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 Abstract 

 

 

Recent years witness the fast advancement of system identification which is widely 

applied in civil engineering such as health monitoring and non-destructive damage 

detection. Because of its wide applicability, many identification methods have been 

studied for various purposes and a wide range of analytical methods exist for linear and 

nonlinear structural system. Many common among these methods are based on an 

inverse problem using heuristic algorithms such as genetic algorithms (GAs), particle 

swarm optimization (PSO), and differential evolution (DE) algorithm, etc.. The 

structural identification is formulated as an inverse problem which is concerned with 

the derivation of mathematical models from experimental measured data. Given the 

measured response, a set of candidate models are built up and choosing the optimal one 

based on a predefined fitness by which the residual error, measuring the fitness between 

the measure output of the actual system and the response of simulated model, is 

minimized. However, these heuristic algorithms based identification studies are all 

treated as a deterministic issue, which inevitably obtain a biased solution if taking 

uncertainties such as measurement noise or model error into account.  

Bayesian posterior density estimation is a classic method to quantify the uncertainty 

based on a probabilistic model that is defined by stochastic model classes. The model 

set is a class of parameterized probability models, each of which predicts the behavior 

of the actual system with a prior probability density. In Bayesian estimation, the 

identification problem is to infer the plausibility of each candidate model with a 

posterior density conditioned by the measured data; it is not a quest for the true 

structural parameters. The posterior density of structural parameters indicates how 
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plausible each model is when considering the uncertainty of predictive errors. 

However, it is usually difficult for the Bayesian identification method to obtain the 

posterior probability density of parameters conditioned by the measured response, 

because its calculation often requires an evaluation of multidimensional integrals that 

cannot be easily calculated. The Markov chain Monte Carlo (MCMC) method is a 

widespread medium for Bayesian inference but its convergence is often slow. It is 

known that because of the noise corrupted system response, the surface of the residual 

error lies in a hyper-surface of a multi-dimensional parametric space, which will cause 

the convergence of the Markov chains difficult to be approached. Moreover, most of 

these existing MCMC based identification methods use a single Markov Chain, which 

may be inefficient and unreliable when the surface of posterior probability density 

function is complicated. 

The purpose of this study is to surmount this difficulty that solving the convergence of 

the Markov chains when the Bayesian inference framework is applied in the structural 

system. In this thesis, the ability of heuristic algorithms to search for the global optimum 

will have to be merged with the advantage of the Metropolis-Hasting (MH) algorithm 

for inferring the posterior probability. We present an improved differential evolution 

adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior 

density of structural parameters. The main benefit of IDREAM is its efficient MCMC 

simulation through its use of the adaptive Metropolis (AM) method with a mutation 

strategy for ensuring quick convergence and robust solutions. Its effectiveness was 

demonstrated in simulations on identifying the structural parameters with limited output 

data and noise polluted measurements. 

Moreover, the estimator (maximum a posterior estimator, MAP) of the Bayesian 

inference is inevitably biased, which may be attributed to the surface of the posterior 

probability density owning to multiple local optima. Another purpose of this thesis is 

to improve the accuracy of the MAP estimator. To solve this problem, which is defined 

as the “equifinality” of Bayesian inference, a two-step Bayesian identification method 

is proposed. In step 1, the formal likelihood measure is used to obtain the MAP 
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estimator; in step 2, the first-two derivative of the log-likelihood measure is proposed 

to formulate a new fitness function to improve the accuracy of the estimator. The benefit 

of the proposal was demonstrated in simulations on identifying the structural 

parameters with limited output data and considering noise polluted measurements. 

Finally, the conclusion is given that the proposal could not only improve the accuracy 

of the MAP estimator but also reduce the standard deviation (uncertain range) of the 

posterior samples. The identification using the proposed method is applied into the 

measured data of a shake-table experiment, called the E-Defense. Comparison with the 

results that using the existing methods show that our proposed methodology is indeed 

a powerful tool for the Bayesian identification of building structures.
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1 Introduction 

 

 

 

1.1 Structural health monitoring (SHM) and system identification  

 

The art of structural health monitoring (SHM) can be regarded as the routine checkups 

of human bodies by the doctors, who gathered the signals that are relevant to diseases 

to find out the status of body organs or human systems. The findings are translated by 

the doctors to provide diagnosis and prognosis to the patients. SHM that applied in civil 

structures can thus be understood as the process of carrying out a health status (damage 

detection strategy) for buildings, bridges or other civil infrastructures. It thus involves 

the observation of a structural system over time using dynamic response from an array 

of sensors, the extraction of damage sensitive features from these measured response, 

and the statistical analysis of these features to determine the current state of the 

structural health (Sohn and Farrar, 2001; Sohn et al., 2004). In short, a complete SHM 

framework includes three parts: Monitoring, Diagnosing and State evaluation, as is 

shown in Figure 1.1. Seen from the Fig. 1.1, it can be found that system identification 

plays an important role in the SHM framework, which is the process of identifying the 
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parameters of a structural model using the recorded seismic output of the actual building 

system (Alvin et al., 2003 and Ljung, 1999). Because of its extensive application, 

currently, a wide range of analytical methods exist for linear or nonlinear system 

(Peeters et al., 2001; Kessler et al., 2002; Kim et al., 2003; Qiao et al., 2007; Ye and 

Wang, 2007).  

 

 

Figure 1.1 SHM framework  

 

The conventional methodologies can be divided into two categories: parametric and 

nonparametric identification approaches. The parametric identification methods, such 

as least square method (Yang et al., 2007), the extended Kalman filter (Yang et al., 

2006), and the H∞ filter method (Sato and Qi, 1998) etc., achieved some progress but 

hit the bottleneck because most of these methods require an initial guess so that the 

process can start. Xie and Mita (2010) used subspace method and component mode 

synthesis into the restoring force identification of a base-isolated structural system 

considering nonlinearity. Besides the traditional parametric estimation methods, 

Part 1: Data acquisition & Signal 

processing 

Part 4: Repair or/and Replace 

Part 2: Feature extraction & System 

Identification 

Part 3: Diagnosis 
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numerous nonparametric approaches in literature have been used in applications 

including wavelet analysis (Hung et al., 2003), neural network (Qian and Mita, 2008), 

and least squares support vector machine (Tang et al., 2006; Mita, 2003) technique etc. 

However, these estimated ‘nonparametric’ coefficients lack, in general, physical 

meaning, which makes these methods be very difficult to extract the physical 

characteristics like stiffness or damping unless some of these are assumed known a 

priori.  

 

1.2 The optimization principle of identification 

 

This study focuses on parametric identification, where a model within a chosen model 

class is defined by assigning values to a set of model parameters. Identification, is 

performed by searching the “best” set of structural parameters from the given model 

class according to a prescribed criterion such as least-square errors, which measures the 

fitness between the measured response and the output of simulation model. If the 

resulting model can be deemed to be accurate enough for its intended application, 

predictions are made using this so-called “best” (optimal) model; otherwise, the process 

of model updating is repeated.  

To detail the optimization principle of identification problem, let 𝒀𝑀(𝑡) denote the 

measured response at each time interval (𝑡 = 1, … , 𝑁𝑡) and 𝒀̂(𝒙̂, 𝑡) denotes the output 

of candidate models, where 𝒙̂ = (𝑥̂1, 𝑥̂2, … , 𝑥̂𝑁𝑑
)T ∈ ℝ𝑁𝑑  denotes an 𝑁𝑑 

dimensional parameterized system to capture the behavior of the physical system. The 

difference between the measured response and model outputs is defined as the residual 

error: 𝑬𝑗(𝒙̂, 𝑡)=  𝒀𝑗
𝑀(𝑡) − 𝒀̂𝑗(𝒙̂, 𝑡) , where j=1,…,  𝑁𝑚 , and 𝑁𝑚  is the number of 

outputs. Therefore, the identification problem is formulated as minimizing the residual 
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error norm of the outputs, e.g., the following mean least square error function: 

 

  ℱ(𝒙̂) =
1

𝑁𝑚𝑁𝑡
∑ ∑ ‖𝒀𝑗

𝑀(𝑡) − 𝒀̂𝑗(𝒙̂, 𝑡)‖
𝑁𝑡
𝑡=1

𝑁𝑚
𝑗=1 ,           (1.1) 

 

where ‖∙‖ is a Euclidean norm of vectors. Formally, the identification problem requires 

finding a set of 𝑁𝑑 parameters 𝒙̂∗ ∈ ℝ𝑁𝑑 , so that the error norm ℱ(∙) is minimized 

(Different from the deterministic identification method, where the structural parameters are 

denoted by a 𝑁𝑑 dimensional deterministic vector 𝒙̂, a random matrix of 𝑁𝑑 by 𝑁𝑠, 𝜽, is 

used for representing the uncertain structural parameters in model set for Bayesian inference 

method, where 𝑁𝑠 is the number of samples in random model set).  

Obviously, from (1.1) we can find that a successful implementation of system 

identification requires to overcome several difficulties, such as dealing with ill-

conditioned inverse problems with multiple optimal (local optimal) solutions. In 

general, the parameters that defining the physical system are identified through noise 

corrupted measured data. The predictive error surface of this kind of problem inevitably 

exists as a hyper-surface in the parameter space. The hyper-surface potential is often 

highly multi-modal in the sense that it is a non-quadratic surface that possesses local 

minima, in addition to a global minimum that represents the optimal solution. Due to 

the ill-conditioning and multi-modality, traditional local methods, like Levenberg-

Marquardt or Gauss-Newton, may fail to identify the global solution and may converge 

into a local minimum. Because these local methods are performed by point-to-point 

search strategy. Such optimization methods work satisfactorily when the error surface 

contains no local minima. A good initial guess of the parameter and gradient or higher-

order derivatives of the objective function is generally required. There is always a 

possibility to fall into a local minimum rather than the global minimum. In order to 
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surmount these difficulties, there is a distinct requirement for using heuristic global 

optimization methods, which do not converge to local minima and thus expected to 

provide more accurate estimates of the system parameters. 

 

1.3 Heuristic algorithm based identification problem 

 

Heuristic computational intelligence methods belonging to the global optimization 

category have proven to be promising tools to solve many multi-modal optimization 

problems. These have been found to be powerful methods in domains where local 

methods have not been proved to be effective. Among the most important global 

heuristic optimization methods, such as genetic algorithms (GAs) (Eiben et al., 1994), 

evolution strategy (ES) (Koziel and Michalewicz, 1999), particle swarm optimization 

(PSO) (Kennedy and Eberhart, 1995), differential evolution (DE) (Storn and Price, 

1997) and big bang-big crunch (BB-BC) algorithm (Jaradat and Ayob, 2010) have been 

successfully utilized to solve this multi-modal optimization problem. 

 

1.3.1 Current studies of structural identification using heuristic algorithms 

 

The heuristic algorithms are highly adaptive methods originated from the laws of nature 

or biology. Unlike the traditional local methods, one of the important characteristics of 

these algorithms is their effectiveness and robustness in coping with ill-conditioned 

inverse identification problem with insufficient information, and noise. The advantages 

of using heuristic algorithms for structural parameter estimation have been increasingly 

recognized in recent years. Koh and Perry (2007) applied GAs to solve the global 
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problem of systems identification in shear-type building structures. Cunha et al. (1999) 

used GAs to identify the elastic constants of composite materials. Barbieri et al. (2010) 

applied GAs to identify the physical parameters of sandwich beams. Chou and 

Ghaboussi (2001) introduced GAs to identify damage severity of trusses. Wang (2009) 

used a hybrid GA to identify structural systems. Perry et al. (2006) utilized a modified 

GAs to identify structural systems. Trinh and Koh (2012) presented a GA-based 

substructural identification strategy for large structural systems. Franco et al. (2004) 

used ES to identify multiple degree of freedom (DOF) systems. Jeong and Lee (1996) 

proposed an adaptive simulated annealing genetic algorithm for system identification. 

Levin and Lieven (1998) applied SA method to optimize a finite element model for 

describing the dynamic behavior of structures. Xue et al. (2009) introduced PSO to 

identify the parameters of linear and nonlinear structural system. Tang et al. (2008, 2010) 

proposed an improved DE and BB-BC optimization strategy to structural parameter 

estimation. Li et al. (2013) combined the symbolization method with the DE strategy 

to improve the accuracy of the identification results. 

Despite the success of these heuristic algorithm based identification methods on paper, 

there are several problems, the reason for which is that they are all on the basis of a 

deterministic mechanical model to quixotically quest for the output of true system with 

uncertain prediction errors. As is questioned by Beck (2010) on the deterministic 

identification methods: No candidate model is expected to exactly represent I/O 

behavior of actual system, which raises questions about the basis for choosing only one 

and biased model. If we make a unique estimate for the actual system it is sure to 

produce biased predictions. Hence, it is necessary to use stochastic model to quantify 

the uncertainty of prediction errors. An alternative approach, which has gained a 

substantial following in many research disciplines in recent years, is to evaluate 

candidate models using the probability of the models given data from the system of 

interest. The roots of the probability logic approach are in work performed by Bayes 
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(1763). He presented a method for updating probability distributions for parameters 

based on available data that would come to be known as Bayesian Theorem, and it 

forms the foundation of a framework for probabilistic inference. It was Laplace (1951), 

however, who showed the power of Bayesian Theorem by applying it to problems using 

real data and demonstrating the ability of probabilistic inference to separate “signal” 

from “noise.” The probability logic approach is applied to system-identification 

problems using the probabilistic framework developed by Beck (1989, 1996) and Beck 

and Katafygiotis (1991, 1998).  

 

1.4 Bayesian probabilistic inference for structural identification 

 

Bayesian probabilistic inference (Lee, 1997; Box and Cox, 1964; Box and Tiao, 1973; 

Blasco et al. 1998) provides a rigorous framework for quantifying the uncertainty based 

on probability models defined by stochastic model classes, 𝓜. The model class is 

composed as a set of parameterized probability models for predicting the behavior of 

actual system with prior probability model indicating the initial relative plausibility of 

each model. In this framework, the identification problem is viewed as inferring the 

plausibility of system models with posterior probability distribution conditioned by the 

measurement data, but not a quest for true parameter values.  

For the Bayesian probabilistic inference identification method it is usually difficult to 

obtain the posterior probability density function (PDF) of the structural parameters, 

𝑝(𝜽|𝒀𝑀(𝑡)), conditioned by the measured response, 𝒀𝑀(𝑡), where 𝜽 is a stochastic 

parameter vector defining each possible model within the model set (𝛀𝜽 denotes the 

probability space for the random parameters). The posterior PDF describes how 

plausible each model is if one accounts for the uncertainty of the prediction errors. The 
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posterior density, 𝑝(𝜽|𝒀𝑀(𝑡)) , is needed to make robust predictions of the 

performance of the system based on past observation, as was illustrated by 

Papadimitriou et al. (2001), Beck and Au (2002) and (Simoen et al., 2013). 

 

1.4.1 Current studies of Bayesian inference for structural identification 

 

Many studies have focused on obtaining the posterior PDF because its calculation often 

requires an evaluation of multidimensional integrals that cannot be easily obtained. In 

particular, Laplace’s method of asymptotic approximation was utilized by Beck and Au 

(2002) to obtain a posterior PDF with a small-dimensional parameter space. To solve 

higher dimensional problems, an adaptive Markov chain Monte Carlo (MCMC) 

simulation method, Metropolis-Hasting (MH) algorithm, was developed to be used in 

the Bayesian model updating (Muto and Beck 2008). Since the advent of the MH 

algorithm, MCMC methods have become the primary means to obtain the posterior 

PDF in structural identification. Gibbs sampling and transitional Markov Chain Monte 

Carlo (TMCMC) were used by Ching and Chen (2007). Cheung and Beck (2009) used 

a hybrid Monte Carlo method, known as the Hamiltonian Markov chain method, to 

solve the higher dimensional Bayesian model updating problems. Vanik et al. (2000) 

and Yuen and Beck (2003) successfully applied the probabilistic logic framework into 

the model updating for reliability and structural health monitoring fields. The Bayesian 

inference framework has also been applied to more challenging problems such as non-

linear systems with uncertain input (Beck and Yuen, 2004) and reliability-based control 

robust to probabilistic model uncertainty (Scruggs et al., 2006). 

However, all of these MCMC-based identification methods use a single Markov Chain, 

which may be inefficient and unreliable when the posterior surface is complicated. It is 

known that because of the noise corrupted system response, the surface of the prediction 
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error lies in a hyper-surface of a multi-dimensional parametric space. The complicated 

surface of the prediction error will definitely cause the surface of the posterior model 

samples to have multiple regions of attraction and numerous local optima. In short, the 

biggest challenge of Bayesian inference in structural system, therefore, lies in the 

efficient-convergence of the Markov chain. 

 

1.5 The generalized likelihood uncertainty estimation 

 

For traditional Bayesian structural identification framework, it is inevitably facing the 

problem of “equifinality” (Beven, 2006), which originates from the imperfect 

knowledge of the system under identification, and many sets of models, parameters and 

variables may therefore be considered equal or almost equal simulators of the unknown 

system. The generalized likelihood uncertainty estimation (GLUE) methodology 

(Beven and Freer, 2001), which adopts the concept of equifinality of models, 

parameters and variables is thus popularly studied recent decades. In GLUE, it deals 

with the variable degree of membership of the sets. And the degree of membership is 

determined by assessing the extent to which solutions fit the model, which in turn is 

determined by subjective likelihood functions. Therefore, the application of GLUE 

requires the proper definition of a likelihood measure.  

