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Numerical modeling of the thermal force for impurity transport in fusion plasmas 

(核融合プラズマ中の不純物輸送に関する熱力の数値モデリング) 

 
 

（内容の要旨） 

 次世代エネルギー源の一つとして期待される制御熱核融合発電の実現には、高温・高密度プラズマを生成
し、長時間磁場中に閉じ込め、維持することが必要である。しかし、プラズマ閉じ込め容器壁で発生した不

純物粒子が高温のコアプラズマに混入すると、プラズマ温度は低下し、核融合反応の維持が困難となる。従

って、境界層プラズマ中の不純物輸送現象のモデル化とコアプラズマへの混入量の予測は必要不可欠であり、

従来から世界各国で様々な不純物輸送シミュレーションコードの開発が行われてきた。しかしながら、急峻

な温度勾配が存在する境界層プラズマにおいて、不純物粒子とプラズマイオンとのクーロン相互作用が原因

となり生じる熱力と、この熱力に起因する不純物輸送に関する数値シミュレーションモデルは、十分正確と

は言い難かった。特に、閉じ込め磁場に垂直な方向の熱力による境界層プラズマ中の不純物輸送は、従来の

運動論的数値シミュレーションにおいては全く考慮されていなかった。以上を踏まえ、本研究では、境界層

プラズマ中の熱力による不純物輸送に関する新たな数値シミュレーションモデルを開発し、プラズマ中への

不純物混入量に関する信頼性の高い予測シミュレーション実現に寄与することを目的とした。 

 第1章では、本研究の背景と目的・意義を述べた。 

 第2章では、本研究の基礎となるプラズマ中のテスト荷電粒子の運動論モデルについてまとめた。このモ

デルでは、テスト不純物粒子と背景プラズマ粒子群とのクーロン衝突による運動量変化を速度空間における

速度ベクトルの酔歩過程として定式化した。解析的な扱いが可能な、密度が一定、かつ、線形な温度勾配を

持つ背景プラズマの場合について運動量変化の期待値を求め、熱力の理論式を導き、典型的な核融合プラズ

マ中での熱力の大きさを計算し、まとめた。 

 第3章では、第2章の酔歩モデルおよび多体問題を二体問題に帰着させる、いわゆる「二体衝突モデル」

に基づき、本研究で新たに開発した熱力の数値シミュレーションモデルについて説明した。本章では、特に

磁力線に平行な方向の熱力に関して、モデルの詳細を述べた。その特徴は、１）背景プラズマの速度分布関

数に温度勾配を有する変形マクスウェル分布を用いたこと、さらに、２）この速度分布関数から背景粒子速

度のランダムサンプリングを高速かつ正確に行う手法を提案したことにある。 

 第４章では、第3章のモデルをさらに拡張し、磁力線と垂直方向の温度勾配を有する変形マクスウェル分

布を用いることにより、従来の運動論的シミュレーションでは全く考慮されていなかった磁力線垂直方向の

熱力に関する数値シミュレーションモデルを新たに提案した。このモデルを用いてシミュレーションを行い、

第2章の理論値と比較することにより、モデル妥当性を検証した。これにより、磁場垂直方向にテスト不純

物粒子に働く熱力を、運動論的に計算することを初めて可能とした。また、熱力とローレンツ力により不純

物粒子が磁場垂直方向に旋回中心ドリフトによって輸送されることを、運動論的数値シミュレーションによ

り初めて示すとともに、その効果が境界層プラズマ中の不純物輸送過程において無視できないことを示した。

二体衝突法を用いた本モデルは、不純物による背景プラズマの自己無撞着な動的変化をも考慮する背景プラ

ズマ－不純物統合輸送計算にも容易に応用可能である。 

 第５章では、第３、４章の二体衝突モデルをもとに、フォッカープランク近似による熱力計算モデルを提

案し、その妥当性を第4章の結果と比較・確認した。本近似はいわゆる微量不純物仮定の下で有効で、高精

度かつ高速計算を可能にする。 

 第６章は結論であり、本研究で得られた成果をまとめた。 
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Abstract

Correct understanding of impurity transport processes in fusion plasmas is one of the most im-

portant research subjects to realize stable energy production by nuclear fusion plasmas. Numerical

simulations are widely used to investigate the impurity transport and its effects in fusion plasmas,

such as the cooling of core plasma or the mitigation of plasma heat load onto device walls. In order

to improve the impurity transport simulation, we have developed a new numerical model to simulate

the thermal force acting on kinetic test-impurity particles. The thermal force is caused by Coulomb

collisions with plasma ions if the background plasma has temperature gradient. The impurity trans-

port across the magnetic field by thermal force has not been taken into account in the existing kinetic

impurity transport simulation codes so far.

Chapter 1 summarizes the motivation and the research subject.

Chapter 2 describes the kinetic transport model of charged test particles in plasmas. Coulomb

collisions are modeled as random walk process in the velocity space, and background plasma ions

with temperature gradient are modeled by the distorted Maxwellian velocity distribution. Averaging

all collisions between the test impurity particle and the plasma ions, the thermal force is analytically

derived.

Chapter 3 presents a new numerical model of the thermal force in unmagnetized background

plasma, by using the Binary Collision model (BCM) to simulate Coulomb collisions. Efficient al-

gorithm to randomly sample plasma ion velocities from the distorted Maxwellian has been newly

developed. This model is equivalent and applicable to the simulation of thermal force along magnetic

field line in magnetized plasmas.

Chapter 4 extends the model to the case of magnetized background plasmas. By adopting more

extended distorted Maxwellian, we have succeeded, for the first time, to kinetically simulate the

thermal force due to temperature gradient perpendicular to the magnetic field. Such BCM-based

model can be applied to more sophisticated impurity transport simulations including dynamic changes

of background plasmas due to interaction with the impurities.

On the basis of the study done in Chapter 3 and 4, another new thermal force model based on the

Fokker-Planck (FP) collision approximation has been developed in Chapter 5. The FP approximation

realizes more rapid calculation as far as the trace impurity limit holds. The validity of the model has

been checked by comparison with the results obtained in Chapter 4.

Chapter 6 summarizes the conclusion. Our new model has succeeded to simulate the thermal force

due to the parallel and perpendicular temperature gradient. Numerical impurity transport simulation

in fusion plasmas will be further improved by implementing our model.



Contents

1 Introduction 2
1.1 Energy resource problems and nuclear fusion . . . . . . . . . . . . . . . . . . 2

1.2 Tokamak device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Impurity particles in tokamak divertor configuration . . . . . . . . . . . . . . . 9

1.3.1 Problems of impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Divertor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Impurity transport in the edge plasma . . . . . . . . . . . . . . . . . . 13

1.3.4 Mechanism of thermal force due to parallel temperature gradient . . . 15

1.3.5 Mechanism of thermal force due to perpendicular temperature gradient 16

1.3.6 Impurity transport simulation and thermal force modeling . . . . . . . . 18

1.4 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Basic theory 22
2.1 Kinetic transport theory of charged test particle in plasmas . . . . . . . . . . . 22

2.1.1 Test particle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Force on a fixed test particle by Coulomb collisions with a uniform flux

of background ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Force on a moving test particle by Coulomb collisions with background

ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Velocity distribution function of background plasma ions . . . . . . . . . . . . 30

2.2.1 Collision operator Cb/b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Solution for the case of ∇Tb = 0 . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Solution for the case of ∇Tb ̸= 0 . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Thermal force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Parallel thermal force F∇T
∥ . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Diamagnetic thermal force F∇T
∧ and perpendicular thermal force F∇T

⊥ 39

i



CONTENTS

3 Numerical model of thermal force based on Monte Carlo Binary Collision model

in unmagnetized plasma 41
3.1 Distorted Maxwellian and thermal force in unmagnetized plasma . . . . . . . 41

3.2 Numerical model of the thermal force based on BCM . . . . . . . . . . . . . . 43

3.3 Random velocity sampling from the distorted Maxwellian (Step 2) . . . . . . . 45

3.3.1 Preparation: Two coordinate systems for the velocity space . . . . . . 45

3.3.2 Distorted Maxwellian expressed in System II . . . . . . . . . . . . . . . 45

3.3.3 Sampling of random variable w . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4 Sampling of random variable θII . . . . . . . . . . . . . . . . . . . . . . 47

