A Thesis for the Degree of Ph.D. in Engineering

Advanced Robust Control via Disturbance Observer: Implementations in the Motion Control Framework

August 2014

Graduate School of Science and Technology Keio University

EMRE SARIYILDIZ

Thesis Abstract

No.

Thesis Title Advanced Robust Control via Disturbance Observer: Implementations in the Motion Control Framework Thesis Summary Disturbance Observer (DOb) has been widely used in motion control fields to achieve high performance robust motion control systems since it was introduced at the first IPEC conference in 1983. However, its applications still suffer from insufficient analysis and design control methods; therefore, the applications highly depend on designers own experiences. Since DOb is a very efficient and practical robust control tool deriving novel analysis and design control methods for DOb based control systems simplifies several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the applications areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 1 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, briefly. It is shown that conventional analysis methods affer from conservatism, a new robustness analysis method is proposed for DOb based control systems. Although conservatism is eliminated and the robustness of DOb to is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and Dob. To remove the strict assumption, a new robustness analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method and performance of control systems. Although the conservatism can be lessened by using Mora conservatism is re-considered by applying the practical constraint which occurs due to the low-pass-filter	Registration	■ "KOU"		Name	Sariyildiz, Emre		
Advanced Robust Control via Disturbance Observer: Implementations in the Motion Control Framework Thesis Summary Disturbance Observer (DOb) has been widely used in motion control fields to achieve high performance robust motion control systems since it was infroduced at the first IPEC conference in 1983. However, its applications still suffer from insufficient analysis and design control methods; therefore, the applications highly depend on designers own experiences. Since DOb is a very efficient and practical robust control tool, deriving novel analysis and design control methods for DOb based control systems simplifies several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 1 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, briefly: ti s shown that conventional analysis methods suffer from conservatism, an on to provide a clear insight into the robustness of DOb bis clarified, the proposed method suffers from the strict assumption on the proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is inclinate depanded on the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by usu	Thesis Title		Onice use only	<u> </u>			
Advanced Robust Control via Disturbance Observer: Implementations in the Motion Control Framework Thesis Summary Disturbance Observer (DOb) has been widely used in motion control fields to achieve high performance robust motion control systems since it was introduced at the first IPEC conference in 1983. However, its applications still suffer from insufficient analysis and design control methods; therefore, the applications highly depend on designers own experiences. Since DOb is a very efficient and practical robust control on control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Explore a nutroduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness of Dob. To eliminate conservatism, a new robustness analysis method is proposed for DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness and/sis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method san be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex anal							
Thesis Summary Disturbance Observer (DOb) has been widely used in motion control fields to achieve high performance robust motion control systems since it was introduced at the first IPEC conference in 1983. However, its applications still suffer from insufficient analysis and design control methods, therefore, the applications highly depend on designers own experiences. Since DOb is a very efficient and practical robust control of complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, briefly. It is shown that conventional analysis methods suffer from conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb bis dearlifed, the proposed method suffers from may strems as shown in Chapter 3, it is not a severe problem since the proposed motion systems. Stribugh the conservatism by using Bode and Poisson integral formalas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Alth	Advanced Robust Control via Disturbance Observer: Implementations in the Motion Control Framework						
Distinuated observer (1970) has been twas introduced at the first IPEC conference in 1983. However, its applications still suffer from insufficient analysis and design control methods; therefore, the applications pighly depend on designers own experiences. Since DDo is a very efficient and practical robust control tool, deriving novel analysis and design control methods for DOb based control systems simplifies several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control systems. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-enalysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb based control systems by using Bode and Poisson integral formulas. The proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed of uncertain plant model and Dob. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems ince the proposed method clarifies the robustness of DOb qualitatively. Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb and the conservatism can be lessened by using more complex analysis method suffer form the strict assumption, a new robustness analysis method is proposed for DOb based control systems are analyzed in detail. It is shown that the adawidth of DOb and the nominal inertia in	Thesis Summary						