The term “likelihood” in the framework of GLUE is used less formally than the 

likelihood measures of classical statistics, which make specific assumptions about the 

nature of the error associated with the model simulations. The traditional GLUE 

likelihood measure is model efficiency function which is given by Beven and Binley 

(1992). In this definition, the likelihood equals one if all residuals are zero, and zero if 

the weighted variance of the residuals is larger than the weighted variance of the 
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observations. Beven (1996) and Smith et al. (2008) listed a few example likelihood 

measures and discussed the limitations of using the maximum likelihood model. Ratto 

et al. (2007) considered the subjectivity in the GLUE method, which allows the modeler 

to interact in the modeling process. Zhang et al. (2011) proposed a modified GLUE 

framework to address the problem of the subjectivity of likelihood measure selection. 

 

1.6 Review of the previous identification studies at Mita Lab 

 

The previous studies concerning with the structural identification problem at Mita Lab 

are given by Qian (2008) and Li (2013). Qian explored the PSO algorithm to the 

acceleration-based damage localization and quantification of identification problem. 

She compared the PSO-based identification results with the usage of the Simulated 

Annealing (SA) and Genetic Algorithm (GA). The conclusion that the PSO-based 

identification method outperforms the SA and GA based estimation approach was 

drawn in her thesis. Differential evolution (DE) algorithm was utilized by Li to the 

identification problem combing with the advantages of the symbolic technology. The 

DE based identification results using the symbolic time series and the raw acceleration 

are compared in his study, where he got the conclusion that the application of 

symbolized acceleration into the DE based identification could improve the accuracy 

of the results obtained by the raw acceleration. Both of the two previous identification 

studies are formulated as a deterministic optimization problem. The limitations of 

formulating the parameter estimation as a deterministic issue have already discussed by 

Beck (2010). This study is to solve the identification problem considering the 

measurement uncertainties under the Bayesian logic framework. 
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1.7 The purposes of this study 

 

The purpose of this thesis is to solve the two aspects of the difficulties in Bayesian 

inference. In first aspect, it would like to solve the problem of slow-convergence of 

Markov chain of the posterior samples. To surmount this difficulty, the ability of 

heuristic algorithms to search for the global optimum will have to be merged with the 

advantage of the MH algorithm for inferring the posterior PDF. The convergence speed 

of the Markov chains is enhanced by an improved differential evolution adaptive 

Metropolis-Hasting algorithm (IDREAM) strategy in estimating the posterior density 

of structural parameters is proposed in Section 3. The results of the numerical 

simulation and the verification of the proposed method that applied in a shake table 

experiment shows its potentials in Bayesian identification. 

The second aspect of this study is to solve the accuracy problem of the estimator that 

obtained by Bayesian inference. The definition of the likelihood measure plays an 

important role in the success of Bayesian identification, because the surface of the 

likelihood measure often has multiple regions of local optima due to the noise corrupted 

measurement of the model errors. To solve the “equifinality” problem, in Section 4, the 

first-two derivative of the log-likelihood measure is used to formulate a new objective 

function for the sake of improving the accuracy of the estimator. 

 

1.8 Organization of the Thesis 

 

This thesis is divided into five chapters as below. 

Chapter 1 gives an introduction system identification based on optimization algorithms 
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and the background of Bayesian posterior density estimation for structural system. 

Chapter 2 presents problem statement of Bayesian inference for structural system, the 

Metropolis-Hasting algorithm and the Differential Evolution strategy.  

Chapter 3 proposes a posterior density estimation method for structural parameters 

using improved differential evolution adaptive Metropolis-Hasting algorithm. 

Numerical simulation of the proposed approach in a linear and nonlinear structural 

system demonstrates its effectiveness.  

Chapter 4 proposes a method of reducing “equifinality” of the structural identification. 

An improved Bayesian structural identification method using the first-two derivative of 

the log-likelihood measure is presented. The experimental verification of the proposed 

identification method in the identification of E-Defense structural system shows the 

advantage of the proposed method. 

Chapter 5 summarizes contributions of this thesis, and points out the direction for future 

works. 
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CHAPTER 2 

2 Differential Evolution Adaptive 

Metropolis-Hasting Algorithm 

 

 

 

2.1 Introduction 

 

In this section, differential evolution adaptive Metropolis-Hasting algorithm, proposed 

by Vrugt et al. (2009), is explained along with its components. The difficulty of the 

Bayesian posterior density estimation lies in a high dimensional integral, which is called 

Markov integration. The Markov integration, the Markov chain and its property is 

introduced. Then a classic Markov chain Monte Carlo (MCMC) method, called 

Metropolis-Hasting (MH) algorithm is presented. However, the convergence of this 

traditional MCMC algorithm is often observed to be slow, which is frequently caused 

by an inappropriate selection of the proposal distribution used to generate the trails of 

the Markov chain. This difficulty especially happens when the target distribution is 

typically a high dimensional posterior distribution in the Bayesian analysis. The 

combination of heuristic algorithms (DE algorithm) and MH algorithm solves an 
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important problem in MCMC in real parameter spaces, which is of choosing an 

appropriate scale and orientation for the jumping distribution.  

 

2.2 Bayesian probabilistic identification framework 

 

Bayesian probabilistic inference (Box and Tiao, 1973) provides a rigorous way of 

quantifying this uncertainty based on a probabilistic model that is defined by stochastic 

model classes. The model set, 𝓜, is a class of parameterized probability models, each 

of which predicts the behavior of the actual system with a prior probability density. The 

prior probability of each model indicates the initial plausibility of the individual model. 

In Bayesian parametric posterior density estimation, the identification problem is to 

infer the plausibility of each candidate model with a posterior density conditioned by 

the measured data; it is not a quest for the true structural parameters.  

For the Bayesian probabilistic inference identification method, it is usually difficult to 

obtain the posterior probability density function (PDF) of the structural parameters, 

𝑝(𝜽|𝒀𝑀(𝑡),𝓜), conditioned by the measured response, 𝒀𝑀(𝑡), where 𝜽 is a stochastic 

parameter vector defining each possible model within the model set in probability space 

𝛀𝜽. Let 𝒀𝑀(𝑡) denote the measured response at each time step (𝑡 = 1,… ,𝑁𝑡). The 

stochastic model set, 𝓜 , is defined by stochastic parameter matrix,   𝜽 =

(𝜽1, 𝜽2, ⋯ , 𝜽𝑁𝑠
) ∈ 𝛀𝜽 ⊂ ℝ𝑁𝑑×𝑁𝑠, where 𝑁𝑑 is the parametric dimension, 𝑁𝑠 is the 

number of posterior samples. The initial plausibility of each model parameterized by 

𝜽𝑘 (𝑘 = 1,2, … ,𝑁𝑠)  is defined as a prior density function, 𝑝(𝜽|𝓜) . The updated 

plausibility of each I/O model considering the uncertainty of the measured response is 

defined as the posterior density, 𝑝(𝜽|𝒀𝑀(𝑡),𝓜), which from Bayes’ theorem gives: 
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𝑝(𝜽|𝒀𝑀(𝑡),𝓜) = 𝑝(𝒀𝑀(𝑡)|𝜽,𝓜) ∙ 𝑝(𝜽|𝓜)/𝑝(𝒀𝑀(𝑡)|𝓜),        (2.1) 

 

where 𝑝(𝒀𝑀(𝑡)|𝜽,𝓜) is obtained from a probabilistic model that accounts for the 

uncertainty of the prediction errors between the measured response and the output of 

the each probability model in the model set, 𝒀̂(𝜽, 𝑡). Let 𝑬𝑗(𝜽, 𝑡)= 𝒀𝑗
𝑀(𝑡) − 𝒀̂𝑗(𝜽, 𝑡) 

denote the residual error of 𝑗th measured response at each time interval (𝑡 = 1,… ,𝑁𝑡; 

and j=1,…, 𝑁𝑚, 𝑁𝑚 is the number of measured response). The predictive PDF for the 

model output (white noise is considered as the measurement error, it thus obeys the 

normal distribution) at each time interval is 

 

𝑝(𝒀𝑗
𝑀(𝑡)|𝜽,𝓜) =

1

√2𝜋𝜎𝑗
𝑒

[−
1

2𝜎𝑗
2 ∑ (𝒀𝑗

𝑀(𝑡)−𝒀̂𝑗(𝜽,𝑡))2
𝑁𝑡
𝑡=1 ]

,  j=1,…, 𝑁𝑚.    (2.2) 

 

Hence, the predictive PDF (which is the likelihood function) seen from the whole time 

history is 

 

 𝑝(𝒀𝑀(𝑡)|𝜽,𝓜) =
1

(∏ √2𝜋𝜎𝑗
𝑁𝑚
𝑗=1

)𝑁𝑡
𝑒

[−∑
1

2𝜎𝑗
2 ∑ (𝒀𝑗

𝑀(𝑡)−𝒀̂𝑗(𝜽,𝑡))2
𝑁𝑡
𝑡=1

𝑁𝑚
𝑗=1 ]

.      (2.3) 

 

The vector of the prediction error variance,  𝜎𝑗
2 , is an independent parameter 

corresponding to each candidate model in the model class, 𝓜 . The term, 

𝑝(𝒀𝑀(𝑡)|𝓜), is called the evidence of the model class, and it equals 
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𝑝(𝒀𝑀(𝑡)|𝓜) = ∫ 𝑝(𝒀𝑀(𝑡)|𝜽,𝓜) ∙ 𝑝(𝜽|𝓜)𝑑𝜽
𝛀𝜽

.         (2.4) 

 

The difficulty in estimating the Bayesian posterior density is none other than 

approximating this multi-modal integral, which is called Markov integration. 

 

2.3 Markov integration and Markov chain property 

 

From Eq. (2.4), we can find that in the implementation of Bayesian inference for 

identification, the challenge lies in obtaining the posterior distribution which requires 

an evaluation of multidimensional integration. This integration that is computationally 

difficult to solve, which is often named as Monte Carlo Integration (Geyer, 1992; Evans 

and Swartz, 1995). It can be rewritten as: 

 

𝐼 = ∫ 𝑓(𝜽)
𝛀𝜽

𝑝(𝜽)𝑑𝜽,                       (2.5) 

 

where 𝑝(𝜽) is a PDF of random variable 𝜽; 𝑓(𝜽) is a function of 𝜽 in our interest 

(for instance 𝑓(𝜽) = 𝜽 for the mean and 𝑓(𝜽) = (𝜽 − 𝐸(𝜽))2 for the variance); and 

𝛀𝜽 denotes the probability space of random variable 𝜽. An easy-to-realizing method 

called Monte Carlo simulation can solve this integration, but usually the calculation 

efficiency is low. Recent decades MCMC methods have found widespread use to 

estimate this integration in a Bayesian framework. The Markov chain can be defined as 

a stochastic process, a consecutive set of random quantities that defined on probability 

space. It can be defined as a sequence of a dependent random variables, 𝜽(0), 𝜽(1), 
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𝜽(2), …, 𝜽(𝑠), …, such that the probability distribution of 𝜽(𝑠) given the past variables 

depends only on 𝜽(𝑠−1).  This means the future states of Markov chain samples are 

independent of past states given the present state (considering a draw of 𝜽(𝑠) to be a 

position of current state 𝑠, the next draw 𝜽(𝑠+1) is dependent only on the current draw 

𝜽(𝑠), and not on any past draws). This principle is called the Markov property of MC 

Chains:  

 

𝑝(𝜽(𝑠+1)|𝜽(0), 𝜽(1), 𝜽(2), …,𝜽(𝑠)) = 𝑝(𝜽(𝑠+1)|𝜽(𝑠)).            (2.6) 

 

Thus the Markov chain is a bunch of draws of 𝜽 that are each slightly dependent on 

the previous one. In short, it wanders around the parameter space, remembering only 

where it has been in the last period. The jumping rules, which determines the probability 

of moving to some other state based on the current state, are governed by a transition 

kernel. In classic MH algorithm a simple but popular-used transition method is random 

walk Metropolis (RWM). 

 

2.4 Metropolis-Hasting algorithm 

 

The MH algorithm is one of the best known of MCMC methods. It was developed by 

Metropolis and Ulam (1949) and subsequently generalized by Hasting (1970) and its 

impact on Bayesian statistics has been immense as detailed in many studies (Haario et 

al., 2001, 2006).The basis of the MH algorithm is a Markov chain that generates a 
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random walk through the parameter space and successively visits solutions with stable 

frequency stemming from a fixed probability distribution. The transition of Markov 

chain using RWM method in MH algorithm satisfies: 

 

𝜽(𝑠+1) = 𝜽(𝑠) + 𝝐(𝑠),                         (2.7) 

 

where 𝝐(𝑠)  is independent of the Markov samples 𝜽(𝑠) , which obeys normal 

distribution, 𝒩(0,1). From Eq.(2.7), the transition kernel of the MC chain corresponds 

to a 𝒩(𝜽(𝑠), 1)  density. Assuming that a RWM has already sampled points 

{𝜽(1), … , 𝜽(𝑠)}, the MH algorithm proceeds in the following three steps. In the first step, 

a candidate point 𝜽(𝑠+1)  is sampled from a proposal distribution 𝑞(∙ |∙)  that is 

symmetric 𝑞(𝜽(𝑠)|𝜽(𝑠+1)) = 𝑞(𝜽(𝑠+1)|𝜽(𝑠))  and depends on the current location, 

𝜽(𝑠). In the second step, the candidate sample is either accepted or rejected using the 

Metropolis acceptance probability: 

 

α(𝜽(𝑠), 𝜽(𝑠+1)) ={
min [

𝑝(𝜽(𝑠+1))

𝑝(𝜽(𝑠))
, 1]   if  𝑝(𝜽(𝑠)) > 0

                    1             if  𝑝(𝜽(𝑠)) = 0 
.          (2.8) 

 

Finally, if the proposal is accepted, the chain moves to the candidate sample, 𝜽(𝑠+1), 

otherwise the chain remains at its current location 𝜽(𝑠). From the Eq.(2.7), it is clear 

that the transition of the Markov chain highly depends on the current location of sample 

𝜽(𝑠) and the random variable 𝝐(𝑠). The scale of the transition is depend on the variance 

of the kernel distribution, which is a constant value, 1. The adaptive Metropolis (AM) 

scheme is proposed, in which a single Markov chain continuously adapt the variance of 

the transition distribution, 𝑽(𝑠) , which is a 𝑁𝑑  dimensional vector. The adaptive 
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variance (denoted as Cov signifying the variance of samples of different states) is 

decided by the samples of  𝑽(𝑠) = 𝑠𝑁𝑑
Cov(𝜽(1), … , 𝜽(𝑠)) + 𝑠𝑁𝑑

𝜀𝑰𝑁𝑑
, where 𝑠𝑁𝑑

 

represents a scaling factor that depends only on the dimensionality of the problem, 𝑰𝑁𝑑
 

is a unit vector of 𝑁𝑑 dimensions, and 𝜀 is a small constant. The Cov(𝜽(1), … , 𝜽(𝑠)) 

is the covariance of the samples from the initial state to the current 𝑠th state. Although 

the AM scheme has some positive effect on many relatively simple Bayesian inference 

problems, but its inefficiency and slow-speed of convergence when confronted with 

posterior distribution with heavy tails or with complex posterior surfaces that contains 

multiple regions of attraction and local optima. Since the traditional MCMC method, 

such as MH (Kuczera and Parent, 1998; Gelman et al. 1997), AM (Haario et al., 2006) 

and Gribbs sampler (Casella and George, 1992) algorithm, yields only one single MC 

chain, it unavoidably trap into the local optima and traverse badly in pursuit of sampling 

the target distribution.  

Recognizing the limitations of the existing MCMC algorithm, it is inevitably thinking 

of exploring the evolution mechanism of the heuristic algorithm, for instance the 

mutation and crossover strategy of DE algorithm, into the MH algorithm. For sake of 

integrity, the mutation strategy and the crossover operation of DE algorithm is briefly 

described below. 

