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Chapter 1

Introduction

In this thesis we discuss generalizations of Darmon’s conjecture [Dar95]. More precisely, we

formulate two different generalizations of Darmon’s conjecture, and give some applications.

Our first generalization concerns a relation between two different Rubin-Stark elements.

We prove that, under some assumptions, most of this conjecture is a consequence of the

“equivariant Tamagawa number conjecture (ETNC)” of Burns and Flach [BuFl01]. As an

application, we give a full proof of Darmon’s conjecture. Our second generalization concerns

Euler systems defined for general p-adic representations. We prove this conjecture under

the standard hypotheses (including that the core rank is equal to one) in the theory of

Kolyvagin systems [MaRu04]. As an application, we give another proof for the important

fact that an Euler system gives an upper bound of the size of the Selmer group [Rub00].

We begin with some historical background of our research.

1.1 Class number formulas

One of the main themes in number theory is the investigation of mysterious relations be-

tween zeta functions and arithmetic objects. A typical and classical example of arithmetic

objects is the “class number”. The notion of the class number was first introduced by

Gauss in his famous magnum opus “Disquisitiones Arithmeticae”, in his investigation of

quadratic forms. Dirichlet found a formula, called the “class number formula”, which re-

lates the values of zeta functions with class numbers. It is said that Dirichlet highly adored

Gauss, and investigated class numbers to find the class number formula. Later Dedekind

generalized the notion of the class number for a general number field by using his theory of

“ideals”, and also generalized Dirichlet’s class number formula for general number fields.

The notion of ideals is a generalization of the notion of numbers. Dedekind’s theory of
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ideals is still a foundation of modern algebraic number theory.

Thanks to Dedekind’s theory of ideals, we have a definition of the “ideal class group”

for a number field, whose cardinality is the class number. The ideal class group measures

the discrepancy of the “uniqueness of the prime decomposition” for a number field in the

following sense. We know that an integer is uniquely decomposed as a product of prime

numbers. It is known that the uniqueness of the prime decomposition (more precisely, the

uniqueness of the decomposition by “irreducible elements”, which generalize prime num-

bers) fails in rings of integers of general number fields. But Dedekind proved that the

decomposition by “prime ideals” is unique for general rings of integers. Roughly speaking,

an ideal class group is defined as the quotient of the ideals by the numbers, so they measures

the discrepancy between ideals and numbers. If the ideal class group is trivial (namely,

the class number is one), then the uniqueness of the irreducible decomposition holds, and

the converse is also true. This is the reason why the ideal class group measures the dis-

crepancy of the uniqueness of the irreducible decomposition for a number field. Such an

arithmetically interesting property of ideal class groups motivated many mathematicians to

investigate them. Ideal class groups are regarded as typical arithmetic objects, and widely

investigated even today.

The class number formula is stated as follows. Let k be a number field. Let Ok denote

the ring of integers of k. The zeta function of k, called the Dedekind zeta function, is

defined by

ζk(s) :=
∑

a

1

Nas
,

where a runs over all non-zero ideals of Ok, and Na denotes the cardinality of Ok/a. It is

known that the product in the right hand side converges when the real part of s is greater

than one, and ζk(s) is meromorphically continued on the whole complex plane. Let µk

be the group of roots of unity in k. Let r be the rank of the group O×
k /µk. Define the

“regulator” of k by

Rk := | det(log |ui|vj)1≤i,j≤r|,

where {u1, . . . , ur} is a Z-basis of O×
k /µk, v0, . . . , vr are all infinite places of k, and | · |v is

the normalized absolute value at v. The class number formula states that r is equal to the

order of zeros of ζk(s) at s = 0 and

lim
s→0

s−rζk(s) = −
hkRk

|µk|
,

where hk denotes the class number of k. Thus, the class number formula relates the values
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of zeta functions with arithmetic objects such as class numbers and unit groups.

1.2 The equivariant Tamagawa number conjecture

At the moment, the most general conjecture in various generalizations of the classical class

number formula is the “equivariant Tamagawa number conjecture (ETNC)”, formulated

by Burns and Flach in [BuFl01]. We shortly review the history of the ETNC.

In the 1960s, Birch and Swinnerton-Dyer proposed a conjectural analogue of the classical

class number formula for elliptic curves in [BSD60s]. This conjecture, called the BSD

conjecture for short, has not yet been solved completely, although it is supported by much

evidence. The zeta functions of elliptic curves are generalized as the zeta functions of

“motives”. Motives are objects whose existence is dreamt by Grothendieck, from which

many cohomology theories come. Definitions of the category of motives have been suggested

by many mathematicians including Grothendieck, but many properties which should be

satisfied are still conjectural. Thus, the “true definition” of general motives is still unclear,

but Grothendieck’s dream has been widely accepted in recent decades. Deligne attempted

to generalize the BSD conjecture for general motives, and formulated a conjecture for

critical motives in [Del79]. Deligne’s conjecture is not just a generalization of the BSD

conjecture, but its weak version. Later in [Bei85] Beilinson generalized Deligne’s conjecture

for general motives by constructing “higher regulators”, usually referred as the “Beilinson

regulators”, which generalizes the classical regulators.

In [BlKa90], Bloch and Kato formulated a striking conjecture concerning the values of

zeta functions of motives, which precisely generalizes the classical class number formula, the

BSD conjecture and the Beilinson’s conjecture simultaneously. Formulating the conjecture,

Bloch and Kato introduced a notion of the “Tamagawa number for motives”, which is an

analogue of the Tamagawa number of algebraic groups. The conjecture of Bloch and Kato

is called the “Tamagawa number conjecture (TNC)”.

The ETNC is a generalization of the TNC for “equivariant coefficients”. The terminol-

ogy “equivariant” is used in the situation that a Galois group of number fields acts on a

motive. Such a Galois action gives rise to the “equivariant zeta function” of the motive,

and the ETNC concerns the values of the equivariant zeta function. The TNC is the special

case of the ETNC that the Galois group is trivial.

In the case that the Galois group is abelian, the ETNC was first formulated by Kato

[Kat93a], [Kat93b] and independently by Fontaine and Perrin-Riou [FoPe94]. In their

formulation, the Tamagawa numbers introduced by Bloch and Kato do not appear, and
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ideas in Iwasawa theory are used. Iwasawa theory, which grew in the second half of the

20th century, is a powerful theory investigating ideal class groups with Galois actions. In

the general case that the Galois group is not necessarily abelian, the ETNC was formulated

by Burns and Flach in [BuFl01]. They combined the ideas of Kato and of Fontaine and

Perrin-Riou with ideas in the Stark conjecture, which grew in Stark’s seminal works [Sta71],

[Sta75], [Sta76], [Sta80]. The Stark conjecture concerns the values of Artin L-functions,

which is a direct generalization of the zeta function considered by Dirichlet. The Artin

L-function is regarded as the equivariant zeta function of a particular motive, called the

Tate motive. Also, Burns and Flach used ideas of Chinburg [Chi85] and Gruenberg, Ritter

and Weiss [GRW99], in which the values of Artin L-functions are deeply investigated.

In some cases the ETNC can be solved by using Iwasawa theory. Burns, Greither, and

Flach [BuGr03], [BuFl06], [Fla11] solved the ETNC for Tate motives for abelian extensions

over Q by using the cyclotomic Iwasawa main conjecture proved by Mazur and Wiles in

[MaWi84] and [Wil90]. This gives strong evidence for the validity of the ETNC, but at the

moment in other cases only a few results on the ETNC are known.

1.3 Refined class number formulas

In [Gro88], Gross proposed an interesting conjectural analogue of the classical class number

formula. Gross’s conjecture is formulated as follows. Let k be a number field. Let L/k be a

finite abelian extension, and G be its Galois group. Let S and T be finite sets of places of k

satisfying certain conditions (see §3.1). Consider the Stickelberger element ΘL,S,T ∈ Z[G],

which is defined as the value of the equivariant (S, T )-Artin L-function for L/k at s = 0

(see §3.1). Let I(G) denotes the augmentation ideal of Z[G]. Gross’s conjecture asserts

that ΘL,S,T ∈ I(G)|S|−1 and

ΘL,S,T ≡ −hk,S,TR
alg
L,S,T (mod I(G)|S|),

where hk,S,T denotes the (S, T )-class number of k and Ralg
L,S,T ∈ I(G)|S|−1/I(G)|S| is the

“algebraic regulator”, which is defined by using a basis of the (S, T )-unit group O×
k,S,T and

the local reciprocity maps at places in S (see [Gro88, Conjecture 4.1]). When |S| = 1,

Gross’s conjecture is equivalent to the classical class number formula. Thus, we can regard

Gross’s conjecture as a refinement of the class number formula, so it is called a “refined

class number formula”.

In [Dar95], Darmon formulated an analogue of Gross’s conjecture for cyclotomic units.
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Cyclotomic units are related to the values of Dirichlet’s L-function, and Darmon’s conjec-

ture is also regarded as a refinement of the classical class number formula. For the precise

formulation, see Theorem 4.1.1 (note that we slightly modified the formulation in [Dar95]).

Burns found that Gross’s conjecture is a consequence of the ETNC for the untwisted

Tate motive in [Bur07]. In particular, using the results of Burns and Greither [BuGr03]

and of Flach [Fla11], Burns gave another proof of Gross’s conjecture for abelian extensions

over Q, which was first proved by Aoki in [Aok91].

On the other hand, the “non-2-part” of Darmon’s conjecture was recently solved by

Mazur and Rubin in [MaRu11]. In the proof, they used their theory of “Kolyvagin systems”

[MaRu04]. The theory of Kolyvagin systems is based on ideas in Kolyvagin’s theory of

“Euler systems” in [Kol90]. The system of cyclotomic units is a typical example of Euler

systems. Mazur and Rubin proved that both sides of Darmon’s conjectural equality form

Kolyvagin systems. Then they proved that the equality holds by using the “uniqueness”

of Kolyvagin systems, which is one of the main results in [MaRu04].

1.4 Main results

In this thesis, we formulate two different generalizations of Darmon’s conjecture.

Our first conjecture is formulated as a refinement of the Rubin-Stark conjecture, pro-

posed by Rubin in [Rub96] (see Conjecture 1 in §3.2). The Rubin-Stark conjecture predicts

the existence of certain integral elements, called the Rubin-Stark elements, related to the

values of Artin L-functions at s = 0. These elements are generalizations of the Stickelberger

elements and the cyclotomic units.

We briefly sketch the formulation of the Rubin-Stark conjecture. Let k be a fixed

number field, and L/k be a finite abelian extension with Galois group G. Take finite sets

of places S and T of k satisfying certain conditions (see §3.1). Also, choose a proper subset

V ⊂ S such that all v ∈ V split completely in L. We denote the order of V by r. It is

known that the order of the equivariant (S, T )-Artin L-function ΘL,S,T (s) for L/k at s = 0

is greater than or equal to r, so we can consider the value

Θ(r)
L,S,T (0) := lim

s→0

1

sr
ΘL,S,T (s) ∈ C[G].

The Rubin-Stark conjecture predicts that there exists a unique element εL,S,T,V in a cer-

tain integral lattice of Q ⊗Z
∧r O×

L,S,T , which maps to Θ(r)
L,S,T (0) under the regulator map

RV : C ⊗Z
∧r O×

L,S,T → C[G]. This element εL,S,T,V is called the Rubin-Stark element for
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(L, S, T, V ). The set T is often considered to be fixed, and the Rubin-Stark element εL,S,T,V

is often denoted by εL,S,V . We remark that the Rubin-Stark conjecture is known to be true

if k = Q (see [Bur07, Theorem A]).

We formulate a new conjecture on a relation between two different Rubin-Stark ele-

ments, which is a generalization of Darmon’s conjecture. This is Conjecture 3 in §3.4.
We give here a sketch of the formulation of Conjecture 3. Consider a tower of extensions

L′/L/k such that L′/k is finite abelian. Consider two Rubin-Stark elements εL′,S′,V ′ and

εL,S,V . For simplicity, we explain the formulation in the case S ′ = S. It is known that, when

V ′ = V , the norm map NL′/L sends εL′,S,V ′ to εL,S,V (the “norm relation”, see Proposition

3.3.2). In the case V ′ ⊂ V , denoting the order of V \ V ′ by d, we introduce the dth norm

N(d)
L′/L, which generalizes the usual norm (see Definition 2.2.12 and Remark 2.2.13). Then

Conjecture 3 predicts the following equality:

N(d)
L′/L(εL′,S,V ′) = ±RecV \V ′(εL,S,V ), (1.1)

where RecV \V ′ is a map constructed by using the local reciprocity maps at places in V \V ′

(which is i ◦ (
∧

v∈V \V ′ ϕv) with the notation in §3.4). We remark that the sign in the right

hand side of (1.1) can be determined explicitly. When d = 0 i.e. V ′ = V , the equality

(1.1) is exactly the usual norm relation. Thus, Conjecture 3 gives a relation between two

different Rubin-Stark elements εL′,S,V ′ and εL,S,V even when V ′ ̸= V .

Our first main result is as follows.

Theorem 1.4.1 (Theorem 3.5.8). Let p be a prime number not dividing [L : k]. Under the

assumptions in Theorem 3.5.8, the p-part of our new conjecture (Conjecture 3) is deduced

from the ETNC for the untwisted Tate motive.

We remark that this result was later improved in a recent joint work of the author with

Burns and Kurihara [BKS14]. It is proved in [BKS14] that Conjecture 3 is deduced from

the ETNC completely (see Remark 3.5.9). In particular, using the result due to Burns,

Greither and Flach [BuGr03], [Fla11], we know that Conjecture 3 for the fields L′/L/k is

true if L′ is abelian over Q.

Using the above result, we prove the next theorem, which gives a complete solution

to Darmon’s conjecture. We explain the formulation of Darmon’s conjecture (see §4.1 for

the precise formulation). Let F be a real quadratic field with conductor f . Let n be a

square-free positive integer which is prime to f . For simplicity, we assume that all prime

divisors of n split in F . Denote the number of prime divisors of n by ν. Let Fn denote
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the maximal real subfield of F (ζn), where ζn is a primitive nth root of unity. Consider a

cyclotomic unit βn ∈ F×
n (see §4.1), and define the “theta element” by

θn :=
∑

σ∈Gal(Fn/F )

σβn ⊗ σ−1 ∈ F×
n ⊗Z Z[Gal(Fn/F )].

Let In be the augmentation ideal of Z[Gal(Fn/F )]. Darmon’s conjecture predicts that the

following equality holds in (F×/{±1})⊗Z Iνn/I
ν+1
n :

θn = −hnRn,

where hn is the n-class number of F (namely, the order of the Picard group Pic(OF [
1
n ])),

and Rn ∈ F× ⊗Z Iνn/I
ν+1
n is the “algebraic regulator”, which is defined by using the local

reciprocity maps at prime divisors of n.

We prove in §4.2 that our new conjecture (Conjecture 3) is indeed a generalization of

Darmon’s conjecture. We have the following theorem.

Theorem 1.4.2 (Theorem 4.1.1). Darmon’s conjecture is deduced from Conjecture 3 for

the tower of fields Fn/F/Q. Consequently, Darmon’s conjecture is true.

Thus, we give a complete solution to Darmon’s conjecture. This result is an improve-

ment of the result of Mazur and Rubin in [MaRu11] (see Remark 4.1.2). We remark that

Theorem 3.5.8 gives sufficient ingredients to prove the “non-2-part” of Darmon’s conjecture

(see [San14b]).

We remark that a conjecture essentially same to our new conjecture (Conjecture 3) is

formulated independently by Mazur and Rubin in the recent preprint [MaRu13b].

Our second generalization of Darmon’s conjecture is a generalization for Euler systems

defined for general p-adic representations. This conjecture is not precisely a generalization

of Darmon’s conjecture, but a weak version of it. The formulation of this conjecture replaces

the system of cyclotomic units {βn}n, which appears in Darmon’s conjecture, by an Euler

system for a general p-adic representation. For a given Euler system c = {cn}n, we define

the theta element θn(c) as an analogue of Darmon’s theta element (see Definition 5.1.4).

We construct a module of algebraic regulators Rn (see Definition 5.1.2), and conjecture

that

θn(c) ∈ hnRn, (1.2)
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where hn denotes the order of a certain n-modified Selmer group (this is denoted by

H1
(F∗)n

(Q, A∗) in §5.1), which plays a role of hn in Darmon’s conjecture. In the case

that the p-adic representation is the Tate module of Gm twisted by the Dirichlet character

associated with a real quadratic field F , we can take c to be the Euler system of cyclotomic

units, but in this case our conjecture (1.2) is weaker than the original conjecture of Dar-

mon, since we do not give an explicit description of an algebraic regulator Rn ∈ Rn such

that θn(c) = −hnRn.

The theory of Kolyvagin systems, developed by Mazur and Rubin in [MaRu04], is a

powerful theory investigating Selmer groups via Euler systems. We remark that many

important properties of Kolyvagin systems, such as the “uniqueness” property which was

used in the proof of the “non-2-part” of Darmon’s conjecture in [MaRu11], are proved

under the “standard hypotheses” including that the “core rank” is equal to one. We prove

our generalized Darmon’s conjecture for Euler systems under the standard hypotheses.

Theorem 1.4.3 (Theorem 5.1.8). Assume that the standard hypotheses of the theory of

Kolyvagin systems (including that the core rank is equal to one). Then our generalized

Darmon’s conjecture for Euler systems is true.

As an application of this result, we give another proof for the important fact (see

[Rub00]) that an Euler system gives an upper bound of the size of the Selmer group (see

Corollary 5.1.9).

1.5 Expected overview

We mention an expected overview of further generalizations of Darmon’s conjecture. It is

believed that any important p-adic representation comes from a motive. So suppose that

T is a p-adic representation which comes from a motive M. In some cases it is known (and

believed in general) that, if the ETNC holds for M, then we have a certain nice system in

the rth exterior power (with some non-negative integer r) of the Galois cohomology groups

of the dual of T . Such a system has properties like Euler systems, and called a “rank r

Euler system”. In the case r = 1, this is exactly a usual Euler system. The integer r

is expected to be equal to the core rank of the dual of T . For example, when M is the

untwisted Tate motive for an abelian field, in this case the ETNC is valid and M gives rise

to the (rank 1) Euler system of cyclotomic units. A typical example of higher rank Euler

systems is a system of conjectural Rubin-Stark elements, which come from the untwisted

Tate motive for a general number field.
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Our first generalization of Darmon’s conjecture (Conjecture 3) is regarded as a con-

jecture for the higher rank Euler system which comes from the untwisted Tate motive,

whereas the second (Theorem 5.1.8) is a conjecture for the rank one Euler systems which

come from general motives. By this observation, it is natural to ask the following questions.

• Can we formulate a generalization of our new conjecture (Conjecture 3) for higher

rank Euler systems which come from general motives?

• Is the conjecture deduced from the ETNC?

We also hope that our conjectures can be extended to the case of non-abelian Galois

extensions. These expected generalizations should be done in future works.

1.6 Notation

For any abelian group G, Z[G]-modules are simply called G-modules. The tensor product

over Z[G] is denoted by

−⊗G −.

Similarly, the exterior power over Z[G], and Hom of Z[G]-modules are denoted by

∧

G

, HomG(−,−)

respectively. We use the notations like this also for Z[G]-algebras.

For any subgroup H of G, we define the norm element NH ∈ Z[G] by

NH =
∑

σ∈H

σ.

For any G-module M , we define

MG = {m ∈M | σm = m for all σ ∈ G}.

The maximal Z-torsion subgroup of M is denoted by Mtors.

For any G-modules M and M ′, we endow M ⊗Z M ′ with a structure of a G-bimodule

by

σ(m⊗m′) = σm⊗m′ and (m⊗m′)σ = m⊗ σm′,
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where σ ∈ G, m ∈M and m′ ∈M ′. If ϕ ∈ HomG(M,M ′′), where M ′′ is another G-module,

we often denote ϕ⊗ id ∈ HomG(M ⊗Z M ′,M ′′ ⊗Z M ′) by ϕ.
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Chapter 2

Algebraic preliminaries

In this chapter, we summarize certain useful constructions concerning exterior powers and

also prove algebraic results which are to be used in later chapters. The conventions in §2.1
are frequently used throughout this thesis. In §2.2, we study Rubin’s lattices defined in

[Rub96, §1.2]. The results in §2.2 are used in Chapter 3.

2.1 Exterior powers

Let G be a finite abelian group. For a G-module M and ϕ ∈ HomG(M,Z[G]), there is a

G-homomorphism
r∧

G

M −→
r−1∧

G

M

for all r ∈ Z≥1, defined by

m1 ∧ · · · ∧mr *→
r∑

i=1

(−1)i−1ϕ(mi)m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr.

This morphism is also denoted by ϕ.

This construction gives a morphism

s∧

G

HomG(M,Z[G]) −→ HomG

(
r∧

G

M,
r−s∧

G

M

)
(2.1)

for all r, s ∈ Z≥0 such that r ≥ s, defined by

ϕ1 ∧ · · · ∧ ϕs *→ (m *→ ϕs ◦ · · · ◦ ϕ1(m)).
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By this construction, we often regard an element of
∧s

G HomG(M,Z[G]) as an element

of HomG(
∧r

G M,
∧r−s

G M). Note that if r = s, ϕ1 ∧ · · · ∧ ϕr ∈
∧r

GHomG(M,Z[G]), and

m1 ∧ · · · ∧mr ∈
∧r

G M , then we have

(ϕ1 ∧ · · · ∧ ϕr)(m1 ∧ · · · ∧mr) = det(ϕi(mj))1≤i,j≤r.