applications still suffer from insufficient analysis and design control methods; therefore, the applications highly depend on designers own experiences. Since DOb is a very efficient and practical robust control tool, deriving novel analysis and design control methods for DOb based control systems simplifies several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, briefly, it is shown that conventional analysis methods suffer from conservatism and do not provide a clear nisight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb used control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb	robust motion control systems since it was introduced at the first IPEC conference in 1983 However, its						
highly depend on designers own experiences. Since DOb is a very efficient and practical robust control tool, deriving novel analysis and design control methods for DOb based control systems simplifies several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 1 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, briefly. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of posters. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs are analyzed in detail. It is shown that the stability and performance of the robust position and	applications stil	l suffer from	n insufficient analysis an	d design cor	ntrol methods; therefore, the applications		
theriving hover analysis and design control include for DOD based control systems simplines several complex robust control problems and high impact in different fields such as motion and process control areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. The proposing novel analysis methods based control systems. That conventional analysis methods which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb using increating the design control systems by using the design control systems by using the activatively. The inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb tree limited by	highly depend o	n designers o	own experiences. Since D	Ob is a very	efficient and practical robust control tool,		
areas. The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design oD Dot are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of DOb based robust position and force control systems are inproved by increasing the bandwidth of	complex robust	control proh	blems and high impact in	n different fi	elds such as motion and process control		
The main objective of this research is to extend the application areas of DOb by proposing novel analysis and design control methods and clarify its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the badwidth of DOb and the nominal inertia in the design of DOb are alimited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are	areas.	control proc	ine ingli impuet i		ende such as motion and process condition		
and design control methods and clarity its design constraints in the motion control field. Chapter 1 presents the background and objective of this dissertation. A detail literature survey on the robust control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb ualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of Dob. Implicit and explicit environmental impedance estimation metho	The main obje	ctive of this	research is to extend the	application a	reas of DOb by proposing novel analysis		
Chapter 2 describes the Guadantial objective of this dissertation. A detain iterature survey on the roots is control problem is provided. Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design contraint of imperfect velocity measurement. Then the stability and robustness of the DOb based robust fore control systems and the robustness of DOb.	and design conti	ol methods a	and clarify its design cons	traints in the	motion control field.		
Chapter 2 describes the fundamentals of DOb based robust control systems. Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and µ-analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems and the robustness of DOb. Implicit and explicit environmental imperfact velocity measurement. Then the stability and robustness of DOb and the nomina	control problem	is provided.			on. A detail incluture survey on the lobust		
Chapter 3 introduces two novel robust analysis methods for DOb based control systems. Firstly, conventional analysis methods, which depend on Small Gain theorem and μ -analysis, are explained, brielfy. It is shown that conventional analysis methods suffer from conservatism and do not provide a clear insight into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb traces the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems. and a eaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is pr	Chapter 2 desc	ribes the fund	damentals of DOb based	robust contro	l systems.		
to is shown that convertional analysis methods, which depend on shrain Gain theorem and p-analysis, are explained, othery insight into the robustness characteristics of DOb. To eliminate conservatism and do not provide a clear insight into the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability of the robust motion control systems and her obustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Ch	Chapter 3 int	roduces two	o novel robust analysis	methods to	or DOb based control systems. Firstly,		
into the robustness characteristics of DOb. To eliminate conservatism, a new robustness analysis method is proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems. Chapter 5 presents a novel non-linear stability and ser considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability and pustement of robust mosition control systems. Chapter 4 it is shown that the stability of the r	It is shown that	conventional	l analysis methods suffer	from conser	vatism and do not provide a clear insight		
proposed by using Kharitonov, Edge and Tsypkin-Polyak theorems. Although conservatism is eliminated and the robustness of DOb is clarified, the proposed method suffers from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by uncreasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control syst	into the robustn	ess characteri	ristics of DOb. To elimin	ate conservat	ism, a new robustness analysis method is		