 

2.5 Differential Evolution algorithm 

 

DE algorithm (Price 1999) is a population based evolution algorithm designed for 

optimization in real parameter spaces. Each population of the DE algorithm in different 

state (iteration) evolves by the mutation strategy and crossover operation, which can be 

regarded as a single MC chain. This is to say that there are 𝑁𝑠 populations (MC chains) 

updating in parallel, which can fasten the convergence of the classic MH algorithm. For 
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short, the mutation and the crossover strategy of the DE algorithm can be described as 

follows: 

 

2.5.1 The Mutation Strategy of DE 

 

The objective of mutation strategy is to enable search diversity in the parameter space 

as well as to direct the existing object vectors with suitable amount of parameter 

variation in a way which will lead to better results at a suitable time. According to the 

mutation strategy, for each individual, 𝜽(𝑠)
𝑘 , 𝑘 = 1,2, … ,𝑁𝑠 (𝑁𝑠 denotes the number 

of populations), at the state (generation/iteration) s, a mutation vector 𝜽(𝑠+1)
𝑘  is 

determined:  

 

𝜽(𝑠+1)
𝑘 = 𝜽(𝑠)

𝑟1 + 𝛾(𝜽(𝑠)
𝑟2 − 𝜽(𝑠)

𝑟3 ),                        (2.9) 

 

where 𝜽(𝑠+1)
𝑘  represents the 𝑘th individual sample at next state s+1 that evolved from 

the population of the state s; 𝛾 denotes the real parameter, called mutation constants, 

which control the amplification of difference between two individuals so as to avoid 

search stagnation; and 𝑟1, 𝑟2, 𝑟3, are mutually different integers, randomly selected 

from the set {𝑘 = 1,2, … , 𝑘 − 1, 𝑘 + 1,… ,𝑁𝑠} . The DE mutation strategy of an 

objective function (two-dimensional example) and its contour lines are shown in Figure 

2.1. 

In order to combing the DE mutation strategy into a Markov chain for drawing samples 

from a target distribution, the proposal and acceptance scheme must be such that there 

is detailed balance with respect to the target distribution. To ensure this, the first 

mutation strategy called “DE/1/bin” in Price and Storn (1997) is utilized to fit the 
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updating of Markov chains using DE mutation strategy as: 

 

𝜽(𝑠+1)
𝑘 = 𝜽(𝑠)

𝑘 + 𝛾(𝜽(𝑠)
𝑟1 − 𝜽(𝑠)

𝑟2 ) + 𝒆,                  (2.10) 

 

 

Figure 2.1 The operation DE mutation strategy (2-dimensional example) 

 

where 𝒆  is a vector drawn from a symmetric distribution with a small variance 

compared to that of the target, but with unbounded support, e.g. 𝒆~𝑁(0, 𝛔)𝑁𝑑 with 

small vector 𝝈 of 𝑁𝑑-dimension. Comparing the transition of Markov chain in MH 

Dimension2 

𝜽(𝑠)
𝑟2  

𝜽(𝑠)
𝑟3  

𝜽(𝑠)
𝑟2 − 𝜽(𝑠)

𝑟3  

𝜽(𝑠)
𝑟1  

𝜽(𝑠+1)
𝑘  

𝛾(𝜽(𝑠)
𝑟2 − 𝜽(𝑠)

𝑟3 ) 

Dimension1 

: Individual samples (𝑁𝑠 in total); 

𝜽(𝑠)
𝑟1 , 𝜽(𝑠)

𝑟2 , 𝜽(𝑠)
𝑟3 : Randomly chosen 

sample at state (s); 

𝜽(𝑠+1)
𝑘 : The 𝑘th sample at state (s+1); 
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algorithm as in Eq.(2.7), Eq.(2.10) can be seen as the transition of the 𝑘th Markov 

chain at the state (s+1). From this point, if combing the mutation strategy of DE into 

MH algorithm, the problem of transition scale is well-solved. More importantly, the 

transition scale is automatically evolving with the reducing search domain of each 

population, which can be considered as an adaptive updating Markov progress in 

parallel (𝑁𝑠 Markov chains). 

 

2.5.2 The Crossover Strategy of DE algorithm 

 

Following the mutation phase, the crossover operator is applied on the population in 

DE algorithm. For each mutant vector, 𝜽(𝑠+1)
𝑘 , is generated, with 

 

𝜃(𝑠+1)
𝑘,𝑗

= {
𝜃(𝑠+1)

𝑘,𝑗
    if (rand(𝑗) ≤ 𝐶𝑅) )

𝜃(𝑠)
𝑘,𝑗

        if (rand(𝑗) > 𝐶𝑅) )
,                 (2.11) 

 

where 𝑘 = 1,2, … , 𝑁𝑠 ; 𝑗 = 1,2, … ,𝑁𝑑 ; rand(𝑗)  is the 𝑗th independent random 

number that uniformly distributed in the range of [0, 1]; 𝐶𝑅 is pre-defined crossover 

constant ∈ [0, 1] that controls the diversity of the population (Storn and Price, 1997). 

 

2.6 Differential Evolution Adaptive Metropolis-Hasting algorithm 

 

The advantage of combining of DE and Metropolis-Hasting algorithm is due to the fact 

that it can run multiple different Markov chains in parallel and the posterior samples in 
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each iteration can be evolved using DE strategy respectively in each MC chains (Vrugt 

et al., 2009). This enhances the efficiency of optimum searching and the balance of 

ergodicity, which makes it able to solve higher dimensional probability inference 

problem. The main procedures of the differential evolution adaptive Metropolis-

Hasting (DREAM) algorithm is summarized as: 

1. Draw the initial samples, the 𝑘th sample is denoted as 𝜽𝑘 (𝑘 = 1,2, …𝑁𝑠), using 

the prior distribution, where the 𝑁𝑠 is the number of population. 

2. Compute the density of each samples 𝑝(𝜽𝑘) for 𝑘 = 1,2, …𝑁𝑠.  

3. Generating the candidate sample, 𝜽(𝑠+1)
𝑘 , in chain 𝑘 using the Eq. (2.12). 

 

𝜃(𝑠+1)
𝑘,𝑖 = 𝜃(𝑠)

𝑘,𝑖 + 𝛾(𝛿,𝑁𝑑)[(𝑢𝑖 + 𝑒𝑖) (∑ 𝜃(𝑠)
𝑟1(𝑝),𝑖 − ∑ 𝜃(𝑠)

𝑟2(𝑝),𝑖𝛿
𝑛=1

𝑛
𝑝=1 )]+ 𝜀𝑖, i=1,…, 𝑁𝑑, (2.12) 

 

where 𝜺 is a 𝑁𝑑 dimensional random vector that is drawn from 𝜺~𝑁(0, 𝑽(𝑠))
𝑁𝑑

 (𝜀𝑖 

is the 𝑖th element of 𝜺). This variable is the same as the jumping scale vector in the 

adaptive Metropolis algorithm. 𝑟1(𝑝)  and 𝑟2(𝑝)  are respectively different and 

random integers that are chosen from the integer set {1, 2,…k−1, k+1,…, 𝑁𝑠}. The 

term 𝑢𝑖 is the 𝑖th element of a 𝑁𝑑 dimensional unit vector, and 𝑒𝑖 signifies the 𝑖th 

element of a small random vector drawn from a uniform distribution to assure the 

ergodicity of each individual Markov chain. The scaling factor 𝛾(𝛿, 𝑁𝑑) is a function 

decided by the values of 𝛿 and 𝑁𝑑, where 𝛿 is the number of chosen pairs and 𝑁𝑑 

denotes the parametric dimension. 

4. Replace each dimension (𝑗 = 1, … , 𝑁𝑑) of the candidate sample 𝜃(𝑠+1)
𝑘,𝑗

 with 𝜃(𝑠)
𝑘,𝑗

 

using a binomial scheme with probability 1−𝐶𝑅 , where 𝐶𝑅  is the predefined 
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crossover probability. With 𝐶𝑅=1, all dimensions of the new sample are updated 

jointly, which is same as the crossover strategy of DE algorithm. 

5. Compute the 𝑝(𝜽(𝑠+1)
𝑘 ), and α(𝜽(𝑠)

𝑘 , 𝜽(𝑠+1)
𝑘 ) of the candidate sample. 

6. Accept the new state 𝜽(𝑠+1)
𝑘  with probability min(1, α(𝜽(𝑠)

𝑘 , 𝜽(𝑠+1)
𝑘 )), and keeps the 

current state 𝜽(𝑠)
𝑘  with probability 1−min(1, α(𝜽(𝑠)

𝑘 , 𝜽(𝑠+1)
𝑘 ).  

7. Remove outlier chains using the Interquartile Range (IQR) statistic, a measure of 

statistical dispersion also called middle fifty (Upton and Cook, 1996). 

8. Compute the Gelman-Rubin 𝑅̂𝑗 convergence diagnostic for each dimension, 𝑗 =

1, … , 𝑁𝑑), using the last 50% of the samples in each chain after considering the 

burn-in period (the algorithm runs for many iterations until the initial state of the 

samples is “forgotten”, and these iterations of the discarded samples are defined as 

“burn-in” period). 

9. If the Gelman-Rubin’s convergence diagnostic, R-Hat for each dimension is less 

than 1.2 (𝑅̂𝑗 < 1.2 , (Gelman and Rubin, 1992)), stop the algorithm, otherwise 

updating the samples in new iteration. 

 

Seen from Eq.(2.12), it can be easily found that the DREAM algorithm automatically 

selects an appropriate scale and orientation of the transition distribution that routed to 

the target distribution. Because of the strong search ability of DE algorithm, heavy-

tailed and multimodal target distributions are more efficiently accommodated when 

comparing with the transition of Markov chain in the original MH algorithm as in 

Eq.(2.7).  

The desired posterior PDF, 𝑝(∙), can be obtained from these Markov Chain samples 

excluding the ones in the burn-in period. Same as the standard MH algorithm, in 
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DREAM algorithm it was required to design reversibility condition to maintain the 

balance at each step in the chain: 

 

𝑝(𝜽(𝑠+1))𝑝(𝜽(𝑠)|𝜽(𝑠+1))=𝑝(𝜽(𝑠))𝑝(𝜽(𝑠+1)|𝜽(𝑠)).           (2.13) 

 

This reversibility condition mainly denotes that the transition rates between the samples 

at two different states are equal, which ensures Markov chain samples are distributed 

as the target density. 

 

2.7 Operational parameters for the DREAM algorithm 

2.7.1 The mutation scale index 

 

Different from Eq.(2.10), to increase the diversity of the samples the DREAM generates 

the proposals, 𝜽(𝑠+1)
𝑘  as in Eq. (2.12), using higher-order pairs, 𝛿 was chosen larger 

than 2. A good choice for 𝛾(𝛿, 𝑁𝑑) is suggested as be equal to 2.38 √2𝛿𝑁𝑑⁄  (Vrugt 

and Ter Braak, 2011). To enable the Markov chain jump between different modes of the 

posterior samples, the 𝛾(𝛿, 𝑁𝑑) is suggested to be set as 1.0 every 5 iteration.  

2.7.2 Outlier-chains checking and removing 

 

It is required to remove the outlier chains to facilitate the convergence of the Markov 

samples into a limiting distribution because the outlier chains may deteriorate the 

performance of MCMC samplers. To detect aberrant trajectories, DREAM stores the 

mean of logarithm of the posterior densities of the last 50% of the samples in each chain. 
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From these stored samples, the interquartile range statistic, 𝐼𝑄𝑅 = 𝑄3 − 𝑄1  is 

computed, in which 𝑄1 and 𝑄3 denote the first quartile and the third quartile of the 

Markov samples. Chains with Ω < 𝑄1 − 2𝐼𝑄𝑅 are considered as outlier chains, of 

which are removed from the current state of the posterior samples. This operation 

cannot maintain detailed balance and is therefore only be used during burn-in period. If 

an outlier chain is being detected another burn-in period is applied before summarizing 

the posterior moments.  

 

2.8 Conclusions 

 

In this section, a classic MCMC method named as the MH algorithm and a heuristic 

evolution algorithm, DE algorithm, was explained. The significant improvements to the 

efficiency of MCMC simulation can be made by running multiple interacting chains 

simultaneously when combing the DE mutation and crossover strategy with the MH 

algorithm. This algorithm entitled as DREAM, which automatically tunes the scale and 

orientation of the transition distribution during the search of MC samples, adapts 

subspace sampling to maximize the average normalized jumping distance in each chain, 

and explicitly handles outlier chains to avoid convergence problems on difficult 

response surfaces with numerous local optima, was presented. The operational 

parameters for the DREAM algorithm was briefly introduced in this section. 
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Structural Parameters using Improved 

Differential Evolution Adaptive 

Metropolis Algorithm 

 

 

 

3.1 Introduction 

 

In this section, an improved differential evolution adaptive Metropolis-Hasting 

algorithm (IDREAM) is proposed for updating the posterior PDF of the structural 

identification model. The contribution of the proposal in this section lies in the 

enhancing of convergence for the transition of the Markov chains, which will greatly 

save the time of Bayesian identification for structural system. The proposed algorithm 

combines an improved mutation and crossover strategy, enhancing the ability of global 

search, with the MH algorithm. It runs different parallel Markov chains simultaneously 

and the posterior samples mutually exchange information along the iteration. 

Comparing with the original DREAM algorithm, the convergence speed of the Markov 
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chain is fasten without reducing the accuracy of the maximum a posteriori estimation 

(MAP). Numerical examples of updating the posterior PDF of a 5-DOFs linear 

structural system and a 2-DOFs nonlinear hysteretic system are presented, with which 

the effectiveness and efficiency of IDREAM are investigated. The influence of the 

incomplete measurements and noise errors on the posterior PDF of the parameters is 

discussed.  

 

3.2 IDREAM for Bayesian Inference of Parameter Estimation 

 

The IDREAM algorithm starts by choosing stochastic samples represented as a 

dimensional vector 𝜽, and the sample 𝑘 on the Markov chains is denoted as 𝜽𝑘 (𝑘 =

1,2, …𝑁𝑠). The initial states of the Markov chain samples are drawn from the search 

domain by using Latin hypercube sampling (LHS). The density function of each sample 

in the initial state can be computed as a prior density 𝑝(𝜽(1)
𝑘 ) for 𝑘 = 1,2, …𝑁𝑠. 

 

3.2.1 The improved transition strategy for the Markov samples 

 

In the DREAM algorithm the samples are updated by using the difference between 

randomly chosen pairs of samples in the current state. Let ∆𝜽
𝑘=𝜽(𝑠+1)

𝑘 − 𝜽(𝑠)
𝑘  denote 

the jumping scale between the updating state (s+1) and current state (s) of the sample k 

in the Markov chain. Here a new update pattern in which the sequence having the largest 

probability density in the current state (𝑠th  state) and the one with the maximum 

posterior PDF from the initial state (1st state) to the current state (𝑠th state) are used 

for the updating of the Markov chain samples: 
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   ∆𝜃
𝑘,𝑖 =  𝑤1

𝑘(𝜃𝑖
cbest − 𝜃(𝑠)

𝑘,𝑖) + 𝑤2
𝑘(𝜃𝑖

gbest
− 𝜃(𝑠)

𝑘,𝑖) + 𝛾(𝛿, 𝑁𝑑)[(𝑢𝑖 + 𝑒𝑖) 

(∑ 𝑤∗
𝑗
𝑘 (𝜃(𝑠)

𝑟1(𝑝),𝑖
− 𝜃(𝑠)

𝑟2(𝑝),𝑖
)𝑛

𝑝=1 )] + 𝜀𝑖,  i=1, … , 𝑁𝑑,      (3.1) 

 

where    ∆𝜃
𝑘,𝑖

 denotes the 𝑖th element of the jumping scale vector for 𝑘th sample, 

∆𝜽
𝑘 . 𝜃(𝑠)

𝑘,𝑖
 is the 𝑖th  element of the 𝑘th  posterior sample at the current state (𝑠th 

state), 𝜽(𝑠)
𝑘 .  𝜽cbest denotes the sample with the maximum PDF in the current state 

( 𝑠th  state) and is called the “current-best individual sample” (𝜃𝑖
cbest  is the 𝑖th 

element of the vector, 𝜽cbest), and 𝜽gbest denotes the sample with the maximum PDF 

during all the previous states (from the initial state (1st state) to the current state (𝑠th 

state)) and is called the “global-best individual sample” (𝜃𝑖
gbest

 is the 𝑖th element of 

the vector, 𝜽gbest ). 𝜽(𝑠)
𝑟1(𝑝)

 and 𝜽(𝑠)
𝑟2(𝑝)

 are randomly chosen pairs of samples but 

mutually different individuals in the current state (𝑠th  state) (totally n pairs). The 

weighting factors, 𝑤1
𝑘 , 𝑤2

𝑘  and 𝑤∗
𝑗
𝑘

, are obtained from the distance between the 

individual samples as follows: 

 

{
𝑤1

𝑘 = 𝑑1
𝑘/𝑑𝑠𝑢𝑚

𝑘  , 𝑤2
𝑘 = 𝑑2

𝑘/𝑑𝑠𝑢𝑚
𝑘 , 𝑤∗

𝑗
𝑘 = 𝑑𝑗

𝑘/𝑑𝑠𝑢𝑚
𝑘  

𝑑𝑠𝑢𝑚
𝑘 = 𝑑1

𝑘 + 𝑑2
𝑘 + ∑𝑗=1

𝛿 𝑑𝑗
𝑘

,         (3.2) 

 

where 𝑑1
𝑘 and 𝑑2

𝑘 are respectively the Euclidean distance from the sample 𝜽(𝑠)
𝑘  to 

the “current-best” sample 𝜽cbest , and the distance from the sample 𝜽(𝑠)
𝑘  to the 

“global-best” sample 𝜽gbest , and 𝑑𝑗
𝑘  is the Euclidean distance between randomly 

chosen sample pairs excluding the sample 𝜽(𝑠)
𝑘  in the Markov chain. From Eq. (2.12), 

one can see that the biggest difference of IDREAM from DREAM is that the posterior 

samples are updated using both the maximum PDF in the current state, 𝜽cbest, and that 

of the previous states, 𝜽gbest, while the updating samples of DREAM are orientated 

between the chosen pairs of samples only in the current state. IDREAM can enhance 
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the convergence speed especially in the early stage because the difference between the 

individual and the “best” sample is definitely large owing to the diversity of samples in 

the initial state. From Eq. (3.1), it is clear that samples farther away from the “best” 

sample possess a larger jumping scale because the weighting factor is positively 

proportional to the distance between the samples. As for the “best” sample, the update 

method is the same as in DREAM, i.e., Eq. (2.12). The convergence becomes slower in 

the later stages when the diversity of the samples in the Markov chain decreases. 