3.3.5 Sampling of random variable ϕII . . . . . . . . . . . . . . . . . . . . . . 48

3.3.6 Background ion velocity, vI . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Applicable Condition for the Model . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Monte Carlo Binary Collision Model (Step 3) . . . . . . . . . . . . . . . . . . . 50

3.6 Test simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.2 Reference simulation with ∇Tb = 0 . . . . . . . . . . . . . . . . . . . . 53

3.6.3 Test simulations with finite test simulation ∇Tb . . . . . . . . . . . . . . 54

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Results of Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Results of Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Results of Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Results of Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Quantitative discussion on simulation results . . . . . . . . . . . . . . . 59

3.7 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Extended numerical model of thermal force based on Monte Carlo Binary Colli-

sion model in magnetized plasma 63
4.1 Algorithm of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Random velocity sampling from distorted Maxwellian (Step 3) . . . . . . . . . 65

4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Distorted Maxwellian in System II . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Random sampling of background ion velocity . . . . . . . . . . . . . . 68

4.3 Binary Collision Model (Step 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Buneman-Boris method (Step 5) . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Applicability limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Test simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ii



CONTENTS

4.6.1 Numerical parameters for test simulation I and II . . . . . . . . . . . . . 71

Magnetic field strength and number of test particles used in the test

simulation I and II . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.2 Test simulation I – Diamagnetic thermal force – . . . . . . . . . . . . . 73

Results of Case (I-1) and (I-2) . . . . . . . . . . . . . . . . . . . . . . . 75

Result of Case (I-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.3 Test simulation II – Temperature screening effect – . . . . . . . . . . . 76

Theoretical value of the temperature screening effect . . . . . . . . . . 77

Example of a test particle trajectory . . . . . . . . . . . . . . . . . . . . 79

Result of test simulation II . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Numerical kinetic model of thermal force based on Fokker-Planck collision op-

erator 83
5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Numerical implementation of the model . . . . . . . . . . . . . . . . . 85

5.2 Test simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Test simulation 1: evaluation of the thermal force . . . . . . . . . . . . 85

5.2.2 Test simulation 2: effective length of collision time step ∆tColl. . . . . . 85

5.3 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion 90

A Coulomb logarithm 93
A.1 Definition of Coulomb logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Justification for the value of Coulomb logarithm to be regarded as constant . 94

B Sampling of inclination angle θII from density distribution g(w′, θII) 95

C Examples of numerically sampled distorted Maxwellian distribution 96

1



Chapter 1

Introduction

1.1 Energy resource problems and nuclear fusion

Energy consumption in the human society is increasing year by year. To satisfy our energy de-

mand, various energy resources are being developed. The nuclear fusion energy is considered as one

of the most promising candidates for alternative energy resources of the future.

The nuclear fusion reaction (abbreviated fusion) is a reaction where lighter atomic nuclei fuse

together to make a heavier nucleus. Depending on the reacting nuclei species, the mass defect occurs

through the fusion. Such mass defect ∆m can bring enormous energy gain ∆E according to the

relativistic theory (∆E = c2∆m with the speed of light c). For example, the fusion is the energy

source of the stars.

To initiate the fusion process, positively charged nuclei have to come close enough to overcome

their repulsive Coulomb barrier before the attractive nuclear forces combine the nuclei. The most

feasible candidate for the controlled fusion is a reaction between the hydrogen isotopes, deuterium

(D) and tritium (T), called D-T reaction (Fig. 1.1),

2D + 3T −→ 4He(3.52 MeV) + 1n(14.06 MeV). (1.1)

The energy production by the D-T reaction has the following advantages.

Energy gain: The released energy is about 1 million times larger than the chemical reactions, for

example, compared with the H2 combustion, H2 + (1/2)O2 −→ H2O + 2.96 eV.

Abundance: The deuterium and tritium are in ample supply [1]. The deuterium is obtained by hy-

drolysis of the sea water, in economically sustainable way. The tritium is produced by neutron

bombardment on lithium, which is also available in abundance.

Safety: Unlike the nuclear fission of uranium, the D-T reaction does not have a chain reaction. There-

fore, such fusion reactions can be easily stopped by simply cutting off the D-T fuel gas supply.

In addition, the products by fusion are limited only to the helium and the neutron.

2



1.1. ENERGY RESOURCE PROBLEMS AND NUCLEAR FUSION

D
T
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3

neutron

proton

nuclear fusion 
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4

n1

14.06 MeV

3.52 MeV

Figure 1.1: D-T fusion reaction.
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1.1. ENERGY RESOURCE PROBLEMS AND NUCLEAR FUSION

Figure 1.2: Rate coefficients of nuclear fusion reactions. (cited from Ref. [2].)

To start the D-T fusion reaction, a mixture of deuterium and tritium gas is heated up to the tem-

perature of 10 to 20 keV, i.e. more than 100 million K, where the reaction rate of D-T reaction in

Eq. (1.1) reaches its maximum (Fig. 1.2) 1. At such high temperature, all atoms are ionized. The

heated D-T gas becomes an electrically neutral mixture of ions and electrons, defined as plasma.

We keep such D-T plasma (otherwise fuel plasma) in a stable state, for the fusion reactions to occur

continuously. A practical condition called self-ignition criterion [1],

nτET > 3.1× 1021 m−3s keV, (1.2)

has to be satisfied in order for the fuel plasma to yield sufficient amount of energy to sustain the

plasma itself. The left hand side of the inequality (1.2) is called the fusion triple product consisting

of the number density2 of plasma ions n (m−3), the plasma temperature T (keV), and the energy

confinement time of plasma 3 τE.
1It is useful in the plasma physics to express the temperature in the unit of Joule (J) or electron volt (eV), instead

of Kelvin (K). The absolute temperature Tabs. (K) is converted into the unit of Joule by TJoule(J) = kJoule
B Tabs., with the

Boltzmann constants kJoule
B = 1.3804 × 10−23 J/K. The temperature in electron volt is calculated from the relation 1 eV

= 1.6021× 10−19 J.
2Henceforth, the word density always means the number density.
3The energy confinement time τE is a characteristic time for a fusion plasma to lose its whole containing energy W

4



1.2. TOKAMAK DEVICE

Magnetic field B

Charged particle

+

Figure 1.3: Larmor gyro-motion of charged particle around magnetic field line.

1.2 Tokamak device

To continue the fusion reactions, we have to hold the whole body of plasma separated away from

the device walls; otherwise so many undesired impurity particles are sputtered out from the walls by

plasma-wall interactions that fusion reactions stop immediately. The magnetic field makes it possible

to confine the plasma separated from the wall. In the presence of magnetic field B, charged particles

can move freely along the field line, but they are restricted to move across (i.e. perpendicularly to )

the B-field. They have to follow a gyration motion (Larmor gyration ) around the field line (Fig. 1.3),

due to the Lorentz force q(E + v × B). If a magnetic field line is closed on itself, without any end

edge, the plasma can be kept and confined as shown in Fig. 1.4. However, plasma confinement is not

enough for such a simple torus B-field because of particle drift motion. For better confinement of the

fusion plasma, properly arranged magnetic field configurations have been conceived so far. One of the

most promising and feasible concept is tokamak configuration. Fig. 1.5 presents a schematic structure

of tokamak device. A circular sequence of toroidal field coils forms a doughnut-shaped confinement

field, within which the fuel plasma is confined. The direction along which the toroidal coils are

aligned is defined as toroidal direction. And the poloidal direction is defined around the toroidal

direction. The tokamak device generates a torus-shaped closed magnetic field where the plasma is

confined (Fig. 1.6). Such magnetic field B is composed of the toroidal and poloidal component,

B := Bt +Bp. The B-field line follows a helical trace, surrounding the torus surface (Fig. 1.7). The

without any heating. It is estimated by τE = W/Ploss, where the rate of energy loss Ploss out of plasma is determined by

the plasma transport, the interaction with device walls, and the synchrotron radiation etc.

5



1.2. TOKAMAK DEVICE

Closed magnetic field line B

+

Plasma ion

Figure 1.4: Principle of magnetic confinement.

