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Chapter 1
Introduction

In this thesis we discuss generalizations of Darmon’s conjecture [Dar95]. More precisely, we
formulate two different generalizations of Darmon’s conjecture, and give some applications.
Our first generalization concerns a relation between two different Rubin-Stark elements.
We prove that, under some assumptions, most of this conjecture is a consequence of the
“equivariant Tamagawa number conjecture (ETNC)” of Burns and Flach [BuFIl01]. As an
application, we give a full proof of Darmon’s conjecture. Our second generalization concerns
Euler systems defined for general p-adic representations. We prove this conjecture under
the standard hypotheses (including that the core rank is equal to one) in the theory of
Kolyvagin systems [MaRu04]. As an application, we give another proof for the important
fact that an Euler system gives an upper bound of the size of the Selmer group [Rub00].

We begin with some historical background of our research.

1.1 Class number formulas

One of the main themes in number theory is the investigation of mysterious relations be-
tween zeta functions and arithmetic objects. A typical and classical example of arithmetic
objects is the “class number”. The notion of the class number was first introduced by
Gauss in his famous magnum opus “Disquisitiones Arithmeticae”, in his investigation of
quadratic forms. Dirichlet found a formula, called the “class number formula”, which re-
lates the values of zeta functions with class numbers. It is said that Dirichlet highly adored
Gauss, and investigated class numbers to find the class number formula. Later Dedekind
generalized the notion of the class number for a general number field by using his theory of
“ideals”, and also generalized Dirichlet’s class number formula for general number fields.

The notion of ideals is a generalization of the notion of numbers. Dedekind’s theory of
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ideals is still a foundation of modern algebraic number theory.

Thanks to Dedekind’s theory of ideals, we have a definition of the “ideal class group”
for a number field, whose cardinality is the class number. The ideal class group measures
the discrepancy of the “uniqueness of the prime decomposition” for a number field in the
following sense. We know that an integer is uniquely decomposed as a product of prime
numbers. It is known that the uniqueness of the prime decomposition (more precisely, the
uniqueness of the decomposition by “irreducible elements”, which generalize prime num-
bers) fails in rings of integers of general number fields. But Dedekind proved that the
decomposition by “prime ideals” is unique for general rings of integers. Roughly speaking,
an ideal class group is defined as the quotient of the ideals by the numbers, so they measures
the discrepancy between ideals and numbers. If the ideal class group is trivial (namely,
the class number is one), then the uniqueness of the irreducible decomposition holds, and
the converse is also true. This is the reason why the ideal class group measures the dis-
crepancy of the uniqueness of the irreducible decomposition for a number field. Such an
arithmetically interesting property of ideal class groups motivated many mathematicians to
investigate them. Ideal class groups are regarded as typical arithmetic objects, and widely
investigated even today.

The class number formula is stated as follows. Let &£ be a number field. Let O, denote

the ring of integers of k. The zeta function of k, called the Dedekind zeta function, is
defined by

Gls) = Y o

where a runs over all non-zero ideals of Oy, and Na denotes the cardinality of O /a. It is
known that the product in the right hand side converges when the real part of s is greater
than one, and (x(s) is meromorphically continued on the whole complex plane. Let puy
be the group of roots of unity in k. Let r be the rank of the group O /u;. Define the
“regulator” of k by

Ry = | det(log |ui|v; )1<ij<rl;

where {uy,...,u,} is a Z-basis of O}/, vo, ..., v, are all infinite places of k, and | - |, is
the normalized absolute value at v. The class number formula states that r is equal to the

order of zeros of (x(s) at s =0 and

hi Ry,

lim s™"((s) = ——,
550 Ck( ) ’ﬂk‘

where hj, denotes the class number of k. Thus, the class number formula relates the values
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of zeta functions with arithmetic objects such as class numbers and unit groups.

1.2 The equivariant Tamagawa number conjecture

At the moment, the most general conjecture in various generalizations of the classical class
number formula is the “equivariant Tamagawa number conjecture (ETNC)”, formulated
by Burns and Flach in [BuF101]. We shortly review the history of the ETNC.

In the 1960s, Birch and Swinnerton-Dyer proposed a conjectural analogue of the classical
class number formula for elliptic curves in [BSD60s]. This conjecture, called the BSD
conjecture for short, has not yet been solved completely, although it is supported by much
evidence. The zeta functions of elliptic curves are generalized as the zeta functions of
“motives”. Motives are objects whose existence is dreamt by Grothendieck, from which
many cohomology theories come. Definitions of the category of motives have been suggested
by many mathematicians including Grothendieck, but many properties which should be
satisfied are still conjectural. Thus, the “true definition” of general motives is still unclear,
but Grothendieck’s dream has been widely accepted in recent decades. Deligne attempted
to generalize the BSD conjecture for general motives, and formulated a conjecture for
critical motives in [Del79]. Deligne’s conjecture is not just a generalization of the BSD
conjecture, but its weak version. Later in [Bei85] Beilinson generalized Deligne’s conjecture
for general motives by constructing “higher regulators”, usually referred as the “Beilinson
regulators”, which generalizes the classical regulators.

In [BIKa90], Bloch and Kato formulated a striking conjecture concerning the values of
zeta functions of motives, which precisely generalizes the classical class number formula, the
BSD conjecture and the Beilinson’s conjecture simultaneously. Formulating the conjecture,
Bloch and Kato introduced a notion of the “Tamagawa number for motives”, which is an
analogue of the Tamagawa number of algebraic groups. The conjecture of Bloch and Kato
is called the “Tamagawa number conjecture (TNC)”.

The ETNC is a generalization of the TNC for “equivariant coefficients”. The terminol-
ogy “equivariant” is used in the situation that a Galois group of number fields acts on a
motive. Such a Galois action gives rise to the “equivariant zeta function” of the motive,
and the ETNC concerns the values of the equivariant zeta function. The TNC is the special
case of the ETNC that the Galois group is trivial.

In the case that the Galois group is abelian, the ETNC was first formulated by Kato
[Kat93a], [Kat93b] and independently by Fontaine and Perrin-Riou [FoPe94]. In their

formulation, the Tamagawa numbers introduced by Bloch and Kato do not appear, and



ideas in Iwasawa theory are used. Iwasawa theory, which grew in the second half of the
20th century, is a powerful theory investigating ideal class groups with Galois actions. In
the general case that the Galois group is not necessarily abelian, the ETNC was formulated
by Burns and Flach in [BuFl01]. They combined the ideas of Kato and of Fontaine and
Perrin-Riou with ideas in the Stark conjecture, which grew in Stark’s seminal works [Sta71],
[Sta75], [Sta76], [Sta80]. The Stark conjecture concerns the values of Artin L-functions,
which is a direct generalization of the zeta function considered by Dirichlet. The Artin
L-function is regarded as the equivariant zeta function of a particular motive, called the
Tate motive. Also, Burns and Flach used ideas of Chinburg [Chi85] and Gruenberg, Ritter
and Weiss [GRW99], in which the values of Artin L-functions are deeply investigated.

In some cases the ETNC can be solved by using Iwasawa theory. Burns, Greither, and
Flach [BuGr03], [BuF106], [Flall] solved the ETNC for Tate motives for abelian extensions
over Q by using the cyclotomic Iwasawa main conjecture proved by Mazur and Wiles in
[MaWi84] and [Wil90]. This gives strong evidence for the validity of the ETNC, but at the

moment in other cases only a few results on the ETNC are known.

1.3 Refined class number formulas

In [Gro88], Gross proposed an interesting conjectural analogue of the classical class number
formula. Gross’s conjecture is formulated as follows. Let k be a number field. Let L/k be a
finite abelian extension, and G be its Galois group. Let S and T be finite sets of places of &
satisfying certain conditions (see §3.1). Consider the Stickelberger element O s € Z[G],
which is defined as the value of the equivariant (S,7)-Artin L-function for L/k at s = 0
(see §3.1). Let I(G) denotes the augmentation ideal of Z[G]. Gross’s conjecture asserts
that O, g7 € I1(G)¥7! and

@L,S,T = _hk,S,TR?,gS,T (mod [(G)‘S‘),

where hy g7 denotes the (S, 7T)-class number of k and RigS’T c I(G)SI=1/1(G)9 is the
“algebraic regulator”, which is defined by using a basis of the (S, T')-unit group O}’ g7 and
the local reciprocity maps at places in S (see [Gro88, Conjecture 4.1]). When |S| = 1,
Gross’s conjecture is equivalent to the classical class number formula. Thus, we can regard
Gross’s conjecture as a refinement of the class number formula, so it is called a “refined
class number formula”.

In [Dar95], Darmon formulated an analogue of Gross’s conjecture for cyclotomic units.
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Cyclotomic units are related to the values of Dirichlet’s L-function, and Darmon’s conjec-
ture is also regarded as a refinement of the classical class number formula. For the precise
formulation, see Theorem 4.1.1 (note that we slightly modified the formulation in [Dar95]).

Burns found that Gross’s conjecture is a consequence of the ETNC for the untwisted
Tate motive in [Bur07]. In particular, using the results of Burns and Greither [BuGr03]
and of Flach [Flall], Burns gave another proof of Gross’s conjecture for abelian extensions
over Q, which was first proved by Aoki in [Aok91].

On the other hand, the “non-2-part” of Darmon’s conjecture was recently solved by
Mazur and Rubin in [MaRull]. In the proof, they used their theory of “Kolyvagin systems”
[MaRu04]. The theory of Kolyvagin systems is based on ideas in Kolyvagin’s theory of
“Euler systems” in [Kol90]. The system of cyclotomic units is a typical example of Euler
systems. Mazur and Rubin proved that both sides of Darmon’s conjectural equality form
Kolyvagin systems. Then they proved that the equality holds by using the “uniqueness”

of Kolyvagin systems, which is one of the main results in [MaRu04].

1.4 Main results

In this thesis, we formulate two different generalizations of Darmon’s conjecture.

Our first conjecture is formulated as a refinement of the Rubin-Stark conjecture, pro-
posed by Rubin in [Rub96] (see Conjecture 1 in §3.2). The Rubin-Stark conjecture predicts
the existence of certain integral elements, called the Rubin-Stark elements, related to the
values of Artin L-functions at s = 0. These elements are generalizations of the Stickelberger
elements and the cyclotomic units.

We briefly sketch the formulation of the Rubin-Stark conjecture. Let k be a fixed
number field, and L/k be a finite abelian extension with Galois group G. Take finite sets
of places S and T of k satisfying certain conditions (see §3.1). Also, choose a proper subset
V' C S such that all v € V split completely in L. We denote the order of V' by r. It is
known that the order of the equivariant (S, 7T")-Artin L-function O gr(s) for L/k at s =0
is greater than or equal to r, so we can consider the value

01, 1(0) := lim -0, 51(s) € C[C.
S, 550 57
The Rubin-Stark conjecture predicts that there exists a unique element €7 g7y in a cer-
tain integral lattice of Q ®z A" Of s.7» Which maps to @(LT,)S’T(O) under the regulator map
Ry : C®z N\ Of g7 — C[G]. This element e, 57y is called the Rubin-Stark element for
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(L,S,T,V). The set T is often considered to be fixed, and the Rubin-Stark element e, s 1y
is often denoted by €1 gy. We remark that the Rubin-Stark conjecture is known to be true
if £ = Q (see [Bur07, Theorem Al).

We formulate a new conjecture on a relation between two different Rubin-Stark ele-
ments, which is a generalization of Darmon’s conjecture. This is Conjecture 3 in §3.4.
We give here a sketch of the formulation of Conjecture 3. Consider a tower of extensions
L'/L/k such that L'/k is finite abelian. Consider two Rubin-Stark elements e/ ¢y and
er.s,v. For simplicity, we explain the formulation in the case S = S. It is known that, when
V' =V, the norm map N/, sends e/ gy to ep gy (the “norm relation”, see Proposition
3.3.2). In the case V' C V, denoting the order of V' \ V' by d, we introduce the dth norm
N(Ld,)/ 1, which generalizes the usual norm (see Definition 2.2.12 and Remark 2.2.13). Then
Conjecture 3 predicts the following equality:

NE;C{)/L(gL',S,V/) = :l:Rer\V/ (EL,S,V>7 (11)

where Recy\y/ is a map constructed by using the local reciprocity maps at places in V' \ V’
(which is 70 (A,cny7 o) With the notation in §3.4). We remark that the sign in the right
hand side of (1.1) can be determined explicitly. When d = 0 i.e. V' = V| the equality
(1.1) is exactly the usual norm relation. Thus, Conjecture 3 gives a relation between two
different Rubin-Stark elements €,/ ¢y and €1, g even when V' 2 V.

Our first main result is as follows.

Theorem 1.4.1 (Theorem 3.5.8). Let p be a prime number not dividing [L : k]. Under the
assumptions in Theorem 3.5.8, the p-part of our new conjecture (Conjecture 3) is deduced

from the ETNC for the untwisted Tate motive.

We remark that this result was later improved in a recent joint work of the author with
Burns and Kurihara [BKS14]. It is proved in [BKS14] that Conjecture 3 is deduced from
the ETNC completely (see Remark 3.5.9). In particular, using the result due to Burns,
Greither and Flach [BuGr03], [Flall], we know that Conjecture 3 for the fields L'/L/k is
true if L' is abelian over Q.

Using the above result, we prove the next theorem, which gives a complete solution
to Darmon’s conjecture. We explain the formulation of Darmon’s conjecture (see §4.1 for
the precise formulation). Let F' be a real quadratic field with conductor f. Let n be a
square-free positive integer which is prime to f. For simplicity, we assume that all prime

divisors of n split in F. Denote the number of prime divisors of n by v. Let F,, denote
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the maximal real subfield of F((,), where (, is a primitive nth root of unity. Consider a

cyclotomic unit 3, € F* (see §4.1), and define the “theta element” by

b= Y  oB.®0 ' €F @ ZGal(F,/F)].

o€Gal(F, /F)

Let I, be the augmentation ideal of Z[Gal(F,,/F')]. Darmon’s conjecture predicts that the
following equality holds in (F*/{+1}) ®z I%/I:*:

en = —han,

where h,, is the n-class number of F' (namely, the order of the Picard group Pic(Op[1])),
and R, € F* ®z I¥/I"*! is the “algebraic regulator”, which is defined by using the local
reciprocity maps at prime divisors of n.

We prove in §4.2 that our new conjecture (Conjecture 3) is indeed a generalization of

Darmon’s conjecture. We have the following theorem.

Theorem 1.4.2 (Theorem 4.1.1). Darmon’s conjecture is deduced from Conjecture 3 for

the tower of fields F,, /F/Q. Consequently, Darmon’s conjecture is true.

Thus, we give a complete solution to Darmon’s conjecture. This result is an improve-
ment of the result of Mazur and Rubin in [MaRull] (see Remark 4.1.2). We remark that
Theorem 3.5.8 gives sufficient ingredients to prove the “non-2-part” of Darmon’s conjecture
(see [Sanl4b)).

We remark that a conjecture essentially same to our new conjecture (Conjecture 3) is

formulated independently by Mazur and Rubin in the recent preprint [MaRul3b].

Our second generalization of Darmon’s conjecture is a generalization for Euler systems
defined for general p-adic representations. This conjecture is not precisely a generalization
of Darmon’s conjecture, but a weak version of it. The formulation of this conjecture replaces
the system of cyclotomic units {3, },, which appears in Darmon’s conjecture, by an Euler
system for a general p-adic representation. For a given Euler system ¢ = {c,},, we define
the theta element 6,(c) as an analogue of Darmon’s theta element (see Definition 5.1.4).
We construct a module of algebraic regulators R,, (see Definition 5.1.2), and conjecture

that

On(c) € b, Ry, (1.2)
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where b, denotes the order of a certain n-modified Selmer group (this is denoted by
H(lp)n(Q,A*) in §5.1), which plays a role of h, in Darmon’s conjecture. In the case
that the p-adic representation is the Tate module of G,, twisted by the Dirichlet character
associated with a real quadratic field F', we can take c to be the Euler system of cyclotomic
units, but in this case our conjecture (1.2) is weaker than the original conjecture of Dar-
mon, since we do not give an explicit description of an algebraic regulator R, € R,, such
that 0,(c) = —h,R,.

The theory of Kolyvagin systems, developed by Mazur and Rubin in [MaRu04], is a
powerful theory investigating Selmer groups via Euler systems. We remark that many
important properties of Kolyvagin systems, such as the “uniqueness” property which was
used in the proof of the “non-2-part” of Darmon’s conjecture in [MaRull], are proved
under the “standard hypotheses” including that the “core rank” is equal to one. We prove

our generalized Darmon’s conjecture for Euler systems under the standard hypotheses.

Theorem 1.4.3 (Theorem 5.1.8). Assume that the standard hypotheses of the theory of
Kolyvagin systems (including that the core rank is equal to one). Then our generalized

Darmon’s conjecture for Fuler systems is true.

As an application of this result, we give another proof for the important fact (see
[Rub00]) that an Euler system gives an upper bound of the size of the Selmer group (see
Corollary 5.1.9).

