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Abstract

In this dissertation, we address the problem of detecting fall incidents by using

vision technology. This problem is critical to ensure the safety of the elderly who

increasingly prefer to live alone at home but are prone to suffer from accidental falls.

The aim of detecting falls instantly is to offer immediate help to fallen elderly, in

turn, not worsening their injuries or even saving their lives. Even though a large

body of literature have been dedicating to fall detection, many challenges still remain

for further investigation. One of the major challenges is to discriminate carefully falls

from various activities of daily living (ADL), especially like-fall ones. e.g., crouch on

the ground and sit down brutally, etc. Secondly, fall detection seems to be meaningless

without real-time performance. Other challenges include low image quality, cluttered

background, illumination variations, appearance variations, camera viewpoints, and

occlusion by furniture, etc.

We realize that falls are associated with fast body movements to change postures

from upright to almost lengthened, followed by a sufficient duration of staying almost

motionlessly on the ground. This is contrary to slow manners of doing ADL of the

elderly. Hence, we propose using 3D spatial features which are efficiently estimated

from multiple views and are highly discriminative to classify human states into stand-

ing, sitting, and lying. Once a sequence of human states is given, fall events can be

reliably inferred by analyzing human state transition.

Firstly, we describe in this dissertation a combination of heights and occupied ar-

eas, extracted from 3D cuboids of the person of interest for human state classification.

Lying people take larger areas than sitting and standing people. Standing people are

higher than sitting and lying people. These three states intuitively lie in three sep-

arable region of the feature space which can be classified by SVM. Falls are inferred

by time-series analysis of human state transition. For efficient feature estimation,

we configure two cameras whose fields of view are relatively orthogonal. Thus, 2D

bounding boxes of the person, extracted from two views, serve as two orthographic

projections of the 3D cuboids. The features are normalized by using Local Empirical
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Templates which are defined as foregrounds of standing people in local image patches

and can be obtained automatically in unknown scenes. The normalization cancels

the viewing perspective and makes the features invariant across viewing window.

Our experiments on multiple camera fall dataset produce comparable performance

with state-of-the-art methods, tested on the same dataset but demonstrate lower

computational cost.

By using height and occupied area, we can distinguish lying from standing and

sitting states. But the information of where the person lies either on a sofa, for

example, in normal situations or on the ground after falls is unknown. Consequently,

this method is able to detect a state change from standing to lying as a fall. Sit-to-

stand-transfer falling type in which people change from sitting to lying states is not

considered. Therefore secondly, we present in this dissertation a low-cost scheme of

estimating Human-Ground Contact Areas (HGCA) for fall detection. Standing and

sitting people make a little contact with the ground, mainly by feet. But lying people

lie almost completely on the ground after falls. Hence, HGCA is a good feature for not

only classifying human states but also indicating where the person lies either on the

ground or on a sofa. To measure HGCA, we project foregrounds of the person from

one view to another by using the homography of the ground between views. Overlap

regions between the foreground in the latter view and the projected foreground that

only exist where people contact with the ground, i.e., feet location, due to the plane

parallax, are measured as HGCA. We also propose a human state simulation in which

a virtual camera captures various 3D human models in different states from a variety

of angles to generate training samples. View-invariant distributions of HGCA with

respect to human states are built from the training samples to generalize a threshold

to separate lying from standing and sitting states. Temporal analysis of human state

transition is used to infer falls. We also test this method on multiple camera fall

dataset, leading to competitive performance and lower computational cost than state-

of-the-art methods, performed on the same dataset.

Recently, Bag-of-Video-Word (BoVW) approaches have been showing good per-

formance on a wide range of human action recognition datasets. However, to the
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best of our knowledge, there is no work evaluating BoVW approaches on a dataset,

exclusively dedicated to fall detection. Hence, we carry out an empirical study to

access the effectiveness of BoVW approaches to fall detection. The standard BoVW

approach with Chi-square kernel SVM classifier are tested against multiple camera

fall dataset in Leave-one-scene-out cross validation setup, resulting in favorably com-

parable performance with our proposed methods, except its heavy computational

cost.

We do hope that our research outcomes will contribute significantly a step toward

the commercialization of vision-based fall detection technology which not only en-

hances the quality of life, quality of care, safety of the elderly but also fosters their

autonomy and freedom.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Population aging

Population aging is the process by which older people1 account for an increasingly

high percentage of total population. According to a report of United Nation [United

Nation, 2002], population aging is “unprecedented in human history”, “enduring”, and

“pervasive”, spreading nearly all over the world by different paces. Developed countries

have been suffering from population aging for over a decade by a fast growing manner.

The number of the elderly exceeding that of children2 happened for the first time in

these nations in 1998 [United Nation, 2007]. Nowadays, the ratios of the elderly

to children in Japan, Germany, and Italy, to name a few as examples, are around

1.85 [The-World-Factbook, 2013c], 1.6 [The-World-Factbook, 2013a], and 1.56 [The-

World-Factbook, 2013b], respectively. Although the percentage of older people in

developing nations today is just around 8% of the population, it is predicted that

by mid-century, population aging will progress quickly to the same current level of

developed nations [United Nation, 2007].

Population aging leads to tremendous political, economical and social problems

1their age is over 65
2their age is under 15
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and consequences among which the burden on the healthcare system, especially the

elderly care, is in our central consideration. Since the elderly are prone to health

deterioration, malnutrition, senility, depression and isolation, etc., the elderly care

are therefore in high demand. However, it consumes much government fundings

and family budgets, as well as requires a lot of human resources. Seeking solutions

to reduce the cost and the dependence on the foreseen shortage of nurses attracts

attention of the whole society, ranging from decision makers to researchers. It is

urgent for us to have actions quickly because of rapid permeation of population aging

across the world.

1.1.2 Home telecare and assistive technology

To cut down the cost and improve the quality of the elderly care, healthcare centers

should be more specialized and centralized into a few places. Institution care should

be shifted to more advanced home healthcare, thanks to advances in information

technology and assistive technology facilitating this trend [Koch, 2006]. These cen-

tralized and specialized healthcare centers keep a weather eye on health conditions of

the elderly from a distance and provide instant assistance upon detected abnormality

and/or emergency. It creates an alternative and promising model of the elderly care,

so-called home telecare. Home telecare promotes greatly independence of the elderly

who prefer to live alone, separately from their relatives. These advantages of home

telecare make it very prevalent among healthcare provision areas [Ruggiero et al.,

1999].

Assistive technology (AT) “is an umbrella term for any device or system that al-

lows an individual to perform a task they would otherwise be unable to do or increases

the ease and safety with which the task can be performed” [Cowan and Turner-Smith,

1999]. Evidently, AT plays an important role in home telecare. It keeps a weather eye

on everyday conditions of the elderly by plenty of smart devices and sensors, implanted

into their houses [Chan et al., 2008], automatically detects accidents or emergency

cases [Lee and Mihailidis, 2005], supports people with dementia [Bharucha et al.,

2009], replaces human caregivers by virtual caregivers [Hossain and Ahmed, 2012],
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and provides social interactions by assistive social robots [Broekens et al., 2009], etc.

Advances in information technology and assistive technology ease the burden on hu-

man caregivers, guarantee security and safety, promote independence and autonomy,

and lessen depression and isolation of the elderly, etc., in turn, improving significantly

quality of life.

1.1.3 Importance of fall detection in home telecare

Among these crucial applications of AT to home telecare, security and safety assur-

ance is at the heart of our interests since the elderly living alone are considered as

an “at-risk” group [Kharicha et al., 2007]. They appear to be associated with higher

risks of accidental falls that happen frequently and have profound implications [Mac-

Culloch et al., 2007]. Falls are considered as the most common cause of injuries [Yu,

2008] and the sixth leading cause of death [MacCulloch et al., 2007] of the elderly.

The severity of injuries is proportional to the delayed time in receiving medical treat-

ments. Timely responses help fallen people not worsen the injuries or even save their

lives. Hence, we should detect falls as soon as possible to offer immediate treatments,

preventing injuries from further severe.

The study of accidental falls of the elderly can be broken into two categories,

fall prevention and fall detection. There are many practical programs and research

works in the literature, dedicating to the former. Exercise interventions to strengthen

muscle and balance, in turn, reducing fall risks, a number of medications associated

with fall risk reduction, and injury protection such as using hip fracture protector

are investigated [MacCulloch et al., 2007]. However, the purposes of fall prevention

researches merely seem to discover how to lessen fall risks but not completely. By its

nature, it seems to be impossible to predict whether a fall happens for prevention.

In contrast, the latter detecting a fall right after it happened is more straightfor-

ward than the former. Moreover, fall detection methods are very important to ensure

the safety of the elderly living alone in the consideration that accidental falls seem to

be unavoidable or unpreventable. Healthcare industry has been realizing a very useful

application of fall detection methods at the heart of Intelligent Personal Emergency

3



Figure 1-1: The application of iPERS to ensure the safety of the elderly living alone
at home. Emergency situations like an accidental fall, are automatically sensed to
trigger a console to make an instant notification to family members and/or to connect
with a designated emergency response center for immediate help.

Response System (iPERS) to ensure safety of the elderly living alone at home [Lee

and Mihailidis, 2005]. General speaking, iPERS is conventional PERS with an added

capability of automatic sensing of emergencies. Conventional PERS composes of a

small radio transmitter, a console connecting to users’ telephone, and an emergency

response center that handles this type of calls [Doughty et al., 1996]. In emergency

situations, the users press HELP button, usually attached in an easily accessed place

on users’ body, to contact with a designated emergency response center to receive

instant necessary assistance. However, conventional PERS exposes a major weakness

that prevents it from practical usage of the elderly. Users must carry the HELP but-

ton 24 hours a day. It is not an easy task for the elderly since most of them suffer

from dementia or deterioration of cognitive ability [Bharucha et al., 2009] and feel

uncomfortable [Yu, 2008]. Moreover, the impact of shock after falls may force the

elderly to experience unconscious states of mind as well as physical pain. Pressing

4



HELP button to call for emergency assistance seems to be inappropriate in practice.

Therefore, iPERS [Lee and Mihailidis, 2005] that is capable of providing automatic

sensing of emergencies is favorable in the elderly care. Falls are automatically detected

to trigger the console to make an instant notification to family members and/or to

connect with the designated emergency response center for immediate help, as illus-

trated in Fig. 1-1. That is why fall detection has been being an active research for

recent years by a large body of literature [Yu, 2008; Noury et al., 2007; Ward et al.,

2012; Mubashir et al., 2013; Spasova and Iliev, 2014]. Our dissertation is also devoted

to the problem of fall detection of the elderly.

1.1.4 Technologies for fall detection

The common pipeline of fall detection methods, shown in Fig. 1-2, includes three main

parts, sensors, feature extraction and classification, and fall inference [Yu, 2008]. This

section summarizes a variety of sensors that can be used in fall detection. Depending

on where to place sensors, we can break fall detection methods into three categories,

corresponding to wearable-device, ambient-device and vision technologies. We only

highlight strengths and weaknesses of each technology and also explain why vision

technology should be treated separately from ambient-device technology. Please refer

to comprehensive reviews [Yu, 2008; Ward et al., 2012; Mubashir et al., 2013; Spasova

and Iliev, 2014] to have insights into methods.

Wearable-device technology

Wearable-device technology for fall detection includes motion and posture sensors, at-

tached on the human body [Mathie et al., 2004; Wang et al., 2008] or on the garment

[Lin et al., 2007; Nyan et al., 2006]. These sensors, i.e. accelerometers [Mathie et al.,

2004; Wang et al., 2008; Nyan et al., 2006], and gyroscope [Nyan et al., 2006; Tamura

et al., 2009] etc., measure motion, location, posture and Electromyography (EMG)

signals [Ghasemzadeh et al., 2009] of human body for fall inference by threshold-

ing [Tamura et al., 2009] or machine learning techniques [Ghasemzadeh et al., 2009;
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Figure 1-2: The common pipeline of fall detection methods.

Doukas et al., 2007]. The wearable-device technology offers cheap3 solutions with

simple initialization, setup, and operation. But wearing and attaching something on

the body are intrusive and uncomfortable. As a result, many people are unwilling to

accept this technology [Yu, 2008]. Moreover, sensors are designed to work effectively

at some particular positions on the body that may be changed unexpectedly dur-

ing operation, easily leading to low detection rates and high false alarms [Yu, 2008;

Mubashir et al., 2013].

Ambient-device technology

Ambient-device technology refers to sensor-embedded environments that are sensi-

tive and responsive to the presence of human [Yu, 2008]. Vibration sensors [Alwan

et al., 2006], pressure sensors [Scott, 2000] either on the floor or under the bed mat-

tress, thermal imaging sensors [Sixsmith and Johnson, 2004] and audio processing

[Zhuang et al., 2009], etc. are utilized in fall detectors. The merits of ambient-device

technology are cost-effective and non-intrusive. However, pressure sensors-based fall

detectors, relying on pressure measured from environments, are very sensitive to en-

vironmental changes and people carrying objects, etc. leading to poor performance

3except wearable garment
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[Mubashir et al., 2013]. Moreover, both ambient-device and wearable-device tech-

nologies do not provide post visual inspection and verification for caregivers in cases

of alarms [Yu, 2008].

Vision technology

Vision technology has been flourishing for over decades. Cameras with increasingly

high quality are cheaper and cheaper, along with a mature of vision algorithms.

Revolution in computing devices makes vision technology feasible in real-time appli-

cations. As a consequence, cameras are nowadays very prevalent on our doorstep.

Vision technology are progressively permeated into every corner of life, ranging from

video surveillance, biometrics, virtual reality to medicine, etc. In particular, it has

been revolutionizing today’s telecare services and e-healthcare systems [Hossain et al.,

2012].

In this section, we treat vision technology separately although vision sensors can

be sorted into ambient-device technology. It is because vision sensors have numerous

advantages over above sensors. Apart from its low-cost and non-intrusive proper-

ties, most importantly, information extracted from vision sensors is richer than that

of other sensors. It allows us to perform not only fall detection but also other hu-

man action/activity recognition [Poppe, 2010], security surveillance [Hu et al., 2004],

health diagnosis via gait recognition [Pogorelc et al., 2012], human emotion recogni-

tion [Fasel and Luettin, 2003], and virtual social interactions [Broekens et al., 2009],

etc. Vision technology opens an interesting perspective of replacing human caregivers

by intelligent virtual caregivers [Hossain and Ahmed, 2012] that non-intrusively mon-

itor health conditions, safety and security of the elderly, understand their feelings,

try to offer their needs, remind them how to perform a daily task, and call for hu-

man caregivers when necessary, etc. Therefore in this dissertation, we only consider

vision-based methods of fall detection.
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1.2 Research Objectives

Our research objectives are summarized as the following.

1. The most important objective is to find a solution that is capable of reach-

ing high detection rates since the application of fall detection relates to human

safety. False alarms also need to be kept as low as possible. Otherwise, emer-

gency response centers will be frequently disturbed. In daily life, people exhibit

a variety of actions/activities,4 many of which and falls have some character-

istics in common, for example, fast motion followed by a relatively motionless

duration. Crouching, lying either on a bed, a sofa, or on the ground and sit-

ting down brutally are among common confounding or like-fall actions. Desired

solutions must distinguish precisely fall events from like-fall ones.

2. A major issue in video surveillance, particularly in multiview approaches, is

about using complicated initialization, registration, calibration and site mod-

els, making the proposed solution unfeasible [Javed and Shah, 2008]. During

operation, camera viewpoints may be changed unexpectedly probably due to

natural and human factors, etc. Consequently, we need to recalibrate cameras,

re-attain site models, re-run the initialization, or make the registration again.

Otherwise, the performance will be deteriorated, leading to detrimental effects

on human safety. Maintaining stable performance of such camera network dur-

ing operation is a daunting task [Javed and Shah, 2008]. Thus, our objective

is to ideally find an automatic solution to tackle with this issue that requires

automatically-obtained initialization, registration and site models. With least

human intervention, the desired solutions can adapt to unexpected changes in

camera viewpoints during operation.

3. Our third objective is to deal with other common issues in video surveillance.

Low image quality, cluttered background, view invariant, illumination varia-

tions, and occlusion by furniture, need to be taken into consideration. Since we

4Since there is no clear difference in definition between actions and activities, hereinafter we use
action and activity interchangeably.
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aim at designing features based on foreground images, the above factors have

great influences on the final detection results. The desired solutions can work

well in arbitrary oblique viewpoints,5 under typical indoor lighting conditions,

and with partial and even severe occlusion caused by furniture. For instance,

the elderly may fall to a sofa that makes people occluded either partially or

severely from a certain viewpoint.

4. Fourthly, our proposed solutions target to single-user applications, for example,

to support the elderly living alone at home. We argue that the application

of fall detection methods seem to be useless in case of having more than one

person in the monitored spaces. The falling-down action of one person should

be known or detected by the other ones.

5. Our final objectives include designing low-cost solutions and protecting users’

privacy. The desired solution must be low computational cost so that it can

be run in real-time on a common PC. We aim at declining the cost of home

telecare services so that most older people can approach it. Since cameras are

placed at fixed positions in video surveillance, our proposed solutions are able

to make use of foreground images to protect users’ privacy.

1.3 Proposed approaches and contributions

In this dissertation, we introduce multiview 3D spatial features-based approaches

to fall detection. We realize that falls are associated with fast body movements to

change postures from upright to almost lengthened, followed by a sufficient duration

of staying almost motionlessly on the ground or on some objects. This is contrary

to slow manners of doing usual activities of the elderly. Therefore, we propose using

3D spatial features which are highly discriminative in distinguishing human states or

postures. Given a sequence of human states, falls can be reliably inferred by analyzing

human state transition. Figure 1-3 illustrates the insights of our fall detection pipeline,

5Overhead viewpoint is not considered because oblique viewpoints not only provide richer infor-
mation of detecting falls but also monitor wider areas than overhead one
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Figure 1-3: The insights of our fall detection pipeline. We propose using 3D spatial
features, i.e., the combination of heights and occupied areas, and Human-Ground
Contact Areas (HGCA). Heights and occupied areas are extracted from 3D cuboids
of the person of interest. The bottom area of the 3D cuboid (the yellow area enclosed
by a red rectangle) is defined as occupied area as shown in the left of the module
3D Spatial Features. Meanwhile, HGCA is defined as the contact area between the
person and the ground, a part of red ellipses, as depicted in the right of the module
3D Spatial Features.

composing of three elements: 3D spatial feature extraction, human state classification,

and human state transition analysis for fall inference.