Toroidal
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Toroidal direction
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(Fuel plasma)
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Figure 1.5: Tokamak plasma device.
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1.2. TOKAMAK DEVICE

Center solenoid coil

Toroidal

field coil

Fusion plasma

(Fuel plasma)

Figure 1.6: 3D shape of tokamak plasma.

Helical magnetic field lines B = Bt + Bp

Figure 1.7: Tokamak magnetic field line in helically winding shape. (cited from Ref. [21].)
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1.2. TOKAMAK DEVICE

Increasing magnetic flux 

B

Induced toroidal current

(Plasma current)

Ip

Bp

∇× = −
∂

∂
E

B

t

Maxwell-Faraday equation

Figure 1.8: Induced plasma current by increasing the central magnetic flux.

toroidal component Bt is generated by the external toroidal coils shown in Fig. 1.5. The poloidal

component Bp is generated by a toroidal current (also called plasma current). The toroidal current

is, in turn, induced by increasing the magnetic flux within the central solenoid coil which is installed

in the central part of the doughnut (Fig. 1.5). This induced current is simply understood by the

Faraday’s law of induction in Fig. 1.8. Such Bp-production, called inductive current drive, makes the

steady-state operation of tokamak challenging. However, to resolve the problem, various methods of

non-inductive current drive have been proposed and validated, e.g. RF(Radio Frequency) current drive

or NBI(Neutral Beam Injection) current drive. Tokamak is still the closest to real energy production

by the fusion.

To realize controlled fusion energy production, many tokamak experimental devices have been

developed so far. Actual tokamak devices such as JT-60 U (Japan) [3, 4, 5], ASDEX Upgrade (Ger-

many) [6] and JET (United Kingdom) [7, 8] can operate at a core plasma density n ≈ 1020 m−3, a

core temperature T ≈ 20 keV, and a confinement time τE ≈ 0.1− 1 s. Their achievements in energy

production are measured with the energy gain factor,

Q =
PFusion

PHeating
=

Fusion energy released by D-T reaction
Plasma heating energy required

. (1.3)

The energy gain factor Q = 1 has already been achieved by the JT-60 U and JET tokamak. The

international thermonuclear experimental reactor ITER [9, 10, 11] was designed and is now being

constructed in France by international collaboration. The ITER is expected to operate at Q ≥ 10 with

an industrial-scale fusion power PFusion = 500 MW in 2019. Based on the physics and engineering

achievements of ITER experiments, the first real fusion power plant DEMO [12] will be constructed

in the near future, in order to supply electrical energy to our society.
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Figure 1.9: Poloidal cross section of the tokamak device.

1.3 Impurity particles in tokamak divertor configuration

1.3.1 Problems of impurities

This study focuses on the impurity transport problem in fusion plasmas, which is one of the most

important research subjects to develop a sustainable tokamak device. In fact, tokamak confinement

is not perfect. Due to the diffusion process and the plasma instabilities, plasma ions and electrons

may gradually leak and escape from the closed magnetic field toward device’s material walls. When

escaping plasma ions collide to walls, various particles of wall component such as C, Fe, Be, W are

sputtered out. If these impurity particles enter the core plasma, they would stop the fusion reactions

by cooling the plasma temperature by strong radiation (Fig. 1.12). Controlling the impurities is

indispensable for the fusion reactor to operate continuously.

1.3.2 Divertor configuration

It is possible to reduce the impurity yield from walls by weakening the plasma-wall interactions.

For this purpose, a divertor magnetic field configuration has been conceived. Figure 1.9 shows the

poloidal cross section of divertor configuration. It is realized, as shown in Fig. 1.10, by introducing a

divertor coil inside which the electric current passes in the same direction as the plasma current. The

most peripheral layer of the torus-shaped B-field is modified and no longer closed on itself (called

open field). Due to the current in divertor coil, a point where the poloidal magnetic field BP is null

appears in the poloidal section (Fig. 1.10). This is called the X-point, and the magnetic flux surface

9



1.3. IMPURITY PARTICLES IN TOKAMAK DIVERTOR
CONFIGURATION
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Figure 1.10: Divertor configuration.
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Leaking Plasma Flow

Figure 1.11: Plasma flow leaking from the core.

passing over the X-point is defined as separatrix flux surface. The volume inside the separatrix is the

core region where the fusion plasma is retained steadily to promote the fusion. The peripheral region

outside the separatrix is called Scrape-Off Layer (SOL), where the magnetic field is open. At the end

edges of the SOL, heat-resistant plates called divertor plates are installed. The SOL region below

the X-point, just before the divertor plates, is especially called divertor region. The combined area of

SOL and divertor region is called the edge region. Plasma ions and electrons leaking from the core

are transported along the open B-field in the SOL, to run into the divertor plates, as shown in Fig.

1.11.

The divertor configuration has the following advantages:

• The plasma-wall contact area, from where impurities are generated, is limited to small divertor

plates.

• The leaking plasma has some time to lose its energy by radiation and collisions with other

particles during their passage through the SOL. The plasma arriving at the divertor region can be

largely cooled down (T ≈ 10 keV = 10000 eV at the core, to T ≈ 10 eV before divertor). Low

plasma temperature weakens the plasma-wall interaction, and impurity generation is reduced.

Owing to such advantages, the divertor configuration has succeeded to reduce the impurity amount

penetrating the core. The fusion performance has been largely improved.

On the other hand, from the divertor’s point of view, treating and receiving such concentrated

11
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▲  Dilution of 
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Figure 1.12: Effects of impurities on fusion plasma.

leaking plasma on the divertor plates is a challenging problem. The actual most advanced divertor

materials (carbon, tungsten, etc…) can resist the incoming heat flux of up to 10 MW/m2. For ITER

experiment, the heat load onto the divertor plates is expected to become much larger than 10 MW/m2

unless we take any preventive measure.

An effective solution to reduce the divertor heat load is to reduce the energy of incoming plasma,

i.e. its temperature and flow. Differently from the core case, the impurities here make useful and

important contribution. They can dissipate the energy of leaking plasma during its passage through

the edge region to divertor (Fig. 1.12). In preceding experiments, it has been succeeded to reduce the

divertor heat load to a sustainable level, by artificially injecting some amount of impurities in the SOL

region. Such plasma cooling by impurities is necessary for the divertor plates to endure throughout

the plasma operation. Of course, increased amount of impurities for plasma cooling in the edge has a

risk to degrade the core plasma performance. An appropriate balance between them has to be found.

The arguments above are the reasons why the impurity transport research is very important to

develop fusion devices. In fusion plasmas, it is required to control the impurities, especially in the

edge region, in order for them not to enter the core , but at the same time, do remain in the edge.

Effective technique to establish these conflicting requirements remains still to be developed. A

lot of experimental and simulation research activities are being devoted for this purpose. The present

thesis is one of such contributions.
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Figure 1.13: Picture of motion of the impurity particles just sputtered out of walls.

1.3.3 Impurity transport in the edge plasma

In order to control impurity behavior, we have to correctly understand the impurity transport

processes in fusion plasmas, especially in the edge. When we focus on the impurity transport, the

main fuel plasma is often referred to as background plasma.

The impurity particles (mass m, electric charge q) sputtered from the walls move in straight lines

while they are neutral particles. Usually they are quickly ionized by hot background plasma (Fig.

1.13), to follow the magnetic field line B with the Larmor gyro-motion. The motion of impurity is

also influenced by the external electric field E and the Coulomb collisions with background plasma

ions and electrons (Fig. 1.14). These three factors, B, E, and Coulomb collisions, mainly determine

the impurity transport.

The Lorentz force of electro-magnetic field FLorentz := q(E+v×B) has two effects: the magnetic

term makes the ions to follow the Larmor gyration around the B-field line (Fig. 1.3), and the electric

term drives the E × B drift of guiding center of impurity ions across the B-field as shown in Fig.

1.15. These external forces are deterministic, therefore, easy to simulate.

The impurity ions receive the forces by Coulomb collisions with background plasma ions. Such

Coulomb collisional forces consist mainly of the three kinds of force: (i) the frictional force [13], (ii)

the thermal force [14] (or temperature gradient force [15]) and (iii) the force due to the viscosity [14].

