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Correct understanding of impurity transport processes in fusion plasmas is one of the most
important research subjects to realize stable energy production by nuclear fusion plasmas.
Numerical simulations are widely used to investigate the impurity transport and its effects in
fusion plasmas, such as the cooling of core plasma or the mitigation of plasma heat load onto
device walls. In order to improve the impurity transport simulation, we have developed a new
numerical model to simulate the thermal force acting on Kinetic test-impurity particles. The
thermal force is caused by Coulomb collisions with plasma ions if the background plasma has
temperature gradient. The impurity transport across the magnetic field by thermal force has not
been taken into account in the existing kinetic impurity transport simulation codes so far.

Chapter 1 summarizes the motivation and the research subject.

Chapter 2 describes the Kkinetic transport model of charged test particles in plasmas.
Coulomb collisions are modeled as random walk process in the velocity space, and background
plasma ions with temperature gradient are modeled by the distorted Maxwellian velocity
distribution.  Averaging all collisions between the test impurity particle and the plasma ions, the
thermal force is analytically derived.

Chapter 3 presents a new numerical model of the thermal force in unmagnetized background
plasma, by using the Binary Collision model (BCM) to simulate Coulomb collisions. Efficient
algorithm to randomly sample plasma ion velocities from the distorted Maxwellian has been
newly developed. This model is equivalent and applicable to the simulation of thermal force
along magnetic field line in magnetized plasmas.

Chapter 4 extends the model to the case of magnetized background plasmas. By adopting
more extended distorted Maxwellian, we have succeeded, for the first time, to kinetically
simulate the thermal force due to temperature gradient perpendicular to the magnetic field.
Such BCM-based model can be applied to more sophisticated impurity transport simulations
including dynamic changes of background plasmas due to interaction with the impurities.

On the basis of the study done in Chapter 3 and 4, another new thermal force model based on
the Fokker-Planck (FP) collision approximation has been developed in Chapter 5. The FP
approximation realizes more rapid calculation as far as the trace impurity limit holds. The
validity of the model has been checked by comparison with the results obtained in Chapter 4.

Chapter 6 summarizes the conclusion. Our new model has succeeded to simulate the thermal
force due to the parallel and perpendicular temperature gradient. Numerical impurity transport
simulation in fusion plasmas will be further improved by implementing our model.
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Abstract

Correct understanding of impurity transport processes in fusion plasmas is one of the most im-
portant research subjects to realize stable energy production by nuclear fusion plasmas. Numerical
simulations are widely used to investigate the impurity transport and its effects in fusion plasmas,
such as the cooling of core plasma or the mitigation of plasma heat load onto device walls. In order
to improve the impurity transport simulation, we have developed a new numerical model to simulate
the thermal force acting on kinetic test-impurity particles. The thermal force is caused by Coulomb
collisions with plasma ions if the background plasma has temperature gradient. The impurity trans-
port across the magnetic field by thermal force has not been taken into account in the existing kinetic
impurity transport simulation codes so far.

Chapter 1 summarizes the motivation and the research subject.

Chapter 2 describes the kinetic transport model of charged test particles in plasmas. Coulomb
collisions are modeled as random walk process in the velocity space, and background plasma ions
with temperature gradient are modeled by the distorted Maxwellian velocity distribution. Averaging
all collisions between the test impurity particle and the plasma ions, the thermal force is analytically
derived.

Chapter 3 presents a new numerical model of the thermal force in unmagnetized background
plasma, by using the Binary Collision model (BCM) to simulate Coulomb collisions. Efficient al-
gorithm to randomly sample plasma ion velocities from the distorted Maxwellian has been newly
developed. This model is equivalent and applicable to the simulation of thermal force along magnetic
field line in magnetized plasmas.

Chapter 4 extends the model to the case of magnetized background plasmas. By adopting more
extended distorted Maxwellian, we have succeeded, for the first time, to kinetically simulate the
thermal force due to temperature gradient perpendicular to the magnetic field. Such BCM-based
model can be applied to more sophisticated impurity transport simulations including dynamic changes
of background plasmas due to interaction with the impurities.

On the basis of the study done in Chapter 3 and 4, another new thermal force model based on the
Fokker-Planck (FP) collision approximation has been developed in Chapter 5. The FP approximation
realizes more rapid calculation as far as the trace impurity limit holds. The validity of the model has
been checked by comparison with the results obtained in Chapter 4.

Chapter 6 summarizes the conclusion. Our new model has succeeded to simulate the thermal force
due to the parallel and perpendicular temperature gradient. Numerical impurity transport simulation

in fusion plasmas will be further improved by implementing our model.
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Chapter 1

Introduction

1.1 Energy resource problems and nuclear fusion

Energy consumption in the human society is increasing year by year. To satisfy our energy de-
mand, various energy resources are being developed. The nuclear fusion energy is considered as one
of the most promising candidates for alternative energy resources of the future.

The nuclear fusion reaction (abbreviated fusion) is a reaction where lighter atomic nuclei fuse
together to make a heavier nucleus. Depending on the reacting nuclei species, the mass defect occurs
through the fusion. Such mass defect Am can bring enormous energy gain AE according to the
relativistic theory (AE = ¢*Am with the speed of light c). For example, the fusion is the energy
source of the stars.

To initiate the fusion process, positively charged nuclei have to come close enough to overcome
their repulsive Coulomb barrier before the attractive nuclear forces combine the nuclei. The most
feasible candidate for the controlled fusion is a reaction between the hydrogen isotopes, deuterium
(D) and tritium (T), called D-T reaction (Fig. 1.1),

’D + 3T — *He(3.52 MeV) + 'n(14.06 MeV). (1.1)
The energy production by the D-T reaction has the following advantages.

Energy gain: The released energy is about 1 million times larger than the chemical reactions, for
example, compared with the Hy combustion, Hy + (1/2)0y — Hy0 + 2.96 eV.

Abundance: The deuterium and tritium are in ample supply [1]. The deuterium is obtained by hy-
drolysis of the sea water, in economically sustainable way. The tritium is produced by neutron
bombardment on lithium, which is also available in abundance.

Safety: Unlike the nuclear fission of uranium, the D-T reaction does not have a chain reaction. There-
fore, such fusion reactions can be easily stopped by simply cutting off the D-T fuel gas supply.

In addition, the products by fusion are limited only to the helium and the neutron.

2



1.1. ENERGY RESOURCE PROBLEMS AND NUCLEAR FUSION

~~ nuclear fusion X
reaction
3.52 MeV
4
He

Figure 1.1: D-T fusion reaction.
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Figure 1.2: Rate coefficients of nuclear fusion reactions. (cited from Ref. [2].)

To start the D-T fusion reaction, a mixture of deuterium and tritium gas is heated up to the tem-
perature of 10 to 20 keV, i.e. more than 100 million K, where the reaction rate of D-T reaction in
Eq. (1.1) reaches its maximum (Fig. 1.2) !'. At such high temperature, all atoms are ionized. The
heated D-T gas becomes an electrically neutral mixture of ions and electrons, defined as plasma.
We keep such D-T plasma (otherwise fuel plasma) in a stable state, for the fusion reactions to occur

continuously. A practical condition called self-ignition criterion [1],
nteT > 3.1 x 10*! m3skeV, (1.2)

has to be satisfied in order for the fuel plasma to yield sufficient amount of energy to sustain the
plasma itself. The left hand side of the inequality (1.2) is called the fusion triple product consisting
of the number density? of plasma ions n (m~3), the plasma temperature 7' (keV), and the energy

confinement time of plasma * 7¢.

'Tt is useful in the plasma physics to express the temperature in the unit of Joule (J) or electron volt (eV), instead
of Kelvin (K). The absolute temperature Ty, (K) is converted into the unit of Joule by Tjoue(J) = k{g"‘”eTabs,, with the
Boltzmann constants k' = 1.3804 x 10723 J/K. The temperature in electron volt is calculated from the relation 1 eV

=1.6021 x 10719 J.
ZHenceforth, the word density always means the number density.
3The energy confinement time 7g is a characteristic time for a fusion plasma to lose its whole containing energy W

4



1.2. TOKAMAK DEVICE

AMagnetic field B

Charged particle

Figure 1.3: Larmor gyro-motion of charged particle around magnetic field line.

1.2 Tokamak device

To continue the fusion reactions, we have to hold the whole body of plasma separated away from
the device walls; otherwise so many undesired impurity particles are sputtered out from the walls by
plasma-wall interactions that fusion reactions stop immediately. The magnetic field makes it possible
to confine the plasma separated from the wall. In the presence of magnetic field B, charged particles
can move freely along the field line, but they are restricted to move across (i.e. perpendicularly to )
the B-field. They have to follow a gyration motion (Larmor gyration ) around the field line (Fig. 1.3),
due to the Lorentz force ¢(E + v x B). If a magnetic field line is closed on itself, without any end
edge, the plasma can be kept and confined as shown in Fig. 1.4. However, plasma confinement is not
enough for such a simple torus B-field because of particle drift motion. For better confinement of the
fusion plasma, properly arranged magnetic field configurations have been conceived so far. One of the
most promising and feasible concept is fokamak configuration. Fig. 1.5 presents a schematic structure
of tokamak device. A circular sequence of toroidal field coils forms a doughnut-shaped confinement
field, within which the fuel plasma is confined. The direction along which the toroidal coils are
aligned is defined as toroidal direction. And the poloidal direction is defined around the toroidal
direction. The tokamak device generates a torus-shaped closed magnetic field where the plasma is
confined (Fig. 1.6). Such magnetic field B is composed of the toroidal and poloidal component,
B := B, + B,. The B-field line follows a helical trace, surrounding the torus surface (Fig. 1.7). The

without any heating. It is estimated by 75 = W/ Puss, where the rate of energy loss Ploss out of plasma is determined by

the plasma transport, the interaction with device walls, and the synchrotron radiation etc.
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Figure 1.4: Principle of magnetic confinement.
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Figure 1.5: Tokamak plasma device.
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Center solenoid coil

Toroidal
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Figure 1.6: 3D shape of tokamak plasma.

Helical magnetic field lines B = Bt + Bp

Figure 1.7: Tokamak magnetic field line in helically winding shape. (cited from Ref. [21].)
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Figure 1.8: Induced plasma current by increasing the central magnetic flux.

toroidal component B, is generated by the external toroidal coils shown in Fig. 1.5. The poloidal
component B, is generated by a toroidal current (also called plasma current). The toroidal current
is, in turn, induced by increasing the magnetic flux within the central solenoid coil which is installed
in the central part of the doughnut (Fig. 1.5). This induced current is simply understood by the
Faraday’s law of induction in Fig. 1.8. Such B,-production, called inductive current drive, makes the
steady-state operation of tokamak challenging. However, to resolve the problem, various methods of
non-inductive current drive have been proposed and validated, e.g. RF(Radio Frequency) current drive
or NBI(Neutral Beam Injection) current drive. Tokamak is still the closest to real energy production
by the fusion.

To realize controlled fusion energy production, many tokamak experimental devices have been
developed so far. Actual tokamak devices such as JT-60 U (Japan) [3, 4, 5], ASDEX Upgrade (Ger-

3
, a

many) [6] and JET (United Kingdom) [7, 8] can operate at a core plasma density n =~ 10%° m~
core temperature 7' ~ 20 keV, and a confinement time 75 ~ 0.1 — 1 s. Their achievements in energy

production are measured with the energy gain factor,

Q- Prysion  Fusion energy released by D-T reaction

= 1.3
Preating Plasma heating energy required (1.3)

The energy gain factor () = 1 has already been achieved by the JT-60 U and JET tokamak. The
international thermonuclear experimental reactor ITER [9, 10, 11] was designed and is now being
constructed in France by international collaboration. The ITER is expected to operate at () > 10 with
an industrial-scale fusion power FPgysion = 500 MW in 2019. Based on the physics and engineering
achievements of ITER experiments, the first real fusion power plant DEMO [12] will be constructed

in the near future, in order to supply electrical energy to our society.
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A Vacuum vessel and First wall
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Inner divertor plate

Private region Outer divertor plate

Figure 1.9: Poloidal cross section of the tokamak device.

1.3 Impurity particles in tokamak divertor configuration

1.3.1 Problems of impurities

This study focuses on the impurity transport problem in fusion plasmas, which is one of the most
important research subjects to develop a sustainable tokamak device. In fact, tokamak confinement
is not perfect. Due to the diffusion process and the plasma instabilities, plasma ions and electrons
may gradually leak and escape from the closed magnetic field toward device’s material walls. When
escaping plasma ions collide to walls, various particles of wall component such as C, Fe, Be, W are
sputtered out. If these impurity particles enter the core plasma, they would stop the fusion reactions
by cooling the plasma temperature by strong radiation (Fig. 1.12). Controlling the impurities is

indispensable for the fusion reactor to operate continuously.

1.3.2 Divertor configuration

It is possible to reduce the impurity yield from walls by weakening the plasma-wall interactions.
For this purpose, a divertor magnetic field configuration has been conceived. Figure 1.9 shows the
poloidal cross section of divertor configuration. It is realized, as shown in Fig. 1.10, by introducing a
divertor coil inside which the electric current passes in the same direction as the plasma current. The
most peripheral layer of the torus-shaped B-field is modified and no longer closed on itself (called
open field). Due to the current in divertor coil, a point where the poloidal magnetic field Bp is null

appears in the poloidal section (Fig. 1.10). This is called the X-point, and the magnetic flux surface
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CONFIGURATION

Divertor coil current

Figure 1.10: Divertor configuration.
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1.3. IMPURITY PARTICLES IN TOKAMAK DIVERTOR
CONFIGURATION

eaking Plasma Flow

Figure 1.11: Plasma flow leaking from the core.

passing over the X-point is defined as separatrix flux surface. The volume inside the separatrix is the
core region where the fusion plasma is retained steadily to promote the fusion. The peripheral region
outside the separatrix is called Scrape-Off Layer (SOL), where the magnetic field is open. At the end
edges of the SOL, heat-resistant plates called divertor plates are installed. The SOL region below
the X-point, just before the divertor plates, is especially called divertor region. The combined area of
SOL and divertor region is called the edge region. Plasma ions and electrons leaking from the core
are transported along the open B-field in the SOL, to run into the divertor plates, as shown in Fig.
1.11.

The divertor configuration has the following advantages:

e The plasma-wall contact area, from where impurities are generated, is limited to small divertor
plates.

e The leaking plasma has some time to lose its energy by radiation and collisions with other
particles during their passage through the SOL. The plasma arriving at the divertor region can be
largely cooled down (7' ~ 10 keV = 10000 eV at the core, to 7" ~ 10 eV before divertor). Low

plasma temperature weakens the plasma-wall interaction, and impurity generation is reduced.

Owing to such advantages, the divertor configuration has succeeded to reduce the impurity amount
penetrating the core. The fusion performance has been largely improved.

On the other hand, from the divertor’s point of view, treating and receiving such concentrated

11
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A Dilution of
fuel D-T plasma.

Edge
(SOL-Diverto

: ®® [mpurity particles . :
° A Disturb fusion
Reactions.

‘.-""‘"Radiations
O Reduce heat load
on divertor plates

Figure 1.12: Effects of impurities on fusion plasma.

leaking plasma on the divertor plates is a challenging problem. The actual most advanced divertor
materials (carbon, tungsten, etc...) can resist the incoming heat flux of up to 10 MW/m?. For ITER
experiment, the heat load onto the divertor plates is expected to become much larger than 10 MW/m?
unless we take any preventive measure.

An effective solution to reduce the divertor heat load is to reduce the energy of incoming plasma,
i.e. its temperature and flow. Differently from the core case, the impurities here make useful and
important contribution. They can dissipate the energy of leaking plasma during its passage through
the edge region to divertor (Fig. 1.12). In preceding experiments, it has been succeeded to reduce the
divertor heat load to a sustainable level, by artificially injecting some amount of impurities in the SOL
region. Such plasma cooling by impurities is necessary for the divertor plates to endure throughout
the plasma operation. Of course, increased amount of impurities for plasma cooling in the edge has a
risk to degrade the core plasma performance. An appropriate balance between them has to be found.

The arguments above are the reasons why the impurity transport research is very important to
develop fusion devices. In fusion plasmas, it is required to control the impurities, especially in the
edge region, in order for them not to enter the core , but at the same time, do remain in the edge.

Effective technique to establish these conflicting requirements remains still to be developed. A
lot of experimental and simulation research activities are being devoted for this purpose. The present

thesis is one of such contributions.

12



1.3. IMPURITY PARTICLES IN TOKAMAK DIVERTOR
CONFIGURATION

Larmor-gyro "\ Core

motion @

Divertor plates

Figure 1.13: Picture of motion of the impurity particles just sputtered out of walls.

1.3.3 Impurity transport in the edge plasma

In order to control impurity behavior, we have to correctly understand the impurity transport
processes in fusion plasmas, especially in the edge. When we focus on the impurity transport, the
main fuel plasma is often referred to as background plasma.

The impurity particles (mass m, electric charge ¢) sputtered from the walls move in straight lines
while they are neutral particles. Usually they are quickly ionized by hot background plasma (Fig.
1.13), to follow the magnetic field line B with the Larmor gyro-motion. The motion of impurity is
also influenced by the external electric field EE and the Coulomb collisions with background plasma
ions and electrons (Fig. 1.14). These three factors, B, E, and Coulomb collisions, mainly determine
the impurity transport.

The Lorentz force of electro-magnetic field FLo*"? := ¢(E+ v x B) has two effects: the magnetic
term makes the ions to follow the Larmor gyration around the B-field line (Fig. 1.3), and the electric
term drives the EE x B drift of guiding center of impurity ions across the B-field as shown in Fig.
1.15. These external forces are deterministic, therefore, easy to simulate.

The impurity ions receive the forces by Coulomb collisions with background plasma ions. Such
Coulomb collisional forces consist mainly of the three kinds of force: (i) the frictional force [13], (i1)
the thermal force [14] (or temperature gradient force [15]) and (iii) the force due to the viscosity [14].

The frictional force acts on impurity ions regardless of background temperature gradient. Its
direction and magnitude are proportional to the relative velocity between the impurity ion velocity
and the background plasma flow velocity. As shown in Fig. 1.11, since the background plasma flows
from the core to the divertor plates, the frictional force usually transports the impurities toward the
divertor region.

In the present study, the force due to the viscosity is assumed to be negligible, for simplicity.