1.5 Expected overview

We mention an expected overview of further generalizations of Darmon’s conjecture. It is
believed that any important p-adic representation comes from a motive. So suppose that
T is a p-adic representation which comes from a motive M. In some cases it is known (and
believed in general) that, if the ETNC holds for M, then we have a certain nice system in
the rth exterior power (with some non-negative integer r) of the Galois cohomology groups
of the dual of T. Such a system has properties like FEuler systems, and called a “rank r
Euler system”. In the case » = 1, this is exactly a usual Euler system. The integer r
is expected to be equal to the core rank of the dual of 7. For example, when M is the
untwisted Tate motive for an abelian field, in this case the ETNC is valid and M gives rise
to the (rank 1) Euler system of cyclotomic units. A typical example of higher rank Euler
systems is a system of conjectural Rubin-Stark elements, which come from the untwisted

Tate motive for a general number field.

10



Our first generalization of Darmon’s conjecture (Conjecture 3) is regarded as a con-
jecture for the higher rank Euler system which comes from the untwisted Tate motive,
whereas the second (Theorem 5.1.8) is a conjecture for the rank one Euler systems which

come from general motives. By this observation, it is natural to ask the following questions.

e Can we formulate a generalization of our new conjecture (Conjecture 3) for higher

rank Euler systems which come from general motives?
e [s the conjecture deduced from the ETNC?

We also hope that our conjectures can be extended to the case of non-abelian Galois

extensions. These expected generalizations should be done in future works.

1.6 Notation

For any abelian group G, Z[G]-modules are simply called G-modules. The tensor product
over Z|G] is denoted by

_®G —.

Similarly, the exterior power over Z[G|, and Hom of Z|G]-modules are denoted by
/\ ; Homg(—, —)
¢

respectively. We use the notations like this also for Z|G]-algebras.
For any subgroup H of G, we define the norm element Ny € Z[G] by

NH:ZO'.

oceH

For any G-module M, we define
ME ={m & M | om=m forall o € G}.

The maximal Z-torsion subgroup of M is denoted by M.
For any G-modules M and M’, we endow M ®z M’ with a structure of a G-bimodule
by

ocme@m)=om@m’ and (m®@m')ec=m®om,
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where 0 € G, m € M andm’ € M'. If ¢ € Homg (M, M"), where M"” is another G-module,
we often denote ¢ ® id € Homg(M @7 M', M" @7 M') by .
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Chapter 2
Algebraic preliminaries

In this chapter, we summarize certain useful constructions concerning exterior powers and
also prove algebraic results which are to be used in later chapters. The conventions in §2.1
are frequently used throughout this thesis. In §2.2, we study Rubin’s lattices defined in
[Rub96, §1.2]. The results in §2.2 are used in Chapter 3.

2.1 Exterior powers

Let G be a finite abelian group. For a G-module M and ¢ € Homg (M, Z[G]), there is a

G-homomorphism
r r—1
AM— \M
G G
for all r € Z>,, defined by

.
mi A Am, > Z(—l)i_lgo(mi)ml Ao Ami_g Amg Ao Am,.
i=1

This morphism is also denoted by .

This construction gives a morphism

/S\HomG(M,Z[G]) — Homg (/\ M,T/_\SM) (2.1)

G

for all r, s € Z>( such that r > s, defined by

QLA N = (M= pg0---0p(m)).

13



By this construction, we often regard an element of Aj, Homg(M,Z[G]) as an element
of Homg(An M, A °M). Note that if r = s, o1 A -+ A, € A\ Homg (M, Z[G]), and
my A--- Am, € N\ M, then we have

(pr A A )(my A Amy) = det(i(my))1<i <o
For a G-algebra @) and ¢ € Homg (M, Q), there is a G-homomorphism
T r—1
AM — ( A M) ®c Q
G G
defined by
mi A Ay > (=1 T g A Ay A A Amg ® o(my).
i=1

Similarly to the construction of (2.1), we have a morphism

/S\Homg(M, ()) — Homg (/\ M, (’"/\S M) e Q) . (2.2)

G G

2.2 Rubin’s lattices

In this section, we fix a finite abelian group G and its subgroup H. Following Rubin
[Rub96, §1.2], we give the following definition.

Definition 2.2.1. For a finitely generated G-module M and r € Zs, we define Rubin’s
lattice by

hM: {m € (/T\M) ®z Q| ®(m) € Z|G] for all & € /T\Homg(M,Z[G])}.

G
Note that g M = Z[G].

Remark 2.2.2. We define ¢ : A, Homg(M, Z[G]) — Homg (A M, Z[G]) by p1A- - A, —
©r 00 (see (2.1)). Tt is not difficult to see that

ﬂM — Homg(im¢, Z[G]); m s (® — ®(m))
a

14



is an isomorphism (see [Rub96, §1.2]).

Next, we study some more properties of Rubin’s lattice.

Let Iy (resp. I(H)) be the kernel of the natural map Z|G| — Z|G/H] (vesp. Z[H] — Z).
Note that I(H) C Ig. For any d € Zsg, let Q% (resp. Q(H)?) be the dth augmentation quo-
tient I¢ /1% (vesp. I(H)?/I(H)%1). Note that Q% has a natural G/ H-module structure,
since Z|G)/Iy ~ Z[|G/H]. Tt is known that there is a natural isomorphism of G/ H-modules

ZIG/H] @z Q(H)' = QY (2.3)
given by
o ar— %,

where a € I(H)? and a denotes the image of a in Q(H)?, & € G is any lift of 0 € G/H,
and 7a denotes the image of 7a € I in Q% (a does not depend on the choice of &) (see
[Popl1, Lemma 5.2.3(2)]). We often identify Z[G/H] ®z Q(H)¢ and QY.

The following lemma is well-known, and we omit the proof.

Lemma 2.2.3. For a G-module M and an abelian group A, there is a natural isomorphism

Homgz (M, A) — Homg (M, Z|G] @z A); ¢ — (m — Za_l ® <p(0m)> .

ceG

Lemma 2.2.4. Let M be a finitely generated G /H-module, and M = M /Mos. For any

d € Z>q, we have an isomorphism
Homeg (M, Z|G/H]) ®z QH)* = Homg/H(W, Q%) p®ars (m— o(m)a).
In particular,
Homg,u (M, Z|G/H]) ®z Q(H)" — Home,u (M, Q%)

18 an injection.

Proof. We have a commutative diagram:

Homg, (M, Z|G/H]) @z Q(H)* — Homg,n (M, Q%)

| |

Homg (M, Z) ®z Q(H)? Homg (M, Q(H)?),

15



where the bottom horizontal arrow is given by ¢ ® a — (m — ¢(m)a), and the left and
right vertical arrows are the isomorphisms given in Lemma 2.2.3 (note that we have a
natural isomorphism Q% ~ Z[G/H] ®7 Q(H)?, see (2.3)). The bottom horizontal arrow
is an isomorphism, since Homg(M, Z) ~ Homz(M,Z) and M is torsion-free by definition.

Hence the upper horizontal arrow is also bijective. O

Definition 2.2.5. A finitely generated G-module M is called a G-lattice if M is torsion-

free.

For example, for a finitely generated G-module M, Homg (M, Z[G]) is a G-lattice. Ru-
bin’s lattice () M is also a G-lattice.

Proposition 2.2.6. Let M be a G/H-lattice, and r,d € Z>o such that r > d. Then an
element ® € /\é/H Homeg, (M, Q) induces a G/ H-homomorphism

r r—d r—d
AM— | (M| @uQh|~|[M|ezQH)
G/H G/H G/H

Proof. Note that QL is the degree-1-part of the graded G/H-algebra @izo Q. We apply
(2.2) to know that ® induces the G/H-homomorphism

T r—d
AM— | N\ M| @cuQ} (2.4)
G/H G/H

We extend this map to Rubin’s lattice (5 /u M. We may assume that there exist

©1,-..,pq € Homg (M, Qy)

such that ® = o1 A--- Apy. Moreover, by Lemma 2.2.4, we may assume for each 1 <7 < d
that there exist ¢); € Homg, u(M,Z[G/H]) and a; € Q(H)" such that ¢; = ¥;(-)a;. Put
V=11 A Ng € /\é/H Homeg (M, Z|G/H]). By the definition of Rubin’s lattice, ®

induces a G/ H-homomorphism

r r—d
ﬂM—> ﬂM ®z QH)Y m = U(m)®ar---aqy.
G/H G/H
This extends the map (2.4). O
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The following definition is due to [Bur07, §2.1].

Definition 2.2.7. Let M be a G-lattice. For ¢ € Homg(M,Z[G]), we define pf €
Homg,y(M*,Z|G/H]) by

MP 25 7jG1" = ZG/H],

where the last isomorphism is given by Ny ~— 1. Similarly, for ® € Ay Home (M, Z[G))
(r € Zso), ®" € AgyHomg u(M",Z[G/H]) is defined. (If r = 0, we define ®" €
Z|G/H] to be the image of ® € Z[G] under the natural map.)

Remark 2.2.8. It is easy to see that

ceG/H

where o' € Homg (M, Z) corresponds to ¢ € Homg (M, Z[G]) (see Lemma 2.2.3). If r > 1,

then one also sees that
d(m) = & (N,ym) in Z[G/H] (2.5)

for all ® € Ay, Homg (M, Z[G]) and m € (5 M.

Lemma 2.2.9. If M is a G-lattice, then the map
Homg (M, Z[G]) — Homg,up(M",ZIG/H)); ¢~ "

18 surjective.

Proof. By Remark 2.2.8, what we have to prove is that the restriction map
Homgy(M,Z) — Homg (M, Z)

is surjective. Therefore, it is sufficient to prove that M /M is torsion-free. Take m € M

such that nm € M* for a nonzero n € Z. For any o € H, we have
n((c—1)m) = (o — 1)nm = 0.

Since M is a G-lattice, it is torsion-free. Therefore, we have (¢ — 1)m = 0. This implies
m e MH. O
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Lemma 2.2.10. Let M be a G-lattice, and r,d € Z>¢. Then there is a canonical injection
ﬂ M — ﬂ M.
G/H
Furthermore, the maps
() m" ®ZQ(H)d—i><ﬂM> ®z Q(H (ﬂM> ©z Z[H]/I(H)*
G/H a
are both injective, where the first arrow is induced by i, and the second by the inclusion
QUH)* — Z[H)/I(H)*,
Proof. Let

G

L /\Homg(M,Z[G]) — Homg (/T\ M,Z[G])

and

Li /\HomG/H(M ,Z|G/H]) — Homg/y /\MH (G/H)]
G/H G/H

be the maps in Remark 2.2.2. It is easy to see that the map
Koime — imeg; (@) = g (BF)
is well-defined. By Lemma 2.2.9, the map
/\ Home (M, Z[G]) — /\ Homg,u(M" Z[G/H]); @+ &
a G/H
is surjective. So the map k is also surjective. Hence, by Remark 2.2.2, we have an injection
ﬂ M7 — ﬂ M
G/H

(note that Home g (im ¢y, Z|G/H]) ~ Homg(im vy, Z[G]) by Lemma 2.2.3). The cokernel
of this map is isomorphic to a submodule of Homg (ker k, Z[G]), so it is torsion-free. Hence

the map

i mMH ®z Q(H (ﬂM)®ZQ( )4

G/H
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is injective. The injectivity of the map

<FVW)®ZQ (FMW)®Z H|/I(H)™

follows from the fact that (5 M is torsion-free. O

Remark 2.2.11. The canonical injection i : (\g,; M < [ M constructed above does
not coincide in general with the map induced by the inclusion M < M. In fact, if r > 1,
then we have

i(Nym) = Ngm
for all m € (N, M

Definition 2.2.12. Let M be a G-lattice, and r,d € Z>y. When r > 1, we define the dth

norm
NG M — (ﬂ M) ®y Z[H]/I(H)*!
G G

by

When r = 0, we define

to be the natural map.

Remark 2.2.13. The Oth norm is the usual norm :

NH lf?"zl,

Z|G] — Z|G/H] ifr = 0.

NG =

Proposition 2.2.14. Let M be a G-lattice, r,d € Z>q, and m € (M. Assume
Ng—’d) (m) € im1,

where, in the case v > 1, i : (Ngy M™) @2 Q(H)? — (N M) @z Z[H|/I(H)™" is defined
to be the injection in Lemma 2.2.10, and in the case r =0, i : Q% — Z[G]/I%™ to be the

inclusion. If d =0 orr =0 or 1, then we have

o(m) = (i (NG (m)) in QY
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for all ® € A\ Home (M, Z[G)).

Proof. When d = 0, the proposition follows from Remarks 2.2.8, 2.2.11, and 2.2.13. When
r = 0, the proposition is clear. So we suppose r = 1. Note that in this case the map 7 is

the inclusion

i M @z Q(H) — M ®z Z[H]/I(H)*.

We regard M ©7 Q(H)? ¢ M @z Z[H]/I(H)*.
Take any ¢ € Homg (M, Z[G]). Then ¢ is written by

ceG/H

(see Remark 2.2.8). For each o € G/H, we fix a lifting ¢ € G, and put

p= > ¢'(6()5 " € Homy(M, Z[G)).
ceG/H

Then, by the assumption on Ng’d) (m), we have

(NG (m)) = (a0 (F®1d)) (NG (m)) € Q%

where

o Z[G) @z Z[H]/I(H)"™ — Z[G] /1™, a® b ab.

It is easy to check that
p(m) = (a0 (F@id)(Ny?(m)) in Z[G)/ I

This can be checked by noting that

o= 3 S G

oeG/H reH

Hence we have
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Theorem 2.2.15. Let M be a G-lattice, and r,d € Z>o. Then the map
() M" | @2 Q(H)" — Homg ( /\ Home(M, Z[G)), Q%) D am (0 d(a))
G/H G

18 1njective.

Proof. Let

vr : [\ Homg (M, Z[G/H]) — Homey | [\ M" Z[G/H]
G/H G/H

be the map defined in Remark 2.2.2 for G/H and M. Taking Homg,u(—, Z|G/H]) to

the exact sequence
0 — kervy — /\ Homg, (M, Z|G/H]) — im iy — 0,
G/H
we have the exact sequence
0— (| M" — Homeyy | /\ Home,n(M", Z|G/H)), Z|G/H]

G/H G/H
— Homg g (ker vy, Z|G/H)).

Since Home g (ker vy, Z|G/ H]) is torsion-free, the map
() M" | @2 Q(H)" — Homgyy | [\ Home,u(M",Z|[G/H]),Z|G/H] | @7 Q(H)"
G/H G/H

is injective. From Lemma 2.2.4, we have an injection

Homeypy | /\ Home,n(M",Z[G/H]),ZIG/H] | ©z Q(H)"
G/H

- HomG /\ Homg/H(MH’Z[G/H]),leq
G/H
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From Lemma 2.2.9, we also have an injection

HOHlG /\ HOHle/H(MH,Z[G/HD,Q?{ — HOH]G (/\ HomG(Maz[G])7QdH> :
G/H G

The composition of the above three injections coincides with the map given in the theorem,

hence we complete the proof. ]

22



Chapter 3
Refined abelian Stark conjectures

In this chapter, we formulate a new conjecture on a relation between two different Rubin-
Stark elements (see Conjecture 3). In the next chapter, we show that our new conjecture

(Conjecture 3) is indeed a generalization of Darmon’s conjecture [Dar95].

3.1 Notation

Throughout this chapter, we fix a global field k. We also fix T, a finite set of places of
k, containing no infinite place. For a finite separable extension L/k and a finite set S of
places of k, S denotes the set of places of L lying above the places in S. For S containing
all the infinite places and disjoint to 7', OF ¢ denotes the (S,T')-unit group of L, i.e.

Of g7 ={a e L* | ordy(a) =0 for all w ¢ S, and a = 1 (mod w’) for all w’ € Ty},

where ord,, is the (normalized) additive valuation at w. Let Y1 s = €,,c5, Zw, the free
abelian group on Sz, and X, ¢ = {d> a,w € Y s | > a, =0}. Let

s Ofgr — R®z Xps

be the map defined by A s(a) = —>_
value at w.
Let Q(= Q(k,T)) be the set of triples (L, S, V) satisfying the following:

wes, 10g|al,w, where |-, is the normalized absolute

e [ is a finite abelian extension of k,

e S is a nonempty finite set of places of k satisfying
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- SNT =0,
— S contains all the infinite places and all places ramifying in L,

— Of g is torsion-free,
e I/ is a subset of S satisfying

— any v € V splits completely in L,
18> V] 1.

We assume that Q2 # (). If & is a number field, then the condition that OF g is torsion-free
is satisfied when, for example, T' contains two finite places of unequal residue characteristics.

Take (L,S,V) € Q, and put G, = Gal(L/k), r = ry = |V|. The equivariant (S,T)-
Artin L-function for L/k is defined by

OLsr(s) = > exLsr(s,x "),
X€GL

where éz = Homy (G, C*), e, = IQ_IL\ ZoegL x(o)o™!, and

Lsz(s,x) = [ [(1 = x(Fr,)No'™*) TT(1 = x(Fr,)No™) 7,

veT vegS

where Fr, € Gy, is the arithmetic Frobenius at v, and Nv is the cardinality of the residue
field at v.
We define

AN sr = {a € ﬂ Or.s1 | exa=0 for every x € G; such that r(x) > 7"} ,
3

where 7(x) = 7(x, S) = orde=oLsr(s, x) (for the definition of (; , see Definition 2.2.1). Tt

is well-known that

[{v € S | v splits completely in L**™x}| if y is nontrivial,

|S]—1 if x is trivial,

(see [Tat76, Proposition 3.4, Chpt. I]) so by our assumptions on V', we have r(x) > r for
every x. This implies that s7"0p g r(s) is holomorphic at s = 0. We define

@(Lr,)S,T(O) = £1_f)1(1) s "Or.s7(s) € ClGyL].
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We fix the following:
e a bijection {all the places of k} ~ Z>,
e for each place v of k, a place of k (a fixed separable closure of k) lying above v.