For a G-algebra Q and ϕ ∈ HomG(M,Q), there is a G-homomorphism

r∧

G

M −→
(

r−1∧

G

M

)
⊗G Q

defined by

m1 ∧ · · · ∧mr *→
r∑

i=1

(−1)i−1m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr ⊗ ϕ(mi).

Similarly to the construction of (2.1), we have a morphism

s∧

G

HomG(M,Q) −→ HomG

(
r∧

G

M,

(
r−s∧

G

M

)
⊗G Q

)
. (2.2)

2.2 Rubin’s lattices

In this section, we fix a finite abelian group G and its subgroup H. Following Rubin

[Rub96, §1.2], we give the following definition.

Definition 2.2.1. For a finitely generated G-module M and r ∈ Z≥0, we define Rubin’s

lattice by

r⋂

G

M =

{
m ∈

(
r∧

G

M

)
⊗Z Q | Φ(m) ∈ Z[G] for all Φ ∈

r∧

G

HomG(M,Z[G])

}
.

Note that
⋂0

G M = Z[G].

Remark 2.2.2. We define ι :
∧r

G HomG(M,Z[G])→ HomG(
∧r

G M,Z[G]) by ϕ1∧· · ·∧ϕr *→
ϕr ◦ · · · ◦ ϕ1 (see (2.1)). It is not difficult to see that

r⋂

G

M
∼−→ HomG(im ι,Z[G]); m *→ (Φ *→ Φ(m))

14



is an isomorphism (see [Rub96, §1.2]).

Next, we study some more properties of Rubin’s lattice.

Let IH (resp. I(H)) be the kernel of the natural map Z[G]→ Z[G/H] (resp. Z[H]→ Z).
Note that I(H) ⊂ IH . For any d ∈ Z≥0, letQd

H (resp. Q(H)d) be the dth augmentation quo-

tient IdH/I
d+1
H (resp. I(H)d/I(H)d+1). Note that Qd

H has a natural G/H-module structure,

since Z[G]/IH ≃ Z[G/H]. It is known that there is a natural isomorphism of G/H-modules

Z[G/H]⊗Z Q(H)d
∼−→ Qd

H (2.3)

given by

σ ⊗ ā *→ σ̃a,

where a ∈ I(H)d and ā denotes the image of a in Q(H)d, σ̃ ∈ G is any lift of σ ∈ G/H,

and σ̃a denotes the image of σ̃a ∈ IdH in Qd
H (σ̃a does not depend on the choice of σ̃) (see

[Pop11, Lemma 5.2.3(2)]). We often identify Z[G/H]⊗Z Q(H)d and Qd
H .

The following lemma is well-known, and we omit the proof.

Lemma 2.2.3. For a G-module M and an abelian group A, there is a natural isomorphism

HomZ(M,A)
∼−→ HomG(M,Z[G]⊗Z A); ϕ *→

(
m *→

∑

σ∈G

σ−1 ⊗ ϕ(σm)

)
.

Lemma 2.2.4. Let M be a finitely generated G/H-module, and M = M/Mtors. For any

d ∈ Z≥0, we have an isomorphism

HomG/H(M,Z[G/H])⊗Z Q(H)d
∼−→ HomG/H(M,Qd

H); ϕ⊗ a *→ (m̄ *→ ϕ(m)a).

In particular,

HomG/H(M,Z[G/H])⊗Z Q(H)d −→ HomG/H(M,Qd
H)

is an injection.

Proof. We have a commutative diagram:

HomG/H(M,Z[G/H])⊗Z Q(H)d

!!

"" HomG/H(M,Qd
H)

!!

HomZ(M,Z)⊗Z Q(H)d "" HomZ(M,Q(H)d),

15



where the bottom horizontal arrow is given by ϕ ⊗ a *→ (m̄ *→ ϕ(m)a), and the left and

right vertical arrows are the isomorphisms given in Lemma 2.2.3 (note that we have a

natural isomorphism Qd
H ≃ Z[G/H] ⊗Z Q(H)d, see (2.3)). The bottom horizontal arrow

is an isomorphism, since HomZ(M,Z) ≃ HomZ(M,Z) and M is torsion-free by definition.

Hence the upper horizontal arrow is also bijective.

Definition 2.2.5. A finitely generated G-module M is called a G-lattice if M is torsion-

free.

For example, for a finitely generated G-module M , HomG(M,Z[G]) is a G-lattice. Ru-

bin’s lattice
⋂r

GM is also a G-lattice.

Proposition 2.2.6. Let M be a G/H-lattice, and r, d ∈ Z≥0 such that r ≥ d. Then an

element Φ ∈
∧d

G/H HomG/H(M,Q1
H) induces a G/H-homomorphism

r⋂

G/H

M −→

⎛

⎝
r−d⋂

G/H

M

⎞

⎠⊗G/H Qd
H

⎛

⎝≃

⎛

⎝
r−d⋂

G/H

M

⎞

⎠⊗Z Q(H)d

⎞

⎠ .

Proof. Note that Q1
H is the degree-1-part of the graded G/H-algebra

⊕
i≥0Q

i
H . We apply

(2.2) to know that Φ induces the G/H-homomorphism

r∧

G/H

M −→

⎛

⎝
r−d∧

G/H

M

⎞

⎠⊗G/H Qd
H . (2.4)

We extend this map to Rubin’s lattice
⋂r

G/H M . We may assume that there exist

ϕ1, . . . ,ϕd ∈ HomG/H(M,Q1
H)

such that Φ = ϕ1∧ · · ·∧ϕd. Moreover, by Lemma 2.2.4, we may assume for each 1 ≤ i ≤ d

that there exist ψi ∈ HomG/H(M,Z[G/H]) and ai ∈ Q(H)1 such that ϕi = ψi(·)ai. Put

Ψ = ψ1 ∧ · · · ∧ ψd ∈
∧d

G/H HomG/H(M,Z[G/H]). By the definition of Rubin’s lattice, Φ

induces a G/H-homomorphism

r⋂

G/H

M −→

⎛

⎝
r−d⋂

G/H

M

⎞

⎠⊗Z Q(H)d; m *→ Ψ(m)⊗ a1 · · · ad.

This extends the map (2.4).
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The following definition is due to [Bur07, §2.1].

Definition 2.2.7. Let M be a G-lattice. For ϕ ∈ HomG(M,Z[G]), we define ϕH ∈
HomG/H(MH ,Z[G/H]) by

MH ϕ−→ Z[G]H
∼−→ Z[G/H],

where the last isomorphism is given by NH *→ 1. Similarly, for Φ ∈
∧r

G HomG(M,Z[G])

(r ∈ Z≥0), ΦH ∈
∧r

G/H HomG/H(MH ,Z[G/H]) is defined. (If r = 0, we define ΦH ∈
Z[G/H] to be the image of Φ ∈ Z[G] under the natural map.)

Remark 2.2.8. It is easy to see that

ϕH =
∑

σ∈G/H

ϕ1(σ( · ))σ−1,

where ϕ1 ∈ HomZ(M,Z) corresponds to ϕ ∈ HomG(M,Z[G]) (see Lemma 2.2.3). If r ≥ 1,

then one also sees that

Φ(m) = ΦH(Nr
Hm) in Z[G/H] (2.5)

for all Φ ∈
∧r

G HomG(M,Z[G]) and m ∈
⋂r

G M .

Lemma 2.2.9. If M is a G-lattice, then the map

HomG(M,Z[G]) −→ HomG/H(M
H ,Z[G/H]); ϕ *→ ϕH

is surjective.

Proof. By Remark 2.2.8, what we have to prove is that the restriction map

HomZ(M,Z) −→ HomZ(M
H ,Z)

is surjective. Therefore, it is sufficient to prove that M/MH is torsion-free. Take m ∈ M

such that nm ∈MH for a nonzero n ∈ Z. For any σ ∈ H, we have

n((σ − 1)m) = (σ − 1)nm = 0.

Since M is a G-lattice, it is torsion-free. Therefore, we have (σ − 1)m = 0. This implies

m ∈MH .
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Lemma 2.2.10. Let M be a G-lattice, and r, d ∈ Z≥0. Then there is a canonical injection

i :
r⋂

G/H

MH −→
r⋂

G

M.

Furthermore, the maps

⎛

⎝
r⋂

G/H

MH

⎞

⎠⊗Z Q(H)d
i−→
(

r⋂

G

M

)
⊗Z Q(H)d −→

(
r⋂

G

M

)
⊗Z Z[H]/I(H)d+1

are both injective, where the first arrow is induced by i, and the second by the inclusion

Q(H)d ↪→ Z[H]/I(H)d+1.

Proof. Let

ι :
r∧

G

HomG(M,Z[G]) −→ HomG

(
r∧

G

M,Z[G]

)

and

ιH :
r∧

G/H

HomG/H(M
H ,Z[G/H]) −→ HomG/H

⎛

⎝
r∧

G/H

MH ,Z[G/H]

⎞

⎠

be the maps in Remark 2.2.2. It is easy to see that the map

κ : im ι −→ im ιH ; ι(Φ) *→ ιH(Φ
H)

is well-defined. By Lemma 2.2.9, the map

r∧

G

HomG(M,Z[G]) −→
r∧

G/H

HomG/H(M
H ,Z[G/H]); Φ *→ ΦH

is surjective. So the map κ is also surjective. Hence, by Remark 2.2.2, we have an injection

i :
r⋂

G/H

MH −→
r⋂

G

M

(note that HomG/H(im ιH ,Z[G/H]) ≃ HomG(im ιH ,Z[G]) by Lemma 2.2.3). The cokernel

of this map is isomorphic to a submodule of HomG(kerκ,Z[G]), so it is torsion-free. Hence

the map

i :

⎛

⎝
r⋂

G/H

MH

⎞

⎠⊗Z Q(H)d −→
(

r⋂

G

M

)
⊗Z Q(H)d

18



is injective. The injectivity of the map

(
r⋂

G

M

)
⊗Z Q(H)d −→

(
r⋂

G

M

)
⊗Z Z[H]/I(H)d+1

follows from the fact that
⋂r

G M is torsion-free.

Remark 2.2.11. The canonical injection i :
⋂r

G/H MH ↪→
⋂r

G M constructed above does

not coincide in general with the map induced by the inclusion MH ↪→M . In fact, if r ≥ 1,

then we have

i(Nr
Hm) = NHm

for all m ∈
⋂r

G M .

Definition 2.2.12. Let M be a G-lattice, and r, d ∈ Z≥0. When r ≥ 1, we define the dth

norm

N(r,d)
H :

r⋂

G

M −→
(

r⋂

G

M

)
⊗Z Z[H]/I(H)d+1

by

N(r,d)
H (m) =

∑

σ∈H

σm⊗ σ−1.

When r = 0, we define

N(0,d)
H : Z[G] −→ Z[G]/Id+1

H

to be the natural map.

Remark 2.2.13. The 0th norm is the usual norm :

N(r,0)
H =

⎧
⎨

⎩
NH if r ≥ 1,

Z[G] −→ Z[G/H] if r = 0.

Proposition 2.2.14. Let M be a G-lattice, r, d ∈ Z≥0, and m ∈
⋂r

G M . Assume

N(r,d)
H (m) ∈ im i,

where, in the case r ≥ 1, i : (
⋂r

G/H MH)⊗Z Q(H)d → (
⋂r

G M)⊗Z Z[H]/I(H)d+1 is defined

to be the injection in Lemma 2.2.10, and in the case r = 0, i : Qd
H ↪→ Z[G]/Id+1

H to be the

inclusion. If d = 0 or r = 0 or 1, then we have

Φ(m) = ΦH(i−1(N(r,d)
H (m))) in Qd

H
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for all Φ ∈
∧r

G HomG(M,Z[G]).

Proof. When d = 0, the proposition follows from Remarks 2.2.8, 2.2.11, and 2.2.13. When

r = 0, the proposition is clear. So we suppose r = 1. Note that in this case the map i is

the inclusion

i : MH ⊗Z Q(H)d ↪→M ⊗Z Z[H]/I(H)d+1.

We regard MH ⊗Z Q(H)d ⊂M ⊗Z Z[H]/I(H)d+1.

Take any ϕ ∈ HomG(M,Z[G]). Then ϕH is written by

ϕH =
∑

σ∈G/H

ϕ1(σ(·))σ−1

(see Remark 2.2.8). For each σ ∈ G/H, we fix a lifting σ̃ ∈ G, and put

ϕ̃ =
∑

σ∈G/H

ϕ1(σ̃(·))σ̃−1 ∈ HomZ(M,Z[G]).

Then, by the assumption on N(1,d)
H (m), we have

ϕH(N(1,d)
H (m)) = (α ◦ (ϕ̃⊗ id))(N(1,d)

H (m)) ∈ Qd
H ,

where

α : Z[G]⊗Z Z[H]/I(H)d+1 −→ Z[G]/Id+1
H ; a⊗ b *→ ab.

It is easy to check that

ϕ(m) = (α ◦ (ϕ̃⊗ id))(N(1,d)
H (m)) in Z[G]/Id+1

H .

This can be checked by noting that

ϕ =
∑

σ∈G/H

∑

τ∈H

ϕ1(σ̃τ(·))σ̃−1τ−1.

Hence we have

ϕ(m) = ϕH(N(1,d)
H (m)) in Qd

H .
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Theorem 2.2.15. Let M be a G-lattice, and r, d ∈ Z≥0. Then the map

⎛

⎝
r⋂

G/H

MH

⎞

⎠⊗Z Q(H)d −→ HomG

(
r∧

G

HomG(M,Z[G]), Qd
H

)
; α *→ (Φ *→ ΦH(α))

is injective.

Proof. Let

ιH :
r∧

G/H

HomG/H(M
H ,Z[G/H]) −→ HomG/H

⎛

⎝
r∧

G/H

MH ,Z[G/H]

⎞

⎠

be the map defined in Remark 2.2.2 for G/H and MH . Taking HomG/H(−,Z[G/H]) to

the exact sequence

0 −→ ker ιH −→
r∧

G/H

HomG/H(M
H ,Z[G/H]) −→ im ιH −→ 0,

we have the exact sequence

0 −→
r⋂

G/H

MH −→ HomG/H

⎛

⎝
r∧

G/H

HomG/H(M
H ,Z[G/H]),Z[G/H]

⎞

⎠

−→ HomG/H(ker ιH ,Z[G/H]).

Since HomG/H(ker ιH ,Z[G/H]) is torsion-free, the map

⎛

⎝
r⋂

G/H

MH

⎞

⎠⊗Z Q(H)d −→ HomG/H

⎛

⎝
r∧

G/H

HomG/H(M
H ,Z[G/H]),Z[G/H]

⎞

⎠⊗Z Q(H)d

is injective. From Lemma 2.2.4, we have an injection

HomG/H

⎛

⎝
r∧

G/H

HomG/H(M
H ,Z[G/H]),Z[G/H]

⎞

⎠⊗Z Q(H)d

−→ HomG

⎛

⎝
r∧

G/H

HomG/H(M
H ,Z[G/H]), Qd

H

⎞

⎠ .
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From Lemma 2.2.9, we also have an injection

HomG

⎛

⎝
r∧

G/H

HomG/H(M
H ,Z[G/H]), Qd

H

⎞

⎠ −→ HomG

(
r∧

G

HomG(M,Z[G]), Qd
H

)
.

The composition of the above three injections coincides with the map given in the theorem,

hence we complete the proof.
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Chapter 3

Refined abelian Stark conjectures

In this chapter, we formulate a new conjecture on a relation between two different Rubin-

Stark elements (see Conjecture 3). In the next chapter, we show that our new conjecture

(Conjecture 3) is indeed a generalization of Darmon’s conjecture [Dar95].

3.1 Notation

Throughout this chapter, we fix a global field k. We also fix T , a finite set of places of

k, containing no infinite place. For a finite separable extension L/k and a finite set S of

places of k, SL denotes the set of places of L lying above the places in S. For S containing

all the infinite places and disjoint to T , O×
L,S,T denotes the (S, T )-unit group of L, i.e.

O×
L,S,T = {a ∈ L× | ordw(a) = 0 for all w /∈ SL and a ≡ 1 (mod w′) for all w′ ∈ TL},

where ordw is the (normalized) additive valuation at w. Let YL,S =
⊕

w∈SL
Zw, the free

abelian group on SL, and XL,S = {
∑

aww ∈ YL,S |
∑

aw = 0}. Let

λL,S : O×
L,S,T −→ R⊗Z XL,S

be the map defined by λL,S(a) = −
∑

w∈SL
log |a|ww, where | · |w is the normalized absolute

value at w.

Let Ω(= Ω(k, T )) be the set of triples (L, S, V ) satisfying the following:

• L is a finite abelian extension of k,

• S is a nonempty finite set of places of k satisfying
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– S ∩ T = ∅,

– S contains all the infinite places and all places ramifying in L,

– O×
L,S,T is torsion-free,

• V is a subset of S satisfying

– any v ∈ V splits completely in L,

– |S| ≥ |V |+ 1.

We assume that Ω ̸= ∅. If k is a number field, then the condition that O×
L,S,T is torsion-free

is satisfied when, for example, T contains two finite places of unequal residue characteristics.

Take (L, S, V ) ∈ Ω, and put GL = Gal(L/k), r = rV = |V |. The equivariant (S, T )-

Artin L-function for L/k is defined by

ΘL,S,T (s) =
∑

χ∈ĜL

eχLS,T (s,χ
−1),

where ĜL = HomZ(GL,C×), eχ = 1
|GL|
∑

σ∈GL
χ(σ)σ−1, and

LS,T (s,χ) =
∏

v∈T

(1− χ(Frv)Nv1−s)
∏

v/∈S

(1− χ(Frv)Nv−s)−1,

where Frv ∈ GL is the arithmetic Frobenius at v, and Nv is the cardinality of the residue

field at v.

We define

Λr
L,S,T =

{
a ∈

r⋂

GL

O×
L,S,T | eχa = 0 for every χ ∈ ĜL such that r(χ) > r

}
,

where r(χ) = r(χ, S) = ords=0LS,T (s,χ) (for the definition of
⋂r

GL
, see Definition 2.2.1). It

is well-known that

r(χ) =

⎧
⎨

⎩
|{v ∈ S | v splits completely in Lkerχ}| if χ is nontrivial,

|S|− 1 if χ is trivial,

(see [Tat76, Proposition 3.4, Chpt. I]) so by our assumptions on V , we have r(χ) ≥ r for

every χ. This implies that s−rΘL,S,T (s) is holomorphic at s = 0. We define

Θ(r)
L,S,T (0) = lim

s→0
s−rΘL,S,T (s) ∈ C[GL].
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We fix the following:

• a bijection {all the places of k} ≃ Z≥0,

• for each place v of k, a place of k̄ (a fixed separable closure of k) lying above v.

From this fixed choice, we can regard V as a totally ordered finite set with order ≺, and
arrange V = {v1, . . . , vr} so that v1 ≺ · · · ≺ vr. For each v ∈ V , there is a fixed place w of

L lying above v, and define v∗ ∈ HomGL(YL,S,Z[GL]) to be the dual of w, i.e.

v∗(w′) =
∑

σw=w′

σ.

Thus, we often use slightly ambiguous notations such as follows: the fixed places of L

lying above v, v′, vi, etc. are denoted by w,w′, wi, etc. respectively. We define the analytic

regulator map RV :
∧r

GL
O×

L,S,T → R[GL] by

RV =
∧

v∈V

(v∗ ◦ λL,S),

where the exterior power in the right hand side means (v∗1 ◦ λL,S ∧ · · · ∧ v∗r ◦ λL,S) (defined
similarly to (2.1)). Thus, when we take an exterior power on a totally ordered finite set,

we always mean that the order is arranged to be ascending order. One can easily see that

v∗ ◦ λL,S = −
∑

σ∈GL

log |σ(·)|wσ−1,

so a more explicit definition of RV is as follows:

RV (u1 ∧ · · · ∧ ur) = det

(
−
∑

σ∈GL

log |σ(ui)|wjσ
−1

)
.

3.2 The Rubin-Stark conjecture

We use the notations and conventions as in §3.1. Recall that the integral refinement of

abelian Stark conjecture, which we call the Rubin-Stark conjecture, formulated by Rubin,

is stated as follows:

Conjecture 1 (Rubin [Rub96, Conjecture B′]). For (L, S, V ) ∈ Ω, there is a unique
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εL,S,V = εL,S,T,V ∈ Λr
L,S,T such that

RV (εL,S,V ) = Θ(r)
L,S,T (0).

The element εL,S,V predicted by the conjecture is called the Rubin-Stark element.

Remark 3.2.1. When r = 0, Conjecture 1 is known to be true (see [Rub96, Theorem

3.3]). In this case we have εL,S,V = ΘL,S,T (0) ∈ Z[GL] =
⋂0

GL
O×

L,S,T .

Remark 3.2.2. When r < min{|S| − 1, |{v ∈ S | v splits completely in L}|}, we have

Θ(r)
L,S,T (0) = 0, so Conjecture 1 is trivially true (namely, we have εL,S,V = 0).

Remark 3.2.3. When k = Q, Conjecture 1 is true (see [Bur07, Theorem A]).