Effects by such plasma viscosity should be addressed in the future.
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Diffusion

FY’-drift (TSE)

ExB drift

Bx V B drift

Frictional force
FO

@ [mpurity particles

Figure 1.14: The impurity transport in plasmas is schematically presented. The balance between the
frictional force F and the parallel thermal force FfT determines the transport along magnetic field
B. Across the magnetic field, impurities are transported by the diffusion, E x B-drift, B x V B-drift,
and the temperature screening effect (TSE) which is a drift by the diamagnetic thermal force FY7.

These transport effects occur on the impurities simultaneously.

: Charged particle
with electric charge +q [C].

B Guiding Center

Figure 1.15: The E x B drift of guiding center of a charged particle across the magnetic field B.
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Figure 1.16: Mechanism of thermal force due to parallel temperature gradient. (cited from Ref. [50].)

The thermal force, which is the main subject of this study, is caused by the background tempera-

ture gradient V'T}, [14], and has important effects on the impurity transport in plasmas.

1.3.4 Mechanism of thermal force due to parallel temperature gradient

The thermal force is caused by the fact that the Coulomb collision frequency v, is dependent on
the background temperature 7; [14]. Suppose a test impurity particle is moving sufficiently slowly in
a steady background plasma “. Background plasma ions are moving freely (along magnetic field if
the plasma is magnetized) by thermal agitation. They come to the test particle by flying a distance of
mean free path \vrp °. When there exists a temperature gradient, the coming background ions have
different energy, i.e. different temperatures, as shown in Fig. 1.16. The amount of momentum which
is transferred to the test impurity by collisions, is roughly estimated by myvi, p4. The Coulomb
collision frequency v, is inversely proportional to the cubed relative velocity between the colliding
two particles u (i.e. between the test impurity and a background plasma ion) as v, o< u 2. The relative
velocity u is approximated by the thermal speed of background plasma ion vy, 1= \/m with
the mass of background ion my. Then, it is deduced that the momentum transfer to the test particle is

inversely proportional to the background temperature at the location of the plasma ions,

-2 —1
MpVth pVp X Vg X Tb . (1.5)

“When a test particle moves faster than the thermal speed of background plasma, the mechanism of thermal force is

differently explained as in Sec. 2.3.1.
>The mean free path is an average distance traveled by a background ion during its two successive Coulomb collisions,

estimated by

Uth,b
Vp '

AMFP = (1.4)
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Figure 1.17: Temperature profile and force balance for an impurity in a fusion device. (cited from
Ref. [50].)

From Fig. 1.16 and Eq. (1.5), the plasma ions coming from a lower 7}, region exert stronger force
on the test particle than the ions coming from a higher 7} region. Consequently, a net force acts on
the test particle in the direction of temperature gradient, that is, toward the hotter region. This is the
parallel thermal force due to parallel temperature gradient if the plasma is magnetized.

In the direction along the magnetic field, the particle transport (i.e. whether impurity ions go back
to the divertor, or climb up the SOL and are getting closer to the core) is basically determined by the
balance between the parallel thermal force and the frictional force [16, 17]. The parallel thermal force
is due to the parallel temperature gradient V T}, along the B-field line. Figure 1.17 shows a schematic
of parallel transport, with a temperature profile typical in nuclear fusion devices. The frictional force
due to background plasma flow from the core drives impurities toward the wall. On the contrary,
the thermal force occurs along the temperature gradient, i.e. from the colder divertor region to the
hotter core, pushing impurities up to the core. With steep temperature gradients in fusion plasmas,
the magnitude of thermal force can be greater than that of the frictional force [16]. Then, impurities
are driven toward the hot core by the thermal force. Such negative effect of thermal force has to be

correctly estimated.

1.3.5 Mechanism of thermal force due to perpendicular temperature
gradient

We summarize the mechanism of the thermal force on a test particle placed under perpendicular
temperature gradient as shown in Fig. 1.18. The background plasma is magnetized by magnetic

field B along the Z-axis. The perpendicular temperature gradient V7 is established along the X -
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NY

Figure 1.18: Thermal force perpendicular to the magnetic field B. (cited from Ref. [30].)

axis. Background ions, gyrating in circles with Larmor radius 77, come to the test particle from
different 7} regions. They collide with the test particle from different directions. The average speed
of the background ions is estimated by the thermal speed v, ;, with the temperature at their center of
gyration. For simplicity, the ion thermal speed vy, ;, is supposed to be faster than the speed of test
particle. Since the amount of momentum transfer by collisions from a background ion to the test
particle is estimated as 7V, pVcon < vt’,fb x T 1, the slower ions coming from the left side (colder
side) in Fig. 1.18 push the test particle down more strongly than the faster ions from the right side push
it up. Such unbalanced collisional momentum transfer leads to a net force on the test particle toward
the (—Y)-direction. This is the thermal force due to perpendicular temperature gradient. As it acts
perpendicularly to both the magnetic field and the temperature gradient, we call it the diamagnetic
thermal force in this study.

In the perpendicular direction to the B-field (also referred to as radial direction), a steep temper-
ature gradient is established within the SOL. It is because that the background plasma leaked from the
core into the SOL escape very fast along the open B-field, much more quickly than the time scale for
the plasma to move across the B-field by diffusion. The perpendicular temperature gradient V | Tj, is
much steeper than the parallel gradient (e.g. Their typical values in the SOL are V T}, =~ 100 - 1000
eV/m while V|1, ~ 1 - 10 eV/m). Perpendicular motion of impurities across the B-field is brought
about by the diffusion due to Coulomb collisions and by the guiding center drift. In addition to the
well-known E x B drift [18] and curvature B x V B drift [18], the diamagnetic thermal force drives
another drift which transports the impurity ions across the B-field toward (—V T})-direction, i.e.

perpendicularly from hot to cold plasma region. It is a macroscopic transport effect of thermal force
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called temperature screening effect (TSE) [19]. Since the TSE is expected to eject impurities from
the hot core and prevent them to penetrate the core, the diamagnetic thermal force has to be correctly

estimated. However it has not been taken into account in any previous impurity transport simulations.

1.3.6 Impurity transport simulation and thermal force modeling

Numerical simulation is a very useful tool for impurity transport study. In the experiments one
can observe the final density profile of impurities after plasma operations, but their transient trajecto-
ries followed, their generation from wall sputtering, and their complicated chemical/atomic reaction
processes during operations, are very difficult to be observed directly. The numerical simulation is
able to see such processes. The accuracy of simulation is determined by the correct modeling of in-
tervening physics phenomena. This thesis is about to develop more reliable modeling of the thermal
force on impurity.

In the preceding works, two types of impurity transport models have been developed: fluid model
and fest particle model (also called kinetic model). The fluid model treats the impurities as a fluid
element, while the test particle model solves the motion of individual impurity test particles. The test

particle model has the following advantages [16, 17, 20] compared with the fluid model:

1. The model directly follows the trajectories of each impurity test particles.

2. Various collisional effects on impurities, such as the ionization / recombination process and
Coulomb collisions with background particles can be precisely simulated.

3. The interaction between impurities and wall materials (such as the self-sputtering) can be cor-
rectly simulated.

4. The model can be applied for background plasmas of any collisionality, while the fluid model

is applicable only under high collisionality.

These days, the test particle modeling has been more and more adopted for impurity transport simu-
lation in fusion plasma because of its superior accuracy brought by the above advantages. In addition,
improvements in numerical efficiency by more sophisticated algorithms and by more powerful com-
puter resources are promoting the use of test particle modeling.

In the test particle modeling of impurity transport processes, the following physics have already

been included:

e Lorentz force (Larmor gyro-motion)
e Coulomb collisions for stochastic diffusion
e E x B driftand B x VB drift

e Anomalous diffusion, which is due to perturbation of B and E-field in background plasma.
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e Chemical and atomic reactions such as the ionization, the recombination, the charge exchange

and so on.

A lot of numerical codes based on the test particle model have been extensively developed in world
wide so far, e.g. DIVIMP [22], IMPMC [23], BBQ [24], MCI [25], DORIS [17]. In addition to these
codes, the IMPGYRO code [26, 27] has recently been developed for the transport analysis of high-Z
impurities such as tungsten.

However, the modelings above are not complete yet. The thermal force has not been included or
correctly modeled, although it can have important effects on impurity transport [29, 30, 19, 17].

In the existing test-impurity transport codes listed above, the thermal force is simulated by the
following two modelings. One is the fluid-type model [14, 28, 15, 16] and the other is the kinetic-
type model [17, 29].

In the fluid-type model [28], the thermal forces due to parallel temperature gradient of background

electrons V|7, and ions V T}, are given by

PV = a,V\T. + 8,V T, (1.6)
ay = 0.7127 (1.7)
1 —p—5vV22%(1.1p°/% — 0.35%/?)

= -3 X 1.8

bz 2.6 — 24+ 5.442 ’ (1.8)
mz

_ 1.9

. m—+mg’ (1.9)

with the electron temperature 7, the background ion temperature 7; and its mass m;, and the
impurity particle mass m  and its charge state Z. For each collision event between an impurity
test particle and a background plasma ion, the above value of thermal force is added on each
impurity particle. As seen from Eq. (1.6), the information about the velocities of colliding
impurity and background ion are discarded. In addition, only the parallel temperature gradient
is considered in the actual simulation codes.

In the Kinetic-type model, the formula of kinetic thermal force in Eq. (2.59) is made use of. The
kinetic thermal force can take into account both the velocities of colliding impurity and back-
ground ion. The kinetic-type model is more correct than the fluid-type model. As discussed in

Sec. 2.3.1, the reversed thermal force can be simulated only by the kinetic-type model.

The fluid model is useful and valid if the background thermal speed is much faster than the test
impurity ion speed. This assumption is fulfilled for the case between the test impurity ions and the
background plasma electrons because of their large mass difference. The thermal force due to the
electrons gradient VT, can be simulated by the fluid-type modeling.

However, as pointed out in Ref. [17], the fluid-type model gives incorrect results between impurity

ions and background ions because they have the same order of mass. Impurities can move as fast as
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or even faster than background ions. More careful kinetic modeling is required for the thermal force
by the background ions gradient V'7;.

Some numerical modelings of the kinetic thermal force have been developed so far. For example,
the DORIS code [17] and the IMPMC code [29] are equipped with the most advanced kinetic model
of thermal force. They can simulate the kinetic thermal force along the magnetic field line by using the
Fokker-Planck collision method, taking into account the parameters such as individual test particle
velocity, the parallel temperature gradient VT, and the background plasma density and its flow
velocity.

However, in all existing kinetic impurity transport simulation codes, steep perpendicular temper-
ature gradient V | 7}, in the edge and its thermal force have still been neglected, even though they may

have non-negligible effects on impurity transport [30].

1.4 Purpose of Study

The purpose of this thesis study is to develop a numerical model of the thermal force for the kinetic
test particle transport simulation in fusion plasmas. Our model aims to correctly simulate the thermal
force on individual test particle, caused by parallel (V| 1') and perpendicular background temperature
gradient (V  T'). Since the thermal force is a part of Coulomb collisional force, correct modeling of
velocity distribution of background plasma ions and correct simulation of Coulomb collisions play
key roles in our model.

To model background plasma ions with temperature gradient, we try to use a distorted Maxwellian
distribution function. And two types of Monte Carlo methods are exploited for Coulomb collision,
i.e. the Binary Collision Model (BCM) and the Fokker-Planck (FP) collision method. All the actual
kinetic impurity transport simulation codes use one of these two methods. Since both the BCM and FP
method are made available, our new numerical model of thermal force can be very widely applied, to
realize more reliable impurity transport simulations which will surely contribute to the development

of fusion energy.

1.5 Thesis outline

The thesis is organized as follows.

In Chapter 1, brief introduction to the development of nuclear fusion energy, the background and
the purpose of study are presented. For stable energy production by the fusion, there are still many
challenging tasks to overcome. This study aims to solve one of them: modeling of thermal force for

reliable impurity transport simulation in fusion plasmas.
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In Chapter 2, the basic theories are explained. Combining the kinetic transport theory of charged
test particle, with the background plasma ions in distorted Maxwellian velocity distribution, leads to
the analytical formula of thermal force.

In Chapter 3, as a first step toward our goal, a numerical model of thermal force in an unmag-
netized plasma is presented. It is in fact equivalent to the simulation of parallel thermal force in
magnetized plasma. Coulomb collisions between test particles and background plasma ions are sim-
ulated by the Binary Collision Model (BCM).

In Chapter 4, we extend the model to the case of magnetized background plasma. A perpendicular
temperature gradient is introduced. The diamagnetic thermal force caused by perpendicular temper-
ature gradient is intensively investigated. Coulomb collisions are also simulated by the BCM as in
Chapter 3.

In Chapter 5, another thermal force model in magnetized plasma based on the Fokker-Planck (FP)
collision approximation is presented.

Chapter 6 summarizes the thesis.
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Chapter 2
Basic theory

The basic theories of this study are explained in this chapter. At first, a kinetic transport theory,
called Test Particle model, gives a general expression to estimate the Coulomb collisional force acting
on a test charged particle in plasma. Next, we will show that the behavior of background plasma ions
under the existence of temperature gradients is characterized by the distorted Maxwellian velocity
distribution. Combining these theoretical considerations, we will find the analytical formula of the

thermal force on test impurity particles.

2.1 Kinetic transport theory of charged test particle in plas-
mas

The motion of impurity ions in fusion plasmas is determined by the externally applied electro-
magnetic field (E and B) and by Coulomb interaction with background plasma ions (Coulomb colli-
sion). The simulation and estimation of Coulomb collisional force should be handled more carefully
than the external electro-magnetic forces, because the Coulomb collision scatters randomly the veloc-
ity of impurities. The theoretical estimation of Coulomb collisional force is presented in this section,

by following the considerations given by Trubnikov [13].

2.1.1 Test particle model

To model an impurity ion in background fusion plasmas, we consider a test charged particle. We
will estimate the force on such a test particle due to Coulomb collisions with background plasma ions.
We start at a simple case where the test particle is fixed in the space. Then, the realistic condition
with freely moving test particle and with arbitrary velocity distribution of background ions will be

considered, to find a general expression of the collisional force on test particles.
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A2

Figure 2.1: Test Particle Model.

2.1.2 Force on a fixed test particle by Coulomb collisions with a uni-
form flux of background ions

Figure 2.1 shows an event of Coulomb collision schematically. As a first step, we consider a test
charged particle (species: a, mass: m,, electric charge: ¢,) fixed at a point in the space (it is equivalent
to take the limit of m, — o0). The uniform incident flux of background plasma ions (species: b,
mass: m, electric charge: ¢,, number density: n;) are supposed to come from the infinity, to collide
with the test particle of species a. The incident flux of ions of species b is distributed uniformly in
the space with the number density 7, and all ions of species b have the identical initial velocity u.
Through many Coulomb collisions with such background ions of species b, the test particle of species
a experiences the collisional force F@fixed,

We will introduce the following definitions as shown in Fig. 2.1. The direction of the incident flux
velocity u is defined as the Z-axis. The X - and Y -axis are taken perpendicular to the Z-axis, and the
X-Y plane is named as &-plane. The rotation angle ¢ around the Z-axis is measured from the X -axis.
The distance of the incident particle of species b from the Z-axis is named the impact parameter p.

Let one Coulomb collision occur between the fixed test particle of species a and one incident
background ion of species b with the impact parameter p. The collision is supposed to be elastic. As a
result of collision, the velocity u of the ion of species b is scattered to u’. The collision is characterized
by the scattering angle 6, which is defined as the angle between the vectors u and u’. The rotation
angle ¢ does not change throughout the collision.

To determine the force F»* exerted on the fixed test particle, we start at estimating the momen-
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Plane lu|=|u’|
u
0.
6/2

Auz= -|Au|sin(6/2)
Figure 2.2: Velocity change of incident particle by Coulomb collision with a fixed particle.

tum change in one collision Ap§™ <! felt by a single incident ion of species b. Let’s find the velocity
change in one collision Au®® ! of the colliding ion of species b. The motion of the ion of species b

follows the equation

dpb _ qvqa . (rb - ra)
dt dmey |y — 1g]3

where the positions of the fixed particle of species a and the incident ion of species b are indicated,

Po(= mpu) == (2.1)

respectively, by r, and r,. The overdot denotes a time derivative. To focus on the Coulomb collision
process, only the term of Coulomb interaction is retained in the right hand side of Eq. (2.1), i.e.,
the Lorentz force ¢,(E + u x B) has been omitted. In this study, all the physical quantities are

measured in the international system of units (SI). The velocity change Au®* <!

can be obtained by
integrating Eq. (2.1) during the Coulomb interaction time At°<ll By taking the limit of infinite
mass (m, — oo) and the assumption that the Coulomb collision be elastic, only the direction of u is
changed by the collision. As shown in Fig. 2.2, the relation between the incident velocity u and the
scattered velocity u’ can be simply deduced. The velocity change of the ion of species b projected on

the Z-direction is
0
Augecoll = 2y sin? 7 (2.2)

The expression Eq. (2.2) is valid for any kind of elastic collision. To consider the case of Coulomb
collision, we need to exploit the relation between the impact parameter p and the scattering angle 6,

which is particular to Coulomb collision, such as [13]

0 a ,
fan - — —dadb __ PL i (2.3)
2 Adwegmpuip p
Gaqb
= — 2.4
pL pr— (2.4)
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where ¢ is the vacuum permittivity. It is obtained by integrating the Coulomb interaction' between
the particles, during the collision. Now, the velocity change Auy®! of an incident ion of species b
is related to its initial velocity and the impact parameter

one coll i .2 0 pi
AuP " = =2usin® = = —2u———

. 2.5
2 pi +p? -

We integrate Eq. (2.5) to find out the total momentum change Apf°™ experienced by the flux

of ions of species b per unit time. The number of ions of species b passing through an elementary
area do = pdpd¢ in the -plane (in Fig. 2.1) per unit time is nyudo. Every one of the ions of species
b passing through a specific area do is scattered by the same angle #, and undergoes the momentum
change Ap§™ <l = m;, Au® <!l Their rotation angle ¢ is not affected. By using Eq. (2.5), the time
rate of change of the total momentum Ap ™ felt by the ions of species b is obtained by integrating

Apgre el gver the entire £-plane,

TOTAL 11 one coll.
Apb Apzne «© o fg-plane mbAu (nbUdU)

2.6
1s ; 1s 1s (2.6)

Since the uniform flux of ions of species b is scattered symmetrically around the Z-axis, only the

Z-component of momentum change remains after the integration:

&-plane u

9] p u

u
/ mpyAu® tnudo = / my Aug® M nyudo (—)
&-plane

According to the equation of motion, the total interacted force F° on all ions of species b in the

incident flux is given by Egs. (2.6) and (2.7) as the time rate of change of their total momentum,
ApTOTAL
FPo—p— P (2.8)
1s
The resultant force F»*d exerted on the fixed test particle of species a is then deduced from the

law of action and reaction,

ApTOTAL
Fa,ﬁxed — _Fb — b 2.9
—— (2.9)
— (4 2,2 / P g (E) . 2.10
( MmNyl pJ_) ; p2 I pi 1% w ( )

I'The following assumptions have been adopted,

e Binary Collision Approximation, i.e. the charged particle of species a interacts with only a single ion of species b
in the flux, at any given instant of time.

e The Coulomb potential field is described by the classical approximation. The charged particles are considered as
sufficiently small spheres, i.e. their internal distribution of the electrons and protons is neglected.

e No effect of quantum mechanics.
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The integral in Eq. (2.10) converges with a finite value called Coulomb logarithm (See Appendix A).