The first two major contributions of this dissertation include our introduction of

(1) the combination of heights and occupied areas, and (2) Human-Ground Contact

Areas (HGCA) for fall detection. They are 3D spatial features which are highly

discriminative in classifying human states and are efficiently estimated from multiple

views. We present low-cost multiview schemes of estimating these 3D spatial features

and also demonstrate empirically their good performance in fall detection.

Recently, Bag-of-Video-Word (BoVW) approaches to human action recognition

have demonstrated good performance on a wide range of datasets. However, its per-

formance in discriminating fall actions from other actions of daily living is unknown.

To the best of our knowledge, there is no research work evaluating BoVW approaches

on a dataset, exclusively dedicated to fall detection. Hence, the last contribution

of this dissertation comes from our empirical study of accessing the effectiveness of

BoVW approaches to fall detection, in comparison with our proposed as well as state-
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of-the-art approaches.

1.3.1 Fall detection based on heights and occupied areas

Firstly, we describe in this dissertation the combination of heights and occupied areas,

extracted from 3D cuboids of the person of interest as good 3D spatial features for

human state classification. We realize that people in lying states occupy larger areas

than people in standing and sitting states. Heights of people in standing states are

greater than that of people in sitting and lying states. Intuitively, three typical

human states, i.e., standing, sitting, and lying, fall into three separable regions of the

proposed feature space, composing of heights and occupied areas. In order to reduce

the computational complexity of approximating the person of interest by 3D cuboids,

we configure two cameras whose fields of view are relatively orthogonal. Thus, 2D

bounding boxes of the person extracted from two views serve as two orthographic

projections of the 3D cuboids, making the 3D cuboid reconstruction straightforward.

However, reconstructed 3D cuboids are not view-invariant across viewing windows due

to the camera perspective. We propose using Local Empirical Templates (LET) that

are originally proposed for counting people [Hung et al., 2010, 2012], to normalize the

3D cuboids. LET are defined as sizes of a standing person in local image patches. Two

important characteristics of LET include (1) LET in unknown scenes can be easily

extracted by an automatic manner, and (2) by its nature, LET hold the perspective

information. Therefore, the reconstructed 3D cuboids become view-invariant across

the viewing window after normalization by appropriate LET. Support vector machines

are adopted to classify human states before inferring fall events by time-series analysis

of human state transition.

1.3.2 Fall detection based on human-ground contact areas

By using height and occupied area in the first solution, we can distinguish lying from

standing and sitting states. But the information of the lying positions such as on a

sofa in resting states or on the ground after falls is unknown. Therefore, the above
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solution can only detect a state transition from standing to lying as a fall. Sit-to-

stand-transfer falling type in which the person changes from sitting to lying states is

not considered. This kind of falling happens quite often when the person comes out

of the resting states. Therefore, we propose another 3D spatial feature to overcome

this limitation.

We argue that people always make a little contact with the ground during usual

activities mainly by the feet but often lie completely on the ground after suffering

from accidental falls. We come up with another good 3D spatial feature, so-called

Human-Ground Contact Areas (HGCA). To measure HGCA, we project foregrounds

of the person of interest from one view to another by using homography of the ground

between two views. Overlap regions between projected foreground and the foreground

in the latter view that only exist where people are in contact with the ground, due to

the plane parallax, are measured as HGCA. We generalize a threshold of HGCA to

separate lying states from standing and sitting states from view-invariant distributions

of HGCA with respect to human states. We propose using human state simulation in

which camera viewpoints are freely changed to capture 3D human models in various

states. Hundreds of images are generated from the simulation as training data to

build these distributions of HGCA. Finally, we perform temporal analysis of human

state transition to claim falls. We test both our approaches on “multiple camera

fall dataset” leading to competitive performance and lower computational cost with

other methods tested on the same dataset [Rougier et al., 2007b, 2011b; Auvinet

et al., 2011].

1.3.3 Bag-of-Video-Word approaches to fall detection

Recently, BoVW approaches to human action recognition have demonstrated good

performance on a wide range of datasets which can be decomposed into two categories:

heterogeneous and specific action datasets. Among heterogeneous action datasets,

e.g., KTH [Schuldt et al., 2004], Weizmann [Blank et al., 2005], Hollywood 2 [Laptev

et al., 2008], and UCF101 [Soomro et al., 2012], etc., only HMDB51 [Kuehne et al.,

2011] dataset contains fall actions and few actions of daily living. In addition, the
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subjects in the dataset are mostly young people rather than the elderly. Meanwhile,

fall actions are omitted in some specific action datasets, exclusively dedicated to

actions of daily living, i.e., URADL [Messing et al., 2009], TUM Kitchen [Tenorth

et al., 2009], and MPII Cooking [Rohrbach et al., 2012] datasets. It means that fall

actions are treated separately from the other actions of daily living in the context

of dataset creation. It is subjective to draw similar good performance of BoVW

approaches to fall detection based on its results on these datasets reported in the

literature. To the best of our knowledge, there is no research work evaluating BoVW

approaches to fall detection on a dataset, exclusively dedicated to fall detection.

That is, the dataset must contain both fall actions and a variety of other actions

of daily living, such as sit up, stand up, sit down, lie down, walk, carry objects,

do housework, take off cloth, and put on cloth, etc. Hence, in this dissertation, we

carry out an empirical study of evaluating the effectiveness of BoVW approaches to

fall detection on “multiple cameras fall dataset.” We use similar evaluation protocol,

proposed in [Wang et al., 2009], with STIP and HOG/HOF descriptors [Laptev, 2005]

and nonlinear Chi-Square kernel SVM classifier. In comparison with our proposed

and state-of-the-art methods, tested on the same dataset, BoVW approach produces

comparable accuracy recognition but are more computationally expensive.

1.4 Dissertation organization

The rest of our dissertation is structured as the following. We will provide the back-

ground on accidental falls and a review of vision-based fall detection methods in

chapter 2. In chapter 3, we describe the combination of heights and occupied areas

for fall detection. Chapter 4 presents the method of fall detection based on human-

ground contact areas. The empirical study of accessing the effectiveness of BoVW

approaches to fall detection is carried out in chapter 5. Finally, chapter 6 concludes

the dissertation and delineate future directions to fall detection.
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Chapter 2

Background on fall detection

In this chapter, we investigate the definition and characteristics of a fall. Once they

are clearly defined, it helps understand the existing algorithms and aids to design

novel effective ones [Yu, 2008]. Subsequently, we describe the benchmark dataset

and performance evaluation criteria used in our work. The summarization of related

works to provide the context of our proposed approaches comes in the last section of

this chapter.

2.1 Fall definition

The fall of a person can be defined as a rapid change from upright/sitting postures to

almost lengthened/lying ones [Noury et al., 2008] subsequently followed by a relatively

immobile duration caused by shock impacts of the fall. According to this definition,

a fall can be broken into four phases, that is, prefall phase, critical phase, post-fall

phase and recovery phase [Noury et al., 2008].

In the prefall phase, the elderly perform daily activities usually in slow manners,

characterized by slow motion. However, some sudden and quick movements that may

sporadically happen by confounding activities such as sitting down brutally.

The human body starts to fall or in other words, to change postures suddenly and

quickly during the critical phase. This phase ends when the human body hits the

ground or some objects and usually lasts between 300 and 500 ms.
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In the post-fall phase, people stay relatively immobile on the ground in lying

states. The timing of this phase is much longer than the critical phase, depending

on the physical pain and shock impacts of the fall. Subsequently, people try to stand

up either by their own efforts or by the supports of other people during the recovery

phase.

Some people argue that the post-fall phase is not necessary to exist or only happen

in a very short time. It means that fallen people experience directly to the recovery

phase. Such falls do not threaten seriously fallen people’s lives then are not considered

in our work.

Although fall events and confounding events have sudden and quick movements

in common, characteristics of a fall after the critical phase are quite unique. This

fall definition is critical in discriminating fall from usual events, particularly the con-

founding ones. Various methods take this definition into consideration to reliably

infer fall events, as shown in our summarization of related works in section 2.3. Our

proposed approaches also rely on this definition for fall inference.

2.2 Benchmark dataset and evaluation criteria

An increasing number of publications have been dedicating to fall detection by using

not only vision sensors but also the other kinds of sensors. It is an urgent problem

of how to evaluate fairly their performances. In computer vision, it is recommended

to use common and publicly available datasets for benchmarking developed algo-

rithms because of two major merits. Firstly, it saves time and resources for collecting

new samples for experiments [Chaquet et al., 2013]. Finally and more importantly,

it facilitates fair comparisons of different approaches and provides in-depth under-

standing of (in)abilities of the different approaches [Poppe, 2010]. Therefore in this

work, we use a common and public benchmark dataset, namely, “multiple camera

fall dataset”, recently released by Université de Montreal [Auvinet et al., 2010] in

experiments. Furthermore in the field of fall detection, we also need to evaluate fairly

between vision-based methods and wearable device-based methods as well as ambient
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Figure 2-1: The Layout of camera network in “multiple camera fall dataset”

device-based methods. [Noury et al., 2007] proposed a common performance evalu-

ation criteria to address this urgent need. In this section, we describe the common

benchmark dataset and the performance evaluation criteria used in our work.

2.2.1 Multiple camera fall dataset

In regard to making a publicly available dataset for the scientific community, real

fall situations seem to be inapplicable due to the issue of privacy protection. More

importantly, gathering real falls of the real elderly in home environments is a daunting

task. Rather than that, simulated falls performed by a young actor, instead of the

real elderly, are favorable and are commonly adopted in the literature. However, they

did not make their own collected samples publicly, see Table 2.2. Consequently, the

performances of their approaches cannot be accessed exactly and fairly because the

challenges of their dataset are not available. Recently, a research group at Université

de Montreal designed a multiview benchmark dataset and made it publicly for research
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purposes [Auvinet et al., 2010]. To the best of our knowledge, [Auvinet et al., 2010]

and another one in [Shoaib et al., 2011b] are the only two publicly available dataset

for vision-based fall detection methods up to date. However, we only use the dataset

in [Auvinet et al., 2010] in experiments since the one in [Shoaib et al., 2011b] is a

single-view dataset.

In this dataset, simulated falls are performed by a young actor who is an experi-

enced clinician in the area of elderly care. Their laboratory was rearranged to look

like a home environment with sofa, chair, and table, etc. The actor performed not

only various kinds of falls but also other usual activities, some of which are considered

as confounding events or like-fall events. All activities were recorded simultaneously

by eight inexpensive IP cameras with lenses to capture the whole room as widely as

possible. Figure 2-1 shows the layout of eight-camera arrangement. They provide

in the dataset not only video samples, but also camera calibration data, information

of camera network synchronization, and more importantly, event annotation, etc.

[Auvinet et al., 2010]. In the following, we summarize the challenges of the dataset.

Challenges of the dataset

The dataset was designed to include 24 scenarios, twenty two of which are short

video samples. The short scenarios aim at demonstrating various kinds of falls, for

example, falling forward, falling backward, falling due to balance loss, falling during

stand-to-sit transfers, falling during sit-to-stand transfer, and falling to furniture. On

the contrary, the two last scenarios which are several-minute length concern more

about usual activities, especially the confounding events such as lying down on sofa,

sitting down brutally, crouching on the ground, doing housework, carrying objects,

rearranging furniture, and putting on and taking off a coat, etc., although some

confounding events are included in some short scenarios. All scenarios are summed

up in Table 2.1 along with their challenges. Some frame examples of the dataset

are demonstrated in Fig. 2-2. In total, the dataset contains 24 fall events1 and 24

1Although in the dataset annotation [Auvinet et al., 2010], there are 25 falls but one happened
on the recovery phase. It is argued that if the first fall had been detected then it was not necessary
to detect the second one which happened in the recovery phase.
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confounding events (11 crouching events, 9 sitting events, and 4 lying events)

The other challenges include high video compression (MPEG4), cluttered and

texture background, shadow and reflection, illumination variations and occlusion by

furniture. The dataset was shot under typical indoor lighting conditions that are with

ambient lights and without sudden changes of illumination. Reflection on the ground

may pose challenges for extracting silhouettes by background subtraction algorithms.

Occlusion by furniture also happens very often that may deteriorate the quality of

extracted features. Although there is only one actor performed everything in the

dataset, his appearance changes between scenarios and even within a scenario by

putting on and taking off a coat.

Table 2.1: The summation of all scenarios in the dataset along with their challenges.
We take the viewpoint of camera 2 to make this table. Therefore, the table claiming
no occlusion from this viewpoint does not mean no occlusion from other viewpoints.

No. Types of falls Confounding events Occlusion Mattress usage

1 Falling backward Putting a coat on None Yes

2 Loss of balance None None Yes

3 Falling forward None None Yes

4
Loss of balance None None Yes

Falling when recovery No

5 Falling forward None None Yes

6 Falling backward None None Yes

7 Loss of balance None None Yes

8 Loss of balance None None Yes

9 Sit-to-stand transfer Sitting down None Yes

10 Stand-to-sit transfer None None Yes

11 Loss of balance None None Yes

12 Loss of balance None None Yes

13

Sit-to-Stand transfer Sitting down brutally None Yes

Lying down on sofa

Continued on next page
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Table 2.1 – Continued from previous page

No. Types of falls Confounding events Occlusion Mattress usage

Lying to Sitting

14

Sit-to-Stand transfer Sitting down brutally None Yes

Lying down on sofa

Lying to Sitting

15
Loss of balance Sitting down brutally None No

Standing up

16

Falling to table Kneeling None No

Crouching

Sitting down brutally

Standing up

17

Falling to table Kneeling None No

Crouching

Sitting down brutally

Standing up

18
Falling forward Sitting down None No

Standing

19 Falling to sofa None Yes No

20 Falling to sofa None None No

21 Sit-to-stand transfer Sitting down None No

22 Sit-to-stand transfer Sitting down Yes No

taking a coat off Yes No

Crouching

Carrying objects

Putting objects down

Falling to a chair Standing up

Crouching

Carrying objects

Continued on next page
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Table 2.1 – Continued from previous page

No. Types of falls Confounding events Occlusion Mattress usage

Displacing objects

Sitting down brutally

Lying down

23 Standing up

Sitting down brutally

Lying down

Sit-to-Stand transfer Standing up

Crouching

Sitting down

Standing up

Carrying objects

Displacing a chair None No

Doing housework

Kneeling

Dropping sweeper

Kneeling

24 Kneeling

Crouching

Carrying a coat

Dropping the coat

Bending to take coat

Kneeling

Dropping sweeper
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(a) Falling forward (b) Falling backward (c) Loss of balance

(d) Falling to sofa (e) Falling to a table (f) Falling during stand-to-sit
transfer

(g) Falling during Sit-To-Stand
Transfer

(h) Sitting down brutally (i) Crouching on the ground

(j) Sitting on a sofa (k) Lying on a sofa (l) Kneeling on the ground

(m) Carrying an object (n) Doing housework (o) Take off a coat

Figure 2-2: Frame examples in “multiple camera fall dataset”
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(a) Standing (b) Sitting (c) Falling

Figure 2-3: Image samples of our In-House video sample

2.2.2 Our In-House sample

We also record a video sample containing some actions of daily living, i.e., walking and

sitting, as well as falling on the ground in a classroom of our campus. The simulated

actions were recorded simultaneously by two cameras 2. These two views are obliquely

configured relatively orthogonal for testing both of our proposed approaches in this

dissertation. The video sample is two and a half minutes in length, in which the person

sits on a chair and falls on the ground twice (for each one). The test is to further

confirm the validity of our approaches since the camera settings and environments are

different from that in the dataset. Some image samples of our in-house video sample

are shown in Fig. 2-3.

2.2.3 Performance evaluation criteria

Since the results of fall detection methods are binary such as “detected” or “not

detected”, regardless of types of sensors used, Noury et al. [Noury et al., 2007, 2008]

proposed the following performance evaluation criteria.

There are 4 possible situations.

1. True Positive (TP): the number of falls correctly detected, that is, after a fall

had happened, the methods detected it successfully.

2. False Positive (FP): the number of normal activities detected as falls, that is,

2one is Nikon camera P500 and the other is Canon HD recorder
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the methods claimed a fall but it had not occurred.

3. True Negative (TN): the number of normal activities not detected as falls, that

is, an usual activity occurred and the methods did not produce any fall event.

4. False Negative (FN): the number of falls not detected correctly, that is, a fall

had happened but the methods did not claim it as a fall.

We compute 2 following criteria to evaluate the response of these 4 situations.

1. Sensitivity

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.1)

2. Specificity

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2.2)

High sensitivity means that most fall incidents are correctly detected. Similarly,

high specificity implies that most normal activities are not detected as falls. A good

fall detection methods must achieve high values of both sensitivity and specificity.

In implementation, we use the event annotation, provided in the dataset. In

each video sequence, the actual time occurring a fall (denoted by 𝑡𝑓𝑎𝑙𝑙) is manually

annotated. This time is defined by the first moment of human body hitting the

ground after a fall. A fall is detected after 𝑡𝑓𝑎𝑙𝑙, resulting in TP. A fall is not detected

after 𝑡𝑓𝑎𝑙𝑙, resulting in FN [Auvinet et al., 2010].

2.3 Related works

In this section, existing fall detection methods are reviewed to delineate the context of

our proposed approaches. However, we only take vision-based methods into consider-

ation. Making a survey of wearable device-based methods and ambient device-based
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methods goes beyond the scope of our work. In this regard, we refer to some recent

comprehensive reviews of fall detectors [Yu, 2008; Ward et al., 2012; Mubashir et al.,

2013; Spasova and Iliev, 2014].

According to the common pipeline of fall detection methods in Fig. 1-2, feature

extraction, feature classification (or human states/postures classification) and fall

inference are the most important parts. Therefore for each method reviewed in this

section, we highlight the extracted features along with their discriminative powers

and how to classify them and make decisions. We classify fall detection methods

into three categories based on the number of cameras and types of camera employed.

The first two categories using regular RGB cameras are broken into single-view and

multiple-view approaches. The last category uses RGB-Depth cameras among which

Kinect is the most prevalent. It is noted that all cameras must be stationary.

2.3.1 Single-view approaches

In this section, we focus on monocular vision-based methods of fall detection. A

common class of approaches are based on dimension variations of 2D human body

silhouettes. The early work of [Anderson et al., 2006] analyzed the sizes of silhouettes.