Remark 3.2.4. When k is a function field, Conjecture 1 is true (see [Bur11, Corollary

1.2(iii)]).

3.3 Some properties of Rubin-Stark elements

In this section, we assume that Conjecture 1 holds for all (L, S, V ) ∈ Ω, and review some

properties of Rubin-Stark elements.

Lemma 3.3.1 ([Rub96, Lemma 2.7(ii)]). Let (L, S, V ) ∈ Ω. Then RV is injective on

Q⊗Z Λr
L,S,T .

Proof. Since λL,S induces an injection Q ⊗Z
∧r

GL
O×

L,S,T → C ⊗Z
∧r

GL
XL,S, it is sufficient

to prove that
∧

v∈V

v∗ : eχ

(
C⊗Z

r∧

GL

XL,S

)
−→ C[GL]

is injective for every χ ∈ ĜL such that r(χ) = r. It is well-known that r(χ) = dimC(eχ(C⊗Z

XL,S)), so we have dimC(eχ(C⊗Z
∧r

GL
XL,S)) = 1. Take any v′ ∈ S \ V , then we have

(
∧

v∈V

v∗
)(

eχ
∧

v∈V

(w − w′)

)
= eχ ̸= 0

(recall that w (resp. w′) denotes the fixed place of L lying above v (resp. v′)), which proves

the lemma.
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Proposition 3.3.2 ([Rub96, Proposition 6.1]). Let

(L, S, V ), (L′, S ′, V ) ∈ Ω,

and suppose that L ⊂ L′ and S ⊂ S ′. Then we have

Nr
L′/L(εL′,S′,V ) =

⎛

⎝
∏

v∈S′\S

(1− Fr−1
v )

⎞

⎠ εL,S,V ,

where NL′/L = NGal(L′/L), and if r = 0, then we regard Nr
L′/L as the natural map Z[GL′ ]→

Z[GL].

Proof. It is easy to see that Nr
L′/L(εL′,S′,V ) ∈ Q ⊗Z Λr

L,S′,T . Hence, by Lemma 3.3.1, it is

enough to check that

RV (N
r
L′/L(εL′,S′,V )) = RV

⎛

⎝

⎛

⎝
∏

v∈S′\S

(1− Fr−1
v )

⎞

⎠ εL,S,V

⎞

⎠ .

The left hand side is equal to the image of Θ(r)
L′,S′,T (0) in R[GL], and hence to

∏
v∈S′\S(1−

Fr−1
v )Θ(r)

L,S,T (0) (see [Tat76, Proposition 1.8, Chpt. IV]). The right hand side is equal to
∏

v∈S′\S(1− Fr−1
v )Θ(r)

L,S,T (0), so we complete the proof.

Proposition 3.3.3 ([Rub96, Lemma 5.1(iv) and Proposition 5.2]). Let

(L, S, V ), (L, S ′, V ′) ∈ Ω,

and suppose that S ⊂ S ′, V ⊂ V ′ and S ′ \ S = V ′ \ V . Put

ΦV ′,V = sgn(V ′, V )
∧

v∈V ′\V

(
∑

σ∈GL

ordw(σ(·))σ−1

)
∈

r′−r∧

GL

HomGL(O×
L,S′,T ,Z[GL]),

where r = |V |, r′ = |V ′|, and sgn(V ′, V ) = ±1 is defined by

(
∧

v∈V

v∗
)
◦

⎛

⎝
∧

v∈V ′\V

v∗

⎞

⎠ = sgn(V ′, V )
∧

v∈V ′

v∗ in HomGL

(
r′∧

GL

YL,S′ ,Z[GL]

)
.

Then we have

ΦV ′,V (Λ
r′

L,S′,T ) ⊂ Λr
L,S,T
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and

ΦV ′,V (εL,S′,V ′) = εL,S,V .

Proof. Put Φ = ΦV ′,V , for simplicity. First, we prove that

Φ(Λr′

L,S′,T )⊗Z Q = Λr
L,S,T ⊗Z Q. (3.1)

There is a split exact sequence of Q[GL]-modules:

0 −→ O×
L,S,T ⊗Z Q −→ O×

L,S′,T ⊗Z Q
⊕

v∈S′\S w̃
−→

⊕

v∈S′\S

Q[GL] −→ 0,

where w̃ =
∑

σ∈GL
ordw(σ(·))σ−1. So we can choose a submodule M ⊂ O×

L,S′,T ⊗Z Q such

that

O×
L,S′,T ⊗Z Q = (O×

L,S,T ⊗Z Q)⊕M

and ⊕

v∈S′\S

w̃ : M−→
⊕

v∈S′\S

Q[GL]

is an isomorphism. Therefore, we have

(
r′∧

GL

O×
L,S′,T

)
⊗Z Q =

r′⊕

i=0

((
i∧

GL

O×
L,S,T

)
⊗Z Q

)
⊗Q[GL]

r′−i∧

Q[GL]

M.

If i > r then Φ(((
∧i

GL
O×

L,S,T )⊗Z Q)⊗Q[GL]

∧r′−i
Q[GL]

M) = 0, and if i < r then
∧r′−i

Q[GL]
M = 0.

Hence we have

Φ

(
r′∧

GL

O×
L,S′,T

)
⊗Z Q =

(
r∧

GL

O×
L,S,T

)
⊗Z Q.

Now (3.1) follows by noting that r(χ, S ′) = r(χ, S) + r′ − r for every χ ∈ ĜL.

For the first assertion, by (3.1), it is enough to prove that

Φ

(
r′⋂

GL

O×
L,S′,T

)
⊂

r⋂

GL

O×
L,S,T .

Since O×
L,S′,T/O

×
L,S,T is torsion-free, we have a surjection

HomGL(O×
L,S′,T ,Z[GL])→ HomGL(O×

L,S,T ,Z[GL]).
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Now the assertion follows from the definition of Rubin’s lattice.

For the second assertion, it is enough to show that

RV (Φ(εL,S′,V ′)) = Θ(r)
L,S,T (0).

It is easy to see that for v ∈ V ′ \ V

log Nv
∑

σ∈GL

ordw(σ(·))σ−1 = v∗ ◦ λL,S′ ,

and also that

Θ(r′)
L,S′,T (0) =

⎛

⎝
∏

v∈V ′\V

log Nv

⎞

⎠Θ(r)
L,S,T (0).

Therefore, we have

RV (Φ(εL,S′,V ′)) =

⎛

⎝
∏

v∈V ′\V

log Nv

⎞

⎠
−1

RV ′(εL,S′,V ′)

=

⎛

⎝
∏

v∈V ′\V

log Nv

⎞

⎠
−1

Θ(r′)
L,S′,T (0)

= Θ(r)
L,S,T (0).

3.4 Refined conjectures

In this section, we propose the main conjectures. We keep the notations in §3.1. We also

keep on assuming Conjecture 1 is true for all (L, S, V ) ∈ Ω. Fix (L, S, V ), (L′, S ′, V ′) ∈ Ω

such that L ⊂ L′, S ⊂ S ′, and V ⊃ V ′. We also use the notations defined in Chapter 2,

taking G = GL′ and H = Gal(L′/L). For convenience, we record the list of the notations

here (some new notations are added).

• GL = Gal(L/k),

• GL′ = Gal(L′/k),

• G(L′/L) = Gal(L′/L),
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• r = |V |,

• r′ = |V ′|,

• εL,S,V ∈
⋂r

GL
O×

L,S,T (resp. εL′,S′,V ′ ∈
⋂r′

GL′ O
×
L′,S′,T ): the Rubin-Stark element for

(L, S, V ) (resp. (L′, S ′, V ′)) (see §3.2).

• d = r − r′(≥ 0),

• IL′/L = IG(L′/L) = ker(Z[GL′ ] −→ Z[GL]),

• I(L′/L) = I(G(L′/L)) = ker(Z[G(L′/L)] −→ Z).

For n ∈ Z≥0,

• Qn
L′/L = Qn

G(L′/L) = InL′/L/I
n+1
L′/L,

• Q(L′/L)n = Q(G(L′/L))n = I(L′/L)n/I(L′/L)n+1.

Recall that there is a natural isomorphism

Z[GL]⊗Z Q(L′/L)n ≃ Qn
L′/L

(see (2.3)).

Recall the definition of “higher norm” (Definition 2.2.12). In the case r′ ≥ 1, the dth

norm

N(r′,d)
L′/L = N(r′,d)

G(L′/L) :
r′⋂

GL′

O×
L′,S′,T −→

⎛

⎝
r′⋂

GL′

O×
L′,S′,T

⎞

⎠⊗Z Z[G(L′/L)]/I(L′/L)d+1

is defined by

N(r′,d)
L′/L (a) =

∑

σ∈G(L′/L)

σa⊗ σ−1,

and in the case r′ = 0, N(0,d)
L′/L is defined to be the natural map

Z[GL′ ] −→ Z[GL′ ]/Id+1
L′/L.

In the case r′ ≥ 1, define

i :

(
r′⋂

GL

O×
L,S′,T

)
⊗Z Q(L′/L)d ↪→

⎛

⎝
r′⋂

GL′

O×
L′,S′,T

⎞

⎠⊗Z Z[G(L′/L)]/I(L′/L)d+1
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to be the canonical injection in Lemma 2.2.10. In the case r′ = 0, define

i :

(
0⋂

GL

O×
L,S′,T

)
⊗Z Q(L′/L)d ≃ Qd

L′/L ↪→ Z[GL′ ]/Id+1
L′/L

to be the inclusion.

Conjecture 2.

N(r′,d)
L′/L (εL′,S′,V ′) ∈ im i.

Remark 3.4.1. When d = 0, Conjecture 2 is true by Remarks 2.2.11 and 2.2.13.

Remark 3.4.2. Conjecture 2 is related to the Kolyvagin’s derivative construction, which is

important in the theory of Euler systems ([Kol90], [Rub00]) and Mazur-Rubin’s Kolyvagin

systems ([MaRu04]). See [San14b, Remark 4.8] for the detail.

For v ∈ V , define

ϕv = ϕv,L′/L : L× −→ Q1
L′/L

by ϕv(a) =
∑

σ∈GL
(recw(σa) − 1)σ−1, where recw is the local reciprocity map at w (recall

that w is the fixed place of L lying above v, see §3.1). Note that, by Proposition 2.2.6,
∧

v∈V \V ′ ϕv ∈
∧d

GL
HomGL(O×

L,S,T , Q
1
L′/L) induces a morphism

r⋂

GL

O×
L,S,T −→

(
r′⋂

GL

O×
L,S,T

)
⊗Z Q(L′/L)d.

We define sgn(V, V ′) = ±1 by

(
∧

v∈V ′

v∗
)
◦

⎛

⎝
∧

v∈V \V ′

v∗

⎞

⎠ = sgn(V, V ′)
∧

v∈V

v∗ in HomGL

(
r∧

GL

YL,S,Z[GL]

)
.

The following conjecture predicts that N(r′,d)
L′/L (εL′,S′,V ′) is described in terms of εL,S,V .

Conjecture 3. Conjecture 2 holds, and we have

i−1(N(r′,d)
L′/L (εL′,S′,V ′)) = sgn(V, V ′)

⎛

⎝
∏

v∈S′\S

(1− Fr−1
v )

⎞

⎠

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V ).

Remark 3.4.3. When d = 0, Conjecture 3 is true by the “norm relation” (Proposition

3.3.2). (See Remarks 2.2.11 and 2.2.13.)
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Remark 3.4.4. When r′ = 0, by Remark 3.2.1, one sees that Conjecture 3 is equivalent

to the “Gross-type refinement of the Rubin-Stark conjecture” ([Pop11, Conjecture 5.3.3]),

which generalizes Gross’s conjecture ([Gro88, Conjecture 4.1]), see [Pop11, Proposition

5.3.6].

Remark 3.4.5. When r′ = 1, Conjecture 3 is closely related to Darmon’s conjecture

([Dar95, Conjecture 4.3]). The detailed explanation is given in Chapter 4.

Proposition 3.4.6. It is sufficient to prove Conjecture 3 in the following case:

S = S ′,

r = min{|S|− 1, |{v ∈ S | v splits completely in L}|} =: rL,S,

r′ = min{|S|− 1, |{v ∈ S | v splits completely in L′}|} =: rL′,S.

Proof. From Proposition 3.3.2, we may assume S = S ′. When r < rL,S and r′ < rL′,S,

Conjecture 3 is trivially true (see Remark 3.2.2). When r < rL,S and r′ = rL′,S, we have

N(r′,d)
L′/L (εL′,S,V ′) = 0

if Conjecture 3 is true when r = rL,S and r′ = rL′,S. When r = rL,S and r′ < rL′,S, we

prove ⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V ) = 0.

If there exists v ∈ V \ V ′ which splits completely in L′, this is clear. If all v ∈ V \ V ′ do

not split completely in L′, then there exists v′ ∈ S \ V which splits completely in L′, and

we must have V = S \ {v′}. By the product formula, we see that

∑

v∈S\V ′

ϕv,L′/L = 0 on O×
k,S,T .

Note that εL,S,V ∈ e1(Q⊗Z
∧r

GL
O×

L,S,T ) in this case. Hence, choosing any v′′ ∈ V \ V ′, we

have ⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V ) = ±

⎛

⎝
∧

v∈(S\{v′′})\V ′

ϕv

⎞

⎠ (εL,S,V ),

and the right hand side is 0 since v′ splits completely in L′.

From now on we assume S = S ′, r = rL,S, and r′ = rL′,S.

Proposition 3.4.7. If every place in V \V ′ is finite and unramified in L′, then Conjecture

3 is true.
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Proof. We treat the case r′ ≥ 1. The proof for r′ = 0 is similar.

Put W := V \ V ′ for simplicity. Note that (L′, S \W,V ′) ∈ Ω. By Proposition 3.3.2,

we have

εL′,S,V ′ =
∏

v∈W

(1− Fr−1
v )εL′,S\W,V ′ .

Hence, we have

N(r′,d)
L′/L (εL′,S,V ′) =

∑

σ∈G(L′/L)

σ
∏

v∈W

(1− Fr−1
v )εL′,S\W,V ′ ⊗ σ−1

=
∑

σ∈G(L′/L)

σεL′,S\W,V ′ ⊗ σ−1
∏

v∈W

(1− Fr−1
v )

= NL′/LεL′,S\W,V ′

∏

v∈W

(Frv − 1)

∈

⎛

⎝NL′/L

r′⋂

GL′

O×
L′,S,T

⎞

⎠⊗Z Q(L′/L)d.

For every v ∈ W , we have

ϕv =
∑

σ∈GL

ordw(σ(·))σ−1(Frv − 1)

(see [Ser79, Proposition 13, Chpt. XIII]), so by Proposition 3.3.3 we have

sgn(V, V ′)

(
∧

v∈W

ϕv

)
(εL,S,V ) = εL,S\W,V ′

∏

v∈W

(Frv − 1).

By Proposition 3.3.2 and Remark 2.2.11, we have

NL′/LεL′,S\W,V ′

∏

v∈W

(Frv − 1) = i

(
εL,S\W,V ′

∏

v∈W

(Frv − 1)

)
,

hence the proposition follows.

Remark 3.4.8. In [San15], it is proved that Conjecture 3 is true if the following three

assumptions are satisfied:

• V ′ contains all the infinite places of k,

• all v ∈ S split completely in L,

• G(L′/L) =
∏

v∈S\V ′ Jv, where Jv ⊂ GL′ is the inertia group at v.

33



The formulation of the following conjecture is a slight modification of [Bur07, Theorem

3.1] (see also Theorem 3.5.4 and Remark 3.5.6).

Conjecture 4. For every Φ ∈
∧r′

GL′ HomGL′ (O×
L′,S,T ,Z[GL′ ]), we have

Φ(εL′,S,V ′) ∈ IdL′/L

and

Φ(εL′,S,V ′) = sgn(V, V ′)ΦG(L′/L)

⎛

⎝

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V )

⎞

⎠ in Qd
L′/L.

The following conjecture is motivated by the property of the higher norm described in

Proposition 2.2.14.

Conjecture 5. If Conjecture 2 holds, then we have

Φ(εL′,S,V ′) = ΦG(L′/L)(i−1(N(r′,d)
L′/L (εL′,S,V ′))) in Qd

L′/L

for every Φ ∈
∧r′

GL′ HomGL′ (O×
L′,S,T ,Z[GL′ ]).

Remark 3.4.9. When d = 0 or r′ = 0 or 1, Conjecture 5 is true by Proposition 2.2.14.

3.5 Relation among the conjectures

We keep on assuming S = S ′, r = rL,S, and r′ = rL′,S.

Theorem 3.5.1. Assume Conjecture 5 holds. Then, Conjecture 3 holds if and only if

Conjectures 2 and 4 hold.

Proof. The “only if” part is clear. We prove the “if” part. Suppose that Conjectures 2 and

4 hold. Then, for every Φ ∈
∧r′

GL′ HomGL′ (O×
L′,S,T ,Z[GL′ ]), we have

ΦG(L′/L)(i−1(N(r′,d)
L′/L (εL′,S,V ′))) = sgn(V, V ′)ΦG(L′/L)

⎛

⎝

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V )

⎞

⎠ in Qd
L′/L

by Conjectures 4 and 5. By Theorem 2.2.15, the map

(
r′⋂

GL

O×
L,S,T

)
⊗Z Q(L′/L)d −→ HomGL′

⎛

⎝
r′∧

GL′

HomGL′ (O×
L′,S,T ,Z[GL′ ]), Qd

L′/L

⎞

⎠
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defined by α *→ (Φ *→ ΦG(L′/L)(α)) is injective. Hence we have

i−1(N(r′,d)
L′/L (εL′,S,V ′)) = sgn(V, V ′)

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V ).

Remark 3.5.2. Since Conjecture 3 is closely related to Darmon’s conjecture, as we men-

tioned in Remark 3.4.5, Theorem 3.5.1 gives a relation between Darmon’s conjecture and

Burns’s conjecture (Conjecture 4). In [Hay04, Theorem 6.14], Hayward established a con-

nection between these conjectures: he proved that Darmon’s conjecture gives a “base

change statement” for Burns’s conjecture. More precisely, consider a real quadratic field L

and a real abelian field L̃ which is disjoint to L. Put L′ := LL̃. Then Hayward proved that,

assuming Darmon’s conjecture for L, Burns’s conjecture for L̃/Q implies Burns’s conjec-

ture for L′/L up to a power of 2. On the other hand, Theorem 3.5.1 gives an equivalence

of Burns’s conjecture and Darmon’s conjecture, assuming Conjectures 2 and 5.

Remark 3.5.3. One can formulate for any prime number p the “p-part” of Conjectures 2,

3, 4, and 5 in the obvious way. One sees that the “p-part” of Theorem 3.5.1 is also valid,

namely, assuming the “p-part” of Conjecture 5, the “p-part” of Conjecture 3 holds if and

only if the “p-part” of Conjectures 2 and 4 hold.

The following theorem gives evidence for the validity of Conjecture 4.

Theorem 3.5.4 (Burns [Bur07, Theorem 3.1]). If the conjecture in [Bur07, §6.3] holds for
L′/k, then we have

Φ(εL′,S,V ′) ∈ IdL′/L

for every Φ ∈
∧r′

GL′ HomGL′ (O×
L′,S,T ,Z[GL′ ]) and an equality

Φ(εL′,S,V ′) = sgn(V, V ′)ΦG(L′/L)

⎛

⎝

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V )

⎞

⎠

in coker(
∧

v∈V \V ′ ϕv : (
∧d

GL
L×

T )tors → Qd
L′/L), where L×

T is the subgroup of L× defined by

L×
T = {a ∈ L× | ordw(a− 1) > 0 for all w ∈ TL}.

Remark 3.5.5. In the number field case, as Burns mentioned in [Bur07, Remark 6.2], the

conjecture in [Bur07, §6.3] for L′/k is equivalent to the “equivariant Tamagawa number
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conjecture (ETNC)” ([BuFl01, Conjecture 4(iv)]) for the pair (h0(Spec(L′)),Z[GL′ ]), and

known to be true if L′ is an abelian extension over Q by the works of Burns, Greither, and

Flach ([BuGr03], [Fla11]).

Remark 3.5.6. In [Bur07, Theorem 3.1], Burns actually proved more: let

ISL′/L =

⎧
⎨

⎩

∏
v∈V \V ′ Iv if d > 0,

Z[GL′ ] if d = 0,

where Iv = ker(Z[GL′ ] → Z[GL′/Gv]) and Gv is the decomposition group of w in G(L′/L).

Then Burns proved that, under the assumption that the conjecture in [Bur07, §6.3] holds
for L′/k, Φ(εL′,S,V ′) ∈ ISL′/L for every Φ ∈

∧r′

GL′ HomGL′ (O×
L′,S,T ,Z[GL′ ]) and an equality

Φ(εL′,S,V ′) = sgn(V, V ′)ΦG(L′/L)

⎛

⎝

⎛

⎝
∧

v∈V \V ′

ϕv

⎞

⎠ (εL,S,V )

⎞

⎠

holds in coker(
∧

v∈V \V ′ ϕv : (
∧d

GL
L×

T )tors → ISL′/L/IL′/LISL′/L).

Proposition 3.5.7. (
d∧

GL

L×
T

)

tors

⊗Z Z
[

1

|GL|

]
= 0.