Hereafter it is written as

P
InA:= dp. 2.11
n /P2+Pi P ( )

For typical tokamak plasmas, the value of Coulomb logarithm is about In A = 10 ~ 17 [18].
Finally, the force F*d exerted on the infinitely heavy test particle of species a by the spatially

uniform flux of the ions of species b is
a,fixed 2 2 u
Fo™ed = (4rmynyu’p?) (In A) - (—)
U

2.2
_ %™ (ln/l)'<£3>~ (2.12)

detmy, u

In the next section, the formula of Coulomb collisional force will be further extended to more realistic

situation.

2.1.3 Force on a moving test particle by Coulomb collisions with back-
ground ions

The formula Eq. (2.12) is extended to more realistic situation. Now we suppose that the test
particle of species a with a finite mass m, is moving with a velocity v through a background plasma
consisting of ions of species b whose velocity distribution is an arbitrary function f,(v;). Figure 2.3
is a schematic of Coulomb collision event between these particles of species a and b. The objective
is to find the force F'* acting on the test particle of species a exerted by Coulomb collisions with the
background ions of species b.

The velocity distribution function f,(v;) is normalized to the number density of plasma ions 7,

// fo(vp)dvy = . (2.13)

The number density of the ions of species b moving with a specific velocity v; is given by
dny(vy) = fo(vy)dvs. (2.14)

The binary collision approximation is assumed, only two-particle interaction is considered.

We apply the results obtained in the previous section 2.1.2 to the present problem. We make use
of an interpretation that the background plasma ions is made up of elementary uniform fluxes of the
ions of species b with a specific velocity v, and a number density dn,(vy). The total force F* on the
test particle of species a is then, obtained by summing up all contribution from each elementary flux

of the ions of species b. According to Coulomb’s law, the equations of motion of the interacting two
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particle a particle b
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Coulomb collision!
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Figure 2.3: Schematic drawing of Coulomb collision event.
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particles of species a (mass: m,, charge: q,, position: r,) and b (mass: m,, charge: ¢,, position: r)
are described as,

. . . r,—T
Test particle (species a):  m,I, = Qoo . (ro —1s) ,
ey |ry — 1|3

4v9a (I'b - I"a)
deg [Ty — g3

Background ion (species b):  myt, = (2.15)

These motions are described more clearly in the frame of center-of-mass coordinates. The position of
the center-of-mass R and the relative distance r between the two particles are introduced,
MeTrq + My
R — ata bLlb 7 (216)

Mg + My
r.=r,—1, 2.17)

These center-of-mass coordinates are related to the original coordinates by,

r,=R+ UL r
Mg + My

rp=R— — % (2.18)
Mg + My

Substituting Eq. (2.18) in Eq.(2.15), we obtain the equation of motion for the center-of-mass

coordinate system,

R=0 (. R=V:constant.) (2.19)
qaqb r

i L T 2.20

HabT dre, 13 (2.20)

where [, = mgmy/(mg + my) is the reduced mass.

From analogy to Eq. (2.1), Eq. (2.20) represents the equation of motion of a virtual particle (mass:
Lab, €lectric charge: gy, position: r) which is in interaction with an imaginary fixed particle (mass: oo,
electric charge: q,, the position is at the coordinate origin 0). We suppose that a spatially uniform flux
of such virtual particles with the mass y,; is coming with the velocity £(= v — vy), to be scattered by
the imaginary fixed particle. Since Eq.(2.20) is identical with Eq. (2.1), the same argument as in the

section 2.1.2 can be applied, after the following substitutions are made,

" —b s 2.21)
ny — dny(vy), (2.22)
u—r=v-vj, (2.23)
r, = 0. (2.24)

Therefore, by making use of Egs. (2.9) and (2.12) focusing on F?, the collisional force exerted on the

elementary flux of virtual particles of the mass ji,y, is
V-V,

- Vépfb(v{))dvg. (2.25)
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We multiply the first equation in Eq.(2.18) by m,, and then differentiate it twice with respect to
the time. Using the Eq.(2.19), we arrive at the following equation,

Mata = MaR + flapt = papt. (2.26)

That is to say, the force acting on the test particle of species a in the given interaction is equal to the
force exerted on the virtual particle with the mass .. Integrating over all contributions of ion fluxes
of species b with velocity v;, we obtain the collsional force acting on the test particle of species a

moving with the velocity v through the plasma composed of ions of species b,

Fi(v) = /dF
2.2
4,4 /
— (In A) dvy. 2.27
4776(2)Mab /// |V _ b|3 Vb) Vb ( )

The Coulomb logarithm In A has been treated as constant in the integration over the velocities v; of

background ions of species b (See Appendix A.2).
0 The velocity space integral in Eq.(2.27) is difficult to calculate straightforwardly, because the
integrand function has a singularity point at v, = v. For its calculation, we introduce the Rosenbluth

potential function [31] ¥(v,) defined as

V) = _8%///|V — V| fo(Vp)dvy. (2.28)

The background velocity distribution f,(v;) is taken into consideration through the potential W,

The following relations are useful for the subsequent analysis.

0? 0? 0? )
A=l =1 G Vil =1 22
V|V — vy (8 2 " B2 + 5 z) v — vy Rk (2.29)
1 0 0 0 1 v — v,
Vy Viv—wvy| ((%QE + a_vyey + a—vzez) —|V ey —m, (2.30)

where A\, and V, are the Laplacian and the gradient operator in the velocity space.

The integral in Eq.(2.27) is related to the potential W, as follows

AT, (V) = /// dv,, 2.31)
4w |V—Vb|

/ / / VU p (vi)dvy = ATV (AT, (v)) (2.32)

|V —Vb|3

Notice that the derivative operators A, and V, are in terms of the test particle velocity v, while the
volume integral is performed with respect to the background ion velocity v,. The order of integral

and derivatives have been exchanged.

29



2.2. VELOCITY DISTRIBUTION FUNCTION OF BACKGROUND
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Finally, by using Egs. (2.27) and (2.32), the Coulomb collisional force F, on test particle of

species a is analytically obtained as
2.2
— A (1 A) - Vo (A T(V)). (2.33)

eolvbab

Fi(v) =

It is determined by the velocity v of the test particle of species a and the velocity distribution f,(vy) of
the background plasma ions of species b. In the next section, we try to specify the velocity distribution

function f;, of magnetized background plasma ions with a temperature gradient.

2.2 Velocity distribution function of background plasma
ions

When a temperature gradient exists in the background plasma, its velocity distribution function
f» changes from well-known equilibrium Maxwellian. From Eqgs. (2.28) and (2.33), the Coulomb
collisional force on a test particle changes accordingly. Such difference in force due to temperature
gradient is defined as thermal force. Here we try to find the background distribution function f, in
a magnetized plasma with temperature gradient. The following arguments are mainly based on the
reference [44].

The behavior of background plasma ions and electrons are described by a distribution function
fo(r, v, t). The function f;, of particle species b (mass m;, electric charge ¢,) is defined as the number
of particles of that species per volume element in the six-dimensional phase space drdv (3D-real
space + 3D-velocity space), near a given point (r, v) at the time . The number of ions of species b
moving with a velocity v’ at a position 1’ at a time ¢’ is given by f,(r’, v/, t')drdv.

All plasma parameters, such as the number density of particles in real space n,(r,t), their flow
velocity vy (r, t), their temperature T3(r, ¢), and their conductive heat flux density q,(r, ¢), are obtained

by taking the moments of f;, as follows,

ny(r,t) := / folr,v,t)dv ~ [m?], (2.34)
vp(r,t) := ni/vfb(r,v,t)dv [ms™!], (2.35)
b
3 1 2
STl 1) = o / (meW ) frv,dv D), (2.36)
2
qp(r,t) == / (mew w> folr,v,t)dv ~ [Jm 257, (2.37)

where the random velocity w := v — Vv, has been introduced. In contrast to the average flow velocity
Vi, the random velocity w represents the thermal agitation of ions. The temperature 7}, is defined in

joules in such a manner that 37} /2 represents the average kinetic energy associated with the random
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velocity of particles. The conductive heat flux density q; is defined as the time rate of heat energy

transfer per unit area by random motion of particles. The heat flux q; occurs by the presence of spatial
temperature gradient V75,

Such velocity distribution function f;, obeys the kinetic equation (or the Boltzmann equation) [19],

ok,

ot

which is deduced from the particle conservation law in the phase space (r, v, t). The operators V and

+v«Vfb+%(E+v><B)~vab:Cb(fb), (2.38)
b

V. are the gradient, respectively, with respect to the real space coordinates r and the velocity space
v. The applied electro-magnetic field are expressed by E and B. The term Cy(f;) in the right hand
side of the equation is the collision operator, representing the time rate of change in the distribution
function f, caused by velocity scattering of Coulomb collisions 2. The collision operator is a sum of

contributions from all interacting particle species (including the like-particle collisions),
Co(fs) =D Coy (2.39)
Y

where (., is the contribution by collisions with y-particles, and +y includes the species b itself.

In the scope of impurity transport simulation, it is sufficient to look for the stationary solution
of plasma ion distribution f,. It is because that the Coulomb interaction between impurities and
background plasma ions is dominantly stronger than that between impurities and electrons, due to the
much lighter mass of electrons (m, > m; > m,) [13, 19]. The state of electrons f,. can be neglected

as far as the impurity transport is considered. Therefore, we impose the following restrictions to solve
Eq. (2.38),

1. The time dependent term is ignored (0 f,/0t = 0).

2. The trace-impurity limit is adopted, i.e. the amount of impurities are too small to affect the state

of background ions (Cy/z = 0).

3. As far as we consider the deuterium for background plasma ion species (1m, = mp+), collision
with electrons can be neglected because of the large mass difference (m;, > m,) [13, 19]. To-
gether with the trace-impurity limit, the collision operator Cj, for background ions is determined

by the like-particle collisions, Cy, = Cy, + Cyje + Cyz = Cyp.
Consequently, the Eq. (2.38) becomes
V- Vfy+ 2B+ v x B) - Vo fy = Conli): (2.40)
b

Our aim in this section is to deduce a steady-state solution f, for background ions satisfying Eq.
(2.40).

’In Eq. (2.38), the source/sink terms other than Coulomb collision, such as contributions of the ionization and recom-

bination reactions, are not considered.

31
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2.2.1 Collision operator C;,

The operator Cy,( f,) for background ion-ion (i.e. like-particle) collisions in Eq. (2.40) is given
in the form [44]

Co(v, fo(V)) = / / w1, 0) % Lo (V) Jo (V) = So(v) fo(Vin) } dvind©. 2.41)

To describe the like-particle collision, let v be the velocity of the criterial background plasma ion,
and v;, be the velocity of other background ions coming to collide. The integral is taken over such
incoming background ions (dv;,). The relative velocity of the two colliding ions before and after the
collision are expressed, respectively, as u := v — vy, and u’ := v/ — v{ . The magnitude of relative
velocity does not change by collision |u’| = |u| =: u, because we consider the Coulomb collisions to
be elastic. The symbol df) is the element of solid angle in the direction of post-collision velocity v’
of the criterial particle. The Rutherford scattering cross section [33] for Coulomb collision between

particle species a and b is defined, in the SI unit system, by

2
. 1
oasp(u, 0) :=( 1oh ) — (2.42)
2

8T fhapt? in

with the vacuum permittivity ey and the reduced mass fiqp := mamy/(mg + my).

2.2.2 Solution for the case of V1, =0

When there is no background temperature gradient VI, = 0, the stationary solution f, of Eq.

(2.40) is given by a local Maxwellian velocity distribution [19]

. my 5/2 my {v — V(. t)}°
fvax(r, v, 1) := ny(r, t) (W) exp [ 2Ty r. 1) . (2.43)

The magnetic term (v x B) - V f; and the collision operator Cj,(f;) vanish separately with the
Maxwellian distribution fy.x. The remaining terms v - V f, and E - V, f;, are estimated as negligibly
small [19].

2.2.3 Solution for the case of V1, £ 0

The background plasma ions are supposed to have a temperature gradient V1, = V|1, + V1 T,
which is composed of parallel (V T, || B) and perpendicular component (V T, L B). We solve
Eq. (2.40) by the perturbation method.

For fusion plasma conditions, the following orderings are usually satisfied,

Avrp/Lyp < 1 and pp/L; < 1, High collisionality limit (2.44)
v/ < 1. Strongly magnetized limit (2.45)
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The mean-free path Avrp is defined as Aypp := vr, /i, With the thermal speed of background ion
vy, = +/2T,/my, and the Coulomb collision frequency vy, == v/2nuq;(In A) /(127322 T; / /).
The Larmor gyro-frequency €2, is defined by €, := ¢,|B|/m;, and the Larmor gyro-radius pj is
py = vr,/|S2|. The scale length L) := (V[l) and L, := (V') have been introduced. They are
characteristic length of spatial gradient of macroscopic plasma parameters, i.e. a distance needed
for ny, T, and B to vary substantially. The reason to have such anisotropic scale length is that, in
a magnetized plasma, the gradients are often very different along(||) / across(L) the magnetic field
B. In order to move the discussion forward, we assume that the small parameters in Egs. (2.44) and

(2.45) are approximately in the same order of magnitude,

)\MFP

Ly

Po
L, <4

W5 <. (2.46)
)

We expand the distribution function f;, accordingly,

~ 01,

fo=Jfo+ i+,
%N& (2.47)

We substitute such f; in the kinetic equation Eq. (2.40), to obtain a series of equations classified by

the order of small parameter 9,

Lowest order (6 %)

Co(fo) — %(v x B) - Vyfo =0, (2.48)
Next order (5°)

2
Cop(f1) = 2 (v x B) - Vo fy = Km = @) + (M - §) VT’)} forv. (249

b
oy np Ty 2T, 2) T,
The solution of lowest order equation Eq. (2.48) is a local Maxwellian fy.x (Eq. (2.43)) because of
Cisp(fmax) = 0 and (v x B) - Vy fyx = 0. In the next order equation Eq. (2.49), notice that the
collision operator and the gradient in velocity space in the left hand side are acting on the small per-
turbation function f;. Since the right hand side is already known, Eq. (2.49) can be solved according
to the solutions presented in Refs. [44, 14, 19] (The detail is omitted here).

From Egs. (2.48) and (2.49), the background ion distribution f; is finally specified as,

2 2

mpWw my 1 w
— l1—-——[1— —— . 2.50
eXp( 2T, ) . l ny T2 ( 5v§h7b> (a W)] ’ 2:50)
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where the random velocity of background ion is defined as w := v — vy, together with the background
flow velocity v, given in Eq. (2.35). The thermal speed of background ion is defined as vy, =
\/m. The equation (2.50) is called the distorted Maxwellian distribution representing the velocity
distribution of magnetized plasma ions with temperature gradient V7;. The conductive heat flux
density vector qy is formulated in the classical limit [14, 19]. The following assumptions are supposed

for qy:

e The background plasma is sufficiently collisional. The neo-classical transport and the anoma-

lous transport processes are not considered.
e Background plasma is composed of single ion species and electrons.

e The plasma parameters of the background ions are determined by the ion-ion collisions. Colli-

sions with the electrons are neglected.
e Background plasma is not affected by the presence of test particles (Trace impurity limit).

e The spatial gradient of background flow velocity, i.e. the viscous stress tensor, is negligible.

Therefore, the force due to the viscosity can be neglected.
e Background plasma is strongly magnetized, 2,7, > 1.
e Background pressure gradient Vp and electric field E are not taken into account.
Under these assumptions, the heat flux density qy is
dp = —K| V| Ty + raley x Vi T) = k1 VT (2.51)

The background temperature gradient VT, is incorporated in our model at this stage. In Eq. (2.51),

the heat conductivities x|, £, and x are given as [19]

T
Ky = 3.9 (2.52)
my
5anb
= 2.53
np Ty
= 2.54
where the characteristic collision time 7, of background ion is defined by
3 62w /mbT3/2
= 1272 2V b 2.55
7o i npqy (In A) ( :

The collision time 7 is identical with v/272, where the background ion-ion collision time 7 is given

by the formula (1.5) in Ref. [19] (as Braginskii’s definition). Hereafter, the index ||, L, A are used

34
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to distinguish the parallel direction e := B/B, the perpendicular direction e, := V T,/|V T},
and the direction e, := e x e perpendicular to both B and V | T}, which is called the diamagnetic
direction .

Absolute values of each component of qy are different by the factor of €27,

1 1\?
Qb - Gb,A - Qb L = \V||Tb| : m’vin‘ : (m) |VJ_Tb‘- (2.56)

The factor (2,7, represents a degree of magnetization of the background plasma.

It should be noted that, once we know a suitable formula of the heat flux density qy, the same
formula as Eq. (2.50) can be employed to calculate the thermal force (See Eq. (2.59)). For example,
we may be able to model more realistic background plasmas by substituting another formula of q,

given in Ref. [42] which includes the heat flux limiter.

2.3 Thermal force

The thermal force and its characteristic features, including the temperature screening effect, are
presented in detail.

We are considering a test particle (species: a) moving in a background plasma with velocity v,,.
The test particle of species a experiences Coulomb collisions with background plasma ions (species:
b). The background ions have temperature gradient V73, and their velocity distribution is modeled by
a distorted Maxwellian f;, in Eq. (2.50).