The frictional force acts on impurity ions regardless of background temperature gradient. Its

direction and magnitude are proportional to the relative velocity between the impurity ion velocity

and the background plasma flow velocity. As shown in Fig. 1.11, since the background plasma flows

from the core to the divertor plates, the frictional force usually transports the impurities toward the

divertor region.

In the present study, the force due to the viscosity is assumed to be negligible, for simplicity.

Effects by such plasma viscosity should be addressed in the future.
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Figure 1.14: The impurity transport in plasmas is schematically presented. The balance between the

frictional force F0 and the parallel thermal force F∇T
∥ determines the transport along magnetic field

B. Across the magnetic field, impurities are transported by the diffusion, E×B-drift, B×∇B-drift,

and the temperature screening effect (TSE) which is a drift by the diamagnetic thermal force F∇T
∧ .

These transport effects occur on the impurities simultaneously.

+q

B Guiding Center

vExB

 

qE

: Charged particle

  with electric charge +q [C].

q (v×B)

Figure 1.15: The E×B drift of guiding center of a charged particle across the magnetic field B.
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Figure 1.16: Mechanism of thermal force due to parallel temperature gradient. (cited from Ref. [50].)

The thermal force, which is the main subject of this study, is caused by the background tempera-

ture gradient ∇Tb [14], and has important effects on the impurity transport in plasmas.

1.3.4 Mechanism of thermal force due to parallel temperature gradient

The thermal force is caused by the fact that the Coulomb collision frequency νb is dependent on

the background temperature Tb [14]. Suppose a test impurity particle is moving sufficiently slowly in

a steady background plasma 4. Background plasma ions are moving freely (along magnetic field if

the plasma is magnetized) by thermal agitation. They come to the test particle by flying a distance of

mean free path λMFP
5. When there exists a temperature gradient, the coming background ions have

different energy, i.e. different temperatures, as shown in Fig. 1.16. The amount of momentum which

is transferred to the test impurity by collisions, is roughly estimated by mbvth,bνb. The Coulomb

collision frequency νb is inversely proportional to the cubed relative velocity between the colliding

two particles u (i.e. between the test impurity and a background plasma ion) as νb ∝ u−3. The relative

velocity u is approximated by the thermal speed of background plasma ion vth,b :=
√
Tb/mb, with

the mass of background ion mb. Then, it is deduced that the momentum transfer to the test particle is

inversely proportional to the background temperature at the location of the plasma ions,

mbvth,bνb ∝ v−2
th,b ∝ T−1

b . (1.5)
4When a test particle moves faster than the thermal speed of background plasma, the mechanism of thermal force is

differently explained as in Sec. 2.3.1.
5The mean free path is an average distance traveled by a background ion during its two successive Coulomb collisions,

estimated by

λMFP =
vth,b
νb

. (1.4)
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Figure 1.17: Temperature profile and force balance for an impurity in a fusion device. (cited from

Ref. [50].)

From Fig. 1.16 and Eq. (1.5), the plasma ions coming from a lower Tb region exert stronger force

on the test particle than the ions coming from a higher Tb region. Consequently, a net force acts on

the test particle in the direction of temperature gradient, that is, toward the hotter region. This is the

parallel thermal force due to parallel temperature gradient if the plasma is magnetized.

In the direction along the magnetic field, the particle transport (i.e. whether impurity ions go back

to the divertor, or climb up the SOL and are getting closer to the core) is basically determined by the

balance between the parallel thermal force and the frictional force [16, 17]. The parallel thermal force

is due to the parallel temperature gradient ∇∥Tb along the B-field line. Figure 1.17 shows a schematic

of parallel transport, with a temperature profile typical in nuclear fusion devices. The frictional force

due to background plasma flow from the core drives impurities toward the wall. On the contrary,

the thermal force occurs along the temperature gradient, i.e. from the colder divertor region to the

hotter core, pushing impurities up to the core. With steep temperature gradients in fusion plasmas,

the magnitude of thermal force can be greater than that of the frictional force [16]. Then, impurities

are driven toward the hot core by the thermal force. Such negative effect of thermal force has to be

correctly estimated.

1.3.5 Mechanism of thermal force due to perpendicular temperature

gradient

We summarize the mechanism of the thermal force on a test particle placed under perpendicular

temperature gradient as shown in Fig. 1.18. The background plasma is magnetized by magnetic

field B along the Z-axis. The perpendicular temperature gradient ∇⊥Tb is established along the X-
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Figure 1.18: Thermal force perpendicular to the magnetic field B. (cited from Ref. [30].)

axis. Background ions, gyrating in circles with Larmor radius rL, come to the test particle from

different Tb regions. They collide with the test particle from different directions. The average speed

of the background ions is estimated by the thermal speed vth,b with the temperature at their center of

gyration. For simplicity, the ion thermal speed vth,b is supposed to be faster than the speed of test

particle. Since the amount of momentum transfer by collisions from a background ion to the test

particle is estimated as mbvth,bνColl ∝ v−2
th,b ∝ T−1

b , the slower ions coming from the left side (colder

side) in Fig. 1.18 push the test particle down more strongly than the faster ions from the right side push

it up. Such unbalanced collisional momentum transfer leads to a net force on the test particle toward

the (−Y )-direction. This is the thermal force due to perpendicular temperature gradient. As it acts

perpendicularly to both the magnetic field and the temperature gradient, we call it the diamagnetic

thermal force in this study.

In the perpendicular direction to the B-field (also referred to as radial direction), a steep temper-

ature gradient is established within the SOL. It is because that the background plasma leaked from the

core into the SOL escape very fast along the open B-field, much more quickly than the time scale for

the plasma to move across the B-field by diffusion. The perpendicular temperature gradient ∇⊥Tb is

much steeper than the parallel gradient (e.g. Their typical values in the SOL are ∇⊥Tb ≈ 100 - 1000

eV/m while ∇∥Tb ≈ 1 - 10 eV/m). Perpendicular motion of impurities across the B-field is brought

about by the diffusion due to Coulomb collisions and by the guiding center drift. In addition to the

well-known E×B drift [18] and curvature B×∇B drift [18], the diamagnetic thermal force drives

another drift which transports the impurity ions across the B-field toward (−∇⊥Tb)-direction, i.e.

perpendicularly from hot to cold plasma region. It is a macroscopic transport effect of thermal force
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called temperature screening effect (TSE) [19]. Since the TSE is expected to eject impurities from

the hot core and prevent them to penetrate the core, the diamagnetic thermal force has to be correctly

estimated. However it has not been taken into account in any previous impurity transport simulations.

1.3.6 Impurity transport simulation and thermal force modeling

Numerical simulation is a very useful tool for impurity transport study. In the experiments one

can observe the final density profile of impurities after plasma operations, but their transient trajecto-

ries followed, their generation from wall sputtering, and their complicated chemical/atomic reaction

processes during operations, are very difficult to be observed directly. The numerical simulation is

able to see such processes. The accuracy of simulation is determined by the correct modeling of in-

tervening physics phenomena. This thesis is about to develop more reliable modeling of the thermal

force on impurity.

In the preceding works, two types of impurity transport models have been developed: fluid model

and test particle model (also called kinetic model). The fluid model treats the impurities as a fluid

element, while the test particle model solves the motion of individual impurity test particles. The test

particle model has the following advantages [16, 17, 20] compared with the fluid model:

1. The model directly follows the trajectories of each impurity test particles.

2. Various collisional effects on impurities, such as the ionization / recombination process and

Coulomb collisions with background particles can be precisely simulated.

3. The interaction between impurities and wall materials (such as the self-sputtering) can be cor-

rectly simulated.

4. The model can be applied for background plasmas of any collisionality, while the fluid model

is applicable only under high collisionality.

These days, the test particle modeling has been more and more adopted for impurity transport simu-

lation in fusion plasma because of its superior accuracy brought by the above advantages. In addition,

improvements in numerical efficiency by more sophisticated algorithms and by more powerful com-

puter resources are promoting the use of test particle modeling.

In the test particle modeling of impurity transport processes, the following physics have already

been included:

• Lorentz force (Larmor gyro-motion)

• Coulomb collisions for stochastic diffusion

• E×B drift and B×∇B drift

• Anomalous diffusion, which is due to perturbation of B and E-field in background plasma.
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• Chemical and atomic reactions such as the ionization, the recombination, the charge exchange

and so on.