The width-to-height ratios or aspect ratios of humans and off-diagonal term from co-

variance matrix are taken as adequate features for training Hidden Markov Models

(HMMs) to recognize falls. The aspect ratios of humans in standing and lying states

are large and small, respectively. However, this observation may not be true in con-

sideration of human body upper limb activities. To eliminate this effect, [Liu et al.,

2010] used a statistical scheme to remove peaks in vertical histograms of silhouette

images. They proposed k-Nearest Neighbor (kNN)-based posture classifier working

with a feature space composing of the aspect ratios and the difference between height

and width of silhouettes. By taking the different pace between falls and like-fall ac-

tions into account, critical time difference is used to claim a posture change as a fall.

[Huang et al., 2008] introduced the combination of aspect ratio and silhouette size

variations to discriminate fall and non-fall states by a linear classifier. Surrounding

and personal information such as weight, height, health history, being in toilet, and

24



being in dining room, etc. are also integrated into the linear classifier by modifying

its weights. Both three methods do not take the occlusion by furniture into consider-

ation. They merely reported the experiments with cameras placed sideways since the

observations of their designed features based on size variations of 2D silhouettes only

make sense in this camera setting. In practice of indoor surveillance, the cameras are

preferred to be in oblique settings for wider views and occlusion avoidance.

Several works employ context information for aiding fall inference by dividing the

environment into activity and inactivity zones. [Lee and Mihailidis, 2005] labeled fur-

niture areas in the images captured from a top-view camera as inactivity zones, i.e.,

chair, sofa, and bed, etc. The system treats lying in activity zones as a fall but con-

sider ones in inactivity zones as acceptable. Position and speed of centroids, perimeter

and Feret diameter of blobs are extracted and thresholded to distinguish standing and

lying postures. In the similar experimental scenarios, [Charif and McKenna, 2004] ar-

gued that there are a few places in a room in which people are relatively inactive most

of the time for relaxing activities, i.e., watching television, reading newspaper, and

drinking tea, etc. They are tracked and checked whether they are inactive in a known

inactivity zone. Their immobility outside known inactivity zones is likely caused

by fall occurrences. However, both methods expose several limitations. Firstly, the

speed estimation of 2D silhouettes is highly sensitive to cluttered background and a

variety of human daily activities. Secondly, their adaptation to environment changes

is poor. Finally, using top-view cameras seems to be inappropriate for the problem of

fall detection since crucial clues from the vertical motion of human body to recognize

a fall are not available. Recently, by using an obliquely-placed camera in a real home

environment, [Shoaib et al., 2010, 2011a] presented a context model to learn the head

and floor planes as well as (in)activity zones from the foregrounds of moving person

in an unsupervised manner. Distance measures between detected heads and refer-

ence heads, provided by the context model, are adopted as a discriminative feature

to distinguish walking and sitting from lying actions by thresholding. However, con-

founding events such as crouching down on the ground and lying down on the ground

are classified as falls since these actions take place in activity zones, rather than in
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inactivity ones, i.e. on a sofa or a bed, etc. Moreover, a major disadvantage of these

approaches is that fall occurrences in inactivity zones are not taken into account.

Since falls are associated with quick movements of human body, motion features

are employed to detect large motion events, before extracting other features for fall

inference. Motion History Image (MHI) is adopted to quantify the motion of human

body [Rougier et al., 2007a] to detect large-motion events. Upon such events, sil-

houettes are approximated by ellipse models whose orientation angle and ratios of

major to minor axes, so-called axis ratio, are extracted as features. Hand-designed

thresholds are applied to these features to detect posture changes. Falls are confirmed

if the posture change is followed by a sufficient motionless duration. It is reported

to run in 10 fps with video stream’s resolution of 320x240. Similarly, [Liao et al.,

2012] introduce Integrated SpatioTemporal Energy map (ISTE) to quantize the body

motion. ISTE is demonstrated to deal with low frame-rate video streams better than

MHI does. They quantified the body motion into No Motion, Regular Motion, and

Large Motion which are combined with features of orientation angle, displacement,

and axis ratio in Bayesian Belief Network to reason not only fall but also slip-only

events. [Chen et al., 2010] present an ingenious combination of distance map of two

sampling human skeletons and variation analysis of ellipse human models for fall in-

ference. The suspicious incidents are further verified by checking inactive states of

the person in a period of time.

Human shape is studied for fall detection since it is believed that human shape

changes progressively during usual activities but drastically during falls. Log-polar

histograms are used to represent silhouettes’ shape [Rougier et al., 2007b, 2011b].

Full Procrustes distance [Rougier et al., 2007b] and mean matching cost [Rougier

et al., 2011b] are extracted as good features for fall detection. In principle, both

full Procrustes distance and mean matching cost should be high during falls and low

right after that. In their preliminary work [Rougier et al., 2007b], falls are detected

by thresholding the full Procrustes distance and checking the inactive states in a

period. In their extended work [Rougier et al., 2011b], GMM is employed to detect

falls independently in four views and the detection results are fused to enhance the
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performance. This method is reported to work with the frame rate of 5 fps due to

the expense of high computational cost. [Htike et al., 2011] utilize chord distribution

histograms of silhouettes’ shape as view-invariant representation of various 2D poses.

The proposed method performs human pose recognition then detects falls by fuzzy

HMM. Real-time performance is claimed in the paper but without giving specific

frame rate. [Khan and Sohn, 2011] describe silhouettes’ shape by R-Transform to

perform posture recognition by Kernel Discriminant Analysis (KDA) and event de-

tection by HMM. However, their experiments are setup with sideway cameras. [Yu

et al., 2012] perform posture classification by a directed acyclic graph SVM working

with orientation angle, ratio of ellipse axes, and projection histograms along the axes

of the ellipse as input features. Lying or bending on the ground regions in a period

are considered as falls.

To take advantages of 3D information in detecting falls, a promising solution is

to make use of single calibrated cameras. [Rougier et al., 2006] describe a particle

filters-based method of tracking 3D head, with manual initialization, to extract head

velocity for fall inference. Their solution is sensitive to confounding actions like

sitting down brutally. [Cucchiara et al., 2005] trained probabilistic projection maps for

posture classification, i.e., standing, sitting, lying, and crouching. They suggest using

a tracking algorithm to handle occlusion with a state transition graph for reliable event

classification results. Their later work [Cucchiara et al., 2007] extends [Cucchiara

et al., 2005] to cope with multiple rooms by using multiple cameras whose fields of view

are partially overlapped. Camera hand-off to identify the same person across various

rooms is treated by warping human appearance between views based on homography.

The warping also helps alleviate the problem of occlusion by furniture. A HMM is

trained for obtaining more robust recognition results. Although multiple cameras are

used, the final decision is made independently by only one camera which is observing

the person.

In sum, 2D spatial features extracted from a single camera, seem to be insuffi-

ciently discriminative to distinguish fall from usual events. Falls in parallel to the

optical axis of cameras also pose difficulty for single-view approaches. Moreover,
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several assumptions about camera viewpoints, occlusion, (in)activity zones and high

computational cost, seem to make single-view approaches unfeasible. Meanwhile,

3D spatial features combined with temporal structures of actions seem to be more

discriminative than 2D spatial ones to discern falls. In the next section, we review

multiview approaches that are capable of extracting 3D spatial features.

2.3.2 Multivew Approaches

In this section, we consider methods of using more than one camera whose fields

of view are partially overlapped. [Thome et al., 2008] applied the metric image

rectification to derive the 3D angle between vertical line and principal axis of human

ellipse models. Decisions made independently by multiple cameras are fused in a

fuzzy context to classify human postures. Layer HMM is hand designed to make event

inference. Two uncalibrated and perpendicular cameras are set up in [Hazelhoff et al.,

2008]. Principal Component Analysis (PCA) is applied to determine the direction of

main axis of the human body and ratios of variances in x and y directions. Fall events

are inferred by a multi-frame Gaussian classifier and verified by head tracking based

on skin-color information. Its reported frame rates are about 15 fps and 5 fps with

320x240 and 640x480 video resolutions, respectively.

[Anderson et al., 2009] introduced a framework of fall detection in the light of

constructing voxel person. A hierarchy of fuzzy logic is proposed in this research for

human state classification (the first level) and for event inference (the second level).

The linguistic aspect of fuzzy logic makes this framework flexible, allowing for user

customization based on their knowledge of cognition and physical ability. The two

studies of [Zambanini et al., 2010] and [Zweng et al., 2010] are inspired by [Anderson

et al., 2009]. [Zambanini et al., 2010] emphasize on the low-cost computation by

employing low-cost features, i.e., aspect ratios, orientation, axis ratios and motion

speed extracted from the voxel space. Despite using same fuzzy logic-based posture

estimation in [Anderson et al., 2009], a less sophisticated reasoning mechanism based

on computing fall confident values is adopted to realize the real-time performance

but without giving specific frame rate. [Zweng et al., 2010] also utilize same features,
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fuzzy logic-based posture estimation, and fall confident value computation with [Zam-

banini et al., 2010]. However, the features are extracted directly from 2D images, in

turn, not view-invariant. Therefore, decisions made independently from each view are

fused by a statistical behavior model, so-called accumulated hit-map. By the same

methodology of reconstructing voxel person, [Yu et al., 2011] also compute the differ-

ences of centroid positions and orientation of a voxel person to classify falls against

other normal events by using one class SVM. [Auvinet et al., 2011, 2008] discussed

a method of reconstructing 3D human shape from a network of cameras. They pro-

posed the idea of Vertical Volume Distribution Ratio since the volumes of standing

and lying-down people are vertically distributed significantly differently. The method

is able to handle occlusion since the 3D reconstructed human shape is contributed

from multiple cameras.

In summary, on the one hand, the main advantage of multiview approaches to fall

detection is the capability of extracting 3D spatial features, i.e., voxel person, and

3D silhouettes, etc. They are highly discriminative in classifying postures or states,

in turn, leading to better fall detection results. In addition, features obtained from

multiple views are more reliable than those obtained from single views due to occlusion

that is frequently happened in indoor environments. People may be occluded in one

view but are likely visible in other ones. In other words, multiview approaches can

deal with the problem of occlusion better than single-view approaches. On the other

hand, multiview approaches exposes several limitations. Firstly, adding cameras make

the methods more complex and require more computing resources. However, the

evolution of computing devices such as GPU may ease this difficulty of multiview

approaches. Secondly, adding more cameras make the monitored window narrower.

Otherwise, lens must be used to capture the home environment as widely as possible,

leading to highly distorted images that also pose some difficulty. Thirdly, multiview

approaches must require performing synchronization, calibration and registration.

As we mentioned in section. 1.2, maintaining the calibration and registration of

camera networks during operation is a daunting task [Javed and Shah, 2008]. The

performance of multiview approaches would be deteriorated in the case of changing
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environments and changing viewpoint unexpectedly without doing calibration and

registration again.

2.3.3 RGB-Depth camera based approaches

In contrast to multiview approaches in which 3D information is computed from color

images captured from multiple cameras, RGB-Depth cameras are able to offer both

color images and the depth map of the scenes. In addition, the introduction of the

most prevalent and low-cost depth cameras, Microsoft Kinect, leads to a promising

solution to fall detection. In this section, we discuss some recent methods, employing

RGB-Depth cameras.

[Rougier et al., 2011a] present a method of efficiently extracting human centroid

height relative to the ground from the depth map sequences, provided by a Kinect.

They argue that most falls end on the ground or near the ground. They also propose

using the 3D body velocity computed right before the body occluded by the furniture

in order to minimize the miss detection in the case of occurring occlusion by furniture

during either critical phase or post-fall phase. Fall events are detected by thresholding

these features by hand-designed thresholds. [Planinc and Kampel, 2012a] estimate

the major orientation of the human body in 3D space by using the skeleton. A fall

is claimed if the major orientation of the person is parallel to the ground and the

height of the spine is near the ground floor. Apparently, confounding events are

not taken into consideration. In their later work [Planinc and Kampel, 2012b], same

features are used but the final decision is refined by using fuzzy logic like in [Anderson

et al., 2009; Zambanini et al., 2010; Zweng et al., 2010]. The work of [Zhang et al.,

2012a] selects 8 tracked body joints on head and torso by using Microsoft Kinect

SDK for calculating kinematic features and human height. They design a hierarchy

SVM classifier to recognize 5 activities, i.e., fall from chair, fall from standing, stand

on the ground, sit on chair, and sit on floor. In [Zhang et al., 2012b], five features

i.e., duration, total head drop, maximum speed, smallest head height, and fraction of

frames where head drops, are determined from the depth map sequences and combined

in a Bayesian framework to make event decision. [Mastorakis and Makris, 2012]
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determine a fall according to velocity, measured by the contraction or expansion of

the 3D bounding box. By explicitly using 3D bounding box, this method requires

no prior knowledge about environments, for example, the ground floor in all above

methods [Rougier et al., 2011a; Planinc and Kampel, 2012a,b; Zhang et al., 2012a,b].

Three Dimensional Motion History Images (3D-MHI) are proposed to compute Hu

moments for fall classification and confirmation by using SVM [Dubey et al., 2012].

In conclusion, Kinect has several advantages over RGB cameras. Firstly, Kinect

is able to work with and without ambient lights (at night) and is also insensitive to

both steady and sudden illumination changes. Secondly, it is capable of operating

in real time with 30 fps [Planinc and Kampel, 2012a; Mastorakis and Makris, 2012].

Finally and more importantly, it provides fast 3D information.

However, Kinect also exhibits some limitations. Firstly, it is sensitive to exter-

nal infrared source, i.e., the sun light. Secondly, the simultaneous use of multiple

Kinects to deal with occlusion is quite difficult. The depth map is degraded when the

fields of view of these Kinects are partially overlapped. It is because the structured

light sources of the Kinects interfere each other to produce so-called crosstalk phe-

nomenon. Recently by using external mechanical mechanism to vibrate structured

light of Kinects, good quality of depth map is attained without compromising the

frame rate [Butler et al., 2012]. Finally, Kinect is unable to sense depth information

beyond 4 meters.

Taking the trade-off into consideration, we prefer to multiview approaches since

RGB cameras can keep a weather eye on larger areas than Kinect does. Modern

computing devices also help realize multiview approaches in real-time. Adaptive

background subtraction techniques [Stauffer and Grimson, 2000; KaewTraKuPong

and Bowden, 2001; Zivkovic, 2004] can handle well steady illumination changes. We

argue that sudden illumination changes by changing the ambient light only happen

in few frames and do not affect seriously the fall detection performance. Moving cast

shadow can be removed effectively by using moving cast shadow removal techniques

like in [Cucchiara et al., 2001].
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2.3.4 The context of our proposed approaches

Our proposed approaches make use of 3D spatial features, i.e., the combination of

heights and occupied areas, extracted from 3D cuboids [Hung and Saito, 2012, 2013]

and HGCA [Hung et al., 2013] to classify human states into standing, sitting, and

lying. Falls are inferred by analyzing human state transitions. Although the idea

of approximating the person of interest by 3D cuboids or 3D bounding boxes in our

work [Hung and Saito, 2012, 2013] is similar in [Mastorakis and Makris, 2012], our

work and theirs were proposed concurrently. In addition, we are considering different

features, extracted from different camera settings, that is, two cameras whose fields

of view are relatively orthogonal, rather than with Kinect. In this section, we analyze

qualitatively our approaches against the backdrop of above related works.

Firstly, our approaches work well with oblique camera settings which are favorable

among vision-based fall detection techniques. Secondly, since 3D spatial features are

highly discriminative in classifying human states, our approaches can distinguish falls

in any direction, particularly the ones in parallel to cameras’ optical axis. Falls and

confounding events can also be recognized effectively. For example, although a fall and

a sit down brutally have fast body movements in common, people take more areas

after falling than after sitting down. Although a fall and a crouch on the ground

lead to high values of 3D-area-based features, the fall occurs quickly in contrast to a

slow manner of a crouch by the elderly. Moreover, the human state classification is

performed in our work by using machine learning techniques, rather than by hand-

designed thresholds in [Lee and Mihailidis, 2005; Anderson et al., 2006; Huang et al.,

2008; Charif and McKenna, 2004; Rougier et al., 2011a].

Thirdly, in contrast to methods using context information [Lee and Mihailidis,

2005; Charif and McKenna, 2004; Shoaib et al., 2010, 2011a], we do not make any as-

sumption of environments. That is we take falls in inactivity zones into consideration

since such falls happen very often with the elderly. They are prone to suffering from

dizziness and syncope when changing states from resting to active, and vice versa.

Fourthly, we realize that to recognize a fall, it is not necessary to reconstruct
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voxel person [Anderson et al., 2009] or 3D silhouettes in 3D world [Auvinet et al.,

2011] which are expensive computation. Good measures of our 3D spatial features

are capable of producing competitive performance and requiring lower computational

cost.

Finally, our approaches are able to adapt well with the environment changes since

we do not use camera calibration, manual registration or complicated site models. As

we mentioned in Sect. 1.2, maintaining calibration and registration, etc., of a cam-

era network during operation is a daunting task. But this task is a must otherwise

the performance will be deteriorated. In [Hung and Saito, 2012, 2013], we employ

LET in feature normalization but LET can be automatically initialized and updated

during operation [Hung et al., 2010, 2012]. The LET update procedure helps our

approach [Hung and Saito, 2012, 2013] adapt to unexpected and sudden environment

changes. If camera viewpoints are changed unexpectedly during operation, the ob-

tained foregrounds will cover major parts of the viewing window. Detecting such

case is straightforward for re-running the LET initialization. In our later work [Hung

et al., 2013], we only need to calibrate homography of the ground between views by

using the four-point algorithm [Hartley and Zisserman, 2004]. That is, we need four

landmark points on the ground which are visible in all views. One solution is to

design a projector or colorful light emitting sources to create virtual landmark points

on the ground for calibration when required. The homography re-calibration can

be done with least human intervention. However in our implementation, four-point

correspondences are selected manually.

In summary, we recap all reviewed methods and ours on Table 2.2, in terms of

features, classification, event inference, background subtraction algorithm, capability

of dealing with challenges, real-time performance, datasets and accuracy performance.

The table is adapted from their reported results.

In the next chapters, we will describe our proposed approaches.
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Chapter 3

Fall detection based on heights and

occupied areas

3.1 Approach overview

Our key idea in this method is to approximate the person of interest by 3D cuboids

from which we extract 3D spatial features for fall inference, i.e., the combination

of heights and occupied areas. The occupied areas are defined as the bottom areas

of the 3D cuboids. We realize that people in lying states occupy larger areas than

those in standing and sitting states. The heights of people in standing states are also

greater than that of people in sitting and lying states. Therefore, the combination

of heights and occupied areas is highly discriminative in distinguishing human states

into standing, sitting and lying. Intuitively, these three human states fall into three

separable regions of the proposed feature space, composing of heights and occupied

areas.

