB−1 − AB−1ξz + πnB−1ξy. We put

a1 =

(
1− πn

z′
ξz

)
x

x′ −
πm

x′ ξx − πℓv,

a2 =

(
1− πn

z′
ξz

)
x

x′ −
πm

x′ ξx, and

a3 = 1− πn

z′
ξz.

Then a1, a2, and a3 satisfy (5.9), (5.10), (5.11), (5.12), (5.13), and (5.14). In the

case where ℓ ̸= 0, we can check a1, a2, and a3 ∈ O×
E since ordE(x) = ordE(x

′),

x′ ̸= 0, and z′ ̸= 0. In the case of ℓ = 0, we have a1, a2, and a3 ∈ O×
E in the same

way as Proposition 5.3.4. Then a1, a2, and a3 satisfy equalities (5.2), (5.3), (5.4),

(5.5), (5.6), and (5.7). By Proposition 5.1.4, we have (i). If (II-2) or (II-3) holds,

we can prove (i) by the same method.

Next, we treat the case where ℓ ̸= 0 and n = 0. In this case, we have y = z = 0

for every admissible (ℓ,m, n;x, y, z).

Proposition 5.3.6. Suppose that (ℓ,m, 0;x, 0, 0) and (ℓ,m, 0;x′, 0, 0) are admis-

sible. Assume that ordE(x) = ordE(x
′) and ℓ ̸= 0. Then the following statements

are equivalent:

(i) We have M(ℓ,m, 0;x, 0, 0) ∼= M(ℓ,m, 0;x′, 0, 0) as ΛE-modules.

(ii) The statement (III) holds for (ℓ,m, 0;x, 0, 0) and (ℓ,m, 0;x′, 0, 0).

Proof. We prove that (i) ⇒ (ii). By Proposition 5.1.4, we have units a1, a2, and
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a3 ∈ O×
E satisfying

a2 ≡ a1 mod πℓ,

1− a1 − (a2 − a1)π
−ℓx′ ≡ 0 mod πm, and

x ≡ a2x
′ mod πm.

By [12, Proposition 4.5 and Lemma 4.6], this is equivalent to saying thatM(ℓ, n, x)

∼= M(ℓ, n, x′), where M(ℓ, n, x) = ⟨(1, 1, 1), (0, πℓ, x), (0, 0, πn) ⟩OE
⊂ ΛE/(T −

α) ⊕ ΛE/(T − β) ⊕ ΛE/(T − γ) is defined in Section 4.1. By Corollary 1, this

implies that (I’) or (II’) holds. This is the same as the statement (III). Hence we

have (ii).

Next, we suppose (ii). Then we obtain M(x, 0, 0) ∼= M(x′, 0, 0) by Theorem

1. Thus we have (i).

Next, we consider the case where ℓ ̸= 0 and m = 0. In this case, we have x = 0

for every admissible (ℓ,m, n;x, y, z).

Proposition 5.3.7. Let (ℓ, 0, n; 0, y, z) and (ℓ, 0, n; 0, y′, z′) be admissible. Sup-

pose that ordE(z) = ordE(z
′) and ℓ ̸= 0. Then the following statements are

equivalent:

(i) We have M(ℓ, 0, n; 0, y, z) ∼= M(ℓ, 0, n; 0, y′, z′) as ΛE-modules.

(ii) The statement (IV) holds for (ℓ, 0, n; 0, y, z) and (ℓ, 0, n; 0, y′, z′).

Proof. First, we assume (i). We show (ii). We note that either (IV-1-a), (IV-2-a),

or y′ = 0 holds. We suppose that (IV-a-1) holds. By Proposition 5.1.4, we have

units a1, a2, and a3 ∈ O×
E satisfying (5.2), (5.4), (5.6), and (5.7). By the equation

(5.2), (5.6), and (5.7), we have

a1 =
y

y′
− πn

y′
ξy − πℓv, (5.21)

a2 =
y

y′
− πn

y′
ξy, and (5.22)

a3 =
z

z′
− πn

z′
ξz (5.23)
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for some v, ξy, and ξz ∈ OE. By (5.22), we get ordE(y) = ordE(y
′). This is the

condition (IV-1-b). Further by the equation (5.4) we obtain

πnξz + (1− z′)
πn

y′
ξy + {πℓ(1− z′)− y′}v − πnη

= z − 1− (z′ − 1)
y

y′
. (5.24)

This implies that

min

{
n, ordE

(
(1− z′)

πn

y′

)
, ordE(π

ℓ(1− z′)− y′)

}
≤ ordE

(
z − 1− (z′ − 1)

y

y′

)
.

This is the condition (IV-1-c). Therefore (IV-1) holds. We can prove the case of

(IV-2) and that of (IV-3) by the same method.

Conversely, we prove that (ii) ⇒ (i). Then either (IV-1), (IV-2), or (IV-3)

holds. We suppose that (IV-1) holds. By the condition (IV-1-c), we have (5.24)

for some ξy, ξz, v, and η ∈ OE. We put a1, a2, and a3 the same as (5.21), (5.22),

and (5.23), respectively. Then a1, a2, and a3 are units and satisfy equalities (5.2),

(5.4), (5.6), and (5.7) since we have ordE(y) = ordE(y
′) and ordE(z) = ordE(z

′).

By Proposition 5.1.4, we obtain (i). We can show the conclusion by the same

method when (IV-3) holds. Finally, we suppose that (IV-2) holds. In this case,

we have M(ℓ,m, n; x, y, z) = M(ℓ, 0, n; 0, y, 0) ∼= ⟨(1, 1, 1), (0, πℓ, y), (0, 0, πn)⟩Zp ⊕
⟨(0, 0, 1, 0)⟩Zp . Therefore (i) is equivalent to saying that

⟨(1, 1, 1), (0, πℓ, y), (0, 0, πn)⟩Zp
∼= ⟨(1, 1, 1), (0, πℓ, y′), (0, 0, πn)⟩Zp .

By Theorem 1, this is the same as the condition (IV-2).

Next, we treat the case where ℓ ̸= 0, n ̸= 0, and z′ = 0. Let (ℓ,m, n;x, y, z)

and (ℓ,m, n; x, y′, 0) be admissible. If we assume that ordE(z) = ordE(z
′), then

we have z = 0.

Proposition 5.3.8. Suppose that (ℓ,m, n;x, y, 0) and (ℓ,m, n; x′, y′, 0) are ad-

missible. Assume that ordE(x) = ordE(x
′), ℓ ̸= 0, m ̸= 0, and n ̸= 0. Then the

following statements are equivalent:
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(i) We have M(ℓ,m, n;x, y, 0) ∼= M(ℓ,m, n;x′, y′, 0) as ΛE-modules.

(ii) The statement (V) holds for (ℓ,m, n;x, y, 0) and (ℓ,m, n;x′, y′, 0).

Proof. First, we prove that (ii)⇒ (ii). We suppose (i). By Proposition 5.1.4, we

have units a1, a2, and a3 ∈ O×
E satisfying (5.2), (5.3), (5.4), (5.5), and (5.6). By

the equations (5.2), (5.5), and (5.6), we have

a1 =
y

y′
− πn

y′
ξy − πℓv, (5.25)

a2 =
y

y′
− πn

y′
ξy, and (5.26)

a3 =
y

y′
x′

x
− πn

y′
x′

x
ξy +

πm

x
ξx (5.27)

for some v, ξx, and ξy ∈ OE. By (5.26), we get ordE(y) = ordE(y
′). By the

equations (5.3) and (5.4) we obtain

πn

y′

(
1− x′

x

)
ξy +

πm

x
ξx + (πℓ − x′)v − πmw =

y

y′

(
1− x′

x

)
,

πn

y′
ξy + (πℓ − y′)v − πnη =

y

y′
− 1

for some η and w ∈ OE. In the same way as Proposition 5.3.4, we write the

augmented matrix for the system of the equations above:(
πn

y′
(1− x′

x
) πm

x
πℓ − x′ −πm 0 y

y′
(1− x′

x
)

πn

y′
0 πℓ − y′ 0 −πn y

y′
− 1

)

∼

(
0 πm

x
d1 −πm πn(1− x′

x
) 1− x′

x
πn

y′
0 πℓ − y′ 0 −πn y

y′
− 1

)
, (5.28)

where d1 = πℓ− x′− (πℓ− y′)(1− x′

x
). We prove that the statement (V) holds for

(ℓ,m, n;x, y, 0) and (ℓ,m, n;x′, y′, 0). Then we note that (V-1-a), (V-2-a), (V-3-a),

(V-4-a), or (V-5-a) holds. We suppose that (V-1-a) holds. Then we get ordE(
πn

y′
)

≤ ordE(
y
y′
− 1) by (5.28). This implies y = y′ since y and y′ ∈ Sn. Further the

matrix (5.28) is equivalent to(
0 πm

x
d1 −πm πn(1− x′

x
) 1− x′

x

1 0 (πℓ − y′) y′

πn 0 −y′ ( y
y′
− 1) y′

πn

)
. (5.29)
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Thus we have

πm

x
ξx +

{
πℓ − x′ − (πℓ − y′)

(
1− x′

x

)}
v − πmw + πn

(
1− x′

x

)
η

= 1− x′

x
. (5.30)

This implies that

min

{
ordE

(
πn

x

)
, ordE

(
πℓ − x′ − (πℓ − y′)

(
1− x

x′

))}
≤ ordE

(
1− x′

x

)
.

Thus we get (V-1-c). Therefore we have obtained (ii). Next, we suppose that

(V-2-a) holds. Then we have ordE(π
ℓ − y′) ≤ ordE(

y
y′
− 1) by (5.28). Further the

matrix (5.28) is equivalent to(
πn

y′
(1− x′

x
) πm

x
πℓ − x′ −πm 0 y

y′
(1− x′

x
)

πn

y′
1

πℓ−y′
0 1 0 −πn 1

πℓ−y′
( y
y′
− 1) 1

πℓ−y′

)

∼

(
d2

πm

x
0 −πm πn πℓ−x′

πℓ−y′
d3

πn

y′
1

πℓ−y′
0 1 0 −πn 1

πℓ−y′
( y
y′
− 1) 1

πℓ−y′

)
,

where d2 =
πn

y′
(1− x′

x
)− πn

y′
πℓ−x′

πℓ−y′
and d3 =

y
y′
(1− x′

x
)− ( y

y′
− 1)π

ℓ−x′

πℓ−y′
. This implies

that

min

{
ordE

(
πn

y′
(1− x

x′ )−
πn

y′
πℓ − x′

πℓ − y′

)
, ordE

(
πnπ

ℓ − x′

πℓ − y′

)
, ordE

(
πm

x

)}
≤ ordE

(
y

y′

(
1− x

x′

)
−
(
y

y′
− 1

)
πℓ − x′

πℓ − y′

)
.

Thus we get (V-2-d). Therefore we have obtained (ii). The remaining cases are

also showed by the same method as above.

Conversely, we prove that (ii) ⇒ (i) holds. We suppose that (ii) holds. Then

(V-1), (V-2), (V-3), (V-4), or (V-5) holds. We assume that (V-1) holds. Espe-

cially we assume that (V-1). By the condition (V-1-c), there exist ξx, v, w, and η

satisfying (5.30). We put

ξy =

(
y

y′
− 1

)
y′

πn
− (πℓ − y′)

y′

πn
v + y′η

and set a1, a2, and a3 the same as (5.25), (5.26), and (5.27), respectively. Then

a1, a2, and a3 are units and satisfy equalities (5.2), (5.3), (5.4), (5.5), (5.6), and
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(5.7). By Proposition 5.1.4, we have (i). The remaining cases are proved by the

same method as above.

Further we treat the case where ℓ ̸= 0,m ̸= 0, x′ = 0, and z′ ̸= 0. Let

(ℓ,m, n;x, y, z) and (ℓ,m, n; 0, y′, z′) be admissible. If we assume that ordE(x) =

ordE(x
′), then we have x = 0. In the same way as Proposition 5.3.8, we can show

the following.

Proposition 5.3.9. Suppose that (ℓ,m, n; 0, y, z) and (ℓ,m, n; 0, y′, z′) are ad-

missible. Assume that ordE(z) = ordE(z
′), ℓ ̸= 0, m ̸= 0, and n ̸= 0. Then the

following statements are equivalent:

(i) We have M(ℓ,m, n; 0, y, z) ∼= M(ℓ,m, n; 0, y′, z′) as ΛE-modules.

(ii) The statement (VI) holds for M(ℓ,m, n; 0, y, z) and M(ℓ,m, n; 0, y′, z′).

From now on, we treat the case of ℓ = 0 and z′ = 0. Let (0,m, n; x, y, z) and

(0,m, n;x′, y′, 0) be admissible. If ordE(z) = ordE(z
′), then we have z = 0.

Proposition 5.3.10. Suppose that (0,m, n;x, y, 0) and (0,m, n;x′, y′, 0) are ad-

missible. Assume that ordE(x) = ordE(x
′), ordE(1− x) = ordE(1− x′), x′ ̸= 0, 1,

and y′ ̸= 0. Then the following statements are equivalent:

(i) We have M(0,m, n; x, y, 0) ∼= M(0,m, n;x′, y′, 0) as ΛE-modules.

(ii) The statement (VII) holds for (0,m, n; x, y, 0) and (0,m, n;x′, y′, 0).