From this fixed choice, we can regard V' as a totally ordered finite set with order <, and
arrange V' = {vy,...,v,} so that v; < -+ < v,. For each v € V| there is a fixed place w of

L lying above v, and define v* € Homyg, (Y7, 5,Z[GL]) to be the dual of w, i.e.
vi(w') = Z o.

Thus, we often use slightly ambiguous notations such as follows: the fixed places of L
lying above v, v, v;, etc. are denoted by w, w’, w;, etc. respectively. We define the analytic

regulator map Ry : A\g Of g1 — R[G] by

RV = /\ (’U* O )\L,S),

veV

where the exterior power in the right hand side means (vj oA g A--- Avfo AL g) (defined
similarly to (2.1)). Thus, when we take an exterior power on a totally ordered finite set,

we always mean that the order is arranged to be ascending order. One can easily see that

v odps=— Y loglo(-)|wo ",

o€egr,

so a more explicit definition of Ry is as follows:

Ry (us A -+ Au,) = det <— Z log |U(ui>|wj0'_l> .

oc€gr,

3.2 The Rubin-Stark conjecture

We use the notations and conventions as in §3.1. Recall that the integral refinement of
abelian Stark conjecture, which we call the Rubin-Stark conjecture, formulated by Rubin,

is stated as follows:

Conjecture 1 (Rubin [Rub96, Conjecture B']). For (L,S,V) € Q, there is a unique
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ersyv =¢ernsrv € A g7 such that
Ry (ersy) = O 57 (0).
The element €7, g predicted by the conjecture is called the Rubin-Stark element.

Remark 3.2.1. When r = 0, Conjecture 1 is known to be true (see [Rub96, Theorem
3.3]). In this case we have e, g = O 57(0) € Z[G]| = ﬂ(g]L OL st

Remark 3.2.2. When r < min{|S| — 1, |{v € S | v splits completely in L}|}, we have

@gﬂg’T(O) =0, so Conjecture 1 is trivially true (namely, we have €1, g = 0).
Remark 3.2.3. When k& = Q, Conjecture 1 is true (see [Bur07, Theorem A]).

Remark 3.2.4. When k is a function field, Conjecture 1 is true (see [Burll, Corollary
1.2(iii)]).

3.3 Some properties of Rubin-Stark elements

In this section, we assume that Conjecture 1 holds for all (L, S, V) € €, and review some

properties of Rubin-Stark elements.

Lemma 3.3.1 ([Rub96, Lemma 2.7(ii)]). Let (L,S,V) € Q. Then Ry is injective on
Q ®Z AE,S,T'

Proof. Since \p s induces an injection Q ®z Ag, Of s7 — C ®z A\g, X1s, it is sufficient

to prove that

/\ v €x (C X7, /\XL,S> — (C[QL]
gL

veV

is injective for every x € Gy, such that r(x) = r. It is well-known that r(x) = dimc(e, (C®y
X)), so we have dime (e, (C ®z Ag, Xr.s)) = 1. Take any v' € S\ V, then we have

(/\v*) (ex/\(w—w')> =e, #0

(recall that w (resp. w’) denotes the fixed place of L lying above v (resp. v')), which proves

the lemma. N
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Proposition 3.3.2 ([Rub96, Proposition 6.1]). Let
(L,S,V),(L',S"V)eqQ,

and suppose that L C L' and S C S’. Then we have
Ny(ersv) = H (1—Fr,Y) | eLsv,
vES\S

where N y;, = Naayrr/r), and if r =0, then we regard NE,/L as the natural map Z[Gr] —

Z[GL).

Proof. 1t is easy to see that N7, /(e s7v) € Q ®z A g . Hence, by Lemma 3.3.1, it is
enough to check that

RV(NE’/L(gL’,S’,V>> = RV H (1 - Fl";l) EL,S,V
veS\S

The left hand side is equal to the image of @(LT/),S/,T(O) in R[G;], and hence to J],cgn5(1 —
Fr_l)@(Li)S’T(O) (see [Tat76, Proposition 1.8, Chpt. IV]). The right hand side is equal to

(2

[Toesns(l— Fr;l)@g)S’T(O), so we complete the proof. O

Proposition 3.3.3 ([Rub96, Lemma 5.1(iv) and Proposition 5.2]). Let
(L,S,V),(L,S" V") e Q,

and suppose that S C S, V.C V' and "\ S =V'\ V. Put
Oy =sgn(V,V) N\ (Z ordw(0(~))a_1> € /\ Homg, (O} ¢ 7. Z[G1]),
veVA\V \o€dr, gL
where r = |V|, v = |V'|, and sgn(V', V) = £1 is defined by
(/\ v*) o /\ v* | =sgn(V', V) /\ v* in  Homg, (/\ YLS/,Z[QL]) .
veV veEV\V veV’ 93

Then we have

Dy v (AZI,S',T) CALsr
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and

Oy v(ensv) =crLsy.

Proof. Put ® = ®y y, for simplicity. First, we prove that
(A} 7)) @2 Q= A} g7 @2 Q. (3.1)

There is a split exact sequence of Q[G]-modules:

Pocsns W
O — O;,S,T ®Z @ — OZ,S’,T ®Z Q i\s @ Q[gL] — 0,

where w = 3 g ord,(o(-))o~". So we can choose a submodule M C Of g  ®z Q such
that

OE,S’,T ®z7 Q = (OZ,S,T ®z Q) © M

and

@ w: M—> @ Q[GL]

vES\S vES\S

is an isomorphism. Therefore, we have

(/\OLS’ ) ®z Q= @ ((/\OLST> ®ZQ) ®q6.] /\ M.
i=0 Q[GL]
If i > r then <I>(((/\g Or.s1) ®2 Q) ®qg,) /\Q[QL] M) =0, and if i < r then /\@[g M =0.

Hence we have /
® (/\ OZ,S’,T) ®zQ = (/\ OZ,S,T) ®z Q.
Gr, gr

Now (3.1) follows by noting that r(x, S") = r(x,S) + ' — r for every x € Gr.
For the first assertion, by (3.1), it is enough to prove that

(ﬂ Or s, > - ﬂ Of sr
93

: x X : N
Since OF ¢ 1/ OF g7 is torsion-free, we have a surjection

Homg, (O g 1, Z[G1]) — Homg, (OF g 1, Z[GL]).
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Now the assertion follows from the definition of Rubin’s lattice.

For the second assertion, it is enough to show that
}%V(<D(€[HSCV”)) ::()ggﬂT(O)'
It is easy to see that for v € V' \ 'V

log Nv Z ord,(o(-))o ™ = v o Ap g,

oegr,
and also that
@gng(O) = H log Nv @(LT)ST(O)
veEVI\V
Therefore, we have
-1
RV(CI)(gL,S’,V’)) = H 10g Nv RV/(&L’Slyvl)
veVA\V

3.4 Refined conjectures

In this section, we propose the main conjectures. We keep the notations in §3.1. We also
keep on assuming Conjecture 1 is true for all (L,S,V) € Q. Fix (L, S, V), (L', S, V') € Q
such that L ¢ L', S € §’, and V D V’. We also use the notations defined in Chapter 2,
taking G = G, and H = Gal(L'/L). For convenience, we record the list of the notations

here (some new notations are added).
e G, = Gal(L/k),
e G = Gal(L'/k),
e G(L'/JL) = Gal(L'/L),

29



r=1[V],

= ‘V,|?

ersv € Ng, OLsr (16sp. ep sy € ﬂgﬂ O s7): the Rubin-Stark element for
(L,S,V) (resp. (L', S, V")) (see §3.2).

d=r—1r(>0),

Iy = lawyry = ker(Z[Gr] — Z[GL)),
[(I'/L) = I(G(L'/ L)) = kex(ZIG(L' /L)] — ).

For n € Zzo,

i Q7LL’/L = QT(Z}(L’/L) = [2//L/IF;};7

o Q(L'/L)" = Q(G(L'/L))" = I(L'/L)"/I(L'/L)™+.

Recall that there is a natural isomorphism
ZIGr) @z Q(L'/L)" ~ Q.

(see (2.3)).
Recall the definition of “higher norm” (Definition 2.2.12). In the case ' > 1, the dth

norm
r d r'.d
NG 0= G(L)/L ﬂox, o — ﬂo& o | ©@2ZG(L/L))/TI(L L)+
gL’ ng

is defined by
NP = Y cawo,

ceG(L'/L)

and in the case ' =0, N (LO/’/dz is defined to be the natural map

ZG1) — ZIGL) /1T

In the case ' > 1, define

(ﬂ OLsr ) ®z Q(L'/L)* ﬂ O sy | ®2 ZIG(L' /L) /I(L'/L)™

Gr
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to be the canonical injection in Lemma 2.2.10. In the case " = 0, define
0

a (ﬂ OE’S"T) @2 QUU/L) =~ Qb 2]/ 13,
gL

to be the inclusion.

Conjecture 2.

Ng/,a[l]) (EL',S’,V’) € ima1.
Remark 3.4.1. When d = 0, Conjecture 2 is true by Remarks 2.2.11 and 2.2.13.

Remark 3.4.2. Conjecture 2 is related to the Kolyvagin’s derivative construction, which is
important in the theory of Euler systems ([Kol90], [Rub00]) and Mazur-Rubin’s Kolyvagin
systems ([MaRu04]). See [Sanl4b, Remark 4.8] for the detail.

For v € V', define
Yo = Porryp: L — Qi’/L

by @u(a) = 3 cq, (tecu(0a) — 1)o", where rec, is the local reciprocity map at w (recall
that w is the fixed place of L lying above v, see §3.1). Note that, by Proposition 2.2.6,

Noevvr Pv € /\éL Homg, (OF 57, Q1)) induces a morphism

ﬂ Ofsr — <ﬂ OZ,S,T) ®z Q(L'/L)".
(93 gL

We define sgn(V, V') = £1 by

(/\ 'U*) o /\ v* | =sgn(V, V) /\ v* in  Homg, (/\ YLyg,Z[gL]> .

veVv’ veV\V/ veV gL

The following conjecture predicts that N(LT,//’C;J) (e1/,57,v7) is described in terms of €/, g v
Conjecture 3. Conjecture 2 holds, and we have
NG ey =senV V) T =B LA e | sy
vES\S vEV\V

Remark 3.4.3. When d = 0, Conjecture 3 is true by the “norm relation” (Proposition
3.3.2). (See Remarks 2.2.11 and 2.2.13.)
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Remark 3.4.4. When ' = 0, by Remark 3.2.1, one sees that Conjecture 3 is equivalent
to the “Gross-type refinement of the Rubin-Stark conjecture” ([Popll, Conjecture 5.3.3]),
which generalizes Gross’s conjecture ([Gro88, Conjecture 4.1]), see [Popll, Proposition

5.3.6).

Remark 3.4.5. When ' = 1, Conjecture 3 is closely related to Darmon’s conjecture

([Dar95, Conjecture 4.3]). The detailed explanation is given in Chapter 4.
Proposition 3.4.6. [t is sufficient to prove Conjecture 3 in the following case:
S=9,
r=min{|S| —1,|{v € S | v splits completely in L}|} =:rpg,
r’ = min{|S| — 1, |{v € S | v splits completely in L'}|} =:rp s.
Proof. From Proposition 3.3.2, we may assume S = S’. When r < rp ¢ and 1’ < rp g,

Conjecture 3 is trivially true (see Remark 3.2.2). When r < r; g and ' = rp/ g, we have

(r',d)
Ny r(en,sy) =0
if Conjecture 3 is true when r = rp g and " = ry . When r = rp g and v’ < 1 g, we
prove
N ¢ | (eLsy) =0
veV\V’

If there exists v € V' \ V’ which splits completely in L', this is clear. If all v € V' \ V’ do
not split completely in L', then there exists v" € S\ V which splits completely in L', and
we must have V' = S\ {¢v'}. By the product formula, we see that

E SOU,L’/L = O on O;,S,T
veS\V/

Note that e sv € e1(Q ®z Ag, OF sr) in this case. Hence, choosing any v” € V' \ V', we

have
/\ ¢o | (ersv) =+ /\ eu | (ELsv),
veEV\V ve(S\{v"H\V’
and the right hand side is 0 since v’ splits completely in L. O

From now on we assume S =S5", r=r,g, and 7' =1y g.

Proposition 3.4.7. If every place in V\ V' is finite and unramified in L', then Conjecture

3 18 true.
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Proof. We treat the case ' > 1. The proof for ' = 0 is similar.
Put W := V' \ V' for simplicity. Note that (L', S\ W, V') € Q. By Proposition 3.3.2,
we have

—1
evsve= [ (1 —Fr,ersyw
veW

Hence, we have

Ng,f[l? (gL',S,V’) = Z g H (1 — Fr;l)gL’,S\W,V’ X 0'71
oceG(L'/L) veW

= Z UEL’,S\W,V’®O’71 H(l—Fr;l)

oceG(L'/L) veW

= Nyjrew sswyvr H (Fr, —1)
veW

/

€ (Npun[ O sr | @2 QL /L)
gL’

For every v € W, we have

(see [Ser79, Proposition 13, Chpt. XIII]), so by Proposition 3.3.3 we have
sgn(V, V/) </\ (,Ov) (5L,S,V) = €L,S\W,V’ H (FI‘U — 1)
veW veW
By Proposition 3.3.2 and Remark 2.2.11, we have
NL'/LéTL',S\W,v' H (Frv - 1) =1 <5L,S\W,V’ H (Frv - 1)) )
veW veW

hence the proposition follows. m

Remark 3.4.8. In [Sanl5], it is proved that Conjecture 3 is true if the following three

assumptions are satisfied:

e V'’ contains all the infinite places of k,
e all v € § split completely in L,

e G(L'/L) = HveS\V, Jy, where J, C Gy, is the inertia group at v.
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The formulation of the following conjecture is a slight modification of [Bur07, Theorem
3.1] (see also Theorem 3.5.4 and Remark 3.5.6).

Conjecture 4. For every ® € /\gy Homg,, (07, g1, Z[G1/]), we have
CI)(zEL/’S’V/) c Ig’/L

and

¢(5L’757V’) _ sgn(V, V/)(I)G(L’/L) /\ Dy (5L,S,V) m QCLI//L.
veV\V/

The following conjecture is motivated by the property of the higher norm described in

Proposition 2.2.14.

Conjecture 5. If Conjecture 2 holds, then we have
Blepsv) = ST NG, Densv) in QL

for every ® € /\ZL/ Homg,, (O, g1, Z[G1/]).

Remark 3.4.9. When d =0 or ' = 0 or 1, Conjecture 5 is true by Proposition 2.2.14.

3.5 Relation among the conjectures
We keep on assuming S =S5, r =rp g, and ' =rp .

Theorem 3.5.1. Assume Conjecture 5 holds. Then, Conjecture 3 holds if and only if
Congectures 2 and 4 hold.

Proof. The “only if” part is clear. We prove the “if” part. Suppose that Conjectures 2 and
4 hold. Then, for every ® € /\ZL, Homg,,(OF, .1, Z[G1/]), we have

QUL (errsi) = sen(VV)SHM A o | (ersw) | im0 Qi
veEV\V/
by Conjectures 4 and 5. By Theorem 2.2.15, the map
(ﬂ OE,S,T) ®z Q(L' /L) — Homyg,, /\ Homg, , (O g7, Z[G/]), QdL’/L
gr G/
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defined by o+ (® — ®FL/L)(q)) is injective. Hence we have

(NG D ersy) =senV V) | N e | (Ersy).
veV\V’

O

Remark 3.5.2. Since Conjecture 3 is closely related to Darmon’s conjecture, as we men-
tioned in Remark 3.4.5, Theorem 3.5.1 gives a relation between Darmon’s conjecture and
Burns’s conjecture (Conjecture 4). In [Hay04, Theorem 6.14], Hayward established a con-
nection between these conjectures: he proved that Darmon’s conjecture gives a “base
change statement” for Burns’s conjecture. More precisely, consider a real quadratic field L
and a real abelian field L which is disjoint to L. Put L' := LL. Then Hayward proved that,
assuming Darmon’s conjecture for L, Burns’s conjecture for E/ Q implies Burns’s conjec-
ture for L' /L up to a power of 2. On the other hand, Theorem 3.5.1 gives an equivalence

of Burns’s conjecture and Darmon’s conjecture, assuming Conjectures 2 and 5.

Remark 3.5.3. One can formulate for any prime number p the “p-part” of Conjectures 2,
3, 4, and 5 in the obvious way. One sees that the “p-part” of Theorem 3.5.1 is also valid,
namely, assuming the “p-part” of Conjecture 5, the “p-part” of Conjecture 3 holds if and
only if the “p-part” of Conjectures 2 and 4 hold.

The following theorem gives evidence for the validity of Conjecture 4.