A lot of numerical codes based on the test particle model have been extensively developed in world

wide so far, e.g. DIVIMP [22], IMPMC [23], BBQ [24], MCI [25], DORIS [17]. In addition to these

codes, the IMPGYRO code [26, 27] has recently been developed for the transport analysis of high-Z

impurities such as tungsten.

However, the modelings above are not complete yet. The thermal force has not been included or

correctly modeled, although it can have important effects on impurity transport [29, 30, 19, 17].

In the existing test-impurity transport codes listed above, the thermal force is simulated by the

following two modelings. One is the fluid-type model [14, 28, 15, 16] and the other is the kinetic-

type model [17, 29].

In the fluid-type model [28], the thermal forces due to parallel temperature gradient of background

electrons ∇∥Te and ions ∇∥Tb are given by

F∇T
∥ = αZ∇∥Te + βZ∇∥Tb, (1.6)

αZ := 0.71Z2, (1.7)

βZ := −3× 1− µ− 5
√
2Z2(1.1µ5/2 − 0.35µ3/2)

2.6− 2µ+ 5.4µ2
, (1.8)

µ :=
mZ

m+mZ

, (1.9)

with the electron temperature Te, the background ion temperature Tb and its mass mb, and the

impurity particle mass mZ and its charge state Z. For each collision event between an impurity

test particle and a background plasma ion, the above value of thermal force is added on each

impurity particle. As seen from Eq. (1.6), the information about the velocities of colliding

impurity and background ion are discarded. In addition, only the parallel temperature gradient

is considered in the actual simulation codes.

In the kinetic-type model, the formula of kinetic thermal force in Eq. (2.59) is made use of. The

kinetic thermal force can take into account both the velocities of colliding impurity and back-

ground ion. The kinetic-type model is more correct than the fluid-type model. As discussed in

Sec. 2.3.1, the reversed thermal force can be simulated only by the kinetic-type model.

The fluid model is useful and valid if the background thermal speed is much faster than the test

impurity ion speed. This assumption is fulfilled for the case between the test impurity ions and the

background plasma electrons because of their large mass difference. The thermal force due to the

electrons gradient ∇Te can be simulated by the fluid-type modeling.

However, as pointed out in Ref. [17], the fluid-type model gives incorrect results between impurity

ions and background ions because they have the same order of mass. Impurities can move as fast as
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or even faster than background ions. More careful kinetic modeling is required for the thermal force

by the background ions gradient ∇Ti.

Some numerical modelings of the kinetic thermal force have been developed so far. For example,

the DORIS code [17] and the IMPMC code [29] are equipped with the most advanced kinetic model

of thermal force. They can simulate the kinetic thermal force along the magnetic field line by using the

Fokker-Planck collision method, taking into account the parameters such as individual test particle

velocity, the parallel temperature gradient ∇∥Tb, and the background plasma density and its flow

velocity.

However, in all existing kinetic impurity transport simulation codes, steep perpendicular temper-

ature gradient ∇⊥Tb in the edge and its thermal force have still been neglected, even though they may

have non-negligible effects on impurity transport [30].

1.4 Purpose of Study

The purpose of this thesis study is to develop a numerical model of the thermal force for the kinetic

test particle transport simulation in fusion plasmas. Our model aims to correctly simulate the thermal

force on individual test particle, caused by parallel (∇∥T ) and perpendicular background temperature

gradient (∇⊥T ). Since the thermal force is a part of Coulomb collisional force, correct modeling of

velocity distribution of background plasma ions and correct simulation of Coulomb collisions play

key roles in our model.

To model background plasma ions with temperature gradient, we try to use a distorted Maxwellian

distribution function. And two types of Monte Carlo methods are exploited for Coulomb collision,

i.e. the Binary Collision Model (BCM) and the Fokker-Planck (FP) collision method. All the actual

kinetic impurity transport simulation codes use one of these two methods. Since both the BCM and FP

method are made available, our new numerical model of thermal force can be very widely applied, to

realize more reliable impurity transport simulations which will surely contribute to the development

of fusion energy.

1.5 Thesis outline

The thesis is organized as follows.

In Chapter 1, brief introduction to the development of nuclear fusion energy, the background and

the purpose of study are presented. For stable energy production by the fusion, there are still many

challenging tasks to overcome. This study aims to solve one of them: modeling of thermal force for

reliable impurity transport simulation in fusion plasmas.
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1.5. THESIS OUTLINE

In Chapter 2, the basic theories are explained. Combining the kinetic transport theory of charged

test particle, with the background plasma ions in distorted Maxwellian velocity distribution, leads to

the analytical formula of thermal force.

In Chapter 3, as a first step toward our goal, a numerical model of thermal force in an unmag-

netized plasma is presented. It is in fact equivalent to the simulation of parallel thermal force in

magnetized plasma. Coulomb collisions between test particles and background plasma ions are sim-

ulated by the Binary Collision Model (BCM).

In Chapter 4, we extend the model to the case of magnetized background plasma. A perpendicular

temperature gradient is introduced. The diamagnetic thermal force caused by perpendicular temper-

ature gradient is intensively investigated. Coulomb collisions are also simulated by the BCM as in

Chapter 3.

In Chapter 5, another thermal force model in magnetized plasma based on the Fokker-Planck (FP)

collision approximation is presented.

Chapter 6 summarizes the thesis.
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Chapter 2

Basic theory

The basic theories of this study are explained in this chapter. At first, a kinetic transport theory,

called Test Particle model, gives a general expression to estimate the Coulomb collisional force acting

on a test charged particle in plasma. Next, we will show that the behavior of background plasma ions

under the existence of temperature gradients is characterized by the distorted Maxwellian velocity

distribution. Combining these theoretical considerations, we will find the analytical formula of the

thermal force on test impurity particles.

2.1 Kinetic transport theory of charged test particle in plas-

mas

The motion of impurity ions in fusion plasmas is determined by the externally applied electro-

magnetic field (E and B) and by Coulomb interaction with background plasma ions (Coulomb colli-

sion). The simulation and estimation of Coulomb collisional force should be handled more carefully

than the external electro-magnetic forces, because the Coulomb collision scatters randomly the veloc-

ity of impurities. The theoretical estimation of Coulomb collisional force is presented in this section,

by following the considerations given by Trubnikov [13].

2.1.1 Test particle model

To model an impurity ion in background fusion plasmas, we consider a test charged particle. We

will estimate the force on such a test particle due to Coulomb collisions with background plasma ions.

We start at a simple case where the test particle is fixed in the space. Then, the realistic condition

with freely moving test particle and with arbitrary velocity distribution of background ions will be

considered, to find a general expression of the collisional force on test particles.
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Figure 2.1: Test Particle Model.

2.1.2 Force on a fixed test particle by Coulomb collisions with a uni-

form flux of background ions

Figure 2.1 shows an event of Coulomb collision schematically. As a first step, we consider a test

charged particle (species: a, mass: ma, electric charge: qa) fixed at a point in the space (it is equivalent

to take the limit of ma → ∞). The uniform incident flux of background plasma ions (species: b,

mass: mb, electric charge: qb, number density: nb) are supposed to come from the infinity, to collide

with the test particle of species a. The incident flux of ions of species b is distributed uniformly in

the space with the number density nb, and all ions of species b have the identical initial velocity u.

Through many Coulomb collisions with such background ions of species b, the test particle of species

a experiences the collisional force Fa,fixed.

We will introduce the following definitions as shown in Fig. 2.1. The direction of the incident flux

velocity u is defined as the Z-axis. The X- and Y -axis are taken perpendicular to the Z-axis, and the

X-Y plane is named as ξ-plane. The rotation angle ϕ around the Z-axis is measured from the X-axis.

The distance of the incident particle of species b from the Z-axis is named the impact parameter ρ.

Let one Coulomb collision occur between the fixed test particle of species a and one incident

background ion of species b with the impact parameter ρ. The collision is supposed to be elastic. As a

result of collision, the velocity u of the ion of species b is scattered to u′. The collision is characterized

by the scattering angle θ, which is defined as the angle between the vectors u and u′. The rotation

angle ϕ does not change throughout the collision.