Because of this, a dynamic crossover strategy is used to keep the diversity of the 

Markov-chain samples high. 

 

3.2.2 The dynamic adaptation of the crossover probability 

 

The improved-DREAM (IDREAM) also explores the DE crossover strategy as in Eq. 

(2.11). To speed up convergence to the target distribution, the IDREAM estimates a 

distribution of crossover probabilities, which adapted dynamically during the burn-in 

period, favoring large jumps over smaller ones in each of the 𝑁𝑠 chains. A discrete 

number of candidate points for the crossover value is generated as 

{𝑚 𝑛𝐶𝑅⁄ |𝑚 = 1,2, … , 𝑛𝐶𝑅}, where 𝑛𝐶𝑅 denotes the number of samples chosen for the 

crossover strategy.  

To realize the adaptation of the crossover probability for each individual 𝐶𝑅 value in 

Eq. (2.11), the crossover probability is adapted as follows:  

Step 1: Set s=1, 𝐿𝑚=0, 𝑝𝑚 = 1 𝑛𝐶𝑅⁄ , 𝑚 = 1,2,… , 𝑛𝐶𝑅. 

Step 2: Sample m from the numbers 1,2, … , 𝑛𝐶𝑅 using the multinomial distribution. 

Set 𝐶𝑅=𝑚 𝑛𝐶𝑅⁄ , and 𝐿𝑚 = 𝐿𝑚 + 1; Create a candidate point 𝜽(𝑠+1)
𝑘  using Eqs. (3.1) 

and (2.11) with crossover probability 𝐶𝑅. 
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Step 3: Accept or reject the candidate Markov samples by the Metropolis acceptance. 

Step 4: Compute the squared normalized jumping distance as:  

 

∆𝑚= ∑ (𝜽(𝑠+1)
𝑘,𝑗

− 𝜽(𝑠)
𝑘,𝑗

)2 𝑟𝑗
2⁄

𝑁𝑑
𝑗=1 , j=1,2, … , 𝑁𝑑.          (3.3) 

 

where 𝑟𝑗 denotes the current standard deviation of dimension j of all the samples. 

Step 5: Update the probability of the different 𝐶𝑅 values as: 

 

𝑝𝑚 = 𝑠𝑁𝑠 ∙ (∆𝑚 𝐿𝑚⁄ )/∑ ∆𝑗
𝑛𝐶𝑅
𝑗=1 , m=1,2, … , 𝑛𝐶𝑅.           (3.4) 

 

Step 6: Set s=s+1. If s is in burn-in period, the crossover probability is adapted 

dynamically, otherwise is a predefined constant value. 

Therefore, to obtain an adaptive crossover probability, the parameter that required to be 

initially set is 𝑛𝐶𝑅. For instance, set 𝑛𝐶𝑅 = 3, the crossover probability 𝐶𝑅 will be 

equal to {1 3⁄ , 2 3⁄ , 1} , and the probability distributions 𝑝  for the crossover 

probability, 𝑝 = {𝑝𝑚|𝑝𝑚 = 𝑝(𝐶𝑅 = 1 𝑚⁄ ),𝑚 = 1,2, … , 𝑛𝐶𝑅} , will be obtained 

dynamically by Eqs. (3.3) and (3.4). 

 

3.2.3 The Metropolis acceptance 

 

The density of the new sample, 𝑝(𝜽(𝑠+1)
𝑘 ), and the Metropolis acceptance (Chib and 
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Greenberg, 1995; Haario et al., 2006) can be calculated with the updated samples in the 

Markov chain: 

 

α(𝜽(𝑠), 𝜽(𝑠+1)) =min [
𝑝(𝜽(𝑠+1))

𝑝(𝜽(𝑠))
, 1].                   (3.5) 

 

The algorithm accepts the candidate state 𝜽(𝑠+1) with probability α(𝜽(𝑠), 𝜽(𝑠+1)), and 

keeps the current state  𝜽(𝑠)  with probability 1 −α(𝜽(𝑠), 𝜽(𝑠+1)) . This process is 

repeated in several iterations, and after a burn-in period, the chain of samples 

approaches a stationary distribution. The desired posterior PDF can be obtained from 

these Markov-chain samples, excluding the ones in the burn-in period. 

 

3.2.4 Gelman-Rubin convergence condition 

 

The IDREAM algorithm ends by checking the Gelman-Rubin convergence condition 

(Gelman and Rubin 1992), and calculates the 𝑅̂𝑗-statistic by using the last 50% of the 

samples in each chain. Let k be the number of the sequences used to calculate 𝑅̂𝑗, and 

let B denote the variance between the 𝑁𝑠 chains, and W signify the average of the k 

within-chain variances (B=𝑁𝑠 ∑ (𝜽𝑖 − 𝜽̅)2𝑘
𝑖=1 /(𝑘 − 1), and W=

1

𝑘
∑ 𝒔𝑖

2𝑘
𝑖=1 , where 𝒔𝑖

2 is 

the variance of the samples, 𝒔𝑖
2 =

1

𝑁𝑠−1
∑ (𝜽𝑖 − 𝜽̅)2𝑁𝑠

𝑖=1 ). Each 𝑗th dimension of the 

Gelman-Rubin convergence diagnostics vector, 𝑹̂, can be calculated as: 

 



CHAPTER 3 Posterior Density Estimation for Structural Parameters using Improved Differential Evolution 

Adaptive Metropolis algorithm  

33 

 

𝑅̂𝑗=√
𝑁𝑠−1

𝑁𝑠
+

𝑘+1

𝑘𝑁𝑠

𝐵𝑗

𝑊𝑗
, 𝑗 = 1,… ,𝑁𝑑.             (3.6) 

 

If 𝑅̂𝑗 < 1.2 for all dimensions (Gelman et al. 2004), it means that the Markov chain 

has converged to a stationary distribution (with big number of chains, the multivariate 

matrix, 𝑹̂ , should converge less than 1.2 for each dimension of the parameter); 

otherwise, the posterior sample is updated with Eq. (3.1). 

 

3.2.5 Procedures of IDREAM based parametric posterior density estimation 

 

The procedure of IDREAM-based Bayesian probability inference parameter estimation 

is as: 

Procedure 1: The initial 𝑁𝑠  sequences for the Markov chain are drawn by Latin 

hypercube sampling with the predefined maximum and minimum boundary of 

structural parameters and the number of samples, 𝑁𝑠, while respecting the prescribed 

limits of the search space. Calculate the prior density and the likelihood function using 

Eq. (2.3).  

Procedure 2: Update the posterior sample using Eq. (3.1) and Eq. (3.2).  

Procedure 3: The samples are updated according to the crossover probability calculated 

with Eqs. (2.11) and (3.3)~(3.4). Calculate the density for the each updated sample in 

the Markov chain. 

Procedure 4: Use the Metropolis acceptance (Eq. (3.5)) to decide whether to accept the 

updated samples.  

Procedure 5: Considering the burn-in period and calculate the Gelman and Rubin 
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diagnostic using Eq. (3.6) for each dimension of the stochastic parameter. If the 

stopping criteria are met, (𝑅̂𝑗 < 1.2 or the iteration number reached to the predefined 

maximum iteration) stop the algorithm; otherwise, return to Procedure 2. 

The block diagram of the algorithm is shown in Fig. 3.1. 
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Figure 3.1 Block diagram of the IDREAM algorithm  
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3.2.6 The assertion of convergence of the IDREAM algorithm 

 

IDREAM yields a Markov chain, which is irreducible and aperiodic with unique 

stationary distribution with target distribution 𝑝(∙)𝑁𝑠. Proof: the assertion consist of 

two parts as: 

1. Markov chains are updated sequentially and conditionally on the other chains. It is 

thus an 𝑁𝑠 -component Metropolis-within-Gibbs algorithm that defines a single 

Markov chain on the state space. The conditional distribution of each sample is 𝑝(∙).  

If the sample of kth chain coincides with the position of the global-best and the current-

best individual, 𝑝(∙) is a stationary distribution of the kth chain, because the chain is 

reversible. The reason for this is that the jumps in each MC sample chain satisfy detailed 

balance with respect to π(∙) at each step. For the kth chain, the conditional probability 

to jump from 𝜽(𝑠)
𝑘  to 𝜽(𝑠+1)

𝑘 , which owns the conditional probability, 𝑝(𝜽(𝑠)
𝑘 →

𝜽(𝑠+1)
𝑘 ) , being equal to the reverse jump, 𝑝(𝜽(𝑠+1)

𝑘 → 𝜽(𝑠)
𝑘 ) . This is because the 

distribution of 𝒆𝑑  and 𝜺  is symmetric and the pair (𝜽(𝑠)
𝑟1 , 𝜽(𝑠)

𝑟2 ) is as likely as 

(𝜽(𝑠)
𝑟2 ,  𝜽(𝑠)

𝑟1 ). If 𝜽(𝑠+1)
𝑘 ~𝑝(∙) , then the detailed balance is achieved point wise by 

accepting the proposal with probability min(𝑝(𝜽(𝑠+1)
𝑘 ) 𝑝(𝜽(𝑠)

𝑘 )⁄ , 1).  

For the individuals who are different from the “best” sample in current state, s, the 

distance and the corresponding weighting factor reduced fast with the convergence of 

the populations in the later stages (especially following a sufficient burn-in period). The 

deviations (random walk) of the randomly chosen sample pairs mainly decides the 

transition of each chain. The 𝑁𝑠 − 1 samples can been seen as updated conditionally 

on the other chains obeying the reversibility of the Markov chain, because the Jacobian 

of the transformation (Chauveau and Vandekerkhove, 2002; Hastie and Green, 2012) 

implied in Eq. (3.6) is close to 1 in absolute value, (Vrugt et al. 2009), and the first two 
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items of Eq. (3.1) plays limited role on the transition Markov chains during the later 

stages (Noted that: the 𝜽cbest is equal to the 𝜽gbest in the later stage).  

2. Detailed balance can be achieved by the accepting rule with probability 

min(𝑝(𝜽(𝑠+1)) 𝑝(𝜽(𝑠))⁄ , 1). Because the joint stationary probability distribution of the 

𝑁𝑠 chains factorizes to 𝑝(𝜽1, … , 𝜽𝑁𝑠)= 𝑝(𝜽1)𝑝(𝜽2)…𝑝(𝜽𝑁𝑠), each of the 𝑁𝑠 chains 

are independent at any generation after the algorithm has become independent of its 

initial value after the burn-in period. And each chain maintains conditional detailed 

balance, because the chains are aperiodic and not transient with a random walk that 

generated by the Eq.(3.1). With the unbounded support of the distribution of 𝜺 in 

Eq.(3.1), the 𝑁𝑠 chains are irreducible. This thus concludes the assertion. 

 

3.3 Numerical Simulation 

3.3.1 Linear structural system 

 

A numerical simulation of a 5-DOF linear time invariant (LTI) system was carried out 

to verify the IDREAM algorithm. The actual system output was simulated from a linear 

structural system (shear frame structure), as is shown in Fig.3.2. For sake of clearly 

exhibiting that only the measurement uncertainty is considered, the second-order 

differential dynamic equation of the structural system is described by the state-space 

representation as: 

 

[
𝒗̇1(𝑡)
𝒗̇2(𝑡)

] = [
𝟎 𝐈

−𝑴−1𝑲 −𝑴−1𝑪
] [

𝒗1(𝑡)
𝒗2(𝑡)

] + [
𝟎
−𝐈

] 𝚪𝑇𝒖(𝑡),           (3.7) 

 

where M, C, and K are the mass, damping and the stiffness matrices, I is a 𝑁𝑑 × 𝑁𝑑 
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identity matrix, 𝚪 = [1,1, … ,1]𝑇  is a 1 × 𝑁𝑑  position vector (𝑁𝑑 = 5). 𝒗1(𝑡), and 

𝒗2(𝑡), are state space vectors respectively representing the vector of displacement and 

velocity, and 𝒖(𝑡)  is the input ground acceleration of the system. Equation (3.7) 

includes a Rayleigh damping matrix C, where modal damping ratio (𝛇) is set as 5% for 

the first two modes (Mita, 2003). 

 

 

Figure 3.2 5-DOF LTI structural system 

 

𝑪 = 𝛼𝑴 + 𝛽𝑲                       (3.8) 

 

𝛼 = 2𝜔𝑖𝜔𝑗(𝜁𝑖𝜔𝑖 − 𝜁𝑗𝜔𝑗) (𝜔𝑖
2 − 𝜔𝑗

2)⁄ ; 𝛽 = 2 (𝜁𝑖𝜔𝑖 − 𝜁𝑗𝜔𝑗) (𝜔𝑖
2 − 𝜔𝑗

2)⁄   (3.9) 
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where 𝑖=1 and 𝑗=2 respectively denotes the first two mode; 𝜔𝑖 and 𝜔𝑗 thus denotes 

the natural frequency for the first and second mode of the system. The system output is 

an relative acceleration value that is assumed to be contaminated by Gaussian white 

noise 𝒘𝑗(t)~N(0, 𝜎𝑗
2), (j=1,..𝑁𝑚). The measured output vector is written as 

 

𝒚(𝑡) = [−𝑴−1𝑲 −𝑴−1𝑪] [
𝒗1(𝑡)
𝒗2(𝑡)

] − 𝚪𝑇 ∙ 𝒖(𝑡) + 𝒘(t).      (3.10) 

 

The ground acceleration was an the 1940 El Centro ground motion (N-S acceleration at 

the Imperial Valley Irrigation District substation in El Centro, CA, during the 1940 

Imperial Valley earthquake) lasting 40 s normalized so that its peak is 10 cm/s2 and the 

sampling frequency was 50 Hz (Fig. 3.3). The Newmark-beta method was used to 

calculate the structural response. The output relative acceleration (acc.) with different 

Gaussian white noise levels (Eq. (3.10)) was assumed. To show the effectiveness of the 

proposed method for identification problem with large noise level, the noise level (𝑛𝑙) 

was chosen to have a standard deviation that is 30% or 100% of the corresponding 

signal; i.e., if 𝜎𝑎𝑐𝑐.,𝑗 is the standard deviation of the 𝑗th relative acceleration, then the 

noise on the measurement of that floor’s acceleration has an RMS 𝜎𝑗 = 𝑛𝑙 × 𝜎𝑎𝑐𝑐.,𝑗 

(j=1,..𝑁𝑚). The measurement of the 5th DOF without and with the 100% noise is shown 

in Fig. 3.3.  

The influence of the limited availability of measurements on the proposed method is 

also assessed in this study. In the “full output” scenario, measurements of all DOFs are 

available, whereas in the “partial output” scenario, only data from floors 3 and 5 are 

available. The mass is assumed to be known and deterministic; hence, a 𝑁𝑑 -DOF 

system with 𝑁𝑚-available measurements can be described by a model set, of which the 

stochastic parameterized vector for each model is 
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𝜽={𝑘1, … , 𝑘𝑁𝑑
, ζ1, ζ2, 𝜎1, … , 𝜎𝑁𝑚

}                (3.11) 

 

where 𝑘𝑖 denotes the stiffness of the ith floor, 𝑁𝑑 is the number of structural DOFs; 

ζ1 and ζ2 denotes the damping ratio of the first two modes; 𝜎𝑖 denotes the standard 

deviation of ith measurement noise, 𝑁𝑚 is the number of available measurements; 𝜽 

denotes the random variables in probability space, 𝛀𝜽. 

 

 

Figure 3.3 Input and output without and with noise 

 

Table 3.1 lists the structural properties together with the simulated variance of the 

prediction-error for each available measured response. The parametric dimension was 

12 for the full output scenario, and 9 corresponding to the partial output scenario. 

The parameters of the IDREAM algorithm were set as follows: the number of Markov 

chain samples (𝑁𝑠) was 20, the crossover probability (𝐶𝑅) was 0.85, and the number of 
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sample pairs (𝛿) was 5. The maximum iteration was set as 4000. The search domain 

was taken as 0.5−2.0 times the exact values. The prior distribution obeys uniform 

distribution in the search boundary. The results obtained by the original DREAM 

algorithm are shown for comparison in the full output scenario (Tables 3.2 and 3.3) and 

partial output scenario (Tables 3.4 and 3.5). 