Theorem 3.5.4 (Burns [Bur07, Theorem 3.1]). If the conjecture in [Bur07, §6.3] holds for
L' /k, then we have

@(5[/737\//) € [g//L

for every ® € /\gy Homyg,, (O g1, Z[Gr/]) and an equality
S(epsy7) = sgn(V, V) e/ N oo | eLsy)
veV\V
in coker(/\,cy\yr o (/\gL LY )tors — QdL,/L), where L7 is the subgroup of L* defined by
Ly ={ae L” | ordy(a—1)>0 for allw e T}

Remark 3.5.5. In the number field case, as Burns mentioned in [Bur07, Remark 6.2], the

conjecture in [Bur07, §6.3] for L'/k is equivalent to the “equivariant Tamagawa number
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conjecture (ETNC)” ([BuF101, Conjecture 4(iv)]) for the pair (h°(Spec(L')),Z[G/]), and
known to be true if L’ is an abelian extension over Q by the works of Burns, Greither, and
Flach ([BuGr03], [Flall]).

Remark 3.5.6. In [Bur07, Theorem 3.1], Burns actually proved more: let

s JMenw I ifd>0,
l/ -
Z[G1/) if d =0,

where I, = ker(Z|Gr/] — Z|G1//G,]) and G, is the decomposition group of w in G(L'/L).
Then Burns proved that, under the assumption that the conjecture in [Bur07, §6.3] holds
for L' /k, (e sv/) € If,/L for every ® € /\ZL/ Homg,,(OF, g1, Z[G1/]) and an equality

bep sy7) = sgn(V, V)9 N oo | eLsy)
veEV\V'

holds in coker(/\, ¢y v ¢ : (/\CglL L) tors — IE//L/]L//LIS,/L)'

Proposition 3.5.7.
d
1
Atz) ez L]
c [43
L

tors

Proof. Note that
d d
/\ LX = hﬂ/\ OZ,E,Ta
gr gL

where Y runs over all finite sets of places of k£, which contains all the infinite places and

places ramifying in L, and is disjoint from 7', and the direct limit is taken with respect to

the map induced by the inclusion Op s 7 — Opwr (X C ¥'). So it is sufficient to prove
d

that for such X, A\g Of v ®z Z[@]

that OF s, - is also torsion-free. It is well-known that a finitely generated Z|

is torsion-free. Since Of 4 is torsion-free, we see
IQ_ILI] [G1]-module
is locally free if and only if it is torsion-free. So we see that Of s, 7 ®z Z[IQ_IL\] is locally free

Z[ﬁ] [Gz]-module. Hence /\CglL O 579z Z[ﬁ] is also locally free, so it is torsion-free. [J

Combining Theorem 3.5.1, Theorem 3.5.4, and Proposition 3.5.7, we have the following

theorem (see also Remark 3.5.3).

Theorem 3.5.8 ([Sanldb, Theorem 3.22]). Let p be a prime number not dividing |Gr|.
Assume the “p-part” of Conjecture 5 holds. If the conjecture in [Bur07, §6.3] for L' [k and
the “p-part” of Conjecture 2 hold, then the “p-part” of Conjecture 3 holds.
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Remark 3.5.9. In the joint work with Burns and Kurihara [BKS14], the authors proved
that Conjectures 3 and 4 are equivalent under no assumptions. Furthermore, we proved
that the conjecture in [Bur07, §6.3] for L'/k implies Conjecture 3 directly. This result
improves Theorems 3.5.8 and 3.5.4. Since the ETNC for the pair (h°(Spec(L')),Z[Gr/]) is
known to be true if L’ is abelian over QQ, as we noted before, we have proved that Conjecture

3 is true if L' is abelian over Q.
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Chapter 4
Darmon’s conjecture

In this chapter, we show that Conjecture 3 is regarded as a generalization of Darmon’s
conjecture [Dar95]. By Remark 3.5.9, we know that Conjecture 3 is true if L’ is abelian
over Q. As an application of this fact, we give a full proof of Darmon’s conjecture. Thus,
we improve the main result of Mazur and Rubin in [MaRull], where the “non-2-part” of

Darmon’s conjecture is proved.

4.1 The formulation

We formulate a slightly modified version of the conjecture of Darmon. First, we fix the

following:

e a bijection {all the places of Q} ~ Z-( such that oco (the infinite place of Q) corre-
sponds to 0 (from this, we endow a total order on {all the places of Q}),

e for each place v of Q, a place of Q lying above v.

Let F/Q be a real quadratic field, and x be the corresponding Dirichlet character with

conductor f. Let n be a square-free product of primes not dividing f. Put

ny = H 14

£n,x(O)==+1

(throughout this chapter, ¢ always denotes a prime number), and let v4 be the number of

prime divisors of ny. For any positive integer m, u,, denotes the group of mth roots of

27

unity in Q, and ¢,, = e (the embedding Q — C is fixed above). Put F, := F(u,)", the
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maximal real subfield of F'(u,). Define a cyclotomic unit by

B = Np(un)/Fn H o(l— Cnf)X((’)
o€Gal(Q(pny)/Q(pn))
Put
0, = Z 0By @0 ! € FX @z Z[Gal(F,/F)).

o€Gal(F, /F)

Let I,, be the augmentation ideal of Z[Gal(F),/F)]. Note that, since F,*/F* is torsion-free,

the natural map
(F{£1}) @z L /L — (B /{+1}) @2 Z[Gal(F,/F)] /L

is injective.

Next, write ny = [[£, ¢; so that ¢; < --- < £,, (“<” is the total order fixed above),
and let \; be the fixed place of F' lying above ¢;. Let )y be the fixed place of F' lying
above co. Let 7 be the generator of Gal(F/Q). Take uo,...,u,, € Op[=]* such that
{(1 = T)u;}o<i<y, forms a Z-basis of (1 — 7)Op[£]* (which is in fact a free abelian group

of rank v4 + 1, see [MaRull, Lemma 3.2(ii)]), and det(log |(1 — 7)u;|x,)o<ij<v, > 0. Put
1 X
Ry = (g, A A gp%u+)((1 —T)ug A= AN(1=7)u,, ) € (1—-7)0p {—] ®z Iyt /I,
n
where
o, X — L/}

is defined by ¢ = recy,(-) — 1, where recy, : F* — Gal(F,/F) is the local reciprocity map
at A;. Note that we have

(I—7)ug - (1 -7,
B — det 90%1((1.—7)%00) 90%1((1—.7)%4)
or,, (L=7ug) -+ g, ((1—7)u,)

Finally, let h, denote the n-class number of F, i.e. the order of the Picard group of
Spec Op[1].

Now Darmon’s conjecture is stated as follows.
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Theorem 4.1.1 (Darmon’s conjecture).
0, =—=2""h,R, in (F*/{£l}) @z I/ I+

Remark 4.1.2. Let J, be the augmentation ideal of Z[Gal(F(u,)/F)]. Note that the
natural map Gal(F'(u,)/F) — Gal(F,,/F) induces the isomorphism

11 ~ 1
JZ+/J:~:++1 Rz 7 |:§:| AN [Z+/[T’:++1 Y/ [51 )

Using this, it is not difficult to see that the following statement is equivalent to [MaRull,
Theorem 3.9]:

1
0, = —2h,R, in (F*/{£1}) &y I/ @, 17 H

Thus, the “non-2-part” of the original conjecture of Darmon ([MaRull, Conjecture 3.8]) is
equivalent to the “non-2-part” of our modified conjecture of Darmon. Therefore, Theorem
4.1.1 improves [MaRull, Theorem 3.9]. Note that, in the original conjecture of Darmon,

the cyclotomic unit is defined by

0, = H 0(1 _ Cnf)X(a)v

o€Gal(Q(ns)/Qun))

whereas our cyclotomic unit is 8, = Np(,,)/r, (@n). Since cyclotomic units, as Stark ele-

ments, lie in real fields, so it is natural to consider 3,,.

4.2 Proof of Darmon’s conjecture

We keep notation in the previous section, and also use notation defined in Chapter 3. We

specialize the general setting of Chapter 3 into the following:
e k=Q,

L = F (a real quadratic field),

hd L/:Fna

S = 5" = {oo} U {primes dividing nf},

V' = {o0} U {primes dividing n, },
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e V' = {oc},
e T a finite set of places of Q such that

- SNT =0,
— Of, g is torsion-free.
Then one sees that (L, S, V), (L', S, V') € Q=Q(Q,T).

It is known that the Rubin-Stark conjecture (Conjecture 1) for all the triples in €2 holds
([Bur07, Theorem A}). Let

I/++1 1
_ O>< /o O>< _ Ox
ET = ELSTV € L,S.T resp. ép = e sTVv € s = YsT
gL QL/

denote the Rubin-Stark element for the triple (L,S,V) (resp. (L/,S,V’)) (later we will
vary T', so we keep in the notation the dependence on T').
By Remark 3.5.9, we know that Conjecture 3 is true if L’ is abelian over Q. Hence we

have the following theorem.

Theorem 4.2.1.
N ED) = (=0 | Nee| (er) in X @z,Q(L/L)™.
Lng

We will deduce Darmon’s conjecture (Theorem 4.1.1) from Theorem 4.2.1 by varying
the set T

The following proposition is well-known.

Proposition 4.2.2. There exists a finite family T of T such that SNT = () and OX,’S’T
is torsion-free, and for every T € T, there is an ap € Z|Gr/] such that

2= Z CLTéT m Z[QL/],

TeT

where 67 = [],ep(1 — (Fr, ") € Z[G1).

For the proof, see [Tat76, Lemme 1.1, Chpt. IV]. Take such a family 7 and ar for each
TeT.
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Lemma 4.2.3. (i)
(L=7)Y areh =B, in L™"/{%1},

TeT

where T is regarded as the generator of Gal(L'/Q(un)™).

I/++1
(1—T)ZCLT€T: (=) 2 h, (L= T)ug A -+~ Ay, in Q®gz /\ Ors
TeT gL

Proof. (i) From
27 = 0rNo(u,p) (1 = Cag),

we obtain

2 Z CLT€T 2NQ (pto f /L/( Cnf)
TeT

(see Proposition 4.2.2). We compute

(1 = 7)Nou /(L= GCug) = Niguyo (1= 7)Nogu,)/L6m) (L= Car))
- ﬁna

hence we have

(1=7)) arep =B, in L™/{£1}.

TeT

(ii) By Lemma 3.3.1, Ry is injective on e, (Q ®z /\,,++1 Or.s), so it is sufficient to prove
that

( (1—7 ZaT5T> = (=) 12" h, Ry (1 — Tug A=+ Auy,,).

By the characterization of er, the left hand side is equal to 2(1 — T)@(L%H)(O). Hence, it

is sufficient to prove that
2(1 - 1)OYE™(0) = (=112 Ry Ry (1 — Tug A+ Auy,). (4.1)
If v_>0and ¢ | n_, then we have

(1-7)0YE™(0) = 2(1 - 105 (0),
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since Fr, = 7. Also, note that h, = hyj, and (1 —7)OL[+]* = (1 — T)OL[%M]X. Therefore,
proving (4.1), we may assume v_ > 0. Using the well-known class number formulas for
n-truncated Dedekind zeta functions of L and Q (see [Gro88, §1]), we have

2(1 - T)@(LVEH)(O) = dhpex
b RQ’n

where Ry, and Rg,, are the usual n-regulators for L and Q respectively. In Lemma 4.2.4,

we will prove an equality
exRpn = (=112 Ro ey Ry (ug A+ -+ Auy,).
Hence we have
2(1 - 1)OYE™(0) = (1) 12 Ry Ry (L — T)ug A+ Ay,
which completes the proof. O

Lemma 4.2.4.
GXRL,TL = (_1)V++12V7—1RQ7n6XRV(UO /\ P /\ u’/+)'

Proof. (Compare the proof of [Rub96, Theorem 3.5].) There is an exact sequence of abelian

groups:
0—Z {H ) {1} — Oy [H ; J{+1} =5 (1-71)0y [%] " o

Since (1 — 7)OL[2]* is torsion-free (see [MaRull, Lemma 3.2(ii)]), this exact sequence
splits. So we can choose 7y,...,n, € Z[%]X so that {n:,...,m,,u0,...,u,, } is a basis of
Op[£]* /{#1} (v is the number of prime divisors of n). Write n_ = [[/Z, £;, where ¢
is a prime number. Let A; be the (unique) place of L lying above ;. We compute the
regulator Ry, with respect to the basis {ni,...,m,,uo, ..., u,, } of O[£]*/{£1} and the

places { X, ..., AL AL, .., AL, Ao, A, J

» Nu_o » Ny

lo +lo - lo
RLyn:idet< glnly loglnlx log[nly )

log [uly log |u|x- log |u|y
where we omit the subscript, for simplicity (for example, log ||y means the v x (v_ — 1)-

43



Il Bt R

positive (replace n; by n; ' if necessary). We compute

log|n|x log|n|xr log|n|a B log|n|x  logn|x log|n|a
det = det
log [ulx log[ulx log|ulx log |ulx log|ulx log[ul

log [n]y 1 0
_ det( oglnly  lognl )

log [ulx log|ulxr log|ulx — log|ulx
= det( log|n|y log|nly )det(log |ulx — log|u|r-)
= det( 2log|nle log|nle ) det(log|(1 —7)ul)
= 2" 'Ry, det(log |(1 — 7)uly).

Hence we have
exRrn =2""""Rgne, det(log [(1 — 7)uly). (4.2)
On the other hand, we compute

exRy(ug N+ Ny, ) = (—1)V++1€X det(log |u|x + log |7 (u)|\7)
- (—1)”++16X det(log |(1 — T)ulx + (1 4+ 7) log |7 (u)|x)
= (—1)”*“6,( det(log |(1 — 7)uly),

Ai T log |T(')|>\i7—> by
definition (see §3.1), and the last equality follows from e, (1 + 7) = 0. Hence, by (4.2), we

where the first equality follows by noting that Ry = Ay, (—log]-

have the desired equality

exRrn = (—1)”++12"‘_1R@,n6XRV(U0 Ao A uw)'

Now we give the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. By Theorem 4.2.1, we have an equality

NG = (=07 | N\ o | er)

Ln 4

44



in L* ®z Q(L'/L)"+. From this and Lemma 4.2.3, we deduce that an equality

0, =—2""h, /\ oo | (L=T)ugA---Auy,)
Lng
holds in (L*/{£1}) ®z Q(L'/L)"+. It is easy to see that
(—1)"* /\cpg (L=7)ugA---ANuy,) = R,.
Lny

Hence we have the desired equality
0, = —2""h,R,.

]

Remark 4.2.5. By a similar argument to the proof of Theorem 4.1.1, we can show that
Gross’s “conjecture for tori” [Gro88, Conjecture 8.8] is also deduced from Conjecture 3.
For the detail, see [San] or [BKS14].
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Chapter 5
Euler systems and Kolyvagin systems

In this chapter, we give a generalization of Darmon’s conjecture for Euler systems for
general p-adic representations. The formulation of our conjecture is explained in §1.4 (see
(1.2)). We prove this conjecture under the standard hypotheses in the theory of Kolyvagin
systems (see Theorem 5.1.8).

A key observation lies in defining a notion of “algebraic Kolyvagin systems”, which
generalizes the notion of original Kolyvagin systems (see §5.2). We define four different
modules of algebraic Kolyvagin systems, called #-Kolyvagin systems, derived-Kolyvagin
systems, pre-Kolyvagin systems, and (simply) Kolyvagin systems. The #-Kolyvagin system
is the system whose axioms are satisfied by the collection {6,,(¢)},, of the theta elements (see
Definition 5.1.4). The derived-Kolyvagin system is the system whose axioms are satisfied by
the collection {x/ }, of the Kolyvagin’s derivative classes of ¢. The pre-Kolyvagin system
is an analogue of the 6-Kolyvagin system. The system which we call simply Kolyvagin
system is a direct generalization of the original Kolyvagin system. At a glance, these four
modules of algebraic Kolyvagin systems may have different structures, but we prove that
they are all isomorphic (see Theorem 5.2.17). This observation is useful in some aspects;
firstly, we can prove that {6,(c)}, is a 8-Kolyvagin system by reducing to show that the
Kolyvagin’s derivative classes {x! },, of ¢ satisfy the axioms of the derived-Kolyvagin systems
(see Proposition 5.4.6); secondly, we can apply Mazur-Rubin’s theory of Kolyvagin systems
to other Kolyvagin systems.

In [MaRu04, Appendix B|, Howard constructed “regulator-type” Kolyvagin systems.
We extend this construction to other Kolyvagin systems. We introduce a new system, which
we call “unit system”, to treat Howard’s construction more systematically (see Definition
5.3.3). We interpret Howard’s construction as a “regulator map” from the module of unit

systems to that of Kolyvagin systems (see Definition 5.3.5). We give analogues of this
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regulator map for other Kolyvagin systems, and prove the natural compatibility with the
isomorphisms between different Kolyvagin systems (see Theorem 5.3.7). We apply Mazur-
Rubin’s theory to show that the regulator map is surjective (see Theorem 5.4.2). From
this, we show that the system of the theta elements, which forms a #-Kolyvagin system, is
in the image of the regulator map. This says in fact that 6,(c) € h, R, holds (see (1.2)).

Thus, we prove the main theorem in this chapter.

In this chapter, we use the following notation. For each place v of Q, we choose a
place w of Q above v, and fix it. By the decomposition (resp. inertia) group of v in
Gy = Gal(Q/Q) we mean the decomposition (resp. inertia) group of w. The absolute
Galois group of Q, is identified with the decomposition group of v in Gy.

For a field F, and a continuous Gal(F/F)-module M (where F is a fixed separable

closure of F), we denote
HZ(Fa M) = Hciont(Gal(F/F)7 M)7

where H!

! at 1s the continuous cochain cohomology ([Tat76]).