Proof. First we assume (i). By Lemma 5.3.3, we have units a1, a2, and a3 ∈
O×

E satisfying (5.8), (5.4), (5.5), (5.6), and (5.7). By (5.6), we have ordE(y) =

ordE(y
′). Further using (5.4) and (5.6), we get

1− y ≡ a1(1− y′) mod πn. (5.31)

Hence we have (VII-a). We show (VII-b). By (5.8), (5.5), and (5.6), we obtain

a1 =

{(
y

y′
− πn

y′
ξy

)
x′

x
+

πm

x
ξx

}
1− x

1− x′ −
πm

1− x′w
′, (5.32)

a2 =
y

y′
− πn

y′
ξy, and (5.33)

a3 =

(
y

y′
− πn

y′
ξy

)
x′

x
+

πm

x
ξx (5.34)
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for some ξx, ξy, and w′ ∈ OE. By (5.31), we have 1 − y − a1(1 − y′) = πnη for

some η ∈ OE. This implies that

−πn

y′
1− x

1− x′
x′

x
(1− y′)ξy +

πm

x

1− x

1− x′ (1− y′)ξx +
πm

1− x′ (1− y′)w′ + πnη

= 1− y − y

y′
x′

x

1− x

1− x′ (1− y′). (5.35)

This implies that (VII-b). Conversely, we suppose that (ii) holds. By (VII-b),

there exist ξx, ξy, w
′, and η ∈ OE satisfying (5.35). We put a1, a2, and a3 as (5.32),

(5.33), and (5.34), respectively. Since (0,m, n; x, y, 0) and (0,m, n; x′, y′, 0) are

admissible and (VII-a) holds, a2, a3 ∈ O×
E . Using ordE(1− x) = ordE(1− x′), we

have a1 ∈ O×
E . It is easy to check that a1 and a2, and a3 satisfy (5.8), (5.3), (5.4),

(5.5), (5.6), and (5.7). By Lemma 5.3.3, we get (i).

Let (0,m, n; x, y, z) and (0,m, n; x′, 0, 0) be admissible. If ordE(z) = ordE(z
′),

then we have z = 0. In the same way as Proposition 5.3.10, we have the following.

Proposition 5.3.11. Suppose that (0,m, n;x, y, 0) and (0,m, n;x′, 0, 0) are ad-

missible. Assume that ordE(x) = ordE(x
′), ordE(1 − x) = ordE(1 − x′), m ̸=

0, n ̸= 0, and x′ ̸= 0, 1. Then the following statements are equivalent:

(i) We have M(0,m, n; x, y, 0) ∼= M(0,m, n;x′, 0, 0) as ΛE-modules.

(ii) The statement (VIII) holds for (0,m, n;x, y, 0) and (0,m, n;x′, 0, 0).

Next, we consider the case where ℓ = 0, m ̸= 0, n ̸= 0, and x′ = 0. Let

(0,m, n;x, y, z) and (0,m, n; 0, y′, z′) be admissible. If ordE(x) = ordE(x
′), then

we have x = 0.

Proposition 5.3.12. Suppose that (0,m, n; 0, y, z) and (0,m, n; 0, y′, z′) are ad-

missible. Assume that ordE(z) = ordE(z
′), m ̸= 0, and n ̸= 0. Then the following

statements are equivalent:

(i) We have M(0,m, n; 0, y, z) ∼= M(0,m, n; 0, y′, z′) as ΛE-modules.

(ii) The statement (IX) holds for (0,m, n; 0, y, z) and (0,m, n; 0, y′, z′).

Proof. First, we assume (i). We prove that (IX) holds for (0,m, n; 0, y, z) and

(0,m, n; 0, y′, z′). By Lemma 5.3.3, we have units a1, a2, and a3 ∈ O×
E satisfying

72



(5.8), (5.4), (5.6), and (5.7). By (5.8), we put a3 − a1 = πmw. By the equation

(5.6), (5.7), and (5.8), we have

a1 =
z

z′
− πn

z′
ξz − πmw, (5.36)

a2 =
y

y′
− πn

y′
ξy, and (5.37)

a3 =
z

z′
− πn

z′
ξz (5.38)

for some ξy, ξz, and w ∈ OE. Using (5.37), we have ordE(y) = ordE(y
′). We note

that (IX-1-a), (IX-2-a), (IX-3-a), or (IX-4-a) holds. We assume that (IX-1-a)

holds. By (5.4), we have 1− a1 − (a2 − a1)y
′ −wz′ = πnη for some η ∈ OE. This

implies that

πn

z′
(1− y′)ξz + πnξy + {πm(1− y′)− z′}w − πnη

= y − 1− z

z′
(y′ − 1). (5.39)

Thus we have (IX-1-c) and get the conclusion. Therefore we have proved (ii). We

can prove the remaining cases by the same method.

Conversely, we suppose that (ii) holds. Then either (IX-1), (IX-2), (IX-3),

(IX-4), or (IX-5) holds. We assume that (IX-1) holds. By (IX-1-c), there exist

ξy, ξz, w, and η satisfying (5.39). We define a1, a2, and a3 by (5.36), (5.37), and

(5.38), respectively. It is easy to check that a1, a2, and a3 satisfy (5.8), (5.4),

(5.5), (5.6), and (5.7). By Lemma 5.3.3, we get (i). We can prove the remaining

cases in the same way.

Next, we consider the case where m ̸= 0,m ̸= 0, n ̸= 0, and x′ = 1. Let

(0,m, n;x, y, z) and (0,m, n; 1, y′, z′) be admissible. If ordE(1−x) = ordE(1−x′),

then we have x = 1.

Proposition 5.3.13. Suppose that (0,m, n; 1, y, z) and (0,m, n; 1, y′, z′) are ad-

missible. Assume that ordE(z) = ordE(z
′), m ̸= 0, and n ̸= 0. Then the following

statements are equivalent:

(i) We have M(0,m, n; 1, y, z) ∼= M(0,m, n; 1, y′, z′) as ΛE-modules.

(ii) The statement (X) holds for (0,m, n; 1, y, z) and (0,m, n; 1, y′, z′).
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Proof. First, we assume (i). We prove that (ii) holds. We note that (X-1) or (X-2)

holds. We assume that (X-1) holds. By Lemma 5.3.3, we have units a1, a2, and

a3 ∈ O×
E satisfying (5.8), (5.4), (5.5), (5.6), and (5.7). Further using (5.4) and

(5.6), we obtain

1− y ≡ a1(1− y′) mod πn. (5.40)

These imply (X-1-b). By (5.40), we put 1−y−a1(1−y′) = πnη for some η ∈ OE.

By the equation (5.4) and (5.5), we have

a1 =
1− y

1− y′
− πn

1− y′
η, (5.41)

a2 =
z

z′
− πn

z′
ξz − πmξx, and (5.42)

a3 =
z

z′
− πn

z′
ξz (5.43)

for some ξx and ξz ∈ OE. By (5.6), we have

πn

z′
y′ξz + (πmy′ − z′)ξx − πnξy =

z

z′
y′ − y. (5.44)

This implies (X-1-c). Thus we have conclusion. We can prove the case of (X-2)

in the same way. It is easy to check that (ii) implies (i).

Next, we consider the case of ℓ = 0 and m = 0. If (0, 0, n; x, y, z) and

(0, 0, n;x′, y′, z′) are admissible, then we have x = x′ = 0.

Proposition 5.3.14. Suppose that (0, 0, n; 0, y, z) and (0, 0, n; 0, y′, z′) are ad-

missible. Assume that ordE(z) = ordE(z
′). Then the following statements are

equivalent:

(i) We have M(0, 0, n; 0, y, z) ∼= M(0, 0, n; 0, y′, z′) as ΛE-modules.

(ii) The statement (XI) holds for (0, 0, n; 0, y, z) and (0, 0, n; 0, y′, z′).

Proof. First, we assume (i). We prove the statement (XI) holds for (0, 0, n; 0, y, z)

and (0, 0, n; 0, y′, z′). By Lemma 5.3.3, we have units a1, a2, and a3 ∈ O×
E satisfying

(5.4), (5.6), and (5.7). By (5.4) and (5.6), we have (XI-a). By (5.7), we have

1 − y − z ≡ a1(1 − y′ − z′) mod πn. This implies (XI-b). Thus we get the
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conclusion. It is easy to see that (ii) implies (i).

Finally, we treat the case where ℓ = 0, m ̸= 0, and n = 0. If (0,m, 0;x, y, z)

and (0,m, 0;x′, y′, z′) are admissible, then we have y = y′ = z = z′ = 0.

Proposition 5.3.15. Suppose that (0,m, 0;x, 0, 0) and (0,m, 0;x′, 0, 0) are ad-

missible. Assume that ordE(x) = ordE(x
′), ordE(1 − x) = ordE(1 − x′), and

m ̸= 0. Then the following statements are equivalent:

(i) We have M(0,m, 0;x, 0, 0) ∼= M(0,m, 0;x′, 0, 0) as ΛE-modules.

(ii) The statement (XII) holds for (0,m, 0;x, 0, 0) and (0,m, 0;x′, 0, 0).

Proof. In the same way as Proposition 5.3.6, (i) is equivalent to saying that

M(0,m, x) ∼= M(0,m, x′), where

M(0,m, x) ⊂ ΛE/(T − α)⊕ ΛE/(T − β)⊕ ΛE/(T − γ).

By Corollary 1, this is the condition (XII).

As an example, we classify all the elements of Mf(T ) in the case of E = Qp

and ordp(α − β) = ordp(β − γ) = ordp(γ − δ) = ordp(δ − α) = ordp(β − δ) =

ordp(α−γ)=1, where we writeMf(T ) forMQp

f(T ) and ordp for ordQp . This example

was also treated by C.Franks. We note that there is no distinguished polynomial

which has this property in the case of p = 2 and 3. In the following, we take

R = {0, 1, . . . , p − 1}, which is a set of complete representatives in Zp of the

elements of the residue field Zp/pZp.

Corollary 5.3.16. Suppose that p ≥ 5. Let f(T ) be the same polynomial as

(5.1) and put E = Qp. Assume that ordp(α− β) = ordp(β − γ) = ordp(γ − δ) =

ordp(δ − α) = ordp(β − δ) = ordp(α− γ) = 1. Then we have ♯Mf(T ) = 2p+ 36.

We note that this corollary holds for every totally ramified extensions of Qp.

Sketch of the proof of Corollary 5.3.16. For fixed non-negative integers ℓ,m, and

n, we put

ME
f(T )(ℓ,m, n) :=

{
[M(ℓ′,m′, n′;x, y, z)] ∈ME

f(T ) x, y, z ∈ Zp

}
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By Proposition 5.3.2, we have

ME
f(T ) =

⨿
ℓ

⨿
n

⨿
m

ME
f(T )(ℓ,m, n). (5.45)

Using the conditions of Lemma 5.1.1, we have 0 ≤ ℓ ≤ 1, 0 ≤ m ≤ 2, and

0 ≤ n ≤ 3. Indeed, by (a), we have 0 ≤ ℓ ≤ ordp(β − α) = 1. If ordp(x) ≥ 2,

we have m ≤ 1 by (b). If ordp(x) ≤ 1, we obtain m ≤ 2 by (d). These imply

0 ≤ m ≤ 2. We can prove that 0 ≤ n ≤ 3 by Lemma 5.1.1. In fact, by (f), we

have n ≤ 3 in the case of ordp(z) ≤ 2. We suppose ordp(z) ≥ 3. In the case of

ordp(y) ≤ 1, we have n ≤ 2 by (e). If ordp(y) ≥ 2, we have n ≤ 1 by (c). Thus

we get 0 ≤ n ≤ 3.

We denote M(ℓ,m, n; x, y, z) by M(x, y, z) for the fixed triple ℓ,m, and n.
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Then we get the following:

ME
f(T )(0, 0, 0) = {[M(0, 0, 0)]} ,

ME
f(T )(0, 0, 1) =


[M(0, 2, p− 1)], [M(0, 1, 1)], [M(0, 0, 0)],

[M(0, 0, 1)], [M(0, 0, 2)], [M(0, 1, 0)],

[M(0, 2, 0)]

 ,

ME
f(T )(0, 1, 0) = {[M(0, 0, 0)], [M(1, 0, 0)], [M(2, 0, 0)]} ,

ME
f(T )(0, 1, 1) =


[M(2, 2, 0)], . . . , [M(p− 1, 2, 0)], [M(p− 2, 4, 0)],

[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 1, 0)], [M(1, 0, 0)],

[M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(2, 0, 0)]

 ,

ME
f(T )(0, 1, 2) =



[
M(0, 0, δ−α

γ−α
p)
]
, [M(0, p, δ−α

γ−α
p)],

[M(1, 1 + p, δ−β
γ−β

p)],
[
M(1, 1, δ−β

γ−β
p)
]
,[

M( β−δ
β−α

, β−γ
β−α

, p)
]

 ,

ME
f(T )(1, 0, 0) = {[M(0, 0, 0)]} ,

ME
f(T )(1, 0, 1) = {[M(0, 0, 0)], [M(0, 0, 1)], [M(0, 0, 2)]} ,

ME
f(T )(1, 0, 2) =

{[
M(0,

δ − α

β − α
p, 0)

]
,

[
M(0,

δ − α

β − α
p, p)

]}
,

ME
f(T )(1, 1, 0) = {[M(0, 0, 0)]} ,

ME
f(T )(1, 1, 1) =

{
[M(0, 0, 0)],

[
M(0,

γ − α

β − α
, 1)

]}
,

ME
f(T )(1, 1, 2) =

{[
M(0, 0,

δ − α

γ − α
p)

]}
∪
{[

M(0, pu,
δ − α

γ − α
p(1− β − α

δ − α
u))

]
u = 1, . . . p− 1

}
,

ME
f(T )(1, 2, 0) =

{[
M(

γ − α

β − α
p, 0, 0)

]}
,
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ME
f(T )(1, 2, 1) =

{[
M(

γ − α

β − α
p, 0, 0)

]}
,

ME
f(T )(1, 2, 2) =

{[
M(

γ − α

β − α
p,

δ − α

β − α
p, 0)

]}
,

ME
f(T )(1, 2, 3) =

{[
M(

γ − α

β − α
p,

δ − α

β − α
p,

(δ − α)(δ − β)

(γ − α)(γ − β)
p2)

]}
.

The following table is the number of elements ofME
f(T )(ℓ,m, n) for each (ℓ,m, n).