Proof. Note that
d∧

GL

L×
T = lim−→

d∧

GL

O×
L,Σ,T ,

where Σ runs over all finite sets of places of k, which contains all the infinite places and

places ramifying in L, and is disjoint from T , and the direct limit is taken with respect to

the map induced by the inclusion OL,Σ,T ↪→ OL,Σ′,T (Σ ⊂ Σ′). So it is sufficient to prove

that for such Σ,
∧d

GL
O×

L,Σ,T ⊗Z Z[ 1
|GL| ] is torsion-free. Since O×

L,S,T is torsion-free, we see

that O×
L,Σ,T is also torsion-free. It is well-known that a finitely generated Z[ 1

|GL| ][GL]-module

is locally free if and only if it is torsion-free. So we see that O×
L,Σ,T ⊗Z Z[ 1

|GL| ] is locally free

Z[ 1
|GL| ][GL]-module. Hence

∧d
GL

O×
L,Σ,T ⊗Z Z[ 1

|GL| ] is also locally free, so it is torsion-free.

Combining Theorem 3.5.1, Theorem 3.5.4, and Proposition 3.5.7, we have the following

theorem (see also Remark 3.5.3).

Theorem 3.5.8 ([San14b, Theorem 3.22]). Let p be a prime number not dividing |GL|.
Assume the “p-part” of Conjecture 5 holds. If the conjecture in [Bur07, §6.3] for L′/k and

the “p-part” of Conjecture 2 hold, then the “p-part” of Conjecture 3 holds.
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Remark 3.5.9. In the joint work with Burns and Kurihara [BKS14], the authors proved

that Conjectures 3 and 4 are equivalent under no assumptions. Furthermore, we proved

that the conjecture in [Bur07, §6.3] for L′/k implies Conjecture 3 directly. This result

improves Theorems 3.5.8 and 3.5.4. Since the ETNC for the pair (h0(Spec(L′)),Z[GL′ ]) is

known to be true if L′ is abelian over Q, as we noted before, we have proved that Conjecture

3 is true if L′ is abelian over Q.
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Chapter 4

Darmon’s conjecture

In this chapter, we show that Conjecture 3 is regarded as a generalization of Darmon’s

conjecture [Dar95]. By Remark 3.5.9, we know that Conjecture 3 is true if L′ is abelian

over Q. As an application of this fact, we give a full proof of Darmon’s conjecture. Thus,

we improve the main result of Mazur and Rubin in [MaRu11], where the “non-2-part” of

Darmon’s conjecture is proved.

4.1 The formulation

We formulate a slightly modified version of the conjecture of Darmon. First, we fix the

following:

• a bijection {all the places of Q} ≃ Z≥0 such that ∞ (the infinite place of Q) corre-

sponds to 0 (from this, we endow a total order on {all the places of Q}),

• for each place v of Q, a place of Q lying above v.

Let F/Q be a real quadratic field, and χ be the corresponding Dirichlet character with

conductor f . Let n be a square-free product of primes not dividing f . Put

n± =
∏

ℓ|n,χ(ℓ)=±1

ℓ

(throughout this chapter, ℓ always denotes a prime number), and let ν± be the number of

prime divisors of n±. For any positive integer m, µm denotes the group of mth roots of

unity in Q, and ζm = e
2πi
m (the embedding Q ↪→ C is fixed above). Put Fn := F (µn)+, the
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maximal real subfield of F (µn). Define a cyclotomic unit by

βn := NF (µn)/Fn

⎛

⎝
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1− ζnf )χ(σ)
⎞

⎠ .

Put

θn :=
∑

σ∈Gal(Fn/F )

σβn ⊗ σ−1 ∈ F×
n ⊗Z Z[Gal(Fn/F )].

Let In be the augmentation ideal of Z[Gal(Fn/F )]. Note that, since F×
n /F× is torsion-free,

the natural map

(F×/{±1})⊗Z Iν+n /Iν++1
n −→ (F×

n /{±1})⊗Z Z[Gal(Fn/F )]/Iν++1
n

is injective.

Next, write n+ =
∏ν+

i=1 ℓi so that ℓ1 ≺ · · · ≺ ℓν+ (“≺” is the total order fixed above),

and let λi be the fixed place of F lying above ℓi. Let λ0 be the fixed place of F lying

above ∞. Let τ be the generator of Gal(F/Q). Take u0, . . . , uν+ ∈ OF [
1
n ]

× such that

{(1 − τ)ui}0≤i≤ν+ forms a Z-basis of (1 − τ)OF [
1
n ]

× (which is in fact a free abelian group

of rank ν+ + 1, see [MaRu11, Lemma 3.2(ii)]), and det(log |(1− τ)ui|λj)0≤i,j≤ν+ > 0. Put

Rn := (ϕ1
ℓ1 ∧ · · · ∧ ϕ1

ℓν+
)((1− τ)u0 ∧ · · · ∧ (1− τ)uν+) ∈ (1− τ)OF

[
1

n

]×
⊗Z Iν+n /Iν++1

n ,

where

ϕ1
ℓi : F

× −→ In/I
2
n

is defined by ϕ1
ℓi
= recλi(·)− 1, where recλi : F

× → Gal(Fn/F ) is the local reciprocity map

at λi. Note that we have

Rn = det

⎛

⎜⎜⎜⎜⎜⎝

(1− τ)u0 · · · (1− τ)uν+

ϕ1
ℓ1((1− τ)u0) · · · ϕ1

ℓ1((1− τ)uν+)
...

. . .
...

ϕ1
ℓν+

((1− τ)u0) · · · ϕ1
ℓν+

((1− τ)uν+)

⎞

⎟⎟⎟⎟⎟⎠
.

Finally, let hn denote the n-class number of F , i.e. the order of the Picard group of

SpecOF [
1
n ].

Now Darmon’s conjecture is stated as follows.
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Theorem 4.1.1 (Darmon’s conjecture).

θn = −2ν−hnRn in (F×/{±1})⊗Z Iν+n /Iν++1
n .

Remark 4.1.2. Let Jn be the augmentation ideal of Z[Gal(F (µn)/F )]. Note that the

natural map Gal(F (µn)/F )→ Gal(Fn/F ) induces the isomorphism

Jν+
n /Jν++1

n ⊗Z Z
[
1

2

]
∼−→ Iν+n /Iν++1

n ⊗Z Z
[
1

2

]
.

Using this, it is not difficult to see that the following statement is equivalent to [MaRu11,

Theorem 3.9]:

θn = −2ν−hnRn in (F×/{±1})⊗Z Iν+n /Iν++1
n ⊗Z Z

[
1

2

]
.

Thus, the “non-2-part” of the original conjecture of Darmon ([MaRu11, Conjecture 3.8]) is

equivalent to the “non-2-part” of our modified conjecture of Darmon. Therefore, Theorem

4.1.1 improves [MaRu11, Theorem 3.9]. Note that, in the original conjecture of Darmon,

the cyclotomic unit is defined by

αn :=
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1− ζnf )χ(σ),

whereas our cyclotomic unit is βn = NF (µn)/Fn(αn). Since cyclotomic units, as Stark ele-

ments, lie in real fields, so it is natural to consider βn.

4.2 Proof of Darmon’s conjecture

We keep notation in the previous section, and also use notation defined in Chapter 3. We

specialize the general setting of Chapter 3 into the following:

• k = Q,

• L = F (a real quadratic field),

• L′ = Fn,

• S = S ′ = {∞} ∪ {primes dividing nf},

• V = {∞} ∪ {primes dividing n+},
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• V ′ = {∞},

• T : a finite set of places of Q such that

– S ∩ T = ∅,

– O×
L′,S,T is torsion-free.

Then one sees that (L, S, V ), (L′, S, V ′) ∈ Ω = Ω(Q, T ).

It is known that the Rubin-Stark conjecture (Conjecture 1) for all the triples in Ω holds

([Bur07, Theorem A]). Let

εT = εL,S,T,V ∈
ν++1⋂

GL

O×
L,S,T

⎛

⎝resp. ε′T = εL′,S,T,V ′ ∈
1⋂

GL′

O×
L′,S,T = O×

L′,S,T

⎞

⎠

denote the Rubin-Stark element for the triple (L, S, V ) (resp. (L′, S, V ′)) (later we will

vary T , so we keep in the notation the dependence on T ).

By Remark 3.5.9, we know that Conjecture 3 is true if L′ is abelian over Q. Hence we

have the following theorem.

Theorem 4.2.1.

N(1,ν+)
L′/L (ε′T ) = (−1)ν+

⎛

⎝
∧

ℓ|n+

ϕℓ

⎞

⎠ (εT ) in L× ⊗Z Q(L′/L)ν+ .

We will deduce Darmon’s conjecture (Theorem 4.1.1) from Theorem 4.2.1 by varying

the set T .

The following proposition is well-known.

Proposition 4.2.2. There exists a finite family T of T such that S ∩ T = ∅ and O×
L′,S,T

is torsion-free, and for every T ∈ T , there is an aT ∈ Z[GL′ ] such that

2 =
∑

T∈T

aT δT in Z[GL′ ],

where δT =
∏

ℓ∈T (1− ℓFr
−1
ℓ ) ∈ Z[GL′ ].

For the proof, see [Tat76, Lemme 1.1, Chpt. IV]. Take such a family T and aT for each

T ∈ T .
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Lemma 4.2.3. (i)

(1− τ)
∑

T∈T

aT ε
′
T = βn in L′×/{±1},

where τ is regarded as the generator of Gal(L′/Q(µn)+).

(ii)

(1− τ)
∑

T∈T

aT εT = (−1)ν++12ν−hn(1− τ)u0 ∧ · · · ∧ uν+ in Q⊗Z

ν++1∧

GL

O×
L,S.

Proof. (i) From

2ε′T = δTNQ(µnf )/L′(1− ζnf ),

we obtain

2
∑

T∈T

aT ε
′
T = 2NQ(µnf )/L′(1− ζnf )

(see Proposition 4.2.2). We compute

(1− τ)NQ(µnf )/L′(1− ζnf ) = NL(µn)/L′((1− τ)NQ(µnf )/L(µn)(1− ζnf ))

= βn,

hence we have

(1− τ)
∑

T∈T

aT ε
′
T = βn in L′×/{±1}.

(ii) By Lemma 3.3.1, RV is injective on eχ(Q ⊗Z
∧ν++1

GL
O×

L,S), so it is sufficient to prove

that

RV

(
(1− τ)

∑

T∈T

aT εT

)
= (−1)ν++12ν−hnRV ((1− τ)u0 ∧ · · · ∧ uν+).

By the characterization of εT , the left hand side is equal to 2(1 − τ)Θ(ν++1)
L,S (0). Hence, it

is sufficient to prove that

2(1− τ)Θ(ν++1)
L,S (0) = (−1)ν++12ν−hnRV ((1− τ)u0 ∧ · · · ∧ uν+). (4.1)

If ν− > 0 and ℓ | n−, then we have

(1− τ)Θ(ν++1)
L,S (0) = 2(1− τ)Θ(ν++1)

L,S\{ℓ}(0),
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since Frℓ = τ . Also, note that hn = hn/ℓ and (1− τ)OL[
1
n ]

× = (1− τ)OL[
1

n/ℓ ]
×. Therefore,

proving (4.1), we may assume ν− > 0. Using the well-known class number formulas for

n-truncated Dedekind zeta functions of L and Q (see [Gro88, §1]), we have

2(1− τ)Θ(ν++1)
L,S (0) = 4hneχ

RL,n

RQ,n
,

where RL,n and RQ,n are the usual n-regulators for L and Q respectively. In Lemma 4.2.4,

we will prove an equality

eχRL,n = (−1)ν++12ν−−1RQ,neχRV (u0 ∧ · · · ∧ uν+).

Hence we have

2(1− τ)Θ(ν++1)
L,S (0) = (−1)ν++12ν−hnRV ((1− τ)u0 ∧ · · · ∧ uν+),

which completes the proof.

Lemma 4.2.4.

eχRL,n = (−1)ν++12ν−−1RQ,neχRV (u0 ∧ · · · ∧ uν+).

Proof. (Compare the proof of [Rub96, Theorem 3.5].) There is an exact sequence of abelian

groups:

0 −→ Z
[
1

n

]×
/{±1} −→ OL

[
1

n

]×
/{±1} 1−τ−→ (1− τ)OL

[
1

n

]×
−→ 0.

Since (1 − τ)OL[
1
n ]

× is torsion-free (see [MaRu11, Lemma 3.2(ii)]), this exact sequence

splits. So we can choose η1, . . . , ην ∈ Z[ 1n ]
× so that {η1, . . . , ην , u0, . . . , uν+} is a basis of

OL[
1
n ]

×/{±1} (ν is the number of prime divisors of n). Write n− =
∏ν−

i=1 ℓ
′
i, where ℓ

′
i

is a prime number. Let λ′i be the (unique) place of L lying above ℓ′i. We compute the

regulator RL,n with respect to the basis {η1, . . . , ην , u0, . . . , uν+} of OL[
1
n ]

×/{±1} and the

places {λ′2, . . . ,λ′ν− ,λ
τ
0, . . . ,λ

τ
ν+ ,λ0, . . . ,λν+}:

RL,n = ± det

(
log |η|λ′ log |η|λτ log |η|λ
log |u|λ′ log |u|λτ log |u|λ

)
,

where we omit the subscript, for simplicity (for example, log |η|λ′ means the ν × (ν− − 1)-
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matrix (log |ηi|λ′
j
)1≤i≤ν,2≤j≤ν−). We may assume that the sign of the right hand side is

positive (replace η1 by η−1
1 if necessary). We compute

det

(
log |η|λ′ log |η|λτ log |η|λ
log |u|λ′ log |u|λτ log |u|λ

)
= det

(
log |η|λ′ log |η|λ log |η|λ
log |u|λ′ log |u|λτ log |u|λ

)

= det

(
log |η|λ′ log |η|λ 0

log |u|λ′ log |u|λτ log |u|λ − log |u|λτ

)

= det( log |η|λ′ log |η|λ ) det(log |u|λ − log |u|λτ )

= det( 2 log |η|ℓ′ log |η|ℓ ) det(log |(1− τ)u|λ)

= 2ν−−1RQ,n det(log |(1− τ)u|λ).

Hence we have

eχRL,n = 2ν−−1RQ,neχ det(log |(1− τ)u|λ). (4.2)

On the other hand, we compute

eχRV (u0 ∧ · · · ∧ uν+) = (−1)ν++1eχ det(log |u|λ + log |τ(u)|λτ)

= (−1)ν++1eχ det(log |(1− τ)u|λ + (1 + τ) log |τ(u)|λ)

= (−1)ν++1eχ det(log |(1− τ)u|λ),

where the first equality follows by noting that RV =
∧

0≤i≤ν+
(− log | · |λi − log |τ(·)|λiτ) by

definition (see §3.1), and the last equality follows from eχ(1 + τ) = 0. Hence, by (4.2), we

have the desired equality

eχRL,n = (−1)ν++12ν−−1RQ,neχRV (u0 ∧ · · · ∧ uν+).

Now we give the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. By Theorem 4.2.1, we have an equality

N(1,ν+)
L′/L (ε′T ) = (−1)ν+

⎛

⎝
∧

ℓ|n+

ϕℓ

⎞

⎠ (εT )
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in L× ⊗Z Q(L′/L)ν+ . From this and Lemma 4.2.3, we deduce that an equality

θn = −2ν−hn

⎛

⎝
∧

ℓ|n+

ϕℓ

⎞

⎠ ((1− τ)u0 ∧ · · · ∧ uν+)

holds in (L×/{±1})⊗Z Q(L′/L)ν+ . It is easy to see that

(−1)ν+
⎛

⎝
∧

ℓ|n+

ϕℓ

⎞

⎠ ((1− τ)u0 ∧ · · · ∧ uν+) = Rn.

Hence we have the desired equality

θn = −2ν−hnRn.

Remark 4.2.5. By a similar argument to the proof of Theorem 4.1.1, we can show that

Gross’s “conjecture for tori” [Gro88, Conjecture 8.8] is also deduced from Conjecture 3.

For the detail, see [San] or [BKS14].
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Chapter 5

Euler systems and Kolyvagin systems

In this chapter, we give a generalization of Darmon’s conjecture for Euler systems for

general p-adic representations. The formulation of our conjecture is explained in §1.4 (see

(1.2)). We prove this conjecture under the standard hypotheses in the theory of Kolyvagin

systems (see Theorem 5.1.8).

A key observation lies in defining a notion of “algebraic Kolyvagin systems”, which

generalizes the notion of original Kolyvagin systems (see §5.2). We define four different

modules of algebraic Kolyvagin systems, called θ-Kolyvagin systems, derived-Kolyvagin

systems, pre-Kolyvagin systems, and (simply) Kolyvagin systems. The θ-Kolyvagin system

is the system whose axioms are satisfied by the collection {θn(c)}n of the theta elements (see

Definition 5.1.4). The derived-Kolyvagin system is the system whose axioms are satisfied by

the collection {κ′n}n of the Kolyvagin’s derivative classes of c. The pre-Kolyvagin system

is an analogue of the θ-Kolyvagin system. The system which we call simply Kolyvagin

system is a direct generalization of the original Kolyvagin system. At a glance, these four

modules of algebraic Kolyvagin systems may have different structures, but we prove that

they are all isomorphic (see Theorem 5.2.17). This observation is useful in some aspects;

firstly, we can prove that {θn(c)}n is a θ-Kolyvagin system by reducing to show that the

Kolyvagin’s derivative classes {κ′n}n of c satisfy the axioms of the derived-Kolyvagin systems

(see Proposition 5.4.6); secondly, we can apply Mazur-Rubin’s theory of Kolyvagin systems

to other Kolyvagin systems.

In [MaRu04, Appendix B], Howard constructed “regulator-type” Kolyvagin systems.

We extend this construction to other Kolyvagin systems. We introduce a new system, which

we call “unit system”, to treat Howard’s construction more systematically (see Definition

5.3.3). We interpret Howard’s construction as a “regulator map” from the module of unit

systems to that of Kolyvagin systems (see Definition 5.3.5). We give analogues of this
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regulator map for other Kolyvagin systems, and prove the natural compatibility with the

isomorphisms between different Kolyvagin systems (see Theorem 5.3.7). We apply Mazur-

Rubin’s theory to show that the regulator map is surjective (see Theorem 5.4.2). From

this, we show that the system of the theta elements, which forms a θ-Kolyvagin system, is

in the image of the regulator map. This says in fact that θn(c) ∈ hnRn holds (see (1.2)).

Thus, we prove the main theorem in this chapter.

In this chapter, we use the following notation. For each place v of Q, we choose a

place w of Q above v, and fix it. By the decomposition (resp. inertia) group of v in

GQ = Gal(Q/Q) we mean the decomposition (resp. inertia) group of w. The absolute

Galois group of Qv is identified with the decomposition group of v in GQ.

For a field F , and a continuous Gal(F/F )-module M (where F is a fixed separable

closure of F ), we denote

H i(F,M) = H i
cont(Gal(F/F ),M),

where H i
cont is the continuous cochain cohomology ([Tat76]).

If G is a profinite group, and M is a continuous G-module, we denote for τ ∈ G

M τ=1 = {a ∈M | τa = a}.

5.1 The statement

The aim of this section is to state the main theorem in this chapter (Theorem 5.1.8). First,

we set some notation. Let p be an odd prime, and fix a power of p, which is denoted by

M . Let T be a p-adic representation of the absolute Galois group of Q with coefficients

in Zp, that is, T is a free Zp-module of finite rank with a continuous Zp-linear action of

GQ = Gal(Q/Q). As usual, we assume that T is unramified at almost all places of Q, that

is, for all but finitely many places v of Q, the inertia group of v in GQ acts trivially on T .

We write A = T/MT . Fix Σ, a set of places of Q, such that

Σ ⊂ {ℓ | ℓ is a prime satisfying (∗)},
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where (∗) is as follows:

(∗)

⎧
⎪⎪⎨

⎪⎪⎩

T is unramified at ℓ,

M divides ℓ− 1,

A/(Frℓ − 1)A ≃ Z/MZ,

where Frℓ is the arithmetic Frobenius at ℓ.

Next, put N = N (Σ) = {square-free products of primes in Σ}. We suppose 1 ∈ N , for

convention. Note that N is naturally identified with the family of all the finite subsets of

Σ (with this identification, 1 ∈ N corresponds to the empty set ∅ ⊂ Σ). This observation

will be used later, in §5.2.
For every ℓ ∈ Σ, put

Pℓ(x) = det(1− Frℓx|T ) ∈ Zp[x],

where the right hand side means the characteristic polynomial with respect to the action

of Frℓ on T . Note that Pℓ(1) ≡ 0 (mod M), since A/(Frℓ − 1)A ≃ Z/MZ (see [MaRu04,

Lemma 1.2.3]). Put

Qℓ(x) =
Pℓ(x)− Pℓ(1)

x− 1
mod M ∈ Z/MZ[x].

This is the unique polynomial such that

(x− 1)Qℓ(x) ≡ Pℓ(x) mod M

(see [Rub00, Lemma 4.5.2] or [MaRu04, Definition 1.2.2]).