 

Table 3.1 Structural properties and the prediction-error variances 

Stiffness (𝑘) (104N/m)  

( 𝜎𝑗 ; 

j=1,..𝑁𝑚) 

𝑚 𝑠2⁄  

30% 

noise 
100% noise 

Floor  1 2.000 

C
as

e 
1

 

Floor 1 0.0049 0.0162 

Floors  2-5 1.000 Floor 2 0.0074 0.0248 

Mass (𝑚) (kg) Floor 3 0.0076 0.0252 

Floors 1-4 50 Floor 4 0.0077 0.0256 

Floor  5 45 Floor 5 0.0095 0.0317 

Damping ratio  

C
as

e 
2

    

ζ1 0.05 Floor 3 0.0076 0.0252 

ζ2 0.05 Floor 5 0.0095 0.0317 

 

From Tables 3.2 and 3.3, it is clear that both algorithms performed very well in the 

noise-free scenario. With the increasing magnitude of the measured noise the relative 

error of the identified solutions are also not large. The maximum relative error for the 

most plausible value of structural stiffness, the sample with the maximum posterior 

density (𝜽MAP), ranged from zero in the no-noise case to 0.502% in the 30% noise case 

and up to 1.987% in the 100% noise case when using the DREAM algorithm. 
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Table 3.2 Identified results of structural parameters (full output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝑘1 
 error 0.000 0.000  0.352 0.164  0.656  0.250 

cov. 0.000 0.000  0.906 0.533  3.263  1.641 

𝑘2 
 error 0.000 0.000  0.324 0.242  1.558  0.114 

cov. 0.000 0.000  0.683 0.399  2.462  1.286 

𝑘3 
 error 0.000 0.000  0.298 0.353  1.987  0.198 

cov. 0.000 0.000  0.812 0.459  2.946  1.474 

𝑘4 
 error 0.000 0.000  0.172 0.045  0.658  0.717 

cov. 0.000 0.000  0.813 0.465  2.789  1.564 

𝑘5 
 error 0.000 0.000  0.502 0.299  1.155  1.083 

cov. 0.000 0.000  0.937 0.530  3.227  1.835 

ζ1 
 error 0.000 0.000  1.307 0.813  3.442  2.035 

cov. 0.000 0.000  1.591 0.871  5.545  2.946 

ζ2 
 error 0.000 0.000  0.887 1.217  1.677  0.499 

cov. 0.000 0.000  1.158 0.635  3.951  2.095 

* the error in the table is in %; the cov. in the table is in %. 

 

The accuracy of 𝜽MAP  for IDREAM is mostly better than that of the DREAM 

algorithm. The maximum relative error fell to 0.353% in the 30% noise case and 

1.083% in the 100% noise case. The parameter with the largest uncertainty obtained by 

the two algorithms was in the damping ratio. The largest coefficient of variance (cov., 

calculated by the standard deviation of the posterior samples divided by the mean value 

of the posterior samples, 100 × 𝜎(𝜽) 𝜇(𝜽)⁄ ) of the damping ratio was 1.591% in the 

30% noise case, and it increased to 5.545% in the 100% noise case for the DREAM 
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algorithm. For IDREAM, the coefficient of variance (cov.) of the damping ratio ranged 

from 0.871% to 2.946%. 

 

Table 3.3 Identified results of prediction errors (full output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝜎1 
 error  0.000  0.000 0.967 0.080 2.060 0.204 

cov.  0.000  0.000 0.136 0.082 0.172 0.055 

𝜎2 
 error  0.000  0.000 0.966 0.034 0.725 2.562 

cov.  0.000  0.000 0.074 0.042 0.183 0.043 

𝜎3 
 error  0.000  0.000 0.445 0.731 2.341 0.678 

cov.  0.000  0.000 0.088 0.051 0.084 0.032 

𝜎4 
 error  0.000  0.000 0.185 1.879 1.302 1.128 

cov.  0.000  0.000 0.075 0.049 0.070 0.042 

𝜎5 
 error  0.000  0.000 1.108 1.741 2.237 0.128 

cov.  0.000  0.000 0.096 0.022 0.111 0.048 

* the error in the table is in %; the cov. in the table is in %. 

 

It is clear that the parametric uncertainty was additive as the measurement error 

increased. Table 3.3 shows that the two algorithms can identify the exact value of the 

prediction-error variance in Table 3.1. In the noise free scenario, both solutions were as 

small as zero. For the 100% noise case, the maximum error emerged in the 3rd floor at 

2.341% for DREAM and at 2.562% for IDREAM. The results for the partial output are 

listed in Tables 3.4 ~3.5. 
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Table 3.4 Identified results of structural parameters (partial output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝑘1 
error 0.019 0.010 1.404 1.501  2.227 2.546 

cov. 0.000 0.000 4.267 2.606  16.58 7.761 

𝑘2 
error 0.082 0.025 1.025 0.794  4.372 1.450 

cov. 0.000 0.000 2.216 1.351  10.33 4.584 

𝑘3 
error 0.072 0.018 1.855 0.196  5.602 0.725 

cov. 0.000 0.000 2.710 1.530  12.69 5.538 

𝑘4 
error 0.089 0.014 1.041 0.511  2.722 2.376 

cov. 0.000 0.000 2.145 1.222  8.633 4.224 

𝑘5 
error 0.106 0.028 1.233 1.189  0.859 4.485 

cov. 0.000 0.000 2.243 1.358  12.32 4.171 

ζ1 
error 0.050 0.030 1.066 0.406  1.667 5.214 

cov. 0.000 0.000 2.110 1.179  6.774 4.024 

ζ2 
error 0.016 0.006 1.564 1.067  0.273 0.972 

cov. 0.000 0.000 2.142 1.258  7.930 4.020 

* the error in the table is in %; the cov. in the table is in %. 

 

From Table 3.4, we find that when there is a noise error, the maximum relative errors 

of 𝜽MAP are mostly smaller for IDREAM than for DREAM. In the 30% noise case, 

the maximum relative error for DREAM was 1.855%, but only 1.501% for IDREAM, 

while in the 100% noise case, the maximum error decreased from 5.602% to 5.214%. 

Comparing Table 3.4 with Table 3.2, it is clear that the loss of available measurements 

leads to an increase in parametric uncertainty, because the maximum coefficient of 

variance for the structural parameters adds from 2.946% to 7.761% at the same noise 
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level. 

 

Table 3.5 Identified results of prediction errors (partial output scenario) 

 no noise 30% noise 100% noise 

 DREAM IDREAM DREAM IDREAM DREAM IDREAM 

𝜎3 
error  0.000  0.000  0.950  2.406  2.675  0.669 

cov.  0.000  0.000  0.145  0.114  0.207  0.089 

𝜎5 
error  0.000  0.000  1.240  0.982  0.490  0.557 

cov.  0.000  0.000  0.096  0.094  0.116  0.091 

* the error in the table is in %; the cov. in the table is in %. 

 

Table 3.5 shows that the actual prediction error standard deviation can be well estimated 

even if only measurements of the 3rd and 5th floors are available. The maximum error 

of the estimated prediction errors, 𝜽MAP, is 2.406% in the 30% noise case and 0.669% 

in the 100% noise case. For the DREAM algorithm, the corresponding errors are 

1.240% in the 30% noise case and 2.675% in the 100% noise case. (Noted that the 

maximum error of the estimator prediction errors seems larger for 30% noise than for 

100% noise scenario. The reason for this phenomenon is the denominator for 

calculating the relative error in the case of 30% noise is smaller than that in the case of 

100% noise.) 
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(a) DREAM 

 

 

(b) IDREAM 

Figure 3.4 Identification progress for stiffness of 5th floor (partial output, 100% noise) 
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(a) DREAM 

 

 

(b) IDREAM 
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(c) DREAM 

 

 

(d) IDREAM 

Figure 3.5 Convergence of Markov Chain (100% noise, partial output) 
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Figure 3.6 Histogram for each parameter (100% noise, partial output) 
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(a) Response range considering the identified parametric uncertainty 

 

 

(b) Response range considering the identified prediction error 

Figure 3.7 95% uncertainty ranges for acceleration of 5th DOF (100% noise, partial 

output) 

 

Figure 3.4 shows the progress of identification of the stiffness of the 5th floor at the 
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100% noise level in the partial output scenario. In Fig. 3.4, each line with different color 

marks denotes the progress of a Markov chain, which means there are 20 posterior MC 

samples at each iteration. We can see that the posterior samples of the Markov chain 

obtained by the proposed IDREAM were more stable than those of DREAM, which 

leads to a smaller uncertain range. 

Figures 3.5 indicates that the Markov chain converged for each identified parameter 

when using DREAM and IDREAM in the scenario of partial outputs and 100% noise. 

Comparing Fig. 3.5 (a) with Fig. 3.5 (b) and Fig. 3.5 (c) with Fig. 3.5 (d), however, 

makes it clear that IDREAM already converged by the time 4000 iterations were 

reached, but the Markov chains of DREAM were still unstable. Therefore, IDREAM 

converged faster than DREAM.  

Combing the solutions in Tables 3.2~3.5, we can conclude that IDREAM outperformed 

DREAM because of its earlier convergence and robustness of the posterior samples 

without decreasing the accuracy of the results. The marginal posterior density of the 

parameters using IDREAM can be obtained by using kernel density estimation on the 

stationary Markov chain samples excluding the sequence during the burn-in period, as 

is shown in Fig. 3.6.The posterior uncertain range that assures a reliability of 95% can 

be obtained from the posterior samples of the model class which denotes the plausibility 

of each I/O system. 

Figure 3.7 shows the ranges for part of time history (5 seconds). Figure 3.7 (a) is the 

uncertain response range of a stochastic I/O system parameterized by identified 

parameters of the posterior candidate model set with 95% assurance at each time 

interval considering only the parametric uncertainty. On the other hand, Fig. 3.7 (b) 

shows the uncertain range of the response with 95% assurance at each time interval 

considering the measurement error by incorporating the identified standard deviation 

of the prediction error. Figure 3.7(a) illustrates the effectiveness of the Bayesian 



CHAPTER 3 Posterior Density Estimation for Structural Parameters using Improved Differential Evolution 

Adaptive Metropolis algorithm  

52 

 

identification method because the parametric uncertain response range is close to the 

actual system response. Moreover, in Fig. 3.7(b), the percentage of the response 

considering a 100% measurement error within the uncertain range that considers 

prediction error is 94.75%. 

 

3.3.2  2-DOFs of a Nonlinear Hysteretic System 

 

In this section, a two degrees freedom (DOF) system of hysteretic Bouc-Wen model is 

considered to verify the effectiveness of the IDREAM based Bayesian inference, as is 

shown in Fig. 3.8. The dynamic equation for the nonlinear structural system can be 

written as 

 

𝑴𝒚̈(𝑡) + 𝑪𝒚̇(𝑡) + 𝒇(𝑡) = 𝒖(𝑡),                  (3.12) 

 

where 𝒚̈(𝑡), 𝒚̇(𝑡) and 𝒚(t) are the acceleration, velocity and displacement; 𝒖(𝑡) is 

the external excitation, and 𝒇(𝑡) = (𝑓1 − 𝑓2, 𝑓2)
𝑇 is the restoring force; M, C and are 

the mass, damping matrices, respectively. The restoring force of the nonlinear system 

can be described as 

 

𝑓1̇(𝑡) = 𝑘1𝑦̇1(𝑡) − 𝛼1|𝑦̇1(𝑡)||𝑓1(𝑡)|
𝑛1−1𝑓1(𝑡) − 𝛽1𝑦̇1(𝑡)|𝑓1(𝑡)|

𝑛1,    (3.13) 

 

𝑓̇2(𝑡)  = 𝑘2(𝑦̇2(𝑡) − 𝑦̇1(𝑡)) − 𝛼2|𝑦̇2(𝑡) − 𝑦̇1(𝑡)||𝑓2(𝑡)|
𝑛2−1𝑓2(𝑡) 

− 𝛽2(𝑦̇2(𝑡) − 𝑦̇1(𝑡))|𝑓2(𝑡)|
𝑛2,              (3.14) 
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Figure 3.8 Bouc-Wen model 

 

where 𝛼𝑖, 𝛽𝑖 and 𝑛𝑖 (𝑖 = 1,2) are dimensionless quantities controlling the behavior 

of the hysteretic model. If the positive exponential parameter 𝑛𝑖 is small, the transition 

from the elastic to the post-elastic branch is smooth, whereas for large 𝑛𝑖 the transition 

becomes abrupt, approaching that of a bilinear model. Parameters 𝛼𝑖 and 𝛽𝑖 control 

the size and shape of the hysteretic loop. A simple 4th-order Runge-Kutta method is 

utilized to obtain the simulated response of the nonlinear dynamic equation of (3.12).  

The properties of each story unit are: m1 =1 kg, k1 = 30 N/m, c1 = 0.55 Ns/m, α1 = 1, β1 

= 2, n1 = 3, m2 = 0.8 kg, k2 = 24 N/m, c2 = 0.5 Ns/m, α2 = 2, β2 = 1, n2 = 2. The excitation 

is assumed to be a known force (Niigata earthquake, Oct. 23, 2004) as is shown in 

Fig.3.9 and the sample frequency is 100Hz (Xue et al., 2009). The response of the 
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structure, in terms of acceleration, is recorded at some given points. The nonlinear 

prosperity of the simulated system is presented in Fig. 3.10.  

 

 

Figure 3.9 The Input excitation (Niigata 2004, NS) 

 

The influence of the limited availability of measurements on the performance of the 

IDREAM for Bayesian inference is also discussed in this section. The following cases 

of available measurements will be treated as: 

Case 1: A full set of accelerations is available. 

 

𝒀𝑀(𝑡) = (𝒚̈1(𝑡), 𝒚̈2(𝑡)).                      (3.15) 

 

Case 2: A partial set of accelerations is available. 

 

𝒀𝑀(𝑡) = 𝒚̈2(𝑡).                            (3.16) 

 

The mass of the structure is supposed to be known a priori. Therefore, the system is 

fully described by the set of stochastic variables: 
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𝜽 = (𝑘1, 𝑘2, 𝑐1, 𝑐2, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑛1, 𝑛2).              (3.17) 

 

 

Figure 3.10 Nonlinear prosperity of the actual system 

 

The output response is polluted (in the cases considering noise) with Gaussian, zero 

mean, white-noise sequences, whose root mean square (RMS) value is adjusted to a 

certain percentage of the unpolluted time histories.  

 

Table 3.6 Identified results for structural parameters 
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full outputs scenario  partial outputs scenario 

no noise 5% noise 10% noise  no noise 5% noise 10% noise 

𝑘1 
 error 0.000 0.254 0.371  0.000 0.302 0.785 

cov. 0.000 0.275 0.560  0.000 0.485 0.925 

𝑘2 
 error 0.000 0.062 0.457  0.000 0.241 0.563 

cov. 0.000 0.180 0.385  0.000 0.265 0.558 

𝑐1 
 error 0.000 0.909 1.397  0.000 1.789 4.610 

cov. 0.000 0.897 1.772  0.000 1.990 3.792 

𝑐2 
 error 0.000 0.288 1.410  0.000 0.273 1.488 

cov. 0.000 1.062 2.209  0.000 1.787 3.279 

𝛼1 
 error 0.000 0.433 1.965  0.000 1.075 2.846 

cov. 0.000 6.573 13.35  0.000 8.499 17.72 

𝛼2 
 error 0.000 1.126 2.810  0.000 1.369 5.722 

cov. 0.000 7.656 15.06  0.000 11.15 17.89 

𝛽1 
 error 0.000 0. 260 0.517  0.000 1.112 2.410 

cov. 0.000 6.622 13.49  0.000 9.248 18.97 

𝛽2 
 error 0.000 3.187 4.192  0.000 3.899 7.568 

cov. 0.000 8.366 18.16  0.000 11.73 23.12 

𝑛1 
 error 0.000 0.162 2.940  0.000 3.602 4.861 

cov. 0.000 1.883 3.918  0.000 2.541 5.471 

𝑛2 
 error 0.000 0.295 1.435  0.000 1.050 3.314 

cov. 0.000 3.011 6.302  0.000 4.209 7.825 

* the error in the table is in %; the cov. in the table is in %. 

 

The parameters of the IDREAM algorithm were set as follows: the number of Markov 

chain samples (𝑁𝑠) was 50, the crossover probability (𝐶𝑅) was 0.85, and the number of 
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sample pairs (𝛿) was 5. The identified results for the clean signals and output signals 

corrupted with 5% and 10% RMS noise are summarized in Table 3.6 corresponding 

with full outputs scenario and partial outputs scenario. 

Seen from Table 3.6, it can been concluded that the IDREAM algorithm can be 

successfully applied in the Bayesian inference for structural parameters. The structural 

parameters, such as stiffness and damping, can be relatively inferred by the MAP 

estimator. In no noise cases, the maximum relative error of the MAP estimator is close 

to zero both in full outputs and partial outputs scenarios. 

 

 

Figure 3.11 The Gelman convergence of the MC chains (10% noise, partial outputs) 
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 Figure 3.12 Histograms for the identified parameters (5% noise, full outputs) 
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Figure 3.13 The convergence of individual parameters (10% noise, partial outputs) 

 

The maximum relative error of the MAP estimator for structural parameters increased 
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to 1.062% in 5% noise case and to 2.209% in 10% noise case corresponding with the 

full outputs scenario; and the maximum relative error of the MAP for structural 

parameters added to 1.789% in 5% noise case and to 4.610% in the 10% noise case 

corresponding with the partial outputs scenario. 