To determine the force Fa,fixed
a exerted on the fixed test particle, we start at estimating the momen-
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Figure 2.2: Velocity change of incident particle by Coulomb collision with a fixed particle.

tum change in one collision ∆pone coll.
b felt by a single incident ion of species b. Let’s find the velocity

change in one collision ∆uone coll. of the colliding ion of species b. The motion of the ion of species b

follows the equation

ṗb(= mbu̇) :=
dpb

dt
=

qbqa
4πϵ0

· (rb − ra)

|rb − ra|3
, (2.1)

where the positions of the fixed particle of species a and the incident ion of species b are indicated,

respectively, by ra and rb. The overdot denotes a time derivative. To focus on the Coulomb collision

process, only the term of Coulomb interaction is retained in the right hand side of Eq. (2.1), i.e.,

the Lorentz force qb(E + u × B) has been omitted. In this study, all the physical quantities are

measured in the international system of units (SI). The velocity change ∆uone coll. can be obtained by

integrating Eq. (2.1) during the Coulomb interaction time ∆tone coll.. By taking the limit of infinite

mass (ma → ∞) and the assumption that the Coulomb collision be elastic, only the direction of u is

changed by the collision. As shown in Fig. 2.2, the relation between the incident velocity u and the

scattered velocity u′ can be simply deduced. The velocity change of the ion of species b projected on

the Z-direction is

∆uone coll.
Z = −2u sin2 θ

2
. (2.2)

The expression Eq. (2.2) is valid for any kind of elastic collision. To consider the case of Coulomb

collision, we need to exploit the relation between the impact parameter ρ and the scattering angle θ,

which is particular to Coulomb collision, such as [13]

tan
θ

2
=

qaqb
4πϵ0mbu2ρ

=
ρ⊥
ρ
, with (2.3)

ρ⊥ :=
qaqb

4πε0mbu2
, (2.4)
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where ϵ0 is the vacuum permittivity. It is obtained by integrating the Coulomb interaction1 between

the particles, during the collision. Now, the velocity change ∆uone coll.
Z of an incident ion of species b

is related to its initial velocity and the impact parameter

∆uone coll.
Z = −2u sin2 θ

2
= −2u

ρ2⊥
ρ2⊥ + ρ2

. (2.5)

We integrate Eq. (2.5) to find out the total momentum change ∆pTOTAL
b experienced by the flux

of ions of species b per unit time. The number of ions of species b passing through an elementary

area dσ = ρdρdϕ in the ξ-plane (in Fig. 2.1) per unit time is nbudσ. Every one of the ions of species

b passing through a specific area dσ is scattered by the same angle θ, and undergoes the momentum

change ∆pone coll.
b = mb∆uone coll. . Their rotation angle ϕ is not affected. By using Eq. (2.5), the time

rate of change of the total momentum ∆pTOTAL
b felt by the ions of species b is obtained by integrating

∆pone coll.
b over the entire ξ-plane,

∆pTOTAL
b

1s
=
∑
b

∆pone coll.
b

1s
=

∫
ξ-plane mb∆uone coll. (nbudσ)

1s
. (2.6)

Since the uniform flux of ions of species b is scattered symmetrically around the Z-axis, only the

Z-component of momentum change remains after the integration:∫
ξ-plane

mb∆uone coll.nbudσ =

∫
ξ-plane

mb∆uone coll.
Z nbudσ

(u
u

)
= −

(
4πmbnbu

2ρ2⊥
) ∫ ∞

0

ρ

ρ2 + ρ2⊥
dρ
(u
u

)
. (2.7)

According to the equation of motion, the total interacted force Fb on all ions of species b in the

incident flux is given by Eqs. (2.6) and (2.7) as the time rate of change of their total momentum,

Fb = ṗ =
∆pTOTAL

b

1 s
. (2.8)

The resultant force Fa,fixed exerted on the fixed test particle of species a is then deduced from the

law of action and reaction,

Fa,fixed = −Fb = −∆pTOTAL
b

1s
(2.9)

=
(
4πmbnbu

2ρ2⊥
) ∫ ∞

0

ρ

ρ2 + ρ2⊥
dρ
(u
u

)
. (2.10)

1The following assumptions have been adopted,

• Binary Collision Approximation, i.e. the charged particle of species a interacts with only a single ion of species b

in the flux, at any given instant of time.

• The Coulomb potential field is described by the classical approximation. The charged particles are considered as

sufficiently small spheres, i.e. their internal distribution of the electrons and protons is neglected.

• No effect of quantum mechanics.
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The integral in Eq. (2.10) converges with a finite value called Coulomb logarithm (See Appendix A).

Hereafter it is written as

lnΛ :=

∫
ρ

ρ2 + ρ2⊥
dρ. (2.11)

For typical tokamak plasmas, the value of Coulomb logarithm is about lnΛ = 10 ∼ 17 [18].

Finally, the force Fa,fixed exerted on the infinitely heavy test particle of species a by the spatially

uniform flux of the ions of species b is

Fa,fixed =
(
4πmbnbu

2ρ2⊥
)
(lnΛ) ·

(u
u

)
=

q2aq
2
bnb

4πϵ20mb

(lnΛ) ·
( u

u3

)
. (2.12)

In the next section, the formula of Coulomb collisional force will be further extended to more realistic

situation.

2.1.3 Force on a moving test particle by Coulomb collisions with back-

ground ions

The formula Eq. (2.12) is extended to more realistic situation. Now we suppose that the test

particle of species a with a finite mass ma is moving with a velocity v through a background plasma

consisting of ions of species b whose velocity distribution is an arbitrary function fb(vb). Figure 2.3

is a schematic of Coulomb collision event between these particles of species a and b. The objective

is to find the force Fa acting on the test particle of species a exerted by Coulomb collisions with the

background ions of species b.

The velocity distribution function fb(vb) is normalized to the number density of plasma ions nb,∫∫∫
fb(vb)dvb = nb. (2.13)

The number density of the ions of species b moving with a specific velocity v′
b is given by

dnb(v
′
b) = fb(v

′
b)dvb. (2.14)

The binary collision approximation is assumed, only two-particle interaction is considered.

We apply the results obtained in the previous section 2.1.2 to the present problem. We make use

of an interpretation that the background plasma ions is made up of elementary uniform fluxes of the

ions of species b with a specific velocity v′
b and a number density dnb(v

′
b). The total force Fa on the

test particle of species a is then, obtained by summing up all contribution from each elementary flux

of the ions of species b. According to Coulomb’s law, the equations of motion of the interacting two
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particle a

(mass ma, charge qa)

particle b

(mass mb, charge qb)

Va Vb

Coulomb collision!

V’a

V’b

Figure 2.3: Schematic drawing of Coulomb collision event.
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particles of species a (mass: ma, charge: qa, position: ra) and b (mass: mb, charge: qb, position: rb)

are described as,

Test particle (species a): mar̈a =
qaqb
4πϵ0

· (ra − rb)

|ra − rb|3
,

Background ion (species b): mbr̈b =
qbqa
4πϵ0

· (rb − ra)

|rb − ra|3
. (2.15)

These motions are described more clearly in the frame of center-of-mass coordinates. The position of

the center-of-mass R and the relative distance r between the two particles are introduced,

R :=
mara +mbrb
ma +mb

, (2.16)

r := ra − rb. (2.17)

These center-of-mass coordinates are related to the original coordinates by,

ra = R+
mb

ma +mb

r,

rb = R− ma

ma +mb

r. (2.18)

Substituting Eq. (2.18) in Eq.(2.15), we obtain the equation of motion for the center-of-mass

coordinate system,

R̈ = 0 (∴ Ṙ = V: constant.) (2.19)

µabr̈ =
qaqb
4πϵ0

· r

r3
, (2.20)

where µab = mamb/(ma +mb) is the reduced mass.