To facilitate the low-cost computation of 3D cuboid approximation, we configure

two cameras whose fields of view are relatively orthogonal as shown in Fig. 3-1.

2D bounding boxes of the person of interest extracted from two cameras serve as

two orthographic projections of the 3D cuboids. As a result, the reconstruction

of 3D cuboids is straightforward. The occupied areas are defined as the bottom

areas of the 3D cuboids and are determined by dot product of the widths of two
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Figure 3-1: Two cameras whose fields of view are relatively orthogonal. It is straight-
forward to observe that 2D bounding boxes extracted from two cameras serve as 2D
orthographic projections of the 3D cuboids of the person of interest.

2D bounding boxes. However, the reconstructed 3D cuboids are not view-invariant

across the viewing windows due to the camera perspective. Hence, we suggest using

Local Empirical Templates (LET) which were originally proposed for counting people

[Hung et al., 2010, 2012], to normalize the reconstructed 3D cuboids. Similarly, we

also divide the image (or the scene) into local image patches (or grid cells) and define

LET as the sizes of a standing person in local image patches. LET are used in our

work because of two following attractive properties. Firstly, LET in unknown scenes

can be easily extracted by an automatic manner. Even though LET extraction is

considered as the prerequisite initialization of our approach, we can perform it in an

automated way. In cases of unexpected changes in viewpoints, the initialization can

be redone or LET can be updated automatically without engineering intervention.

Secondly, by its nature, LET hold the perspective information that can be used to

normalize 3D cuboids, in turn, make them become view-invariant across the viewing

windows. The normalization is not only to cancel the camera perspective but also

to take the features of standing people as the baselines, making the feature space

composing of normalized heights and normalized occupied areas separable for three

human states, i.e., standing, sitting, and lying. In the last step, we perform time-

series analysis of human state transition, which is inspired by the state transition
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Figure 3-2: The flowchart of our proposed method

graph in [Cucchiara et al., 2005].

Fig. 3-2 shows the flowchart of our proposed approach. The two cameras are in

oblique viewpoint settings. The video sequences are processed by Gaussian Mixture

Models (GMM) [KaewTraKuPong and Bowden, 2001] to segment foregrounds for

detecting the person of interest. In the next sections, we describe the key modules of

our proposed approach in detail.

3.2 Local empirical templates

In this section, we provide more insights into LET, particularly how to obtain LET in

unknown scenes. LET are the foregrounds induced by a single person (in the standing

posture) in the local image patches. They are clustered upon their features of similar

silhouettes along trajectories because people are different in sizes and exhibit various

activities of upper limbs during walking. Each image patch has the most appropriate
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Figure 3-3: Local Empirical Templates. Sizes of the grid in this figure are for demon-
stration purpose. In practice, the number of cells is determined based on the view-
points and image resolution.

LET, resulting in tens or hundreds of empirical templates across the viewing window,

depending on the image resolution. Roughly speaking, the local empirical templates

can outline the foregrounds typically made by a single person at local patches. By

its nature, LET hold the perspective information of the scenes. Given a scene, the

empirical templates most appropriate for the scene should be determined when a

single person is spotted in the scene.

We divide the image of the scene into many cells or image patches, as shown in

Fig. 3-3. There is one LET reflecting the typical sizes of standing people in each cell.

Our observations in Fig. 3-3 are that the size of the person in the left image is small

since he is far from the camera. Meanwhile, his size in the right image is greater since

he is close to the camera. Evidently, LET hold the perspective information of the

scene.

Suppose that the scene is divided into 𝑀 × 𝑁 cells so that the sizes of people

are nearly constant in each cell. The number of cells depends on the resolution and

the viewpoints of cameras. It is reasonable to observe that one LET does not appear

fully in one cell but expand in several cells as shown in Fig. 3-3. Thus, we define the

LET for the cell (𝑖, 𝑗) as the following.

𝑇 (𝑖, 𝑗) = {𝑊𝑇 (𝑖, 𝑗), 𝐻𝑇 (𝑖, 𝑗)} (3.1)

𝑖 ∈ [1,𝑀 ], 𝑗 ∈ [1, 𝑁 ]
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Figure 3-4: The flowchart of LET extraction process

where, 𝑇 (𝑖, 𝑗) the LET whose head appears in the cell (𝑖, 𝑗), 𝑊𝑇 (𝑖, 𝑗) and 𝐻𝑇 (𝑖, 𝑗)

width and height of the LET, respectively.

The fall detection method is dedicated to a specific elderly person. LET should be

determined by capturing the sizes of the person of interest to improve the accuracy of

the method. By using LET, it is straightforward to customize our approach to various

elderly people. The privacy of users is also protected because LET are merely the

foregrounds. The customization can be done easily without engineering intervention

since LET can be extracted automatically for unknown scenes. In contrast to [Hung

et al., 2010, 2012] in which not only single people but also a group of people with

occlusion each other are taken into consideration, we are dealing with a single person

of interest. The automated LET extraction is more straightforward than in [Hung

et al., 2010, 2012]. We capture the foregrounds and trajectories of the person moving

around the scene. The sizes of foregrounds are extracted and kept in each cell’s buffer

for clustering to generate an appropriate LET for the cell. Since the cameras are in

oblique settings, LET in the cell (𝑖, 𝑗) and in its neighborhood cells should not be

much different. Otherwise, the foreground extraction seem to be erroneous due to

noise or occlusion by furniture. In such cases, we perform interpolation to get better

results. The flowchart of LET extraction process is shown in Fig. 3-4.

In cases of occurring unexpected changes in camera viewpoints, the initialization

can be redone automatically without engineering intervention. However, we argue

that the viewpoint only changes a little due to earthquake or human factors. As a

42



result, LET do not change much, then we can use the following formulae to update

LET.

𝐻𝑛𝑒𝑤
𝑇 (𝑖, 𝑗) = (1− 𝛼)𝐻𝑜𝑙𝑑

𝑇 (𝑖, 𝑗) + 𝛼𝐻(𝑖, 𝑗) (3.2)

𝑊 𝑛𝑒𝑤
𝑇 (𝑖, 𝑗) = (1− 𝛼)𝑊 𝑜𝑙𝑑

𝑇 (𝑖, 𝑗) + 𝛼𝑊 (𝑖, 𝑗) (3.3)

where 𝛼 the learning rate, {𝑊 𝑛𝑒𝑤
𝑇 (𝑖, 𝑗), 𝐻𝑛𝑒𝑤

𝑇 (𝑖, 𝑗)} the updated LET of the cell (𝑖, 𝑗),

{𝑊 𝑜𝑙𝑑
𝑇 (𝑖, 𝑗), 𝐻𝑜𝑙𝑑

𝑇 (𝑖, 𝑗)} the LET of the cell (𝑖, 𝑗) before updated, {𝑊 (𝑖, 𝑗), 𝐻(𝑖, 𝑗)} the

size of person observed at cell (𝑖, 𝑗).

3.3 People detection

Foreground, segmented by GMM [KaewTraKuPong and Bowden, 2001], is enhanced

by applying morphological operators such as open and close to eliminate pepper noise

before being labeled by connected component algorithms (CCA). Isolated foreground

regions labeled by CCA are so-called blobs. After these preprocessing steps, a pool

of 𝑁 blobs {𝐵1, 𝐵2, ..., 𝐵𝑁} is created for the algorithm of people detection.

We search in the pool of blobs to find a head candidate and then group blobs in the

neighborhood of the head candidate to form a person. The common labeling order of

CCA is from top to bottom and subsequently from left to right of images. People are

supposed to be in upright poses. Consequently, the blob with smallest label is likely

the head candidate. LET of the cell in which the head candidate appears provides the

tentative size of detected person {𝑊𝑇 , 𝐻𝑇} or the tentative area in which the person

appears. All blobs whose centroids satisfy the spatial constraint posed by LET likely

belong to the person. They are grouped together for accumulating their densities and

extracting the boundaries. We take the ratio of the total density to the size of the

appropriate LET by the following formula in [Hung et al., 2010].

𝐷 =
𝑇𝑜𝑡𝑎𝑙_𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑊𝑇 ×𝐻𝑇

(3.4)
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We confirm a detection if the density ratio exceeds a particular threshold. Please

refer to Table 1 in the study of [Hung et al., 2010] for selecting the threshold of 0.3.

We update the pool of blobs by removing blobs of detected people. In the next search,

the head candidate is associated with the blob with the smallest label remaining in

the pool. The process of searching for head candidates and grouping blobs in the

neighborhood of head candidates is continued until there is no blob remaining in the

pool. The algorithm of people detection is summarized as pseudo code in Fig. 3-5.

3.4 Features computation

Since we are using two cameras whose fields of view are relatively orthogonal as

shown in Fig. 3-1, the 2D bounding boxes extracted from the two cameras serve

as two orthographic projections of the 3D cuboids. Thus, occupied areas which are

defined as the bottom areas of the 3D cuboids, can be determined by the dot product

of the widths of the two 2D bounding boxes. Suppose that the person appears in the

cell (𝑚,𝑛) in the first view with the size of {𝑊1(𝑚,𝑛), 𝐻1(𝑚,𝑛)}. We also observe

this person in the cell (𝑝, 𝑞) in the second view with the size of {𝑊2(𝑝, 𝑞), 𝐻2(𝑝, 𝑞)}.

The occupied area is estimated as the following.

𝑂𝐴(𝑚,𝑛, 𝑝, 𝑞) = 𝑊1(𝑚,𝑛)×𝑊2(𝑝, 𝑞) (3.5)

However, the estimated occupied areas by Eq. 3.5 vary across the viewing window

because of the camera perspective. We normalize it by using an appropriate LET to

make the feature view-invariant across the viewing window. We extract the LET

𝑇1(𝑚,𝑛) = {𝑊𝑇1(𝑚,𝑛), 𝐻𝑇1(𝑚,𝑛)} in the cell (𝑚,𝑛) in the first view and 𝑇2(𝑝, 𝑞) =

{𝑊𝑇2(𝑝, 𝑞), 𝐻𝑇2(𝑝, 𝑞)} in the cell (𝑝, 𝑞) in the second view. The occupied area of LET

can be estimated by the following formula.

𝑂𝐴𝐿𝐸𝑇 (𝑚,𝑛, 𝑝, 𝑞) = 𝑊𝑇1(𝑚,𝑛)×𝑊𝑇2(𝑝, 𝑞) (3.6)

We take the ratio of the occupied area of detected person to that of an appro-
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LOOP
IF 𝑁 > 0

𝐻𝑒𝑎𝑑_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← Blob with smallest index = 𝐵𝑠𝑖

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐵𝑠𝑖)
𝑃 ← 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐵𝑠𝑖) = (𝑚,𝑛)
𝐿𝐸𝑇 ← 𝑇 (𝑚,𝑛) = {𝑊𝑇 , 𝐻𝑇}
𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡← (𝑚,𝑛,𝑊𝑇 , 𝐻𝑇 )
IF 𝑁 > 1

𝑠𝑢𝑚← 0
LOOP in 𝑁 blobs

IF 𝐵𝑖 satisfies 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
Select 𝐵𝑖 for grouping
Update the boundaries of detected person
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐵𝑖)
Remove 𝐵𝑖 from the pool of blobs
𝑠𝑢𝑚← 𝑠𝑢𝑚 + 1

END
END LOOP
𝑁 ← 𝑁 − 𝑠𝑢𝑚
Update the pool of blobs

END
Take density ratio 𝐷 by Eq. 3.4
IF 𝐷 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Confirm ’A person is detected’
Mark a rectangular box for detected person

END
ELSE

Exit LOOP
END

END

Figure 3-5: The algorithm of detecting people from the pool of blobs
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priate LET for perspective normalization, leading to a promising feature, so-called

normalized occupied area 𝑁𝑂𝐴.

𝑁𝑂𝐴 =
𝑂𝐴(𝑚,𝑛, 𝑝, 𝑞)

𝑂𝐴𝐿𝐸𝑇 (𝑚,𝑛, 𝑝, 𝑞)
=

𝑊1(𝑚,𝑛)×𝑊2(𝑝, 𝑞)

𝑊𝑇1(𝑚,𝑛)×𝑊𝑇2(𝑝, 𝑞)
(3.7)

It is noted that LET are defined as the sizes of a standing person appearing in

the vicinity of detected person. The normalization in Eq. 3.7 not only cancels the

perspective but also takes the features of standing people as the baselines. In other

words, the normalization measures the distance between the features of detected

people and the appropriate LET (in standing states). 𝑁𝑂𝐴 is both lower and upper

bounded and does not depend on the cell index. The cell-index notation of 𝑁𝑂𝐴

in Eq. 3.7 are removed for simplicity. 𝑁𝑂𝐴 is also highly relevant to the three

typical states because of the feature-state relationship. A person lying on the ground

occupies a larger area than standing and sitting. The occupied area in sitting state

is, in general, larger than that in standing states.

𝑁𝑂𝐴𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔 < 𝑁𝑂𝐴𝑆𝑖𝑡𝑡𝑖𝑛𝑔 < 𝑁𝑂𝐴𝐿𝑦𝑖𝑛𝑔 (3.8)

However in practice, poor foreground segmentation, occlusion, and human body

upper limb activities, might cause the estimation of 𝑁𝑂𝐴 in standing and sitting

states by Eq. 3.7 to be quite similar. Fortunately, the humans’ heights are signifi-

cantly different and can be used to discriminate standing states from sitting and lying

states. In contrast to the estimation of 2D bounding boxes’ widths, the estimated

heights are prone to be erroneous caused by occlusion by furniture. However, we

argue that people are occluded in one view but likely visible in the other one. The

heights of two 2D bounding boxes should be fused for an enhanced result. In our

work, we simply use maximum rule in the fusion. We also normalize the heights

by an appropriate LET for perspective cancellation. The estimation of normalized

heights is summed up by the following formulae.
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Figure 3-6: Time-series human state transition

𝑁𝐻1 =
𝐻1(𝑚,𝑛)

𝐻𝑇1(𝑚,𝑛)

𝑁𝐻2 =
𝐻2(𝑝, 𝑞)

𝐻𝑇2(𝑝, 𝑞)

𝑁𝐻 = 𝑀𝑎𝑥(𝑁𝐻1, 𝑁𝐻2) (3.9)

In summary, we have the feature space composing of normalized heights and

normalized occupied areas that is separable for three typical states of humans. This

property is discussed and demonstrated in Section 3.6.1. In the next section, we

present how fall events are discriminated from usual ones, given a sequence of human

states.

3.5 Fall inference

It is impossible to recognize human actions in a single frame or few frames since

actions have temporal structures. Hence to make the fall event inference, we eye

on the states of the elderly person in a period of time. In this paper, three typical

states Standing (ST), Sitting (SI) and Lying (LY) are taken into consideration. A

time-series analysis of human state transition shown in Fig. 3-6 that is inspired by

the state transition graph in the study of [Cucchiara et al., 2005] is adopted. Table
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3.1 sums up all actions, which can be inferred from the time-series analysis of human

state transition. In general, all state transitions are allowed. However, for the specific

application dedicated to the elderly, the direct transition from LY to ST states is

quite improbable. The elderly often make the transitions in a gentle way from LY to

SI and then to ST states.

Suppose that we keep states of the monitored elderly person in 𝑁 frames for

making event inference in a probabilistic manner. The instant state classified in each

frame is not reliable for detecting state transitions. Therefore, we suggest using stable

states and unstable states, instead of instant states. Only one out of three states, i.e.,

ST, SI, and LY, appearing in the window of 𝑁 frames with the highest probability,

is the stable state. The others are defined as unstable states.

𝑆𝑡𝑎𝑏𝑙𝑒_𝑆𝑡𝑎𝑡𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥{𝑃 (𝑥);𝑆𝑇, 𝑆𝐼, 𝐿𝑌 } (3.10)

where, 𝑃 (𝑥) the probability of observing the state x in the window of 𝑁 frames,

evaluated by frequentists paradigm, with 𝑥 ∈ {𝑆𝑇, 𝑆𝐼, 𝐿𝑌 }. Direct transitions be-

tween two stable states are not allowed. A state transition must undergo an unstable

state before reaching its corresponding stable state, as illustrated in Fig. 3-6. When

a state transition is in progress, the probability of observing the current stable state

gradually decreases. Meanwhile, the probability of observing one of the other unsta-

ble states slightly increases. The state transition is confirmed upon the generation of

a new stable state by Eq. 3.10.

In this work, we are interested in detecting fall incidents rather than other events.

Table 3.1: Actions can be inferred from the time-series analysis of human state tran-
sition

Next States
Current States ST SI LY

ST Standing or Walking Sitting down Falling

SI Standing up Sitting Lying down
LY NA Getting up Lying

48



START
Update the pool of N states

Delete the oldest state
Add the latest state

𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥{𝑃 (𝑥);𝑆𝑇, 𝑆𝐼, 𝐿𝑌 }
IF (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒 == 𝑆𝑇 )&(𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒 == 𝐿𝑌 )

A Fall probably happened
𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑡𝑟𝑢𝑒
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒

END
IF 𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝑡𝑟𝑢𝑒

IF (𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒 == 𝐿𝑌 )&(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒 == 𝐿𝑌 )
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

END
END
IF 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Confirm the Fall
𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑓𝑎𝑙𝑠𝑒

END
IF Other state transitions happen

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑏𝑙𝑒_𝑠𝑡𝑎𝑡𝑒
END

END

Figure 3-7: The time-series analysis of human state transition

In consideration of the definition and characteristics of a fall as discussed in Section

2.1, a fall event can be inferred by a direct transition from standing to lying states and

subsequently an observation of staying in the lying state in some moments. Therefore,

we dedicate a special attention to the aftermath of such state transitions to confirm

a fall by verifying the duration of staying in the lying state after the state transition

happened. The time-series analysis of human state transition to make inference of

fall incidents is summarized as pseudo code in Fig. 3-7.
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3.6 Performance evaluation

3.6.1 Linearly separable feature space

It is stated in Section 3.1 that the proposed feature space is separable for three typical

states of humans. This section will discuss, demonstrate this statement, and find the

decision boundaries for the state classification.

Since LET are defined as the sizes of standing people in local image patches, the

normalization process takes the features of standing people as the baselines. It creates

the distance measures between the features of detected people and the appropriate

LET (in standing states). Thus, normalized heights, 𝑁𝐻, of standing people should

be approximate 1. For people in sitting and lying states, normalized heights are much

smaller than 1. It is possible to distinguish standing states from sitting and lying

states only based on the feature of normalized height. To discriminate lying states

from sitting states, occupied area is a strong discriminative feature. Apparently, a

person in lying states occupies a larger area than in sitting states. As a result, there

exist two linear decision boundaries separating the feature space for three states of

standing, sitting, and lying.