We pick up the case of (ℓ,m, n) = (1, 0, 0) and that of (0, 1, 1) and determine

(ℓ,m, n) ♯ME
f(T )(ℓ,m, n)

(0, 0, 0) 1

(0, 0, 1) 7

(0, 1, 0) 3

(0, 1, 1) p+ 7

(0, 1, 2) 5

(1, 0, 0) 1

(1, 0, 1) 3

(1, 0, 2) 2

(1, 1, 0) 1

(1, 1, 1) 2

(1, 1, 2) p

(1, 2, 0) 1

(1, 2, 1) 1

(1, 2, 2) 1

(1, 2, 3) 1

ME
f(T )(1, 0, 0) andME

f(T )(0, 1, 1), using our Theorem 2. The remaining cases are

proved by the same method as the case of (1, 0, 0) and that of (0, 1, 1). First, we

consider the former. This is the simplest case. Since we have m = 0 and n = 0,

we get M(x, y, z) = M(x, 0, 0) = M(0, 0, 0). Thus we obtain the conclusion.

Next, we consider the case (ℓ,m, n) = (0, 1, 1). This is one of the most compli-

cated cases. If (0, 1, 1;x, y, z) is admissible, then we have z = 0. Indeed we suppose

that (0, 1, 1;x, y, z) is admissible. Then x, y, and z satisfy (a), (b), (c), (d), (e), and
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(f) in Lemma 5.1.1. We have ordE(zx) ≥ 1 by (e). We have also ordE(z) ≥ 1 by

(c). Since z ∈ S1, we have z = 0. We classify all the elements ofME
f(T )(0, 1, 1). We

note that (0, 1, 1;x, y, 0) is admissible for every x and y ∈ S1. Let (0, 1, 1;x
′, y′, 0)

be admissible. We consider the following two cases:(i) x′ ∈ {0, 1} or y′ ∈ {0, 1},

(ii) x′ ̸∈ {0, 1} and y′ ̸∈ {0, 1}.

(i) We suppose that x′ ∈ {0, 1} or y′ ∈ {0, 1}. Then we have

M(x, y, 0) ∼= M(x′, y′, 0) ⇔ ordE(x) = ordE(x
′), ordE(1− x) = ordE(1− x′),

ordE(y) = ordE(y
′), and

ordE(1− y) = ordE(1− y′).

Indeed, by the Table 5.1 in Remark 5.2.1, the 6-tuple (0, 1, 1;x′, y′, 0) corresponds

to (VII), (VIII), (XI), or (X). Therefore the isomorphism classes of M(x, y, 0)

satisfying (i) are [M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(1, 0, 0)],

[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 0, 0)], [M(2, 1, 0)]

 .

(ii) We suppose that x′ ̸∈ {0, 1} and y′ ̸∈ {0, 1}. Then we have the following

Lemma 5.3.17. Suppose (ii). Then we have

M(x, y, 0) ∼= M(x′, y′, 0) ⇔ x ̸= 0, 1, y ̸= 0, 1 and

1− x

x

y

1− y
≡ 1− x′

x′
y′

1− y′
mod p.

Further we have

1− x′

x′
y′

1− y′
mod p ≡



2− 2
k
mod p

if (x′, y′) = (k, 2),

2 mod p

if (x′, y′) = (p− 2, 4).
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Proof. Since we suppose (ii), the 6-tuple (0, 1, 1;x′, y′, 0) corresponds to (VII) by

the Table 5.1. Since we assume that x′ ̸= 0, 1 and y′ ̸= 0, 1, the condition (VII-a)

says that x ̸= 0, 1 and y ̸= 0, 1. By the same reason, the condition (VII-b) says

that
1− x

x

y

1− y
≡ 1− x′

x′
y′

1− y′
mod p.

Thus we get the former. It is easy to show the latter.

By Lemma 5.3.17, the isomorphism classes of M(x, y, 0) satisfying (ii) are

{[M(p− 2, 4, 0)], [M(k, 2, 0)] 2 ≤ k ≤ p− 1} .

Therefore we obtain ♯ME
f(T )(0, 1, 1) = p+ 7,

ME
f(T )(0, 1, 1) =


[M(2, 2, 0)], . . . , [M(p− 1, 2, 0)], [M(p− 2, 4, 0)],

[M(1, 1, 0)], [M(1, 2, 0)], [M(2, 1, 0)], [M(1, 0, 0)],

[M(0, 0, 0)], [M(0, 1, 0)], [M(0, 2, 0)], [M(2, 0, 0)]

 .
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Chapter 6

Higher Fitting ideals and

Λ-modules

In this chapter, we state the relationships between ΛE-modules and their higher

Fitting ideals. By Lemma 3.2.1 in Chapter 3, the isomorphism class of a finitely

generated torsion ΛE-moduleM with rankOE
(M) = 2 is determined by the Fitting

ideals Fitt0,ΛE
(M) and Fitt1,ΛE

(M). However, in general, Fitti,ΛE
(M) (i ≥ 0) do

not determine the isomorphism class of M (see Remark 6.1.1). In this chapter, we

define ΛE-invariants m(M) and n(M) for a ΛE-module M . Our aim is to prove

that Fitt1,ΛE
(M), m(M), and n(M) determine the isomorphism class [M ]E ∈

ME
f(T ) (Theorem 6.1.2) for a fixed distinguished separable polynomial f(T ) with

degf(T ) = 3.

6.1 Higher Fitting ideals

In this chapter, we will use the higher Fitting ideals. For a commutative ring R

and a finitely presented R-module M , we consider the following exact sequence

Rm f→ Rn →M → 0,

where m and n are positive integers. For an integer i ≥ 0 such that 0 ≤ i < n, the

i-th Fitting ideal ofM is defined to be the ideal of R generated by all (n−i)×(n−i)
minors of the matrix corresponding to f . We denote the i-th Fitting ideal of M by
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Fitti,R(M). This definition does not depend on the choice of the exact sequence

above (see [16]).

We also define a notation. For A and B ∈M3(ΛE), we define

A ∼ B ⇐⇒ PAQ = B for some P,Q ∈ GL3(ΛE).

This is an equivalence relation on M3(ΛE).

Remark 6.1.1. In general, Fitti,ΛE
(M) (i ≥ 0) do not determine the isomorphism

class of M . Indeed, suppose that f(T ) = (T − α)(T − β)(T − γ) with α, β, and

γ ∈ Zp. We assume that ordp(α − β) = ordp(β − γ) = ordp(γ − α) = 1. For

[M(0, 1, 2)] and [M(1, 1, 0)] ∈MQp

f(T ), we have

Fitt1,ΛQp
(M(0, 1, 2)) = Fitt1,ΛQp

(M(1, 1, 0)) = (p, T ).

However, by Corollary 4.1.8, we have [M(0, 1, 2)] ̸= [M(1, 1, 0)].

In the following, we write Fitti(M) for Fitti,ΛE
(M) for simplicity. The main

theorem in this chapter is the following, whose proof will be given in Section 6.2.

Theorem 6.1.2. Let [M(m,n, x)]E and [M(m′, n′, x′)]E be elements of ME
f(T ).

Put M = M(m,n, x) and M ′ = M(m′, n′, x′). The following statements are

equivalent:

(i) We have M ∼= M ′ as ΛE-modules.

(ii) We have m(M) = m(M ′), n(M) = n(M ′), and Fitt1(M) = Fitt1(M
′),

where m(M) and n(M) are defined by

m(M) = ordE(β − α)−m, n(M) = ordE(γ − β) + ordE(x)− n.

To prove Theorem 6.1.2, we prepare the following

Lemma 6.1.3. There exists an exact sequence of ΛE-modules

0→ Λ3
E

φ→ Λ3
E →M → 0

such that the matrix Aφ corresponding to the ΛE-homomorphism φ is of the form

Aφ =


T − α 0 0

u1 T − β 0

w u2 T − γ

 (6.1)

for some u1, u2, and w ∈ OE.
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Proof. There exists an exact sequence

0→ ΛE ⊗OE
M

Φ→ ΛE ⊗OE
M

Ψ→M → 0,

where Φ and Ψ are defined as follows:

Φ(a⊗m) = Ta⊗m− a⊗ Tm,

Ψ(a⊗m) = am.

We take (1, 1, 1), (0, πm, x), and (0, 0, πn) as a basis of M . Then we have

T (1, 1, 1) = α(1, 1, 1) + (β − α)π−m(0, πm, x)

+{γ − α− (β − α)π−mx}π−n(0, 0, πn)

T (0, πm, x) = (0, βπm, γx)

= β(0, πm, x) + (γ − β)xπ−n(0, 0, πn), and

T (0, 0, πn) = γ(0, 0, πn).

Therefore the matrix corresponding to Φ is
T − α 0 0

−(β − α)π−m T − β 0

−{γ − α− (β − α)π−mx}π−n −(γ − β)xπ−n T − γ

 . (6.2)

Take u1 = −(β−α)π−m, u2 = −(γ−β)xπ−n, and w = −{γ−α−(β−α)π−mx}π−n.

Since ΛE ⊗OE
M ∼= Λ⊕3

E , we get the conclusion.

Remark 6.1.4. (i) By elementary row and column operations, we can more

simplify the matrix Aφ and get

Aφ ∼


T − α 0 0

πm T − β 0

x πn T − γ

 , (6.3)

where m and n are non-negative integers and x ∈ OE. Indeed, let u1 = u′
1π

m and

u2 = u′
2π

n, where u1 and u2 ∈ OE
× and m,n are non-negative integers. Then we

have

Aφ ∼


T − α 0 0

πm T − β 0

wu′
1
−1u′

2
−1 πn T − γ

 .
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(ii) If m ≥ ordE(β − α) in the matrix (6.3), using elementary row and column

operations, we find that Aφ is equivalent to
T − α 0 0

πordE(β−α) T − β 0

∗ πn T − γ

 ,

where

∗ = πordE(β−α)

β − α

{
x+

(
πm

β − α
− 1

)
πn

}
.

Thus we always may assume that πm ̸= 0 in other words, m ̸= ∞. This implies

that 0 ≤ m ≤ ordE(α − β). By the same argument above, we may assume that

n ̸=∞ and 0 ≤ n ≤ ordE(β − γ).

(iii) By elementary row and column operations for the matrix (6.2), we get

the matrix

A =


T − α 0 0

(β − α)π−m T − β 0

−{γ − α− (β − α)π−mx}π−n (γ − β)xπ−n T − γ

 . (6.4)

In the following, we suppose ordE(x) ≤ n and x ̸= 0 for a module M(m,n, x).

Proposition 6.1.5. Let [M(m,n, x)]E be an element of ME
f(T ). If we have a

matrix corresponding to M(m,n, x) of the form
T − α 0 0

πm′
T − β 0

x′ πn′
T − γ

 ,

then we get

m′ = ordE(β − α)−m, n′ = ordE(γ − β) + ordE(x)− n.

Proof. We put M = M(m,n, x). By assumptions, there is a basis of M e1, e2,

and e3 satisfying

(T − α)e1 = −πm′
e2 − x′e3,

(T − β)e2 = −πn′
e3, and

(T − γ)e3 = 0.
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It is easy to see that

Fitt1(M) = ((T − β)(T − γ), (T − α)(T − β), (T − α)(T − γ),

πm′+n′ − x′(T − β), πm′
(T − γ), πn′

(T − α)). (6.5)

Since (T − β)e3 = (γ − β)e3 and n′ ≤ ordE(γ − β), we have (T − β)M = ⟨(T −
β)e1, (T − β)e2⟩. Further we have

T (T − β)e1 = (T − β)(αe1 − πm′
e2 − x′e3)

= α(T − β)e1 − πm′
(T − β)e2 + x′γ − β

πn′ (T − β)e2

= α(T − β)e1 −
(
πm′ − γ − β

πn′ x′
)
(T − β)e2,

T (T − β)e2 = (T − β)(βe2 − πn′
e3)

= β(T − β)e2 − πn′
(γ − β)e3

= γ(T − β)e2.

Thus we obtain

Fitt1((T − β)M) =

(
T − γ, γ − α, πm′ − γ − β

πn′ x′
)
. (6.6)

Next, we take (1, 1, 1), (0, πm, x), and (0, 0, πn) as a basis of M . Then we have the

matrix (6.4) corresponding to a finite presentation of M and

Fitt1(M) = ((T − α)(T − β), (T − α)(T − γ), (T − β)(T − γ),

(β − α)π−m(T − γ), (γ − β)xπ−n(T − α),∆(T )), (6.7)

where

∆(T ) = (β − α)π−m(γ − β)xπ−n + (T − β){γ − α− (β − α)π−mx}π−n.

Since we have ordE(x) ≤ n, (T − β)M is generated by(α− β, 0, γ − β) and (0, 0, (γ − β)x) if x ̸= 0,

(α− β, 0, γ − β) and (0, 0, (γ − β)πn) if x = 0

and we obtain

T (α− β, 0, γ − β) = α(α− β, 0, γ − β) + (γ − α)x−1((0, 0, (γ − β)x)),

T (0, 0, (γ − β)x) = γ(0, 0, (γ − β)x).
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Thus we get

Fitt1((T − β)M) = (T − γ, (γ − α)x−1). (6.8)

To get the conclusion, we consider the following case (I) and case (II).

(I) We suppose that ordE(γ − α) < ordE(π
m′ − γ−β

πn′ x′). First, we show n′ =

ordE(γ − β)− n+ ordE(x). By (6.6), we have

Fitt1((T − β)M) = (T − γ, γ − α).

On the other hand, by (6.8), we get

Fitt1((T − β)M) = (T − γ, (γ − α)x−1).

Thus we obtain ordE(x) = 0. Further by (6.7) and ∆(γ) = (γ − β)(γ − α)π−n we

have

Fitt1(M) mod (T − γ) = ((γ − α)(γ − β)π−n) (6.9)

and we get

Fitt1(M) mod (T − γ) = ((γ − α)πn′
)

by (6.5) and the assumption ordE(γ−α)+n′ < ordE(m
′+n′−(γ−β)x′). Therefore

we obtain n′ = ordE(γ − β) − n = ordE(γ − β) − n + ordE(x). Next, we show

m′ = ordE(β − α)−m. By (6.7) and ordE(x) ≤ n, we have

Fitt1(M) mod (T − β) = ((β − α)π−m(β − γ)xπ−n)

and we get

Fitt1(M) mod (T − β) = (πm′+n′
)

by (6.5), m ≤ ordE(α− β) and n′ ≤ ordE(γ − β). Therefore we obtain m′ + n′ =

ordE(β − α)−m+ ordE(γ − β) + ordE(x)− n and m′ = ordE(β − α)−m.