Next, for every n ∈ N , put

Gn = Gal(Q(n)/Q),

where Q(n) is the maximal p-subextension of Q inside Q(µn). Note that we have a natural

isomorphism Gn ≃
⊕

ℓ|n Gℓ. (Note also that in this section Gℓ does not mean the decom-

position group at ℓ.) For every ℓ ∈ Σ, we define a generator σℓ of Gℓ as follows. Fix a

generator ξ of Zp-module lim←−µpm . Since we fixed the embedding Q ↪→ Qℓ, lim←−µpm is also

regarded as a subgroup of lim←−Q×
ℓ . By Kummer theory, we have a canonical isomorphism

Gal(Qur
ℓ (ℓ1/p

∞
)/Qur

ℓ )
∼−→ lim←−µpm ; σ *→

(
σ(ℓ1/p

m
)

ℓ1/pm

)

m

,

where Qur
ℓ is the maximal unramified extension of Qℓ. We also have a natural surjection
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Gal(Qur
ℓ (ℓ1/p

∞
)/Qur

ℓ ) → Gℓ, so we have a surjection lim←−µpm → Gℓ. We define σℓ ∈ Gℓ to

be the image of ξ ∈ lim←−µpm by this surjection.

For n ∈ N , we denote In the augmentation ideal of Z[Gn]. Note that if ℓ ̸ |n, then we

have

Pℓ(Frℓ)⊗ 1 ∈ In ⊗ Z/MZ,

since Pℓ(1) ≡ 0 (mod M) as we mentioned above, where Frℓ is naturally regarded as an

element of Gn (note that since ℓ is prime to n, ℓ is unramified in Q(n)). Therefore, we

consider the image of Pℓ(Frℓ)⊗ 1 in In/I2n ⊗ Z/MZ, and denote it also by Pℓ(Frℓ)⊗ 1.

We next define important maps vℓ, uℓ, and ϕℓ for ℓ ∈ Σ. As a preliminary, we review

some facts on Galois cohomology.

For ℓ ∈ Σ, the unramified cohomology group at ℓ is defined by

H1
ur(Qℓ, A) = H1(Qur

ℓ /Qℓ, A).

There is a canonical isomorphism:

H1
ur(Qℓ, A) ≃ A/(Frℓ − 1)A,

which is obtained by evaluating Frℓ ∈ Gal(Qur
ℓ /Qℓ) to 1-cocycles representing elements of

H1
ur(Qℓ, A) (see [Rub00, Lemma B.2.8] or [MaRu04, Lemma 1.2.1(i)]).

There is a canonical decomposition:

H1(Qℓ, A) ≃ H1
tr(Qℓ, A)⊕H1

ur(Qℓ, A),

where H1
tr(Qℓ, A) := H1(Qℓ(µℓ)/Qℓ, A

GQℓ(µℓ)) is called the transverse cohomology group

at ℓ, and naturally identified with Hom(Gℓ, AFrℓ=1) (see [MaRu04, Lemma 1.2.1(ii) and

Lemma 1.2.4]). We remark that to get this decomposition, the assumption M |ℓ − 1 is

needed.

Now we start to define vℓ, uℓ, and ϕℓ.

First, the definition of vℓ is as follows:

vℓ : H
1(Q, A) −→ H1(Qℓ, A)

−→ H1
tr(Qℓ, A) = Hom(Gℓ, A

Frℓ=1)
∼−→ AFrℓ=1 ≃ Z/MZ,
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where the first arrow is the localization map at ℓ, the second is the natural projection, the

third isomorphism is obtained by evaluating σℓ ∈ Gℓ (recall that σℓ is the fixed generator of

Gℓ), and the last (non-canonical) isomorphism follows by noting that A/(Frℓ−1)A ≃ Z/MZ
(see [MaRu04, Lemma 1.2.3]). We fix the last isomorphism.

Next, we define the map uℓ as follows:

uℓ : H
1(Q, A) −→ H1(Qℓ, A)

−→ H1
ur(Qℓ, A) = A/(Frℓ − 1)A

−Qℓ(Fr
−1
ℓ )

−→ AFrℓ=1 = Z/MZ,

where the first arrow is the localization at ℓ, and the second is the natural projection. The

third arrow is defined by

A/(Frℓ − 1)A −→ AFrℓ=1; ā *→ −Qℓ(Fr
−1
ℓ )a

(the well-definedness is easily verified by using the Cayley-Hamilton theorem). This is

in fact an isomorphism, see [Rub00, Corollary A.2.7] for the proof. Note that we use

−Qℓ(Fr
−1
ℓ ) instead of Qℓ(Fr

−1
ℓ ) (this turns out to be meaningful when we see Example 5.1.1

below). The last identification AFrℓ=1 = Z/MZ in the definition of uℓ above is obtained by

the fixed isomorphism when we defined vℓ.

Finally, we define ϕℓ as follows:

ϕℓ : H
1(Q, A) −→ lim←−

n∈N
(In/I

2
n ⊗ Z/MZ); a *→ −(σℓ − 1)⊗ uℓ(a)− Pℓ(Frℓ)⊗ vℓ(a),

where the inverse limit in the right hand side is taken with respect to the natural restriction

map of Galois groups, namely, if n,m ∈ N and n|m, the morphism from Im/I2m ⊗ Z/MZ
to In/I2n ⊗ Z/MZ is induced by the natural surjection Gm → Gn. Note that Pℓ(Frℓ) ⊗ 1

is naturally regarded as an element of lim←−n∈N ,ℓ|n(In/ℓ/I
2
n/ℓ ⊗ Z/MZ). Since we have the

canonical isomorphism

(Iℓ/I
2
ℓ ⊗ Z/MZ)⊕ lim←−

n∈N ,ℓ|n
(In/ℓ/I

2
n/ℓ ⊗ Z/MZ) ≃ lim←−

n∈N
(In/I

2
n ⊗ Z/MZ),

we see that −(σℓ − 1)⊗ uℓ(a)− Pℓ(Frℓ)⊗ vℓ(a) lies in lim←−n∈N (In/I2n ⊗ Z/MZ), hence ϕℓ is

defined.

Example 5.1.1. Take T = Zp(1) = lim←−µpm , and A = T/MT = µM . Take ℓ ∈ Σ. Suppose
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a ∈ Q×/(Q×)M ≃ H1(Q, A), and

a = ℓie in Q×
ℓ /(Q×

ℓ )
M ,

where i ∈ Z/MZ and e ∈ µM (note that i and e are uniquely determined for the image of

a in Q×
ℓ /(Q×

ℓ )
M). If we identify Z/MZ = µM by fixing a primitive Mth root of unity, then

we see that

vℓ(a) = i

and

uℓ(a) = e

(note that since Pℓ(x) = 1 − ℓx ≡ 1 − x (mod M), we have Qℓ(x) = −1). We see that ϕℓ

agrees with the following map:

H1(Q, A) ≃ Q×/(Q×)M −→ Q×
ℓ /(Q×

ℓ )
M

recℓ−→ lim←−(Gn ⊗ Z/MZ)
∼−→ lim←−(In/I

2
n ⊗ Z/MZ),

where recℓ is the map induced by the local reciprocity map at ℓ, and the last isomorphism

is given by σ *→ σ − 1.

We put

G(n) =
∞⊕

i=0

I in/I
i+1
n ⊗ Z/MZ

for n ∈ N , where I0n is understood to be Z[Gn] (so we have I0n/I
1
n = Z). G(n) has a structure

of graded Z/MZ-algebra, and we can regard ϕℓ as a homomorphism from H1(Q, A) to a

Z/MZ-module lim←−n∈N G(n), that is, ϕℓ ∈ HomZ/MZ(H1(Q, A), lim←−n∈N G(n)).

We define ϕn
ℓ to be the composition of the projection to G(n) followed by ϕℓ, that is,

ϕn
ℓ : H1(Q, A)

ϕℓ−→ lim←−
n∈N

G(n) −→ G(n).

We denote throughout this paper F the canonical Selmer structure on T in the sense

of [MaRu04, Definition 3.2.1]. For n ∈ N , we recall that the n-modified Selmer group

H1
Fn(Q, A) is defined by

H1
Fn(Q, A) = {a ∈ H1(Q, A) | aℓ ∈ H1

F(Qℓ, A) for any ℓ ̸ |n},
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where aℓ is the image of a by the localization at ℓ. We also recall that the n-strict dual

Selmer group H1
(F∗)n

(Q, A∗) is defined by

H1
(F∗)n(Q, A∗) = {a ∈ H1

F∗(Q, A∗) | aℓ = 0 for any ℓ|n},

where A∗ = Hom(A, µM) is the Kummer dual of A, and F∗ is the dual Selmer structure of

F . See [MaRu04, Example 2.1.8 and Definition 2.3.1].

Definition 5.1.2. For n ∈ N , we define a (module of) regulator Rn by

Rn = im

⎛

⎝ϕn
ℓ1 ∧ · · · ∧ ϕn

ℓν(n)
:
ν(n)+1∧

Zp

H1
Fn(Q, A) −→ H1

Fn(Q, A)⊗G(n)

⎞

⎠ ,

where n = ℓ1 · · · ℓν(n) and ν(n) is the number of prime divisors of n. Note that Rn does

not depend on the choice of the order of ℓ1, . . . , ℓν(n).

We recall the definition of Euler systems ([Rub00, Definition 2.1.1], [MaRu04, Definition

3.2.2]). Note that the definition of Euler systems in [Rub00] and that of [MaRu04] are

slightly different (see [MaRu04, Remark 3.2.3]). Our definition is due to the latter one.

Definition 5.1.3. A collection

{cF ∈ H1(F, T ) | Q ⊂ F ⊂ K, F/Q: finite extension}

is an Euler system for (T,Σ,K), where K is an abelian extension of Q, if, whenever F ⊂
F ′ ⊂ K and F ′/Q is finite,

CorF ′/F (cF ′) =
(∏

Pℓ(Fr
−1
ℓ )
)
cF ,

where the product runs over primes ℓ ∈ Σ which ramify in F ′ but not in F .

We define an analogue of Darmon’s “theta-element” ([Dar95, §4]) for a general Euler

system.

Definition 5.1.4. Suppose c = {cF ∈ H1(F, T ) | Q ⊂ F ⊂ K, F/Q : finite extension} is

an Euler system for (T,Σ,K) such that Q(n) ⊂ K for any n ∈ N . We define the theta

element θn(c) for n ∈ N by

θn(c) =
∑

γ∈Gn

γcn ⊗ γ ∈ H1(Q(n), A)⊗ Z[Gn],
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where cn = cQ(n), which we regard as an element of H1(Q(n), A) via the natural map

H1(Q(n), T )→ H1(Q(n), A), induced by the natural surjection T → A.

Lemma 5.1.5. Suppose d, n ∈ N and d|n. Then we have

πd(θn(c)) = θd(c)
∏

ℓ|n/d

Pℓ(Frℓ),

where πd is the map induced by the natural projection Gn → Gd.

Proof. We may assume d = n/ℓ, where ℓ is a prime divisor of n. We compute

πn/ℓ(θn(c)) = πn/ℓ

(
∑

γ∈Gn

γcn ⊗ γ
)

=
∑

α∈Gn/ℓ

∑

β∈Gℓ

αβcn ⊗ α

=
∑

α∈Gn/ℓ

α · NQ(n)/Q(n/ℓ)(cn)⊗ α

=
∑

α∈Gn/ℓ

α · Pℓ(Fr
−1
ℓ )cn/ℓ ⊗ α

=
∑

α∈Gn/ℓ

αcn/ℓ ⊗ α · Pℓ(Frℓ)

= θn/ℓ(c)Pℓ(Frℓ),

where NQ(n)/Q(n/ℓ) is the norm from Q(n) to Q(n/ℓ) (note that NQ(n)/Q(n/ℓ) is equal to

ResQ(n)/Q(n/ℓ) ◦ CorQ(n)/Q(n/ℓ)). This proves the lemma.

The following proposition is an analogue of [Dar95, Theorem 4.5(2)].

Proposition 5.1.6. Let the notations be as in Definition 5.1.4. We have

θn(c) ∈ H1(Q(n), A)⊗ Iν(n)n ,

and if we regard θn(c) ∈ H1(Q(n), A) ⊗ Iν(n)n /Iν(n)+1
n , then there is a canonical inverse

image of θn(c) under the restriction map

H1(Q, A)⊗ Iν(n)n /Iν(n)+1
n −→ H1(Q(n), A)⊗ Iν(n)n /Iν(n)+1

n ,
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namely, there is a canonical element xn ∈ H1(Q, A)⊗ Iν(n)n /Iν(n)+1
n such that

ResQ(n)/Q(xn) = θn(c).

Proof. We prove this proposition by induction on ν(n). When ν(n) = 0 (i.e. n = 1), we

have I01 = Z and θ1(c) = c1 ∈ H1(Q, A), so there is nothing to prove (since x1 = c1).

Suppose ν(n) > 0. We write every γ ∈ Gn uniquely as

γ =
∏

ℓ|n

γℓ,

where γℓ ∈ Gℓ. We compute

∑

γ∈Gn

γcn ⊗
∏

ℓ|n

(γℓ − 1) = θn(c) +
∑

d|n,d ̸=n

(−1)ν(n/d)
⎛

⎝
∑

γ∈Gn

γcn ⊗
∏

ℓ|d

γℓ

⎞

⎠

= θn(c) +
∑

d|n,d ̸=n

(−1)ν(n/d)θd(c)
∏

ℓ|n/d

Pℓ(Frℓ),

where the first equality follows by direct computation, and the second by Lemma 5.1.5.

This shows θn(c) ∈ H1(Q(n), A)⊗ Iν(n)n , since by the inductive hypothesis we have

θd(c)
∏

ℓ|n/d

Pℓ(Frℓ) ∈ H1(Q(n), A)⊗ Iν(n)n

if d|n and d ̸= n.

We compute

∑

γ∈Gn

γcn ⊗
∏

ℓ|n

(γℓ − 1) =

⎛

⎝
∏

ℓ|n

Dℓ

⎞

⎠ cn ⊗
∏

ℓ|n

(σℓ − 1) in H1(Q(n), A)⊗ Iν(n)n /Iν(n)+1
n ,

where

Dℓ =
|Gℓ|−1∑

i=1

iσi
ℓ,

(recall that σℓ is the fixed generator of Gℓ). It is well-known that
(∏

ℓ|n Dℓ

)
cn has a

canonical inverse image in H1(Q, A), which is usually called Kolyvagin’s derivative class

(see [Rub00, Definition 4.4.10]). We denote it by κ′n (in [Rub00, §4.4], it is denoted by
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κ[Q,n,M ]). Hence we have

θn(c) = κ′n ⊗
∏

ℓ|n

(σℓ − 1)−
∑

d|n,d ̸=n

(−1)ν(n/d)θd(c)
∏

ℓ|n/d

Pℓ(Frℓ). (5.1)

By the inductive hypothesis, we see that θn(c) ∈ H1(Q(n), A)⊗Iν(n)n /Iν(n)+1
n has a canonical

inverse image in H1(Q, A)⊗ Iν(n)n /Iν(n)+1
n .

Remark 5.1.7. By the proof of Proposition 5.1.6, we know that the element

xn ∈ H1(Q, A)⊗ Iν(n)n /Iν(n)+1
n

such that ResQ(n)/Q(xn) = θn(c) is inductively constructed by

xn = κ′n ⊗
∏

ℓ|n

(σℓ − 1)−
∑

d|n,d ̸=n

(−1)ν(n/d)xd

∏

ℓ|n/d

Pℓ(Frℓ).

Since κ′n is a canonical element, we can say that xn is also canonical. So we can naturally

regard θn(c) ∈ H1(Q, A)⊗ Iν(n)n /Iν(n)+1
n .

We summarize here the standard hypotheses (H.0)-(H.6) of Kolyvagin systems for the

triple (A,F ,Σ) ([MaRu04, §3.5]):

(H.0) A is a free Z/MZ-module of finite rank.

(H.1) A/pA is an absolutely irreducible Fp[GQ]-representation.

(H.2) There is a τ ∈ GQ such that τ = 1 on µp∞ and A/(τ − 1)A ≃ Z/MZ.

(H.3) H1(Q(A)Q(µp∞), A/pA) = H1(Q(A)Q(µp∞), A∗[p]) = 0, where Q(A) is the fixed field

in Q of the kernel of the map GQ → Aut(A), and A∗[p] = {a ∈ A∗ | pa = 0}.

(H.4) Either

(H.4a) HomFp[[GQ]](A/pA,A
∗[p]) = 0, or

(H.4b) p > 4.

(H.5) Σt ⊂ Σ ⊂ Σ1 for some t ∈ Z>0, where for k ∈ Z>0 Σk is the set of all the primes ℓ

satisfying (∗) for M replaced by pk.
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(H.6) For every ℓ ∈ {ℓ | T is ramified at ℓ} ∪ {p,∞}, the local condition F at ℓ is carte-

sian (see [MaRu04, Definition 1.1.4]) on the category QuotZ/MZ(A) (see [MaRu04,

Example 1.1.3]).

Note that, in our case, (H.0) is always satisfied.

Now, our main theorem is as follows:

Theorem 5.1.8 ([San14a, Theorem 3.8]). Suppose that there exists an Euler system c for

(T,Σ,K). Assume the following:

(i) the standard hypotheses (H.0)-(H.6) of Kolyvagin systems are satisfied for the triple

(A,F ,Σ),

(ii) K contains the maximal abelian p-extension of Q which is unramified outside of p

and Σ,

(iii) T/(Frℓ − 1)T is a cyclic Zp-module for every ℓ ∈ Σ,

(iv) Frp
k

ℓ − 1 is injective on T for every ℓ ∈ Σ and k ≥ 0,

(v) the core rank χ(A,F) = 1 ([MaRu04, Definition 4.1.11]),

((ii)-(iv) are the assumptions of the first statement of [MaRu04, Theorem 3.2.4], and (iii)

is satisfied since we assumed A/(Frℓ − 1)A ≃ Z/MZ). Then we have

θn(c) ∈ hnRn,

where hn = |H1
(F∗)n

(Q, A∗)|.

From this, we obtain the following corollary, which is a special case of [Rub00, Theorem

2.2.2] and [MaRu04, Corollary 4.4.5] (see also Remark 5.4.7).

Corollary 5.1.9. Under the same assumptions in Theorem 5.1.8, we have cQ = θ1(c) ∈
H1

F(Q, A) and

ordp(h1) ≤ ind(c),

where ordp(h1) is defined by h1 = pordp(h1), and

ind(c) = sup{m | cQ ∈ pmH1
F(Q, A)}.
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Proof. Take n = 1 in Theorem 5.1.8, then we have

cQ = θ1(c) ∈ h1R1 = h1H
1
F(Q, A).

Hence we have the desired inequality ordp(h1) ≤ ind(c).

5.2 Algebraic Kolyvagin systems

In this section, we introduce a notion of “algebraic Kolyvagin systems”. The aim of this

section is to prove Theorem 5.2.17. Our Kolyvagin systems are defined for a 7-tuple

(O,Σ, H, t, v, u, P ) satisfying the following:

• O: a commutative ring (with unity),

• Σ: a countable set,

• H: an O-module,

• t = {tq}q ∈
∏

q∈Σ Z≥1,

• v = {vq}q ∈
∏

q∈Σ HomO(H,O),

• u = {uq}q ∈
∏

q∈ΣHomO(H,O/(tq)) ((tq) denotes the ideal tqO),

• P = {Pq}q ∈
∏

q∈ΣG(Σ \ q)1 (we often denote Σ \ {q} by Σ \ q),

where for any subset Σ′ ⊂ Σ,

G(Σ′)i = lim←−
n∈N (Σ′)

(
I in/I

i+1
n ⊗Z O

)
,

and where N (Σ′) = {n ⊂ Σ′ | ν(n) := |n| < ∞}, and In is the augmentation ideal of

Z[
⊕

q∈n Z/tqZ].
Note that G(Σ′)1 is canonically isomorphic to

∏
q∈Σ′ O/(tq), since

In/I
2
n ⊗Z O ≃

⊕

q∈n
Z/tqZ⊗Z O ≃

⊕

q∈n
O/(tq)

for any n ∈ N (Σ′), where the first isomorphism is induced by the inverse of

⊕

q∈n
Z/tqZ

∼−→ In/I
2
n ; σ *→ σ − 1.
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So if Σ′′ ⊂ Σ′, then G(Σ′′)1 is regarded as an O-submodule of G(Σ′)1, and also its quotient.

We put

G(Σ′) = lim←−
n∈N (Σ′)

( ∞⊕

i=0

I in/I
i+1
n ⊗Z O

)
.

Note that if Σ′′ ⊂ Σ′, then there is a natural map from G(Σ′′) to G(Σ′) induced by the

inclusion In ↪→ Im, where n ∈ N (Σ′′) and m ∈ N (Σ′) with n ⊂ m. So any element of G(Σ′′)

is naturally regarded as an element of G(Σ′).

From now on we fix a 7-tuple (O,Σ, H, t, v, u, P ) satisfying above, and give some more

notations for it. We denote simply N = N (Σ). If Σ′ ⊂ Σ, there is a natural projection

map from G(Σ) to G(Σ′), which we denote by (·)|Σ′ . In particular, for n ∈ N , which

is by definition a subset of Σ, we denote the projection map to G(n) by πn (namely,

πn := (·)|n : G(Σ)→ G(n)).

If m, n ∈ N and m ⊂ n, we denote n/m instead of the set theoretic notation n \ m. If

n ∈ N and q ∈ Σ such that q /∈ n, we denote nq instead of n∪ q. We also denote 1 instead

of ∅ ∈ N .