To demonstrate our discussion and to find the decision boundaries, we use the

ninth scenario of the dataset for training purpose. In this scenario, the man ap-

proaches to the chair after entering the scene. He sits on the chair for a while and

stands up before falling to the ground. The annotation of this scenario provides

the state label in each frame. We calculate the feature vectors for every frame in

combination with the corresponding state labels to create the training data.

Both the training data sketched in the feature space in Fig. 3-8d and the above

discussion show that it can be linearly separated. Therefore in this paper, two-

class support vector machines (SVM) are adopted to find the decision boundaries for

separating the three states. We make three following experiments in training SVM to

find the decision boundaries. Firstly, standing states are separated from sitting states

by a nearly vertical line in Fig. 3-8a. Secondly, we combine sitting and lying states

as one class. The second class of SVM is the standing state. The decision boundary
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(a) Discriminating ST state from SI state (b) Discriminating ST state from SI and LY states

(c) Discriminating SI state from LY state (d) Feature Space with modified decision boundaries

(e) Time-series evolution of normalized height (f) Time-series evolution of normalized occupied area

Figure 3-8: Feature space of the ninth scenario with decision boundaries found by
support vector machines
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separating the two classes is given in Fig. 3-8b. Thirdly, the decision boundary for

sitting and lying states is found in Fig. 3-8c as a nearly horizontal line.

The results of experiments in training SVM quite fit to our above discussion,

except the one in Fig. 3-8b. However, it is clear to see some outliers in the training

data of lying states, impairing the obtained decision boundary in Fig. 3-8b. The

decision boundary in Fig. 3-8a indicates that normalized heights of people in sitting

states cannot be greater than 0.7. This observation is also true for normalized heights

of people in lying states. However, the decision boundary in Fig. 3-8b creates a region

in which normalized heights of people in both sitting and lying states are well greater

than 0.7. It is not reasonable in practice since the heights of people in sitting and

lying states must be much smaller than in standing states. Therefore, the decision

boundary for separating standing states from sitting and lying states in Fig. 3-8b

should be a nearly vertical line, like the one in Fig. 3-8a. We make the modification

for the obtained decision boundaries based on our prior knowledge of humans’ heights,

as shown in Fig. 3-8d. It leads to the generation of the thresholds for normalized

heights and occupied areas, being 0.65 and 2, respectively. Fig. 3-8e and 3-8f show

the time-series evolution of normalized heights and normalized occupied areas with

obtained thresholds in the ninth scenario, respectively. In Fig. 3-9, we provide the

visual results of state classification of the first and third scenarios in multiple camera

fall dataset and the time-series evolution of each feature to further confirm the validity

of the obtained thresholds.

3.6.2 Performance evaluation and comparison

Our method detects 23 out of 24 fall incidents in the whole dataset. It only fails in

the 22nd scenario in which the person is sitting on a chair and suddenly slips to the

floor. Our method recognizes it as the lie-down event instead of a fall incident. No

normal activity detected as a fall is reported in our experiments. The sensitivity and

specificity are 95.8 % and 100 %, respectively.

We compare the performance between our method and two state-of-the-art meth-

ods [Rougier et al., 2007b, 2011b; Auvinet et al., 2011], tested on the same dataset, in
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(a) (b)

(c) (d)

(e) The 1st scenario (f) The 3rd scenario

Figure 3-9: State Classification and the time-series evolution of normalized height
and occupied area of the 1st and 3rd scenarios
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(a) Standing state

(b) Sitting state

(c) Lying state

Figure 3-10: The results of human state classification in color image of both views.
The Lying state in the last row is detected as a fall by the time-series analysis of
human state transition.
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Table 3.2. It is noted that the results of the method proposed by [Auvinet et al., 2011]

are reported with a network of three cameras. The sensitivity can be boosted to 100

% if a network of more than four cameras is employed. However, both methods are

high computational costs. In [Rougier et al., 2011b], the computational time for only

shape matching is about 200 ms, resulting in an average frame rate of 5 fps. [Auvinet

et al., 2011] presents three implementations of their method, i.e., CPU only, CPU for

segmentation and GPU for projection, and GPU for both. The fastest performance

by using GPU only, is 63 ms per one frame. It means the average frame rate is about

15 or 16 fps. The slowest performance by using CPU only, is 1140 ms per one frame.

Average frame rate is less than 1 fps. Meanwhile, the early implementation of our

approach reported in [Hung and Saito, 2013] is about 15 fps. However, in this imple-

mentation the input image sequences are resized to a half of the original, i.e., 360x240

to perform background subtraction. The resulting foreground images are resized to

the original size of the input image sequences. We argue that the foregrounds do

not change much by the scaling transformation since foreground images are binary.

In this dissertation, we integrate the support of OpenMP to exploit more capability

of CPU. Our approach is run at about 25 fps when the input image sequences are

resized to a half and at around 15 fps without resizing the input image sequences1.

However, the comparison is still quite unfair because of using different hardware and

different background subtraction algorithms (see Table 2.2).

For a fairer comparison, we suggest measuring the processing time after having

foreground images because all methods take them as input to extract features and

perform recognition. The average processing time for feature extraction and fall infer-

ence of our approach is about 11 ms per one frame (running with original resolution

of input image sequences. i.e., 720x480).

For our in-house video samples, our approach detects two fall actions and two

sitting actions correctly. The visual result images are demonstrated in Fig. 3-11.

1The implementation in this dissertation is done by a notebook PC with chipset Intel core i7
3820QM, 16GB Ram
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Table 3.2: Performance comparison between our method and two state-of-the-art
methods [Rougier et al., 2007b, 2011b; Auvinet et al., 2011], tested on the same
dataset.

Sensitivity (Se) Specificity (Sp)
Our method 95.8 % 100 %

[Auvinet et al., 2011] 80.6 % 100 %
[Rougier et al., 2007b, 2011b] 95.4 % 95.8 %

3.7 Discussions

In this section, false negative cases of this approach along with issues affecting its

performance, i.e., lighting conditions, and occlusion by furniture are discusses.

1. False negative cases

Our proposed method only can detect a state transition from standing to lying

as a fall. We argue that when the elderly want to lie down, for example, on a

bed or a sofa, they will gradually sit down and then lie down. However, sit-

to-stand-transfer fall in which the person changes states from sitting to lying

is not considered or is detected as a normal transition by our method. This

falling type happens quite often, in particular, when the person comes out of

resting states in a bed or a sofa. Due to dizziness or syncope, the action of

standing up is not completed or even not started. The person falls down on the

ground rather than standing up. The reason of failure is by using height and

occupied area, we can distinguish lying from standing and sitting states. But

the information of where the person lie either on the ground after falls or on a

sofa in normal situations is unknown. As a consequence, sit-to-stand-transfer

falls are recognized as normal transitions like our result in the 22𝑛𝑑 scenario.

2. Lighting conditions

Various background subtraction algorithms, i.e., basic motion detection [Benezeth

et al., 2010], One-Gaussian model [Wren et al., 1997], Minimum, Maximum, and

Maximum Interframe Difference [Haritaoglu et al., 2000], GMM [Stauffer and
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(a) Standing (View 1) (b) Standing (View 2)

(c) Siting (View 1) (d) Siting (View 2)

(e) Falling (View 1) (f) Falling (View 2)

Figure 3-11: Visual results of our approach on the in-house video sample
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Grimson, 2000; KaewTraKuPong and Bowden, 2001; Zivkovic, 2004], Kernel

Density Estimation [Elgammal et al., 2000], and Codebook model [Kim et al.,

2005] have been proposed in the literature. They are evaluated on a wide range

of real, synthetic, and semisynthetic video sequences. Their performances are

scored based on the robustness to various kinds of videos, i.e., noise-free static

background, multimodal background, and noisy videos, the memory require-

ments, and the computational costs. The comparative study by [Benezeth et al.,

2010] figures out that adaptive GMM not only produces good accuracy on both

three types of videos but also requires less memory requirements and computa-

tional costs than other methods.

In our implementation, we do not use additional shadow removal algorithms

along with the adaptive GMM [KaewTraKuPong and Bowden, 2001]. Small

shadow and reflection still happen in our experiments but do not affect the

performance of our approach. We argue that empirically there is almost no

shadow and reflection for people sitting and lying on a sofa and even for those

lying on the ground. Shadow and reflection happen and affect the accuracy of

obtaining foreground of standing people. As a result, it may make the height of

the person larger. Regardless of inaccurate estimated occupied area, the height

of the person still well larger than the threshold of 0.65. The human state

classification result is still correct, as the standing state.

3. Occlusion by furniture

Occlusion by furniture2 is very challenging because it happens frequently. It

affects severely the accuracy of extracting features since the moving foreground

of the person is not attained completely. We argue that the upper body parts

are rarely occluded by the furniture. As a result, occupied area computed by

Eq. 3.7 seems not to be affected by the occlusion. Although, the height of the

person is severely shortened during occlusion, by using Eq. 3.9 the occlusion

problem can be dealt by feature fusion. The person is occluded in one view but

2As stated in section 1.2, our proposed solutions target to single-user application. Thus, occlusion
between human is not considered.
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is likely visible in the other. In the experiments on a dataset containing limited

challenges of the real world, using two cameras seems to sufficient. Eventually,

up to four cameras3 can be set up to overcome the occlusion problem at the

expense of computational cost. Since the computational cost of adaptive GMM

is much more than that of people detection, feature computation and event

detection in our fall detection pipeline (see Fig. 3-2), the use of GPU can be

easily realized the real-time performance.

3.8 Conclusions

We have presented a novel method of fall detection that plays as a central part

of iPERS for aiding the elderly living alone. The novelty lies in the feature space

composing of humans’ heights and occupied areas to discriminate three typical states

of humans, i.e. standing, sitting and lying. It is the fact that the heights of people

in standing states are greater than in sitting and lying states. Moreover, People in

lying states occupy a larger area than in sitting and standing states. Therefore, the

proposed feature space is linearly separable for these three states. Fall incidents can

be inferred from the time-series analysis of human state transition.

In implementation, we propose using two orthogonal views: (1) to simplify feature

computation, and (2) to improve the reliability of computing the feature vector based

on sizes of silhouettes in the presence of occlusion. People are partially occluded in

one view but visible in the other one. The feature vector is normalized by the size

of an appropriate LET to cancel the camera perspective and to realize the linear

separability of the proposed feature space.

In performance evaluation, a good method of fall detection is associated with high

sensitivity and specificity. We choose multiple camera fall dataset that only includes

simulated falls by an experienced clinician in the healthcare for the elderly, to test

our method for fair comparison with existing methods. The results of our method

reach to 95.8 % of sensitivity and 100 % of specificity. It outperforms two state-of-

3Because of the relatively-orthogonal-views constraint
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the-art methods [Rougier et al., 2007b, 2011b; Auvinet et al., 2011], tested on the

same dataset. However, the comparison is merely based on the results tested on one

dataset containing limited challenges of the real world. We need to further evaluate

the proposed approach on the real falls of the real elderly in real home environments,

in order to confirm the validity of this approach.
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Chapter 4

Fall detection based on

human-ground contact areas

In chapter 3, we describe an approach to fall detection based on 3D spatial features,

extracted from 3D cuboids of the person of interest, that is the combination of heights

and occupied areas. This method can distinguish lying from standing and sitting

states. But the information of lying states such as the person lying either on the

ground after falls or on a sofa in resting states is unknown. As a consequence, this

method only can detect a state transition from standing to lying as a fall. Sit-to-

stand-transfer falling type in which the person changes from sitting to lying states is

not considered. Therefore in this chapter, we propose another 3D spatial feature to

overcome the limitation of our solution in chapter 3. We argue that people always

make a little contact with the ground during usual activities, mainly by the feet but

often lie completely on the ground after suffering from accidental falls. We come

up with another good 3D spatial feature for fall detection, so-called Human-Ground

Contact Areas (HGCA). In this chapter, we describe how to estimate HGCA, classify

HGCA into typical human states, and recognize falls based on given sequences of

human states and HGCA.
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Figure 4-1: The flowchart of our proposed method

4.1 Approach overview

In multiple-view geometry [Hartley and Zisserman, 2004], any two images of a same

planar surface (assuming a pinhole camera model) are related by a planar projective

transformation, so-called homography. This geometrical relation was successfully

applied to tracking people in multiple views [Khan and Shah, 2006]. In our work,

we also use this geometrical relation to develop a low-cost and effective scheme of

estimating HGCA for fall detection. Fig. 4-1 illustrates the flowchart of our proposed

approach by using a pair of cameras. It is straightforward to extend our approach to

a network containing more than two cameras by fusing detection results from pairs

of cameras.

The homography of the ground plane between different views implies that only

foreground pixels of people in contact with the ground plane are consistently projected
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to their foreground regions in different views. Therefore, we project the foreground

of the person of interest from one view to another by using the planar homography.

There exist overlaps between the projected foregrounds and the foreground of the

person in the latter view which indicate the contact areas between people and the

ground. We measure the overlaps as HGCA. As our above argument, HGCA has close

a close relationship with typical human states, i.e., standing, sitting, and lying. We

generalize a threshold of HGCA to separate lying states from the others from view-

invariant distributions of HGCA with respect to human states. We propose using

human state simulation in which camera viewpoints are freely changed to capture

3D human models in various states. Hundreds of images are generated from the

simulation as training data to build these distributions.

In indoor surveillance, optical lenses are used to capture the monitored space as

widely as possible. Consequently, the images are highly distorted. It is necessary to

undistort images since the homography is only held under a pinhole camera model

[Hartley and Zisserman, 2004]. The cameras are calibrated to estimate intrinsic pa-

rameters including the focal length f = (𝑓𝑥, 𝑓𝑦), the optical center c = (𝑐𝑥, 𝑐𝑦), the

skew coefficient 𝛼, and the distortion coefficients k = (𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2) for using in the

image undistortion. In our implementation, these intrinsic parameters are obtained

from the dataset [Auvinet et al., 2010].

The homography matrix 𝐻 of the ground plane between the two cameras that

will be presented in details in Section 4.2.1 is estimated by simply specifying four

point correspondences [Hartley and Zisserman, 2004]. It is noted that the four point

correspondences must be in undistorted images. These are the initial setup of our

proposed method that can be done offline because of using stationary cameras in

surveillance.

Foregrounds are segmented and enhanced by morphological operators before la-

beled by connected components algorithm, resulting in foreground blobs. These blobs

are clustered to form foregrounds of people which are mapped between views by the

homography of the ground to measure HGCA for event detection. In the next sec-

tion, we introduce how to measure HGCA based on foreground projection by using
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the homography.

4.2 HGCA Computation

4.2.1 Projecting foregrounds by using planar homography

To have the insight into the planar homography, let recall a proposition in multiple-

view geometry.

Proposition 1 [Faugeras and Lustman, 1988] Let 𝑝 be a 3D point of a plane Π,

the projections 𝑝1 = (𝑥1, 𝑦1, 1) and 𝑝2 = (𝑥2, 𝑦2, 1) of 𝑝 (in homogeneous coordinates)

on the two image planes are related by a homography 𝐻 of the plane Π between the

two views.

𝑝1 = 𝐻𝑝2, (4.1)

where 𝐻 is a nonsingular 3× 3 matrix. Let 𝐻3 denote the third row of 𝐻. The point

𝑝1 in the first image is mapped to 𝑝𝑚 in the second one by the homography 𝐻 [Khan

and Shah, 2006].

𝑝𝑚 = (𝑥𝑚, 𝑦𝑚, 1) =
𝐻𝑝1
𝐻3𝑝1

. (4.2)

The Proposition 1 implies that if the point 𝑝 is on the plane Π, 𝑝𝑚 and 𝑝2 are

coincident. But if the point 𝑝 is not on the plane Π, there exists a misalignment

between 𝑝𝑚 and 𝑝2, reflecting the plane parallax. These observations can be elabo-

rated in Fig. 4-2. It is supposed that the ground plane is visible from the stationary

cameras. People always make contact with the ground plane, mainly by their feet.

Firstly, according to Proposition 1, only the projections of the feet on the image

planes are related by the homography of the ground plane between the two views.

This relationship is illustrated by the orange rays in Fig. 4-2a. Secondly, to clearly

see the effect of the plane parallax, let consider the images of people’s leg that is

not on the ground plane. We assume that the projections of the leg on the image

planes are known (inside the white regions in Fig. 4-2a). We project the ray from
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(a) Standing people (b) Lying people

Figure 4-2: The illustration of using the planar homography of the ground (plane Π)
between a pair of views for fall detection

the principal point of camera 1, 𝑂1, to the leg on the image plane 1 until intersect-

ing with the ground plane at so-called the piercing point. From this piercing point,

we make another projection to the principal point of camera 2, 𝑂2, intersecting the

image plane 2 at a point outside the white region (see the blue ray in Fig. 4-2a). It

is the mapped point of the leg on the image plane 1 into the image plane 2 by the

homography of the ground plane but it is not coincident with the leg on the image

plane 2.

We exploit these key observations to discriminate lying states from standing and

sitting states for fall detection. If people are standing or sitting, making contact

with the ground by feet, overlap regions between foreground in the second view and

projected foreground happen at feet location. But when people lie on the ground,

overlap regions cover almost whole body (see Fig. 4-2). The overlap regions between

foregrounds are measured as HGCA.

4.2.2 HGCA Computation

Let Ψ1 and Ψ2 be sets of foreground in the first and second views, respectively. Let

Ψ𝑚 denote set of mapped foregrounds by homography 𝐻 from the first to the second

views and let 𝑋 be human states, i.e., standing, sitting, kneeling, and lying, etc. We
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Figure 4-3: Simulation setup in Google Sketchup. Colorful dots are landmarks for
homography calibration

suppose Ψ1 = Ψ𝑚 = {𝑛} pixels, and Ψ𝑚 ∩ Ψ2 = {𝑚 | 𝑚 ≤ 𝑛}. HGCA is a function

of 𝑋 and is evaluated by

𝐻𝐺𝐶𝐴(𝑋) =
Ψ𝑚 ∩Ψ2

Ψ𝑚

=
𝑚

𝑛
, (4.3)

Equation 4.3 indicates how many percentages the projected foreground is over-

lapped by the foreground of the person in the second view. Therefore, the estimation

of HGCA by Eq. 4.3 is view-invariant across the viewing window.