and the foldshess of node is channed, the proposed method stricts from the strict assumption on the dynamics of uncertain plant model and DOb. To remove the strict assumption, a new robustness analysis method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulato	proposed by us	ng Khariton	ov, Edge and Tsypkin-P	olyak theore	ms. Although conservatism is eliminated		
method is proposed for DOb based control systems by using Bode and Poisson integral formulas. The proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems.	dynamics of un	certain plant	model and DOb. To rer	nove the strip	ct assumption, a new robustness analysis		
proposed method can be implemented to wide range of application areas such as plants with time-delay and right half plane poles. However, it is influenced by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 4, it is shown that the stability of the robut control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb.	method is prop	osed for DO	b based control systems	s by using B	ode and Poisson integral formulas. The		
In this plane poles. However, it is initiated by conservatism which may degrade the performance of control systems. Although the conservatism can be lessened by using more complex analysis methods as shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conv	proposed metho	d can be imp	plemented to wide range of	of application	a areas such as plants with time-delay and		
shown in Chapter 3, it is not a severe problem since the proposed method clarifies the robustness of DOb qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia.	control systems	Although th	he conservatism can be	conservatism lessened by 1	using more complex analysis methods as		
qualitatively. Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia.	shown in Chapt	er 3, it is not	t a severe problem since	the proposed	d method clarifies the robustness of DOb		
Chapter 4 introduces novel analysis and design control methods for DOb based motion control systems by using linear control methods. Firstly, the inner-loop of DOb based motion control systems is re-considered by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	qualitatively.		•				
by applying the practical constraint which occurs due to the low-pass-filter (LPF) of velocity measurement. It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	Chapter 4 intro	duces novel	analysis and design cont	rol methods f	for DOb based motion control systems by		
It is shown that the bandwidth of DOb and the nominal inertia in the design of DOb are limited by the practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	by applying the	practical con	nstraint which occurs due	to the low-p	ass-filter (LPF) of velocity measurement.		
practical design constraint of imperfect velocity measurement. Then the stability and robustness of the DOb based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	It is shown that	the bandwid	dth of DOb and the non	ninal inertia	in the design of DOb are limited by the		
based position and explicit force control systems are analyzed in detail. It is shown that the stability and performance of the robust position and force control systems are improved by increasing the bandwidth of DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	practical design	constraint of	f imperfect velocity meas	urement. The	en the stability and robustness of the DOb		
DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	performance of	the robust pr	osition and force control	systems are	improved by increasing the bandwidth of		
trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	DOb and the nominal inertia. However, they are limited due to the practical constraints; therefore, there is a						
explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (RFOb) and a detail comparison is provided. Finally, a novel adaptive design method is proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	trade-off between the stability of the robust motion control systems and the robustness of DOb. Implicit and						
proposed for RFOb based robust force control systems. Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	explicit environmental impedance estimation methods are considered by using a force sensor and a reaction force observer (REOb) and a detail comparison is provided. Finally, a poval adaptive design method is						
Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	proposed for RFOb based robust force control systems.						
problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4, it is shown that the stability of the robot control systems can be simply improved by increasing the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	Chapter 5 presents a novel non-linear stability analysis method for the DOb based robust position control						
the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	problem of robot manipulators by using the equivalence of the passivity and DOb based controllers. Similar to Chapter 4 it is shown that the stability of the robot control systems can be simply improved by increasing						
can be achieved if regulator problem is considered, the error of the robot control system is uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	the bandwidth c	the bandwidth of DOb and the nominal inertia matrix in the design of DOb. Although asymptotic stability					
uniformly-ultimately bounded if trajectory tracking control problem is considered when conventional acceleration based robust control system is used. The bound of error can be shrunk by increasing the bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	can be achiev	can be achieved if regulator problem is considered, the error of the robot control system is					
bandwidth of DOb and nominal inertia. Chapter 6 summarizes and concludes this dissertation.	uniformly-ultim	ately bounde	ed if trajectory tracking	g control pro	blem is considered when conventional		
Chapter 6 summarizes and concludes this dissertation.	bandwidth of D	Ob and nomin	nal inertia.		i enor can be smunk by mereasing the		
	Chapter 6 sum	marizes and c	concludes this dissertation	n.			