For each q ∈ Σ, fix a generator xq of G(q)1(≃ O/(tq)) (as an O-module).

Definition 5.2.1. For any q ∈ Σ, we define an O-homomorphism

ϕq : H −→ G(Σ)1

by ϕq(a) = −uq(a)xq− vq(a)Pq. For n ∈ N , we denote the composition map πn ◦ϕq by ϕn
q.

Note that if n ∈ N and n = d 8 m, we have ϕn
q = ϕd

q + ϕm
q for any q ∈ Σ, since

G(n)1(≃
⊕

q′∈nO/(tq′)) ≃ G(d)1 ⊕G(m)1.

Example 5.2.2. The setting in §5.1 fits into this general setting. Use the notations as in

§5.1, take (O,Σ, H, t, v, u, P ) as follows:

• O = Z/MZ,

• Σ: as in §5.1,

• H =
⋃

n∈N (Σ)H
1
Fn(Q, A),

• tℓ: the maximal p-power dividing ℓ− 1,

• vℓ: as in §5.1,

• uℓ: as in §5.1,
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• P = (Pℓ(Frℓ)⊗ 1)ℓ ∈
∏

ℓ∈Σ lim←−n∈N (Σ),ℓ|n(In/ℓ/I
2
n/ℓ ⊗ Z/MZ) =

∏
ℓ∈Σ G(Σ \ ℓ)1.

If we set xℓ = (σℓ − 1)⊗ 1, then ϕℓ in the above definition is the same as in §5.1.

Now, for r ∈ Z≥1, we define algebraic Kolyvagin systems of “rank r”. Recall that for

n ∈ N , we put ν(n) = |n| and G(n)ν(n) = Iν(n)n /Iν(n)+1
n ⊗Z O. In what follows, for any

O-module G, we denote (
∧r

O H)⊗O G by
∧r H ⊗O G for simplicity.

By the construction in §2.1, for every q ∈ Σ and n ∈ N , vq ∈ HomO(H,O) induces the

map

vq :
r∧
H ⊗O G(n)ν(n) −→

r−1∧
H ⊗O G(n)ν(n).

Similarly, uq ∈ HomO(H,O/(tq)) induces the map

uq :
r∧
H ⊗O G(n)ν(n) −→

r−1∧
H ⊗O G(n)ν(n) ⊗O O/(tq),

and ϕq ∈ HomO(H,G(Σ)1) induces the map

ϕq :
r∧
H ⊗O G(n)ν(n) −→

r−1∧
H ⊗O G(Σ)ν(n)+1.

Definition 5.2.3. A collection

{
κn ∈

r∧
H ⊗O G(n)ν(n)

∣∣∣∣∣ n ∈ N
}

is a Kolyvagin system of rank r if the following axioms (K1)-(K4) are satisfied:

(K1) if q ∈ Σ \ n, then vq(κn) = 0,

(K2) if q ∈ n, then uq(κn) = 0,

(K3) if q ∈ n, then vq(κn) = ϕq(κn/q),

(K4) if q ∈ n, then πn/q(κn) = 0.

We denote the O-module consisting of all Kolyvagin systems of rank r by KSr. This is

an O-submodule of
∏

n∈N
∧r H ⊗O G(n)ν(n).

We will see that our Kolyvagin systems generalize the notion of original Kolyvagin

systems in [MaRu04] (see Proposition 5.4.1).
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We define the other three algebraic Kolyvagin systems, in Definitions 5.2.5, 5.2.6, and

5.2.7, which we call θ-Kolyvagin systems, pre-Kolyvagin systems, and derived-Kolyvagin

systems respectively. The O-module consisting of all θ-Kolyvagin systems (resp. pre-

Kolyvagin systems, resp. derived-Kolyvagin systems) of rank r is denoted by TKSr (resp.

PKSr, resp. DKSr).

The following definition is due to [MaRu11, Definition 6.1].

Definition 5.2.4. Let n ∈ N and d ⊂ n. When d ̸= 1, define

Dn,d = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−πn/d(Pq1) −πq2(Pq1) · · · −πqν (Pq1)

−πq1(Pq2) −πn/d(Pq2) −πq3(Pq2) · · · −πqν (Pq2)
... −πq2(Pq3)

. . .
...

...
...

. . .
...

−πq1(Pqν ) −πq2(Pqν ) · · · −πn/d(Pqν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ G(n)ν(d),

where {q1, . . . , qν} = d (ν = ν(d)). When d = 1, define

Dn,1 = 1 ∈ O = G(n)0.

Note that Dn,d does not depend on the choice of the order q1, . . . , qν of the elements of d.

We put

Dd = πd(Dn,d) = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 −πq2(Pq1) · · · −πqν (Pq1)

−πq1(Pq2) 0 −πq3(Pq2) · · · −πqν (Pq2)
... −πq2(Pq3)

. . .
...

...
...

. . .
...

−πq1(Pqν ) −πq2(Pqν ) · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ G(d)ν(d).

Clearly, Dd does not depend on n.

Definition 5.2.5. A collection

{
θn ∈

r∧
H ⊗O G(n)ν(n)

∣∣∣∣∣ n ∈ N
}

is a θ-Kolyvagin system of rank r if the following axioms (TK1)-(TK4) are satisfied:

(TK1) if q ∈ Σ \ n, then vq(θn) = 0,
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(TK2) if q ∈ n, then uq(
∑

d⊂n θdDn,n/d) = 0,

(TK3) if q ∈ n, then vq(
∑

d⊂n(−1)ν(n/d)πd(θn)) = ϕq(
∑

d⊂n/q(−1)ν(n/dq)πd(θn/q)),

(TK4) if q ∈ n, then πn/q(θn) = θn/q · πn/q(Pq).

Definition 5.2.6. A collection

{
κ̃n ∈

r∧
H ⊗O G(Σ)ν(n)

∣∣∣∣∣ n ∈ N
}

is a pre-Kolyvagin system of rank r if the following axioms (PK1)-(PK5) are satisfied:

(PK1) if q ∈ Σ \ n, then vq(κ̃n) = 0,

(PK2) if q ∈ n, then uq(
∑

d⊂n(−1)ν(n/d)πn(κ̃d)
∏

q′∈n/d πn/q′(Pq′)) = 0,

(PK3) if q ∈ n, then vq(κ̃n) = ϕq(κ̃n/q),

(PK4) if q ∈ n, then κ̃n|Σ\q = κ̃n/q|Σ\q · Pq,

(PK5) κ̃n =
∑

d⊂n πn(κ̃d)
∏

q∈n/d Pq|Σ\n.

Definition 5.2.7. A collection

{
κ′n ∈

r∧
H ⊗O G(n)ν(n)

∣∣∣∣∣ n ∈ N
}

is a derived-Kolyvagin system of rank r if the following axioms (DK1)-(DK4) are satisfied:

(DK1) if q ∈ Σ \ n, then vq(κ′n) = 0,

(DK2) if q ∈ n, then uq(
∑

d⊂n κ
′
dDn/d) = 0,

(DK3) if q ∈ n, then vq(κ′n) = ϕq(κ′n/q),

(DK4) if q ∈ n, then πn/q(κ′n) = 0.

Remark 5.2.8. The notion of “pre-Kolyvagin systems” first appeared in [MaRu11, Defi-

nition 6.2]. Note that the notion which generalizes pre-Kolyvagin systems in [MaRu11] is

what we call θ-Kolyvagin systems in this paper. We use the terminology “pre-Kolyvagin

system” for a different system.

61



Next we define morphisms between these Kolyvagin systems. In the following defini-

tion, the meaning of the subscript of FPT is “from pre-Kolyvagin systems to θ-Kolyvagin

systems”, and that of FPK , FTK , etc. are similar (see Theorem 5.2.17).

Definition 5.2.9. We define homomorphisms FPT and FPK from
∏

n∈N
∧r H⊗O G(Σ)ν(n)

to
∏

n∈N
∧r H ⊗O G(n)ν(n) by

FPT ({an}n) = {πn(an)}n ,

FPK({an}n) =

⎧
⎨

⎩
∑

d⊂n

(−1)ν(n/d)πn(ad)
∏

q∈n/d

πn/q(Pq)

⎫
⎬

⎭
n

.

We define endomorphisms FTK , FTD, and FDK of
∏

n∈N
∧r H ⊗O G(n)ν(n) by

FTK({an}n) =
{
∑

d⊂n

adDn,n/d

}

n

,

FTD({an}n) =

⎧
⎨

⎩
∑

d⊂n

(−1)ν(n/d)ad
∏

q∈n/d

πd(Pq)

⎫
⎬

⎭
n

,

and

FDK({an}n) =
{
∑

d⊂n

adDn/d

}

n

.

Proposition 5.2.10. FTK , FTD, and FDK are injective.

Proof. We only show for FTK . One can show the injectivity for the others by the same

method. Suppose {an}n ∈ kerFTK , i.e.

∑

d⊂n

adDn,n/d = 0

for all n ∈ N . We show by induction on ν(n) that an = 0. When ν(n) = 0, i.e. n = 1, we

have
∑

d⊂n adDn,n/d = a1 and this is 0 by the assumption. When ν(n) > 0, by the inductive

hypothesis we have ∑

d⊂n

adDn,n/d = anDn,1 = an.

Since the left hand side is 0 by the assumption that FTK({an}n) = 0, we get an = 0.

We define the following useful operator sm,n.
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Definition 5.2.11. For n,m ∈ N such that n ⊂ m, we define an operator sm,n on G(m) by

sm,n(g) =
∑

d⊂n

(−1)ν(d)πm/d(g).

This is an O-endomorphism of G(m). When m = n, put sn = sn,n.

Lemma 5.2.12. Let M be an O-module, and n,m ∈ N such that n ⊂ m. We regard sm,n

as an operator on M⊗O G(m). Then we have the following:

(i)

sm,n(M⊗O G(m)) ⊂M⊗O

(
∏

q∈n
xq

)
,

where xq is the fixed generator of G(q)1 and (
∏

q∈n xq) is the (principal) ideal of G(m)

generated by
∏

q∈n xq.

In particular, we have πn/q ◦ sm,n = 0 for all q ∈ n.

(ii) If d, n ∈ N , d ⊂ n, g ∈M⊗O G(d)ν(d), and h ∈ G(n)ν(n/d), then we have

sn(gh) = sd(g)sn,n/d(h).

Proof. (i) Suppose n = {q1, . . . , qν} (ν = ν(n)). Take any generator of M ⊗O G(m), and

write it as follows: ∑

α

mα ⊗ gαx
α1
q1 · · · x

αν
qν ,

where α runs over Zν
≥0, mα ∈M, and gα ∈ G(m/n). Put dα = {qi ∈ n | αi = 0}. We have

sm,n

(
∑

α

mα ⊗ gαx
α1
q1 · · · x

αν
qν

)
=

∑

α

mα ⊗
(
∑

d⊂n

(−1)ν(d)gαπm/d(x
α1
q1 · · · x

αν
qν )

)

=
∑

α

mα ⊗
(
∑

d⊂dα

(−1)ν(d)gαxα1
q1 · · · x

αν
qν

)

(note that since gα ∈ G(m/n), we have πm/d(gα) = gα for any d ⊂ n). If ν(dα) > 0, then

we have ∑

d⊂dα

(−1)ν(d) = (1− 1)ν(dα) = 0.
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Hence we have

sm,n

(
∑

α

mα ⊗ gαx
α1
q1 · · · x

αν
qν

)
=
∑

α,αi≥1

mα ⊗ gαx
α1
q1 · · · x

αν
qν ∈M⊗O

(
∏

q∈n
xq

)
.

(ii) Suppose d = {q1, . . . , qµ}, and n/d = {q′1, . . . , q′ν} (µ = ν(d), ν = ν(n/d)). Write g

and h as follows:

g =
∑

|α|=µ

mα ⊗ xα1
q1 · · · x

αµ
qµ

and

h =
∑

|β+γ|=ν

aβ,γx
β1
q1 · · · x

βµ
qµx

γ1
q′1
· · · xγν

q′ν
,

where mα ∈M, aβ,γ ∈ O, |α| means α1 + · · ·+ αµ, and |β + γ| is similar. As in the proof

of (i), we have

sd(g) = m(1,...,1) ⊗ xq1 · · · xqµ ,

sn,n/d(h) = a(0,...,0),(1,...,1)xq′1
· · · xq′ν ,

and

sn(gh) = a(0,...,0),(1,...,1)m(1,...,1) ⊗ xq1 · · · xqµxq′1
· · · xq′ν .

Hence we have

sn(gh) = sd(g)sn,n/d(h).

Corollary 5.2.13. Let n,m ∈ N with n ⊂ m and g ∈M⊗O G(m)ν(n). If πm/q(g) = 0 for

every q ∈ n, then we have

g ∈M⊗O

〈
∏

q∈n
xq

〉

O

,

where ⟨
∏

q∈n xq⟩O is the O-submodule of G(m) generated by
∏

q∈n xq.

In particular, we have g ∈M⊗O G(n).

Proof. Suppose n = {q1, . . . , qν} (ν = ν(n)). Write g as

g =
∑

j

∑

α

mj ⊗ gj,αx
α1
q1 · · · x

αν
qν ,
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where mj ∈M and gj,α ∈ G(m/n). As in the proof of Lemma 5.2.12, we have

sm,n

(
∑

j

∑

α

mj ⊗ gj,αx
α1
q1 · · · x

αν
qν

)
=
∑

j

∑

α,αi≥1

mj ⊗ gj,αx
α1
q1 · · · x

αν
qν .

Since πm/q(g) = 0 for every q ∈ n by the assumption, we have sm,n(g) = g (by the definition

of sm,n). Hence we have

g =
∑

j

∑

α,αi≥1

mj ⊗ gj,αx
α1
q1 · · · x

αν
qν .

Since g ∈M⊗O G(m)ν (g is “homogeneous of degree ν”), each αi must be equal to 1, and

hence the right hand side must be in M⊗O ⟨
∏

q∈n xq⟩O.

Lemma 5.2.14. If {κ̃n ∈
∧r H ⊗O G(Σ)ν(n) | n ∈ N} satisfies (PK4), then we have the

following: if n ⊂ m, then for every q ∈ n, we have

πm/q

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q′∈n/d

πm/q′(Pq′)

⎞

⎠ = 0.

Proof.

πm/q

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q′∈n/d

πm/q′(Pq′)

⎞

⎠

= πm/q

⎛

⎝
∑

d⊂n/q

(−1)ν(n/d)πm(κ̃d)
∏

q′∈n/d

πm/q′(Pq′)

+
∑

d⊂n/q

(−1)ν(n/dq)πm(κ̃dq)
∏

q′′∈n/dq

πm/q′′(Pq′′)

⎞

⎠

=
∑

d⊂n/q

(−1)ν(n/d)πm/q

⎛

⎝κ̃d
∏

q′∈n/d

πm/q′(Pq′)

⎞

⎠

+
∑

d⊂n/q

(−1)ν(n/dq)πm/q

⎛

⎝κ̃dq
∏

q′′∈n/dq

πm/q′′(Pq′′)

⎞

⎠
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=
∑

d⊂n/q

(−1)ν(n/d)πm/q

⎛

⎝κ̃d
∏

q′∈n/d

πm/q′(Pq′)

⎞

⎠

+
∑

d⊂n/q

(−1)ν(n/dq)πm/q

⎛

⎝κ̃d
∏

q′′∈n/d

πm/q′′(Pq′′)

⎞

⎠

= 0,

where the third equality follows from (PK4).

Proposition 5.2.15. (i) (PK5) is equivalent to the following:

(PK5)′ if n ⊂ m, then κ̃n =
∑

d⊂n

πm(κ̃d)
∏

q∈n/d

Pq|Σ\m.

(ii) If {κ̃n ∈
∧r H ⊗O G(Σ)ν(n) | n ∈ N} satisfies (PK4), then we have the following: if

n ⊂ m, then we have an equality in
∧r H ⊗O G(m)ν(n):

∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q∈n/d

πm/q(Pq) =
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq).

Proof. (i) One sees immediately that (PK5)′ implies (PK5) (take m = n in (PK5)′, this is

(PK5)). Suppose (PK5) and we show (PK5)′ by induction on ν(n). When ν(n) = 0, i.e.

n = 1, we have

κ̃1 = πm(κ̃1)

for any m since κ̃1 ∈
∧r H ⊗O G(Σ)0 =

∧r H, and we have

∑

d⊂1

πm(κ̃d)
∏

q∈1/d

Pq|Σ\m = πm(κ̃1)

so (PK5)′ is satisfied in this case. When ν(n) > 0, we prove (PK5)′ by induction on

ν(m/n). When ν(m/n) = 0, i.e. m = n, there is nothing to prove because it is (PK5).

When ν(m/n) > 0, take any q ∈ m/n. We have for any d ⊂ n

πm(κ̃d) =
∑

c⊂d

πm/q(κ̃c)
∏

q′∈d/c

πq(Pq′). (5.2)

To see this, if d ̸= n, we get this equality by the inductive hypothesis on ν(n) (replace n,

m in (PK5)′ by d, m/q respectively, then apply πm). If d = n, we get the equality by the

inductive hypothesis on ν(m/n) (replace m in (PK5)′ by m/q, then apply πm).
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Hence we have

∑

d⊂n

πm(κ̃d)
∏

q′∈n/d

Pq′ |Σ\m =
∑

d⊂n

∑

c⊂d

πm/q(κ̃c)
∏

q′′∈d/c

πq(Pq′′)
∏

q′∈n/d

Pq′ |Σ\m

=
∑

d⊂n

πm/q(κ̃d)
∏

q′∈n/d

Pq′ |Σ\(m/q)

= κ̃n,

where the first equality is obtained by (5.2), and the second by the direct computation

(note that Pq′ |Σ\(m/q) = Pq′ |Σ\m + πq(Pq′)), and the last is by the inductive hypothesis on

ν(m/n) (replace m in (PK5)′ by m/q). This completes the proof of (i).

(ii) From Lemma 5.2.14 and Corollary 5.2.13, we have

∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q∈n/d

πm/q(Pq) ∈
r∧
H ⊗O G(n),

so the left hand side does not change when we apply πn. Hence we have

∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q∈n/d

πm/q(Pq) = πn

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πm(κ̃d)
∏

q∈n/d

πm/q(Pq)

⎞

⎠

=
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq).

Proposition 5.2.16. Suppose d, n ∈ N and d ⊂ n.

(i) If q ∈ d, then πn/q(Dn,d) = −Dn/q,d/q · πn/d(Pq).

(ii) If q ∈ n/d, then πn/q(Dn,d) = Dn/q,d.

(iii) sn,d(Dn,d) = Dd.

Proof. (i) Suppose d = {q1, . . . , qν} and q = qν . By the definition of Dn,d (see Definition
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5.2.4), we have

πn/q (Dn,d) = πn/q

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−πn/d(Pq1) −πq2(Pq1) · · · −πqν (Pq1)

−πq1(Pq2) −πn/d(Pq2) −πq3(Pq2) · · · −πqν (Pq2)
... −πq2(Pq3)

. . .
...

...
...

. . .
...

−πq1(Pqν ) −πq2(Pqν ) · · · −πn/d(Pqν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−πn/d(Pq1) −πq2(Pq1) · · · 0

−πq1(Pq2) −πn/d(Pq2) −πq3(Pq2) · · · 0
... −πq2(Pq3)

. . .
...

...
...

. . . 0

−πq1(Pqν ) −πq2(Pqν ) · · · −πn/d(Pqν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= −Dn/q,d/q · πn/d(Pq).

(ii) Suppose d = {q1, . . . , qν}. By the definition of Dn,d, we have

πn/q (Dn,d) = πn/q

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−πn/d(Pq1) −πq2(Pq1) · · · −πqν (Pq1)

−πq1(Pq2) −πn/d(Pq2) −πq3(Pq2) · · · −πqν (Pq2)
... −πq2(Pq3)

. . .
...

...
...

. . .
...

−πq1(Pqν ) −πq2(Pqν ) · · · −πn/d(Pqν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−πn/dq(Pq1) −πq2(Pq1) · · · −πqν (Pq1)

−πq1(Pq2) −πn/dq(Pq2) −πq3(Pq2) · · · −πqν (Pq2)
... −πq2(Pq3)

. . .
...

...
...

. . .
...

−πq1(Pqν ) −πq2(Pqν ) · · · −πn/dq(Pqν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= Dn/q,d.

(iii) As in the proof of Lemma 5.2.12(i), sn,d eliminates all the terms other than “
∏

q∈d xq-

terms”. When we expand the determinant Dn,d, the sum of its “
∏

q∈d xq-terms” is equal to

Dd. Hence we have sn,d(Dn,d) = Dd.

Theorem 5.2.17 ([San14a, Theorem 4.17]). The following diagram is commutative and
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all the morphisms are isomorphisms:

PKSr

FPK

!!

FPT "" TKSr

FTD

!!

FTK

##!!
!!
!!
!!
!

KSr DKSr.FDK

$$

Remark 5.2.18. It is shown in [MaRu11, Proposition 6.5] that FTK induces isomorphism

TKSr ≃ KSr in a special case. Theorem 5.2.17 is its generalization.

Proof. The strategy of the proof is as follows. The proof is divided into 5 steps.

In Steps 1, 2, and 3, we show that FPK , FTD, and FTK are isomorphisms respectively.