By substituting such f; in the formulas Eqgs. (2.28) and (2.33), the kinetic force F on the test

particle by Coulomb collisions with magnetized background plasma ions is analytically obtained as

F— FO 4 BV (2.57)
where,
RO _ _%;_jgb P (v,) _’17?(1)/@&) v, (2.58)
R vttty s T R CR AL (259)

Here, we have introduced the following symbols,

C = (InA) (qegb) 2 (1 + %) , (2.60)
Vo = ;”Tb (Va — V3), (2.61)
B(0) = — / exp (~t (2.62)
' (v) := dq;i v) _ %exp(—zﬂ). (2.63)
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X

Figure 2.4: Parallel thermal force due to parallel temperature gradient V| T;. (cited from Ref. [30].)
The frictional force is denoted by F°, and the thermal force is FV7.

The frictional force F° usually slows down the test particle, depending on its velocity v, and the
background plasma flow V. Background temperature gradient does not affect F°.

The thermal force FV7 consists of the three components of different direction with respect to the
B-field line,

FYI=F/" +FYT +FY" (2.64)

We will call such FWT, FY7, and FY7, respectively as the parallel thermal force, the diamagnetic
thermal force, and the perpendicular thermal force. The characteristics of these thermal forces are

discussed in the following sections.

2.3.1 Parallel thermal force FWT

The parallel thermal force is caused by the parallel temperature gradient V|| T;,. From Eq. (2.51),
the gradient VT, leads to a heat flux

npTpT
Qy, | = —/€||V||Tb =-3.9 bbb

i (2.65)
myp

36



2.3. THERMAL FORCE

Z ‘ : Test particle

F&°=q(v,XB)

v_:[b' PO AL removed
’
’

~ \in Figs. 4.4, 4.5.

Figure 2.5: Thermal force due to perpendicular temperature gradient V| 7j,: The diamagnetic thermal
force FY” is much larger than the perpendicular thermal force FY” under the strongly magnetized
condition (€273, > 1). (cited from Ref. [30].)

Figure 2.6: Temperature screening effect. (cited from Ref. [30].)
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Substituting such q;_ | in Eq. (2.59), we obtain the expression

pyr _ 3912/ Y (da Qexp(_aﬁ).[v:r—z(v:r.vm (2.66)
I 10v/2 Ma) \ ¢ . Vel '

The parallel thermal force FWT is characterized as follows.

1. Magnitude of the thermal force: The magnitude of the parallel thermal force is proportional to

that of the temperature gradient [F"| oc [V T/ .

2. Thermal force on a slower test particle: When a test particle moves much more slowly com-
pared with the background thermal speed, meaning |v,| < 1, the second term in the square
brackets in Eq. (2.66) can be ignored . Then, the thermal force acts in the direction of the

temperature gradient,
)" o VT, (2.67)

driving the test particle from lower to higher temperature region along the magnetic field line.
It is a distinguished feature of parallel thermal force, in contrast with other physical phenomena
such as the diffusion where the transport occurs in the opposite direction to the number density

gradient Vn.

3. Thermal force on a faster test particle: On the other hand, when the test particle moves faster
than the background thermal speed (|v,| > 1), the second term in the square brackets in Eq.
(2.66) becomes dominant, i.e. FWT x —(V|T} - V4)V,. In this situation, if v, is parallel to
the temperature gradient V| T}, then FFT acts in the opposite direction to V| T;. Itis a reversal
phenomenon of parallel thermal force, and its mechanism is explained qualitatively as follows.
When a test particle moves very fast along the temperature gradient, less background ions from
the lower T}, region can catch up with the test particle. Consequently, the test particle collides
only with ions coming from the higher 7}, region, and the net force on the test particle is directed

toward the lower 7} region.

As mentioned by Reiser et al. [17], this mechanism prevents test particles from being infinitely
accelerated by the thermal force. While a test particle moves slowly along the temperature
gradient, it is continuously accelerated by the parallel thermal force. However, it cannot exceed

a certain velocity limit, at which the magnitude of parallel thermal force changes the sign.

4. Dependence on the background number density: Parallel thermal force does not depend on the
number density of background plasma n, as seen in Eq. (2.66), whereas the frictional force is

proportional to 7.

3When considering high-Z heavy impurities for test particle, the condition |7,| < 1 is almost always satisfied.
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In the next chapter 3, we will check if these characteristics listed above can be correctly simulated by

our numerical model.

2.3.2 Diamagnetic thermal force F) and perpendicular thermal force

vT
FL

The diamagnetic and perpendicular thermal force are caused by perpendicular temperature gradi-

ent V | Ty. Their characteristics are summarized here.

The diamagnetic thermal force FY” acts on the test particle in the diamagnetic direction as shown
in Fig. 2.5, and produces the temperature screening effect (TSE) [19]. The TSE is understood as
a guiding center drift by the diamagnetic thermal force, as shown in Fig. 2.6. The test particles
are transported, as a whole, to the opposite direction to V | 75, 1.e. perpendicularly from higher
to lower temperature. The temperature screening effect may be non-negligible under steep
temperature gradient in the edge region of fusion plasma (See Sec. 4.6.3). In existing impurity
transport simulation codes, the perpendicular temperature gradient V| 7T}, and the diamagnetic

thermal force 7 have not been taken into account yet.

It is also interesting to note that the diamagnetic thermal force does not include the collision
time of background ions 7, (See x in Eq. (2.53)). Even in a very hot plasma where Coulomb
collisions occur less frequently (v oc 7, ! with increased 73, e.g. in the core, the same magni-

tude of diamagnetic thermal force FY” always occurs.

The perpendicular thermal force FY7 acts along the perpendicular temperature gradient V| T}, (See
Fig. 2.5). However, FY7 is negligibly small in the fusion plasmas. The reason is described as

below.

When we consider the test particle to be heavier than the background ion, its velocity v, nor-
malized to the thermal speed of background ion is small (v, < 1). Hence, the following relation
holds from Eq. (2.59),

FYT « —qp. (2.68)
Due to the ordering of the heat flux components g, gy, A, @, 1 in Eq. (2.56), the same ordering
is applied to each component of the thermal force,

1 1 \?
YT R RV = \ VT —— |V T s [ — ) VLT 2.69
BV BT FYT = VT s (VAT s (g ) (92Tl (2:69)

Since fusion plasmas are strongly magnetized (2,7, > 1), the perpendicular thermal force

FYT becomes much smaller than the other forces such as the Lorentz force, the frictional force,
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the parallel and the diamagnetic thermal force, roughly by a factor of €2,7. In this study, the

perpendicular thermal force FY7 is neglected.

In the chapter 4, we will check the diamagnetic thermal force FY” and its macroscopic effect on

test particle transport, TSE.
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Chapter 3

Numerical model of thermal force based
on Monte Carlo Binary Collision model
in unmagnetized plasma

This section describes a numerical model of thermal force in unmagnetized plasma. As an impor-
tant first step toward our goal, we have started from such simpler case without magnetic field. In fact,
this model can be applied straightforwardly for simulation of the parallel thermal force in magnetized
plasma. It is because that the motion of charged particles along the B-field line is not restricted by
the Lorentz force, i.e. the equation of motion along B-field is identical with the case without B-field.
Therefore, the thermal force in unmagnetized plasma is equivalent to the parallel thermal force in
magnetized plasma.

Figure 3.1 presents graphically the basic concept of our thermal force model. Basic procedures of
the model, for a single test particle at a single collision time step, are shown in Fig. 3.2. The details
of Figs. 3.1 and 3.2 will be described step by step in Sec. 3.2.

By test simulations in the latter part of this chapter, we will check our new numerical model. The

same characteristics as those of parallel thermal force mentioned in Sec. 2.3.1 will be examined.

3.1 Distorted Maxwellian and thermal force in unmagne-
tized plasma

Following the same discussion as in Chapter 2, we can derive velocity distribution function of

unmagnetized plasma ions by solving the kinetic equation Eq. (2.38) without B-field. The distorted
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3.1. DISTORTED MAXWELLIAN AND THERMAL FORCE IN
UNMAGNETIZED PLASMA
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Figure 3.1: Basic concept of the present thermal force model.
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Maxwellian distribution of unmagnetized plasma is given by [33, 50]

3
my |\ 2 mpw? w? w
= — 1+ A(Ty) - |1 - — VT, 3.1
fo(w) = ny (%T) exp< o7 > X |1+ A(Ty) ( 5Ut2h,b> <Uth,b b) , (3.1
where the coefficient A(T}) is defined as !
e
T
A(T) == 7 e b (3.2)

Pl (In /1) nqy
Eq. (3.1) is basically the same function as the distorted Maxwellian in magnetized plasma in Eq.
(2.50) caused by only parallel temperature gradient VI, = V15,
By substituting f, in Eq. (2.33), the thermal force in unmagnetized plasma is analytically obtained
as
15f a
FY7, = ( > (Z-) exp (—02) - [VT} — 2(VT} - Va)Val (3.3)
b
Equation (3.3) is expressed in the same manner as the parallel thermal force in Eq. (2.66). The same

characteristic features in Sec. 2.3.1 are expected to be true for FyZ,

3.2 Numerical model of the thermal force based on BCM

The basic steps of the present model are summarized as follows:

1. The parameters of the test particle and the background plasma are specified. The mass m,,
charge state Z,, position r,(t¢), and velocity v,(t), of the test particle are given. As for the
background plasma ions, the mass my, charge state Z;,, number density n;, temperature 7,

temperature gradient V7, and flow velocity v;, are necessary.

2. The velocity of a background ion v;, coming to collide with the test particle, is found from the
distorted Maxwell distribution in Eq. (3.1) (given in Sec. 3.3.2). A detailed algorithm for this
step will be explained in Sec. 3.3.

3. The Binary Collision Model (BCM) calculates the random scattering of test particle velocity
Av, due to collisions with background ions. The BCM will be explained in Sec. 3.5.

4. Time is advanced by the collision time step, At. New velocity and position of the test particle
are calculated:
Va(t + At) = vu(t) + Avy,
r,(t + At) = r4(t) + va(t) At.

'Roughly evaluated by A(T}) ~ Avirp/Th (Amrp is the mean free path of background ions).
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[ Step 1: INPUTS

Test Particle Parameters
m,Z ,r (),v (1)

Background Parameters
m,Z . n,T, VT, VvV

b? b2

lva

Step 2:
Background ion velocity
sampling (See Sec. 3.3) =>v,

ivv

}
e,

Coulomb collision
BCM (See Sect. 3.5) => Av,

iv
a? a

Step 4: Time evolution )
I = t+ At
v (ttA7) = v (1) + Av,
r (ttA7) = r_(t) + v (DA?
\ J
\4
OUTPUTS

Figure 3.2: Basic procedures of the model. (cited from Ref. [50].)
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3.3. RANDOM VELOCITY SAMPLING FROM THE DISTORTED
MAXWELLIAN (STEP 2)

For general simulation where we use many test particles, we iterate the basic steps above at every

collision event for each test particle.

3.3 Random velocity sampling from the distorted Maxwellian
(Step 2)

For the Step 2 in the basic procedures of the model in Fig. 3.2, the numerical random sampling
of the background ion velocity from the distorted Maxwellian, is now described. This method plays

a key role in our new model.

3.3.1 Preparation: Two coordinate systems for the velocity space

To sample ion velocity easily from the distorted Maxwell distribution in Eq. (3.1), we use two
coordinate systems for the velocity space, called “System I”” and “System II”’. Hereinafter, we distin-
guish variables for Systems I and II by subscripts I and II, respectively. The coordinate System I (.Xj,

Y1, Zp) is the laboratory frame at rest. A temperature gradient V7 is assumed to exist in System I,

such as
sin @ cos ¢
VT, =|VTy| | sinfsing |, (3.4)
cos 0

where angles 6 and ¢ are defined as in Fig. 3.3. On the other hand, the System I (Xy, Yi1, Zp) is the
coordinate system with the Zy-axis parallel to the temperature gradient, as shown in Fig. 3.4.

A variable transformation from System II to System I is realized by using the matrix T"~!,

cospcosf) —sing cos@sind
T = | singcosf cos¢ singsind |- (3.5)

—sin @ 0 cos 6

As a result, when we have vector vy in System II, we obtain its expression in System I, vy, by taking

its product with T, v = T vy

3.3.2 Distorted Maxwellian expressed in System i

A background velocity vy in the laboratory frame consists of a background flow velocity v, and
a random velocity wi: vi = Vv, + wi. As V,, is a given parameter, we only have to determine wy

distributed according to the distorted Maxwellian f,(w;) in Eq. (3.1).
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3.3. RANDOM VELOCITY SAMPLING FROM THE DISTORTED
MAXWELLIAN (STEP 2)

For the sake of computation, rather than choosing a value of wy directly from f,(wy) in Eq. (3.1),
it is easier to determine its expression, wy, in System II first. Then we convert wy into wr.

To specify wy, we use the three parameters as shown in Fig. 3.4: (i) speed w. (ii) inclination
angle 0y, measured from the Zp-axis. (iii) rotational angle ¢y, around the Zj-axis, measured from
the Xy-axis. Notice that the rotation by the matrix T'~! does not affect the absolute value of wy. So
we use w in common for the speed of both wy and wy;.

Since the Jacobian determinant | det T"~!| is 1, we obtain the distribution, f;, 1, of velocity wy in

System II as follows,
fo(wi)dwy = fo(T" 7 owy) - | det T |dwy = fon (W) dwy. (3.6)

Hence, from Eq. (3.1),

3
my \ 2 . mpw?
for(wn)dwy = ny, ( ) w? sin Oy - exp (— )

271'Tb 2Tb
2

X |1+ A(Tb) (1 - 571}2 ) : i|VT7[,| COS QII] dwdHHdng. (37)

Uthb Uth,b

The distribution function f,; can be decomposed into three functions f, g, and h, such that
(for/mp)dwy = (fdw)(gdbn)(hdén), each of which is defined as

3 2
f(w)dw = \/g (%f) w? exp <—TZI£} ) dw, (3.8)

w? w .
1+ A(T,) | 1 - - ——|VTy| cos by | sin Opdby, (3.9)

2
5Uth,b Uth,b

1
g(w, Oy)doy = 3

h(gbn)dgbn = d¢11/277'. (310)

The functions f, g, and h are the probability density functions associated with the random variables

w, 0117 and ¢H'

3.3.3 Sampling of random variable w

In our numerical model, the speed of background ion w, is first chosen randomly from the prob-
ability density function f(w) in Eq. (3.8). This density function is, in fact, the same as that for the

speed of the Maxwell distribution with temperature 7;,. We can generate w as follows:

1. Let R be a uniform random number over the interval [0, 1]. Hereinafter, it is written in the

manner R ~ UJ0, 1]. We generate four uniform random numbers Ry, (k =1, 2, 3, 4).
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MAXWELLIAN (STEP 2)

2. Then, by using the Box-Muller transform [39], we determine the values of three independent

random numbers w,, wy, and w,, which have a Gaussian distribution with mean zero and

standard deviation vy, = / T}/,
Wy = Ugpp X \/TDRlCOS(Q’iTRg),
Wy = Vg X \/Tansin(Qng),
W, = Ugpp X \/THR;?,COS(27TR4).

3. The random speed w is then obtained as w = /w3 + w3 + w2

3.3.4 Sampling of random variable ¢

The inclination angle ¢y between wy and VT, is next given from the distribution g(w, ;) in Eq.

(3.9). The correlation between w and 6y is taken into account. By introducing the function «

2
a(w, Ty, V1y) := A(Ty) (1 - = ) VT, (3.11)

2
5Uth,b Uth,b

we can rewrite g(w, fy) from Eq. (3.9) in a simpler form
1
g(w, QII)dQH = 5 [1 + . cos 911] sin eudeu. (312)

The angle 6y is sampled from Eq. (3.12) by the following manner:

1. To fix the distribution g(w,fy), substitute into Eq. (3.11) the value of the random speed w’,

which is already chosen in the previous process (Sec. 3.3.3) .

2. According to the value of «, the variable 6y is given by using a random number R ~ U|0, 1],

such as

(@) fa=0:cosbty=2R— 1.
(b) If 0 < a < 1: cos by = {\/4aR+(1 —a)? — 1}/04.

(c) If & > 1 : The distribution function g(w’, f;) becomes negative at certain angle fy. In

order to avoid it, we take the limit of @ — 1. Thus, cos 6y = 2v/R — 1.

@ If~1<a<0:cosy = { ~IaR+ (1 +a) ~1} /o

(e) If « < —1: The function g(w’, f;) becomes negative at certain angle 6. In order to avoid
it, we take the limit of &« — —1. Thus, cosfy =1 — 2V/R.

Thus sampled 6y obeys the distribution of Eq.(3.12) (see Appendix).
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3.4. APPLICABLE CONDITION FOR THE MODEL

3.3.5 Sampling of random variable ¢,

From distribution function A (¢y) in Eq.(3.10), the rotational angle ¢y is given by ¢y = 27 R, with
R~ U[0,1].

3.3.6 Background ion velocity, v,

By using three variables (w, 0y, ¢r1), the background ion velocity wy; is expressed as

sin (911 COS ¢II
Wi — w sin 911 sin ¢H . (3 13)

cos Oy

The random velocity wy in System I (the laboratory frame) is obtained by w; = T wy. Adding
the background flow velocity v, we numerically obtain the background ion velocity vi(= wy + ¥v3),

which follows the distorted Maxwell distribution in Eq. (3.1).

3.4 Applicable Condition for the Model

The distorted Maxwellian in Eq. (3.1) is in the form f = f,+ fi, consisting of the Maxwell distri-
bution fj and a correction term f;. The correction term f; should be small enough when compared to
the Maxwellian term f,. By approximating the random speed w by the thermal speed vy, the ratio
|f1/ fol is estimated as: | f1/ fo| ~ Amrp/ L7, Where Ly := T,,/|VT}|. Our model is applicable under
the condition: A\yrp/L7 < 1.
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Figure 3.4: System II. (cited from Ref. [50].)



3.5. MONTE CARLO BINARY COLLISION MODEL (STEP 3)

3.5 Monte Carlo Binary Collision Model (Step 3)

¢ = 21

9 =2tan’ &

¢2: uniform random number
in the range of [0, 1].

¢1: random number following
a Gaussian distribution

Mean :{&)=0
Variance : {&)°’= D(u)At
D(u)=(qsqv’ny InA)/(8mer’ na’v’ )

At : collision time step

qa, gb: electric charges

no: background ion density

Wab:= Mamb/(Mat+msp) (reduced mass)
u = va - v (relative velocity)

Figure 3.5: Monte Carlo Binary Collision model. (cited from Ref. [50].)