(II) We suppose that ordE(γ − α) ≥ ordE(π
m′ − γ−β

πn′ x′). First, we show n′ =

ordE(γ − β)− n+ ordE(x). By (6.6), we have

Fitt1((T − β)M) =

(
T − γ, πm′ − γ − β

πn′ x′
)
.
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On the other hand, by (6.8), we get

Fitt1((T − β)M) = (T − γ, (γ − α)x−1).

Thus we obtain ordE(γ − α) − ordE(x) = ordE(π
m′ − γ−β

πn′ x′). Further, by (6.7),

we have

Fitt1(M) mod (T − γ) = ((γ − α)(γ − β)π−n)

and by (6.5), we get

Fitt1(M) mod (T − γ) =

(
πn′
(
πm′ − γ − β

πn′ x′
))

.

Therefore we obtain n′ = ordE(γ − β) − n + ordE(x). Finally, we show m′ =

ordE(β − α)−m. By (6.7), we have

Fitt1(M) mod (T − β) = ((β − α)π−m(β − γ)xπ−n)

and by (6.5) we get

Fitt1(M) mod (T − β) = (πm′+n′
).

Therefore we obtain m′ + n′ = ordE(β −α)−m+ordE(γ− β) + ordE(x)− n and

m′ = ordE(β − α)−m.

By Proposition 6.1.5, we have the following

Corollary 6.1.6. Let [M(m,n, x)]E be an element ofME
f(T ). If the matrices

T − α 0 0

πm1 T − β 0

x1 πn1 T − γ


and 

T − α 0 0

πm2 T − β 0

x2 πn2 T − γ


present the module M , then we get

m1 = m2 and n1 = n2.

Put M = M(m,n, x). By Corollary 6.1.6, we denote m1, n1, and x1 by m(M),

n(M), and x(M), respectively. By Proposition 6.1.5, we have

m(M) = ordE(β − α)−m, n(M) = ordE(γ − β) + ordE(x)− n.
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6.2 Proof of Theorem 6.1.2

In this section, we prove Theorem 6.1.2. First, by [12, Lemma 4.1], we get the

following

Proposition 6.2.1. Let [M ]E and [M ′]E be elements ofME
f(T ). If M is isomor-

phic to M ′ as a ΛE-module, then we have m(M) = m(M ′) and n(M) = n(M ′).

Lemma 6.2.2. Let [M(m,n, x)]E and [M(m′, n′, x′)]E be elements ofME
f(T ). Sup-

pose that m(M) = m(M ′), n(M) = n(M ′), and Fitt1(M) = Fitt1(M
′). Then we

have m = m′, n = n′, and ordE(x) = ordE(x
′).

Proof. We put M = M(m,n, x) and M ′ = M ′(m′, n′, x′). First, we show m = m′.

By Proposition 6.1.5, we have ordE(β − α) −m = ordE(β − α) = m′. Thus we

obtain m = m′. Next, we show n = n′ and ordE(x) = ordE(x
′). By Proposition

6.1.5, we have

ordE(x)− n = ordE(x
′)− n′.

By the equation (6.9), we have

Fitt1(M) mod (T − γ) = ((γ − α)(γ − β)π−n).

Since Fitt1(M) = Fitt1(M
′), we get n = n′. Therefore we have ordE(x) =

ordE(x
′).

Lemma 6.2.3. Suppose that [M(m,n, x)]E, [M(m′, n′, x′)]E ∈ ME
f(T ). Put M =

M(m,n, x) and M ′ = M ′(m′, n′, x′). If m(M) = m(M ′), n(M) = n(M ′), and

Fitt1(M) = Fitt1(M
′), then there exist s, v, and w ∈ OE satisfying

x′(x′ − πm)s− πnv + πnx′w = x′ − x. (6.10)

Proof. By assumptions and Lemma 6.2.2, we havem = m′, n = n′, and ordE(x) =

ordE(x
′). We consider the following case (I) and case (II).

(I) We suppose ordE(β − α)π−m ≤ ordE(γ − β)xπ−n, in other words m(M) ≤
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n(M). In this case, by (6.7), we obtain

Fitt1(M) = ((β − α)π−m(T − γ),

(γ − β)xπ−n(γ − α),∆(T ), (T − α)(T − γ)),

Fitt1(M
′) = ((β − α)π−m(T − γ),

(γ − β)x′π−n(γ − α),∆′(T ), (T − α)(T − γ)),

where

∆(T ) = (β − α)π−m(γ − β)xπ−n + (T − β){γ − α− (β − α)π−mx}π−n,

∆′(T ) = (β − α)π−m(γ − β)x′π−n + (T − β){γ − α− (β − α)π−mx′}π−n.

We note that

∆(T ) = (T − γ){γ − α− (β − α)π−mx}π−n

+(γ − α)(γ − β)π−n, (6.11)

∆′(T ) = (T − γ){γ − α− (β − α)π−mx′}π−n

+(γ − α)(γ − β)π−n. (6.12)

Since ∆(T ) ∈ Fitt1(M
′), there exist hi(T ) ∈ Λ (i = 1, 2, 3, 4) satisfying

∆(T ) = h1(T )(β − α)π−m(T − γ) + h2(T )(γ − β)x′π−n(γ − α)

+h3(T )∆
′(T ) + h4(T )(T − α)(T − γ). (6.13)

By the equation (6.11), we have ∆(γ) = (γ − α)(γ − β)π−n. By (6.13), we get

(γ − α)(γ − β)π−n = h2(γ)(γ − β)x′π−n(γ − α) + h3(γ)(γ − α)(γ − β)π−n.

Thus we obtain

1 = h2(γ)x+ h3(γ).

Therefore, there exists a polynomial g(T ) ∈ Λ such that

h3(T ) = 1− h2(T )x
′ − (T − γ)g(T ). (6.14)

Since ∆(β) = (β − α)π−m(γ − β)xπ−n, by (6.13), we get

(β − α)π−m(γ − β)xπ−n = h1(β)(β − α)π−m(β − γ)

+h2(β)(γ − β)x′π−n(γ − α)

+h3(β)(β − α)π−m(γ − β)x′π−n

+h4(β)(β − α)(β − γ).
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Therefore we have

(β − α)π−mx = −h1(β)(β − α)π−mπn + h2(β)x
′(γ − α)

+h3(β)(β − α)π−mx′ − h4(β)(β − α)πn.

Since h3(β) = 1− h2(β)x
′ − (β − γ)g(β) by (6.14), we get

(β − α)π−mx = −h1(β)(β − α)π−mπn + h2(β)x
′(γ − α)

+{1− h2(β)x
′ − (β − γ)g(β)}(β − α)π−mx′

−h4(β)(β − α)πn.

Thus we have

(x′ − x) = h1(β)π
n − h2(β)x

′(γ − α)(β − α)−1πm

+{h2(β)x
′ + (β − γ)g(β)}x′ + h4(β)π

nπm

= h1(β)π
n − h2(β)x

′
(
1 +

γ − β

β − α

)
πm

+{h2(β)x
′ + (β − γ)g(β)}x′ + h4(β)π

nπm

= x′(x′ − πm)h2(β)

−πn

(
−h1(β)− h4(β)π

m +
γ − β

β − α
h2(β)x

′πmπ−n

)
.

Put s = h2(β), v = −h1(β)− h4(β)π
m + γ−β

β−α
h2(β)x

′πmπ−n, and w = 0. We note

that we have s ∈ OE by the assumption (I). Thus we get the conclusion.

(II) We suppose the case ordE(β − α)π−m > ordE(γ − β)xπ−n. In this case, the

1-st Fitting ideals of M and M ′ are

Fitt1(M) = ((β − α)π−m(α− γ), (γ − β)xπ−n(T − α),

∆(T ), (T − α)(T − γ)),

Fitt1(M
′) = ((β − α)π−m(α− γ), (γ − β)x′π−n(T − α),

∆′(T ), (T − α)(T − γ)).

Since ∆(T ) ∈ Fitt1(M
′), there exist h′

i(T ) ∈ Λ for i = 1, 2, 3, 4 satisfying

∆(T ) = h′
1(T )(β − α)π−m(α− γ) + h′

2(T )(γ − β)x′π−n(T − α)

+h′
3(T )∆

′(T ) + h′
4(T )(T − α)(T − γ). (6.15)

90



By (6.15), we get

(γ−α)(γ−β)π−n = h′
1(γ)(β−α)π−m(α−γ)+h′

2(γ)(γ−β)x′π−n(γ−α)+h′
3(γ).

Thus we obtain

1 = −h′
1(γ)

(β − α)π−m

(γ − β)π−n
+ h′

2(γ)x
′ + h′

3(γ)(γ − α)(γ − β)π−n.

We note that we have (β−α)π−m

(γ−β)π−n ∈ OE by the assumption (II). Therefore, there

exists a polynomial g′(T ) ∈ Λ such that

h′
3(T ) = 1 + h′

1(T )
(β − α)π−m

(γ − β)π−n
− h′

2(T )x
′ + g′(T )(T − γ). (6.16)

Since we have ∆(α) = (α− γ)(β − α)(1− π−mx)π−n and (6.15), we obtain

(α− γ)(β − α)(1− π−mx)π−n = h′
1(α)(β − α)π−m(α− γ)

+h′
3(α)(α− γ)(β − α)(1− π−mx′)π−n.

Therefore we have

(1− π−mx)π−n = h′
1(α)π

−m + h′
3(α)(1− π−mx′)π−n.

Since h′
3(α) = 1 + h′

1(α)
(β−α)π−m

(γ−β)π−n − h′
2(α)x

′ + g′(α)(α− γ) by (6.16), we get

(πm − x) = h′
1(α)π

n

+

{
1 + h′

1(α)
(β − α)π−m

(γ − β)π−n
− h′

2(α)x
′ + g′(α)(α− γ)

}
(πm − x′).

Thus we have

(x′ − x) =

{
h′
1(α)

(β − α)π−m

(γ − β)π−n
− h′

2(α)x
′ + g′(α)(α− γ)

}
(πm − x′)

+h′
1(α)π

n

= x′(x′ − πm)

{
−h′

1(α)
(β − α)π−m

(γ − β)x′π−n
+ h′

2(α)− g′(α)(α− γ)x′−1

}
+πnh′

1(α).

Put s = −h′
1(α)

(β−α)π−m

(γ−β)x′π−n + h′
2(α)− g′(α)(α− γ)x′−1 ∈ OE and v = h′

1(α). Thus

we get the conclusion.

91



Lemma 6.2.4. Let [M ]E and [M ′]E be elements of ME
f(T ). Suppose that M =

M(0, n, x) and M ′ = M ′(0, n′, x′). Suppose also that n(M) = n(M ′) and Fitt1(M)

= Fitt1(M
′). Then we have 1− x ≡ ε(1− x′) mod πn for some ε ∈ O×

E .

Proof. By Lemma 6.2.2, we have n = n′ and ordE(x) = ordE(x
′). By (6.7), we

have

Fitt1(M) mod (T − α) = ((α− β)(α− γ), (α− β)(α− γ)(1− x)π−n)

and

Fitt1(M
′) mod (T − α) = ((α− β)(α− γ), (α− β)(α− γ)(1− x′)π−n).

Since Fitt1(M) = Fitt1(M
′), we get

1− x ≡ 0 mod πn ⇐⇒ 1− x′ ≡ 0 mod πn.

Hence if 1− x ≡ 0 mod πn, then we obtain 1− x ≡ ε(1− x′) mod πn for some

ε ∈ O×
E . If 1−x ̸≡ 0 mod πn, then we have (α−β)(α−γ)(1−x)π−n = ε(α−β)(α−

γ)(1− x′)π−n for some ε ∈ O×
E . Therefore we get 1− x ≡ ε(1− x′) mod πn.

Proof of Theorem 6.1.2. We show that (ii) implies (i). Put M = M(m,n, x) and

M ′ = M ′(m′, n′, x′). By Lemma 6.2.2, we have m = m′, n = n′, and ordE(x) =

ordE(x
′). Suppose that m,n ̸= 0, and ordE(x) ̸= n. Then we get M ∼= M ′,

using Lemma 6.2.3 and [12, Lemma 4.9]. Suppose m = 0 and n ̸= 0. Then

we get M ∼= M ′ by Lemma 6.2.4 and [12, Proposition 4.11]. Suppose n = 0.

Since M(m, 0, x) = M(m, 0, 0), we have M(m, 0, x) = M(m, 0, x′) = M(m, 0, 0).

Therefore we get the conclusion.

6.3 Complementary Properties

In this section, we show some propositions in order to determine the Iwasawa

module associated to an imaginary quadratic field in Chapter 7.

For a non-negative integer n, we put ωn = ωn(T ) = (1 + T )p
n − 1.
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Proposition 6.3.1. For a distinguished polynomial f(T ) ∈ Zp[T ], let E be the

splitting field of f(T ) over Qp. Then the natural map

Ψ :MQp

f(T ) −→M
E
f(T ) ([M ] 7−→ [M ⊗Λ ΛE]E)

is injective.

Proof. We suppose that M ⊗Λ ΛE
∼= M ′ ⊗Λ ΛE for [M ] and [M ′] ∈MQp

f(T ). Since

M ⊗Λ ΛE
∼= Mn as Λ-modules, we get Mn ∼= M ′n as Λ-modules, where n is the

degree of the extension E/Qp.

We assume that M ̸∼= M ′ as Λ-modules. Since M is a finitely generated Λ-

module,M is a profinite module and we haveM = lim←−M/mnM , wherem = (π, T ).