From analogy to Eq. (2.1), Eq. (2.20) represents the equation of motion of a virtual particle (mass:

µab, electric charge: qb, position: r) which is in interaction with an imaginary fixed particle (mass: ∞,

electric charge: qa, the position is at the coordinate origin 0). We suppose that a spatially uniform flux

of such virtual particles with the mass µab is coming with the velocity ṙ(≡ v−v′
b), to be scattered by

the imaginary fixed particle. Since Eq.(2.20) is identical with Eq. (2.1), the same argument as in the

section 2.1.2 can be applied, after the following substitutions are made,

m −→ µab, (2.21)

nb −→ dnb(vb), (2.22)

u −→ ṙ = v − v′
b, (2.23)

rb = 0. (2.24)

Therefore, by making use of Eqs. (2.9) and (2.12) focusing on Fb, the collisional force exerted on the

elementary flux of virtual particles of the mass µab is

dF = − q2aq
2
b

4πϵ20µab

(lnΛ) · v − v′
b

|v − v′
b|3

fb(v
′
b)dv

′
b. (2.25)
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We multiply the first equation in Eq.(2.18) by ma, and then differentiate it twice with respect to

the time. Using the Eq.(2.19), we arrive at the following equation,

mar̈a = maR̈+ µabr̈ = µabr̈. (2.26)

That is to say, the force acting on the test particle of species a in the given interaction is equal to the

force exerted on the virtual particle with the mass µab. Integrating over all contributions of ion fluxes

of species b with velocity v′
b, we obtain the collsional force acting on the test particle of species a

moving with the velocity v through the plasma composed of ions of species b,

Fa(v) =

∫
dF

= − q2aq
2
b

4πϵ20µab

(lnΛ) ·
∫∫∫

v − v′
b

|v − v′
b|3

fb(v
′
b)dv

′
b. (2.27)

The Coulomb logarithm lnΛ has been treated as constant in the integration over the velocities vb of

background ions of species b (See Appendix A.2).

　 The velocity space integral in Eq.(2.27) is difficult to calculate straightforwardly, because the

integrand function has a singularity point at v′
b = v. For its calculation, we introduce the Rosenbluth

potential function [31] Ψ(va) defined as

Ψb(v) = − 1

8π

∫∫∫
|v − vb|fb(vb)dvb. (2.28)

The background velocity distribution fb(vb) is taken into consideration through the potential Ψb.

The following relations are useful for the subsequent analysis.

△v|v − vb| ≡
(

∂2

∂v2x
+

∂2

∂v2y
+

∂2

∂v2z

)
|v − vb| =

2

|v − vb|
, (2.29)

∇v
1

|v − vb|
≡
(

∂

∂vx
ex +

∂

∂vy
ey +

∂

∂vz
ez

)
1

|v − vb|
= − v − vb

|v − vb|3
, (2.30)

where △v and ∇v are the Laplacian and the gradient operator in the velocity space.

The integral in Eq.(2.27) is related to the potential Ψb as follows

△vΨb(v) = − 1

4π

∫∫∫
fb(vb)

|v − vb|
dvb, (2.31)∫∫∫

v − vb

|v − vb|3
fb(vb)dvb = 4π∇v(△vΨb(v)) (2.32)

Notice that the derivative operators △v and ∇v are in terms of the test particle velocity v, while the

volume integral is performed with respect to the background ion velocity vb. The order of integral

and derivatives have been exchanged.
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Finally, by using Eqs. (2.27) and (2.32), the Coulomb collisional force Fa on test particle of

species a is analytically obtained as

Fa(v) = − q2aq
2
b

ϵ20µab

(lnΛ) · ∇v(△vΨb(v)). (2.33)

It is determined by the velocity v of the test particle of species a and the velocity distribution fb(vb) of

the background plasma ions of species b. In the next section, we try to specify the velocity distribution

function fb of magnetized background plasma ions with a temperature gradient.

2.2 Velocity distribution function of background plasma

ions

When a temperature gradient exists in the background plasma, its velocity distribution function

fb changes from well-known equilibrium Maxwellian. From Eqs. (2.28) and (2.33), the Coulomb

collisional force on a test particle changes accordingly. Such difference in force due to temperature

gradient is defined as thermal force. Here we try to find the background distribution function fb in

a magnetized plasma with temperature gradient. The following arguments are mainly based on the

reference [44].

The behavior of background plasma ions and electrons are described by a distribution function

fb(r,v, t). The function fb of particle species b (mass mb, electric charge qb) is defined as the number

of particles of that species per volume element in the six-dimensional phase space drdv (3D-real

space + 3D-velocity space), near a given point (r,v) at the time t. The number of ions of species b

moving with a velocity v′ at a position r′ at a time t′ is given by fb(r
′,v′, t′)drdv.

All plasma parameters, such as the number density of particles in real space nb(r, t), their flow

velocity vb(r, t), their temperature Tb(r, t), and their conductive heat flux density qb(r, t), are obtained

by taking the moments of fb as follows,

nb(r, t) :=

∫
fb(r,v, t)dv [m−3], (2.34)

vb(r, t) :=
1

nb

∫
vfb(r,v, t)dv [ms−1], (2.35)

3

2
Tb(r, t) :=

1

nb

∫ (
mbw

2

2

)
fb(r,v, t)dv [J], (2.36)

qb(r, t) :=

∫ (
mbw

2

2
w

)
fb(r,v, t)dv [Jm−2s−1], (2.37)

where the random velocity w := v− vb has been introduced. In contrast to the average flow velocity

vb, the random velocity w represents the thermal agitation of ions. The temperature Tb is defined in

joules in such a manner that 3Tb/2 represents the average kinetic energy associated with the random
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velocity of particles. The conductive heat flux density qb is defined as the time rate of heat energy

transfer per unit area by random motion of particles. The heat flux qb occurs by the presence of spatial

temperature gradient ∇Tb.

Such velocity distribution function fb obeys the kinetic equation (or the Boltzmann equation) [19],

∂fb
∂t

+ v · ∇fb +
qb
mb

(E+ v ×B) · ∇vfb = Cb(fb), (2.38)

which is deduced from the particle conservation law in the phase space (r, v, t). The operators ∇ and

∇v are the gradient, respectively, with respect to the real space coordinates r and the velocity space

v. The applied electro-magnetic field are expressed by E and B. The term Cb(fb) in the right hand

side of the equation is the collision operator, representing the time rate of change in the distribution

function fb caused by velocity scattering of Coulomb collisions 2. The collision operator is a sum of

contributions from all interacting particle species (including the like-particle collisions),

Cb(fb) :=
∑
γ

Cb/γ, (2.39)

where Cb/γ is the contribution by collisions with γ-particles, and γ includes the species b itself.

In the scope of impurity transport simulation, it is sufficient to look for the stationary solution

of plasma ion distribution fb. It is because that the Coulomb interaction between impurities and

background plasma ions is dominantly stronger than that between impurities and electrons, due to the

much lighter mass of electrons (ma ≥ mb ≫ me) [13, 19]. The state of electrons fe can be neglected

as far as the impurity transport is considered. Therefore, we impose the following restrictions to solve

Eq. (2.38),

1. The time dependent term is ignored (∂fb/∂t = 0).

2. The trace-impurity limit is adopted, i.e. the amount of impurities are too small to affect the state

of background ions (Cb/Z = 0).

3. As far as we consider the deuterium for background plasma ion species (mb = mD+), collision

with electrons can be neglected because of the large mass difference (mb ≫ me) [13, 19]. To-

gether with the trace-impurity limit, the collision operator Cb for background ions is determined

by the like-particle collisions, Cb = Cb/b + Cb/e + Cb/Z ≈ Cb/b.

Consequently, the Eq. (2.38) becomes

v · ∇fb +
qb
mb

(E+ v ×B) · ∇vfb = Cb/b(fb). (2.40)

Our aim in this section is to deduce a steady-state solution fb for background ions satisfying Eq.