The relative error for the Bouc-Wen model parameters, such as 𝛼, 𝛽, and 𝑛, is relatively 

larger than the error of the identified MAP estimator for the structural parameters, such 

as the stiffness, 𝑘, and damping, 𝑐. The maximum relative error for the identified MAP 

estimator for model parameters is 3.187% and 3.899% in 5% noise case and adds to 

4.192% and 7.568% in 10% noise case corresponding with full outputs and partial 

outputs scenario respectively. The Gelman convergence condition of the MC chains for 

each parameters is shown in Fig. 3.11. And the histogram for the identified stochastic 

parameters in 5% noise and full outputs case is presented in Fig.3.12. The convergence 

of the posterior samples for each parameters in the 10% noise and partial output 

scenario is shown in Fig.3.13. 

 

3.4 Conclusions 

 

A framework of Bayesian probability inference for identification based on an improved 

differential evolution adaptive Metropolis-Hasting (IDREAM) algorithm was proposed. 

Compared with the DREAM algorithm, its novelty lies in a new sample updating 

pattern that speeds convergence and improves the stability of the posterior samples. 

IDREAM runs the MCMC simulations in parallel and keeps the diversity of samples 

by using a DE crossover strategy. This gives it a strong ability to search for the global 

optimum and to resolve the problem that the MH algorithm has in choosing an 

approximate jump scale. A numerical simulation of a 5-DOF linear system and a 
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simulation of identification for a 2-DOF nonlinear system demonstrated its potential for 

solving identification problems with a high noise level and with partial outputs data. In 

conclusion, IDREAM is a new approach to obtaining the posterior density of a model 

class that cannot be easily found with the classic Monte-Carlo method due to the 

difficulty in calculating high-dimensional integrals. 
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4 An Improved Bayesian Structural 

Identification Using the First-Two 

Derivative of Log-Likelihood Measure 

 

 

 

4.1 Introduction 

 

In this section, the purpose is to solve the “equifinality” problem of the uncertainty 

estimation for structural system (Beven, 2006). The main contribution of the study lies 

in the accuracy-improving of the estimator. A new objective function using the first two 

derivation of log-likelihood measure is proposed for the Bayesian inference.  

The difficulty of Bayesian estimation lies in the efficiency in the convergence of 

posterior samples in the Markov chain to the acceptable model set. Because of the noise 

corrupted measurement, the surface of the prediction error lies in a hyper-surface of a 

multi-dimensional parametric space. It will cause the surface of the probability density 

for the posterior sequences to have multiple regions of attraction and numerous local 

optima. It thus inevitably yields a biased estimator (maximum a posteriori estimator, 

MAP). This problem is defined as the “equifinality” (Schulz et al., 1999). To detail it, 
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the surfaces of the prediction error using formal likelihood measures are studied.  

To solve this problem, the bias between the MAP estimator and the true value are 

deduced by the Taylor expansion. It’s found that the gradient and Hessian matrix of the 

likelihood measure can bridge the biased estimator and the true value, which is thus 

proposed to improve the accuracy of the posterior samples. The identification problem 

is therefore proposed as a two-step strategy. In the first step, the MAP estimator is 

obtained by the formal Bayesian likelihood measures using the differential evolution 

adaptive Metropolis-Hasting (DREAM) algorithm. The second step starts with the 

convergence of the Markov chains for each parametric dimension, where a new fitness 

function is proposed under the framework of the generalized likelihood uncertainty 

estimation (GLUE) (Stedinger et al. 2008; Freni et al., 2008). Numerical examples of a 

linear structural system are presented, with which the effectiveness and efficiency of 

the proposed method are investigated. Moreover, the proposed method is verified in the 

identification of a full-scale experiment named as “E-Defense” to show the potential of 

its application. 

 

4.2 Problem of “Equifinality” 

4.2.1 Least squares (LS) estimator (the deterministic inverse problem) 

 

Let 𝒀𝑀(𝑡) denote the measured response at each time interval (𝑡 = 1,… ,𝑁𝑡 ) and 

𝒀̂(𝒙̂, t) denotes the output of candidate models. The difference between the measured 

response and model outputs is defined as the residual error: 𝑬𝑗(𝒙̂, 𝑡)= 𝒀𝑗
𝑀(𝑡) − 𝒀̂𝑗(𝒙̂, 𝑡), 

where j=1,…, 𝑁𝑚, and 𝑁𝑚 is the number of measured outputs. The common measure 

for the inverse problem is to attempt to force the residual vector as close to zero as 

possible by tuning the model parameter vector, 𝒙̂. Thus the fitness measure can be 

defined: 
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𝐿𝑆(𝒙̂) = −
1

𝑁𝑚𝑁𝑡
∑ ∑ ‖𝑬𝑗(𝒙̂, 𝑡)‖

2𝑁𝑡
𝑡=1

𝑁𝑚
𝑗=1 ,   𝒙̂∗= argmax(𝐿𝑆(𝒙̂)).     (4.1) 

 

This is an 𝑁𝑑-dimensional optimization issue which maximizes the likelihood measure 

of SSR (equivalent to minimize the measure of Least-Squares (LS) formulation), 𝑁𝑑 

is the parametric dimension of the identification problem. But such measure can only 

provide an estimate of optimal value of 𝒙̂∗, which usually is a biased estimator when 

considering the measurement or model error. 

If we need to quantify the uncertainty of the measurement error or the model error, it 

would be a desire to estimate the posterior PDF of parameter, 𝑝(𝜽|𝒀𝑀(𝑡),𝓜), which 

is under the framework of Bayesian probabilistic estimation. 

 

4.2.2 Bayesian estimate using formal log-likelihood (LL) measures 

 

From Eqs. (2.1)~(2.3) in Section 2, it can be found that the Bayesian estimate mostly 

relies on the definition of the likelihood measure, 𝑝(𝒀𝑀(𝑡)|𝜽,𝓜) . It is more 

convenient to use the logarithm of the likelihood measures (𝐿(𝒀𝑀(𝑡)|𝜽)) as 

 

𝐿(𝒀𝑀(𝑡)|𝜽) = −
𝑁𝑡

2
𝑙𝑛(2𝜋) −

𝑁𝑡

2
∑ 𝑙𝑛(𝜎𝑗

2)
𝑁𝑚
𝑗=1 −

1

2
∑ 𝜎

𝑁𝑚
𝑗=1 𝑗

−2
∑ (𝒀𝑗

𝑀(𝑡) − 𝒀̂𝑗(𝜽, 𝑡))2𝑁𝑡
𝑡=1 ,     

(4.2) 

 

where 𝑡 = 1,… ,𝑁𝑡; and j=1,…, 𝑁𝑚, 𝑁𝑚 is the number of measured response and 𝑁𝑡 

is the length of the time history; 𝒀̂(𝜽, 𝑡) denotes the stochastic response of the each 

stochastic model and 𝜽  denotes a 𝑁𝑠 × 𝑁𝑑  matrix of the stochastic structural 

parameters that required to be identified. 𝑁𝑠  denotes the stochastic samples or the 
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number parameterized probability models in the random model set, 𝓜. 

In the framework of Bayesian identification, either the log-likelihood measure, as is in 

Eq.(4.2), or the least square measure, as is in Eq.(4.1), obeys the rule of “goodness-of-

fit”. This is because only the model with high probabilistic value of likelihood in the 

MH method will be accepted. 

 

4.2.3 The surface of the likelihood measures 

 

To illustrate the problem of “equifinality” in Bayesian inference, the surfaces of the 

common-used log-likelihood measure, as is in Eq. (4.2), are studied using an example 

of a 2-DOF linear dynamic system. The state space of the system is written as the Eq. 

(3.7). The system output is an acceleration which assumed to be contaminated by 

Gaussian white noise. The measured output vector is simulated as the Eq.(3.9). The 

mass, stiffness of each DOFs is defined as 100kg, and 1000N/m. Rayleigh damping C 

(Mita, 2003), where first two modal damping ratio (ζ𝑟) is set as 5% is considered for 

the simulation of linear example. The parametric domain is meshed by 5% deviation of 

the true value. The output acceleration (acc.) with different noise levels (Eq. (3.9)) was 

used, in which the noise level was denoted as 𝑛𝑙. The standard deviation of the 𝑗th 

measurement noise is equal to 𝜎𝑗 = 𝑛𝑙 × 𝜎𝑎𝑐𝑐.,𝑗 (where 𝜎𝑎𝑐𝑐.,𝑗 denotes the standard 

deviation of the 𝑗th relative acceleration, 𝑗 = 1,2). The Contour-plot of the likelihood 

measure, as is in Eq. (4.2), in the scenarios of noise-free and different noise-level 

scenarios are exhibited in Fig 4.1.  



CHAPTER 4 An improved Bayesian Structural Identification Using the First-Two Derivative 

of Log-Likelihood Measure 

66 

 

a. (no noise):  

  

b. (30% noise): 

 

c. (100% noise): 

 
Figure 4.1 Contour plot of the likelihood measures  

(“∘” denotes the true value; “∗” denotes the MAP estimator) 
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From Fig.4.1, it can be found that only under the ideal scenario that the measurement 

error is ignored the MAP estimator will be unbiased (the blue marked “∗” coincides 

with the red mark “∘”); however, if taking the noise into account, the sample with 

maximum posterior PDF deviates from the true value. And the deviation enlarges with 

the increasing of the noise level. The reason to illustrate this phenomenon is that around 

the neighborhoods of the optimal solution (the MAP estimator), there are many local 

optimums, which means there are several possible models that can also give high values 

of likelihood (high probability) around the neighborhood of the MAP estimator. This 

will cause the “equifinality” problem (Zak and Beven, 1999) of the Bayesian inference 

method using the formal likelihood measure, in which it may underestimate or 

overestimate the uncertain intervals of the posterior samples. 

 

4.3 The proposed accuracy-improving method 

4.3.1 The first-two deviation of the likelihood measure 

 

It can conclude that when considering the measurement error the common likelihood 

measures as in Eqs. (4.1) and (4.2) are weak to solve the problem of “equifinality”. The 

bias of the estimator will increase with the adding number the parametric dimensions 

and the noise level. It is thus necessary to improve the identified MAP estimator. With 

Taylor’s expansion, the formal likelihood measure can be deduced as: 

 

𝐿(𝜽|𝒀𝑀(𝑡)) = 𝐿(𝜽𝒐|𝒀
𝑀(𝑡)) + 𝑳′(𝜽𝒐|𝒀

𝑀(𝑡))∆𝜽𝑻 +
𝟏

𝟐
∆𝜽𝑳′′(𝜽𝒐|𝒀

𝑀(𝑡))∆𝜽𝑻 +

𝒐((∆𝜽)𝟑),       (4.3) 
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where the ∆𝜽  denotes 𝜽 − 𝜽𝑜 , and 𝜽𝑜  denotes the true value of the structural 

parameter. The derivative of Eq.(4.3) with respect to the 𝜽 obtains: 

 

𝑳′(𝜽|𝒀𝑀(𝑡)) = 𝑳′(𝜽𝒐|𝒀
𝑀(𝑡)) + ∆𝜽𝑳′′(𝜽𝒐|𝒀

𝑀(𝑡)) + 𝒐((∆𝜽)𝟐).     (4.4) 

 

Let 𝑮(𝜽|𝒀𝑀(𝑡))  denote the first order derivative of likelihood measure, 

𝑳′(𝜽|𝒀𝑀(𝑡)) , which is the gradient vector of the 𝐿(𝜽|𝒀𝑀(𝑡))  and 𝑯(𝜽|𝒀𝑀(𝑡)) 

denote the second order derivative of likelihood measure, 𝑳′′(𝜽|𝒀𝑀(𝑡)), which is the 

Hessian matrix of the 𝐿(𝜽|𝒀𝑀(𝑡)). The 𝑮(𝜽𝒐|𝒀
𝑀(𝑡)) and the 𝑯(𝜽𝒐|𝒀

𝑀(𝑡)) is the 

gradient and Hessian matrix at the point of true value, 𝑮(𝜽𝒐|𝒀
𝑀(𝑡)) =

𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜽
|
𝜽𝒐

and 𝑯(𝜽𝒐|𝒀
𝑀(𝑡)) =

𝜕

𝜕𝜽
(
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜽
)|

𝜽𝒐

.  

Multiplying 𝑯−1(𝜽𝒐|𝒀
𝑀(𝑡)) on the right side of the Eq.(4.4) and ignoring the high 

order derivative series, then it can be written as: 

 

𝑮(𝜽|𝒀𝑀(𝑡))𝑯−1(𝜽𝒐|𝒀
𝑀(𝑡)) = 𝑮(𝜽𝒐|𝒀

𝑀(𝑡))𝑯−1(𝜽𝒐|𝒀
𝑀(𝑡)) + 𝜽 − 𝜽𝑜 + 𝒐((∆𝜽)𝟐).   

(4.5) 

 

After the convergence of the Markov chain, the posterior sample with maximum PDF 

is obtained and 𝑮(𝜽MAP|𝒀
𝑀(𝑡)) = 0, then yields: 

 

𝜽𝑜 − 𝜽MAP − 𝑮(𝜽𝑜|𝒀
𝑀(𝑡))𝑯−1(𝜽𝒐|𝒀

𝑀(𝑡)) = 𝒐((∆𝜽)𝟐).       (4.6) 

 

From Eq.(4.6), it's clear that the bias between the MAP estimator, 𝜽MAP, and the true 
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value, 𝜽𝑜 , is equal to the negative product of the gradient and the inverse Hessian 

matrix at the true value. In this study, the Eq.(4.6) is used to formulate a new fitness 

when the MAP estimator is obtained. The identification procedure is therefore divided 

into two steps, where the 𝜽MAP  will be obtained as the posterior sample with 

maximum posterior PDF in the first step and the second step is to search for the 𝜽̂𝑜 in 

the posterior samples. The proposed objective function can be written as: 

 

𝐿∗(𝜽|𝒀𝑀(𝑡)) = −‖𝜽 − 𝜽MAP − 𝑮(𝜽|𝒀𝑀(𝑡))𝑯−1(𝜽|𝒀𝑀(𝑡))‖    (4.7) 

 

The proposed method is to search for one/two peaks corresponding with different cases: 

Case 1: 𝐿∗(𝜽|𝒀𝑀(𝑡)) owns one peak, which corresponds with the no noise scenario. 

In such case, the MAP estimator, 𝜽MAP, coincides with the estimator of true value, 𝜽̂𝑜. 

Case 2: 𝐿∗(𝜽|𝒀𝑀(𝑡))  owns two peaks corresponding with the scenario that 

considering the white noise, then 𝜽̂𝑜 will be the second peaks of the fitness function, 

which is more accurate thank the MAP estimator (where the optimal point of the 

proposed function, 𝜽̂𝑜, meets 𝜽̂𝑜 − 𝜽MAP − 𝑮(𝜽̂𝑜|𝒀
𝑀(𝑡))𝑯−1(𝜽̂𝑜|𝒀

𝑀(𝑡)) ≅ 𝟎). 

 

4.3.2 Illustration of the proposed fitness function 

 

Since the Taylor equation, as in Eq. (4.3) can also be expanded at other parametric value, 

𝜽∗, which is different from the true value, 𝜽𝑜 . Similarly, when ∆𝜽 = 𝜽 − 𝜽∗, with 

Taylor expansion we have: 

 

𝐿(𝜽|𝒀𝑀(𝑡)) = 𝐿(𝜽∗|𝒀
𝑀(𝑡)) + 𝑳′(𝜽∗|𝒀

𝑀(𝑡))∆𝜽𝑻 +
𝟏

𝟐
∆𝜽𝑳′′(𝜽∗|𝒀

𝑀(𝑡))∆𝜽𝑻 +

𝒐((∆𝜽)𝟑),                     (4.8) 
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Then with the derivation of this equation with respect to the 𝜽, it can draw the equation 

as: 𝜽MAP = 𝜽∗ − 𝑮(𝜽∗|𝒀
𝑀(𝑡))𝑯−1(𝜽∗|𝒀

𝑀(𝑡)) + 𝒐((∆𝜽)𝟐) . It is thus necessary to 

discuss whether the optimal point of the proposed function, 𝜽̂𝑜, is near the true value 

or not when the proposed fitness, 𝐿∗(𝜽|𝒀𝑀(𝑡)), approaches to its maximum value. 

Seen from Eqs.(4.4) and (4.7), making the function 𝐿∗(𝜽|𝒀𝑀(𝑡)) approach to the 

maximum value can be able to regarded as yielding the item −‖(𝜽MAP −

𝜽)2𝑳′′′(𝜽|𝒀𝑀(𝑡))𝑯−1(𝜽|𝒀𝑀(𝑡))‖  reach to the extreme value, in which the 

𝑳′′′(𝜽|𝒀𝑀(𝑡)) is a 𝑁𝑑 −dimensional third order tensor, and the inverse hessian matrix, 

𝑯−1(𝜽|𝒀𝑀(𝑡)), can be viewed as a 𝑁𝑑 −dimensional second order tensor.  