In order to simulate Coulomb collision between the test particle and the background ion chosen
in Sec. 3.3, we use the Monte Carlo Binary Collision Model (BCM) [32]. From the relative velocity
between the colliding two particles, the BCM calculates the random velocity change Av! by the
collision.

Suppose that we have two particles (species a and b). They are moving, respectively, with the
velocity v, and v;, and they are to collide with each other. The collision is simulated by the following

procedures.

1. The two particles collide with relative velocity u = v, — v;. At the collision, two scattering
angles, ¥ and ¢ (as shown in Fig. 3.5) are calculated. The angle ¢ is modeled as ¥ = 2tan™! &,
where &; is a random variable following a Gaussian distribution with the mean < &; > and the

variance < &2 >, such as

<& >=0, (3.14)
< & >= D(u)At, (3.15)
D(u) = ¢2giny(In A)/(8meguZ,u’). (3.16)
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3.5. MONTE CARLO BINARY COLLISION MODEL (STEP 3)

The other rotation angle ¢ is obtained by ¢ = 27&5, where &5 is a uniform random number in

the interval [0, 1].

2. From the scattering angles ¥ and ¢, the velocity change caused by the collision, Av; (j = a and
b), is calculated for the two particles. Detail of the calculations are described by Takizuka and

Abe [32]. The new velocities v/ are then v = v; + Av;.
There exists a limitation of collision time step At such as
<& >= DAt <1, (3.17)

because of the fact that the Coulomb scattering angle 6 (or &;) is essentially quite small. In order to
find an appropriate time step At, we approximate the relative velocity u in D(u) by the thermal speed

of the faster particle.
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Figure 3.6: Configuration of the test simulations. (cited from Ref. [50].)
3.6 Test simulations

3.6.1 Simulation parameters

Figure 3.6 shows the model geometry of the test simulations. Cartesian coordinates (X, Y, Z) are
used to describe the real space of the laboratory frame.

The numerical parameters for simulation are summarized in Table 3.1. The simulation starts with
the injection of N = 5 x 10* test particles from the origin (0,0,0). The test particle species is
tungsten ion W3 (Z, = 3), and all of them are injected in the positive Z-direction, with the initial
speed corresponding to the kinetic energy of 50 eV (i.e., v,(t = 0) := vy = \/me 7z, where m,
is the mass of the W3+ ion, Ey, = 50 eV, and e is the unit vector in the Z-direction).

The background plasma is assumed to be composed of hydrogen ions H* (Z;, = 1). The electrons
are not taken into account. The background flow velocity v, is set to 0, the number density of
background ions ny, is 102° m~3. The background temperature T3,(r = 0) is 50 eV. The temperature
gradient V7, is along the Z-direction or X -direction in the following simulations. These parameters
are of a typical divertor plasma in present tokamaks.

We take the simulation time step as At = 1073/D(vyp). To estimate D(u) in Eq. (3.16), we
have approximated the relative velocity u between two colliding particles, by the thermal speed of

background ion vy, , because vy 1, > vo.
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3.6. TEST SIMULATIONS

Table 3.1: Numerical Parameters for the reference case. (cited from Ref. [50].)

Test particle species W3+
Initial test particle velocity, v, (t = 0) 8.84 x 10 ms™! ez (50 V)
Normalized test particle velocity, v,(t = 0) 0.13 ez
No. of test particles, N 5 x 10
Background plasma ion H*
Number density of background ions, 1 102 m~3
Temperature at the origin, 73(0) 50 eV
Temperature gradient, VI depends on each case
Coulomb logarithm, In A 15
1/D(vyy) 2.03x 1077 s
Collision time step, At 1/D(vgp) X 1073 s
Slowing-down time, 7, 710 x 107 ° s

3.6.2 Reference simulation with V1, =0

Prior to examining the thermal force, we perform a test calculation without temperature gradient
VT = 0. Only the frictional force is examined as a basis for the following test simulations.

In this case, the initial test particle velocity is oriented in the +Z-direction and there is no tem-
perature gradient. According to Egs. (2.58) and (2.59), i.e. only the frictional force acts on the test
particles in the negative Z-direction. Net collisional force does not act in the X and Y -direction.

Figures 3.7(a) and 3.7(b) show the time evolution of the average velocity v, (¢) of test particles.

The average velocity v, (¢) is defined by the ensemble average over the test particles at each time step,

1 N
Valt) =+ > Vailt). (3.18)
=1

The X- and Z- component, 7, x(t) and U, £(t) are shown, respectively, in Figs. 3.7(a) and 3.7(b).
Their theoretical value is expressed by the solid line. The rate of change dv,/dt (i.e. = F/m,)
is calculated from the formula of collisional force Eq. (2.58), with the initial test particle velocity
(v, = vp). The ordinate of the figures is the averaged speed normalized to the initial speed vy, and
their abscissa is the time normalized to the slowing-down time 7,, which is a characteristic time for

the test particle to slow down due to collisions, defined by [13]

1 4 2,112,,3
e Tt (3.19)
Ma a Ny 111
(1 + m_b> pu(z) dao™
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Figure 3.7: Time evolution of the average velocity v,(t) (Eq. (3.18)): (a) X-component Tx(t), (b)
Z-component Ty(t). The velocity is normalized to the initial speed vy, and the time is normalized to

the slowing-down time ;. (cited from Ref. [50].)

where 2 := myud /2T, and p(x) == (2/4/7) [y exp(—&)v/EdE.

As shown in Fig. 3.7(a), the numerical results of 7, x (¢) agree well with its theoretical value. The
Ua.x (t) remains almost zero throughout the simulated period 0 < ¢ < 0.017,, meaning that no net
collisional force acts in the X -direction. Although the result is not shown here, the same results have
been obtained for the Y'-component (7,y () = 0).

On the other hand, the Z-component 7, ~ () is clearly decreasing as shown in Fig. 3.7(b). The
slope agrees well with the theoretical value. It means that the test particles have received a slowing-
down collisional force whose magnitude is the same as the frictional force deduced from Eq. (2.58).

Above comparisons between the numerical and theoretical results show that our numerical model

simulates the frictional force correctly.

3.6.3 Test simulations with finite test simulation V7,
Conditions

After validating the frictional force in the reference case, we have performed a series of test
simulations on the thermal force, under various conditions. As summarized in Section 2.3.1, the
thermal force can change widely in magnitude and direction, depending on the temperature gradient
and test particle velocity. The calculation conditions are summarized in Table 3.2 and Fig. 3.8. The
remaining parameters are the same as those of the reference case (Table 3.1). These test conditions

are within the applicable condition of the model in Sec. 3.4. Each test condition is described below.

Case 1: FV7//v,. The temperature gradient is set to be in the Z-direction, parallel to the initial test

particle velocity. Two different magnitudes are supposed, i.e. 3 eV/m (Case 1-1), 5 eV/m (Case
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Table 3.2: Test conditions. (cited from Ref. [50].)

VTx VTy vT, [Val np
[eV/m] [eV/m] [eV/m] - [m—3]
Case 1 1-1 0 0 3 0.13 1 x 10%0
1-2 0 0 5 0.13 1 x 10%°
Case 2 2-1 3 0 0 0.13 1 x 10%0
2-2 5 0 0 0.13 1 x 10%°
Case 3 3-1 0 0 0 1.8 1 x 10%
3-2 0 0 10 1.8 1 x 10%°
Case 4 4-1 0 0 0.13 0.85 x 10%°
4-2 0 0 0.13 2.0 x 10%°
(Caselz V T/l Va \(CaseZ: VT L v A
VT, va Fvr Fo va  Fo
NN AN A
| Fvr |
| < |
: VI, |
|
|

\ VI STV,

(Case 3: High Speed Va\ ( Case 4: Dependence )
on the density n»

Va
Same conditions as

Fvr Fo Case 1-2
(VTo=5¢eV/me,),
except for the
background density #s.

VT,

N\

4-1: n»=0.85x10 m™

N/ || (12 = 1.0x102 m?)
. — 20 11q-3

j\42' m=2.0x10""m )

m——me o>

\

Figure 3.8: Relationships between temperature gradient and the initial velocity of test particle for
each case. (cited from Ref. [50].)
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1-2). The test particles move sufficiently slowly (|v,| < 1). The thermal force should act in
the Z-direction as discussed in Sec. 2.3.1 (characteristic feature 2: FV7 //VTy). We will also
check if the magnitude of the thermal force is proportional to that of the temperature gradient

(characteristic feature 1: |[FV7T| oc [VT})).

Case 2: FVT | v,. Differently from Case 1, the temperature gradient is set to be in the X -direction,
perpendicular to the initial test particle velocity. The thermal force should act in the X-
direction. We use two different magnitudes of temperature gradient: 3 eV/m (Case 2-1), 5

eV/m (Case 2-2), in order to check the proportionality of the thermal force (|Fyr| o< |VT})).

Case 3: Thermal force on high-speed test particles. In Case 1 and 2, we have chosen the initial
test particle velocity slower than the background thermal speed (|v,| < 1). For Case 3, we
examine the thermal force on faster test particles (|v,| > 1). The initial test particle velocity is
set to be vy = \/mez, with £, = 10,000 eV (|v,| = 1.8). At first, we have performed
a calculation without V7' (Case 3-1). Next, we have given a temperature gradient in the Z-
direction with magnitude 10 eV/m (Case 3-2). Under this condition, the thermal force should

act in the opposite direction to the temperature gradient (characteristic feature 3. in Sec. 2.3.1).

Case 4: Dependence on the number density of background plasma. For this case, we use the same
condition as Case 1-2, except for the number density of background plasma n;. Case 4 exam-
ines whether the simulated thermal force is independent of the background number density

(characteristic feature 4 in Sec. 2.3.1).

Results of Case 1

We have a temperature gradient in the Z-direction: V' = 3eV/m - ey (Case 1-1), 5eV/m - ey
(Case 1-2), and the other parameters remain unchanged from Table 3.1. According to Egs. (2.58)
and (2.59), the thermal force is generated in the (+2)-direction while the frictional force is along
(—Z)-direction. Forces in the X - and Y -direction are null.

Figure 3.9 shows the velocity relaxation in the Z-direction of Case 1-1 and 1-2. The squares show
the simulated average velocity m in Case 1-1, and the circles are the results of Case 1-2. The
solid line and the dashed line represent the theoretical values calculated from Egs. (2.58) and (2.59),
respectively, for Case 1-1 and 1-2. As a reference, the velocity simulated in the previous reference
case without thermal force, is plotted by the triangles.

The results of both Case 1-1 (squares) and 1-2 (circles) agree well with their theoretical values. It
should be noted that their slopes are less steep than that of the reference case (triangles). The thermal
force has acted in the direction of temperature gradient, i.e. in the positive Z-direction, and reduced

the total collisional force on the test particles. The slope of Case 1-2 is even less steep than that of
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Figure 3.9: Time evolution of the average velocity T7(t) for Case 1-1 and 1-2. (cited from Ref. [50].)

Case 1-1. It suggests that simulated thermal force has become greater, as its theoretical value expects,
proportionally to the magnitude of temperature gradient which has been raised from Case 1-1 to 1-2.

From above results, the thermal force is correctly simulated both in direction and in magnitude
(FVT//NT,, |FVT| < |VTy

), under a parallel temperature gradient (VT}//v,).

Results of Case 2

In this case, the temperature gradients are taken in the X-direction: VI' = 3eV/m - ex (Case
2-1),5eV/m - ex (Case 2-2), and the other parameters are the same as those in Table 3.1.

Under perpendicular temperature gradients (V7;, L v,), as expected from Egs. (2.58) and (2.59),
the thermal force acts in the X-direction and does not affect the frictional force in the Z-direction.
Contribution of the thermal force in the X -direction leads to acceleration of test particles toward the
positive X -direction. So we focus on the X -component of the velocity 77(t) to examine the thermal
force 2.

Figure 3.10 shows the time evolution of simulated average velocity in the X -direction T, x (t) by
squares and circles, respectively, for Case 2-1 and 2-2. The solid and dashed line denote the expected
acceleration deduced from the theoretical thermal force FyZ, from Eq. (2.59), respectively, for Case
2-1 and 2-2. As a reference, the average velocity 7, x (¢) simulated in the reference case is plotted by

the triangles.

Concerning the Z-component of velocity T, z(t), the same result as Fig. 3.7(b) of the reference case has been

obtained (not shown). The frictional force in the Z-direction is correctly simulated.
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Figure 3.10: Time evolution of the average velocity vy (¢) for Case 2-1 and 2-2. (cited from Ref. [50].)

The calculated results are in good agreement with the theoretical values. In addition, the result of
Case 2-2 has a slope greater than that of Case 2-1. The thermal force in Case 2-2 (with greater V1) is
stronger than in Case 2-1. The thermal force is correctly simulated (i.e. FV7//VT,, |FVT| o< |VT3))

by our model under a perpendicular temperature gradient (V71}, L v,).

Results of Case 3

Characteristic feature 3, discussed in Sec. 2.3.1, is to be examined below. We have raised the
initial velocity of test particles up to vo = 1.8e, and have simulated the velocity relaxation without
VT in Case 3-1 at first. Then, we have introduced a temperature gradient V' = 10 eV/m- e in Case
3-2 in order to see the effect of thermal force on fast test particles. Since the frictional and the thermal
force both act in the Z-direction in this case, we examine the Z-component of the average velocity
vz(1).

Numerical results m are shown in Fig. 3.11 by squares and circles, respectively, for Case 3-1
and 3-2. Their theoretical values calculated from Eqs. (2.58) and (2.59) are expressed by solid and
dashed line, respectively, for Case 3-1 and 3-2.

Compared with the result of Case 3-1 without V7, the result of Case 3-2, with VT, shows a
steeper slope. It means that the thermal force occurred in the negative Z-direction, enhancing the
total collisional force. Differently from Case 1, the direction of the thermal force is in the opposite
direction to the temperature gradient. It is consistent with the theoretical characteristic 3 of the thermal

force. From good agreement of the numerical results with their theoretical value, we confirm that the
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Figure 3.11: Time evolution of the average velocity vz (t) for Case 3-1 and 3-2. (cited from Ref. [50].)

thermal force on fast test particles is simulated accurately by our model.

Results of Case 4

In Case 4, we examine the dependence of the thermal force on the number density of background
plasma ions 7. By using the same parameters as Case 1-2, we change only the value of n; as shown
in Table 3.2.

Simulated average velocity T, z(t) are presented in Fig. 3.12 by squares and circles, respectively,
for Case 4-1 and 4-2. Theoretical values of Eqs. (2.58) and (2.59) are also presented by solid and
dashed line, respectively, for Case 4-1 and 4-2. As a reference, the result of Case 1-2 is plotted by
triangles.

Good agreement between the numerical results and the theoretical values are seen for both Case
4-1 and 4-2 in Fig. 3.12. It confirms that the model simulates the frictional force and the thermal
force, with their correct dependence on the background number density (i.e. |Fo| oc ny, [FVT| is

independent of n;).

Quantitative discussion on simulation results

In above sections, we have seen that the thermal force is simulated qualitatively well. In the present
section, we examine the simulation results quantitatively. The results are summarized in Table 3.3.

To obtain these results, we have performed 10 times of calculation for each test case (from Case 1-1
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Figure 3.12: Time evolution of the average velocity Tz (¢) for Case 4-1 and 4-2 (and 1-2). (cited from

Ref. [50].)

Table 3.3: Quantitative comparison of collisional force. (cited from Ref. [50].)

Simulated < F >

Theoretical F

[x10717 N] [x10~17 N]
Ref.:F, -3.72 (40.065) -3.83
Ref.: Fy -0.026 (40.075) 0
1-1:F -2.58 (40.082) -2.70
1-2:F -1.855 (£0.081) -1.95
2-1:Fy 1.22 (40.088) 1.14
2-2:Fy 1.87 (£0.11) 1.91
3-1:Fy -22.3 (+0.03) 225
3-2:Fy -23.9 (+£0.03) 242
4-1:Fy -1.33 (+0.073) -1.38
4-2:F -5.61 (0.155) -5.78
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Table 3.4: Estimation of simulated thermal force. (cited from Ref. [50].)

< FVT - FVT <FYT > JFVT
[x107'" N] [x107!7 N]

1-1:Fyr 2 1.14 1.125 1.015
1-2:Fyr 7 1.87 1.875 0.997
2-1:Fyrx 1.24 1.14 1.09
2-2:Fyr x 1.89 1.91 0.99
3-2:Fyr7 -1.575 -1.7 0.93
4-1:Fyrz 1.81 1.875 0.96
4-2:Fyr 2 1.78 1.875 0.95

to Case 4-2) under the same condition but with different series of random numbers. Then, the rate of
velocity change of test particles dv, /dt has been calculated by using the least-square method. Finally,

we have obtained the average value < F > of the simulated collisional force over 10 runs, together

with its statistical error £1/< (F— < F >)2 > which is also presented in the parenthesis in Table
3.3. The theoretical value of F from Eqgs. (2.58) and (2.59) are compared with the simulation results
in Table 3.3.

Unfortunately, it is difficult to directly separate the numerical results < F > in Table 3.3 into the
thermal force part and the frictional force part. However, we can still estimate the simulated thermal
force < FVYT > by the following manner: < FY7 >:=< F > — < F; >, where we assume
< Fy >=< F >yr—o, i.e. the frictional force is supposed to be the collisional force without VT
The < F >y7—¢ has been newly calculated for each case, and the results of < FV7 > are presented
in Table 3.4. The ratio between estimated < FV7 > and its theoretical value FV' from Eq. (2.59) are
also given in Table 3.4.

It is clearly confirmed from Table 3.4 that our model is able to simulate the thermal force accu-
rately in the quantitative sense, within the relative error of 10% under actual test simulation conditions
(Tables 3.1 and 3.2). It is of course possible to reduce further the statistical error by increasing the
number of test particles. The choice, however, depends on the trade-off between the calculation cost

and required accuracy of each problem to be solved.
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3.7 Summary of Chapter 3

A new numerical model of the thermal force, based on the Monte Carlo Binary Collision model
(BCM), has been developed. This model can be applied for the transport simulation of test ions in
a plasma without magnetic field. The model consists of two main procedures: (i) choosing a back-
ground plasma ion velocity from a distorted Maxwellian distribution under the temperature gradient,
and (i1) calculating a Coulomb collision between a test particle and the above chosen ion by using the
BCM.