4.3 Human state simulation and classification

To generalize a threshold of HGCA to separate lying states from the others, training

data is needed to build view-invariant distributions of HGCA with respect to human

states. This section proposes a human state simulation by using Google Sketchup,

as shown in Fig. 4-3, to generate training images. We consider three typical sitting

poses, i.e. sitting on a chair and kneeling on the ground by one or two legs, and

three lying poses, corresponding to three typical falls, i.e. falling forward, backward

and sidewards. A virtual camera is positioned and freely changed on surface of a
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hemisphere to capture images of 3D human models in various states and poses. The

camera viewpoint is modeled in spherical coordinate system by

𝑃𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑃 (𝑟, 𝛼, 𝜃)

𝑟 ≈ 𝑐𝑜𝑛𝑠𝑡 (4.4)

𝛼 = [0, 180𝑜], 𝛿𝛼 = 30𝑜

𝜃 = [30𝑜, 75𝑜], 𝛿𝜃 = 15𝑜

where, 𝑟 the radial distance, 𝛼 the azimuth angle, and 𝜃 the inclination angle. The

angles are measured in degrees. The inclination angle greater than 75𝑜 is not taken

into account since the camera viewpoints are near the top view which is not appropri-

ate for detecting falls. In addition, indoor surveillance cameras are often positioned

obliquely near the ceiling. The spatial constraints make variations of inclination an-

gles in the range of [30, 75].

In simulation, both azimuth and inclination angles are changed by steps 𝛿𝛼 and

𝛿𝜃 in Eq. 4.4 to generate 196 training images. Fig. 4-4 illustrates some generated

images. Homography of the ground between these views are automatically calibrated

by matching colorful dots on the ground. We project foregrounds between every pair

of different views (𝛼1, 𝜃1) and (𝛼2, 𝜃2) in the training set with ∆𝛼 = |𝛼1 − 𝛼2| > 0

or ∆𝜃 = |𝜃1 − 𝜃2| > 0 to estimate HGCA for building distributions. Our aim is to

generalize a threshold of HGCA to separate lying states from the others regardless

of viewpoint variations. It is noted that human models in simulation are stationary

and cameras are moving. Both ∆𝛼 and ∆𝜃 are determined by positions of cameras.

But in reality, cameras are fixed and people are moving. When people travel in the

fields of views of a fixed-camera pair, both azimuth and inclination angles (∆𝛼,∆𝜃)

vary freely which are determined by positions of both people and cameras, not by the

positions of cameras only.

We realize from the simulation that measuring HGCA by using Eq. 4.3 is usually

inaccurate for a pair of viewpoints with ∆𝛼 < 90𝑜 as shown in Fig. 4-4 since overlap-
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(a) All viewpoints (b) All viewpoints except Δ𝛼 = 30𝑜

Figure 4-5: Histograms and distribution fits of HGCA with respect to human states.
Exponential and normal distributions fits are for standing, sitting and lying states,
respectively.

ping regions usually cover body parts which are not in contact with the ground. This

phenomenon does not happen for a pair of viewpoints with ∆𝛼 ≥ 90𝑜. Thus, using a

pair of cameras positioned at least 90𝑜 apart (in terms of azimuth angles) will lead to

fewer situations occurring ∆𝛼 < 90𝑜 when people travel in their fields of views. The

constraints of indoor spaces and camera placement make some viewpoints frequently

happen and some rarely happen. Thus, viewpoints can be weighted unequally to

adapt to specific contexts. Fig. 4-5b show distributions of HGCA excluding view-

points of ∆𝛼 = 30𝑜. However, these distributions in Fig. 4-5a and 4-5b are quite

similar. In this paper, we use the distributions in Fig. 4-5a in experiments for various

camera settings.

To find a threshold to separate lying states from standing and sitting states, we

build exponential distribution fits of HGCA with respect to standing and sitting

states. We also build normal distribution fit of HGCA with respect to lying states.

The threshold is found at the intersection of two distribution fits of HGCA with

respect to sitting and lying states.
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Figure 4-6: Typical fall characteristics based on HGCA

4.4 Framework for fall inference

The fall definition in Section 2.1 leads to a typical fall characteristics based on HGCA,

as shown in Fig. 4-6. When a fall happens at 𝑇𝑓𝑎𝑙𝑙, HGCA increases by ∆𝐻𝐺𝐶𝐴

to make a state transition from Usual states composing of Standing, Sitting, and

Kneeling to Lying states in a so-called falling period of ∆𝑇1. Subsequently, the

fallen person is relatively immobile in a period of ∆𝑇2. In this section, we present

a framework for fall inference based on the fall definition that can be broken into

necessary and sufficient conditions.

Necessary condition is the change of human postures from upright to lengthened.

In our framework, the change of human postures is described by a state transition

from Usual states to Lying states. Such state transitions are caused not only by fall

events but also by lying-down events (people lying on a sofa or a bed). Fall events are

associated with a fast movement of human body. In contrast, lying-down events are

performed in a leisure manner by the elderly. Therefore to claim a state transition as

a fall event, we must verify the following sufficient conditions.

Sufficient conditions compose of a fast pace of changing states and an observation

of Lying states in a sufficient duration after the state transition. Without satisfying

both sufficient conditions, the state transition is likely not caused by a fall event. The

proposed framework for fall inference is described in the module of Event Detection
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in Fig. 4-1.

To this end, we keep both human states 𝑋 and HGCA in the buffer of N frames.

Upon a state transition at 𝑇𝑡𝑟𝑎𝑛𝑠, we start verifying both sufficient conditions to

whether claim a fall event. Fast pace of changing states is characterized by ∆𝑇1 and

∆𝐻𝐺𝐶𝐴 which are evaluated by

∆𝐻𝐺𝐶𝐴 = 𝐻𝐺𝐶𝐴[𝑇𝑡𝑟𝑎𝑛𝑠]−𝐻𝐺𝐶𝐴[𝑇𝑓𝑎𝑙𝑙] (4.5)

∆𝑇1 = 𝑇𝑡𝑟𝑎𝑛𝑠 − 𝑇𝑓𝑎𝑙𝑙

where ∆𝐻𝐺𝐶𝐴 the increment of HGCA in falling period. From distributions in Fig.

4-5, ∆𝐻𝐺𝐶𝐴 should be at least 0.3 to prevent from trivial state transitions, likely

caused by noise.

∆𝐻𝐺𝐶𝐴 ≥ 0.3 = 𝑀𝑖𝑛Δ𝐻𝐺𝐶𝐴 (4.6)

Combine Eqs. 4.5 and 4.6,

𝐻𝐺𝐶𝐴[𝑇𝑓𝑎𝑙𝑙] ≤ 𝐻𝐺𝐶𝐴[𝑇𝑡𝑟𝑎𝑛𝑠]−𝑀𝑖𝑛Δ𝐻𝐺𝐶𝐴 (4.7)

𝑇𝑓𝑎𝑙𝑙 and ∆𝑇1 are calculated by using Eqs. 4.5 and 4.7. A state transition is

considered as fast if ∆𝑇1 ≤ 1 second [Noury et al., 2008]. Finally, extracting ∆𝑇2 is

very straightforward to verify the second sufficient condition. In practice, 5 seconds

are considered to be long enough for experiment conditions. Figure 4-7 shows the

temporal evolution of HGCA of the scene 18 in our experiments.

4.5 Performance evaluation

We test our method with two pairs of cameras, i.e. cameras 2 and 7 (positioned 180𝑜

apart), cameras 2 and 5 (positioned 90𝑜 apart) and with three of them. Performance

of three experiments are compared with that of other methods, tested on the same
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Figure 4-7: Temporal evolution of HGCA of the scene 18 in our experiments.

dataset, in Table 4.1. Occlusion by furniture frequently happens in indoor surveillance

that make HGCA estimation sometimes inaccurate, degrading performance. Our

approach fails to detect the fall events in scenes 15 and 22 by the pair of cameras 2

and 5 but correctly detects them by the pair of camera 2 and 7. The reason is that the

sofa covers a part of the body when he lies on the ground after falling. Similarly, our

approach fails to detect the fall event in the scene 19 by the pair of cameras 2 and 7

but correctly detects it by the pair of cameras 2 and 5, due to the same reason. Thus,

we fuse the detection results by two pairs of cameras, simply by OR rule, producing

better performance as shown in Table 4.1. The decision fusion makes the approach

robust to furniture occlusion since we believe that people are occluded in one view

but are likely visible from the other viewpoints. Some visual results of our proposed

approach are shown in Fig. 4-8.

In implementation, we also use the strategy of resizing the input image sequences

to a half of the original size and the support of OpenMP to exploit more capability

of CPU. The average frame rate of our approach is about 25 fps1. If the input image

1The implementation in this dissertation is more optimized than the preliminary one reported in
[Hung et al., 2013].
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(a) Standing state

(b) Sitting state

(c) Lying state

Figure 4-8: The visual results of projecting foreground from one view to another
by using homography of the ground between the two views for standing, sitting and
lying state. The lying state in the last row is detected as a fall event by the temporal
analysis of human state transition.
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Table 4.1: Performance comparison between our method and three state-of-the-art
methods [Auvinet et al., 2011; Hung and Saito, 2012; Hung et al., 2013; Rougier et al.,
2007b, 2011b], tested on the same dataset. Results in [Auvinet et al., 2011] are with
3 cameras.

Sensitivity Specificity

Our method (cameras 2, 5 and 7) 95.8 % 96 %
Our method (cameras 2 and 7) 88 % 100 %
Our method (cameras 2 and 5) 88 % 96 %
[Hung and Saito, 2012, 2013] 95.8 % 100 %
[Rougier et al., 2007b, 2011b] 95.4 % 95.8 %
[Auvinet et al., 2011] 80.6 % 100 %

sequences are kept in the original size, our approach runs at about 15 fps. The

processing time for feature extraction and fall inference of our approach is about 11

ms per one frame on average, running with the original image resolution (720x480).

For our in-house video sample, our approach detects two falling actions and two

sitting actions correctly. The visual result images are demonstrated in Fig. 4-9.

In comparison with other methods tested on the same dataset, the fall in the

scene 20 is not detected by [Rougier et al., 2007b] since the fall takes place in two

steps. The person starts falling but leans on the sofa and then finishes the fall later.

These two steps produce two consecutive peaks in the full Procrustes distance curve.

The second peak makes the method failure since a sufficient period of immobility

is not detected to confirm the fall. Occlusion by furniture also causes difficulty for

this method because of using only one camera. However, both of our approaches

can detect this fall event. When the person leans on the sofa, the occupied area and

HGCA are still small. But when the person finishes the fall on the ground, these

features change significantly to make a state transition for event detection.

The method in [Auvinet et al., 2011] also cannot detect a fall on furniture so that

a large part of the body remains above 40 cm. It means that their method fails to

detect the falls in 15th and 16th scenarios. However, the argue that this limitation can

be overcome by employing environmental information. Our approach in this chapter

has the same limitation with [Auvinet et al., 2011] since the contact area between
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(a) Standing (View 1) (b) Standing (View 2)

(c) Siting (View 1) (d) Siting (View 2)

(e) Falling (View 1) (f) Falling (View 2)

Figure 4-9: Visual results of our approach on the in-house video sample
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the person and the ground is used. But our appoach in chapter 3 can detect the

falls in both scenarios since the occupied areas change dramatically during the fall,

regardless of where the person finishes the fall.

4.5.1 Performance discussions

In this section, false negative cases of this approach together with issues affecting its

performance, i.e., lighting conditions and occlusion by furniture are discussed.

1. False negative cases

Unlike the method in chapter 3, this method can detect sit-to-stand-transfer fall

in the 22𝑛𝑑 scenario. We carry experiments on this scenario by using two pairs

of cameras (the pair of 2 and 5, and the pair of 2 and 7), producing both true

positive results. However, this method has several false negative cases. Firstly,

it only can detect a fall ending on the ground since it relies on the measurement

of contact area between the person and the ground. Secondly, it is sensitive to

occlusion by furniture. The lying position on the ground after falling occluded

by the furniture poses difficulty to this approach. The issue of occlusion will be

discussed further in the following section.

2. Lighting conditions

Like the method in chapter 3, we also do not use any shadow removal algorithm

along with the adaptive GMM [KaewTraKuPong and Bowden, 2001]. Although

the adaptive GMM can eliminate well the effect of shadow and reflection, small

shadow and reflection still happen in the experiments and are included in the

foreground of the person. We argue that shadow and reflection happens when

people walking and kneeling on the ground. There is almost no shadow and

reflection, when people sitting and lying on a sofa, and even lying on the ground.

In the case of people lying on the ground, two sets of foregrounds Ψ𝑚 and

Ψ2 are nearly completely overlapped, resulting in high scores of HGCA. Since

shadow and reflection take place on the ground, it may contribute to the overlap
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regions between two sets Ψ𝑚 and Ψ2 when people walking or kneeling on the

ground, depending on positions of cameras and lighting direction. However, its

contribution is not significant to make two sets Ψ𝑚 and Ψ2 nearly completely

overlapped, consequently, not resulting in high scores of HGCA.

3. Occlusion by furniture

This method is sensitive to the occlusion by furniture since it relies on the

measurement of contact area between human and the ground. The fact of lower

body parts being frequently occluded by the furniture makes the computation

of HGCA inaccurate. In particular, the method fails to detect a fall event if

after suffering the fall the lying position is partly or completely occluded by

the furniture. The experiments reported in section 4.5 demonstrate the failure

scenarios of our proposed approach. However, the occlusion problem can be

overcome by using more than two cameras at the expense of computational

cost. It is the fact that people are occluded in one view but likely visible in

the other ones. That is, we have more chances to observe the person appearing

fully for accurate feature computation. The final decision is enhanced by fusing

decisions made independently by every pair of cameras. In section 4.5, we also

present the results of fusing decisions made independently from two pairs of

cameras (the pair of 2 and 5, and the pair of 2 and 7). All false negative results

made by the two pairs of cameras due to occlusion are corrected.

4.6 Conclusions

In this chapter, we have presented a 3D spatial feature, Human-Ground Contact

Areas, measuring only the contact area between the human and the ground floor.

HGCA has a close relationship with human states because of the fact that people

always make contact with the ground during usual activities, i.e., standing and sitting

mainly by the feet. Meanwhile, people often lie completely on the ground after

suffering from accidental falls. HGCA is highly discriminative to discern lying states
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from other usual states, i.e., standing and sitting. We also introduce a low-cost

scheme to estimate HGCA efficiently by using the foreground projection between two

different views based on the homography of the ground. Fall inference is performed

by using temporal analysis of human state transition, inspired by the fall definition.

The performance of this approach is competitive with the state-of-the-art methods

[Hung and Saito, 2013; Auvinet et al., 2011; Rougier et al., 2007b, 2011b]. However,

the comparison is merely based on the results tested on one dataset containing limited

challenges of the real world. We need to further access it in real situations with the

real elderly, in order to confirm the validity of this approach.
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Chapter 5

Bag of Video Word Approaches to

Fall Detection

5.1 Introduction

Recently, Bag of Video Word (BoVW) approaches have produced good results in

video-based human action recognition. In general, BoVW approaches employ local

interest point detectors, i.e., Harris3D [Laptev, 2005], Cuboid [Dollár et al., 2005],

Hessian [Willems et al., 2008], MoSIFT [Chen and Hauptmann, 2009] detectors, dense

sampling, and dense trajectories [Wang et al., 2013] to locate salient points in space-

time domain as interest points. Various descriptors like Cuboid [Dollár et al., 2005],

HOG/HOF (Histogram of Oriented Gradient/Histogram of Optical Flow) [Laptev

et al., 2008], HOG3D [Kläser et al., 2008], extended SURF (ESURF) [Willems et al.,

2008], MoSIFT [Chen and Hauptmann, 2009] and Motion Boundary [Wang et al.,

2013] descriptors are applied to describe shape and motion in the supported volumes

of interest points. A set of D-dimension descriptors extracted from a training set are

clustered to form a vocabulary, consisting of 𝐾 video words. Given an unknown video

clip containing an action of interest, all of its descriptors are quantized to the nearest

video words in the vocabulary based on a certain distance measure, i.e., Euclidean

distance. The histogram of occurrence video words is taken as a compact and holistic

representation of the whole video clip, so-called the BoVW representation. Finally,
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the BoVW representation is fed to classifiers like SVM to recognize action labels.

The advantages of BoVW approaches to human action recognition include the

following.

1. The BoVW representation produces a fixed length vector irrespective of the

length of video clips or the speed of performing the action. In other words,

BoVW approaches somehow tolerate the timing of action.

2. BoVW approaches are able to handle camera motions since background subtrac-

tion is not made use of. Recognizing actions from mobile cameras and in movie

sequences become tractable and more accurate than conventional approaches

that require foreground images.

3. BoVW approaches also produce stunning performance when tested on KTH

dataset, for example, 94.15 % in [Liu and Shah, 2008] and 96.33 % in [Gao

et al., 2010] and absolute accuracy when tested on Weizmann dataset [Ikizler

and Duygulu, 2007]. They are considered as the most basic common datasets

in human action recognition.

However, BoVW approaches also expose several limitations and problems.

1. It is poor to localize actions in a long video clip. Conventionally, human action

recognition algorithms are tested against short and manually segmented video

clips containing only one action, performed once or repeatedly.

2. Orderless BoVW approaches ignore spatiotemporal structure between video

words that is believed to be distinctive feature to discriminate actions.

3. It seems to be hard to choose an optimal size of vocabulary 𝐾.

4. The performance of BoVW approaches against viewpoint invariance and scale

invariance is unclear. To the best of our knowledge, [Liu and Shah, 2008] and

[Wang et al., 2013] are the first works applying BoVW related approach to

ISXMAS, a multiview dataset of human action recognition.
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In the literature, BoVW approaches have been reported to test on various com-

mon benchmark datasets, i.e., KTH [Dollár et al., 2005; Kläser et al., 2008; Laptev

et al., 2008; Liu and Shah, 2008; Niebles et al., 2008; Nowozin et al., 2007; Schuldt

et al., 2004], Weizmann [Ikizler and Duygulu, 2007; Kläser et al., 2008; Niebles and Li,

2007; Scovanner et al., 2007], IXMAS [Liu and Shah, 2008], UCF Sports[Wang et al.,

2009], Hollywood [Wang et al., 2009], HMDB-51 [Wang et al., 2012] and very recently

UCF101 [Soomro et al., 2012]. Among these datasets, KTH and Weizmann are of-

ten adopted for benchmarking BoVW approaches although they contain a few action

classes and limited challenges and are considered as unrealistic datasets. UCF Sports

dataset [Rodriguez et al., 2008] provides more action classes than KTH and Weiz-

mann but focuses mainly on sports. Hollywood action datasets [Laptev et al., 2008]

are very challenging, even now, containing actions segmented from movies. Since

multiple cameras shot an action simultaneously and these image sequences are con-

catenated in various ways to produce an action clip in movies, camera viewpoint vari-

ations in Hollywood datasets are extremely challenging. Recently, a research group

in University of Central Florida and a collaborated team between Karlsruhe Institute

of Technology, MIT, and Brown University attempt to add more action classes to

produce UCF-101 [Soomro et al., 2012] and HMDB-51 [Kuehne et al., 2011] datasets,

respectively, mainly collected from YouTube and movies, for benchmarking action

recognition algorithms.