Since M ̸∼= M ′, there exists a positive integer ℓ such that M/mℓM ̸∼= M ′/mℓM ′

[19, Proposition 5]. Since both M/mℓM and M ′/mℓM ′ are of finite length, we can

decompose these modules into indecomposable modules

M/mℓM =
⊕
i

N⊕ei
i , M ′/mℓM ′ =

⊕
i

N
⊕e′i
i ,

where Ni’s are indecomposable modules, Ni ̸= Nj (i ̸= j) and ei, e
′
i are non-

negative integers. By Krull-Remak-Schmidt’s theorem, there exists i such that

ei ̸= e′i. Furthermore we have

(M/mℓM)n =
⊕
i

N⊕nei
i , (M ′/mℓM ′)n =

⊕
i

N
⊕ne′i
i .

Thus we get nei ̸= ne′i for some i. By Krull-Remak-Schmidt’s theorem, we have

(M/mℓM)n ̸∼= (M ′/mℓM ′)n. This implies Mn ̸∼= M ′n. This contradicts our as-

sumption.

Let f(T ) ∈ Zp[T ] be a distinguished polynomial and E the splitting field of

f(T ). We put

f(T ) = (T − α)(T − β)(T − γ),

where α, β, and γ ∈ πOE.

Proposition 6.3.2. Let E and f(T ) be the same as above. Suppose that [M ]E ∈
ME

f(T ). If M is a cyclic ΛE-module, then we have

M ∼= M(ordE(β − α), ordE(γ − α) + ordE(γ − β), uπordE(β−α))

as ΛE-modules, where u =
γ − α

β − α
.
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Proof. Suppose that M ∼= M(m,n, x) ⊂ E . Suppose also that M is cyclic and

put

M = ⟨(a, b, c)⟩ΛE
⊂ E

for some a, b, and c ∈ OE. Since (1, 1, 1) ∈ ⟨(a, b, c)⟩ΛE
, we have (1, 1, 1) =

h(T )(a, b, c) = (h(α)a, h(β)b, h(γ)c) for some h(T ) ∈ ΛE. Therefore we get a, b,

and c ∈ O×
E . Since (0, πm, x) and (0, 0, πn) ∈ ⟨(a, b, c)⟩ΛE

, we have

(0, πm, x) = q(T )(a, b, c) = (q(α)a, q(β)b, q(γ)c),

(0, 0, πn) = r(T )(a, b, c) = (r(α)a, r(β)b, r(γ)c)

for some q(T ) and r(T ) ∈ ΛE. Since (T −α)|q(T ) and (T −α)(T −β)|r(T ), we get
m = ordE(q(β)) ≥ ordE(β−α) and n = ordE(r(γ)) ≥ ordE(γ−α)+ordE(γ−β).

On the other hand, by Proposition 4.1.3 and Remark 6.1.4, we havem ≤ ordE(β−
α) and n ≤ ordE(γ − α) + ordE(γ − β). Therefore we obtain m = ordE(β − α)

and n = ordE(γ − α) + ordE(γ − β). Furthermore,

(T − α)(1, 1, 1) = (0, β − α, γ − α)

= (β − α)π−m(0, πm, x)

+{γ − α− (β − α)π−mx}π−n(0, 0, πn).

Since ordE{γ − α − (β − α)π−mx} ≥ n, we have x =
γ − α

β − α
πm

(
1− πnv

γ − α

)
for

some v ∈ OE. By Remark 6.1.4 (i) , we get

M(m,n, x) = M(ordE(β − α), ordE(γ − α) + ordE(γ − β), uπordE(β−α)).

Proposition 6.3.3. Let f(T ) be the same as above. Assume that ordE(α − β)

= ordE(β − γ) = ordE(γ − α) = 1 and ordE(α) ≥ ordE(β) ≥ ordE(γ). Then, we

have

ME
f(T ) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 2, uπ), (1, 1, 0), (0, 1, 2)},

where u =
γ − α

β − α
and (m,n, x) means [M(m,n, x)]E. The following is the table

of the structure of OE-modules M/ω0M for ΛE-modules M .
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M M/ω0M

M(0, 0, 0) OE/(α)⊕OE/(β)⊕OE/(γ)

M(0, 1, 0) OE/(β)⊕OE/(αγ)

M(0, 1, 1) OE/(α)⊕OE/(βγ)

M(0, 1, 2) OE/(β)⊕OE/(αγ)

M(1, 0, 0) OE/(γ)⊕OE/(αβ)

M(1, 1, 0) OE/(γ)⊕OE/(αβ)

M(1, 2, uπ) OE/(αβγ)

Proof. The former is Corollary 4.1.8. We show the latter. Let [M ]E be an element

ofME
f(T ). There exist m,n, and x such that

M = ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE
.

Hence we have

ω0M = ⟨(α, β, γ), (0, βπm, γx), (0, 0, γπn)⟩OE
.

Since OE is a principal ideal domain, we can use the structure theorem over

the principal ideal domain. We consider the map Πω0 : M −→ M and take

(1, 1, 1), (0, πm, x), and (0, 0, πn) as a basis of M . Then we have

T (1, 1, 1) = α(1, 1, 1) + (β − α)π−m(0, πm, x)

+{γ − α− (β − α)π−mx}π−n(0, 0, πn), (6.17)

T (0, πm, x) = (0, βπm, γx)

= β(0, πm, x) + (γ − β)xπ−n(0, 0, πn). (6.18)

By the equalities (6.17) and (6.18), the matrix corresponding to Πω0 is
α 0 0

(β − α)π−m β 0

{γ − α− (β − α)π−mx}π−n (γ − β)xπ−n γ

 .

In order to verify the table, we have only to transform this matrix by elementary

row and column operations. For example, in the case of M = M(0, 1, 0), we get
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the matrix 
α 0 0

β − α β 0

(γ − α)π−1 0 γ

 .

By the elementary row and column operations, we have
1 0 0

0 β 0

0 0 αγ

 .

Hence we get M/ω0M ∼= OE/(β) ⊕ OE/(αγ). The remaining cases of the table

can be checked by the same method.

Proposition 6.3.4. Put f(T ) = (T − α)g(T ), where α ∈ pZp. Let g(T ) ∈ Zp[T ]

be a distinguished irreducible polynomial of degree 2 and E the splitting field of

g(T ) over Qp. If [M(m,n, x)]E ∈ Image (Ψ : MQp

f(T ) −→ ME
f(T ) ([M ] 7−→

[M ⊗Λ ΛE]E)), we have

ordE(x) = m.

Proof. Let [M ] be an element ofMQp

f(T ). We suppose thatM⊗ΛE
∼= M(m,n, x) ⊂

E . There is a natural injective map

M −→ Λ/(f(T )) −→ Λ/(T − α)⊕ Λ/(g(T ))

[21, Lemma 13.8]. By this injective map, we have

M = ⟨(a1, b1T + c1), (a2, b2T + c2), (a3, b3T + c3)⟩Zp ⊂ Λ/(T − α)⊕ Λ/(g(T ))

for some ai, bi, and ci ∈ Zp. Since we have

M ⊗Λ ΛE = ⟨(a1, b1T + c1), (a2, b2T + c2), (a3, b3T + c3)⟩OE

by the same argument before Lemma 5.1.1, we can write

M ⊗Λ ΛE = ⟨(a′1, b′1T + c′1), (0, b
′
2T + c′2), (0, c

′
3)⟩OE

for some a′i, b
′
i, and c′i ∈ Zp. Furthermore there is an injective map [21, Lemma

13.8]

ΛE/(T − α)⊕ ΛE/(g(T )) −→ E , (s(t), u(t)) 7−→ (s(α), u(β), u(γ)),
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where β and γ are the roots of g(T ) in E. By this map, M ⊗Λ ΛE is isomorphic

to the module

M ′ = ⟨(a′1, b′1β + c′1, b
′
1γ + c′1), (0, b

′
2β + c′2, b

′
2γ + c′2), (0, c

′
3, c

′
3)⟩OE

⊂ E .

Since β and γ are conjugate, we have ordE(b
′
1β + c′1) = ordE(b

′
1γ + c′1) and

ordE(b
′
2β + c′2) = ordE(b

′
2γ + c′2). By the same arguments after Lemma 4.1.2,

we get

M ′ ∼= ⟨(1, 1, 1), (0, πm, x), (0, 0, πn)⟩OE

for some m,n, and x which satisfy m = ordE(x). Indeed, we may assume that

ordE(b
′
2β + c′2) ≤ ordE(c

′
3). By Lemma 4.1.2, we have

M ′ ∼= ⟨(1, b′1β + c′1, b
′
1γ + c′1), (0, b

′
2β + c′2, b

′
2γ + c′2), (0, c

′
3, c

′
3)⟩OE

.

In the case of ordE(b
′
1β + c′1) ≤ ordE(b

′
2β + c′2), we have

M ′ ∼=
⟨
(1, 1, b′1γ + c′1) ,

(
0,

b′2β + c′2
b′1β + c′1

, b′2γ + c′2

)
,

(
0,

c′3
b′1β + c′1

, c′3

)⟩
OE

.

Since ordE(b
′
1γ + c′1) ≤ ordE(b

′
2γ + c′2) ≤ ordE(c

′
3), we get

M ′ ∼=
⟨
(1, 1, 1) ,

(
0,

b′2β + c′2
b′1β + c′1

,
b′2γ + c′2
b′1γ + c′1

)
,

(
0,

c′3
b′1β + c′1

,
c′3

b′1γ + c′1

)⟩
OE

= ⟨(1, 1, 1), s, t⟩OE
,

where

s =

(
0,

b′2β + c′2
b′1β + c′1

,
b′2γ + c′2
b′1γ + c′1

)
,

t =

(
0, 0,

c′3
b′1γ + c′1

− c′3
b′2β + c′2

· b
′
2γ + c′2
b′1γ + c′1

)
.

Thus we get

m = ordE

(
b′2β + c′2
b′1β + c′1

)
, x = π−m b′1β + c′1

b′2β + c′2
· b

′
2γ + c′2
b′1γ + c′1

, and

n = ordE

(
c′3

b′1γ + c′1
− c′3

b′2β + c′2
· b

′
2γ + c′2
b′1γ + c′1

)
.

97



Therefore we obtain m = ordE(x). On the other hand, in the case of ordE(b
′
1β +

c′1) > ordE(b
′
2β + c′2), we have

M ′ = ⟨(a′1, (b′1 − b′2)β + (c′1 − c′2), (b
′
1 − b′2)γ + (c′1 − c′2)),

(0, b′2β + c′2, b
′
2γ + c′2), (0, c

′
3, c

′
3)⟩OE

.

Since ordE(b
′
1β+ c′1− (b′2β+ c′2)) = ordE(b

′
2β+ c′2), we get the same conclusion as

in the case of ordE(b
′
1β + c′1) ≤ ordE(b

′
2β + c′2).

Proposition 6.3.5. Suppose that f(T ) = (T−α)g(T ), where α ∈ pZp. Let g(T ) ∈
Zp[T ] be an Eisenstein irreducible polynomial of degree 2 and E the splitting field

of g(T ) over Qp. Assume that ordE(α− β) = ordE(β − γ) = ordE(γ − α) = 1,

M/ω0M ∼= Z/piZ⊕ Z/pjZ (i, j ∈ Z≥1).

Then we have

Ψ(M) = M ⊗Λ ΛE
∼= M(0, 1, 1) ∼= ΛE/(T − α)⊕ ΛE/(T − β)(T − γ).

Proof. Since M/ω0M ∼= Z/piZ ⊕ Z/pjZ, we have M/ω0M ⊗Λ ΛE
∼= OE/(π

2i) ⊕
OE/(π

2j). Since E/Qp is a totally ramified extension, ordE(α) = 2ordp(α) ≥ 2.

Thus we get ordE(β) = ordE(γ) = 1. Since ordE(π
2i) = 2i and ordE(π

2j) = 2j

are even, we get

M ⊗Λ ΛE
∼= M(0, 1, 1)

by the table of the Proposition 6.3.3. The isomorphism M(0, 1, 1) ∼= ΛE/(T −
α)⊕ ΛE/(T − β)(T − γ) is proved in [20, Lemma 3].

Corollary 6.3.6. Let f(T ), g(T ), and E be the same as in Propositions 6.3.5.

Suppose that [M ]Qp ∈ M
Qp

f(T ). Suppose also the same conditions of Proposition

6.3.5. Put g(T ) = T 2 + c1T + c0. Then the following (a) and (b) hold.

(a) Suppose p ≥ 5. For n ≥ 0, we have

♯(M/ωnM ⊗ ΛE) = pordE(ωn(α)ωn(β)ωn(γ)) = p6n+2+ordE(α).

Further we have

M/ωnM ⊗ ΛE
∼= OE/(π

ordE(α)+2n)⊕OE/(π
2n+2)⊕OE/(π

2n).
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(b) Suppose that p = 3 and (c0, c1) ̸= (3, 3). For n ≥ 1, we have

♯(M/ωnM ⊗ ΛE) =



pordE(ωn(α)ωn(β)ωn(γ)) = p6n+ordE(α)+4ord3(c0−3)−2

if ord3(c0 − 3) ≤ ord3(c1 − 3),

pordE(ωn(α)ωn(β)ωn(γ)) = p6n+ordE(α)+4ord3(c1−3)

if ord3(c0 − 3) > ord3(c1 − 3).

Further we have

M/ωnM ⊗ ΛE
∼=



OE/(π
ordE(α)+2n)⊕OE/(π

2ord3(c0−3)+2n)⊕

OE/(π
2ord3(c0−3)+2n−2) if ord3(c0 − 3) ≤ ord3(c1 − 3),

OE/(π
ordE(α)+2n)⊕OE/(π

2ord3(c1−3)+2n)⊕

OE/(π
2ord3(c0−3)+2n) if ord3(c0 − 3) > ord3(c1 − 3).