If GG is a profinite group, and M is a continuous G-module, we denote for 7 € GG

M= ={ae M |Ta=a}.

5.1 The statement

The aim of this section is to state the main theorem in this chapter (Theorem 5.1.8). First,
we set some notation. Let p be an odd prime, and fix a power of p, which is denoted by
M. Let T be a p-adic representation of the absolute Galois group of Q with coefficients
in Z,, that is, T" is a free Z,-module of finite rank with a continuous Z,-linear action of
Gg = Gal(Q/Q). As usual, we assume that T is unramified at almost all places of Q, that
is, for all but finitely many places v of QQ, the inertia group of v in Gg acts trivially on 7.
We write A =T/MT. Fix %, a set of places of Q, such that

¥ C {¢| ¢ is a prime satisfying (%)},
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where (%) is as follows:
T is unramified at ¢,
(%) ¢ M divides £ — 1,
A/(Fry—1)A~Z/MZ,
where Fr, is the arithmetic Frobenius at /.

Next, put N' = N (X) = {square-free products of primes in ¥}. We suppose 1 € N/, for
convention. Note that A is naturally identified with the family of all the finite subsets of
Y. (with this identification, 1 € N corresponds to the empty set () C X2). This observation
will be used later, in §5.2.

For every ¢ € X, put
Py(x) = det(1 — Fryz|T) € Z,|x],

where the right hand side means the characteristic polynomial with respect to the action
of Fry on T. Note that Py(1) = 0 (mod M), since A/(Fr, — 1)A ~ Z/MZ (see [MaRu04,
Lemma 1.2.3]). Put

Py(x) — P(1)
rz—1

Qe(z) = mod M € Z/MZ]z].

This is the unique polynomial such that
(x — 1)Q(x) = Py(x) mod M

(see [Rub00, Lemma 4.5.2] or [MaRu04, Definition 1.2.2]).
Next, for every n € N, put

Gn = Gal(Q(n)/Q),

where Q(n) is the maximal p-subextension of Q inside Q(u,,). Note that we have a natural
isomorphism G,, ~ @an Gy. (Note also that in this section Gy does not mean the decom-
position group at £.) For every ¢ € ¥, we define a generator o, of G, as follows. Fix a
generator £ of Z,-module 1&1& fipm. Since we fixed the embedding Q — @, 1&1& pm s also
regarded as a subgroup of l@m@z . By Kummer theory, we have a canonical isomorphism

0o\ rury N e o(eHr”
Gall @ (7)) e 7 (D)

where Q)" is the maximal unramified extension of ;. We also have a natural surjection
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Gal(Qy(¢Y77) /Qpr) — Gy, so we have a surjection Hm i — Gy We define oy € Gy to
be the image of ¢ € l'&l,upm by this surjection.

For n € N, we denote I,, the augmentation ideal of Z[G,,]. Note that if £ fn, then we
have
P(Fr) @ 1€ I, ® Z/MZ,

since Py(1) = 0 (mod M) as we mentioned above, where Fr, is naturally regarded as an
element of G,, (note that since ¢ is prime to n, ¢ is unramified in Q(n)). Therefore, we
consider the image of Py(Fry) ® 1in I,,/I? ® Z/MZ, and denote it also by Py(Fry) @ 1.

We next define important maps vy, u, and ¢, for £ € ¥. As a preliminary, we review

some facts on Galois cohomology.

For ¢ € ¥, the unramified cohomology group at ¢ is defined by
Hy (Qe, A) = HY(Q)/Qr, A).
There is a canonical isomorphism:
Hy (Qe, A) = A/ (Fr — 1) A,

which is obtained by evaluating Fr, € Gal(Q}"/Qy) to 1-cocycles representing elements of
H! (Qp, A) (see [Rub00, Lemma B.2.8] or [MaRu04, Lemma 1.2.1(i)]).

There is a canonical decomposition:
HI(Q€7 A) = H‘Sr(@f? A) D H}u‘(@& A)’

where HL(Qq, A) := H"(Qq(pe)/Qp, A%w0) is called the transverse cohomology group
at ¢, and naturally identified with Hom(Gy, A™¢=!) (see [MaRu04, Lemma 1.2.1(ii) and
Lemma 1.2.4]). We remark that to get this decomposition, the assumption M|¢ — 1 is

needed.
Now we start to define vy, uy, and .

First, the definition of v, is as follows:

v H(QA) — H'(Q4)
—  H.(Qq, A) = Hom(G,, A™1)
% AFI‘g:]_ ~ Z/MZ’
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where the first arrow is the localization map at ¢, the second is the natural projection, the
third isomorphism is obtained by evaluating o, € G, (recall that oy is the fixed generator of
Gy), and the last (non-canonical) isomorphism follows by noting that A/(Fr,—1)A ~ Z/MZ
(see [MaRu04, Lemma 1.2.3]). We fix the last isomorphism.

Next, we define the map u, as follows:

Uy : H1<Q,A) — H1<@57A)
— H&r((@g, A) = A/(Frg — 1)A
_Qﬂe_ ) AFrg:l — Z/MZ,
where the first arrow is the localization at ¢, and the second is the natural projection. The

third arrow is defined by
AJ(Fry— 1A — A =L g —Qu(Fr; Ma

(the well-definedness is easily verified by using the Cayley-Hamilton theorem). This is
in fact an isomorphism, see [Rub00, Corollary A.2.7] for the proof. Note that we use
—Q(Fr; ") instead of Q,(Fr, ") (this turns out to be meaningful when we see Example 5.1.1
below). The last identification A™=! = Z/MZ in the definition of u, above is obtained by
the fixed isomorphism when we defined v,.

Finally, we define ¢, as follows:

oo H'(Q,A) — @(In/fi QZLZI/MZ); aw— —(op—1) @ up(a) — Pi(Fre) @ ve(a),
neN
where the inverse limit in the right hand side is taken with respect to the natural restriction
map of Galois groups, namely, if n,m € N and n|m, the morphism from I,,,/12, ® Z/MZ
to I,,/I> ® Z/MZ is induced by the natural surjection G,, — G,. Note that P;(Fr,) ® 1
is naturally regarded as an element of @ne}\/,f\n(jn/z/[g/é ® Z/MZ). Since we have the

canonical isomorphism

(/1 S ZME) & B (/15 S 2/ME) > i (1,/1 0 Z012),
neN fln ne

we see that —(o, — 1) ® ug(a) — Py(Fry) ® ve(a) lies in 1'&nn@\/(ln/],2Z ® Z/MZ), hence iy is
defined.

Example 5.1.1. Take T'=Z,(1) = Wm fiym, and A = T/MT = uy. Take ¢ € ¥. Suppose
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a€Q*/(QM ~ HY(Q, A), and
a="/le in QZ/(QZ)M,

where ¢ € Z/MZ and e € uy (note that i and e are uniquely determined for the image of
ain Q) /(Q)M). If we identify Z/MZ = pys by fixing a primitive Mth root of unity, then

we see that
and

(note that since Py(z) =1 —flx =1 —x (mod M), we have Qy(x) = —1). We see that ¢,

agrees with the following map:

HY(Q,A) ~Q* /(@)Y — Q@)Y
— 1lim(G, ® Z/MZ)
AN 1@(1,1/13@2/1\42),

where recy is the map induced by the local reciprocity map at ¢, and the last isomorphism

is given by 0 — o — 1.

We put
Gin) =P L/ @ Z/MZ
i=0
for n € N, where I? is understood to be Z[G,,] (so we have I?/I! = Z). G(n) has a structure
of graded Z/MZ-algebra, and we can regard ¢, as a homomorphism from H'(Q, A) to a
Z/MZ-module lim _ G(n), that is, ¢, € Homg,/nz(H'(Q, A), im _ G(n)).
We define ¢} to be the composition of the projection to G(n) followed by ¢y, that is,

¥l HY(Q,A) = lim G(n) — G(n).
neN

We denote throughout this paper F the canonical Selmer structure on 7" in the sense
of [MaRu04, Definition 3.2.1]. For n € N, we recall that the n-modified Selmer group
H7.(Q, A) is defined by

H:(Q,A) ={ac H(Q,A) | ap € Hx(Qy, A) for any ¢ fn},
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where ay is the image of a by the localization at ¢. We also recall that the n-strict dual
Selmer group H} (F)m (Q, A*) is defined by

H(l]:*)n(@7A*) = {(l < H}*(QaA*) | e = 0 for any €|TL}7
where A* = Hom(A, ) is the Kummer dual of A, and F* is the dual Selmer structure of

F. See [MaRu04, Example 2.1.8 and Definition 2.3.1].

Definition 5.1.2. For n € N, we define a (module of) regulator R,, by

v(n)+1
R, =1im ()0?1 A goéu(n) /\ Hl" Q A) — H}”(Q A) ® G( ) ’

p

where n = £y ---{,(,) and v(n) is the number of prime divisors of n. Note that R, does

not depend on the choice of the order of ¢1,..., 0, ).

We recall the definition of Euler systems ([Rub00, Definition 2.1.1], [MaRu04, Definition
3.2.2]). Note that the definition of Euler systems in [Rub00] and that of [MaRu04] are
slightly different (see [MaRu04, Remark 3.2.3]). Our definition is due to the latter one.

Definition 5.1.3. A collection
{er e H(F,T) | QC F C K, F/Q: finite extension}

is an Euler system for (7,3, K), where K is an abelian extension of Q, if, whenever F' C
F' C K and F’/Q is finite,

COI"F//F CF/ = (H Pg FI'Z )CF,

where the product runs over primes ¢ € ¥ which ramify in F’ but not in F.

We define an analogue of Darmon’s “theta-element” ([Dar95, §4]) for a general Euler

system.

Definition 5.1.4. Suppose ¢ = {cp € HY(F,T) | Q C F C K, F/Q : finite extension} is
an Euler system for (7,3, K) such that Q(n) C K for any n € N. We define the theta
element 6,(c) for n € N by

On(c) = > ye, @7 € H'(Q(n), A) @ Z[G,),

v€Gn
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where ¢, = cg(n), which we regard as an element of H'(Q(n), A) via the natural map
HY(Q(n), T) — H*(Q(n), A), induced by the natural surjection T — A.

Lemma 5.1.5. Suppose d,n € N and d|n. Then we have

7a(0n(c)) = Oa(c) [ Pe(Fre),

Ln/d

where mq is the map induced by the natural projection G,, — Gy.

Proof. We may assume d = n/{, where ¢ is a prime divisor of n. We compute

Toge(On(c)) = wn/@<z 7%@7)

v€Gn

= Z Za@cn@)a

O‘EGn/Z BeGy

= Y a-Nogwyammn(c) ®a

OéEGn/g

= D a PFap®a

OéEGn/g

= Z ACpjp D - Pg(Frg)
OcEGn/g

= Qn/g(C)Pg(Fl"g),

where Ng(n)/qm/e is the norm from Q(n) to Q(n/¢) (note that Nge)/qm/e is equal to
Resqm)/am/e) © Corgn)/q(n/e))- This proves the lemma. O

The following proposition is an analogue of [Dar95, Theorem 4.5(2)].

Proposition 5.1.6. Let the notations be as in Definition 5.1.4. We have
0,(c) € H'(Q(n), A) ® I1™,

and if we regard 0,(c) € H' (Q(n),A) ® Ifl(n)/]ﬁ(")ﬂ, then there is a canonical inverse

image of 0,,(c) under the restriction map

HY(Q, A) @ LM /L — HY(Q(n), A) @ I, /10,

93



namely, there is a canonical element x,, € H'(Q, A) @ I."™ /IX™™" such that

Resqn)/o(2n) = On(c).

Proof. We prove this proposition by induction on v(n). When v(n) = 0 (i.e. n = 1), we
have IY = Z and 60,(c) = ¢; € H'(Q, A), so there is nothing to prove (since x; = c;).
Suppose v(n) > 0. We write every v € G,, uniquely as

7= HV@:

£n

where v, € Gy. We compute

v [[e-1 = b0+ D (=" e [[w

v€GR ln d|n,d#n v€Gn 4|d
= Qn(c) + Z ( V(n/d Qd H Pg FI‘g
d|n,d#n Ln/d

where the first equality follows by direct computation, and the second by Lemma 5.1.5.
This shows 6,,(c) € H'(Q(n), A) @ I4™, since by the inductive hypothesis we have

c) H Py(Fr)) € HY(Q(n), A) ® 1™
Ln/d

if djn and d # n.

We compute

> e [Jere-1) H Dy | ey ® [[(oe = 1) in HY(Q(n), A) @ I,™ / 15+

v€Gn Ln ln

where
|Ge|-1

i
D, = 5 10y,

i=1

(recall that oy is the fixed generator of Gy). It is well-known that (Han DZ) ¢, has a
canonical inverse image in H'(Q, A), which is usually called Kolyvagin’s derivative class
(see [Rub00, Definition 4.4.10]). We denote it by &/, (in [Rub00, §4.4], it is denoted by
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Kion,m])- Hence we have

On(c) =k, @ [Jlor—1) = > (=1)""D64(c) ] Po(Fre). (5.1)

ln d|n,d#n Ln/d

By the inductive hypothesis, we see that 0,,(c) € H'(Q(n), A)® R / 1/ 1o o canonical
inverse image in H1(Q, A) ® [,‘:(”)/]T”L(”)“. -

Remark 5.1.7. By the proof of Proposition 5.1.6, we know that the element
T, € Hl(Q,A) ® [Z(n)/IZ(n)+1

such that Resg/q(2,) = 0,(c) is inductively constructed by

vn=r, @ [Jlor—1)— Y (1) Dy T] Pu(Fro).

Ln d|n,d#n Ln/d

Since k], is a canonical element, we can say that x,, is also canonical. So we can naturally
regard 6,(c) € H(Q, A) ® Iy™ /1™

We summarize here the standard hypotheses (H.0)-(H.6) of Kolyvagin systems for the
triple (A, F,Y) ([MaRu04, §3.5]):

(H.0) Ais a free Z/MZ-module of finite rank.
(H.1) A/pA is an absolutely irreducible F,[Ggl-representation.
(H.2) There is a 7 € G such that 7 =1 on e and A/(7 —1)A ~Z/MZ.

(H.3) H'(Q(A)Q(pp=), A/pA) = HY(Q(A)Q(p1p ), A*[p]) = 0, where Q(A) is the fixed field
in Q of the kernel of the map Gg — Aut(A), and A*[p] = {a € A* | pa = 0}.

(H.4) Either

(H.4a) Home[[GQH(A/pA, A*[p]) =0, or

(H.4b) p > 4.

(H.5) 3, € ¥ C X for some t € Z~g, where for k € Z~q Xy is the set of all the primes ¢
satisfying (x) for M replaced by pF.
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(H.6) For every ¢ € {¢ | T is ramified at £} U {p, oo}, the local condition F at ¢ is carte-
sian (see [MaRu04, Definition 1.1.4]) on the category Quoty y;;(A) (see [MaRu04,
Example 1.1.3]).

Note that, in our case, (H.0) is always satisfied.

Now, our main theorem is as follows:

Theorem 5.1.8 ([Sanl4a, Theorem 3.8]). Suppose that there exists an Euler system c for
(T,%,K). Assume the following:

(i) the standard hypotheses (H.0)-(H.6) of Kolyvagin systems are satisfied for the triple
(A7 F? 2)7

(ii) K contains the maximal abelian p-extension of Q which is unramified outside of p
and X,

(iii) T/(Fr, — 1)T is a cyclic Z,-module for every { € ¥,
(iv) Frfk — 1 is injective on T for every £ € 3 and k > 0,
(v) the core rank x(A, F) =1 ([MaRu04, Definition 4.1.11]),

((ii)-(iv) are the assumptions of the first statement of [MaRu04, Theorem 3.2.4], and (iii)
is satisfied since we assumed A/(Fry —1)A ~7Z/MZ). Then we have

0,(c) € hyRy,
where h,, = |H(1;*)n(@7 A7)

From this, we obtain the following corollary, which is a special case of [Rub00, Theorem
2.2.2] and [MaRu04, Corollary 4.4.5] (see also Remark 5.4.7).

Corollary 5.1.9. Under the same assumptions in Theorem 5.1.8, we have cg = 0:(c) €
HY(Q, A) and
ord,(h;) < ind(c),

where ord,(hy) is defined by hy = p°* ") and

ind(c) = sup{m | cg € p"Hz(Q, A)}.
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Proof. Take n =1 in Theorem 5.1.8, then we have
Co = 91(6) € thl = th]l_—(Q, A)

Hence we have the desired inequality ord,(hy) < ind(c). O

5.2 Algebraic Kolyvagin systems

In this section, we introduce a notion of “algebraic Kolyvagin systems”. The aim of this
section is to prove Theorem 5.2.17. Our Kolyvagin systems are defined for a 7-tuple

(O,%, H,t,v,u, P) satisfying the following:
e O: a commutative ring (with unity),
e >: a countable set,

e H: an O-module,

t= {tq}q S quz Li>1,

v="{vg}e € quz Homo(H, 0),

o u={uglq € [[,cx Homo(H, O/(ty)) ((t;) denotes the ideal ,0),

o P={PF}4 € [lexs G(E\ q)1 (we often denote ¥\ {q} by X\ q),

where for any subset ¥’ C X,

G()= tm (/1 250).
neN ()

and where N(¥') = {n C ¥’ | v(n) := |n| < oo}, and I, is the augmentation ideal of

Z[@qen Z/tqZ]
Note that G(X'); is canonically isomorphic to [] s O/(t,), since

L/} @, 0 ~ P Z/tZ2, 0 ~ P O/(t,)

ge€n qen

for any n € N (X'), where the first isomorphism is induced by the inverse of

Pz/tz = 1L/1; o o-1

qgen
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So if ¥ C ¥, then G(X”); is regarded as an O-submodule of G(X');, and also its quotient.
We put
G(X) = lim (@ L/ @ o) .
neN(Z) \ i=0
Note that if 3" C ¥’, then there is a natural map from G(X”) to G(¥’) induced by the
inclusion I, < I, where n € N(¥”) and m € NV (X') with n C m. So any element of G(X")
is naturally regarded as an element of G(X').