To illustrate the problem simply, let us consider 1-dimensional problem. And let 𝑓(𝜃) 

denote the item 𝜃 − 𝜃MAP − 𝐺(𝜃|𝑌𝑀(𝑡))𝐻−1(𝜃|𝑌𝑀(𝑡)) in Eq.(4.7), where the 𝜃 , 

𝐺(𝜃|𝑌𝑀(𝑡)) and 𝐻(𝜃|𝑌𝑀(𝑡)) respectively is a scalar. Then the derivative of 𝑓(𝜃) 

with respect to the 𝜃 is: 

 

𝑓′(𝜃) =
𝐺(𝜃|𝑌𝑀(𝑡))𝐿′′′(𝜃|𝑌𝑀(𝑡))

𝐻(𝜃|𝑌𝑀(𝑡))
2 .                    (4.9) 

 

From the Eq.(4.9), it’s clear that the optimal solution of the fitness function in Eq.(4.7) 

is the sample who meets the equation 𝐺(𝜃|𝑌𝑀(𝑡)) = 0 and 𝐿′′′(𝜃|𝑌𝑀(𝑡)) = 0. The 

first equation is satisfied by the MAP estimator, where 𝐺(𝜃MAP|𝑌
𝑀(𝑡)) = 0 . The 

proposed method is able to find the true value as the optimal point if the condition 

𝐿′′′(𝜃𝑜|𝑌
𝑀(𝑡)) = 0 is satisfied. Under the assumption of the white noise is added as 

the measurement error, the proposition that the third derivative of the likelihood 

measure equal to zero at the true value, 𝜃𝑜, as much as to say, the extreme of the second 

derivative of a normal distribution lies at its mean value (taking the standard normal 

distribution, 𝑓(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 , 𝜇 = 0, 𝜎 = 1, as an example, the second and 

third derivative of the normal distribution are shown in Fig. 4.2).  
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Figure 4.2 Second and third derivative of a standard normal distribution  

 

A 1-DOF structural system with the stiffness equal to 1000 N/m is considered. The 

input and measurement noise is simulated same as the example in Section 4.2.3. The 

likelihood measure, 𝐿(𝜃|𝑌𝑀(𝑡)), the gradient of the likelihood measure,𝐺(𝜃|𝑌𝑀(𝑡)), 

the hessian of the likelihood measure, 𝐻(𝜃|𝑌𝑀(𝑡)) and the third derivative of the 

likelihood measure, 𝐿′′′(𝜃|𝑌𝑀(𝑡)) are respectively shown in Fig. 4.3. 

Seen from the Figs. 4.3 (c) and (d), it can be easily found that the second derivative of 

the likelihood measure reaches its minimum value near the true parametric value, which 

yields the condition, 𝐿′′′(𝜃𝑜|𝑌
𝑀(𝑡)) = 0 in the simulation of the 1-DOF structural 

system. To clear show the performance of the likelihood measure under the scenario 

that ignoring the measurement error the simulation of 1-DOF structural system in no 

noise scenario is compared and shown in Fig.4.4. In the simulation of no noise scenario, 

the proposed fitness function, 𝐿∗(𝜃|𝑌𝑀(𝑡)), owns only one extreme at the true value, 

as is shown in Fig. 4.5 (a); and in the scenario considering 100% noise level, it owns 

two peaks, as is shown in Fig. 4.5 (b), by excluding the ever-obtained MAP estimator, 

the second extreme value of the proposed function will be the more accurate estimator 

of the true value.  
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a. 𝐿(𝜃|𝑌𝑀(𝑡)) b. 𝐺(𝜃|𝑌𝑀(𝑡)) 

  

c. 𝐻(𝜃|𝑌𝑀(𝑡)) d. 𝐿′′′(𝜃|𝑌𝑀(𝑡)) 

Figure 4.3 1-DOF simulation (100% noise scenario) 
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a. 𝐿(𝜃|𝑌𝑀(𝑡)) b. 𝐺(𝜃|𝑌𝑀(𝑡)) 

  

c. 𝐻(𝜃|𝑌𝑀(𝑡)) d. 𝐿′′′(𝜃|𝑌𝑀(𝑡)) 

Figure 4.4 1-DOF simulation (no noise scenario) 
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No noise scenario 100% noise scenario 

Figure 4.5 Proposed fitness function (1-dimensional problem) 

 

To verify the proposed idea, the simulation of a 2-DOF linear system, of which the 

simulation in 100% noise scenario same as that in Section 4.2.3, is also considered. The 

surface and the contour plot of the proposed fitness function is shown in Fig. 4.6. 

Comparing with the Fig. 4.1(c), we can find that the sample with maximum PDF in the 

Fig. 4.6 is closer to the true value than the MAP estimator in the Fig. 4.1(c), which 

means that the accuracy of the estimator can be improved. Moreover, in Fig. 4.6 it can 

be found that most of the posterior samples concentrate mainly on the neighborhood of 

the true value, which will increase the stability of the posterior samples on Markov 

chains. 
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Figure 4.6 Optimal-solutions set for 100% noise scenario 

(the red point denotes the estimator of 𝜽̂𝑜) 
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4.3.3 Two-step of the IDREAM based Bayesian estimation 

 

Step 1: MAP estimator using IDREAM algorithm 

The MAP estimator, 𝜽MAP, is obtained with the maximum posterior PDF. Also the 

standard deviation of the posterior samples, 𝛔(𝜽), can be obtained. The first step of 

Bayesian inference using IDREAM algorithm is same as that mentioned in Section 3. 

Then the algorithm forwards to the second step. 

 

Step 2: Density updating of the samples that satisfy the proposed criteria 

Calculating the gradient and Hessian matrices of the posterior samples which are 

located in the boundary of [𝜽MAP − 3𝛔(𝜽), 𝜽MAP + 3𝛔(𝜽) ] at each iteration of Step 

2. The proposed fitness function as in Eq.(4.7) will be used for the updating of the 

posterior samples. The estimation procedure will be stopped till the prescribed 

maximum iteration is satisfied. The gradient and the Hessian matrices for the 𝑘th 

posterior sample can be obtained as: 

 

𝑮(𝜽𝑘|𝒀
𝑀(𝑡)) = [

𝜕𝐿

𝜃1
,
𝜕𝐿

𝜃2
, … ,

𝜕𝐿

𝜃𝑁𝑑

], 𝑯(𝜽𝑘|𝒀
𝑀(𝑡)) =

[
 
 
 
 
 
 

𝜕2𝐿

𝜕𝜃1
2

𝜕2𝐿

𝜕𝜃1𝜃2

⋯
𝜕2𝐿

𝜕𝜃1𝜃𝑁𝑑

𝜕2𝐿

𝜕𝜃2𝜃1

𝜕2𝐿

𝜕𝜃2
2

⋯
𝜕2𝐿

𝜕𝜃2𝜃𝑁𝑑

⋮
𝜕2𝐿

𝜕𝜃𝑁𝑑
𝜃1

⋮
𝜕2𝐿

𝜕𝜃𝑁𝑑
𝜃2

⋱
⋯

⋮
𝜕2𝐿

𝜕𝜃𝑁𝑑
2 ]

 
 
 
 
 
 

. 

(4.10) 

 

The diagonal and off-diagonal elements of the 𝑯(𝜽𝑘|𝒀
𝑀(𝑡)) are obtained as: 

 

 



CHAPTER 4 An improved Bayesian Structural Identification Using the First-Two Derivative 

of Log-Likelihood Measure 

77 

 

𝐻𝑙,𝑙(𝜽𝑘|𝒀
𝑀(𝑡))=[

𝜕

𝜕𝜃𝑙
(
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
)]

𝜽=𝜽𝑘

 

(4.11) 

               ≈
1

∆𝜽𝑙
[
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
|
𝜽=𝜽𝑘+∆𝜽𝑙 2⁄

−
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
|
𝜽=𝜽𝑘−∆𝜽𝑙 2⁄

] 

               ≈
1

∆𝜽𝑙
[
𝐿(𝜽𝑘 + ∆𝜽𝑘|𝒀

𝑀(𝑡)) − 𝐿(𝜽𝑘|𝒀
𝑀(𝑡))

∆𝜽𝑙

−
𝐿(𝜽𝑘|𝒀

𝑀(𝑡)) − 𝐿(𝜽𝑘 − ∆𝜽𝑙|𝒀
𝑀(𝑡))

∆𝜽𝑙
] 

               =
𝐿(𝜽𝑘 + ∆𝜽𝒍|𝒀

𝑀(𝑡)) − 2 × 𝐿(𝜽𝑘|𝒀
𝑀(𝑡)) + 𝐿(𝜽𝑘 − ∆𝜽𝑙|𝒀

𝑀(𝑡))

(∆𝜽𝑙)2
 

 

𝐻𝑙,𝑙′(𝜽𝑘|𝒀
𝑀(𝑡)) = [

𝜕

𝜕𝜃𝑙′
(
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
)]

𝜽=𝜽𝑘

 

(4.12) 

                    ≈
1

2 × ∆𝜽𝑙′
[
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
|
𝜽=𝜽𝑘+∆𝜽

𝑙′

−
𝜕𝐿(𝜽|𝒀𝑀(𝑡))

𝜕𝜃𝑙
|
𝜽=𝜽𝑘−∆𝜽

𝑙′

] 

                   

≈
1

2 × ∆𝜽𝑙′
[
𝐿(𝜽𝑘 + ∆𝜽𝑙 + ∆𝜽𝑙′|𝒀

𝑀(𝑡)) − 𝐿(𝜽𝑘 − ∆𝜽𝑙 + ∆𝜽𝑙′|𝒀
𝑀(𝑡))

2 × ∆𝜽𝑙

−
𝐿(𝜽𝑘 + ∆𝜽𝑙 − ∆𝜽𝑙′|𝒀

𝑀(𝑡)) − 𝐿(𝜽𝑘 − ∆𝜽𝑙 − ∆𝜽𝑙′|𝒀
𝑀(𝑡))

2 × ∆𝜽𝑙
] 

                   =
1

4∆𝜽𝑙∆𝜽𝑙′
[𝐿(𝜽𝑘 + ∆𝜽𝑙 + ∆𝜽𝑙′|𝒀

𝑀(𝑡))

− 𝐿(𝜽𝑘 + ∆𝜽𝑙 − ∆𝜽𝑙′|𝒀
𝑀(𝑡)) − 𝐿(𝜽𝑘 − ∆𝜽𝑙 + ∆𝜽𝑙′|𝒀

𝑀(𝑡))

+ 𝐿(𝜽𝑘 − ∆𝜽𝑙 − ∆𝜽𝑙′|𝒀
𝑀(𝑡))] 

 

where ∆𝜽𝑙 and ∆𝜽𝑙′ are vectors with all elements being zero except the 𝑙th and 𝑙′
th

 

elements equal to ∆𝜃𝑙  and ∆𝜃𝑙′ , respectively. For example, ∆𝜽𝑙 =

[0, ⋯ ,0, ∆𝜃𝑙 , 0,⋯ ,0]𝑇 is a 1 × 𝑁𝑑 vector with 𝑙th element as a proper step ∆𝜃𝑙. 
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4.3.4 Identification procedures and the flowchart 

 

The procedure of the proposed posterior density estimation is as follows: 

Procedure 1: Use the Latin hypercube sampling (LHS) method to generate 𝑁𝑠 

sequences for the initial state of MC chains, respecting the prescribed limits of the 

search space. The likelihood measure of each samples is obtained with the Eq. (4.2).  

Procedure 2: Compute the PDF, 𝑝(𝜽(0)
𝑘 ),for each samples, 𝑘 = 1, … , 𝑁𝑠 . Find the 

𝜽(0)
cbest  and 𝜽(0)

gbest
; Update the posterior sample of the Markov chain by mutation 

strategy using Eq. (3.1) and by the crossover probability using Eq. (3.3) to Eq. (3.4). 

Calculate the density for the updated samples, 𝑝(𝜽(𝑠+1)
𝑘 ), of the iteration, (𝑠 + 1). 

Procedure 3: The Metropolis acceptance (Eq. (3.5)) is used for chosen of accepted 

posterior samples. 

Procedure 4: Repeat Procedure 2 to Procedure 3, after the burn-in period and calculating 

the convergence criteria using Eq. (3.6) for each dimension of the structural parameter. 

If the convergence criteria of the MC chain are met, (𝑅̂𝑗 < 1.2), the MAP estimator, 

 𝜽MAP, and the standard deviation of the posterior samples, 𝛔(𝜽), are obtained. 

Procedure 5: Calculates the gradient and Hessian matrix at the point of each samples 

within the interval of [𝜽MAP − 3𝛔(𝜽), 𝜽MAP + 3𝛔(𝜽) ] by the Eq. (4.10). The fitness 

function of these samples, 𝐿∗(𝜽|𝒀𝑀(𝑡)), using the Eq.(4.7) are obtained at the iteration 

when the 𝜽MAP  is obtained, denoted as the iteration, ( 𝑠2 ). Find the 𝜽(𝑠2)
∗ with 

maximum value in {𝐿∗(𝜽(𝑠2)
1 |𝒀𝑀(𝑡)), … , 𝐿∗ (𝜽(𝑠2)

𝑁𝑠 |𝒀𝑀(𝑡))}. 

Procedure 6: Update the samples using Eq.(3.1), and calculate the PDF for each samples 

at the new iteration, (𝑠2 + 1). And find the sample, 𝜽(𝑠2+1)
∗ , that with maximum value 
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in {𝐿∗(𝜽(𝑠2+1)
1 |𝒀𝑀(𝑡)), … , 𝐿∗ (𝜽(𝑠2+1)

𝑁𝑠 |𝒀𝑀(𝑡))}.  

Procedure 7: Repeat Procedure 5 to Procedure 6 till the optimal point, 𝜽̂0 =

argmax(𝐿∗(𝜽̂0|𝒀
𝑀(𝑡))), is searched. And compare the PDF of the 𝜽̂0 with the PDF 

of the 𝜽MAP; if 𝑝(𝜽̂0) < 𝑝(𝜽MAP) end the algorithm; otherwise, reset the iteration 

state and let 𝜽gbest = 𝜽̂0, then the algorithm returns to the Procedure 2. The flowchart 

of the above-mentioned identification procedures is presented in Fig.4.7. 
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Figure 4.7 Flow-chart of the proposed two-step identification method 
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4.4 Numerical Simulation 

4.4.1 Identification of a 10-DOF LTI system 

 

Numerical simulation of a 10-DOF LTI system was carried out to verify the proposed 

method. The structural system is simulated as Eq.(3.7) and the measured signal is as 

Eq. (3.10). The input was an El-Centro wave (Fig. 4.8) lasting 40s and the sampling 

frequency was 100 Hz. Table 4.1 shows the structural properties of the dynamic system. 

The influence of the limited availability of measurements on the proposed method is 

also assessed in this study. In the “full output” scenario, measurements of all floors are 

available, whereas in the “partial output” case, only the even floors (2nd, 4th, 6th, 8th, and 

10th) are assumed to be available. 