Proof. Put N = ⟨(1, 1, 1), (0, 1, 1), (0, 0, π)⟩OE
⊂ E . We have M ⊗Λ ΛE

∼= N as

ΛE-modules by Proposition 6.3.5. Thus we have

M/ωnM ⊗ ΛE
∼= (M ⊗Λ ΛE)/ωn(M ⊗Λ ΛE) ∼= N/ωnN

as ΛE/ωnΛE-modules. By the same method as Proposition 6.3.3, we consider the

map Πωn : N −→ N and take (1, 0, 0), (0, 1, 1) and (0, 0, π) as a basis of N . The

matrix corresponding to Πωn is
ωn(α) 0 0

0 ωn(β) 0

0 (ωn(β)− ωn(γ))π
−1 ωn(γ)

 .

We first consider the case (a). We have ordE(ωn(β) − ωn(γ)) = ordE(β − γ) +

nordE(3) = 2n + 1 (cf. [9, Lemma 2.5]). Furthermore, we have ordE(ωn(α)) =

2n + ordE(α) and we get ordE{(ωn(β) − ωn(γ))π
−1} = 2n < ordE(ωn(β)) since

ordE(ωn(β)) = ordE(ωn(γ)) = 2n + 1. Thus we can transform the matrix above

into 
π2n+ordE(α) 0 0

0 π2n 0

0 0 π2n+2

 .
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This implies N/ωnN ∼= OE/(π
2n+ordE(α))⊕OE/(π

2n)⊕OE/(π
2n+2).

Next, we prove the case (b). For n ≥ 1, we have

ordE(ωn(β)) =

2ord3(c0 − 3) + 2n− 1 if ord3(c0 − 3) ≤ ord3(c1 − 3),

2ord3(c1 − 3) + 2n if ord3(c0 − 3) > ord3(c1 − 3).

On the other hand, for n ≥ 1, we have

ordE(ωn(β)− ωn(γ))



= 2ord3(c0 − 3) + 2n− 1

if ord3(c0 − 3) ≤ ord3(c1 − 3),

> 2ord3(c1 − 3) + 2n

if ord3(c0 − 3) > ord3(c1 − 3)

(cf. [9, Lemma 2.5]). The case (b) can be proved by the same method as the case

(a).

Proposition 6.3.7. Suppose that f(T ) = (T − α)g(T ), where α ∈ pZp. Let

g(T ) ∈ Zp[T ] be an irreducible polynomial of degree 2 and E the splitting field of

g(T ) over Qp. Let [M ]E be an element ofME
f(T ). Put M = M(m,n, x).

(1) Assume that m = 0 and (γ − β)xπ−n ∈ O×
E . Then we have

Fitt1,Λ(M) =

(T − α, (α− β)(α− γ)) if x = 1,

(T − α, (α− β)(α− γ)(1− x)π−n) if x ̸= 1.

(2) Assume that n = 0 and (β − α)π−m ∈ O×
E . Then we have

Fitt1,Λ(M) = (T − γ, (α− γ)(β − γ)).

(3) We have

Fitt1,Λ((T − α)M) =


(T − β, (β − γ)π−n) if n ≤ ordE(π

m − x),(
T − β,

γ − β

πm − x

)
if n > ordE(π

m − x).
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Proof. By the action of T , we have

T (1, 1, 1) = (α, β, γ)

= α(1, 1, 1) + (β − α)π−m(0, πm, x)

+{γ − α− (β − α)π−mx}π−n(0, 0, πn),

T (0, πm, x) = (0, βπm, γx)

= β(0, πm, x) + (γ − β)xπ−n(0, 0, πn), and

T (0, 0, πn) = γ(0, 0, πn).

Then we get the following matrix
T − α −(β − α)π−m −{(γ − α)− (β − α)π−mx}π−n

0 T − β −(γ − β)xπ−n

0 0 T − γ

 .

We first show (1). Under the assumption of (1), the matrix is
T − α −β + α −{(γ − α)− (β − α)x}π−n

0 T − β −(γ − β)xπ−n

0 0 T − γ

 .

By elementary row and column operations, we can transform the matrix above

into 
T − α (α− γ)(1− x)π−n(T − β) 0

0 (T − β)(T − γ) 0

0 0 1

 .

Therefore we get

Fitt1,Λ(M) = (T − α, (α− β)(α− γ), (α− β)(α− β)(1− x)π−n)

=

(T − α, (α− β)(α− γ)) if x = 1,

(T − α, (α− β)(α− γ)(1− x)π−n) if x ̸= 1.

Next, we show (2). Under the assumption of (2), the matrix is
T − α −(β − α)π−m −(γ − α) + (β − α)π−mx

0 T − β −(γ − β)x

0 0 T − γ

 .
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By elementary row and column operations, we can transform the above matrix

into 
T − α 1 0

0 T − β 0

0 0 T − γ

 .

Therefore we get

Fitt1,Λ(M) = ((T − α)(T − β), (T − β)(T − γ), (T − α)(T − γ), (T − γ))

= (T − γ, (α− γ)(β − γ)).

Finally, we show (3). We note that

(T − α)M = ⟨(0, β − α, γ − α), (0, (β − α)πm, (γ − α)x), (0, 0, (γ − α)πn)⟩OE

=



⟨(0, β − α, γ − α), (0, 0, (γ − α)πn)⟩OE

if n ≤ ordE(π
m − x),

⟨(0, β − α, γ − α), (0, 0, (γ − α)(πm − x))⟩OE

if n > ordE(π
m − x).

In the case of n ≤ ordE(π
m − x), by the action of T , we have

T (0, β − α, γ − α) = (0, β(β − α), γ(γ − α))

= β(0, β − α, γ − α) + (γ − β)π−n(0, 0, (γ − α)πn),

T (0, 0, (γ − α)πn) = γ(0, 0, (γ − α)πn).

Thus we get the following matrix(
T − β −(γ − β)π−n

0 T − γ

)
.

Therefore we get

Fitt1,Λ((T − α)M) = (T − β, T − γ, (γ − β)π−n)

= (T − β, (γ − β)π−n).
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In the case of n > ordE(π
m − x), by the same method as above, we get the

following matrix  T − β − γ − β

πm − x
0 T − γ

 .

Therefore we get

Fitt1,Λ((T − α)M) =

(
T − β, T − γ,

γ − β

πm − x

)
=

(
T − β,

γ − β

πm − x

)
.

Next, we consider the case of degf(T ) = 4. Let f(T ) ∈ Zp[T ] be a distinguished

polynomial with degf(T ) = 4. Then we have the following

Proposition 6.3.8. Let E be the splitting field of f(T ) over Qp. Let [M ]E be an

element ofME
f(T ). Put M = M(ℓ,m, n; x, y, z). Then we have

Fitt1,ΛE
(M) mod (T − δ) = ((δ − α)(δ − β)(δ − γ)π−n),

Fitt1,ΛE
(M) mod (T − γ) =



((γ − α)(γ − β)(γ − δ)zπ−m−n)

if z ̸= 0,

((γ − α)(γ − β)(γ − δ)π−m)

if z = 0.

Proof. We put

e1 = (1, 1, 1, 1),

e2 = (0, πℓ, x, y),

e3 = (0, 0, πm, z), and

e4 = (0, 0, 0, πn).
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By the action of T , we have

Te1 = (α, β, γ, δ)

= αe1 + (β − α)π−ℓe2 + {γ − α− (β − α)π−ℓx}π−me3

+
[
(δ − α)− (β − α)π−ℓy − {(γ − α)− (β − α)π−ℓx}π−mz

] e4
πn

,

T e2 = (0, βπℓ, γx, δy)

= βe2 + (γ − β)xπ−me3 + {(δ − β)y − (γ − β)xπ−mz}π−ne4,

T e3 = (0, 0, γπm, δz)

= γe3 + (δ − γ)zπ−ne4, and

Te4 = δe4.

Then we get the following matrix
T − α −(β − α)π−ℓ −{γ − α− (β − α)π−ℓx}π−m a14

0 T − β −(γ − β)xπ−m a24

0 0 T − γ −(δ − γ)zπ−n

0 0 0 T − δ

 ,

wherea24 = −{(δ − β)y − (γ − β)xπ−mz}π−n,

a14 = −
[
(δ − α)− (β − α)π−ℓy − {(γ − α)− (β − α)π−ℓx}π−mz

]
π−n.

We prove the former part. By the definition of Fitting ideals, we obtain

Fitt1,ΛE
(M) mod (T − δ)

= (ã41, (δ − α)(δ − β)(δ − γ)zπ−n, (δ − α)(δ − β)(δ − γ)π−ny),

where

ã41 = det


−(β − α)π−ℓ −{γ − α− (β − α)π−ℓx}π−m a14

T − β −(γ − β)xπ−m a24

0 T − γ −(δ − γ)zπ−n

 .

Since we have

ã41 mod (T − δ) = (δ − α)(δ − β)(δ − γ)π−n mod (T − δ),

we obtain the conclusion. We can also prove the latter equation by the same

method above.
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Proposition 6.3.9. Suppose that f(T ) = g(T )(T−δ), where δ ∈ pZp. Let g(T ) ∈
Zp[T ] be an Eisenstein polynomial of degree 3 and E the splitting field of g(T ) over

Qp. Suppose that [M ]Qp ∈ M
Qp

f(T ) and [M ⊗ ΛE] = [M(ℓ,m, n;x, y, z)] ∈ ME
f(T ).

Assume that ordE(δ − α) = ordE(δ − β) = ordE(δ − γ) = 1 and

M/TM ∼= Z/piZ⊕ Z/pjZ (i, j ∈ Z≥1).

Then we have n = 0.

Proof. We have Fitt1,ΛQp
(M) ̸= ΛQp , since Fitt1,Zp(M/TM) = (pmin{i,j}). By our

assumption, g(T ) is an Eisenstein polynomial. Hence we have Fitt1,ΛE
(M ⊗

ΛE) mod (T − δ) = (π3i) for some i ≥ 1. Using Proposition 6.3.8, we obtain

Fitt1,ΛE
(M ⊗ ΛE) mod (T − δ) = (π3−n). This implies that 3i = 3 − n. Thus

we have n = 0.
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Chapter 7

Examples

In this chapter, we apply our Theorem 1 and Theorem 2 to Iwasawa Theory. We

determine the isomorphism classes of Iwasawa modules associated to the cyclo-

tomic Z3-extension of imaginary quadratic fields.

7.1 Numerical examples for λ = 3

In this section, we introduce some numerical examples which were computed using

PARI/GP. We put Λ = Zp[[T ]].

We consider the case of p = 3 and k = Q(
√
−d), where d is a positive square-

free integer. For simplicity, let d ̸≡ 2 mod 3. Our assumption d ̸≡ 2 mod 3

implies that p = 3 is inert or ramifies in k. This assumption is also needed to get

the isomorphism (7.1) below. In this section, we determine the Λ-isomorphism

class of the Iwasawa module associated to k = Q(
√
−d) in the range 1 < d <

105 with λp(k) = 3, where λp(k) is the Iwasawa λ-invariant with respect to the

cyclotomic Zp-extension. There are 1109 imaginary quadratic fields satisfying

these properties.

Let k∞/k be the cyclotomic Zp-extension. For each n ≥ 0, we denote by

kn the intermediate field of k∞/k such that kn is the unique cyclic extension

over k of degree pn. Let An be the p-Sylow subgroup of the ideal class group of

kn. We put Xk∞ = lim←−An, where the inverse limit is taken with respect to the

relative norms. Then Xk∞ becomes a Zp[[Gal(k∞/k)]]-module. Since there is a
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ring isomorphism between Λ = Zp[[T ]] and Zp[[Gal(k∞/k)]] which depends on the

choice of a topological generator of Gal(k∞/k), Xk∞ becomes a finitely generated

torsion Λ -module. Let f(T ) be the distinguished polynomial which generates

char(Xk∞). It is known that Xk∞ is a free Zp-module thus [Xk∞ ]Qp ∈ M
Qp

f(T ) and

we can apply Theorem 1 to the Iwasawa module Xk∞ .

We can calculate the polynomial f(T ) mod pn for small n numerically. Let χ

be the Dirichlet character associated to k, ω be the Teichimüler character, and

f0 be the least common multiple of p and conductor of χ. By the Iwasawa main

conjecture, there exists a power series gχ−1ω(T ) ∈ Λ such that

char(Xk∞) = (gχ−1ω(T )).

Here, gχ−1ω(T ) is the p-adic L-function constructed by Iwasawa. We can approx-

imate gχ−1ω(T ) such as

gχ−1ω(T ) ≡ −
1

2f0pn

∑
0<a<f0pn,(a,f0pn)=1

aχω−1(a)(1 + T )in(a) mod ωn,

where in(a) is the unique integer such that aω−1(a) ≡ (1 + p)in(a) mod pn+1

and 0 ≤ in(a) < pn. By Weierstrass preparation theorem ([21, Theorem 7.3],

there exists uχ−1ω ∈ Λ× such that gχ−1ω(T ) = f(T )uχ−1ω(T ). Thus we can get

f(T ) approximately ([21, Proposition 7.2]. For the detail about computation of

gχ−1ω(T ), see [2] and [6]. We computed f(T ) by Mizusawa’s program Iwapoly.ub

([14, Research, Programing, Approximate Computation of Iwasawa Polynomi-

als by UBASIC]), and referred Fukuda’s table for the λ-invariants of imaginary

quadratic fields [5].

Now we classify the Iwasawa module Xk∞ . There are two cases (I) A0 is a cyclic group ,

(II) A0 is not a cyclic group .

In order to determine the structure of Xk∞ , we use the following fact. In our

case, exactly one prime ramifies in k∞/k and it is totally ramified. Hence there

are Λ-isomorphism

Xk∞/ωnXk∞
∼= An (7.1)
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for any non-negative integers [21, Proposition 13.22].

We determine the Λ-isomorphism class of Xk∞ by the information on the

structures of An for some n ≥ 0.

There are 1015 fields whose A0 are cyclic groups among 1109 fields. First of all,

we determine the isomorphism classes in the case (I). In this case, Xk∞ becomes

a ΛE-cyclic module by Nakayama’s Lemma. Thus we can use Proposition 6.3.2

to get

M ∼= M(ordE(β − α), ordE(γ − α) + ordE(γ − β), uπordE(β−α)).