Although fall action is included in HMDB-51, actions of daily living like carry-

ing objects, rearranging furniture, changing cloths, and doing housework, etc. are

missing. There are several datasets, devoted to actions/activities of daily living but

fall actions are omitted, for instance, URADL dataset [Messing et al., 2009], MPII

Cooking dataset [Rohrbach et al., 2012], and TUM Kitchen Dataset [Tenorth et al.,

2009]. In addition, like-fall actions are also not included in all of them. Therefore in

the context of fall detection, accessing performance of BoVW approaches to recognize

fall actions based on the reported results tested on these datasets is quite subjective.

To the best of our knowledge, there is no research work accessing the performance of

BoVW approaches by carrying out experiments on a dataset, exclusively dedicated
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to fall detection. Hence this chapter studies the effectiveness of BoVW approaches to

discriminate fall actions from other actions of daily living by evaluating the standard

BoVW approach and nonlinear SVM classifiers against the common “multiple camera

fall dataset” [Auvinet et al., 2010]. Since the dataset is multiple-view, we are able to

evaluate the view-invariance fall recognition performance of BoVW approach.

We continue this chapter by summarizing common datasets for human action

recognition, particularly ones dedicated to actions of daily living in section 5.2. Our

aim is to highlight the fact that fall actions are treated separately from other ac-

tions of daily living, in the context of dataset creation. Although BoVW approaches

have demonstrated good performance on these common benchmark datasets, it is

subjective to draw a similar good performance of BoVW approaches to fall detection.

Section 5.3 recaps the common pipeline of BoVW approaches to human action recog-

nition and its variants. Our experimental setup and results are reported in section

5.4. The conclusion of this chapter comes in the section 5.5.

5.2 Common human action recognition datasets

A variety of datasets have been created for benchmarking human action recognition

algorithms which were comprehensively reviewed in [Chaquet et al., 2013]. Dataset

creation plays a decisive role in both benchmarking performances and motivating

the growing of algorithms. Chronological orders of the datasets reflect newly added

challenges or increasing difficult levels with which the scientific community are deal-

ing. This section recaps common human action recognition datasets chronologically,

particularly ones devoted to actions of daily living. We aim at highlighting the fact

that fall actions are often treated separately from other actions of daily living, in

the context of dataset creation. Hence we need to study the effectiveness of BoVW

approaches to fall detection by empirical experiments on a dataset consisting of both

fall and actions of daily living, particularly the like-fall ones even though BoVW

approaches have shown good performance on a wide range of common datasets.
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5.2.1 Datasets of heterogeneous actions

1. KTH and Weizmann datasets

The most common datasets which were first publicly introduced to the scientific

community include KTH in 2004 [Schuldt et al., 2004] and Weizmann in 2005

[Blank et al., 2005]. Their creation marked a milestone in the development of

automated methods of recognizing simple actions in videos. Although many

state-of-the-art methods adopt them in evaluation, they are still considered as

unrealistic datasets because of containing a few action classes and being col-

lected in controlled environments. KTH takes 6 actions, i.e., walking, jogging,

running, boxing, hand waving and hand clapping into account and Weizmann

considers 10 actions of walking, running, jumping, galloping sideways, bending,

one-hand waving, two-hand waving, jumping in place, jumping jack, and skip-

ping. The actions were recorded by single static cameras with homogeneous

background to foster the development of foreground-based algorithms. There

is only one person acting in each short video sample whose length is just 3 or

4 seconds. Other common challenges in video-based human action recognition

like illumination changes, human appearance variations, intraclass of actions

variations, cluttered background, and camera motions, etc. are not taken into

consideration even though the robustness set of Weizmann dataset includes such

slight variations, like non-homogeneous background, different clothing, and in-

traclass of actions variations.

2. IXMAS

In 2006, INRIA introduced IXMAS, a multiview dataset for view-invariant hu-

man action recognition [INRIA, 2006]. 13 actions e.g., check watch, cross arms,

scratch head, sit down, get up, turn around, walk, wave, punch, kick, point,

pick up, throw (over head), and throw (from bottom up) are included in IX-

MAS. The actions were performed 3 times by 11 actors in various positions and

orientations with respect to 5 static cameras in laboratory environments. That

is, it is also considered as unrealistic datasets. This dataset was designed to
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encourage the research in multiview approaches to human action recognition

even though it also provided alternative benchmarks for single view approaches

by using one of its five views.

3. UCF101

A research team in University of Central Florida have been producing a series

of datasets for human action recognition in the wake of realizing restrictions of

unrealistic datasets to the development of human action recognition algorithms.

UCF sports action dataset was first introduced in 2008 [Rodriguez et al., 2008],

focusing on a set of 9 actions in sports, i.e., driving, golf swinging, kicking,

lifting, horseback riding, running, skating, swinging, and walking. The samples

were gathered from television channels like BBC and ESPN rather than hand-

shot in controlled environments. The dataset creation was believed to inspire

the development of human action recognition algorithms in consideration of

realistic samples in unconstrained conditions.

Following the success of UCF sports, UCF YouTube action or UCF11 dataset

[Liu et al., 2009] was created one year later in 2009 by harvesting videos from

YouTube, the most popular video-sharing website. As its name indicates, the

dataset composes of 11 actions such as basketball shooting, biking/cycling, div-

ing, golf swinging, horseback riding, soccer juggling, swinging, tennis swinging,

trampoline jumping, volleyball spiking, and walking with a dog. Since videos

in YouTube are believed to be captured under uncontrolled environments, the

dataset is very challenging in terms of large variations in camera motion, object

appearance and pose, object scale, viewpoint, cluttered background, illumina-

tion conditions, and intraclass of actions.

Since then, the authors have been continuing to add more action classes in an

attempt of delivering the most challenging and largest dataset to date, result-

ing in two extensions of UCF11 dataset which are UCF50 [Reddy and Shah,

2013] and UCF101 [Soomro et al., 2012]. The main motivation is to foster

further study in action recognition by learning and discovering new realistic
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action classes. As its names indicates, UCF50 and UCF101 datasets have 50

and 101 action classes. Specifically, UCF101 dataset contains 13320 videos from

101 action classes such as Apply Eye Makeup, Apply Lipstick, Archery, Baby

Crawling, Balance Beam, Band Marching, Baseball Pitch, Basketball Shoot-

ing, Basketball Dunk, Bench Press, Biking, Billiards Shot, Blow Dry Hair,

Blowing Candles, Body Weight Squats, Bowling, Boxing Punching Bag, Boxing

Speed Bag, Breaststroke, Brushing Teeth, Clean and Jerk, Cliff Diving, Cricket

Bowling, Cricket Shot, Cutting In Kitchen, Diving, Drumming, Fencing, Field

Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Golf Swing,

Haircut, Hammer Throw, Hammering, Handstand Pushups, Handstand Walk-

ing, Head Massage, High Jump, Horse Race, Horse Riding, Hula Hoop, Ice

Dancing, Javelin Throw, Juggling Balls, Jump Rope, Jumping Jack, Kayaking,

Knitting, Long Jump, Lunges, Military Parade, Mixing Batter, Mopping Floor,

Nun chucks, Parallel Bars, Pizza Tossing, Playing Guitar, Playing Piano, Play-

ing Tabla, Playing Violin, Playing Cello, Playing Daf, Playing Dhol, Playing

Flute, Playing Sitar, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups,

Rafting, Rock Climbing Indoor, Rope Climbing, Rowing, Salsa Spins, Shaving

Beard, Shotput, Skate Boarding, Skiing, Skijet, Sky Diving, Soccer Juggling,

Soccer Penalty, Still Rings, Sumo Wrestling, Surfing, Swing, Table Tennis Shot,

Tai Chi, Tennis Swing, Throw Discus, Trampoline Jumping, Typing, Uneven

Bars, Volleyball Spiking, Walking with a dog, Wall Pushups, Writing On Board,

and Yo Yo.

4. HMDB51 [Kuehne et al., 2011]

The authors were inspired by indefatigable endeavors to create large-scale an-

notated static image datasets that have been recently revolutionizing the field

of object categorization. HMDB51 was produced to meet the urgent need of

benchmarking state-of-the-art human action recognition approaches. It was the

largest dataset to its released date (2011) with 51 action classes distributed in

about 7000 manually annotated clips, collected from movies and YouTube. The
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51 action classes are divided into 5 groups

∙ General facial actions: smile, laugh, chew, and talk.

∙ Facial actions with object manipulation: smoke, eat, and drink.

∙ General Human Actions: cartwheel, clap hands, climb, climb stairs, dive,

fall on the floor, backhand flip, handstand, jump, pull up, push up, run,

sit down, sit up, somersault, stand up, turn, walk, wave.

∙ Human-Object Interactive Actions: brush hair, catch, draw sword, dribble,

golf, hit something, kick ball, pick, pour, push something, ride bike, ride

horse, shoot ball, shoot bow, shoot gun, swing baseball bat, sword exercise,

and throw.

∙ Human-Human Interactive Actions: fencing, hug, kick someone, kiss, punch,

shake hands, and sword fight.

5.2.2 Datasets of activities of daily living

Besides datasets of heterogeneous actions, various research works concern about spe-

cific actions. Among existing datasets of specific actions, URADL [Messing et al.,

2009], TUM Kitchen [Tenorth et al., 2009], and MPII Cooking [Rohrbach et al.,

2012] datasets focus on a variety of actions of daily living.

1. URADL (University of Rochester Activities of Daily Living) dataset [Messing

et al., 2009]

URADL is a specific dataset dedicated to activities of daily living. it provides

10 activities of daily living, e.g., answer phone, dial phone, look up phone book,

drink water, eat banana, eat snack, peel banana, chop banana, use silverware,

and write on white board. Each performed 3 times by 5 different people. Al-

though the dataset considers activities of daily living, it seems to focus on very

specifically, for example, eating specific things like banana or snack. In this

regard, the number of action classes is very limited.
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2. TUM Kitchen dataset [Tenorth et al., 2009]

TUM kitchen dataset introduced 10 activities of daily living, but restricted in

kitchen spaces, for instance, reaching, reaching up, taking something, lowering

an object, releasing grasp, opening a door, closing a door, opening a drawer,

closing a drawer, and carrying. Challenges posed by this dataset include varia-

tion in performing activities, continuous motion (various actions are performed

continuously), parallelism (actions are performed by either left or right hands),

and body-size differences. Moreover, four different types of data are provided

such as video data from 4 overhead static cameras, motion capture data, RFID

tag, and magnetic sensor data.

3. MPII cooking activity dataset [Rohrbach et al., 2012]

Similar to TUM kitchen dataset, MPII cooking activity dataset covers 65 cook-

ing activities, continuously captured in a realistic setting. 12 different actors

participated in a realistic recording process in which they prepared one to six

out of 14 dishes, containing a varieties of cooking activities such as cut slices,

take out from drawers, cut dice, take out from refrigerator, squeeze, peel, wash

objects, and grate, etc. In total, 44 videos whose total length is over 8 hours

were produced.

According to the above review of datasets, we come up with the following three

observations. Firstly among datasets of heterogeneous actions, fall actions are in-

cluded only in HMDB51 dataset (fall-on-the-floor category). Although HMDB51

dataset also contains some actions of daily living such as stand up, sit down, and

walk, etc., the number of action classes is very limited. Moreover, the subjects in this

dataset are mostly young people rather than the elderly. Secondly, three datasets,

URADL, TUM Kitchen, and MPII cooking activity datasets address various actions

of daily living, particularly ones in kitchen spaces, but omit fall actions. Finally,

BoVW approaches were tested on these datasets and have demonstrated good recog-

nition accuracy. However, in the context of fall detection, it is subjective to draw

a similar good performance of BoVW approaches based on such reported results in
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the literature. To the best of our knowledge, there is no empirical study accessing

performance of BoVW approaches to discriminating fall actions from other actions of

daily living, i.e., stand up, sit down, lie down, do housework, take off cloths, put on

cloth, and carry objects, etc. Hence, in this chapter, we evaluate the effectiveness of

BoVW approaches to fall detection and compare its performance with state-of-the-art

methods, tested on “multiple camera fall dataset”, in terms of recognition accuracy

and computational cost.

5.3 Bag of Video Word Approaches to Fall Detection

In this section, we describe the standard BoVW approach and nonlinear SVM clas-

sifiers for recognizing fall actions. Fig. 5-1 shows the common pipeline of BoVW

approaches to human action recognition. Variants of BoVW approaches in the litera-

ture differ each other in the selection of local interest point detectors, descriptors and

encoding methods. The selections have significant influence on overall performance

that will be discussed in the following.

5.3.1 Local spatio-temporal interest point detectors and de-

scriptors

In 2D domain, local interest points are referred to any point in the image where image

values vary spatially significantly (both dimensions) [Schmid et al., 2000], for example,

corner points. Local interest points contain rich information of local image structure,

described by feature descriptors which are computed by using image measurement in

the supported regions of these points, for example, histogram of oriented gradients.

A compact representation of an image can be efficiently produced by using feature

descriptors.

Similarly to produce a compact representation of video data and interpret spatio-

temporal events, we need to extend spatial interest points into 3D spatio-temporal

domains of video data [Laptev, 2005] by treating video as a sequence of images.
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Figure 5-1: The common pipeline of BoVW approach to human action recognition

Spatio-temporal interest points capture shape and motion of video data. Various

spatio-temporal interest point detectors have been proposed in the literature by tak-

ing a variety of such extensions into account. In this section, we recapitulate some

prominent spatio-temporal interest point detectors and descriptors in human action

recognition.

1. Harris3D detector and HOG/HOF descriptor [Laptev, 2005; Laptev et al., 2008]

Ivan Laptev was the first to propose extension of Harris corner detector in 2D

image into space-time domain, so-called Harris3D detector. Harris3D detector

selects a point with high variation of the intensity in space and non-constant

motion in time, determined at multiple spatial and temporal scales. However,

this assumption discards spatially salient points containing some certain sorts

of motion like periodic motion.
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To describe motion and appearance in the 3D neighborhood of detected interest

points (space-time supported volume), he also introduced HOG/HOF descrip-

tors [Laptev et al., 2008]. Each volume, centered at detected interest points,

is divided into a (𝑛𝑥, 𝑛𝑦, 𝑛𝑡) grid of cuboids for computing coarse histogram of

oriented gradients (HOG) and histogram of Optical Flow (HOF). These his-

tograms are normalized and concatenated into a single HOG/HOF descriptor

vector.

2. Cuboid detector and descriptor [Dollár et al., 2005]

Dollár et al. considered a stack of image 𝐼(𝑥, 𝑦, 𝑡) for localizing interest points

in spatio-temporal domain rather than 𝐼(𝑥, 𝑦) in spatial domain. He criticized

the Harris3D detector for being unable to detect spatial corners points con-

taining periodic or gradually changed motion. He argued that interest points

must be not only salient in space but also have temporal extent. Hence, he

concentrated on the temporal domain by applying 1D Gabor filter temporally

to detect periodic frequency components. It is showed that Cuboid detectors

can also response strongly in as the same range of motion as Harris3D detectors

do. As a result, cuboid detector produces more local interest points but is more

computationally expensive than Harris3D detector.

Dollár et al. also presented Cuboid descriptor by using local histograms of

gradient, inspired by 2D SIFT descriptor [Lowe, 2004]. The cuboid is divided

into a number of regions for computing local histograms of each region which

are subsequently concatenated into a single vector. PCA is applied to reduce

the dimensionality of the final descriptor.

3. Hessian detector and extended SURF descriptor [Willems et al., 2008]

Willems et al. determined spatio-temporal interest points at a certain scale

based on the determinant of the 3D Hessian matrix, so-called Hessian detector.

It is considered as the spatio-temporal extension of the saliency measure for blob

detection in [Beaudet, 1978]. In contrast to Harris3D detector whose scale is

selected by iterative manners, the scale-normalized determinant of the Hessian
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facilitates both scale invariance and good scale selection simultaneously without

iteration. Hence, Hessian detector is the most efficient but produces sparest

features among three detectors reviewed so far [Wang et al., 2009].

An extension of 2D SURF descriptor [Bay et al., 2006] into spatio-temporal

domain, so-called extended SURF descriptor for video, was also proposed in

[Willems et al., 2008]. Like these above methods, each space-time supported

volume is also divided into (𝑛𝑥, 𝑛𝑦, 𝑛𝑡) subvolumes but each of which contains the

vector 𝜐 = (
∑︀

𝑑𝑥,
∑︀

𝑑𝑦,
∑︀

𝑑𝑡) where 𝑑𝑥, 𝑑𝑦, 𝑑𝑡 are weighted sums of uniformly

sampled responses of Haar-wavelets over space and time.

4. Motion SIFT (MoSIFT) detector and descriptor [Chen and Hauptmann, 2009]

The authors were inspired by impressive performance of the Scale Invariant

Feature Transform (SIFT) [Lowe, 2004] in 2D domain. Their endeavor was to

develop a counterpart for detecting video interest points by treating spatial and

temporal dimensions separately. SIFT and optical flow are combined to form

a motion-based feature, so-called Motion SIFT or MoSIFT. A SIFT point is

selected as a feature point if optical flow near the point is large enough. In

other words, MoSIFT point is a SIFT point containing significant motion.

A MoSIFT descriptor is also proposed to represent (1) spatial appearance of

the feature point by an aggregated histogram of gradients and (2) the motion of

the feature point by an aggregated histogram of optical flow. The aggregation

of histograms makes the descriptor more invariant to any deformation.