 

Table 4.1 Structural properties 

Stiffness (𝑘) (N/m) 

Floors  1-10 5.0× 103 

Mass (𝑚) (kg) 

Floors 1-10 50 

Damping ratio  

ζ1,2 0.05 

 

The mass is assumed to be known; hence, the 10-DOF system is described by a 

stochastic model set, of which the parameterized vector is: 

 

𝜽={𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, 𝑘9, 𝑘10, ζ1, ζ2}.          (4.13) 
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Figure 4.8 Input and output of 10th floor with and without noise 

 

The white noise is added to the measured response, that simulated by Eq.(3.9), where 

the noise level is assumed to be 30% and 100%. The search domain was taken to be 

0.5-2.0 times the true value. The initial parameters for the IDREAM algorithm is set 

same as those in Section 3.1.1. The results are shown in Table 4.2 and 4.3. 
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Table 4.2 Identification results in the scenario of “full outputs” 

 
No noise 30% noise 100% noise 

 𝐿(𝜽)  𝐿∗(𝜽)  𝐿(𝜽)  𝐿∗(𝜽)  𝐿(𝜽)  𝐿∗(𝜽) 

𝑘1 
error 0.000 0.000 0.279 0.091 0.517 0.441 

Cov. 0.000 0.000 0.530 0.537 1.828 1.096 

𝑘2 
error 0.000 0.000 0.259 0.012 3.484 1.329 

Cov. 0.000 0.000 0.631 0.521 1.951 1.732 

𝑘3 
error 0.000 0.000 0.218 0.122 1.401 0.986 

Cov. 0.000 0.000 0.661 0.617 2.281 2.868 

𝑘4 
error 0.000 0.000 0.819 0.463 1.277 1.094 

Cov. 0.000 0.000 0.659 0.548 2.273 2.014 

𝑘5 
error 0.000 0.000 0.224 0.399 1.432 0.912 

Cov. 0.000 0.000 0.797 0.626 2.484 0.786 

𝑘6 
error 0.000 0.000 1.042 0.693 2.382 1.479 

Cov. 0.000 0.000 0.967 0.718 3.215 0.902 

𝑘7 
error 0.000 0.000 0.303 0.713 1.017 1.008 

Cov. 0.000 0.000 0.878 0.924 2.854 1.662 

𝑘8 
error 0.000 0.000 0.019 0.334 1.904 0.140 

Cov. 0.000 0.000 0.939 0.622 3.261 1.809 

𝑘9 
error 0.000 0.000 0.518 0.010 1.370 1.103 

Cov. 0.000 0.000 0.999 0.734 3.173 2.562 

𝑘10 
error 0.000 0.000 0.338 0.754 6.491 1.575 

Cov. 0.000 0.000 1.238 1.124 3.807 2.052 

𝜁1 
error 0.000 0.000 1.999 1.175 1.057 1.766 

Cov. 0.000 0.000 1.232 1.426 4.261 3.312 

𝜁2 
error 0.000 0.000 0.354 0.343 1.286 1.192 

Cov. 0.000 0.000 0.949 1.668 2.492 2.124 

* the error in the table is in %; the cov. in the table is in %. 
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 Table 4.3 Identification results in the scenario of “partial outputs” 

 
No noise 30% noise 100% noise 

 𝐿(𝜽)  𝐿∗(𝜽)  𝐿(𝜽)  𝐿∗(𝜽)  𝐿(𝜽)  𝐿∗(𝜽) 

𝑘1 
error 0.000 0.000 0.595 0.342 1.183 0.812 

Cov. 0.000 0.000 2.624 2.096 2.332 2.556 

𝑘2 
error 0.000 0.000 3.018 1.431 4.195 1.390 

Cov. 0.000 0.000 2.715 2.032 7.561 3.852 

𝑘3 
error 0.000 0.000 2.369 0.985 4.258 2.081 

Cov. 0.000 0.000 2.146 1.869 5.363 3.218 

𝑘4 
error 0.000 0.000 1.035 0.173 5.195 3.514 

Cov. 0.000 0.000 2.417 0.543 6.007 4.774 

𝑘5 
error 0.000 0.000 2.753 1.497 5.908 2.138 

Cov. 0.000 0.000 1.872 1.931 7.477 3.728 

𝑘6 
error 0.000 0.000 2.478 1.058 5.945 2.122 

Cov. 0.000 0.000 2.217 2.137 8.178 3.647 

𝑘7 
error 0.000 0.000 3.174 2.065 7.342 1.609 

Cov. 0.000 0.000 1.652 1.662 9.378 6.198 

𝑘8 
error 0.000 0.000 1.743 0.809 7.018 3.025 

Cov. 0.000 0.000 2.133 1.058 10.85 4.056 

𝑘9 
error 0.000 0.000 5.974 2.032 6.049 1.897 

Cov. 0.000 0.000 2.565 2.561 11.09 6.307 

𝑘10 
error 0.000 0.000 5.723 2.175 8.451 3.543 

Cov. 0.000 0.000 2.779 1.595 9.292 6.091 

𝜁1 
error 0.000 0.000 1.397 1.175 5.819 1.130 

Cov. 0.000 0.000 1.700 2.237 6.819 4.902 

𝜁2 
error 0.000 0.000 1.957 2.062 6.258 2.572 

Cov. 0.000 0.000 0.629 0.574 10.32 5.067 

* the error in the table is in %; the cov. in the table is in %. 
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Seen from Tables 4.2 and 4.3, in the case of “full outputs”, the maximum relative error 

of 𝜽̂0 ranges from zero to 1.175% in 30% noise level and 1.766% in 100% noise level. 

Correspondingly, the maximum relative error of 𝜽MAP using the traditional likelihood 

measure increases from zero in the case of ignoring measurement noise to 1.999% in 

30% noise level, and 6.491% in 100% noise level. The improvement is also clear in the 

scenario of partial outputs. The maximum relative error of 𝜽̂0  using the proposed 

method increases from zero in noise-free case to 2.175% in 30% noise level, and 

3.543% in 100% noise level. While the maximum relative error of 𝜽MAP using the 

traditional method raises from zero in no-noise case, to 5.974% in 30% noise level, and 

8.451% in 100% noise level. It can be found that the minimum and maximum relative 

error of mean posterior samples in model set are all reduced using the proposed method. 

Moreover, it can be found from Tables 4.2 and 4.3 that using the Eq.(4.6) for the 

parametric uncertainty (the cov.) becomes smaller than those obtained by the formal 

log-likelihood measure as the Eq.(4.2). For instance, when considering the case of 

100% noise level and partial outputs are available, the maximum coefficient variance 

of the MC samples using the proposed method is 6.198% comparing with that obtained 

by traditional method is as 11.09%. It is therefore can be concluded that the accuracy 

of the estimator using the proposed likelihood measure is improved. 

 

4.5  Parameter estimation of E-Defense experiment 

4.5.1 Description of the E-Defense experiment 

 

In order to investigate the performance of hospital buildings during mega-earthquakes 

and evaluate the condition of the buildings after earthquakes, a full-scale 4-story 

reinforced concrete hospital building has been tested by E-Defense Shaking Table in 

the Miki, Japan (NIED, 2009).  

The building is 8 meters in width, 10 meters in depth and 16.25 meters in height. The 
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RC structure is composed of four reinforced concrete columns and four-pieces shear 

wall at each floor. Each RC column is at the size of 0.6 by 0.6 meters and each shear-

wall is 0.3 meters in thickness and 2 meters in length. The picture of the E-defense 

experiment is shown in Fig. 4.9. To measure the response of the structure under the 

input earthquake waves, the acceleration sensors were deployed at two directions (X-

direction and Y-direction) on each floor and table-board which is shown in Fig. 4.10 

and the sampling rate is 1000Hz. 

 

 

Figure 4.9 Picture of E-Defense (NIED, 2009)  
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Figure 4.10 Deployment of acceleration sensors 

 

The experiment was completed at three days from 15th to 22nd, January 2009. The whole 

excitation of the experiment process can be divided as 13 sets, and 3 random waves 

ahead of real earthquake waves were inputted into the structure at each day. Due to the 

low amplitude, the input states of random waves at each day (Jan. 15th, Jan. 19th and 

Jan. 22nd) and the measured responses at X-direction were studied to identify the 

parameters at such three input sets. An example of the excitation, the Random waves 

that loaded on the structure in Jan. 15th, is shown in Fig. 4.11. 

 

 

Figure 4.11 An example of input excitation (Random waves, 15th January, 2010) 

         
A1X A2X 

A1Y 
A2Y 

A3Y 
         

A3X 

         
X 

Y 
Z 

A1: sensor location 1 

A2: sensor location 2 

A3: sensor location 3 
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4.5.2  Identification model 

 

The structural system can be simulated as a linear structure, and the mass of the 

structure is lumped at each floor level. The dynamic equation is: 

 

𝒚̈(𝑡) + 𝑴−1𝑪𝒚̇(𝑡) + 𝑴−1𝑲𝒚(𝑡) = −{

1
1
1
1

} 𝒖̈(𝑡).            (4.14) 

 

Let 𝑪′ denote 𝑴−1𝑪 and 𝑲′ denote 𝑴−1𝑲, they can be written as: 

 

𝑪′=

1 2 2
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,         (4.15) 
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𝑲′ =

1 2 2

1 1

2 3 32

2 2 2' 1

3 3 4 4

3 3 3

4 4

4 4

0 0

0

0

0 0

k k k

m m

k k kk

m m m
K M K

k k k k

m m m

k k

m m



 
 

 
 
  

  
 

  
 
 

  
 

 

1 2 2 2 2

1 2 1 2 1

3 3 3 32 2

2 2 3 2 3 2

3 3 4 4 4 4

3 3 4 3 4 3

4 4

4 4

0 0

0

0

0 0

k k m k m

m m m m m

k m k mk k

m m m m m m

k k k m k m

m m m m m m

k k

m m

 
  

 
 

   
 
 

   
 
 

  
 

,       (4.16) 

 

where 𝑚𝑖, 𝑘𝑖 and 𝑐𝑖 are the mass, stiffness and damping coefficient of each floor, 

respectively. According to the design drawing and the weight of equipment of the 

experiment, the ratio of the mass for each floor is obtained as: {
𝑚2

𝑚1
, 

𝑚3

𝑚2
, 

𝑚4

𝑚3
}={0.9673, 

1, 0.8794}. It is assumed that the mass of each floor doesn’t change even when the 

damage of structure happens, therefore, the ratio of the mass for each floor is considered 

as known and constant values. Considering the stiffness and damping coefficients, as 

random variables, the identification parameter is thus fully described by the following 

stochastic vector: 

 

𝜽 = {
𝑘1

𝑚1
,
𝑘2

𝑚2
,
𝑘3

𝑚3
,
𝑘4

𝑚4
,

𝑐1

𝑚1
,

𝑐2

𝑚2
,

𝑐3

𝑚3
,

𝑐4

𝑚4
}.                (4.17) 

 

The simulated response of the stochastic system is thus described by: 
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𝒚̈(𝜽, 𝑡) = −{

1
1
1
1

} 𝒖̈(𝑡) − 𝑪′𝒚̇(𝜽, 𝑡) − 𝑲′𝒚(𝜽, 𝑡),           (4.18) 

 

where 𝒖̈(𝑡) denotes the excitation input of the structure, which is obtained from the 

measured data at the base floor. 

 

4.5.3  Identification results 

 

The parameters of IDREAM algorithm are set as follows: maximum iteration=2500 and 

number of Markov sequences=25, the number of DE pairs =3 and the jumping rate=0.2, 

other initial parameters for the IDREAM algorithm is set same as in the simulation in 

Section 3. According to the design materials, the initial guess of the identification 

parameters is: {5864, 4590, 2940, 2777; 5.643, 7.186, 3.889, 5.100}; the search space 

is taken as 0.1~10 times the initial guess of the parameters. The estimator of E-Defense 

parameter via the proposed method are carried out and summarized in Table 4.4. 

The convergence for each parameters are shown in Fig. 4.12. From Table 4.4, it can 

easily draw the conclusion that the ratio of stiffness and mass of each floor is generally 

in declining trend at the three different days. The uncertain range of the Markov 

posterior samples considering the identified parametric uncertainty and the 

measurement uncertainty (total uncertain range) is shown in Fig. 4.13. With the 

identified estimator of the structural parameters as is shown in Table 4.4, the residual 

error that is obtained by the deviation between the measured response and the output of 

simulated system parameterized by the estimator, is analysis. The QQ plot of the 

residual errors are shown in Fig. 4.14. 
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 Table 4.4 Identification Results 

 Random waves k1/m1 k2/m2 k3/m3 k4/m4 c1/m1 c2/m2 c3/m3 c4/m4 

January 15th 

1st 5663 4880 3036 2951 21.56  25.20  28.10  6.610  

2nd 5552 4723 3162 3019 21.67  24.92  27.79  6.891  

3rd 5663 4813 3049 2894 20.90  26.32  26.48  6.914  

January 19th 

1st 3340 3213 2006 1841 27.83  1.801  23.11  6.323  

2nd 3357 3279 1778 1747 29.08  1.870  20.92  6.251  

3rd 3446 3213 2104 1906 28.22  2.093  22.07  6.833  

January 22nd 

1st 2948 2720 1885 1677 27.67  1.284  20.39  6.341  

2nd 2818 2526 1741 1681 28.22  1.443  19.45  6.193  

3rd 2879 2508 1848 1635 28.22  1.441  19.41  6.494  

 

With the predictive uncertain range, shown in Fig. 4.13, that is formulated by the 

posterior samples with 95% probability assurance, the percentage of measured response, 

the red line in Fig 4.13, at each time interval that in beyond the predictive range can be 

calculated, which can be defined as the including ratio: 

 

𝑅𝑎𝑡𝑖𝑜𝑖𝑛 = 1 −
∑ find{𝑡|𝒀𝑀(𝑡) < 𝒀̂low(𝑡) ∥ 𝒚𝑀(𝑡) > 𝒀̂up(𝑡)}𝑡

𝑁𝑡

,     (4.19) 

 

where 𝑁𝑡 is the number of measurement data; 𝒀𝑀(𝑡) denotes the measured response 

at each time interval (𝑡 = 1,2, … ,𝑁𝑡 ), 𝒀̂low(𝑡) and 𝒀̂up(𝑡) denotes the lower and 

upper bound of the 95% posterior density insurance uncertainty range. 𝑅𝑎𝑡𝑖𝑜𝑖𝑛 

reflects the quality of stochastic identification. For this case, the including ratio equals 

to 94.95%, which means the identification is satisfied because the response distribution 
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range contains the most part of the measured information. 

 

 

 

Figure 4.12 The convergence diagnosis for each identified parameters (Jan. 19th) 

 

 

Figure 4.13 95% posterior simulation uncertain ranges (top floor, Jan. 15th) 
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Figure 4.14 QQ plot of posterior sample versus standard normal distribution (top 

floor, Jan. 15th) 

 

4.6 Conclusions 

 

To improve the accuracy of the MAP estimator that obtained by the traditional 

likelihood measure using the IDREAM based structural identification, the gradient and 

Hessian of the log-likelihood measure is proposed to formulate the generalized 

likelihood measure for the density transition of Markov chains. Comparing with the 

formal likelihood function, the relative error of the estimator and the uncertain range of 

the posterior samples using the proposed method becomes smaller. Numerical 

simulations of a 10-DOF LTI system and experimental verification demonstrated its 

effectiveness in solving identification problems with a high noise level and loss of 

measurement data. In conclusion, IDREAM based Bayesian estimation using the 

proposed improvement has ability to solve the problem of “equifinality” especially 

when considering large level of measurement error. From the identified results of the 

experimental verification, it can be found that the IDREAM algorithm based 

-4 -2 0 2 4
-2

-1

0

1

2

Standard normal quantiles

Q
u

an
ti

le
s 

o
f 

p
o

st
er

io
r 

sa
m

p
le



CHAPTER 4 An improved Bayesian Structural Identification Using the First-Two Derivative 

of Log-Likelihood Measure 

94 

 

identification method using the proposed objective function have great potential in the 

Bayesian inference in the experiment of real structural system.
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  CHAPTER 5 

5 Conclusions 

 

 

Bayesian identification of structures using improved Differential evolution adaptive 

Metropolis algorithm, with the purpose to solve the problem of slow-convergence of 

the Markov chains in Bayesian inference, and generalized likelihood uncertainty 

estimation (GLUE) framework of identification using the proposed objective function, 

for sake of improving the accuracy of the Maximum a posterior estimator (MAP), were 

addressed in this thesis.  

The major difficulty of using Bayesian inference for system identification is to obtain 

the posterior probability density of parameters conditioned by the measured response. 

The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior 

inference but its convergence is often slow. The first aspect of this study is to solve the 

convergence problem in the framework of Bayesian structural identification. This 

research presented a new methodology for posterior density estimation using improved 

differential evolution adaptive metropolis algorithm (IDREAM), where the transition 

of Markov chain is promoted by the weighting factor of the sample pairs. The main 

benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive 

Metropolis (AM) method with a mutation strategy for ensuring quick convergence and 

robust solutions. Its effectiveness was demonstrated in simulations on identifying the 
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structural parameters with limited output data and noise polluted measurements.  

Moreover, for traditional Bayesian identification, the MAP estimator will be inevitably 

biased, which is called the “equifinality” problem. The other aspect of this thesis is to 

solve this problem, in which the first-two derivative of the log-likelihood measure is 

proposed to formulate a new fitness function for sake of improving the accuracy of the 

estimator. The Identification procedure is proposed as two-step strategy. In the first step, 

the MAP estimator is obtained by the formal Bayesian likelihood measures using the 

IDREAM algorithm. In the second step, a new fitness measure is proposed under the 

framework of the generalized likelihood uncertainty estimation (GLUE), to obtain the 

estimator of the true value in the posterior samples set. Comparing with the formal 

likelihood function, the relative error of the MAP estimator and the uncertain range of 

the posterior samples using the proposed method becomes smaller. Numerical 

simulations of a 10-DOF LTI system demonstrated its effectiveness in solving 

identification problems with a high noise level and loss of measurement data. Seen from 

the simulated results, it can be concluded that the IDREAM based Bayesian inference 

using the proposed strategy has potential to solve the problem of “equifinality”, 

especially when considering large level of measurement error. 

Moreover, in order to prove that the method is indeed applicable to realistic problems, 

the computing strategy for Bayesian identification was experimentally verified. Data of 

the experiments using the E-Defense model (the world’s largest full-scale Earthquake 

(EQ) Shaking Table facility carried out by National Research Institute for Earth Science 

and Disaster Prevention (NIED) in the Miki, Japan) was used to further verify the 

proposed methodology. 

Finally, the conclusion was given. The Bayesian identification using the improved 

differential evolution metropolis-Hasting algorithm can enhance the convergence speed 

of the Markov chain sequences. And the proposed fitness function can be useful for 
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solving the problem of “equifinality”. These are the two contributions of this study 

made for the Bayesian inference in civil structures. Comparisons with existing methods 

showed that our proposed methodology was indeed a powerful tool for Bayesian 

identification of building structures. For future study, the achievements that obtained in 

this study will be used for reliability analysis of the structure using the posterior density 

of the parameters conditioned by the measurement. 
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