To confirm the validity of the model, we have performed test simulations for various conditions
about background temperature gradients and initial velocities of test particle. The time rate of change
dv /dt of the test particle’s average velocity has been compared with its theoretical value calculated
from the analytical formulae of the frictional force and the thermal force. The comparisons have
shown good agreements for all the test cases. Our new model is able to simulate the thermal force
correctly, reproducing the important characteristic features listed in Sec. 2.3.1, i.e. dependences
on the temperature gradient, on the test particle velocity, and on the number density of background
plasma.

The numerical method proposed in this chapter will be extended to the case of magnetized plasma

in the next chapter.
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Chapter 4

Extended numerical model of thermal
force based on Monte Carlo Binary
Collision model in magnetized plasma

A numerical model of thermal force extended to magnetized background plasma is described in
this chapter. Figure 4.1 shows the basic procedure to calculate one collision event of a test particle.
They are basically the same as those in Chapter 3 (also in Ref. [50]), but now we use an extended
distorted Maxwellian and have added the step 5, Buneman-Boris method [43], to simulate the Larmor

gyration motion of test particles in the presence of magnetic field.

4.1 Algorithm of the model

Our model consists of the following steps as summarized in Fig. 4.1:

Step 1. Parameters of the test particle and those of the background plasma are specified. The mass
m,, charge state Z,, present position r,(¢), and velocity v,(t), of the test particle are input
parameters. For the background plasma ion, likewise, the mass my, charge state Z;,, number
density n;, temperature 7} (r, ), temperature gradient V73, and flow velocity ¥, are given. The

magnetic field B has to be also specified.

Step 2. The heat flux density q of background plasma ions is calculated by considering the magnetic
field B. (Sec. 4.2.1)

Step 3. Velocity of a background plasma ion vy is randomly chosen from the distorted Maxwellian
distribution in Eq. (2.50 or 4.6). (Sec. 4.2)
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4.1. ALGORITHM OF THE MODEL

[ Step 1: INPUTS
Test Particle Parameters:
m,Z ,r (1), v,(1)
Background Parameters:
n(r), T(r), VT(r),v(r)
. Magnetic field: B

l B, VT (r), T(r)

Step 2: Background heat flux
=>q(r)

l v.(0), q(r,)

Step 3: Background ion velocity
sampling (See Section 3) => v,

i v.(0), v,
[ Step 4: Coulomb collision

BCM (See Section 3) => Ay "

l Va(t)) AVaCOH

Step 5: Cyclotron motion
Buneman-Boris method
(See Section 3) => Ay v

~—— e

l v (1), AVaCOH’ AVaGyro
( \
Step 6: Time evolution
t = t+ At
v (tFAf) = v (1) + Av ©l+Ay
r (ttA7) = r (t) + v (DA?

\
OUTPUTS

Figure 4.1: Basic flowchart of the model. (cited from Ref. [30].)
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4.2. RANDOM VELOCITY SAMPLING FROM DISTORTED
MAXWELLIAN (STEP 3)

Step 4. The velocity change Av®!

background ion is calculated by the Monte Carlo Binary Collision Model (BCM) [32]. (Sec.
4.3)

of the test particle due to Coulomb collision with the chosen

Step 5. Larmor gyro motion of the test particle is integrated. Velocity change Av©™ due to the

Lorentz force is calculated by the Buneman-Boris method [43]. (Sec. 4.4)

Step 6. Time is advanced by the time step At (Sec. 4.4). The new velocity and the new position of
the test particle are updated,

Vot + At) = v (t) + AvEl + Ay, 4.1)
r(t 4+ At) =r(t) + v, (t) At. 4.2)

For general simulations with many test particles, we iterate the basic steps above at every collision
event for each test particle.

Our model can be applied to any scale system, because only the local values of the background
plasma parameters are referred to through the basic collision processes above.

Numerical efficiency of the model is mainly determined by the number of test particles used. The

efficiency is the trade-off with the statistical accuracy and the spatial resolution for the results needed.

4.2 Random velocity sampling from distorted Maxwellian
(Step 3)

In order to choose randomly a background ion velocity from the distorted Maxwellian distribution

in Eq. (2.50 or 4.6), we can use almost the same algorithm as presented in the previous Chapter 3.

4.2.1 Preparation

As in Ref. [50], we introduce two coordinate systems for the velocity space, called “System I”
and “System II”. We distinguish variables belonging to System I and II by using subscripts I and II,
respectively. The coordinates for System I (Xj, Y}, Z7) are those of the laboratory frame at rest. The
Zy-axis is defined along the magnetic field line B, and the Xj-axis is taken to the direction of the
perpendicular temperature gradient V | 7. The Yj-axis is in the diamagnetic direction (B x V  T).

In the presence of a temperature gradient VT, = VT, + V T} !, the background heat flux is
calculated from Eq. (2.51) suchas q = —x|V |1, + kpe) x VT, — k1 V1 T),. We express it in the

!Given the magnetic field vector B, an arbitrary gradient is easily separated in the parallel and perpendicular compo-
nent as, V”T =V7T- (B/|B|), and VT'| :=VT — V”T.
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4.2. RANDOM VELOCITY SAMPLING FROM DISTORTED
MAXWELLIAN (STEP 3)

Figure 4.3: Coordinate system: System II based on the heat flux q. (cited from Ref. [30].)
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4.2. RANDOM VELOCITY SAMPLING FROM DISTORTED
MAXWELLIAN (STEP 3)

laboratory frame (System I) as shown in Fig. 4.2,

sin 6 cos ¢
q=1q|| sinfsing |, (4.3)

cos

where 0 := cos™'(gj/q) and ¢ := tan"'(gn/q.). On the basis of such ¢, we define the coordinate
System IT (X7, Y11, Z11) so as for the Zj-axis to take the direction of q. Variable transformation from

System II to System I is realized by the following transformation matrix:

cospcosf) —sing cos@sind
T = | singcosf cos¢ singsind |- (4.4)

—sin 0 cos 6

Once we have a vector vy in System II, its expression in System I is obtained by taking the product

with T je. vy = T2 . vy

4.2.2 Distorted Maxwellian in System Il

Background ion velocity vy in the laboratory frame consists of a flow velocity v, (a given param-
eter) and a random velocity of thermal motion wy, hence vi = Vv, + wy. Rather than choosing a value
of wy directly from the distorted Maxwellian in Eq. (2.50), it is easier to determine its expression in
System II, wy, first. Then we convert wy; into wy. Random velocity wy; is specified by the speed w,
the inclination angle 6y that is measured from the Zjj-axis, and the rotational angle ¢y that is measured
from the Xj-axis, as shown in Fig. 4.3. The rotational transformation matrix T"~! does not affect
the magnitude of a vector, because its Jacobian determinant | det T"~1| is 1. So we use the symbol w

in common to represent the speed of wy and wy;. The velocity distribution f;, ;; of wy; in System II is

obtained by,
fb (WI)dWI = fb(THHI.WH) . ’ det TH%I’CZWH = fb,H (WH>dWH. (45)
Hence,
3 2
m 2 . mpw
fb,H(WH)dWH = Np <27;b> -w?sin O - exp (— 22% )
o fpome (g v Iq| cos O | dwdbydsp (4.6)
- — — —— | w|q| cos w . .
-~ Tbg 5Ut2h,b q 1l nadn

The distribution function ( fyu/n,)dwy is decomposed into three parts fdw, gdfy, and hdgy,

respectively defined as,

2 2
f(w)dw := \/g <%b) - w? exp (—n;b;Z ) dw, (4.7)
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4.3. BINARY COLLISION MODEL (STEP 4)

1
g(w, QH)dQH = 5 []. + o cos QH] sin QHdQH, (48)
h(¢n)d¢n = d¢11/27T7 4.9)
my 1 w?
where o(w, Ty(r,),q(r,)) := —n—bT—bQ 1-— 57, wlq].

From the relation (f,/ny)dwn = (fdw)(gd6n)(hd¢n), the functions f, g, and h are interpreted as

the probability density functions associated with the random variables w, 0y, and ¢y;.

4.2.3 Random sampling of background ion velocity

The three components w, 6y, and ¢y are randomly chosen from their distributions Eqs. (4.7),
(4.8), and (4.9), by the same algorithm described in Chapter 3 (also in Ref. [50]). Then we obtain a
random velocity of a background ion in the laboratory frame (System I) by w; = T . wyy,

For the calculation, we should pay attention to the values of Tj(r,), q(r,), and T"7!(r,) which
are dependent on the position of each test particle r,(¢). They have to be updated, every time the

position r,(¢) changes.

4.3 Binary Collision Model (Step 4)

In order to simulate Coulomb collision between the test particle and the background ion chosen in
Sec. 4.2, we use the Monte Carlo Binary Collision Model (BCM) which has been explained in detail
in Sec. 3.5. From the relative velocity between the colliding two particles, the BCM calculates the

velocity change AvCell

of test particles by collision with a background ion.
For application of the BCM, we use a time step of AtB™ = {1/D(vy, )} x 1073, where D(u) :=
2giny(In A)/(8medu?,u?), as used in Refs. [50, 51]. The relative speed u is approximated by the

thermal speed of background ion vy, s, if it is much faster than the speed of test particle.

4.4 Buneman-Boris method (Step 5)

The Buneman-Boris method is applied to simulate the Larmor gyro-motion of charged test parti-
cles in a magnetic field. The velocity change of test particle by the Lorentz force AvS™ is calculated.
(Please refer to Ref. [43] for the details.)
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4.5. APPLICABILITY LIMITS

The Buneman-Boris method requires to use a time step At9™ which satisfies the inequality

QA9 < 1, where , := ¢,|B|/m, is the cyclotron frequency of the test particle.

4.5 Applicability limits

Our numerical model of thermal force can work with any background velocity distribution which

has the structure,
fo(w) = fo 1+ A(w) - w], (4.10)

where fj is the normal Maxwellian, and A (w) is a known vector which can contain the random speed
w = |wl.

However, the classical limit supposed in this study (See Sec. 2.2) requires that the deformation
term fo [A(w) - w| has to be small enough than the Maxwellian fy. Applying such restriction to Egs.
(2.50, 2.51), we obtain the applicability limits of the model within the classical limit,

my 1 w?
]A(w)w| = ——b—2 1-— 3 {—/ﬁH(V”Tb) -w+/£/\(e|| X VJ_Tb) 'W—K;J_(VJ_Tb) W} < 1.
ny Ty 5U, 4

4.11)

We substitute the thermal speed of background ion vy, , for its random speed w in the relation (4.11),

which leads to the typical classical conditions, such as

Ao o1
VT’ TVT®
L” LL QbTb

< 1L (4.12)

Here the mean free path of background ions along the magnetic field line is denoted as \;, |, the Larmor
radius of background ion is ;.. The characteristic lengths along/perpendicular to the magnetic field
,and LYT := T,/|V . T,|. The conditions in Eq.
(4.12) are the same as the orderings in Eqs. (2.44, 2.45) that we have assumed to solve the kinetic

line are respectively defined as: L)"" := T,,/|V T}

equation Eq. (2.40).
More concretely, the test simulation results in Sec. 4.6 provide a rough criterion for the smallness

of |A(w) - w|. It is better to satisfy the condition
|A(vth,b)|vth7b S 0.1. (413)

All test simulations in Sec. 4.6 have been performed within this limit Eq. (4.13) 2, and the reasonable
results of the thermal force have been obtained, as will be shown in Sec. 4.6. This fact means that our

model works correctly at least within this criterion.

The most severe condition is that of Case I-2 with weaker magnetic field |B| = 0.1 T and steeper temperature gradient
V 1T, = 300 eV/m, which gives |A (v, p) |ven,p = 0.09.
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4.5. APPLICABILITY LIMITS

In the present study, the deformation of the background velocity distribution function caused by
the ELM [15], the neo-classical transport [19], the turbulence effect [41], the strong viscosity due to
the flow-reversal [14], or any other effects occurring in fusion plasmas than the classical transport
are not taken into account. However, our model can be, in principle, still extended by using more
sophisticated forms of distribution function. It is an interesting study subject to define appropriate
distribution functions to include the above effects.

One currently available way of model extension is to use a more general form of distorted Maxwellian
distribution presented in Ref. [44], for the case where (2,7 is arbitrary, Vp # 0, and E # 0. It may
also be possible to model more realistic background plasma by using the expression of heat flux q
with the heat flux limiter [42].
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4.6. TEST SIMULATIONS

4.6 Test simulations

To validate our extended numerical model, we have performed the following two types of test

simulations.

Test Simulation I: short time scale (0 < 2, < 0.01). We simulate the time evolution of the aver-
age velocity of test particles, in the presence of a perpendicular temperature gradient, for time
scales much shorter than the Larmor gyration period of test particles, in order to directly ex-
amine the thermal force FV7. In such short time scale simulation, we can easily separate the

diamagnetic thermal force from the friction force and the Lorentz force in numerical results.

Test Simulation II: long time scale (0 < €2, < 650). We solve the trajectories of test particles for
a long period of time. The ensemble-average position of test particles is simulated to check the
temperature screening effect. As is explained in Ref. [19], the diamagnetic thermal force Fy
drives the guiding center drift of test particles as shown in Fig. 2.6. The test particles move
continuously, as a whole, toward (—V | T})-direction. Such macroscopic consequence of the
thermal force has not been taken into account in any kinetic test particle simulation model so

far.

4.6.1 Numerical parameters for test simulation | and Il

Table 4.1: Numerical Parameters for test simulations. (cited from Ref. [30].)

Test particle species W3+
Initial position of test particles, r, ;(t = 0) 0
Initial test particle velocity, v4(t = 0) 8.84 x 10° ms~ ! ey (50 eV)
Normalized test particle velocity, v, (t = 0) 0.09 ex
No. of test particles for test simulation I, /V, 106
No. of test particles for test simulation II, /Ny 10*
Background plasma ion species H*
Number density of background ions, n, 102 m~3
Background flow velocity, v Oms!
Temperature at the origin, 7;(0) 50 eV
Temperature gradient, V1 given for each case
Coulomb logarithm, In A 15
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4.6. TEST SIMULATIONS

Table 4.2: Characteristic time scales. (cited from Ref. [30].)

Magnetic field B 0.1 T (TestI) 1T (Test II)
Time step for BCM, AtBM 2.03x1071%s 2.03x 107105
Time step for Buneman-Boris method, A5 6.40 x 1077s  6.40 x 107 % s
Simulation time step, At 2.03 x 1071%s  2.03 x 107105
Gyration period of test particle, 6.40 x 107%s  6.40 x 107" s
Slowing-down time of test particle, 7, 710 x10%s  7.10x107°s
Energy-exchange time of test particle, 7 267 x107°s 267 x107°s
Total calculated time, ¢ 0<Q,t<001 0<Q,t <650
Collision time of background ions, 7, 491 x107%s 491 x107%s
Cyclotron frequency of background ion, 2, 9.58 x 10°s7t  9.58 x 107 s ¢
Degree of magnetization, (2,7, 47 470

For the test simulations I and II, we use the Cartesian coordinates (X, Y, Z). The magnetic field
B is along the Z-axis. The perpendicular temperature gradient V | 7, is taken along the X -axis.

Numerical parameters used in the test simulation I and II are summarized in Table 4.1. The
test particle species is tungsten ion W3* (mass m,, electric charge ¢,). The background plasma ion is
hydrogen ion H™ (mass my, electric charge ¢;). Electrons are not considered. The plasma temperature
at the origin is 50 eV, and the temperature gradient is specified for each simulation case. The number
density of background plasma ion is n; = 10%* m~3, and the background flow velocity vy is set to O.
The Coulomb logarithm is taken as In A4 = 15.

Magnetic field and characteristic time scales are presented in Table 4.2. The slowing-down time

of the test particle 75 is defined by,

1 4 2,12,,3
Ty 1= s (4.14)
Ma Ny N
(1+ ) () G0

where vy = |[vo(t = 0)|, z == mpd/(2T}), and p(z) = (2//7) [ exp(—£)v/EdE. This is a
characteristic time scale for a test particle to be slowed down by collisions with background ions. The
gyration time scale of the test particle is Q! := (g,|B|/mq) "

The simulation time step is decided by At = min{At®M  A¢° } where the time step required
for the BCM is AtP*™M = {1/D(vy, )} x 1073, and the time step for the Buneman-Boris method is
AtG™ = Q-1 x 107!, The time step for BCM AtBM has been estimated from the formula in Sec.
4.3 by approximating the relative speed of colliding two particles u := |v, — v;| by the thermal speed

of the background ion vy, 5, which is much faster than v, (u = vy, > v,).
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4.6. TEST SIMULATIONS

The test simulations are carried out for the case of collisional background plasma, where the heat

flux q is specified by the classical formula Eq. (2.51).

Magnetic field strength and number of test particles used in the test simulation | and
!

In the test simulation I, we use a weaker magnetic field (B = 0.1 T) and a large number of test
particles (N; = 10°). It enables us to make the diamagnetic thermal force relatively stronger, and take
a large ensemble average of the test particle velocity, in order to output and check the acceleration
by the diamagnetic thermal force, with negligible Monte Carlo noise. The following facts are being

exploited.

1. The magnitude of the diamagnetic thermal force FY7 is inversely proportional to that of the
magnetic field (JFY 7| oc |B|™!). When FY7 becomes stronger, it may be easier to separate the

thermal force from the other forces.

2. By weakening the magnetic field, we can reduce the Lorentz force (|[F¥™| o |B|) which acts
in the same direction as the diamagnetic thermal force (Fig. 2.5), at the initial moment of the

test simulation 1.

3. The thermal force appears after averaging random collisions on the test particle. However, dur-
ing the short simulated time (€2,¢ ~ 0.01) of the test simulation I, each test particle experiences
only a few times of Coulomb collisions. If the number of test particle and the total number of
collisions are insufficient, the standard deviation of the value of the averaged velocity of test
particles from its mean becomes non-negligible, so we cannot compare the numerical result

with its theoretical value, with a good statistical accuracy.

In the test simulation II (Fig. 2.6), we use a typical magnetic field strength for fusion plasma
(B = 1 T) and a smaller number of test particle (N, = 10*). It is because that the temperature
screening effect (|v>"| oc B™2) is still non-negligible when B = 1 T, and also that the simulation
is performed for a long time scale (€2,¢ > 100). Since each test particle collides with background
ions much more times than the test simulation I, the collisional force on test particle is sufficiently
averaged over the time. Therefore, a smaller number of test particle N, is enough to simulate the
thermal force as well as the temperature screening effect occurring on a long time scale.

Both test simulations I and II prove the correctness of our model.