In the range of d above, no f(T ) splits completely in Qp[T ], thus we have to

consider the minimal splitting field E of f(T ), which is quadratic over Qp.

Example 1. Put k = Q(
√
−886). Then we have A0

∼= Z/9Z (cf. [17]). By

using Mizusawa’s program [14], we have

f(T ) ≡ (T − 195)(T 2 + 291T + 429) mod 36.

By Hensel’s Lemma, there exist α ∈ Zp and g(T ) ∈ Zp[T ] such that

f(T ) = (T − α)g(T ),

where α ≡ 195 mod 35 and g(T ) ≡ T 2 + 48T + 186 mod 35. Since g(T ) is an

Eisenstein polynomial, E/Qp is a totally ramified extension. Let E be the minimal

splitting field of g(T ). We put g(T ) = (T − β)(T − γ), where β and γ ∈ E. Since

βγ ≡ 186 mod 35, we get ordE(β) = ordE(γ) = 1, and ordE(α−γ) = ordE(α−γ) =
1. Since (β − γ)2 = (β + γ)2 − 4βγ ≡ 1560 mod 35, we have ordE(β − γ) = 1. By

Proposition 6.3.1 and 6.3.2, we get Xk∞ ⊗Λ ΛE
∼= M(1, 2, uπ), where u =

γ − α

β − α
.

Next, we determine the isomorphism classes in the case (II). There are 94 fields

whose A0 are not cyclic groups. There are 66 fields whose A0 are not cyclic groups

and whose f(T ) is reducible. We will determine [Xk∞ ]Qp for these 66 fields. We

can determine the Λ-isomorphism class of Xk∞ for 60 fields by Proposition 6.3.5.

The following example is the case where we can determine the Λ-isomorphism

class of Xk∞ by Proposition 6.3.5.
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Example 2. Put k = Q(
√
−6583). In this case, we have A0

∼= Z/3Z ⊕ Z/3Z
(cf. [17]). We have

f(T ) ≡ (T − 96)(T 2 + 96T + 696) mod 36.

By Hensel’s Lemma, there exist α ∈ Zp and g(T ) ∈ Zp[T ] such that

f(T ) = (T − α)g(T ),

where α ≡ 96 mod 35 and g(T ) ≡ T 2 + 96T + 210 mod 35. Let E be the minimal

splitting field of g(T ). We put g(T ) = (T −β)(T − γ), where β and γ ∈ E. Then,

E/Qp is a totally ramified extension and we get ordE(α − β) = ordE(β − γ) =

ordE(γ − α) = 1, ordE(α) = 2, and ordE(β) = ordE(γ) = 1. Therefore we get

Xk∞ ⊗Λ ΛE
∼= M(0, 1, 1) by Proposition 6.3.5.

There are remaining 6 fields which we cannot determine the structure of Xk∞

by Proposition 6.3.5. For these fields, we have to investigate the action of the

group Gal(k1/k). Explicitly, the remaining 6 fields are Q(
√
−9574), Q(

√
−30994),

Q(
√
−41631), Q(

√
−64671), Q(

√
−82774), and Q(

√
−92515).

Example 3. Put k = Q(
√
−9574). In this case, we have A0

∼= Z/3Z ⊕ Z/9Z
(cf. [17]) and A1

∼= Z/3Z⊕ Z/9Z⊕ Z/27Z. We have

f(T ) ≡ (T − 192)(T 2 + 1173T + 1422) mod 37.

By Hensel’s Lemma, there exist α ∈ Zp and g(T ) ∈ Zp[T ] such that

f(T ) = (T − α)g(T ),

where α ≡ 192 mod 35 and g(T ) ≡ T 2+201T+207 mod 35. Let E be the splitting

field of g(T ). We put g(T ) = (T − β)(T − γ), where β and γ ∈ E. Since the

discriminant of g(T ) is 32 ·4397 mod 37 and 4397 is a quadratic nonresidue, E/Qp

is an unramified extension. Since the discriminant of f(T ) is 28 · 36 · 43 · 89 · 1039
mod 37, we get ordE(α − β) = ordE(β − γ) = ordE(γ − α) = 1 and ordE(α) =

ordE(β) = ordE(γ) = 1. By checking the structures of A0 and A1 as OE-modules,

we get

Xk∞ ⊗Λ ΛE
∼= M(0, 1, 1), M(0, 1, 2), M(1, 0, 0), or M(1, 1, 0).

109



Now we investigate the structure of A1 as a Gal(k1/k)-module. We have an iso-

morphism A1
∼= Z/27Z ⊕ Z/9Z ⊕ Z/3Z. Furthermore, PARI/GP gives explicit

generators which give this isomorphism. Let a1, a2, and a3 be the generators which

was computed. (We do not write down a1, a2, and a3 because they are compli-

cated.) Let σ be the generator of Gal(k1/k), which was computed by PARI/GP.

We compute,

(σ − 1)a1 = 3a2 − a3,

(σ − 1)a2 = 6a2, and

(σ − 1)a3 = 18a1 + 6a2.

There is a topological generator σ̃ ∈ Gal(k∞/k) such that σ̃ is an extension of σ.

By this topological generator, we have the isomorphism

Zp[[Gal(k∞/k)]] ∼= Λ = Zp[[T ]] such that σ̃ ↔ 1 + T.

We regard Xk∞ as a Λ-module by this isomorphism. We note that f(T ) depends

on the choice of σ̃, but we can easily check that ME
f(T ) does not depend on the

choice of σ̃. Because Zp[[Gal(k1/k)]] ∼= Λ/ω1Λ, we get

Ta1 = 3a2 − a3,

Ta2 = 6a2, and

Ta3 = 18a1 + 6a2,

where T = T mod ω1. Now we have

(T 2 + 18)a1 + 6a2 = 0,

(T − 6)a2 = 0,

3Ta1 = 0,

27a1 = 0, and

9a2 = 0.

Therefore we can calculate the 1-st Fitting ideal of A1 ⊗OE;

Fitt1,ΛE/ω1ΛE
(A1 ⊗OE) = (T, 3) mod ω1,
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where Fitt1,ΛE/ω1ΛE
(A1⊗OE) is the 1-st Fitting ideal of A1⊗OE as a ΛE/ω1ΛE-

module. On the other hand, by Proposition 6.3.7 (1) and (2) for M(0, 1, 2),

M(1, 0, 0), and M(0, 1, 1), we have

Fitt1,ΛE/ω1ΛE
(M/ω1M) =


(T, 3) mod ω1 if M = M(0, 1, 2),

(T − γ, 9) mod ω1 if M = M(1, 0, 0),

(T − α, 9) mod ω1 if M = M(0, 1, 1).

Therefore we have

Xk∞ ⊗Λ ΛE
∼= M(0, 1, 2) or M(1, 1, 0).

We investigate the module (T − α)(M/ω1M). By Proposition 6.3.7 (3), for

M(0, 1, 2) and M(1, 1, 0) we get

Fitt1,ΛE/ω1ΛE
((T − α)(M/ω1M)) =

(T, 3) mod ω1 if M = M(0, 1, 2),

ΛE/ω1ΛE if M = M(1, 1, 0).

We can compute the following from the data above

Fitt1,ΛE/ω1ΛE
((T − α)A1 ⊗OE) = (T, 3) mod ω1.

Therefore, we get Xk∞ ⊗Λ ΛE
∼= M(0, 1, 2).

By the same method as above, we can determine the isomorphism classes of

Xk∞ of Q(
√
−30994), Q(

√
−82774), and Q(

√
−92515). For the 3 fields, we can

show that Xk∞ ⊗Λ ΛE
∼= M(0, 1, 2).

Finally, we determine the structure of Xk∞ for remaining 2 fields Q(
√
−41631)

and Q(
√
−64671).

Example 4. Put k = Q(
√
−41631). In this case, we have A0

∼= Z/33Z ⊕ Z/3Z
(cf. [17]) and A1

∼= Z/34Z⊕ Z/32Z⊕ Z/3Z by PARI/GP. We have

f(T ) ≡ (T − 42)(T 2 − 279T + 594) mod 37.
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By Hensel’s Lemma, there exist α ∈ Zp and g(T ) ∈ Zp[T ] such that

f(T ) = (T − α)g(T ),

where α ≡ 42 mod 35 and g(T ) ≡ T 2 + 36T + 108 mod 35. Let E be the minimal

splitting field of g(T ). We put g(T ) = (T − β)(T − γ), where β and γ ∈ E.

Then E/Qp is a totally ramified extension with ordE(α − β) = ordE(γ − α) = 2,

ordE(β − γ) = 3, ordE(α) = 2, and ordE(β) = ordE(γ) = 3. Let π be a prime

element of E. In this case, the elements M(m,n, x) ∈ ME
f(T ) which satisfy the

conclusion of Proposition 6.3.4 are

(0, 0, 0), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2), (0, 2, 1 + π), (0, 3, 1),

(0, 3, 1 + π), (0, 3, 1 + π2), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, π),

(1, 2, 2π), (1, 3, π), (1, 3, π + π2), (1, 3, π + 2π2), (1, 4, uπ),

(2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 3, uπ2), (2, 4, uπ2), (2, 5, uπ2)


,

where u =
γ − α

β − α
. By checking the structures of A0 and A1 as OE-modules, we

get

Xk∞ ⊗Λ ΛE
∼= M(0, 3, 1), M(0, 3, 1 + π), M(0, 3, 1 + π2),

M(1, 3, π + π2), M(1, 3, π + 2π2) or M(2, 3, uπ2).

We have an isomorphism A1
∼= Z/81Z⊕ Z/9Z⊕ Z/3Z. Let a1, a2, and a3 be the

generators which were computed by PARI/GP. Further we have:

(σ − 1)a1 = 54a1 + 6a2 + a3,

(σ − 1)a2 = 54a1, and

(σ − 1)a3 = 54a1 + 3a2,

for a certain generator σ of Gal(k1/k) by PARI/GP. By the same method as

k = Q(
√
−9574), we fix a topological generator σ̃ ∈ Gal(k∞/k) such that σ̃ is an
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extension of σ. Because Zp[[Gal(k1/k)]] ∼= Λ/ω1Λ, we have

(T 2 − 54T − 54)a1 − 3a2 = 0,

54 a1 − Ta2 = 0,

3Ta1 = 0,

81a1 = 0, and

9a2 = 0,

where T = T mod ω1. Therefore we get the 1-st Fitting ideal of A1 ⊗OE;

Fitt1,ΛE/ω1ΛE
(A1 ⊗OE) = (T, 3) mod ω1.

On the other hand, by Proposition 6.3.7 (1) and (2), we have

Fitt1,ΛE/ω1ΛE
(M/ω1M) =


(T − α, 9) mod ω1 if M = M(0, 3, 1),

(T, 3) mod ω1 if M = M(0, 3, 1 + π),

(T − α, π3) mod ω1 if M = M(0, 3, 1 + π2)

for M(0, 3, 1),M(0, 3, 1 + π), and M(0, 3, 1 + π2). Therefore we have

Xk∞ ⊗Λ ΛE
∼= M(0, 3, 1 + π), M(1, 3, π + π2), M(1, 3, π + 2π2), or M(2, 3, uπ2).

As in the case where k = Q(
√
−9574), we investigate the structure of (T −

α)(M/ω1M). By Proposition 6.3.7 (3), we get

Fitt1,ΛE/ω1ΛE
((T − α)(M/ω1M)) =



(T, 3) mod ω1 if M = M(0, 3, 1 + π),

ΛE/ω1ΛE if M = M(1, 3, π + π2),

(T, π) mod ω1 if M = M(1, 3, π + 2π2),

ΛE/ω1ΛE if M = M(2, 3, uπ2).

We can compute from the data above

Fitt1,ΛE/ω1ΛE
((T − α)A1 ⊗OE) = (T, 3) mod ω1.

Therefore we get Xk∞ ⊗Λ ΛE
∼= M(0, 3, 1 + π).
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We can determine the structure of Q(
√
−64671) by the same method as above.

For Q(
√
−64671), we can show that Xk∞ ⊗Λ ΛE

∼= M(0, 3, 1 + π).

In the end of this chapter, we write down the table of the Xk∞⊗ΛΛE for p = 3

and for the fields such that A0 is not cyclic and f(T ) is reducible. On the table,

m,n, x represent Xk∞ ⊗ΛE
∼= M(m,n, x), and ram./unram. means that E/Q3 is

ramified /unramified extension, respectively. We marked (∗) on the remaining 6

fields for which we determined the structures in Example 3 and 4.
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7.2 Numerical examples for λ = 4

Here, we consider the case of p = 3 and k = Q(
√
−d), where d = 5142, 12453,

23683, 28477, and 78730. We also consider the case of p = 5 and k = Q(
√
−15658).

In this case, p does not split in k and we have λp(k) = 4, where λp(k) is the Iwasawa

λ-invariant with respect to the cyclotomic Zp-extension of k. As in the previous

section, we determine the isomorphism class of Xk∞ .

For a non-negative integer n, we put ωn = ωn(T ) = (1 + T )p
n − 1.

Example 5. Put p = 3 and k = Q(
√
−12453). In this case, we have A0

∼=
Z/3Z⊕ Z/3Z (cf. [17]). We have

f(T ) ≡ (T 3 + 204T 2 + 567T + 426)(T + 525) mod 36.