In Steps 4 and 5, we show that FDK ◦ FTD = FTK and FTK ◦ FPT = FPK respectively.

By Steps 1, 3, 5, and Proposition 5.2.10, we see that FPT is an isomorphism. By Steps

2, 3 and 4, we see that FDK is an isomorphism. Hence by all the steps, we complete the

proof.

Step 1. We show that FPK is an isomorphism. Step 1 is divided into 3 steps.

In Step 1.1, we show FPK(PKSr) ⊂ KSr.

In Step 1.2, we construct the inverse GPK of FPK and show GPK(KSr) ⊂ PKSr.

In Step 1.3, we show GPK ◦ FPK = FPK ◦GPK = id, and this completes Step 1.

Step 1.1.

Suppose κ̃ = {κ̃n}n ∈ PKSr. Put

κn = FPK(κ̃)n =
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq).

We show that κ = {κn}n = FPK(κ̃) ∈ KSr. We see that κ satisfies the axioms (K1)-(K4).

(K1) Suppose q′ ∈ Σ \ n. We have

vq′(κn) =
∑

d⊂n

(−1)ν(n/d)πn(vq′(κ̃d))
∏

q∈n/d

πn/q(Pq) = 0,

since vq′(κ̃d) = 0 for every d ⊂ n, by (PK1). This shows (K1).

From now on we suppose q′ ∈ n.

(K2) By (PK2), we have

uq′(κn) = uq′

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

⎞

⎠ = 0.
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This shows (K2).

(K3) We have

vq′(κn) =
∑

d⊂n

(−1)ν(n/d)πn(vq′(κ̃d))
∏

q∈n/d

πn/q(Pq)

=
∑

d⊂n,q′∈d

(−1)ν(n/d)πn(vq′(κ̃d))
∏

q∈n/d

πn/q(Pq)

= ϕn
q′

⎛

⎝
∑

d⊂n/q′

(−1)ν(n/dq′)πn(κ̃d)
∏

q∈n/dq′
πn/q(Pq)

⎞

⎠

= ϕn
q′

⎛

⎝
∑

d⊂n/q′

(−1)ν(n/dq′)πn/q′(κ̃d)
∏

q∈n/dq′
πn/qq′(Pq)

⎞

⎠

= ϕn
q′(κn/q′)

= ϕq′(κn/q′),

where the second equality follows from (PK1), that is, vq′(κ̃d) = 0 unless q′ ∈ d, and the

third from (PK3), that is, vq′(κ̃d) = ϕq′(κ̃d/q′), the fourth from proposition 5.2.15(ii), the

fifth by definition, and the last from (K1).

(K4) By Lemma 5.2.14, we have

πn/q′(κn) = πn/q′

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

⎞

⎠ = 0.

Hence we have κ ∈ KSr.

Step 1.2.

We construct the inverse GPK of FPK . Suppose κ = {κn}n ∈ KSr is given. Put

κ̃1 = κ1,

and define κ̃n ∈
∧r H ⊗O G(Σ)ν(n) inductively by

κ̃n = κn +
∑

d⊂n,d̸=n

πn(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭ . (5.3)

We define GPK(κ) = {κ̃n}n. We show first that κ̃ = {κ̃n}n = GPK(κ) ∈ PKSr (in Step 1.3

we show that GPK ◦ FPK = FPK ◦GPK = id).
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(PK1) We show by induction on ν(n) that vq′(κ̃n) = 0 for q′ ∈ Σ \ n. When ν(n) = 0 i.e.

n = 1, this is clear by (K1) since κ̃1 = κ1. When ν(n) > 0, we have for q′ ∈ Σ \ n

vq′(κ̃n)

= vq′(κn) +
∑

d⊂n,d̸=n

πn(vq′(κ̃d))

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

= 0,

by (K1) and the inductive hypothesis. This shows (PK1).

(PK2) Applying πn to the both sides of (5.3), we obtain

πn(κ̃n) = κn −
∑

d⊂n,d ̸=n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq). (5.4)

Hence by (K2) we have

uq′

⎛

⎝
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

⎞

⎠ = uq′(κn) = 0

for any q′ ∈ n. This shows (PK2).

Next we show (PK5), (PK4), and finally (PK3).

(PK5) By (5.4), we have

κn =
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq). (5.5)

Substituting this to (5.3), we obtain

κ̃n =
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

+
∑

d⊂n,d̸=n

πn(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n

πn(κ̃d)
∏

q∈n/d

Pq|Σ\n.

This is (PK5).

(PK4) We show by induction on ν(n) that κ̃n|Σ\q′ = κ̃n/q′ |Σ\q′ · P ′
q for any q′ ∈ n. When
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ν(n) = 1, say n = q′, we have by (5.3)

κ̃q′ |Σ\q′ = κq′ |Σ\q′ + πq′(κ̃1)Pq′ |Σ\q′ = κ̃1 · Pq′ ,

so (PK4) holds in this case. When ν(n) > 1, take q′ ∈ n. By (5.3) and the fact that

κn|Σ\q′ = 0 (this follows from (K4)), we have

κ̃n|Σ\q′ =
∑

d⊂n,d̸=n

πn/q′(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)πn/q′

⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n,d̸=n,q′∈d

πn/q′(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/qq′(Pq)

⎞

⎠

⎫
⎬

⎭

+
∑

d⊂n/q′

πn/q′(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)πn/q′

⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n/q′,d ̸=n/q′

πn/q′(κ̃d)πn/q′(Pq′)

×

⎧
⎨

⎩

⎛

⎝
∏

q∈n/dq′
Pq|Σ\n

⎞

⎠− (−1)ν(n/dq′)
⎛

⎝
∏

q∈n/dq′
πn/qq′(Pq)

⎞

⎠

⎫
⎬

⎭

+
∑

d⊂n/q′

πn/q′(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)πn/q′

⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n/q′

πn/q′(κ̃d)πn/q′(Pq′)
∏

q∈n/dq′
Pq|Σ\n +

∑

d⊂n/q′

πn/q′(κ̃d)
∏

q∈n/d

Pq|Σ\n

= κ̃n/q′ |Σ\q′(πn/q′(Pq′) + Pq′ |Σ\n)

= κ̃n/q′ |Σ\q′Pq′ ,

where the third equality follows by the inductive hypothesis, and the fifth by (PK5).

(PK3) We show by induction on ν(n) that vq′(κ̃n) = ϕq′(κ̃n/q′) for any q′ ∈ n. When

ν(n) = 1, say n = q′, we have

vq′(κ̃q′) = vq′(κq′) + πq′(vq′(κ̃1))Pq′ |Σ\q′

= vq′(κq′)

= ϕq′(κ1)

= ϕq′(κ̃1),
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where the first equality follows by (5.3), the second by (PK1), the third by (K3), and the

last by the definition of κ̃1. When ν(n) > 1, take q′ ∈ n. Then we have

vq′(κ̃n) = vq′(κn) +
∑

d⊂n,d̸=n

πn(vq′(κ̃d))

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

= ϕn
q′(κn/q′)

+
∑

d⊂n/q′,d ̸=n/q′

πn(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/dq′
Pq|Σ\n

⎞

⎠− (−1)ν(n/dq′)
⎛

⎝
∏

q∈n/dq′
πn/q(Pq)

⎞

⎠

⎫
⎬

⎭ ,

where the first equality follows by (5.3), the second by (K3) and by the inductive hypothesis

(note that vq′(κ̃d) = 0 unless q′ ∈ d, by (PK1)). By (5.5) and Proposition 5.2.15(ii) (note

that we have already proved (PK4)), we have

κn/q′ =
∑

d⊂n/q′

(−1)ν(n/dq′)πn(κ̃d)
∏

q∈n/dq′
πn/q(Pq).

Substituting this to the above, we have

vq′(κ̃n) = ϕn
q′

⎛

⎝
∑

d⊂n/q′

πn(κ̃d)
∏

q∈n/dq′
Pq|Σ\n

⎞

⎠

= ϕn
q′(κ̃n/q′)

= ϕq′(κ̃n/q′),

where the second equality follows by (PK5) and Proposition 5.2.15(i), and the last by

(PK1).

Hence κ satisfies the axioms (PK1)-(PK5), and we have completed Step 1.2.

Step 1.3.

In this step, we show GPK ◦ FPK = FPK ◦GPK = id.

We first show GPK ◦ FPK = id. Take any κ̃ = {κ̃n}n ∈ PKSr. We show by induction

on ν(n) that (GPK ◦ FPK)(κ̃)n = κ̃n. When ν(n) = 0, i.e. n = 1, by the definitions of FPK

and GPK , we have

(GPK ◦ FPK)(κ̃)1 = FPK(κ̃)1 = κ̃1.
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When ν(n) > 0, we have

(GPK ◦ FPK)(κ̃)n

= FPK(κ̃)n +
∑

d⊂n,d̸=n

πn((GPK ◦ FPK)(κ̃)d)

×

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

+
∑

d⊂n,d̸=n

πn(κ̃d)

⎧
⎨

⎩

⎛

⎝
∏

q∈n/d

Pq|Σ\n

⎞

⎠− (−1)ν(n/d)
⎛

⎝
∏

q∈n/d

πn/q(Pq)

⎞

⎠

⎫
⎬

⎭

=
∑

d⊂n

πn(κ̃d)
∏

q∈n/d

Pq|Σ\n

= κ̃n,

where the first equality follows by the definition of GPK (see (5.3)), the second by the

definition of FPK (see Definition 5.2.9) and the inductive hypothesis, and the last by (PK5).

Next we show FPK ◦GPK = id. Take any κ = {κn}n ∈ KSr. By (5.5), we have

κn =
∑

d⊂n

(−1)ν(n/d)πn(GPK(κ)d)
∏

q∈n/d

πn/q(Pq),

but the right hand side is by definition equal to FPK(GPK(κ))n. We have completed Step

1.3.

Step 2.

We show that FTD induces an isomorphism TKSr ≃ DKSr. Step 2 is divided into 3

steps, as in Step 1.

In Step 2.1, we show FTD(TKSr) ⊂ DKSr.

In Step 2.2, we construct the inverse GTD of FTD, and show GTD(DKSr) ⊂ TKSr.

In Step 2.3, we show GTD ◦ FTD = FTD ◦GTD = id.

Step 2.1.

Take θ = {θn}n ∈ TKSr. We show that FTD(θ) ∈ DKSr. Put

κ′n = FTD(θ)n =
∑

d⊂n

(−1)ν(n/d)θd
∏

q∈n/d

πd(Pq).
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Note that by (TK4) we have

θd
∏

q∈n/d

πd(Pq) = πd(θn),

so we have

κ′n = sn(θn) (5.6)

(see Definition 5.2.11 for the definition of sn). We see that {κ′n}n satisfies the axioms

(DK1)-(DK4).

(DK1) For any q ∈ Σ \ n, we have by (TK1)

vq(κ
′
n) =

∑

d⊂n

(−1)ν(n/d)πd(vq(θn)) = 0.

This is (DK1).

(DK2) It is sufficient to show that

∑

d⊂n

θdDn,n/d =
∑

d⊂n

κ′dDn/d. (5.7)

(From this, (DK2) follows from (TK2)). Take q ∈ n. We have

πn/q

(
∑

d⊂n

θdDn,n/d

)
= πn/q

⎛

⎝
∑

d⊂n/q

θdqDn,n/dq +
∑

d⊂n/q

θdDn,n/d

⎞

⎠

=
∑

d⊂n/q

θdπd(Pq)Dn/q,n/dq −
∑

d⊂n/q

θdDn/q,n/dqπd(Pq)

= 0,

where the second equality follows by Proposition 5.2.16(i), (ii) and (TK4). So we have by

the definition of sn

sn

(
∑

d⊂n

θdDn,n/d

)
=
∑

d⊂n

θdDn,n/d.

On the other hand, by Lemma 5.2.12(ii), Proposition 5.2.16(iii), and (5.6), we have

sn

(
∑

d⊂n

θdDn,n/d

)
=
∑

d⊂n

κ′dDn/d.

Hence we have
∑

d⊂n θdDn,n/d =
∑

d⊂n κ
′
dDn/d.

(DK3) Since κ′n = sn(θn), (DK3) follows from (TK3).
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(DK4) Again since κ′n = sn(θn), (DK4) follows from Lemma 5.2.12(i).

Hence we have completed Step 2.1.

Step 2.2.

We construct the inverse GTD of FTD. Suppose κ′ = {κ′n}n ∈ DKSr. Put

θ1 = κ′1

and we define θn inductively by

θn = κ′n −
∑

d⊂n,d̸=n

(−1)ν(n/d)θd
∏

q∈n/d

πd(Pq). (5.8)

Define GTD(κ′) = {θn}n, and we show that GTD(κ′) ∈ TKSr.

(TK1) follows from (DK1) by induction on ν(n).

(TK4) We show by induction on ν(n). When ν(n) = 1, say n = q′, we have

π1(θq′) = 0 = θ1π1(Pq′)

(note that π1(G(q′)1) = 0). When ν(n) > 1, for any q′ ∈ n we have by (5.8)

πn/q′(θn) = πn/q′(κ
′
n)−

∑

d⊂n/q′

(−1)ν(n/d)θd
∏

q∈n/d

πd(Pq)

−
∑

d⊂n/q′,d̸=n/q′

(−1)ν(n/dq′)πd(θdq′)
∏

q∈n/dq′
πd(Pq)

= −
∑

d⊂n/q′

(−1)ν(n/d)θd
∏

q∈n/d

πd(Pq)−
∑

d⊂n/q′,d ̸=n/q′

(−1)ν(n/dq′)θdπd(Pq′)
∏

q∈n/dq′
πd(Pq)

= θn/q′πn/q′(Pq′),

where the second equality follows from (DK4) and the inductive hypothesis. This shows

(TK4).

(TK2) By (5.8) and (TK4), we have

θn = κ′n −
∑

d⊂n,d̸=n

(−1)ν(n/d)πd(θn).

Hence,

κ′n = sn(θn). (5.9)

Using (5.9) and (TK4), we repeat the argument in the proof of (DK2) in Step 2.1 to show
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∑
d⊂n θdDn,n/d =

∑
d⊂n κ

′
dDn/d. Hence (TK2) follows from (DK2).

(TK3) By (5.9), (TK3) follows from (DK3).

We have completed Step 2.2.

Step 2.3.

To show that FTD induces isomorphism from TKSr to DKSr, since we already know

by Proposition 5.2.10 that FTD is injective, it suffices to show FTD ◦ GTD = id. Suppose

κ′ = {κ′n}n ∈ DKSr. By (5.9) we have

κ′n =
∑

d⊂n

(−1)ν(n/d)πd(GTD(κ
′)n) = sn(GTD(κ

′)n).

By (5.6) we have

FTD(GTD(κ
′))n = sn(GTD(κ

′)n),

which completes Step 2.3.

Step 3.

Since the bijectivity of FTK is shown similarly as in Step 2 (or in the proof of [MaRu11,

Proposition 6.5]), we omit the proof.

Step 4.

We show FDK ◦ FTD = FTK . Take θ = {θn}n ∈ TKSr. We have to show

∑

d⊂n

FTD(θ)dDn/d =
∑

d⊂n

θdDn,n/d.

But this is (5.7), which has been already shown. Hence FDK ◦ FTD = FTK .

Step 5.

Our final task is to prove FTK ◦ FPT = FPK . Take κ̃ = {κ̃n}n ∈ PKSr. We have to

prove ∑

d⊂n

πd(κ̃d)Dn,n/d =
∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq). (5.10)

By (PK5), we have for d ⊂ n

πn(κ̃d) =
∑

c⊂d

πd(κ̃c)
∏

q∈d/c

πn/d(Pq).

Using this relation repeatedly, we arrange the right hand side of (5.10), and sum up the
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“coefficients” of each πd(κ̃d) to obtain

∑

d⊂n

(−1)ν(n/d)πn(κ̃d)
∏

q∈n/d

πn/q(Pq)

=
∑

d⊂n

⎛

⎝
∑

(c1,...,ck)∈∆(n/d)

(−1)ν(ck)
∏

q∈ck

πn/q(Pq)
∏

q∈ck−1

πck(Pq)
∏

q∈ck−2

πck−1
(Pq) · · ·

∏

q∈c1

πc2(Pq)

⎞

⎠

×πd(κ̃d),

where

∆(n/d) = {(c1, . . . , ck) | ∅ ̸= ci ⊂ n/d, n/d =
k∐

i=1

ci, k ∈ Z≥1}.

Hence it is sufficient to show

Dn,n/d =
∑

(c1,...,ck)∈∆(n/d)

(−1)ν(ck)
∏

q∈ck

πn/q(Pq)
∏

q∈ck−1

πck(Pq)
∏

q∈ck−2

πck−1
(Pq) · · ·

∏

q∈c1

πc2(Pq).

This is reduced to the following

Lemma 5.2.19. Suppose A = (aij) is a ν × ν-matrix with entries in a commutative ring.

Then we have

(−1)ν detA

=
∑

(C1,...,Ck)∈∆(ν)

(−1)|Ck|
∏

i∈Ck

(
ν∑

j=1

aij

)
∏

i∈Ck−1

(
∑

j∈Ck

aij

)

×
∏

i∈Ck−2

⎛

⎝
∑

j∈Ck−1

aij

⎞

⎠ · · ·
∏

i∈C1

(
∑

j∈C2

aij

)
,

where ∆(ν) = {(C1, . . . , Ck) | ∅ ̸= Ci ⊂ {1, . . . , ν}, {1, . . . , ν} =
∐k

i=1 Ci, k ∈ Z≥1}.

Proof. Fix a map τ : {1, . . . , ν}→ {1, . . . , ν}. We see that the coefficient of
∏ν

i=1 ai,τ(i) of

the left (resp. right) hand side of the equality in the lemma is

∑

σ∈Sν

sgn(σ)
ν∏

i=1

(−δτ(i),σ(i))

⎛

⎝resp.
∑

(C1,...,Ck)∈∆(τ)

(−1)|Ck|

⎞

⎠ ,
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where δτ(i),σ(i) denotes Kronecker’s delta, and

∆(τ) = {(C1, . . . , Ck) ∈ ∆(ν) | τ(i) ∈ Cj+1 for all 1 ≤ j ≤ k − 1 and i ∈ Cj}.

So it is sufficient to show that

∑

σ∈Sν

sgn(σ)
ν∏

i=1

(−δτ(i),σ(i)) =
∑

(C1,...,Ck)∈∆(τ)

(−1)|Ck|.

For every map µ : {1, . . . , ν}→ {1, . . . , ν} we set

Fix(µ) = {i ∈ {1, . . . , ν} | µ(i) = i}.

We compute

∑

σ∈Sν

sgn(σ)
ν∏

i=1

(−δτ(i),σ(i))

=
∑

σ∈Sν

sgn(σ)
∏

i∈Fix(τ)

(−δi,σ(i))
∏

i/∈Fix(τ)

(−δτ(i),σ(i))

=
∑

σ∈Sν ,Fix(τ)⊂Fix(σ)

sgn(σ)(−1)|Fix(τ)|
∏

i/∈Fix(τ)

(−δτ(i),σ(i))

=
∑

σ∈Sν ,Fix(τ)⊂Fix(σ)

sgn(σ)(−1)|Fix(τ)|(1− 1)|Fix(σ)\Fix(τ)|
∏

i/∈Fix(σ)

(−δτ(i),σ(i))

=
∑

σ∈Sν ,Fix(τ)⊂Fix(σ)

sgn(σ)
∑

D⊂Fix(σ)\Fix(τ)

(−1)|D|+|Fix(τ)|
∏

i/∈Fix(σ)

(−δτ(i),σ(i))

=
∑

Fix(τ)⊂C⊂{1,...,ν}

(−1)|C|
∑

σ∈Sν ,C⊂Fix(σ)

sgn(σ)
∏

i/∈Fix(σ)

(−δτ(i),σ(i)).

Note that

∑

(C1,...,Ck)∈∆(τ)

(−1)|Ck|

=
∑

C⊂{1,...,ν}

(−1)|C||{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}|

=
∑

Fix(τ)⊂C⊂{1,...,ν}

(−1)|C||{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}|.
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Hence, it is sufficient to show for each set C with Fix(τ) ⊂ C ⊂ {1, . . . , ν} that

∑

σ∈Sν ,C⊂Fix(σ)

sgn(σ)
∏

i/∈Fix(σ)

(−δτ(i),σ(i)) = |{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}|.

Note that the right hand side is equal to 1 or 0. Suppose first that the right hand side

is equal to 1. Then we see that
∏

i/∈Fix(σ)(−δτ(i),σ(i)) = 0 unless σ = id. Indeed, suppose

σ ̸= id and let (C1, . . . , Ck) be the unique element of {(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}.
Note that in this case we must have k ≥ 2, since C ⊂ Fix(σ). We see that there exists an

integer j with 1 ≤ j ≤ k − 1 such that Cj ̸⊂ Fix(σ) and Cj+1 ⊂ Fix(σ). This shows that

there exists i ∈ Cj such that i /∈ Fix(σ) and τ(i) ̸= σ(i) (since σ is injective). Hence we

have shown that
∏

i/∈Fix(σ)(−δτ(i),σ(i)) = 0 unless σ = id. Therefore we have

∑

σ∈Sν ,C⊂Fix(σ)

sgn(σ)
∏

i/∈Fix(σ)

(−δτ(i),σ(i)) = sgn(id)

= 1

= |{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}|.