From now on we fix a 7-tuple (O, X, H, t, v, u, P) satisfying above, and give some more
notations for it. We denote simply N' = N (X). If ¥’ C X, there is a natural projection
map from G(X) to G(X'), which we denote by (-)|sv. In particular, for n € N, which
is by definition a subset of 3, we denote the projection map to G(n) by m, (namely,
o= ()]n: G(X) = G(n)).

If myn € N and m C n, we denote n/m instead of the set theoretic notation n\ m. If
n € N and q € ¥ such that q ¢ n, we denote nq instead of nUq. We also denote 1 instead
of ) e N.

For each q € X, fix a generator 4 of G(q)1(~ O/(t,)) (as an O-module).

Definition 5.2.1. For any q € ¥, we define an O-homomorphism
©q - H— G(E)l

by ¢q(a) = —uq(a)zq —vq(a)Py. For n € N, we denote the composition map 7, o ¢, by ¢j.

Note that if n € A and n = 0 Um, we have o} = ¢ + ¢ for any q € X, since
Gn)1(~ Dy, O/(ty)) = G(0)1 & G(m);.

Example 5.2.2. The setting in §5.1 fits into this general setting. Use the notations as in
§5.1, take (O, %, H,t,v,u, P) as follows:

e O=7/MZ,
e > asin §5.1,

H = UneN(E) H}'n (Qv A)?

ty: the maximal p-power dividing ¢ — 1,

vg: as in §5.1,

ug: as in §5.1,
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o P = (Py(Fry) ® 1) € [[jex @neN(z),e\n<[n/4/[g/ﬁ QLIMZ) = [Tjes G(EN\ £)1.
If we set 2y = (0y — 1) ® 1, then ¢, in the above definition is the same as in §5.1.

Now, for r € Z>;, we define algebraic Kolyvagin systems of “rank r”. Recall that for
n € N, we put v(n) = |n| and G(n),m = I/ ™+ g, O, In what follows, for any
O-module G, we denote (A, H) ®o G by \" H ®o G for simplicity.

By the construction in §2.1, for every q € ¥ and n € N, v; € Homep(H, O) induces the

map
r—1

vt [\ H®0 G(n)ym) — \ H @0 G(n),)-
Similarly, u, € Home(H, O/(t,)) induces the map

r—1

Ug : /\H Ko G(n)y(n) — /\ H ®eo G(“)u(n) ®o O/(tq)7

and ¢, € Homp(H, G(X);) induces the map

r—1

©q - /\H ®o G(n)ym) — /\ H ®0 G(X)y(m)+1-

nEN}

is a Kolyvagin system of rank r if the following axioms (K1)-(K4) are satisfied:

Definition 5.2.3. A collection

{mn € \ H ®o G(n),m

(K1) if g € ¥\ n, then vy(k,) = 0,
(K2) if g € n, then ug(ks) =0,

(K3) if g € n, then vy(kn) = ©q(Kn/q);
(K4) if q € n, then m,/q(ka) = 0.

We denote the O-module consisting of all Kolyvagin systems of rank r by KS,.. This is
an O-submodule of [T, A" H ®o0 G(1),m).

We will see that our Kolyvagin systems generalize the notion of original Kolyvagin

systems in [MaRu04] (see Proposition 5.4.1).
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We define the other three algebraic Kolyvagin systems, in Definitions 5.2.5, 5.2.6, and
5.2.7, which we call 6-Kolyvagin systems, pre-Kolyvagin systems, and derived-Kolyvagin
systems respectively. The O-module consisting of all #-Kolyvagin systems (resp. pre-
Kolyvagin systems, resp. derived-Kolyvagin systems) of rank r is denoted by TKS, (resp.
PKS,, resp. DKS,.).

The following definition is due to [MaRull, Definition 6.1].

Definition 5.2.4. Let n € A and © C n. When 0 # 1, define

_WH/D(P‘h) _7TCI2(PCI1) T — Ty, (qu)
_7Tq1(Pq2) _Wn/D(qu) — Ty (qu) T _un(qu)

Dma = det —7Tq2 (qu) - € G(n)y(g),
_7rq1(Pqu) _qu(Pq) T _Wn/D(Pqu)

where {q1,...,q,} =0 (v = v(0d)). When 0 = 1, define
Dn,l =10 = G(n)o.

Note that D, , does not depend on the choice of the order qi, ..., q, of the elements of 0.

We put
0 —Tgy (Pfh) T _qu(qu)
Ty (Pfh) 0 Mgy (Pfh) T T T, (me)
Do = Ty (DH,D) = det —7Tq2 (Pq3) e S G<D)V(D)
— 7y (Py,)  —Tgo(Fy,) T 0

Clearly, D, does not depend on n.

Definition 5.2.5. A collection

{en € \ H®o G(n),m

nEN}

is a 0-Kolyvagin system of rank r if the following axioms (TK1)-(TK4) are satisfied:
(TK1) if g € ¥\ n, then v,(6,) = 0,
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(TK2) if g € n, then uq(D_,c, oDunsp) = 0,
(TK3) if q € n, then vg(3,,(—1)" ™ 7o(6:)) = Pa(2ocasq(—1)" VR 7o (0nsq))
(TK4) if q € n, then my/q(0n) = On/q - Ta/q(Fy)-

Definition 5.2.6. A collection

ne/\f}

is a pre-Kolyvagin system of rank r if the following axioms (PK1)-(PK5) are satisfied:

{Kne/\H&gG( )un)

(PK1) if g € £\ n, then vy(k,) =0,

(PKQ) if gen, then uq(ZaCn(_l)V(n/D)ﬂ—n(%0> Hq’Gl‘l/D Trn/q’(Pq’)) = 07
(PK3) if q € n, then vq(kn) = ©q(Fn/q),

(PK4) if g € n, then Ru|s\q = Kn/qls\g - Fas

(PKS) R =2 pcn M) [Tgenso Lalsin:

Definition 5.2.7. A collection

nEN}

is a derived-Kolyvagin system of rank r if the following axioms (DK1)-(DK4) are satisfied:

{/-i; € /\H ®o G(1),m)

(DK1) if g € ¥\ n, then vy(x;) = 0,
(DK2) if g € n, then uq(}_yy K5Dnsa) = 0,
(DK3) if q € n, then vg(ky) = @q(ky ),
(DK4) if g € n, then m,4(x7) = 0.

Remark 5.2.8. The notion of “pre-Kolyvagin systems” first appeared in [MaRull, Defi-
nition 6.2]. Note that the notion which generalizes pre-Kolyvagin systems in [MaRull] is
what we call #-Kolyvagin systems in this paper. We use the terminology “pre-Kolyvagin

system” for a different system.
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Next we define morphisms between these Kolyvagin systems. In the following defini-
tion, the meaning of the subscript of Fpr is “from pre-Kolyvagin systems to 6-Kolyvagin

systems”, and that of Fpg, Frg, etc. are similar (see Theorem 5.2.17).

Definition 5.2.9. We define homomorphisms Fpy and Fpg from [[,c\ A" H @0 G(2),m)
to [Joen A" H ®0 G(n)yw) by

FPT({an}n) = {Wn(an)};w

FPK({‘%}n) = Z( n/a) aa H W“/q

0
Cn qen/o n

We define endomorphisms Frg, Frp, and Fpg of [[,cpy A" H @0 G(1),m) by

FTK({au}n) = {Z aDDn,n/D} )

oCn

Frp({anks) = 4 Y (=1)""ay [] m(Py) 3

oCn qen/o

and

Fpr {an} {Z %Dn/a} .

oCn

Proposition 5.2.10. Frg, Frp, and Fpg are injective.

Proof. We only show for Frg. One can show the injectivity for the others by the same
method. Suppose {a,}n € ker Frg, i.e.

Z aDDn,n/D =0

oCn

for all n € N. We show by induction on v(n) that a, = 0. When v(n) =0, i.e. n =1, we
have ), - oDy /o = a1 and this is 0 by the assumption. When v(n) > 0, by the inductive

E GDDn,n/D = anDn,l = Q.

oCn

Since the left hand side is 0 by the assumption that Frg({a,}s) = 0, we get a, = 0. O

hypothesis we have

We define the following useful operator sy, .
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Definition 5.2.11. For n,m € N such that n C m, we define an operator sy, on G(m) by

Sm,n(g) = Z(_l)y(a)ﬂ'm/b(g)'

oCn

This is an O-endomorphism of G(m). When m = n, put s, = sy

Lemma 5.2.12. Let M be an O-module, and n,m € N such that n C m. We regard Sy
as an operator on M ®o G(m). Then we have the following:

(i)
Smn(M ®o G(m)) C M ®0 (H xq) ’

gen

where x4 is the fized generator of G(q)1 and (]
generated by [ |

xq) is the (principal) ideal of G(m)

qgen

qEn

In particular, we have m,/q 0 Sma =0 for all g € n.
(ii) Ifo,neN,dCn, g€ M®o GQ)uw), and h € G(0), /), then we have

su(gh) = s (g)sn,n/ﬂ (h).

Proof. (i) Suppose n = {qi,...,q,} (v = v(n)). Take any generator of M ®» G(m), and

2 ® ga

where o runs over Z%, m, € M, and g, € G(m/n). Put 9, = {q; € n | a; = 0}. We have

write it as follows:

(Zmae@ga : ) - Zma®<z 1>”®)9aﬁm/a<$?f--w?f))

oCn

— Zma (Z (—1)"@ g,z m"'ﬁf)

0C0a

(note that since g, € G(m/n), we have Ty /3(ga) = go for any 0 C n). If v(9,) > 0, then

we have

D (=1 = (1 - 1)) =0,
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Hence we have

(Zw@gw:ﬁ*--x?:) = D Ma®garyl vy € M®o (H)

a0 >1 qen

(ii) Suppose @ = {q1,...,q,}, and n/o = {q},...,q,} (p =v(d), v = v(n/d)). Write g
and h as follows:

— E o P
g ma®qu mqu

lo|=p
and

= B L pBugm L
h = g AprTqy = Tqi Ty = Tyt
[B+~]=v

where m, € M, ag, € O, |a| means a; + - - + «,, and |3 + | is similar. As in the proof

of (i), we have
sa(g) = mea,..1) & Tq, * Ty,
Sn,n/a(h> = (0,...,0),(1,....1)Lq} =" Lql)»
and
Sn(gh) = Q(o,...,0),(1,...,1)M(1,...,1) @ Tgq, "Tq,Tq, * Tql,-

Hence we have

Sn(gh) = S (g)sn,n/v (h)

Corollary 5.2.13. Letn,m € N withn Cm and g € M ®o G(W),wm). If Tm/q(g) =0 for

every q € n, then we have

g EM®o <Hl’q> )
(@]

qen

where ([[,e, Tq)o is the O-submodule of G(m) generated by []

qen [Eq.

In particular, we have g € M ®o G(n).

Proof. Suppose n = {qi,...,q,} (v =r(n)). Write g as
) ]
7 a
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where m; € M and g;, € G(m/n). As in the proof of Lemma 5.2.12, we have
o (Z Z m; & gj,ax;‘f a xSZ}) - Z Z m; ® gj,ax?ll
J a J o0>1

Since Ty /q(g) = 0 for every q € n by the assumption, we have sy (g) = g (by the definition

Z Z m3®gJaxQ1 Qv

7 o021

of Smn). Hence we have

Since g € M ®p G(m), (g is “homogeneous of degree 1), each a; must be equal to 1, and
hence the right hand side must be in M ®o ([ [, Zq)0- O

Lemma 5.2.14. If {k, € N"H ®0 G(X),) | n € N} satisfies (PK4), then we have the
following: if n C m, then for every q € n, we have

Tm/q Z( ”(“/D) m(Fa) H Tm/q (P = 0.

oCn q'en/o

Proof.

Tm/q Z( v/ 50 H 7Tm/q

oCn q'en/o

= e | D (U ma(Ro) [T moser (Pr)

oCn/q q'en/o
+ Z n/ q 7Tm K/Dq H ﬂ'm/q//(P //)
oCn/q q"’en/oq
= D U™y [ Fa [T s (P
oCn/q qg’en/o
+ Z n/aq)ﬂ' m/q %aq H Wm/q//(P )
oCn/q q"’en/oq
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= Z(_l)u(n/a)ﬁm/q o H T (Py)

oCn/q q’en/o
_|_ Z ﬂ/aq)ﬂ- /q K;U H 7Tm/q// P //)
oCn/q q’en/o
= 0,
where the third equality follows from (PK4). O

Proposition 5.2.15. (i) (PKb) is equivalent to the following:

(PK5) if n C m, then k, = Zﬂm(;‘%b) H Pyls\m-

oCn qen/o

(ii) If {ka € A" H ®0 G(2),m) | n € N} satisfies (PK4), then we have the following: if
n C m, then we have an equality in \" H ®o G(m),u)

Z( /) e (Ro) H Tm/q (P, Z( 1Y (%) H Tusq( P,

oCn qen/o oCn qen/o

Proof. (i) One sees immediately that (PK5)" implies (PK5) (take m = n in (PK5)’, this is
(PK5)). Suppose (PK5) and we show (PK5)’ by induction on v(n). When v(n) = 0, i.e.
n =1, we have

%1 = Wm(%l)

for any m since k1 € A" H ®p G(X)o = \" H, and we have

Zﬂm(ﬁa) H Pyls\m = T (K1)

oCl qel/o

o (PK5)" is satisfied in this case. When v(n) > 0, we prove (PK5)" by induction on
v(m/n). When v(m/n) = 0, i.e. m = n, there is nothing to prove because it is (PK5).
When v(m/n) > 0, take any q € m/n. We have for any 9 C n

Ky) = Zwm/q@c) H Tq( By )- (5.2)

cCo q'€v/c

To see this, if 0 # n, we get this equality by the inductive hypothesis on v(n) (replace n,
m in (PK5)" by 0, m/q respectively, then apply 7). If 0 = n, we get the equality by the
inductive hypothesis on v(m/n) (replace m in (PK5)" by m/q, then apply my).
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Hence we have

Zﬂm(Eb) H Pq’|2\m = Zzﬂm/q H q(Pyr) H Pq"E\m

oCn q'en/o oCn ¢Cd q’€v/c q'en/o
= D (@) ] Prlsvom
oCn q'en/o
= Kn,

where the first equality is obtained by (5.2), and the second by the direct computation
(note that Py|s\(m/q) = Pyls\m + mq(Fy)), and the last is by the inductive hypothesis on
v(m/n) (replace m in (PK5)" by m/q). This completes the proof of (i).

(ii) From Lemma 5.2.14 and Corollary 5.2.13, we have

Z( m(Fa) H Tun/q( P /\H®O G(n),

oCn qgen/o

so the left hand side does not change when we apply m,. Hence we have

Z(—l)y(n/a)ﬂm(%a) Hﬂ-m/q(Pq) = 7, Z( u(n/a (7o) me/q

oCn qen/o oCn qen/o

= S 1) () [T el

oCn qen/o

Proposition 5.2.16. Suppose 0,n € N and 0 C n.
(i) If g €9, then Ty)q(Dnp) = —Dusgo/q - Tajp(Fy)-
(ii) If g € n/0, then my/q(Das) = Dasgo-

(ili) Sno(Dnp) = Ds.

Proof. (i) Suppose 0 = {qi,...,q,} and q = q,. By the definition of Dy, (see Definition
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5.2.4), we have

~Tapp(Fy) =g (Pyy) T — g, (FPyy)
Mg (Pra)  —Top(Pre)  —Tqe(Foo) -+ =g, (Faa)
Tajq (Pnp) = Tayq | det 5 — gy (Fs ) ' :

—Tq (Fy,)  — T (Fs,) e —Tnso(Fy,)

—Tuo(Py)  —Tae (Fay) e 0

—Tqy (Py)  —Tnjo(Pyy)  — a5 (P

= det : — 7o (Pas) '
: : 0
g (Fy,) =g, (Fy,) e —Tuso(Fy,)

= —Dujgo/q- 7Tn/D(qu)-

(ii) Suppose ? = {q1,...,q,}. By the definition of D, ,, we have

—Wn/a(qu) _qu(qu) T —qu(qu)
_qu(qu) —Thn/o (Pq2> _7Tq3<Pq2) T T Ty, (Pq2>
Tu/q (Dnp) = Tuyq | det E T (Pas) . .
_qu(Pqu) —Tgy (Pqu) T _Wn/b(qu)
_Wn/Dq(qu) — T (Pay) T —q, (Pay)
_qu(qu) _Wn/0q<qu) _qu(qu) T _un(qu)
= det _WQ2(PQ3) :
—Tqq (Pqu) — Ty (Pqu) T _Wn/bq(Pqu)
== ,Dn/q’a.
(iii) As in the proof of Lemma 5.2.12(i), sy eliminates all the terms other than “[[ ., 24

terms”. When we expand the determinant D, 5, the sum of its “J] . zq-terms” is equal to
D,. Hence we have s,3(Dna) = Ds. O

Theorem 5.2.17 ([Sanl4a, Theorem 4.17]). The following diagram is commutative and
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all the morphisms are isomorphisms:

PKS, —2% TKS,

Fri
FPK\L / lFTD

KST ﬁ DKST

Remark 5.2.18. It is shown in [MaRull, Proposition 6.5] that Frg induces isomorphism

TKS, ~ KS, in a special case. Theorem 5.2.17 is its generalization.