5. HoG3D descriptor [Kläser et al., 2008]

HOG3D is constructed based on histograms of oriented 3D spatio-temporal

gradients that are computed memory-efficiently by using integral videos [Kläser

et al., 2008]. Eventually, the authors extended integral images, proposed by

Viola and Jones [Viola and Jones, 2001] for efficient computation of Haar fea-

tures of an image, to integral videos for efficient computation of 3D gradient

vectors. Regular polyhedrons, i.e., dodecahedron (12-sided) and icosahedron
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(20-sided) are adopted for gradient quantization. Similar to the computation of

above descriptors, space-time volumes are divided into (𝑛𝑥, 𝑛𝑦, 𝑛𝑡) sub-volumes

in which local orientation histograms are computed before concatenated to one

feature vector.

6. Dense sampling

Video data is divided into regular stacks of images or volumes of images at

multiple spatial and temporal scales. A descriptor is applied to each stack

to describe its shape and motion. Video representation based on these dense

sampling incorporates not only shape and motion of objects but also context

information surrounding the objects. It is argued that some actions take place in

particular environments, for example, swimming in a swimming pool and sailing

in a lake or a river, etc. In such cases, context information play an important

role in distinguishing actions. It has been demonstrated empirically in [Wang

et al., 2009] that dense sampling outperforms other interest point detectors, i.e.,

Harris3D, Cuboid, and Hessian in some datasets, like Hollywood-II and UCF

datasets. But it performs less effective in KTH dataset than the others. The

reason is that background images in the two former datasets change considerably

between actions. Context information provided by dense features has effect to

raise performance. While all actions in KTH dataset took place in relatively

same plain background, performance of dense features is poorer than that of

the others.

In the context of fall detection, surveillance cameras monitor a person of interest

living in their home in which all of his/her actions take place. It means that

the background does not change much between actions. Dense sampling seems

to be inappropriate for recognizing falls.

7. Dense trajectories and motion boundary descriptors [Wang et al., 2013]

Inspired by the standout performance of dense sampling in action recognition,

[Wang et al., 2013] extract dense features and track them by using dense optical

flow algorithm to produce a dense trajectories-based video representation. This
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representation contains rich foreground motion and context information. Mo-

tion Boundary Histogram (MBH) descriptor for human detection proposed by

[Dalal et al., 2006] is employed as motion descriptor for dense trajectories. Since

MBH relies on differential optical flow, locally constant camera motion is re-

moved but the motion boundaries are retained. Dense trajectories and motion

boundary descriptors are considered as the state-of-the-art in action recogni-

tion by outperforming the other methods on nine popular action datasets like

Hollywood2, UCF50, and HMDB51, etc.

In this chapter, we empirically study the effectiveness of BoVW approaches to

fall detection by performing an experiment using a BoVW approach which is widely

accepted as a standard in action recognition [Soomro et al., 2012] to provide the

baseline results on Multiple Camera Fall Dataset. Harris3D detector and HOF/HOF

descriptors are employed in this standard approach.

5.3.2 Encoding and Pooling methods

Various encoding and pooling methods have been proposed in the literature, for ex-

ample, vector quantization [Csurka et al., 2004], soft-assignment encoding [Gemert

et al., 2008], sparse encoding [Yang et al., 2009], locality-constrained linear encod-

ing [Wang et al., 2010], Fisher Kernel encoding [Perronnin et al., 2010], sum pooling

[Lazebnik et al., 2006] and max pooling [Yang et al., 2009]. The selection of these

methods in the pipeline of BoVW approaches have great influence on final perfor-

mance, in terms of accuracy and computational cost as described in an empirically

comparative study by Wang et al. [Wang et al., 2012]. In our experiment, we follow

the standard evaluation protocol in [Wang et al., 2009] by using vector quantization

encoding and sum pooling methods.

Suppose that we use 𝐷-dimensional descriptor to describe shape and motion in

the supported volumes of 𝑁 local spatio-temporal interest points, extracted from a

video. That is, we have a set 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑖, ..., 𝑥𝑁 ] ∈ R𝐷×𝑁 of local descriptors.

Also suppose that we are given a vocabulary composing of K video words, i.e., 𝑉 =
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[𝑣1, 𝑣2, ..., 𝑣𝑗, ..., 𝑣𝐾 ] ∈ R𝐷×𝐾 . The objective of encoding method is to find a word 𝑣𝑗

in the set 𝑉 as a representation of a descriptor 𝑥𝑖 in the set 𝑋. Vector quantization

which is known as Hard-assignment coding, assigns each descriptor 𝑥𝑖 to the nearest

video word 𝑣𝑗 based on a distance measure, i.e., Euclidean distance. Let denote C as

code matrix

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1,1 𝑐1,2 · · · 𝑐1,𝑗 · · · 𝑐1,𝐾
...

...
. . .

...
. . .

...

𝑐𝑖,1 𝑐𝑖,2 · · · 𝑐𝑖,𝑗 · · · 𝑐𝑖,𝐾
...

...
. . .

...
. . .

...

𝑐𝑁,1 𝑐𝑁,2
. . . 𝑐𝑁,𝑗

. . . 𝑐𝑁,𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R𝑁×𝐾 (5.1)

In vector quantization encoding method, element 𝑐𝑖,𝑗 of code matrix 𝐶 is deter-

mined by

𝑐𝑖,𝑗 =

⎧⎪⎨⎪⎩1 if 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗||𝑥𝑖 − 𝑣𝑗||

0 otherwise
(5.2)

where ||.|| denotes Euclidean distance. We take histograms of occurrence words or take

sum pooling method to create a feature vector 𝑝 ∈ R1×𝐾 as a holistic representation

of the video. Each element 𝑝𝑗 of the feature vector 𝑝 is determined by

𝑝𝑗 =
𝑁∑︁
𝑖=1

𝑐𝑖,𝑗 (5.3)

Finally, the feature vector is normalized by using ℓ2 norm.

𝑝𝑗 =
𝑝𝑗∑︀𝐾

𝑘=1

√︀
𝑝2𝑘

(5.4)

5.4 Experiments and performance evaluation

In this section, we carry out our experiments on “multiple camera fall dataset” to

evaluate the effectiveness of BoVW approach in discriminating falls from other actions
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of daily living. We follow the common evaluation protocol, proposed in [Wang et al.,

2009]. STIP and its HOG/HOF descriptors are extracted from all video samples

of the dataset, resulting in a huge set of STIP and its descriptors. We use the

executable of Harris3D detector, provided by Ivan Laptev [Laptev, 2005], run in

Linux environment. The STIP and its HOG/HOF descriptors are saved into text files

which are imported into Matlab for further processing. We randomly choose 100,000

STIP and its descriptors from the original set for the vocabulary creation by using

K-mean clustering. Since actions of daily living are dominant in the dataset, we must

carefully choose enough STIP and its descriptors, extracted from sequences containing

fall actions. To this end, we manually classify STIP and its descriptors in the original

set into two subsets. One is extracted from sequences containing fall actions and the

other from sequences containing actions of daily living. Subsequently, we perform

choosing 100,000 STIP and its descriptors randomly from these two subsets for the

vocabulary creation. Here we set the number of video words in the vocabulary 𝑉

to 4000 that has empirically demonstrated to produce good results for a variety of

datasets [Wang et al., 2009]. We adopt vector quantization encoding method with

Euclidean distance, sum pooling, and ℓ2 norm to determine the final feature vector.

Since each video sample of the dataset composes of a series of actions, probably

including falls, we use sliding-window method to locate fall actions. As figured out

in [Noury et al., 2008], a fall usually lasts within one second. Therefore, a window of

30 frames with a sliding step of two frames is adopted in our implementation. That

is, the window with the length of 30 frames is shifted along the time axis every two

frames
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The classification is performed by using non-linear two-class SVM [Vedaldi and

Fulkerson, 2008] with Chi-squared kernel since with vocabulary/histogram represen-

tations, Chi-square kernel performs better than other kernels like linear, quadratic

and Radial Basis Function (RBF) kernels [Zhang et al., 2007]. All actions of daily

living are combined into one class, that is, the non-fall class. The other one is fall

class.

We perform leave-one-out cross validation in the whole dataset. Since the dataset

composes of 24 scenarios, captured simultaneously from 8 cameras. We leave one

scenario (8 video samples captured from 8 views) intact for testing and use the other

video samples in the rest of 23 scenarios for training. Such experiments are repeated

24 times in order to complete the leave-one-out cross validation. By doing that, we

are also able to evaluate performance of BoVW approach to fall recognition across

multiple views.

To evaluate the recognition accuracy, we manually annotate the ground truth for

each video sample. The ground truth in this context is a time window of occurring

a fall. That is, we manually measure the first frame when the person starts falling

and the last frame when the person starts hitting the ground. If the SVM classifier

responses positively within or very near the ground truth window, a fall is claimed.

The results of our experiments are reported in Table 5.1.

Specificity and sensitivity of BoVW approach are also shown in Table. 5.2. In

comparison with state-of-the-art methods [Hung et al., 2013; Hung and Saito, 2013;

Auvinet et al., 2011; Rougier et al., 2007b, 2011b], tested on the same dataset, the

performance of BoVW approach is comparable (please compare with Table 4.1). How-

ever, the computational cost of BoVW approach is more expensive than the others.

For localizing STIP and determining HOG/HOF descriptors, the average frame rate

is about 1.44 fps, by using the executable provided by the author in [Laptev, 2005].

That is, the real-time performance of BoVW approaches seems to be poor for practical

usage of fall detection.
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Table 5.2: Specificity and Sensitivity of BoVW approach, tested on “multiple cameras
fall dataset.”

Sensitivity Specificity

Views

1 83.3% 100%

2 95.8% 100%

3 100% 100%

4 91.7% 100%

5 70.8% 100%

6 87.5% 100%

7 95.8% 100%

8 83.3% 100%

5.5 Conclusions

In this chapter, various common human action recognition datasets are summarized

to highlight the fact that fall actions are treated separately from actions of daily living

in the context of dataset creation. Despite good performance of BoVW approaches

as reported on a wide range of such datasets in the literature, it is subjective to

draw a similar good performance of BoVW approaches to discriminating fall actions

from other actions of daily living. Hence, we have presented an empirical study to

evaluate the effectiveness of BoVW approaches to fall detection. Experiments of

BoVW approach with STIP, HOG/HOF descriptors and nonlinear Chi-Square kernel

SVM classifier on “multiple cameras fall dataset” are carried out. The recognition

accuracy of BoVW approach, in term of specificity and sensitivity is comparable with

that of state-of-the-art methods [Hung et al., 2013; Hung and Saito, 2013; Auvinet

et al., 2011; Rougier et al., 2007b, 2011b], tested on the same dataset. However, the

computational cost of BoVW approach is more expensive than the others.
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Chapter 6

Conclusions and future works

6.1 Dissertation conclusions

In this dissertation, we have addressed the problem of detecting fall incidents in

an effort to support the elderly living alone safely at home. It is figured out that

accidental falls are the most common cause of injuries for the elderly [Yu, 2008] and

the sixth leading cause of death [MacCulloch et al., 2007]. Our research outcomes are

capable of helping the elderly reach the instant treatment just after suffering from

accidental falls, in turn, not worsening their injuries or even saving their lives.

Detecting fall incidents by using vision technology is challenging. On the one

hand, we must discriminate falls carefully from usual activities, particularly the con-

founding or like-fall ones. The accuracy of fall detection methods must be high since

it relates to the human safety. The false alarms also must be kept as low as possible

otherwise it may bother emergency response centers which are always ready to offer

immediate helps to fallen people. On the other hand, we need to handle other com-

mon challenges of vision technology, such as low image quality, viewpoint variations,

illumination variations, cluttered background, occlusion by furniture and real-time

implementation.

To tackle these challenges, we have introduced in this dissertation the 3D spa-

tial features, i.e., the combination of heights and occupied areas, extracted from 3D

cuboids or 3D bounding boxes of the person of interest and Human-Ground Contact
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Areas (HGCA). We have demonstrated the effectiveness of these 3D spatial features

in discriminating falls from other usual activities, in terms of both high detected rate,

low false alarms and real-time processing. We argue that people in lying states oc-

cupy larger areas than those in sitting and standing states. The heights of standing

people are greater than that of sitting and lying people. Therefore, the combination

of heights and occupied areas are highly discriminative in classifying human states

to perform fall inference. We also argue that people always make contact with the

ground during usual activities mainly by the feet. People often lie completely on the

ground after suffering from accidental falls. Therefore, contact areas between human

and ground contain rich information to distinguish human states, leading to our pro-

posal of Human-Ground Contact Areas. Falls are discriminated from usual activities

by analyzing human state transition.

In implementation, we configure two cameras whose fields of view are relatively

orthogonal to simplify the 3D cuboid reconstruction. 2D bounding boxes extracted

from two views are served as two orthographic projections of the 3D cuboid. As a

result, the 3D cuboid reconstruction are very straightforward. We also suggest using

Local Empirical Templates to normalize the reconstructed 3D cuboids in order to

make them view-invariant across the viewing windows, facilitating the human state

classification. To estimate HGCA, we propose projecting foreground across views by

using homography of the ground between views. There exist overlap regions between

foregrounds where people and the ground are in contact, i.e., feet during usual activ-

ities and almost whole body after falls. We carry out experiments of our approaches

on a common dataset of fall detection, "multiple camera fall dataset," demonstrat-

ing favorably comparable performance with state-of-the-art methods [Auvinet et al.,

2011; Rougier et al., 2007b, 2011b], tested on the same dataset, but with lower com-

putational cost. Our solutions are low-cost and can be run in real-time by a common

PC with standard resolution video surveillance cameras, i.e., 320x240.

In conclusions, our major contributions are to introduce new 3D spatial features

and low-cost schemes of estimating these features which are good for fall detection,

as the summarization below.
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1. The combination of heights and occupied areas.

∙ Proposal of using two cameras whose fields of view are relatively orthogonal

to approximate the person of interest of 3D cuboids or 3D bounding boxes.

∙ Suggestion of using Local Empirical Templates to normalize the recon-

structed 3D cuboids, making them view-invariant across the viewing win-

dows, facilitating the human state classification.

2. Human-Ground Contact Areas

∙ Proposal of using foreground projection across views based on the homog-

raphy of the ground between views and measuring overlap regions between

foregrounds as HGCA that is view-invariant across the viewing windows.

∙ Investigation into the relationship between HGCA and human states, i.e.,

standing, sitting, and lying in consideration of various poses and viewpoints

via human state simulation.

In addition, the third contribution of this dissertation comes from our empirical

study of the effectiveness of BoVW approaches to fall detection. Since BoVW ap-

proaches have demonstrated good performance on a wide range of common datasets

of human actions, its performance in discriminating fall actions and other actions of

daily living is unknown. We have summarized various common datasets of human

actions to figure out the fact that fall actions are often treated separately from other

actions of daily living, in the context of dataset creation. Despite good performances

of BoVW approaches on a variety of common datasets as reported in the literature,

it is subjective to draw its similar good performance in fall detection in consideration

of the above fact. To the best of our knowledge, there is no research work evaluating

the performance of BoVW approaches on a dataset, exclusively dedicated to fall de-

tection. That is, the dataset must contain both fall actions and a variety of actions

of daily living. Hence in this dissertation, we carry out an experiments of a stan-

dard BoVW approach with nonlinear Chi-square kernel SVM classifier on "multiple
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camera fall dataset" by using a common PC. We conclude that BoVW approaches

produce favorably comparable performance with state-of-the-art methods (including

our proposed solutions), but at the expense of expensive computational cost.

We do hope that our research outcomes will contribute considerably a step toward

the commercialization of vision-based fall detection technology, in particular and video

surveillance systems for healthcare applications, in general. Such systems will not

only bring huge benefits to the elderly but also bring smile back to the faces of

their families, caregivers, and the governments. The quality of life, the quality of

healthcare, the autonomy, the freedom, and the safety, etc. will be ameliorated in an

comfortable way since vision technology has been increasingly accepting by a majority

of the elderly community.

6.2 Future directions to fall detection

In this section, we delineate several research directions to fall detection.

6.2.1 Creation of benchmark dataset

The main application of fall detection methods is to help the elderly live alone at

home in safety. Benchmarking fall detection methods by real falls of the real elderly

is much better than by simulated falls performed by young actors. The creation of a

benchmark dataset containing real falls of the real elderly in real home environments

will evaluate fall detection methods precisely and promote its development signifi-

cantly, even though as we mentioned in Sect. 2.2.1 that it is a daunting task. To the

best of our knowledge, such real datasets are not publicly available. People, especially

the elderly, may be hesitated to appear in the publicly available datasets.

6.2.2 Fall detection on a mobile robot

A common assumption of fall detection methods is the usage of stationary cameras

so that foreground segmentation can be easily performed to detect moving people.
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Stationary cameras facilitate a common trend of analyzing silhouettes for fall detec-

tion, as illustrated in Sect. 2.3. However, we can relax this assumption by using

BoVW approaches as described in chapter 5, since BoVW approaches have demon-

strated good performance on datasets containing camera motions, like UCF101 and

HMDB51. Although BoVW approaches have expensive computational cost, the ad-

vances of GPU may help facilitate the real-time performance. Once the assumption of

stationary cameras is relaxed, it leads to an interesting applications of detecting falls

from a mobile robot. We can integrate the functionality of safety guards for assistive

social robots which have been recently developing to provide social interaction to the

elderly living alone, in order to relieve the depression and isolation [Broekens et al.,

2009]. Moreover, mobile robots are able to travel various rooms to follow the elderly

and monitor them, rather than placing networks of cameras in multiple rooms. The

combination of a Kinect and a mobile robot seems to be a promising solution. On the

one hand, the mobility of the robot help us overcome the depth range limitation. Both

color and depth image sequences can be used to locate and describe interest points.

On the other hand, Kinect is able to work in low-lighting conditions, especially at

night without ambient light.

6.2.3 Multiple-target fall detection

The fall detection methods proposed in this dissertation is very suitable to the elderly

living alone at home. That is, the methods only cope with the presence of single

person. In section 1.2, we argue that it is meaningless to use fall detection method

in an environment with two-people presence. When one person falls down, the other

one will easily detect the incident. However, the situation becomes dangerous if the

two people are unresponsive or slowly responsive. Even the person witnesses the

incident but is unable to response or help the victim immediately. This case requires

the extension of fall detection methods to cope with multiple targets. We need to

integrate multiple-target tracking algorithms into fall detection methods and take

human occlusion into consideration. In chapter 3, we should build the ground plane

model in 3D world and make the projections of the positions of 3D cuboids into the
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ground plane model for tracking and computing the features. It is straightforward

to extend the method in chapter 4 since multiple-target tracking by using planar

homography of the ground between views was well studied by [Khan and Shah, 2006].

They are some possible ways of extending and improving the quality of our works as

well as contributing to the development of fall detection methods.
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