Next, suppose that |{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}| = 0. In this case we must have

C ̸= {1, . . . , ν}, and we see that there exist j ∈ {1, . . . , ν} \ C and a positive integer m

such that τm+1(j) = j, that j, τ(j), . . . , τm(j) are different each other and not contained in

C. We set µ = (j τ(j) · · · τm(j)) ∈ Sν . If we put

Sν(τ, C) = {σ ∈ Sν | C ⊂ Fix(σ), τ(i) = σ(i) for all i /∈ Fix(σ)},

then we have

∑

σ∈Sν ,C⊂Fix(σ)

sgn(σ)
∏

i/∈Fix(σ)

(−δτ(i),σ(i)) =
∑

σ∈Sν(τ,C)

sgn(σ)(−1)ν−|Fix(σ)|.

It is easy to see that

{σ ∈ Sν(τ, C) | σ(j) ̸= j} = µ{σ ∈ Sν(τ, C) | σ(j) = j},

and therefore we have

Sν(τ, C) = µ{σ ∈ Sν(τ, C) | σ(j) = j} 8 {σ ∈ Sν(τ, C) | σ(j) = j}.
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So we have

∑

σ∈Sν(τ,C)

sgn(σ)(−1)ν−|Fix(σ)|

=
∑

σ∈Sν(τ,C),σ(j)=j

sgn(µσ)(−1)ν−|Fix(µσ)| +
∑

σ∈Sν(τ,C),σ(j)=j

sgn(σ)(−1)ν−|Fix(σ)|

= (sgn(µ)(−1)m+1 + 1)
∑

σ∈Sν(τ,C),σ(j)=j

sgn(σ)(−1)ν−|Fix(σ)|

= ((−1)m(−1)m+1 + 1)
∑

σ∈Sν(τ,C),σ(j)=j

sgn(σ)(−1)ν−|Fix(σ)|

= 0.

Hence we have

∑

σ∈Sν ,C⊂Fix(σ)

sgn(σ)
∏

i/∈Fix(σ)

(−δτ(i),σ(i)) = 0 = |{(C1, . . . , Ck) ∈ ∆(τ) | Ck = C}|.

This completes the proof.

Hence we have completed all the steps of the proof of Theorem 5.2.17.

5.3 Regulator Kolyvagin systems

In this section, we construct Kolyvagin systems by “regulators”. We construct anO-module

USr, which we call “unit systems” (see Definition 5.3.3 below), and maps from unit systems

to Kolyvagin systems (see Theorem 5.3.7). The idea of our method in this section is due

to [MaRu04, Appendix B]. We keep the notations in §5.2.

Definition 5.3.1. For n ∈ N , we define “n-modified Selmer group” by

Sn = {a ∈ H | vq(a) = 0 for every q ∈ Σ \ n}.

Remark 5.3.2. In the setting of Example 5.2.2, we have

Sn = H1
Fn(Q, A).
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Definition 5.3.3. Define a partially ordered set

I

= {(s,U) | s = (q1, q2, . . .) : a sequence of all the elements in Σ, U ⊂ N satisfying (∗)},

where

(∗) U = {n1, n2, . . .}, n1 ⊂ n2 ⊂ · · · ⊂
∞⋃

i=1

ni = Σ, and ni = {q1, . . . , qν(ni)} for any i ≥ 1,

and we define the order on I by

(s,U) ≤ (s′,U ′) if and only if s = s′ and U ′ ⊂ U .

We define the module USr of unit systems of rank r by

USr = lim−→
(s,U)∈I

lim←−
n∈U

ν(n)+r∧
Sn,

where the morphisms of the inverse limit are defined by

(−vqν(ni+1)
) ∧ · · · ∧ (−vqν(ni)+1

) :

ν(ni+1)+r∧
H −→

ν(ni)+r∧
H,

and that of the direct limit by the natural projection maps.

Remark 5.3.4. The assumption that Σ is countable is used here.

Definition 5.3.5. Suppose (s,U) ∈ I , say s = (q1, q2, . . .), U is as (∗) above, and ε =

{εn}n ∈ lim←−n∈U

∧ν(n)+r Sn. For n ∈ N , take ni ∈ U so that n ⊂ ni (this is possible since

U consists of an increasing sequence of elements in N which covers Σ). Define regulators

RP (ε)n, RT (ε)n, and RK(ε)n by

RP (ε)n = (ψ(n)
P,ν(ni)

∧ · · · ∧ ψ(n)
P,1)(εni),

RT (ε)n = (ψ(n)
T,ν(ni)

∧ · · · ∧ ψ(n)
T,1)(εni),

and

RK(ε)n = (ψ(n)
K,ν(ni)

∧ · · · ∧ ψ(n)
K,1)(εni),
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where

ψ(n)
P,j (resp. ψ

(n)
T,j, resp. ψ(n)

K,j) =

⎧
⎨

⎩
ϕqj (resp. ϕn

qj , resp. ϕ
qj
qj) if qj ∈ n,

−vqj if qj ∈ ni/n

(for the definition of ϕq, see Definition 5.2.1). One sees by definition that RP (ε)n, RT (ε)n,

and RK(ε)n do not depend on the choice of ni. Indeed, if we take another ni′ ∈ U , say
n ⊂ ni ⊂ ni′ , then we have

(ψ(n)
ν(ni′ )

∧ · · · ∧ ψ(n)
1 )(εni′ ) = (ψ(n)

ν(ni)
∧ · · · ∧ ψ(n)

1 )((−vqν(ni′ )) ∧ · · · ∧ (−vqν(ni)+1
)(εni′ ))

= (ψ(n)
ν(ni)
∧ · · · ∧ ψ(n)

1 )(εni),

where ψ(n)
j denotes any of ψ(n)

P,j , ψ
(n)
T,j, and ψ

(n)
K,j. RP (resp. RT and RK) define(s) a homo-

morophism from USr to
∏

n∈N
∧r H ⊗O G(Σ)ν(n) (resp.

∏
n∈N

∧r H ⊗O G(n)ν(n)).

Remark 5.3.6. The idea of defining the unit systems and the regulators above is due to

[MaRu04, Appendix B].

Theorem 5.3.7 ([San14a, Theorem 5.7]). We have the following commutative diagram:

USr

RK

%%

RP &&●
●●

●●
●●

●● RT

&&
PKSr

FPK

!!

FPT

"" TKSr

FTK##✉✉
✉✉
✉✉
✉✉
✉

KSr

Proof. We first show the commutativity of the diagram, and then prove the image of the

map RP is in PKSr. This completes the proof of the theorem, since by Theorem 5.2.17 we

know that FPT (PKSr) = TKSr and FPK(PKSr) = KSr.

Take ε = {εn}n ∈ lim←−n∈U

∧ν(n)+r Sn. To prove the commutativity of the diagram,

we have to show RT (ε)n = FPT (RP (ε))n and RK(ε)n = FPK(RP (ε))n for any n ∈ N
(note that FTK ◦ FPT = FPK was already proved in Theorem 5.2.17). Note that by

definition FPT (RP (ε))n = πn(RP (ε)n) (see Definition 5.2.9), and that ϕn
q = πn ◦ ϕq, so we

have RT (ε)n = FPT (RP (ε))n by the definitions of RT and RP . Next, to see RK(ε)n =

FPK(RP (ε))n, note that by definition

FPK(RP (ε))n =
∑

d⊂n

(−1)ν(n/d)πn(RP (ε)d)
∏

q∈n/d

πn/q(Pq),
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and that

ϕq
q = ϕn

q − ϕn/q
q = πn ◦ ϕq − (−vq · πn/q(Pq))

holds for q ∈ n. Then we see again by definition RK(ε)n = FPK(RP (ε))n holds (substitute

ϕq
q = πn ◦ ϕq − (−vq · πn/q(Pq)) to the definition of RK , and expand it, then we obtain
∑

d⊂n(−1)ν(n/d)πn(RP (ε)d)
∏

q∈n/d πn/q(Pq)).

We prove RP (ε) ∈ PKSr. Take ni ∈ U so that n ⊂ ni. We show that RP (ε)n satisfies

axioms (PK1)-(PK5).

(PK1) If q ∈ Σ \ ni, we have

vq(RP (ε)n) = (ψ(n)
P,ν(ni)

∧ · · · ∧ ψ(n)
P,1 ∧ vq)(εni) = 0,

since any element a ∈ Sni satisfies vq(a) = 0 by definition (see Definition 5.3.1). If q ∈ ni\n,
say q = qj, 1 ≤ j ≤ ν(ni) (recall ni = {q1, . . . , qν(ni)}, see (∗) in Definition 5.3.3), we have

vqj(RP (ε)n) = (ψ(n)
P,ν(ni)

∧ · · · ∧ ψ(n)
P,1 ∧ vqj)(εni)

= (· · · ∧ (−vqj) ∧ · · · ∧ vqj)(εni)

= 0,

since (· · · ∧ (−vqj) ∧ · · · ∧ vqj) = 0. Hence we have vq(RP (ε)n) = 0 for any q ∈ Σ \ n.
(PK2) Take any q ∈ n. We prove uq(RK(ε)n) = 0 (note that we have already proved

FPK(RP (ε))n = RK(ε)n, so (PK2) is equivalent to uq(RK(ε)n) = 0). We have

uq(RK(ε)n) = (· · · ∧ ϕq
q ∧ · · · ∧ uq)(εni)

= (· · · ∧ (−uq · xq) ∧ · · · ∧ uq)(εni)

= 0,

where the second equality holds since ϕq
q = −uq · xq by definition (see Definition 5.2.1).

(PK3) For any q ∈ n, we have

vq(RP (ε)n) = (· · · ∧ ϕq ∧ · · · ∧ vq)(εni)

= (· · · ∧ (−vq) ∧ · · · ∧ ϕq)(εni)

= ϕq(RP (ε)n/q),

where the second equality is obtained by reversing vq and ϕq (note that then the sign is

changed), and the last by the definition of RP (ε)n/q.
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(PK4) For any q ∈ n, we have

RP (ε)n|Σ\q = ((· · · ∧ ϕq ∧ · · · )(εni))|Σ\q

= ((· · · ∧ (−vq · Pq) ∧ · · · )(εni))|Σ\q

= RP (ε)n/q|Σ\q · Pq,

where the second equality follows by noting (·)|Σ\q ◦ ϕq = −vq · Pq.

(PK5) Note that we have

ϕq = πn ◦ ϕq + (−vq) · Pq|Σ\n

for any q ∈ n. Substitute this into the definition of RP (ε)n, and expand it, then we have

RP (ε)n =
∑

d⊂n

πn(RP (ε)d)
∏

q∈n/d

Pq|Σ\n,

which is (PK5).

5.4 The proof of Theorem 5.1.8

In this section, we prove Theorem 5.1.8 by using the general theory developed in §§5.2 and

5.3. Recall that the setting of the main theorem is the one as in Example 5.2.2, so we

assume in this section that 7-tuple (O,Σ, H, t, v, u, P ) to be as in Example 5.2.2.

Proposition 5.4.1. KS1 and KS(A,F ,Σ) in [MaRu04, Definition 3.1.3] are naturally

isomorphic.

Proof. We use the following fact: there is a natural isomorphism

〈
∏

ℓ|n

xℓ

〉

Z/MZ

∼−→
⊗

ℓ|n

Gℓ ⊗ Z/MZ;
∏

ℓ|n

xℓ *→
⊗

ℓ|n

σℓ ⊗ 1.

For the proof, see [MaRu11, Proposition 4.2(iv)].

Suppose κ = {κn}n ∈ KS1. By (K4) and Corollary 5.2.13, we have

κn ∈ H ⊗
〈
∏

ℓ|n

xℓ

〉

Z/MZ

,
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so from the above fact we can naturally regard

κn ∈ H ⊗

⎛

⎝
⊗

ℓ|n

Gℓ

⎞

⎠ .

Since each Gℓ ⊗ Z/MZ is isomorphic to Z/MZ, we see that H ⊗
(⊗

ℓ|n Gℓ

)
is isomorphic

to H. By this observation, we see that axioms (K1) and (K2) say

κn ∈ H1
F(n)(Q, A)⊗

⎛

⎝
⊗

ℓ|n

Gℓ

⎞

⎠ .

One sees by definition that (K3) is equivalent to the relation in [MaRu04, (5) in Definition

3.1.3]. Hence we naturally get a Kolyvagin system of [MaRu04] from our Kolyvagin sys-

tem. Conversely, the Kolyvagin systems of [MaRu04] satisfies the axioms of our Kolyvagin

systems (K1)-(K4), with the identification ⟨
∏

ℓ|n xℓ⟩Z/MZ =
⊗

ℓ|nGℓ ⊗ Z/MZ.

Theorem 5.4.2 ([San14a, Theorem 6.2]). Suppose the assumptions in Theorem 5.1.8 hold.

Then the map

RK : US1 −→ KS1

is surjective.

Proof. First note that by Proposition 5.4.1 we can identify KS1 and KS(A,F ,Σ). By the

proof of [MaRu04, Theorem B.7], we can take (s,U) ∈ I for each m ∈ N so that the

composed map

lim←−
n∈U

ν(n)+1∧
Sn RK−→ imRK

κ -→κm−→ H′(m)

is surjective, where H′ = H′
(A,F ,Σ) is the sheaf of stub Selmer modules (for the definition,

see [MaRu04, Definition 4.3.1]). By the proof of [MaRu04, Corollary 4.3.5], if m is core

(see [MaRu04, Definition 4.1.8] for definition), then we have an isomorphism

Γ(H′)
∼−→ H′(m); κ *→ κm,

where Γ(H′) is the global section of H′ (see [MaRu04, Definition 3.1.1]). By [MaRu04,

Theorem 4.4.1], the natural inclusion Γ(H′) ↪→ KS1 induces an isomorophism

Γ(H′)
∼−→ KS1.

86



Hence we have imRK = KS1.

Remark 5.4.3. The proof of [MaRu04, Theorem B.7] actually shows that we can take

(s,U) satisfying above so that every n ∈ U is core. We will use this fact later.

Proposition 5.4.4. Suppose (s,U) ∈ I , ε ∈ lim←−n∈U

∧ν(n)+1 Sn (see Definition 5.3.3), and

every n ∈ U is core. Then we have for any n ∈ N

RT (ε)n ∈ hnRn.

This proposition is reduced to the following lemma (note that ifm is core, then hm = 1):

Lemma 5.4.5. Suppose n = ℓ1 · · · ℓν(n), m = nℓν(n)+1 · · · ℓν(m) ∈ N .

If ε ∈
∧ν(m)+1 H1

Fm(Q, A), then we have

((−vℓν(m)
) ∧ · · · ∧ (−vℓν(n)+1

) ∧ ϕn
ℓν(n)
∧ · · · ∧ ϕn

ℓ1)(ε) ∈
hn

hm
Rn.

Proof. We prove by induction on ν(m/n). When ν(m/n) = 0, i.e. m = n, it is clear by

the definition of Rn (see Definition 5.1.2). When ν(m/n) > 0, put ℓ = ℓν(m) for simplicity.

We claim that there are ε′ ∈
∧ν(m/ℓ)+1H1

Fm/ℓ(Q, A), ε′′ ∈
∧ν(m)+1H1

Fm/ℓ(Q, A), and

δ ∈ H1
Fm(Q, A) satisfying

ε = ε′ ∧ δ + ε′′, and (vℓ(δ)) =

(
hm/ℓ

hm

)
(as ideal of Z/MZ).

This claim is shown as follows. First note that by definition we have an exact sequence

0 −→ H1
Fm/ℓ(Q, A) −→ H1

Fm(Q, A)
vℓ−→ Z/MZ.

So we see that there is a δ ∈ H1
Fm(Q, A) such that δ̄ generates H1

Fm(Q, A)/H1
Fm/ℓ(Q, A).

Since vℓ(δ) generates im(H1
Fm(Q, A)

vℓ−→ Z/MZ), we have by the global duality

(vℓ(δ)) =

(
hm/ℓ

hm

)

(see [MaRu04, Theorem 2.3.4] or [Rub00, Theorem 1.7.3]). Since δ̄ generates the group

H1
Fm(Q, A)/H1

Fm/ℓ(Q, A), any η ∈ H1
Fm(Q, A) can be written as the following form: η =

η′ + aδ, where η′ ∈ H1
Fm/ℓ(Q, A) and a ∈ Z. Hence ε ∈

∧ν(m)+1 H1
Fm(Q, A) can be written

as claimed above.
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By the claim, we have

((−vℓν(m)
) ∧ · · · ∧ (−vℓν(n)+1

) ∧ ϕn
ℓν(n)
∧ · · · ∧ ϕn

ℓ1)(ε)

= ±vℓ(δ)((−vℓν(m/ℓ)
) ∧ · · · ∧ (−vℓν(n)+1

) ∧ ϕn
ℓν(n)
∧ · · · ∧ ϕn

ℓ1)(ε
′)

∈ vℓ(δ) ·
hn

hm/ℓ
Rn =

hn

hm
Rn,

where the first equality follows from that vℓ(ε) = ±vℓ(δ)ε′ (by definition), and the next

from the inductive hypothesis. Hence we have completed the proof.

Proposition 5.4.6.

{θn(c)}n ∈ TKS1.

Proof. By (5.1) in the proof of Proposition 5.1.6, we have

∑

d|n

(−1)ν(n/d)θd(c)
∏

ℓ|n/d

Pℓ(Frℓ) = κ′n ⊗
∏

ℓ|n

(σℓ − 1).

Note that the left hand side is equal to FTD({θn(c)}n)n (see definition 5.2.9). By Theorem

5.2.17 and Proposition 5.2.10, it is reduced to show

⎧
⎨

⎩κ
′
n ⊗

∏

ℓ|n

(σℓ − 1)

⎫
⎬

⎭
n

∈ DKS1.

(DK1) and (DK3) are well-known properties of Kolyvagin’s derivatives (see [Rub00, The-

orem 4.5.1 and Theorem 4.5.4]). (DK2) is shown in [MaRu04, Proof of Theorem 3.2.4 in

Appendix A] (note that

∑

d|n

⎛

⎝κ′d ⊗
∏

ℓ|d

(σℓ − 1)

⎞

⎠Dn/d =
∑

τ∈S(n)

sgn(τ)

⎛

⎝κ′dτ ⊗
∏

ℓ|dτ

(σℓ − 1)

⎞

⎠
∏

ℓ|n/dτ

πℓ(Pτ(ℓ)(Fr
−1
τ(ℓ))),

where S(n) is the set of permutations of the prime divisors of n, and dτ =
∏

τ(ℓ)=ℓ ℓ).

(DK4) is clearly satisfied.

Remark 5.4.7. From the above, we see that the Kolyvagin’s derivative class κ′n satisfies

κ′n ⊗
∏

ℓ|n

(σℓ − 1) = sn(θn(c))
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(for the definition of sn, see Definition 5.2.11). So if we admit Theorem 5.1.8, then we have

sn(θn(c)) ∈ hnsn(Rn) ⊂ hnH
1
Fn(Q, A)⊗

〈
∏

ℓ|n

(σℓ − 1)

〉
.

Hence we have the following upper bound of hn:

ordp(hn) ≤ sup{m | κ′n ∈ pmH1
Fn(Q, A)}.

This generalizes Corollary 5.1.9, since κ′1 = cQ.

Now we prove the main theorem.

Proof of Theorem 5.1.8. By Proposition 5.4.6, Theorem 5.2.17, Theorem 5.3.7 and Theo-

rem 5.4.2, there exists ε ∈ lim←−n∈U

∧ν(n)+1 Sn such that

RT (ε)n = θn(c).

Here note that by Remark 5.4.3 every n ∈ U is taken to be core. Hence by Proposition

5.4.4 we have

RT (ε)n ∈ hnRn.

This completes the proof.

Remark 5.4.8. We expect that Theorem 5.1.8 can be generalized for higher rank Euler

systems. If the core rank of T is greater than one, the theory of Kolyvagin systems in

[MaRu04] does not work well. Recently, Mazur and Rubin initiated the theory of higher

rank Kolyvagin systems, which works well in the higher core rank case (see [MaRu13a]).

But we point out two difficulties for the generalization of Theorem 5.1.8. Firstly, if the

core rank r is greater than one, then the natural inclusion

Γ(H′) ↪→ KSr

is not surjective, where H′ is the sheaf of stub Selmer modules (see [MaRu13a, Remark

11.9]). By this fact, we cannot expect that the map

RK : USr −→ KSr

constructed in Theorem 5.3.7 is surjective, namely, a natural generalization of Theorem
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5.4.2 would be false. Secondly, a connection between higher rank Euler systems and higher

rank Kolyvagin systems, which would be a generalization of Proposition 5.4.6, is still mys-

terious (see [MaRu13a, Introduction]). By these obstacles, it seems difficult to generalize

Theorem 5.1.8 in the higher core rank case.

On the other hand, since a typical example of higher rank Euler systems is the system

of Rubin-Stark elements, Conjecture 3 in Chapter 3 is regarded as a generalization of

Darmon’s conjecture for higher rank Euler systems. We note that in this case the p-adic

representation comes from Gm. So we expect that a generalization of Theorem 5.1.8 for

higher rank Euler systems can be established by generalizing Conjecture 3 for general p-

adic representations (or motives). As we mentioned in Introduction, it is expected that the

generalization of Conjecture 3 is related with the ETNC.
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