Proof. The strategy of the proof is as follows. The proof is divided into 5 steps.
In Steps 1, 2, and 3, we show that Fpg, Frp, and Frg are isomorphisms respectively.
In Steps 4 and 5, we show that Fpx o Frp = Frig and Frg o Fpr = Fpg respectively.
By Steps 1, 3, 5, and Proposition 5.2.10, we see that Fpy is an isomorphism. By Steps
2, 3 and 4, we see that Fpg is an isomorphism. Hence by all the steps, we complete the
proof.
Step 1. We show that Fpg is an isomorphism. Step 1 is divided into 3 steps.
In Step 1.1, we show Fpg(PKS,) C KS,.
In Step 1.2, we construct the inverse Gpg of Fpy and show Gpi(KS,) C PKS,.
In Step 1.3, we show Gpg o Fpx = Fpig o Gpix = id, and this completes Step 1.
Step 1.1.
Suppose k = {Ky n € PKS,. Put

fo = Fpr(®)a = (1", (%) T msa( P

oCn qen/o

We show that k = {ks}n = Fpr (k) € KS,. We see that  satisfies the axioms (K1)-(K4).
(K1) Suppose q' € ¥\ n. We have

Uq’(“n) = Z(_l)y(n/a)ﬂn(vq’(ga)) H 7rn/q(Pal) =0,

oCn qen/o

since vy (Kp) = 0 for every © C n, by (PK1). This shows (K1).
From now on we suppose q' € n.
(K2) By (PK2), we have

g (1) = g | Y (=1 m(B) [ moa(Py) | =0.

oCn qen/o
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This shows (K2).
(K3) We have

vg (k) = Y ()" ma(vg(Ro)) [ mosalF2)

oCn qen/o
= > () (vg (7)) ] mosa(Po)
Cn,q’ €0 qen/o

— o [ S ) T mwa(P)

oCn/q’ qen/og’

_ SO?I/ Z (_1)1/(11/0(]’)71_“/‘1,(%0) H Wn/qq/(Pq)

oCn/q’ qen/og’
= wgf(ﬁn/q’)
= g (Kn/qr),
where the second equality follows from (PK1), that is, vy/(k;) = 0 unless ¢’ € 9, and the
third from (PK3), that is, vy (Ka) = @q(Ro/q), the fourth from proposition 5.2.15(ii), the

fifth by definition, and the last from (K1).
(K4) By Lemma 5.2.14, we have

T (Kn) = Togr | D (1) Vo) ] masa(P) | =0.

oCn qen/o

Hence we have k € KS,.
Step 1.2.

We construct the inverse Gpg of Fpg. Suppose k = {ky}a € KS, is given. Put
7%//1 = K1,
and define x, € A" H ®0 G(X),(n inductively by

K = Fn + Z Wn(%b) H Pq|2\n o (_1)V(n/a) H 7Tn/tl<Pq> : (5-3)

ACn,d#n qen/o qen/o

We define Gpg (k) = {Kn}n. We show first that Kk = {k,}n = Gpr (k) € PKS, (in Step 1.3

we show that Gpg o Fpx = Fpg 0 Gpg = id).
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(PK1) We show by induction on v(n) that vy (k,) = 0 for ¢ € ¥\ n. When v(n) =0 i.e.
n = 1, this is clear by (K1) since k1 = k1. When v(n) > 0, we have for ¢ € ¥\ n

Uq’(%n)
= wg(rn) + Y Talog(®) S| T Palow | = DY T mosa(P2)
0Cn,0#n qen/o qen/o
= 0,

by (K1) and the inductive hypothesis. This shows (PK1).
(PK2) Applying 7, to the both sides of (5.3), we obtain

Ta(Fn) = kn — > (=1 (F) ] musa( Py (5.4)

oCn,d#n qen/o
Hence by (K2) we have
U Z( V) () H Tasa(Py) | = tg(Ka) =0
oCn qen/o

for any q' € n. This shows (PK2).

Next we show (PK5), (PK4), and finally (PK3).
(PK5) By (5.4), we have

Fn = Z( ”("/a 2(Ro) H To/q (P (5.5)

oCn qen/o

Substituting this to (5.3), we obtain

o o= O (=10 @) T moa(Py)

oCn qen/o
+ > m@) (I Ao | = GO T
0Cn,0#n qen/o qen/o
= Y m@) [ Pilswe
oCn qen/o

This is (PK5).
(PK4) We show by induction on v(n) that Ku|s\g = Kujq|s\g - Py for any q" € n. When
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v(n) =1, say n = ¢’, we have by (5.3)
Kyl = Ky lsg + 7 (F1) By [s\g = F1 - By,

so (PK4) holds in this case. When v(n) > 1, take ¢ € n. By (5.3) and the fact that
Fin|sg = O (this follows from (K4)), we have

%n|2\q’ = Z 7T-n/q’(%tﬂ) H Pq|2\n - (_1)V(n/a)7rﬂ/q' H W“/Q(PQ)

oCn,d#n qen/o qen/o
= Z /g (o) H Polsya | = (=1)" H Tn/aq’ (F)
0Cn,0#n,q’ €0 qen/o qen/o
+ 2w (@) | T Palse | = G0 P mgq | T 7wa(P)
oCn/q’ qen/o qen/o

= Z /gt (Ko ) T (For)

oCn/q’ p#n/q’

X H Pq|2\n - (_1)V(n/oq/) H 7Tn/qq’(Pq)) }

qen/oq’ qen/og’

oCn/q’ qen/o
= Z To/q (Ko ) Tusqr (B ) H Pylswn + Z Ta/q (Ko
oCn/q’ qen/oq’ oCn/g’ qen/o
= %n/q”E\q’ (Wn/q’(Pq’) + Pq’|2\n)

+ Z Ta/q (o) H Fylsw | = (_1)V(n/b)77n/q’ (H Ta/q(Fa)
)

= ’/%n/q/|2\q/Pq/7

where the third equality follows by the inductive hypothesis, and the fifth by (PK5).

(PK3) We show by induction on v(n) that vy (fn) = @g(Rn/y) for any q° € n. When

v(n) =1, say n = q', we have

vy (Ry) = vg(ky) + Tg (vg (F1)) Py |s\g
)

1{1)

)

Y
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where the first equality follows by (5.3), the second by (PK1), the third by (K3), and the
last by the definition of k;. When v(n) > 1, take g’ € n. Then we have

Uy (Fn) = vg(kn) + Z (Vg (Fa)) H Fylsw | — (_1)’/(“/0) H Tu/q(Fa)

0Cn,0#n qen/o qen/o
= 90;'("3n/q’)
+ Z (o) H Pylsw | = (—1)vv/o) H Tu/a(Fa) )
oCn/q’ p#n/q’ qen/oq’ qen/oq’

where the first equality follows by (5.3), the second by (K3) and by the inductive hypothesis
(note that vy (Ky) = 0 unless q' € 9, by (PK1)). By (5.5) and Proposition 5.2.15(ii) (note
that we have already proved (PK4)), we have

Fjqg = Z (_1)u(n/aq/)7rn(',;ga) H Tasa(Py).

oCn/q’ qen/og’

Substituting this to the above, we have

UQ’(,"%H) = 903’ Z Wn(,’%b) H Pq|2\n

oWCn/q’ qen/og’
= 903/(%n/q’)
= Spq’(%n/q’)a
where the second equality follows by (PK5) and Proposition 5.2.15(i), and the last by

(PK1).

Hence r satisfies the axioms (PK1)-(PK5), and we have completed Step 1.2.
Step 1.3.

In this step, we show Gpyx o Fpg = Fpg o Gpy = id.

We first show Gpg o Fpgx = id. Take any kK = {R,}, € PKS,. We show by induction
on v(n) that (Gpk © Fpg)(K)n = Ra. When v(n) =0, i.e. n =1, by the definitions of Fpg
and Gpg, we have

(GPK © FPK)(%)l = FPK(%)l = K1.
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When v(n) > 0, we have

(GPK © FPK)(%)n
= Fpc(Ra+ Y 7al(Gpi o Fp)(F))
0Cn,0#n
X H Pylsn | — (=17 H Ta/q(Fa)
qen/o qen/o
= Z( VR w(Ra) H Ta/q(F:
oCn qen/o
+ > m@) | I Blsw | = 072 L T moa(Po)
0Cn,0#n qen/o qen/o
= Zﬂu(%a) H Pq|2\n
oCn q€n/o
= Em

where the first equality follows by the definition of Gpg (see (5.3)), the second by the
definition of Fpk (see Definition 5.2.9) and the inductive hypothesis, and the last by (PK5).

Next we show Fpyg o Gpr = id. Take any k = {k,}, € KS,. By (5.5), we have

Ry = Z(_l)u(n/?ﬂ GPK H 7Tn/q

oCn qen/o

but the right hand side is by definition equal to Fpr(Gpg(K)),. We have completed Step
1.3.
Step 2.

We show that Frp induces an isomorphism TKS, ~ DKS,. Step 2 is divided into 3
steps, as in Step 1.

In Step 2.1, we show Frp(TKS,) C DKS,.
In Step 2.2, we construct the inverse Grp of Frp, and show Grp(DKS,) C TKS,.

In Step 2.3, we show Grp o Frp = Frp o Grp = id.
Step 2.1.

Take 6 = {0, }, € TKS,. We show that Frp(0) € DKS,. Put

ko= Frp(@)a = > (=10, [] m(Py)

oCn qen/o
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Note that by (TK4) we have

so we have

Ky = Sn(fh) (5.6)
(see Definition 5.2.11 for the definition of s,). We see that {x]}, satisfies the axioms
(DK1)-(DK4).
(DK1) For any q € £\ n, we have by (TK1)

vary) = D (=1)" "y (vg(6a)) = 0.

oCn

This is (DK1).
(DK2) It is sufficient to show that

> 0.Dunpp =Y KD (5.7)

oCn oCn

(From this, (DK2) follows from (TK2)). Take q € n. We have

Ta/q (Z eapn,n/b> = Tha/q Z eann,n/Dq + Z eapn,n/b

oCn oCn/q oCn/q

= Z 073 (Fy) Dujgn/oq — Z 03D jq.n /09 (Fy)

oCn/q oCn/q

= 0,

where the second equality follows by Proposition 5.2.16(i), (ii) and (TK4). So we have by

the definition of s,

Sn <Z eapn,n/b> = Z QaDn,n/a-

oCn oCn

On the other hand, by Lemma 5.2.12(ii), Proposition 5.2.16(iii), and (5.6), we have

Sn (Z eaDn,n/D) = Z H;Dn/b'

oCn oCn

Hence we have ) - 6aDunjo = > _ycn 55 Duyo-
(DK3) Since &}, = sn(6,), (DK3) follows from (TK3).
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(DK4) Again since k), = s,(6,), (DK4) follows from Lemma 5.2.12(i).

Hence we have completed Step 2.1.
Step 2.2.

We construct the inverse Grp of Frp. Suppose k' = {x/}, € DKS,. Put
and we define 60, inductively by

O =ry— > (=10, T] m(Py). (5.8)

0Cn,0#n qen/o

Define Grp (k') = {bu}n, and we show that Grp(x’) € TKS,.
(TK1) follows from (DK1) by induction on v(n).
(TK4) We show by induction on v(n). When v(n) = 1, say n = ¢, we have

m1(0y) = 0 = bhmi (Fy)
(note that 71 (G(q')1) = 0). When v(n) > 1, for any q' € n we have by (5.8)

Tufq(On) = T (Ky) — Z (‘UVWD)GO H ™o (Fy)

oCn/qg’ qen/o
— Y Dby T (R
oCn/q’ p#n/q qen/oq’
= = > (=06, [ m(P)— D (=1 6m(Py) [ m(P)
oCn/q’ qen/o oCn/q’,0#n/q’ qen/oq’
= Hn/q’ﬂ-n/q’(Pq’),

where the second equality follows from (DK4) and the inductive hypothesis. This shows
(TK4).
(TK2) By (5.8) and (TK4), we have

Hence,

= 50 (0h). (5.9)
Using (5.9) and (TK4), we repeat the argument in the proof of (DK2) in Step 2.1 to show
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Y ocnaDnnjo = D ycn Ky Dnjo. Hence (TK2) follows from (DK2).
(TK3) By (5.9), (TK3) follows from (DK3).

We have completed Step 2.2.
Step 2.3.

To show that Frp induces isomorphism from TKS, to DKS,, since we already know
by Proposition 5.2.10 that Frp is injective, it suffices to show Frp o Grp = id. Suppose
k' = {k,}» € DKS,. By (5.9) we have

L= Y () (G (k) = 5a( G ().

oCn

By (5.6) we have
FTD(GTD(H/))n = Sn<GTD(K'/>n)a

which completes Step 2.3.
Step 3.

Since the bijectivity of Frx is shown similarly as in Step 2 (or in the proof of [MaRull,
Proposition 6.5]), we omit the proof.
Step 4.

We show Fpy o Frp = Fri. Take 6 = {0,}, € TKS,. We have to show

Z FTD(H)DDn/D - Z QDDn,n/D~

oCn oCn

But this is (5.7), which has been already shown. Hence Fpy o Frp = Frg.
Step 5.

Our final task is to prove Fryx o Fpr = Fpg. Take kK = {K,}n € PKS,. We have to

prove

Zﬂv(%a)pmn/a = Z(_Dy(n/a)ﬂn(%a) H Ta/a(Fa)- (5.10)

oCn oCn qen/o

By (PK5), we have for 9 Cn

ma(Fo) = Y mo(Fe) [ mupa(P2)-

cCo qev/c
Using this relation repeatedly, we arrange the right hand side of (5.10), and sum up the
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“coefficients” of each (k) to obtain

D (1 m(R) [T msa(Po)

Cn qen/o
= Z Z (_1>V(ck) H Tajq(Ly) H 7o, (Fy) H ey (Fo) -+ H ey (Fy)
oCn \ (c1,...,¢,)E€A(n/0) qEck qEck_1 qEck_2 g€y
X Ty (%0%
where

k
Am/o) ={(c1,..., ) | D #¢; CTn/fo, nfo= Hci, k€ Zs}.

Hence it is sufficient to show

Dunpo = Z (_1)V(%) H Wn/q(Pq) H 7o, (Fy) H Ty (Bg) - H Ty (Py)-

(€1, 0k ) EA(R/D) qE€Ck q€ck—1 q€Ck—2 gec
This is reduced to the following

Lemma 5.2.19. Suppose A = (a;;) is a v X v-matriz with entries in a commutative ring.

Then we have

(—1)"det A

© X o (e T (X )
(Ct s Cr)EA (W) i€C, \j=1 i€C_1 \jECk
TS )T ().
1€CK_o \Jj€Ck_1 i€C1 \jels

where A(v) = {(Ch,...,Ck) |0 #Ci c {1,....v}, {1,...,v} =11, Ci, k € Zs1}.
Proof. Fix amap 7: {1,...,v} — {1,...,v}. We see that the coefficient of [[._, a; () of
the left (resp. right) hand side of the equality in the lemma is

v

> sen(o) [ [(=6rw.00)

ceG, i=1

resp. Z (—1)IC%



where 0,y »(;) denotes Kronecker’s delta, and
A(T) ={(C1,...,Cx) € A(v) | 7(i) € Cj4y forall 1 < j <k —1andie Cj}.

So it is sufficient to show that

Z sgn(o) H(—5r(i),a(i)) = Z (—1)I,

oeS, i=1 (C1,rn s CR)EA(T)

For every map p: {1,...,v} = {1,..., v} we set

Fix(p) ={i e {1,...,v} | p(i) =i}

We compute

v

> sen(o) [ [(=6ra.00)

oeG, i=1

= ZSgH(U) H (—0i0()) H (—=0r(i).0()
0EG, 1€Fix(T) 1¢Fix(7)

= Yoo sa@) (=D TT (<6ry0m)
c€G, ,Fix(7)CFix(o) 1¢Fix(7T)

=Y @) - OOl T ()
0€6,,Fix(7)CFix(o) 1¢Fix (o)

S I E I SRy
c€6,,Fix(1)CFix(o) DCFix(o)\Fix(7) 1¢Fix (o)

= Z (_1)|C| Z sgn(o) H (=0r(i).0i))-
Fix(r)cCc{1,...,v} 0€6,,CCFix(o) 1¢Fix(o)

Note that

Z (—1)ICk]

_ Yo (DG G € A() | Cr = CY-
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Hence, it is sufficient to show for each set C' with Fix(r) C C' C {1,...,v} that

>, sen(o) [[ (=0rwew) = H(Cr. .. Ch) € A(r) | G = Y.