By Hensel’s Lemma, there exist δ ∈ Zp and an irreducible polynomial g(T ) ∈
Zp[T ] such that

f(T ) = g(T )(T − δ),

where δ ≡ 204 mod 35 and g(T ) ≡ T 3 +204T 2 +81T +183 mod 35. Let E be the

minimal splitting field of g(T ). We put g(T ) = (T −α)(T −β)(T −γ), where α, β,

and γ ∈ E. Then [E : Qp] = 3 and the ramification index is 3 in E/Qp. Indeed,

let d(g) be the discriminant of g(T ). Then we have d(g) ≡ (−1) · 34 · 13 · 104
≡ −162 mod 35. Thus we have

√
d(g) ∈ Qp. This implies that [E : Qp] =

3 and E/Qp is a totally ramified extension. Further we have ordE(α − β) =

ordE(β − γ) = ordE(γ − α) = 2, ordE(α − δ) = ordE(β − δ) = ordE(γ − δ) = 1,

ordE(α) = ordE(β) = ordE(γ) = 1 and ordE(δ) = 3. Suppose that [Xk∞⊗ΛΛE] =

[M(ℓ,m, n;x, y, z)] ∈ ME
f(T ). By Proposition 6.3.9, we have n = 0. Therefore we

may assume that [Xk∞⊗ΛΛE] = [M(ℓ,m, 0;x, 0, 0)] = [M(ℓ,m, x)⊕⟨(0, 0, 0, 1)⟩Zp ],

where M(ℓ,m, x) are defined before Theorem 1. Since we have Xk∞/TXk∞ ⊗
OE
∼= A0⊗OE

∼= OE/(π
3)⊕OE/(π

3), M(ℓ,m, x)/TM(ℓ,m, x) is a cyclic module.

Then M becomes a ΛE-cyclic module by Nakayama’s Lemma. Using Proposition

6.3.2, we have M(ℓ,m, x) = M(2, 4, uπ2), where u =
γ − α

β − α
. Hence we obtain

Xk∞ ⊗Λ ΛE
∼= M(2, 4, 0;uπ2, 0, 0) ∼= ΛE/(T − δ)⊕ ΛE/(g(T )).
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By the same method as above, we can determine the isomorphism classes of

Xk∞ of Q(
√
−5142), Q(

√
−23683), and Q(

√
−28477). Next we consider the case

of p = 5.

Example 6. Put p = 5 and k = Q(
√
−15658). In this case, we have A0

∼=
Z/5Z⊕ Z/5Z (cf. [17]). We have

f(T ) ≡ (T 3 + 11740T 2 + 8565T + 14160)(T + 3295) mod 56.

By Hensel’s Lemma, there exist δ ∈ Zp and an irreducible polynomial g(T ) ∈
Zp[T ] such that

f(T ) = g(T )(T − δ),

where δ ≡ 3295 mod 56 and g(T ) ≡ T 3 + 11740T 2 + 8565T + 14160 mod 56. In

the same way as in the proof of Example 5, we obtain

Xk∞ ⊗Λ ΛE
∼= ΛE/(T − δ)⊕ ΛE/(g(T )),

where E is the minimal splitting field of g(T ).

The following is an example that we have to investigate the action of the group

Gal(k1/k).

Example 7. Put p = 3 and k = Q(
√
−78730). In this case, we have A0

∼=
Z/9Z⊕ Z/3Z (cf. [17]). We have

f(T ) ≡ (T 2 + 4068T + 5817)(T + 3189)(T + 888) mod 38.

By Hensel’s Lemma, there exist γ, δ ∈ Zp, and an irreducible polynomial g(T ) ∈
Zp[T ] such that

f(T ) = g(T )(T − γ)(T − δ),

where γ ≡ 84 mod 35, δ ≡ 213 mod 35, and g(T ) ≡ T 2 + 180T + 228 mod 35.

Let E be the minimal splitting field of g(T ). We put g(T ) = (T − α)(T − β),

where α and β ∈ E. Since g(T ) is an Eisenstein polynomial, the extension E/Qp

is a totally ramified extension. Therefore, we have ordE(α) = ordE(β) = 1,

ordE(γ) = ordE(δ) = 2, ordE(γ − δ) = 2, and ordE(α − β) = ordE(β − γ) =

ordE(β − δ) = ordE(α − δ) = ordE(γ − α) = 1. By Proposition 6.3.8, we obtain
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Fitt1,ΛE
(Xk∞ ⊗ ΛE) mod (T − δ) = (π4−n). Since we have A0

∼= Z/9Z⊕ Z/3Z,
we obtain Fitt1,Λ(Xk∞) mod (T − δ) ̸= Λ. We put Fitt1,Λ(Xk∞) mod (T − δ)

= (pi) for some i ≥ 1. Then we have (π4−n) = (π2i). This implies 4 − n = 2i.

Clearly, we have n = 0 or n = 2. Using Proposition 6.3.8, we get

Fitt1,ΛE
(Xk∞ ⊗ ΛE) mod (T − γ) =

(πordE(z)+4−m−n) if z ̸= 0,

(π4−m) if z = 0.

Therefore we may consider the only three cases

(♮)


n = 2 and m = ordE(z),

n = 2 and z = 0, and

n = 0.

The isomorphism classes of ΛE-module M(ℓ,m, n;x, y, z) satisfying (♮)are

[M(0, 1, 2; 0, 0, π)], [M(0, 1, 2; 0, π, π)], [M(0, 1, 2; 1, 1, π)],

[M(0, 1, 2; 1, 1 + π, π)], [M(0, 1, 2; 2, 2, π)], [M(0, 1, 2; 2, 2 + π, π)],

[M(0, 1, 2; 2, 2 + 2π, π)], [M(1, 0, 2; 0, 0, 1)], [M(1, 0, 2; 0, π, 2)],

[M(1, 0, 2; 0, 0, 1 + π)], [M(1, 1, 2; 0, π, 2π)], [M(1, 1, 2; 0, 0, π)],

[M(1, 0, 2; 0, 2π, 0)], [M(1, 2, 2; 2π, 2π, 0)]


∪ { [N ⊕ ΛE/(T − δ)ΛE] | [N ] ∈ME

(T−α)(T−β)(T−γ)}

∪ { [M(0, 0, 2; 0, y, z)] | ordE(z) = 0}. (7.2)

It is easy to see that M = N ⊕ ΛE/(T − δ)ΛE does not satisfy M/TM ∼=
OE/π

4OE ⊕ OE/π
2OE if N ̸∼= M(1, 2, uπ), where u =

γ − α

β − α
. We note that

M(1, 2, uπ) ∼= ΛE/(T−α)(T−β)(T−γ)ΛE by Proposition 6.3.2. We can also check

M/TM ̸∼= OE/π
4OE ⊕ OE/π

2OE for [M ] ∈ {[M(0, 0, 2; 0, y, z)] | ordE(z) = 0}
and [M(0, 1, 2; 0, 0, π)], [M(0, 1, 2; 1, 1, π)], and [M(1, 1, 2; 0, 0, π)].

Now we investigate the structure of A1 as a Gal(k1/k)-module. We have an iso-

morphism A1
∼= Z/27Z ⊕ Z/9Z ⊕ Z/9Z ⊕ Z/3Z. Furthermore, PARI/GP gives

explicit generators which give this isomorphism. Let a1, a2, a3, and a4 be the

generators PARI/GP computed. (We do not write down a1, a2, a3, and a4 be-

cause they are complicated.) Let σ be a generator of Gal(k1/k). By PARI/GP,
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we compute

(σ − 1)a1 = 6a1 − a2 + a3,

(σ − 1)a2 = 3a2 + 4a3,

(σ − 1)a3 = 9a1 + 6a2 + 6a3, and

(σ − 1)a4 = 6a2.

There is a topological generator σ̃ ∈ Gal(k∞/k) such that σ̃ is an extension of σ.

By this topological generator, we have an isomorphism

Zp[[Gal(k∞/k)]] ∼= Λ = Zp[[T ]] such that σ̃ ↔ 1 + T.

We regard Xk∞ as a Λ-module by this isomorphism. Since Zp[Gal(k1/k)] ∼=
Λ/ω1Λ, we get

Ta1 = 6a1 − a2 + a3,

Ta2 = 3a2 + 4a3,

Ta3 = 9a1 + 6a2 + 6a3, and

Ta4 = 6a2,

where T = T mod ω1. Now we have

(T 2 − 12T )a1 + (T − 12)a2 = 0,

(4T − 24)a1 − (T − 7)a2 = 0,

6a2 − Ta4 = 0,

27a1 = 0,

9Ta1 = 0,

9a2 = 0, and

3a4 = 0.

(7.3)

Therefore, we can calculate the 1-st Fitting ideal of A1 ⊗OE;

Fitt1,ΛE/ω1ΛE
(A1 ⊗OE) mod 9 = (T, 3) mod (ω1, 9), (7.4)
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where Fitt1,ΛE/ω1ΛE
(A1⊗OE) is the 1-st Fitting ideal of A1⊗OE. Then M(0, 1, 2;

0, π, π), M(1, 0, 2; 0, 0, 1), M(1, 0, 2; 0, 0, 1+π), and M(1, 1, 2; 0, π, 2π) do not sat-

isfy (7.4). Therefore we get

Xk∞ ⊗Λ ΛE
∼= M(0, 1, 2; 2, 2 + π, π), M(0, 1, 2; 1, 1 + π, π), M(1, 0, 2; 0, π, 2),

M(0, 1, 2; 2, 2, π),M(0, 1, 2; 2, 2 + 2π, π), M(1, 0, 2; 0, 2π, 0),

M(1, 2, 2; 2π, 2π, 0), or M(1, 2, 0;uπ, 0, 0).

Further, using the above relations (7.3), we get

Fitt1,ΛE/ω1ΛE
((T − γ)A1 ⊗OE) mod 9 = (T, 3) mod (ω1, 9), (7.5)

Fitt1,ΛE/ω1ΛE
((T − δ)A1 ⊗OE) mod 9 = (T, 3) mod (ω1, 9). (7.6)

Then onlyM(1, 0, 2; 0, π, 2) satisfies (7.5) and (7.6). Hence we obtainXk∞⊗ΛΛE
∼=

M(1, 0, 2; 0, π, 2).
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Table 7.1:

d ordE(α− β) ordE(β − γ) ordE(γ − α) E/Q3 m n x A0

6583 1 1 1 ram. 0 1 1 (3, 3)

8751 1 1 1 ram. 0 1 1 (3, 3)

9069 1 1 1 ram. 0 1 1 (3, 3)

(∗) 9574 1 1 1 unram. 0 1 2 (32, 3)

12118 1 1 1 ram. 0 1 1 (3, 3)

16627 1 1 1 ram. 0 1 1 (3, 3)

21018 1 1 1 ram. 0 1 1 (3, 3)

23178 1 1 1 ram. 0 1 1 (3, 3)

24109 1 1 1 ram. 0 1 1 (3, 3)

25122 1 1 1 ram. 0 1 1 (3, 3)

29569 1 1 1 ram. 0 1 1 (3, 3)

29778 1 1 1 ram. 0 1 1 (3, 3)

29994 1 1 1 ram. 0 1 1 (3, 3)

(∗) 30994 1 1 1 unram. 0 1 2 (32, 3)

31999 1 1 1 ram. 0 1 1 (3, 3)

34507 1 1 1 ram. 0 1 1 (3, 3)

34867 1 1 1 ram. 0 1 1 (3, 3)

35539 1 1 1 ram. 0 1 1 (3, 3)

37213 1 1 1 ram. 0 1 1 (3, 3)

37237 1 1 1 ram. 0 1 1 (3, 3)

38226 1 1 1 ram. 0 1 1 (3, 3)

38553 1 1 1 ram. 0 1 1 (3, 3)

38926 1 1 1 ram. 0 1 1 (3, 3)

40299 1 1 1 ram. 0 1 1 (3, 3)

41583 1 1 1 ram. 0 1 1 (3, 3)

(∗) 41631 2 3 2 ram. 0 3 1 + π (33, 3)

41671 1 1 1 ram. 0 1 1 (3, 3)

45210 1 1 1 ram. 0 1 1 (3, 3)

45753 1 1 1 ram. 0 1 1 (3, 3)

45942 1 1 1 ram. 0 1 1 (3, 3)

46198 1 1 1 ram. 0 1 1 (3, 3)

47199 1 1 1 ram. 0 1 1 (32, 3)

48667 1 1 1 ram. 0 1 1 (3, 3)

120



Table 7.2:

d ordE(α− β) ordE(β − γ) ordE(γ − α) E/Q3 m n x A0

49074 1 1 1 ram. 0 1 1 (3, 3)

51142 1 1 1 ram. 0 1 1 (3, 3)

52858 1 1 1 ram. 0 1 1 (3, 3)

53839 1 1 1 ram. 0 1 1 (3, 3)

53862 1 1 1 ram. 0 1 1 (3, 3)

54319 1 1 1 ram. 0 1 1 (3, 3)

54853 1 1 1 ram. 0 1 1 (3, 3)

56773 1 1 1 ram. 0 1 1 (3, 3)

59478 1 1 1 ram. 0 1 1 (3, 3)

59578 1 1 1 ram. 0 1 1 (3, 3)

60099 1 1 1 ram. 0 1 1 (3, 3)

(∗) 64671 2 3 2 ram. 0 3 1 + π (32, 3)

68314 1 1 1 ram. 0 1 1 (3, 3)

72591 1 1 1 ram. 0 1 1 (3, 3)

75273 1 1 1 ram. 0 1 1 (3, 3)

75354 1 1 1 ram. 0 1 1 (32, 3)

75790 1 1 1 ram. 0 1 1 (3, 3)

75841 1 1 1 ram. 0 1 1 (3, 3)

78181 1 1 1 ram. 0 1 1 (32, 3)

80233 1 1 1 ram. 0 1 1 (3, 3)

80242 1 1 1 ram. 0 1 1 (32, 3)

80746 1 1 1 ram. 0 1 1 (3, 3)

(∗) 82774 1 1 1 unram. 0 1 2 (32, 3)

87727 1 1 1 ram. 0 1 1 (3, 3)

87979 1 1 1 ram. 0 1 1 (32, 3)

88134 1 1 1 ram. 0 1 1 (32, 3)

88242 1 1 1 ram. 0 1 1 (3, 3)

(∗) 92515 1 1 1 unram. 0 1 2 (32, 3)

94998 1 1 1 ram. 0 1 1 (3, 3)

95691 1 1 1 ram. 0 1 1 (3, 3)

97555 1 1 1 ram. 0 1 1 (3, 3)

98277 1 1 1 ram. 0 1 1 (3, 3)

98929 1 1 1 ram. 0 1 1 (3, 3)
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