4.6.2 Test simulation | — Diamagnetic thermal force —

In the test simulation I with short time scale, simulated time evolution of test particle velocity will

be directly compared with the theoretical values of the thermal force calculated from Eq. (2.59). We
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4.6. TEST SIMULATIONS

start the simulation by injecting test particles with the initial velocity v,(¢ = 0) in the +X -direction
(See Table 1). As shown in Fig. 2.5, the diamagnetic thermal force FY” and the Lorentz force
FO .= q,(v,(t) x B) act on the test particle, initially, in the (—Y")-direction under the presence of
perpendicular temperature gradient V T}, and magnetic field B. The frictional force F° (not shown
in Fig. 2.5) acts in the — X -direction, opposite to the test particle initial velocity. We focus on the
Y -component of test particle velocity, in order to see the diamagnetic thermal force FY 7. We will,
first, calculate the velocity changes of each test particle. Next we remove the acceleration by Lorentz
force from the simulated results. Finally we compare such results with the theoretical value of thermal
force Eq. (2.59).

We test the following three values of temperature gradients,
Case (I-1) VI, =100eV/m ey,
Case (I-2) VI, = 300eV/m ey,

Case (I-3) VI, =300eV/mex +5eV/mey.

In Case (I-1) and (I-2), we examine the diamagnetic thermal force FXT alone, focusing on its direction
(FYT || —ex) and magnitude (|FYT| < |V Tp|). Then in Case (I-3), we check if the parallel (FWT)
and diamagnetic (FY7) thermal force can be simulated simultaneously under complex temperature
gradient having both parallel and perpendicular components.

The magnetic field B is set to 0.1 T ez. The number N; = 10° of test particles start moving
along the X-axis from the coordinate origin 0 (Fig. 2.5), with the initial velocity v,(t = 0) := vg =
\/mex, where Ey = 50 eV.

During a period of time much shorter than both the Larmor gyration period €2, ' and the slowing
down time of test particle 75 (0 < Q,t < 0.01,1i.e. 0 < t/7, < 0.001), we calculate the time evolution

of the average velocity of test particles v, (t), defined as,

Va(t) ==Y vau(t)/Ny, (4.15)

where v, ;(t) is the velocity of i-th test particle (i = 1 ~ N;) at the time ¢.

Before comparison with the theoretical value Eq. (2.59), we remove the acceleration of the
Lorentz force from v,(t). Since the test particle velocity does not change substantially (v;(t) & vo)
during the simulation (because of €2,t < 1, and ¢t /7, < 1), the Lorentz force remains almost constant
(F9™ ~ ¢,(vo x B) ). By removing the Lorentz force, we define the average test particle velocity

accelerated only by the thermal force, such as
VoV (1) := Va(t) — {qa(vo x B)/ma} - t. (4.16)
The values of ¥,V (t) will be outputted in the following sections 4.6.2-4.6.2 as simulated results.
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Figure 4.4: Result of Case I-1 and I-2: The Y-component of the average velocity of test particles

accelerated only by the diamagnetic thermal force U,y ¥ (t). (cited from Ref. [30].)

Results of Case (I-1) and (I-2)

Figure 4.4 shows the Y -component of simulated average velocity without Lorentz force, 7,y ¥ * (),
for the vertical axis, and the normalized time €2t for the horizontal axis. Closed squares and crosses
correspond to Case (I-1) and (I-2), respectively. The theoretical value calculated from Eq. (2.59) by
UXT’Theo = voy +{FYT(vg)/ma} -1, is presented by the dashed and solid line for Case (I-1) and (I-2).

In both Cases, the results agree very well with the theoretical acceleration by the diamagnetic
thermal force FXT. The comparison between the results of Case (I-1) and (I-2) shows that the strength
of the diamagnetic thermal force is proportional to the magnitude of temperature gradient (|[FY 7| o
V. T)).

Result of Case (I-3)

We have already checked our model on the parallel thermal force in Sec. 5.2 (as well as in
Refs. [50, 51]), and on the diamagnetic thermal force in the previous Sec. 4.6.2. Here we check the
thermal force under the combined temperature gradient which has both parallel and perpendicular
component, VT, = 300 eV/m ex + 5 eV/m ey. The initial velocity of test particle is the same as
in Cases (I-1) and (I-2), 1.e. along the X -axis. According to Eq. (2.59), the test particles should be
accelerated at once, to the (—Y')-direction by the diamagnetic thermal force (Fig. 2.5), and to the
(+Z)-direction by the parallel thermal force (Fig. 2.4).

Figure 4.5 shows the time evolution of the Y -component of simulated test particle speed (closed
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Figure 4.5: Result of Case I-3: The Y'-component of the average velocity of test particles accelerated

only by the diamagnetic thermal force T,y ¥~ (¢). (cited from Ref. [30].)

squares) without acceleration of the Lorenz force T,y ¥ (¢). The theoretical value is also plotted as a
solid line. The result agrees well with its theoretical value. The diamagnetic thermal force is correctly
simulated.

On the other hand, Figure 4.6 presents the simulated Z-component of test particle average velocity
v7(t) by closed squares. The simulated time in the horizontal axis is normalized to the Larmor
gyration time scale ;! and also by the slowing down time 7,. We can compare the result v(t)
directly with its theoretical value (FHVT(VO) /mg) - t, solid line in the figure, because neither the
frictional force F° nor the Lorentz force act in the Z-direction (Fig. 2.4) on the initial condition that
vy || ex (Fig. 2.4). Good agreement has been obtained. The parallel thermal force FFT is correctly
simulated simultaneously with the diamagnetic thermal force FY .

From the results of Cases (I-1), (I-2), and (I-3), it is concluded that our numerical model is able
to correctly simulate the thermal force caused by both the parallel and the perpendicular temperature

gradient.

4.6.3 Test simulation Il - Temperature screening effect —

In the test simulation II, we solve the trajectories of test particles for a relatively long period of
time (£2,t =~ 650), and discuss whether our kinetic model is able to simulate the temperature screening
effect [19].

Two perpendicular temperature gradients have been used,
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Case I-3 V.VT: Cal = .
Case I-3 V.V": Theo — .

4.5

V7T osh

[m/s] 55l

1 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Qat

| | | | | | | | |
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

t/ Ts

Figure 4.6: Result of Case I-3: The Z-component of the average velocity of test particles accelerated
by the parallel thermal force T, V7 (t). (cited from Ref. [30].)

dI-1) V7, =100 eV/m ey,
(II-2) VT, =300eV/mey.

The number N, = 10* of test particles start from the coordinate origin 0. Velocity of each test
particle is randomly chosen from the Maxwellian distribution with average energy of 7, = 50 eV
(= Ty(r, = 0)). We use a magnetic field B = 1 T e;. The calculation is performed for a long time
(t > Q1) so as for the test particles to gyrate for many times. The other parameters are the same as
those presented in Table 4.1 and 4.2.

The transport simulation of tungsten impurities under these values of parameters, which are typical
for the SOL-divertor plasma in present tokamaks, is one of the important topics for the fusion research.
Normally, a strong perpendicular temperature gradient in the direction toward the core exists close
to the separatrix in the SOL-divertor plasma. The temperature screening effect due to such steep
temperature gradient, which prevents impurities from penetrating the hot core, might have an impact

on the impurity transport in fusion plasmas.

Theoretical value of the temperature screening effect

Before the simulation, we explain the theoretical value of the drift velocity of test particle v>°

a

driven by the diamagnetic thermal force FY7 that we use to check the simulation results. We use the
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4.6. TEST SIMULATIONS

Scr.

fluid estimation of v,

as presented in Ref. [19], because the test particles seem to be relaxed with
the background plasma, during the simulation time much longer than the energy-exchange time 75 of
test particle (Table 4.2) 3.

Average diamagnetic thermal force acting on a fluid element of the test particle species per unit
volume [19] is given by
3ny, BxV T,

RVT —
QQbTIEL ’B‘ ’

4.17)
with the collision time 72, and the number density of test particle species n,. The collision time 72,
is defined by Braginskii [14] as,

3/2
B 1273/ egw/mbTb/
b 2 ne@?@@n A

We substitute RV in the usual formula of guiding center drift, v3* = (RVT x B)/(m,n.8,|B

a

(4.18)

), to

obtain
viee—_Z_ 2 0.V T, (4.19)

Scr.

The velocity v,

is proportional to the gradient, v> oc —V T},

Here, we have to be careful to use such fluid estimation of vi“ to our kinetic test simulation,
because there exists theoretical uncertainty in the definition of the Braginskii collision time 7. Orig-
inally, the collision time 7 has been derived under the condition that o := n,g2/(nyq?) = 1. In our
kinetic test simulation, however, we do not know exactly the number density n, of the test particles,
neither the value of o . Even though the Braginskii collision time is widely used [14, 19, 45], we
should take care of the fact that the numerical coefficient of 75 is dependent on the value of a.

Instead, there is another definition of collision time. The basic collision time 7;, has been defined

by Trubnikov [13] as,

2
T = 8\/5#6‘2)\/?—§TE/, (4.20)
Naq2q; In A
under the condition that m, > m;. This condition is satisfied in our test simulation II.
In the present study, we use the both collision times 75 and 7,0 for estimating the temperature
screening effect. They have the same order of magnitude, and are only different in their numerical
coefficient, 72 : 7L = 1 : 0.75. We expect that the both collision times may give reasonable and

useful estimations of vi“ (Eq. (4.19)), to examine the numerical results.

_ [%al?

3The energy-exchange time 7 is defined by, 7 := 1 (1 + %‘;) Ts.
“Even though we do not know explicitly the number density of test particle n,, we can still evaluate the temperature

screening effect in Eq. (4.19). The number density n,, disappears as a result of the term n,7£, in the denominator.
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Figure 4.7: Examples of a test particle trajectory in the test simulation II, projected onto the XY -
plane. (cited from Ref. [30].)

Example of a test particle trajectory

Prior to the full results, we show some examples of test particle trajectory for better understanding
of the situation.

Figure 4.7 shows typical trajectories of test particles, projected onto the perpendicular XY -plane.
The dashed line (green) and solid line (red) correspond to the 1st and 2nd test particle, respectively.

Their trajectories tend to move gradually toward (—V | T} )-direction, as is expected from Eq. (4.19).

Result of test simulation Il

Figures 4.8 and 4.9 show the time evolution of the average position of test particle T(t), respec-
tively for Case (II-1) and (II-2), which is defined as

N2

T(t) =) Tai(t)/Na, (4.21)

=1
where r, ;(t) is the position of i-th test particle (: = 1 ~ ) at time ¢. Closed squares and cross marks

represent the value of the X -component X (¢) and the Y-component Y (¢) of the average position ¥(t),
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Figure 4.8: Result of Case II-1: Closed squares and cross marks represent the average value of the
simulated X -position X () and the Y -position Y (¢) of the test particles. The Braginskii estimation
using 7 and the Trubnikov estimation by 7,/ are plotted, respectively by the dashed and the solid

line. (cited from Ref. [30].)
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Figure 4.9: Result of Case II-2: Closed squares and cross marks represent the average value of the
simulated X -position X () and the Y -position Y (¢) of the test particles. The Braginskii estimation
using 7 and the Trubnikov estimation by 7,/ are plotted, respectively by the dashed and the solid
line. (cited from Ref. [30].)
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for each case.

In both Cases (II-1) and (II-2), the test particles are clearly moving as a whole toward the (—X)-
direction, i.e. to lower temperature region, while its averaged Y -position remains around 0. Fur-
thermore, as the magnitude of temperature gradient increases from Case (II-1) to (II-2), the slope of
X (t), i.e. the average speed along the X-axis vx(t) := dX (t)/dt, is enhanced. From these results,
the temperature screening effect is reproduced qualitatively well (for the direction and the magnitude
V| oc [V Ty)).

To examine more quantitatively the results in Figs. 4.8 and 4.9, we use Eq. (4.19). By substituting
the present parameters (Table 1 and 2, VT, T,(r) ~ T,(0) = 50 eV) in Eq. (4.19) with the two

collision times 72, and 7,1 , we obtain the theoretical velocity of guiding center drift as follows,

Case (II-1):
vSr = —1.33 ms™! ex (using Braginskii 7)),

v = —1.78 ms~! ex (using Trubnikov 7)),

Case (I1I-2):

v3 = —4.04 ms~! ex (using Braginskii 72),
v = —5.39 ms™! ey (using Trubnikov 7).
Theo ; Theo

The theoretical value of X -coordinate x™ is calculated by xTh°® = ¢3¢, The Braginskii estimation
using 72 and the Trubnikov estimation by 7,0 are plotted, respectively by the dashed and the solid
line in Figs. 4.8 and 4.9. The simulated X -position of test particles X () shows good agreements
with both the Braginskii/Trubnikov estimation in Case (II-1) and Case (1I-2), within the ambiguity of
theoretical definition of the collision times. Especially, the results agree quite well with the Trubnikov
estimation under the present simulation condition.

It has been confirmed that our numerical model is able to simulate the temperature screening
effect caused by the perpendicular temperature gradient which may have non-negligible effect on
the impurity transport processes in fusion plasmas. In the present tokamak plasmas, the anomalous
transport process is considered to have one of the dominant effects on the impurity transport in the
radial direction. In many existing impurity transport simulations, the anomalous transport is taken
into account. The particle diffusion velocity due to the anomalous transport is estimated from the
typical characteristic values as follows. A representative value of the radial anomalous diffusion

coefficient is estimated to be D | ~ 0.25 m?s~!

, according to Refs. [?, 46]. And, if we assume that
the characteristic scale length of the impurity number density Ly is of the same order as that of the
background electrons, then it is estimated as Ly := |Vnw/nw|™' = 0.01 ~ 0.1m, from Ref. [47].
The anomalous diffusion is of the order of v*mdows = D, /T, = 2.5 ~ 25 ms™!. The temperature

screening effect v above is expected to be non-negligible compared with such anomalous diffusion.
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4.7 Summary of Chapter 4

We have developed a numerical model of the thermal force for test-ion transport simulation in
magnetized plasmas, based on the Monte Carlo Binary Collision Model. When the background
plasma has a temperature gradient with parallel (V| T;) and perpendicular (V1 7;) components to
the magnetic field, our kinetic model is able to simulate the thermal force on individual test parti-
cle, caused by such temperature gradients. The model is basically the same as presented in previous
Chapter 3 for the case without magnetic field, but this time, we have introduced a more extended form
of the distorted Maxwellian distribution for the velocity distribution of background plasma ions. The
most important part of the model is a numerical method for random sampling of a background plasma
ion velocity from the distorted Maxwellian distribution, including the background ion heat flux q
caused by the temperature gradient V|7, and V| T,

In Sec. 2.2, the distorted Maxwellian distribution has been derived on the simple classical con-
ditions that the background plasma is collisional and strongly magnetized (q is expressed by the
classical formula, 2,73, > 1), and there exist neither pressure gradient nor electric field (Vp = 0,
E = 0). However, our model can be easily further extended to cases without such restrictions (i.e.
other suitable formula of q can be employed, the degree of magnetization §2,7, is arbitrary, Vp # 0,
E # 0), by using a more general form of distribution function, e.g. those given in Ref. [44].

In order to confirm the validity of the model, we have performed two types of test simulations. In
the first test simulation, we have calculated the time evolution of the average velocity of test particles,
in the presence of a perpendicular temperature gradient, for time scales much shorter than the test par-
ticle Larmor gyration period. The results agreed very well with the theoretical values of acceleration
by the thermal force obtained from the kinetic theory.

Then we have performed the second test simulation, for time scales much longer than the test
particle Larmor gyration period, in order to check the temperature screening effect caused by the
diamagnetic thermal force. The simulated trajectories of test particles have moved, as a whole, toward
(—V . T,) direction as expected by the theory [19]. We expect that such temperature screening effect
may be non-negligible compared with the order of magnitude of the anomalous diffusion in fusion
plasmas.

Good agreement of these test simulation results with the theory has shown that our thermal force
model is correct and reliable enough to be applied for realistic transport simulations. Our next step is
to integrate this model into existing kinetic impurity transport simulation codes (e.g. the IMPGYRO
code [26, 48, 49] which solves the full orbit of test impurities by using the BCM for Coulomb colli-
sion) for realizing more accurate, reliable impurity transport simulation in nuclear fusion plasmas.

Furthermore, the present BCM-based model can be easily applied to more sophisticated integrated

impurity transport simulations which can consider dynamic changes in background fusion plasmas.
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Chapter 5

Numerical kinetic model of thermal force
based on Fokker-Planck collision
operator

We have developed another type of thermal force model for magnetized background plasmas, by
using the Fokker-Planck (FP) collision operator to simulate Coulomb collisions. The FP collision
operators are obtained on the basis of the study done in the previous Chapters 2, 3, and 4. In addition
to the Binary Collision model, the FP method is also widely used (e.g. ASCOT code [46]) because
the FP approximation realizes more rapid calculation as far as the trace impurity limit holds. Since
almost all the kinetic impurity transport simulation codes for fusion plasmas use either of BCM or FP
approximation for Coulomb collision, the FP-based algorithm presented in this chapter will largely
expand the applicability of our model.

Model validation are performed to confirm that the FP approximation model can simulate the

thermal force as accurately as the BCM-based model in Chapter 4.

5.1 Model description

According to Refs [19, 53], the Coulomb collision process can be modeled by the Fokker-Planck

collision operators: the drift vector A and the diffusion coefficient matrix D. They are defined by,
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respectively
Mg, a/b
A=— (1 + E) L' V(A (vy)) = F/my, (5.1)
b
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The force F in Eq. (5.1) is the Coulomb collisional force given in Egs. (2.57), (2.58), and (2.59). The

1/ * = (¢as/(na€0))? In A. The Cartesian coordinates

constant Lg{  is defined in the SI-unit system Lg
(X,Y, Z) are supposed, and the subscripts 7 and j in Egs. (5.3) and (5.4) indicate X-, Y-, and Z-
component, respectively. The subscript a of the normalized velocity of test particle v, (Eq. (2.61)) has
been omitted in Eqgs. (5.2), (5.3), and (5.4) for simplicity. The function J;; is the Kronecker’s delta’.
The Rosenbluth potential ¥ (v, ), already defined in Eq.(2.28), is a function of the test particle velocity
U(v,) := —(1/87) [[[ |va — V| fo(vs)dvy. These operators A and D describe the time evolution
of the velocity distribution of test particle f,(v,) due to Coulomb collisions with background ions,

according to the Fokker-Planck equation [53, 17, 19]

Ofa(Va,t) Z 0 1 0?
—— b —(Aif)+5 > 5 (Dijfa). (5.5)
ot collisions i=XY,Z v 2 XY aviavj

The random velocity change dv, of a test particle due to Coulomb collisions with background
ions, over a time step Atcq., is simulated as follows. Given the background velocity distribution f;
and the test particle actual velocity v,, we calculate the operators A and D. Since the diffusion co-
efficient matrix D is almost always positive-definite, it can be decomposed into a matrix product, i.e.
D = BB, where B is a lower triangular matrix and BT is B’s transpose (Cholesky decomposition).
Then, dv, is simulated by the Ito stochastic differential equation [53]: dv, = Adt + B - dW. The
vector dW is consisting of the Wiener process increment dW/;. Each component dW; follows the
Gaussian probability density distribution with the mean 0 and the variance Aty , and is independent

of each other. Finally, the test particle velocity is updated as v, (t + Atcon.) = Va(t) + dv,,.