0€6,,CCFix(0) 1¢Fix (o)

Note that the right hand side is equal to 1 or 0. Suppose first that the right hand side
is equal to 1. Then we see that HiéFiX(o)(—(ST(i)p(i)) = 0 unless ¢ = id. Indeed, suppose
o # id and let (C4,...,Cy) be the unique element of {(Cy,...,Ck) € A(7) | Cr, = C}.
Note that in this case we must have k > 2, since C' C Fix(o). We see that there exists an
integer j with 1 < j < k — 1 such that C; ¢ Fix(o) and Cj1; C Fix(o). This shows that
there exists ¢ € C; such that ¢ ¢ Fix(o) and 7(i) # o(i) (since o is injective). Hence we

have shown that HigéFix(a)(_(sT(i)ﬁ(i)) = 0 unless ¢ = id. Therefore we have

> sen(e) [[ (<brwew) = sen(id)
0€6,,CCFix(0) 1¢Fix (o)
=1

= {(C1,...,C) € A1) | Cy = C}|.

Next, suppose that [{(Cy,...,Cx) € A(7) | Cx = C}| = 0. In this case we must have
C # {1,...,v}, and we see that there exist j € {1,...,v} \ C and a positive integer m
such that 71(j) = j, that j,7(j),...,7™(j) are different each other and not contained in
C. Weset pu=(j7(j) --- 7(j)) € 6,. If we put

S,(r,C)={0c€ 6, | C CFix(o), 7(i) = o(i) for all i ¢ Fix(o)},

then we have

S sgn0) [ wew)= Y. sen(o)(—1) O

0€6,,CCFix(0) i¢Fix(o) ceB,(7,0)

It is easy to see that

{0 €6,(r.C) | 0(j) # i} = p{o € &.,(7.C) | 0(j) = j},

and therefore we have

6, (7,C) = pfo € 6,(7,C) | 0(j) = j} U{o € &,(7,C) | o(j) = j}-
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So we have

> sg(o)(—1)v )

€6, (1,0)
D D O L R S L
UGG,,(T,C),O’(j)Zj UGGV(Tvc)vo'(j):j

= (sgn(w)(=1)"*' +1) > sgn(o)(—1)" @)
€6, (1,C),0(j)=J

= ((—1)m(—1)m+1 + 1) Z Sgn(o_)(_l)u—|Fix(o)|
JEGV(T7C)7J(j):j
= 0.

Hence we have

> sen(e) [ (<Orwew) =0=H{(C1,...,Ck) € A(T) | C = C}.

0€6,,CCFix(0) 1¢Fix (o)

This completes the proof. O]

Hence we have completed all the steps of the proof of Theorem 5.2.17.

5.3 Regulator Kolyvagin systems

In this section, we construct Kolyvagin systems by “regulators”. We construct an O-module
US,., which we call “unit systems” (see Definition 5.3.3 below), and maps from unit systems
to Kolyvagin systems (see Theorem 5.3.7). The idea of our method in this section is due

to [MaRu04, Appendix B]. We keep the notations in §5.2.

Definition 5.3.1. For n € N, we define “n-modified Selmer group” by
S"={a € H | vg(a) =0 for every q € £ \ n}.

Remark 5.3.2. In the setting of Example 5.2.2, we have
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Definition 5.3.3. Define a partially ordered set

54
= {(s,U) | s=1(q1,42,...) : asequence of all the elements in X, U C N satisfying (*)},

where

() U ={ny,ng,...},ny Cng C -+ C Un,;:E, and n; = {q1,..., Q) } for any i > 1,
i=1

and we define the order on .# by
(s,U) < (s,U') if and only if s =s" and U’ C U.

We define the module US, of unit systems of rank r by
v(n)+r
US, = lim lim A s
(s,U)es neld

where the morphisms of the inverse limit are defined by

v(niy1)+ v(ng)+r

(_qu(niﬂ)) ARRRRA (_UqV(“i)H) : /\ H - /\ ,

and that of the direct limit by the natural projection maps.
Remark 5.3.4. The assumption that X is countable is used here.

Definition 5.3.5. Suppose (s,U) € &, say s = (q1,q2,...), U is as (x) above, and ¢ =
{entn € l'&nn@{ /\"(")H S". For n € N, take n; € U so that n C n; (this is possible since
U consists of an increasing sequence of elements in N which covers X). Define regulators
Rp(€)n, Rr(€)n, and Ri(g), by

RP(g)n = <¢§:)V(m) ARERNAN w(n))<5ni)7

Rr(e)a = (V50 A A (En),
and

Ric(€)n = (Ui A+ AU (),



where

q; :
- (resp. ", resp. ¢q) if q; € n,
Vi) (resp. YT, resp. i) = 7 | 7o #u) e

—y, if g; € n;/n

(for the definition of ¢4, see Definition 5.2.1). One sees by definition that Rp(e)a, Ry (&),
and Ry (g), do not depend on the choice of n;. Indeed, if we take another n; € U, say

n C n; C ny, then we have

Wiy A AN () = Wy A A (—g,)) A+ A (=g 000) (Eny))
= (Ul A AU (Ew),

where wj(»") denotes any of wg’;, w%, and 1/}5;'%. Rp (resp. Ry and Rp) define(s) a homo-

morophism from US, to [T,cxy A" H ®0 G(X)u@m) (xesp. [oeny A H @0 G()ym))-

Remark 5.3.6. The idea of defining the unit systems and the regulators above is due to
[MaRu04, Appendix B].

Theorem 5.3.7 ([Sanl4a, Theorem 5.7]). We have the following commutative diagram:

UST Ry
k
PKST ﬁ TKST
Ry iFP/
Fri
SSKS,

Proof. We first show the commutativity of the diagram, and then prove the image of the
map Rp is in PKS,. This completes the proof of the theorem, since by Theorem 5.2.17 we
know that Fpp(PKS,) = TKS, and Fpx (PKS,) = KS,.

Take ¢ = {en}n € lim N5,
we have to show Rp(e)y, = Fpr(Rp(e))s, and Ri(e)s = Fpr(Rp(g))y for any n € N
(note that Frx o Fpr = Fpg was already proved in Theorem 5.2.17). Note that by
definition Fpr(Rp(e))a = ma(Rp(e)n) (see Definition 5.2.9), and that ¢p = m, o g, so we
have Rr(e)s = Fpr(Rp(€))n by the definitions of Ry and Rp. Next, to see Ry(e), =
Fpr(Rp(€))n, note that by definition

To prove the commutativity of the diagram,

Fpg(Rp(e))n = Z(_l)y(n/a)ﬂn(RP(S)D) H Taja(Ly),

oCn qen/o
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and that
Pl = @t — T = 1y 0 g — (—vg - Tasa(Fa))

holds for q € n. Then we see again by definition Rk (), = Fprx(Rp(g)), holds (substitute
3 = Ty 0 g — (—vq - Tnyq(Fy)) to the definition of Rk, and expand it, then we obtain

EaCn(_Du(n/D)Wn(RP(g)D) qun/a Ta/q(Fa))-

We prove Rp(e) € PKS,. Take n; € U so that n C n;. We show that Rp(e), satisfies
axioms (PK1)-(PK5).
(PK1) If g € ¥ \ n;, we have

vg(Rp(e)a) = (W5 A AUE) Avg)(en,) =0,

since any element a € S™ satisfies vq(a) = 0 by definition (see Definition 5.3.1). If g € n;\n,
say q = q;, 1 < j <wv(n;) (recall n; = {qu,...,qum,) }, see (*) in Definition 5.3.3), we have

Vg, (Rp(e)n) = (wg,),(ni) AR @ngﬁ A g, ) (€n,)
= ("'/\(_qu)/\"'/\vqj)(gni)
— 0,

since (-+- A (—vg,) A -+ Avg;) = 0. Hence we have vq(Rp(g),) = 0 for any g € X\ n.
(PK2) Take any q € n. We prove uq(Rk(¢)s) = 0 (note that we have already proved
Fpi(Rp(€))n = Ri(€)n, so (PK2) is equivalent to uq(Rx(g)s) = 0). We have

ug(Ric(e)n) = (-  Apg A Aug)(en,)
= (- A(—ug-zq) Ao Aug)(en,)
= (),
where the second equality holds since ¢ = —u, - 74 by definition (see Definition 5.2.1).

(PK3) For any q € n, we have

Vo(Rp(€)a) = (- Apg A Avg)(en,)
= (- A(=vg) A Agpg)(en,)
= pq(Rp()n/a),

where the second equality is obtained by reversing v, and ¢, (note that then the sign is
changed), and the last by the definition of Rp(€)u/q-
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(PK4) For any q € n, we have

Rp(€)n|2\q = ((“'/\@q/\"')<€ni))’2\q
= (- A(—vg - Py) A )(en))lnn
= Rp(&)nalerg - P

where the second equality follows by noting (-)[s\g © ¢q = —vq - Fy.
(PK5) Note that we have
©q =T © g+ (—vg) - Pylsn

for any q € n. Substitute this into the definition of Rp(e),, and expand it, then we have

Rp(e)n = Zﬂn(RP(g)b) H Bylsn,

oCn gen/o

which is (PK5).

5.4 The proof of Theorem 5.1.8

In this section, we prove Theorem 5.1.8 by using the general theory developed in §§5.2 and
5.3. Recall that the setting of the main theorem is the one as in Example 5.2.2, so we

assume in this section that 7-tuple (O, %, H,t,v,u, P) to be as in Example 5.2.2.

Proposition 5.4.1. KS; and KS(A,F,X) in [MaRu04, Definition 3.1.3] are naturally

1somorphic.

Proof. We use the following fact: there is a natural isomorphism

<H5Bg> ;>®G4®Z/MZ; Hl‘gl—>®0'g®1.
tn Z/MZ

Ln Ln Ln

For the proof, see [MaRull, Proposition 4.2(iv)].
Suppose £ = {kp}n € KS;. By (K4) and Corollary 5.2.13, we have

kn € H® <H l‘g> ,
tn Z/MZ
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so from the above fact we can naturally regard

kn € H® ®G@

Ln

Since each Gy ® Z/MZZ is isomorphic to Z/MZ, we see that H ® <®€|n Gg) is isomorphic
to H. By this observation, we see that axioms (K1) and (K2) say

{

One sees by definition that (K3) is equivalent to the relation in [MaRu04, (5) in Definition
3.1.3]. Hence we naturally get a Kolyvagin system of [MaRu04] from our Kolyvagin sys-

tem. Conversely, the Kolyvagin systems of [MaRu04] satisfies the axioms of our Kolyvagin
systems (K1)-(K4), with the identification ([],, z0)z/mz = &), G¢ @ Z/MZ. O

Theorem 5.4.2 ([Sanl4a, Theorem 6.2]). Suppose the assumptions in Theorem 5.1.8 hold.
Then the map
Ry : US; — KS;

18 surjective.

Proof. First note that by Proposition 5.4.1 we can identify KS; and KS(A, F,X). By the
proof of [MaRu04, Theorem B.7], we can take (s,U) € & for each m € N so that the

composed map
v(n)+1

lim /\ S™ 5 im Ry "5 1 (m)

neu
is surjective, where H' = ’H’( AFy) Is the sheaf of stub Selmer modules (for the definition,
see [MaRu04, Definition 4.3.1]). By the proof of [MaRu04, Corollary 4.3.5], if m is core

(see [MaRu04, Definition 4.1.8] for definition), then we have an isomorphism
L(H) — H'(m); k= Km,

where T'(H') is the global section of H’ (see [MaRu04, Definition 3.1.1]). By [MaRu04,

Theorem 4.4.1], the natural inclusion I'(H’) < KS; induces an isomorophism

[(H') — KS;.
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Hence we have im Rx = KS;. O

Remark 5.4.3. The proof of [MaRu04, Theorem B.7] actually shows that we can take

(s,U) satisfying above so that every n € U is core. We will use this fact later.

Proposition 5.4.4. Suppose (s,U) € .7, ¢ € lim _ AT S (see Definition 5.3.3), and

every n € U is core. Then we have for any n € N
Rr(e), € hyRy.

This proposition is reduced to the following lemma (note that if m is core, then h,, = 1):

Lemma 5.4.5. Suppose n = {1 Ly, m = nlymys1 - Lum) € N.
Ife e N HL.(Q, A), then we have
n n hn
<<_Uev(m)) /\ T /\ <_Ueu(n)+1> /\ (pfy(n> /\ U /\ (1051)(6) e h_Rn

m

Proof. We prove by induction on v(m/n). When v(m/n) = 0, i.e. m = n, it is clear by
the definition of R,, (see Definition 5.1.2). When v(m/n) > 0, put £ = £, for simplicity.

We claim that there are ¢/ € A""™/9F! Hi,e(QA), & e N\ vmE g H,.,(Q,A), and
§ € HL,(Q, A) satisfying

Py
e=ec Nd+¢e", and (v,(9)) = (h—/ﬁ> (as ideal of Z/MZ).

This claim is shown as follows. First note that by definition we have an exact sequence
0 — Hppe(Q,A) — Hzn(Q,A) — Z/MLZ.

So we see that there is a § € H}.(Q, A) such that 6 generates Hz,.(Q,A)/HL,,,.(Q, A).
Since vy(8) generates im(Hx.(Q, A) —= Z/MZ), we have by the global duality

(o) = ()

(see [MaRu04, Theorem 2.3.4] or [Rub00, Theorem 1.7.3]). Since & generates the group
Hzn(Q,A)/Hz,.,.(Q, A), any 1 € Hzn(Q, A) can be written as the following form: 7 =
n + ad, where 1 € PW(Q, A) and a € Z. Hence € € /\V(m)+1 H%.(Q, A) can be written

as claimed above.
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By the claim, we have

((_Ueu(m)) /\ T /\ (_Ueu(n)-&-l) /\ (’OZ/(n) /\ Tt /\ (1021)(8)

hay I
€ Ug((;) .

Rn = _R’m
hm/é h'm

where the first equality follows from that vy(e) = Fwvy(d)e’ (by definition), and the next

from the inductive hypothesis. Hence we have completed the proof. n

Proposition 5.4.6.
{0,(c)}n € TKS;.

Proof. By (5.1) in the proof of Proposition 5.1.6, we have

Z( un/d)ed HPZ (Fry) —/<; ®H op—1).

dln ln/d

Note that the left hand side is equal to Frp({0,(c)}n)n (see definition 5.2.9). By Theorem
5.2.17 and Proposition 5.2.10, it is reduced to show

Kl ® H(az —1) » €DKS;.

ln
n

(DK1) and (DK3) are well-known properties of Kolyvagin’s derivatives (see [Rub00, The-
orem 4.5.1 and Theorem 4.5.4]). (DK2) is shown in [MaRu04, Proof of Theorem 3.2.4 in
Appendix A] (note that

dlwie o= | Daa = D sen() (s @ [[loe—=1) | T me(Prioy(Friy)),
dln 4)d TES(N) Ldr ln/d;

where &(n) is the set of permutations of the prime divisors of n, and d. = [[ . ?).
(DK4) is clearly satisfied. O

Remark 5.4.7. From the above, we see that the Kolyvagin’s derivative class «], satisfies

Ky ® H(Jﬁ — 1) = 50(6(c))

Ln
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(for the definition of s,,, see Definition 5.2.11). So if we admit Theorem 5.1.8, then we have
50(0,(¢)) € hpsn(Ry) C hnHrn (Q,A) ® <H(O‘g - 1)> :
Ln

Hence we have the following upper bound of h,,:
ord,(h,) < sup{m | k|, € p"Hz.(Q, A)}.

This generalizes Corollary 5.1.9, since &} = cg.

Now we prove the main theorem.

Proof of Theorem 5.1.8. By Proposition 5.4.6, Theorem 5.2.17, Theorem 5.3.7 and Theo-
rem 5.4.2, there exists € € lim __ A 8n such that

Here note that by Remark 5.4.3 every n € U is taken to be core. Hence by Proposition
5.4.4 we have
RT(éT)n € h,R,.

This completes the proof. O

Remark 5.4.8. We expect that Theorem 5.1.8 can be generalized for higher rank Euler
systems. If the core rank of 7' is greater than one, the theory of Kolyvagin systems in
[MaRu04] does not work well. Recently, Mazur and Rubin initiated the theory of higher
rank Kolyvagin systems, which works well in the higher core rank case (see [MaRul3al).
But we point out two difficulties for the generalization of Theorem 5.1.8. Firstly, if the

core rank r is greater than one, then the natural inclusion
I'(H') — KS,

is not surjective, where #H' is the sheaf of stub Selmer modules (see [MaRul3a, Remark

11.9]). By this fact, we cannot expect that the map
Ry : US, — K8,

constructed in Theorem 5.3.7 is surjective, namely, a natural generalization of Theorem
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5.4.2 would be false. Secondly, a connection between higher rank Euler systems and higher
rank Kolyvagin systems, which would be a generalization of Proposition 5.4.6, is still mys-
terious (see [MaRul3a, Introduction]). By these obstacles, it seems difficult to generalize
Theorem 5.1.8 in the higher core rank case.

On the other hand, since a typical example of higher rank Euler systems is the system
of Rubin-Stark elements, Conjecture 3 in Chapter 3 is regarded as a generalization of
Darmon’s conjecture for higher rank Euler systems. We note that in this case the p-adic
representation comes from G,,. So we expect that a generalization of Theorem 5.1.8 for
higher rank Fuler systems can be established by generalizing Conjecture 3 for general p-
adic representations (or motives). As we mentioned in Introduction, it is expected that the

generalization of Conjecture 3 is related with the ETNC.
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