16;j :=1if i = j, 6;; := 0 otherwise.
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5.2. TEST SIMULATION

5.1.1 Numerical implementation of the model

Numerical implementation of the Fokker-Planck (FP) collision process is easily done. For test
simulations in the next Sec. 5.2, we have replaced the Coulomb collision part in the BCM-based

simulation algorithm in Fig. 4.1 of previous Chapter 4, by the FP process described above in Sec. 5.1.

5.2 Test simulation

We have performed a series of test simulations to confirm the validity of our FP-based thermal

force model and its numerical efficiency.

5.2.1 Test simulation 1: evaluation of the thermal force

The 1st test simulation for checking the thermal force has been performed under the identical
conditions as the test simulations I and II in Chapter 4 (also in Ref. [30]). The simulated results on
thermal force by temperature gradient VI, = V| 1}, + V | T}, are compared with the theoretical value
from Eq. (2.59). The results agreed well with the theory, as accurately as the results obtained by our
previous BCM-based Coulomb collision model (Almost the same figures as Figs. 4.4, 4.5, and 4.6 of
Chapter 4 have been obtained. The results are omitted here.)

In addition, the temperature screening effect (TSE) has been examined. As described in Ref. [30],
the TSE is a guiding center drift of test particle by the thermal force, whose drift velocity is analyti-
cally estimated [19, 30] as

vt =~ % 2.V T, (5.6)

where 7,7 is the basic collision time defined by Trubnikov [13] 7%, := 8v/2we2 /T3> ) (nag2q2 In A).
This effect may have important impact on test particle transport, especially in the SOL-Divertor re-
gion of the tokamak where steep temperature gradients exist. Simulated results (omitted here) have
shown good agreements with the theory, just as shown in Figs. 4.8 and 4.9 of Chapter 4 obtained by
the BCM-based model. Our present numerical model based on FP operator is able to simulate the

thermal force correctly.

5.2.2 Test simulation 2: effective length of collision time step Atcon.

The 2nd test simulation focuses on effective length of the simulation time step of collision Atcyy..
All the parameters remain the same as those used in the test simulation case (II-2) in Sec. 4.6.3,
except the length of time step Atcyy., which was originally taken very small Atcqy, = 2.03 x 10710 s,

We have increased Aty ., and checked to which extent of Aty the TSE is correctly simulated.
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We use the Cartesian coordinate system, where the magnetic field B = 1 T e is taken along the
Z-axis and the perpendicular temperature gradient V ; 7;, = 300 eV/m ey is along the X -direction.
The test particle species is tungsten ion W3, and the background plasma ion is hydrogen ion H.
Electrons are not considered. The plasma temperature 7,(r) at the origin of position (r = 0) is 50
eV. The number density of background plasma ions is 1, = 102 m~3, its flow velocity Vv is set to 0.
The Coulomb logarithm is In A4 = 15. More details should be referred to in Ref. [30]. The number of
N = 10* test particles are used. They start moving from the coordinate origin r = 0, with random
velocity which are chosen from the Maxwellian distribution of 50 eV. Their trajectories r, ;(¢) and
ensemble average of position T(t) := SV r,(t)/N, are simulated. The value of X-component X
of T(t) is compared with its theoretical value X ™ (¢) calculated from Eq. (4.19).

Simulations have been performed by varying Atcgy, from 0.0017g, to 0.5075. The slowing-down
time 7, is a characteristic time for a test particle to be slowed down by collisions with background
ions, defined as 7, == {(1 + mq/my) ()} " (4re2m2v3) /(q2giny In A), where  := myv?/2T}, and
p(x) = (2/v/7) [y exp(—€)VEdE.

Simulated results are shown for the cases Atcoy. = (1) 0.05 x 7, (2) 0.15 x 74 . Figures 5.1
and 5.3 show typical trajectories of 2 test particles, projected onto the XY -plane, respectively for
the case (1) and (2). And figures 5.2 and 5.4 present time evolution of the averaged position X and
Y for each case, where the horizontal axis is the simulated time normalized to the Larmor gyration
time ;' := (qq|B|/m,)"! and the vertical axis means the traveled distance. Theoretical values
XTheo. (1) = 3¢ and Y™ (¢) = ( are also shown in broken lines. In Figs. 5.2 and 5.4, the simulated
values X and Y agree well with their theoretical values. It means that the test particles move toward
(—V . T})-direction, i.e. to the (—X)-direction as a whole, but stay in the Y -direction as is expected
by Eq. (4.19). In addition, the trajectories in Figs. 5.1 and 5.3 change their Larmor gyration radius
ceaselessly. This feature reflects an important characteristics of Coulomb collision that it acts on test
particles continuously over the time because of its long interaction distance.

As aresult of test simulations, we have confirmed that, in the range of Atcoy. = 0.00175 ~ 0.1575,
the simulated X and Y have agreed well with their theoretical value. Beyond Atcyy = 0.157, the
both values X and Y, have started to deviate largely from their theoretical value.

This result is consistent with the criteria mentioned in Refs. [54, 55] that a time step of Fokker-
Planck collision method up to Atcqy. &~ 0.257, yields sufficiently correct simulation results of Coulomb

collision.

5.3 Summary of Chapter 5

The numerical model of the thermal force based on the Fokker-Planck collision operator has been

presented. For the model validation, we have performed the same test simulations as those performed
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Figure 5.1: Exemplar trajectory of 2 test particles with Atc;. = 0.0575. The solid line and broken
line correspond, respectively, to the 1st and 2nd test particle. (cited from Ref. [52].)
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Figure 5.2: Time evolution of average test particle position X and Y with Atcon = 0.057,. (cited
from Ref. [52].)
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Figure 5.3: Exemplar trajectory of 2 test particles with Atc;. = 0.1575. The solid line and broken

line correspond, respectively, to the 1st and 2nd test particle. (cited from Ref. [52].)
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Figure 5.4: Time evolution of average test particle position X and Y with Atcon = 0.157,. (cited

from Ref. [52].)
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previously for our thermal force model based on the Binary Collision model (Chapter 4). The results
have shown good agreements with the theory. Our numerical model based on the FP collision operator
is able to correctly simulate the thermal force caused by both the parallel V|| T" and the perpendicular
VT temperature gradient. The temperature screening effect has also been simulated correctly.

In order to improve numerical efficiency of the model, effective simulation time step of collision
has been examined. We have confirmed that, under our test simulation conditions, with collision time
step Atcon. up to about 15 % of the test particle slowing-down time 7,, our model can simulate the

temperature screening effect by thermal force.
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Chapter 6

Conclusion

To promote fusion reactions steadily, impurity particles have to be well controlled in order to keep
the main fuel plasma hot and dense enough. Correct understanding of impurity transport processes in
plasmas is one of the most important research subjects of nuclear fusion. Numerical simulations are
widely used to investigate important effects of impurities in fusion plasmas, such as the cooling of
core plasma or the mitigation of plasma heat load onto device walls.

In order to improve the impurity transport simulation, we have developed a new numerical model
to simulate the thermal force acting on kinetic test-impurity particles. The thermal force is caused
by Coulomb collisions with background plasma ions if the plasma has temperature gradient. The
motion of impurity particles can be largely influenced by the thermal force. For example, in the
parallel direction along the magnetic field line B, the balance of frictional force and thermal force
due to parallel temperature gradient determines the impurity transport. In the perpendicular direction
to B-line, guiding center drift of impurity particles (temperature screening effect, TSE) occurs by
the thermal force due to perpendicular temperature gradient. Although the TSE can compete against
other transport mechanisms across the B-field such as the anomalous diffusion, the thermal force and
its TSE have not been correctly taken into account in the existing impurity transport simulation codes
so far.

Chapter 1 summarizes the motivation and the research subject. Importance of impurity transport
process in fusion plasmas is emphasized. Our efforts are devoted to develop a new thermal force
model to improve the impurity transport simulations.

Chapter 2 explains the basic theories. The kinetic transport model of charged test particle in
plasma, and the Boltzmann equation describing the behavior of background plasma ions are the main
physics fields of the study. Coulomb collisions are modeled as a random walk process in velocity
change of particles, and background plasma ions with temperature gradient are modeled by the dis-

torted Maxwellian velocity distribution. Averaging all collisions between the test particle and the
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plasma ions, the formula of thermal force is analytically derived. Many interesting and important
characteristics of the thermal force are presented.

Chapter 3 presents a new numerical model of thermal force in unmagnetized background plasma.
Efficient algorithm to randomly sample plasma ion velocities from the distorted Maxwellian has been
newly developed. After sampling background ion velocities, Coulomb collisions with the test impu-
rity particles are simulated by the Binary Collision model (BCM). A series of test simulations has been
carried out for model validation. The important characteristics of the thermal force in unmagnetized

plasma have been examined such as:

e The thermal force pushes the test particles toward hotter plasma region.

e The magnitude of thermal force is directly proportional to the that of background temperature
gradient.

e The direction of thermal force is reversed ( i.e. toward lower temperature area) when the test
particle moves as fast as, or even faster than the thermal speed of background plasma ion. This
mechanism prevents the test particles from being infinitely accelerated by the thermal force.

e The direction and magnitude of thermal force is independent of the number density of back-

ground plasma ions.

This model is equivalent and applicable to the simulation of thermal force along magnetic field line
in magnetized plasmas.

Chapter 4 extends the model to the case of magnetized background plasmas. By adopting more
extended form of the distorted Maxwellian, we have succeeded, for the first time, to kinetically simu-
late the thermal force due to temperature gradient perpendicular to the magnetic field. As in Chapter
3, the BCM is used to simulate Coulomb collisions.

Because of the presence of magnetic field B, the thermal force becomes anisotropic:

Parallel temperature gradient along the magnetic field line causes the parallel thermal force
which acts on each test particle in the same direction as the magnetic field. The parallel thermal
force has the same characteristic features as listed above since it is identical with the thermal
force in unmagnetized plasma.

Perpendicular temperature gradient with respect to the magnetic field causes the diamagnetic
thermal force which acts on test particles in the direction perpendicular to both the magnetic
field and the temperature gradient. The diamagnetic thermal force drives the guiding center drift
of test particles, which leads to macroscopic transport of test particles across the magnetic field,
from higher to lower temperature region of background plasma. It is called temperature screen-
ing effect (TSE). The TSE drift velocity may be non-negligible compared with the anomalous
diffusion process which has been considered to be dominant to the impurity transport across the
B-field so far.
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Test simulations have been performed to check the correct evaluation of parallel and diamagnetic
thermal force, as well as the temperature screening effect. All the simulation results have agreed well
with the theoretical prediction. Our thermal force model has been confirmed to be able to correctly
simulate the thermal force in magnetized fusion plasmas. This extended BCM-based model can be
easily applied to more sophisticated integrated impurity transport simulations [48, 49, 56] which can
consider dynamic changes in background fusion plasmas.

On the basis of the work done in Chapters 3 and 4, another new thermal force model based on the
Fokker-Planck (FP) collision approximation has been developed in Chapter 5. The FP approximation
realizes more rapid calculation as far as the trace impurity limit holds. The validity of the model
has been checked by comparison with the results obtained in Chapter 4. We have confirmed that
the Fokker-Planck version of the model can provide the same simulation results as accurately as the
BCM-based model in Chapter 4.

Chapter 6 is the conclusion. Our new model has succeeded to simulate the thermal force due to
parallel and perpendicular temperature gradient. Numerical impurity transport simulation in fusion
plasmas will be further improved by implementing our model. We hope that this research can con-
tribute to develop an effective way of controlling impurities in fusion plasmas, in order to achieve the

net energy production by sustained fusion reactions.
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Appendix A

Coulomb logarithm

A.1 Definition of Coulomb logarithm

The integral that appears in Eq. (2.10) diverges logarithmically when the impact parameter o

extends to infinity,

/

/OO 2p 5dp = lim /P 2p 5dp
o P tpL pr=oo Joo pT Pl
/2 2
— lim <1n—M) 0. (A1)

pL

In the plasma gas, the ions and electrons can freely move because their kinetic energy is too high for

pl—00

their mutual recombination reactions to occur. Therefore, microscopic electric field generated by each
ions and electrons is suppressed by such freely moving particles. This is one of the most remarkable
features of plasma called Debye shielding (Fig. A.1). The Debye shielding effect makes the plasma
gas macroscopically neutral, otherwise known as quasi-neutral state.

The electric field of individual ion and electron is shielded at the characteristic length, called

Debye length Apeyye , Which is defined as

eol}
Abebye = { | 54— (A.2)
qyMb

The incident b-ions passing with the impact parameter larger than Apepye does not feel anymore the
Coulomb interaction force from the fixed a-particle in Fig. 2.1. Therefore, the integration range of
the diverging integral in Egs. (2.10, A.1) can be reduced from (0 < p < 00) t0 (0 < p < Apepye). The

integral converges with a finite value called Coulomb logarithm (In A),

ln/lz/Oo 5 P dez/)\mbye %dp. (A.3)
o PTETPL 0 p=+p1

The Coulomb logarithm is one of the most important parameters to characterize plasma. For typical

tokamak plasma, the value is about 10 ~ 17 [18].
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A.2. JUSTIFICATION FOR THE VALUE OF COULOMB LOGARITHM
TO BE REGARDED AS CONSTANT

too far to feel Coulomb potential
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Figure A.1: Debye shielding.

A.2 Justification for the value of Coulomb logarithm to be
regarded as constant

In Eq.(2.27), the Coulomb logarithm In A has been treated as constant in the integration over the

background b-ion velocities vy, although this logarithm depends on v,

/2 2 A ebve 4 . - 9
A= lim <1n—\/p+p¢>g1nﬂ:1n</\mbye_ ramalt, ~lt)

(A.4)
p/ _>)\Debye pJ_ pJ_ Qa Qb

Eq.(2.4) has been substituted into Eq. (A.4) for the impact parameter p, for 90° scattering. And we
have made use of the fact that the Debye length Apgpy. in fusion plasmas is very much larger than p :
Abebye > pL.!

Since the logarithm is a slowly varying function, it is usually permitted in fusion plasmas to

substitute a mean value (3/2)(T, + T;) for the v-dependent term mg|v, — vy |*/2,

In A A In 2Dewe , (A.5)
<m)
<pL> - daqb (A6)

N 47T€0 . 3(Ta + Tb) ’

"Apebye = 0.5 x 107° m, p; = 0.5 x 1072 m, Apepye/p1 & 107, under conditions that 7' = 1000 eV and n = 10%!
m~3. [13]
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Appendix B

Sampling of inclination angle 6 from
density distribution g(v’, 0y

To sample the inclination angle 0y from the probability density g(w’, 0y) given in Eq. (3.12), we
make use of a variable transformation. Firstly, we introduce a variable (, defined as { := cos 6. Its

density g, is then deduced from

9¢(¢) = g(On(Q))|dOn/dC¢| = [1 + ac]/2. (B.1)

In (B.1), we find that the value of the function « := a(w, T}, VT},) determines the profile of g..

If oo = 0, the distribution g, is a uniform distribution for the variable . It is easy to determine the
angle 6.

If 0 < a < 1, the variable ( is transformed again into 7 by 1 + a¢ = /5. The density g, of 7 is

deduced in the following manner,

9n(n) = g(¢(n))]d¢/dn| = 1/(4a). (B.2)

The function g, denotes a uniform distribution of 7 in the interval [(1 — «)?, (1 + «)?]. Thus, we
generate 7) by using a uniform random number R (R ~ U[0, 1]) as, n = 4a R+ (1—a)?. Consequently,

the value of cos 6y is obtained,

VadaR+ (1 —a)2—1
" :

(B.3)

cosby =( =

We can also consider the case of —1 < o < 0, in the same manner as above, to obtain the results

presented in Section 3.3.4.
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Appendix C

Examples of numerically sampled
distorted Maxwellian distribution

In Figs. C.1, C.2, C.3, and C.4, we show examples of the distorted Maxwellian distribution of
background ion velocity in Eq. (2.50) with parallel temperature gradient V| T', numerically sampled
by our method in Sec. 3.3. Anisotropic distribution in the inclination angle y; of test particle’s random

velocity (Fig. 3.4)

sin GH COS (bH
w = |w[| sinfysingy |, (C.1)

cos Oy

is clearly shown. We have used the total sampling number N = 7 x 107 of particles to obtain
each result. The abscissa is the value of normalized inclination angle én = Op/m. The ordinate is
the normalized number of particles AN () /N having the velocities w being in the range between
w; < w < wq, 0 < ¢ < 27, Oy and Oy + dby, where wq, wo and dfyy are taken as w; = 0.99v,, and
wo = 1.01vy, (v, = \/M), and dfy = 7/180, respectively. The theoretical value of AN (6y)/N
is obtained from Eq. (3.7) by

AN wa 2
(#)Theo. - / dw/o dou f(w, O, pu)don.

w1
Four temperature gradients V7' = 0 eV/m ez, V|T" = 10 eV/m ez, V|T" = 20 eV/m ez, and
V| T' = 30 eV/m e have been supposed, respectively for Figs. C.1, C.2, C.3, and C.4. The remaining
parameters are the same as shown in Table 3.1. Numerically sampled distribution is shown by the bar
graph, while the theoretical value is presented by the bold dashed line. As a reference, the normal

Maxwellian distribution with V7" = 0 is also shown by the thin dashed line.
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Figure C.1: Velocity distribution under V1" = 0 eV/m e . (cited from Ref. [50].)
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Figure C.2: Velocity distribution under V1" = 10 eV/m e. (cited from Ref. [50].)
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Figure C.3: Velocity distribution under V1" = 20 eV/m e. (cited from Ref. [50].)
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Figure C.4: Velocity distribution under V' = 30 eV/m e. (cited from Ref. [50].)
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