(2.40).
2In Eq. (2.38), the source/sink terms other than Coulomb collision, such as contributions of the ionization and recom-

bination reactions, are not considered.
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2.2.1 Collision operator Cb/b

The operator Cb/b(fb) for background ion-ion (i.e. like-particle) collisions in Eq. (2.40) is given

in the form [44]

Cb/b(v, fb(v)) :=

∫∫
uσb/b(u, θ)× {fb(v′)fb(v

′
in)− fb(v)fb(vin)} dvindΩ. (2.41)

To describe the like-particle collision, let v be the velocity of the criterial background plasma ion,

and vin be the velocity of other background ions coming to collide. The integral is taken over such

incoming background ions (dvin). The relative velocity of the two colliding ions before and after the

collision are expressed, respectively, as u := v − vin and u′ := v′ − v′
in. The magnitude of relative

velocity does not change by collision |u′| = |u| =: u, because we consider the Coulomb collisions to

be elastic. The symbol dΩ is the element of solid angle in the direction of post-collision velocity v′

of the criterial particle. The Rutherford scattering cross section [33] for Coulomb collision between

particle species a and b is defined, in the SI unit system, by

σa/b(u, θ) :=

(
qaqb

8πϵ0µabu2

)2
1

sin4 θ
2

, (2.42)

with the vacuum permittivity ϵ0 and the reduced mass µab := mamb/(ma +mb).

2.2.2 Solution for the case of ∇Tb = 0

When there is no background temperature gradient ∇Tb = 0, the stationary solution fb of Eq.

(2.40) is given by a local Maxwellian velocity distribution [19]

fMax(r,v, t) := nb(r, t)

(
mb

2πTb(r, t)

)3/2

exp

[
mb {v − vb(r, t)}2

2Tb(r, t)

]
. (2.43)

The magnetic term (v × B) · ∇vfb and the collision operator Cb/b(fb) vanish separately with the

Maxwellian distribution fMax. The remaining terms v · ∇fb and E · ∇vfb are estimated as negligibly

small [19].

2.2.3 Solution for the case of ∇Tb ̸= 0

The background plasma ions are supposed to have a temperature gradient ∇Tb = ∇∥Tb +∇⊥Tb,

which is composed of parallel (∇∥Tb ∥ B) and perpendicular component (∇⊥Tb ⊥ B). We solve

Eq. (2.40) by the perturbation method.

For fusion plasma conditions, the following orderings are usually satisfied,

λMFP/L∥ ≪ 1 and ρb/L⊥ ≪ 1, High collisionality limit (2.44)

νbb/Ωb ≪ 1. Strongly magnetized limit (2.45)
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The mean-free path λMFP is defined as λMFP := vTb
/νbb, with the thermal speed of background ion

vTb
:=
√
2Tb/mb and the Coulomb collision frequency νbb :=

√
2nbq

4
b (lnΛ)/(12π

3/2ϵ20T
3/2
b

√
mb).

The Larmor gyro-frequency Ωb is defined by Ωb := qb|B|/mb, and the Larmor gyro-radius ρb is

ρb := vTb
/|Ωb|. The scale length L∥ := (∇−1

∥ ) and L⊥ := (∇−1
⊥ ) have been introduced. They are

characteristic length of spatial gradient of macroscopic plasma parameters, i.e. a distance needed

for nb, Tb, and B to vary substantially. The reason to have such anisotropic scale length is that, in

a magnetized plasma, the gradients are often very different along(∥) / across(⊥) the magnetic field

B. In order to move the discussion forward, we assume that the small parameters in Eqs. (2.44) and

(2.45) are approximately in the same order of magnitude,

λMFP

L∥
∼ δ ≪ 1,

ρb
L⊥

∼ δ ≪ 1,

νbb
Ωb

∼ δ ≪ 1. (2.46)

We expand the distribution function fb accordingly,

fb = f0 + f1 + . . . ,

f1
f0

∼ δ. (2.47)

We substitute such fb in the kinetic equation Eq. (2.40), to obtain a series of equations classified by

the order of small parameter δ,

Lowest order (δ−1)

Cb/b(f0)−
qb
mb

(v ×B) · ∇vf0 = 0, (2.48)

Next order (δ0)

Cb/b(f1)−
qb
mb

(v ×B) · ∇vf1 =

[(
∇nb

nb

− qbE

Tb

)
+

(
mb|v|2

2Tb

− 3

2

)
∇Tb

Tb

]
f0 · v. (2.49)

The solution of lowest order equation Eq. (2.48) is a local Maxwellian fMax (Eq. (2.43)) because of

Cb/b(fMax) = 0 and (v × B) · ∇vfMax = 0. In the next order equation Eq. (2.49), notice that the

collision operator and the gradient in velocity space in the left hand side are acting on the small per-

turbation function f1. Since the right hand side is already known, Eq. (2.49) can be solved according

to the solutions presented in Refs. [44, 14, 19] (The detail is omitted here).

From Eqs. (2.48) and (2.49), the background ion distribution fb is finally specified as,

fb(vb) = f0 + f1

= nb

(
mb

2πTb

) 3
2

exp

(
−mbw

2

2Tb

)
×

[
1− mb

nb

1

T 2
b

(
1− w2

5v2th,b

)
(qb ·w)

]
, (2.50)
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where the random velocity of background ion is defined as w := v−vb, together with the background

flow velocity vb given in Eq. (2.35). The thermal speed of background ion is defined as vth,b :=√
Tb/mb. The equation (2.50) is called the distorted Maxwellian distribution representing the velocity

distribution of magnetized plasma ions with temperature gradient ∇Tb. The conductive heat flux

density vector qb is formulated in the classical limit [14, 19]. The following assumptions are supposed

for qb:

• The background plasma is sufficiently collisional. The neo-classical transport and the anoma-

lous transport processes are not considered.

• Background plasma is composed of single ion species and electrons.

• The plasma parameters of the background ions are determined by the ion-ion collisions. Colli-

sions with the electrons are neglected.

• Background plasma is not affected by the presence of test particles (Trace impurity limit).

• The spatial gradient of background flow velocity, i.e. the viscous stress tensor, is negligible.

Therefore, the force due to the viscosity can be neglected.

• Background plasma is strongly magnetized, Ωbτb ≫ 1.

• Background pressure gradient ∇p and electric field E are not taken into account.

Under these assumptions, the heat flux density qb is

qb = −κ∥∇∥Tb + κ∧(e∥ ×∇⊥Tb)− κ⊥∇⊥Tb. (2.51)

The background temperature gradient ∇Tb is incorporated in our model at this stage. In Eq. (2.51),

the heat conductivities κ∥, κ∧, and κ⊥ are given as [19]

κ∥ := 3.9
nbTbτb
mb

, (2.52)

κ∧ :=
5nbTb

2mbΩb

, (2.53)

κ⊥ := 2
nbTb

mbΩ2
bτb

, (2.54)

where the characteristic collision time τb of background ion is defined by

τb := 12π
3
2
ϵ20
√
mbT

3/2
b

nbq4b (lnΛ)
. (2.55)

The collision time τb is identical with
√
2τB

ii , where the background ion-ion collision time τB
ii is given

by the formula (1.5) in Ref. [19] (as Braginskii’s definition). Hereafter, the index ∥, ⊥, ∧ are used

34



2.3. THERMAL FORCE

to distinguish the parallel direction e∥ := B/B, the perpendicular direction e⊥ := ∇⊥Tb/|∇⊥Tb|,
and the direction e∧ := e∥ × e⊥ perpendicular to both B and ∇⊥Tb, which is called the diamagnetic

direction .

Absolute values of each component of qb are different by the factor of Ωbτb,

qb,∥ : qb,∧ : qb,⊥ = |∇∥Tb| :
1

Ωbτb
|∇⊥Tb| :

(
1

Ωbτb

)2

|∇⊥Tb|. (2.56)

The factor Ωbτb represents a degree of magnetization of the background plasma.

It should be noted that, once we know a suitable formula of the heat flux density qb, the same

formula as Eq. (2.50) can be employed to calculate the thermal force (See Eq. (2.59)). For example,

we may be able to model more realistic background plasmas by substituting another formula of qb

given in Ref. [42] which includes the heat flux limiter.

2.3 Thermal force

The thermal force and its characteristic features, including the temperature screening effect, are

presented in detail.

We are considering a test particle (species: a) moving in a background plasma with velocity va.

The test particle of species a experiences Coulomb collisions with background plasma ions (species:

b). The background ions have temperature gradient ∇Tb, and their velocity distribution is modeled by

a distorted Maxwellian fb in Eq. (2.50).

By substituting such fb in the formulas Eqs. (2.28) and (2.33), the kinetic force F on the test

particle by Coulomb collisions with magnetized background plasma ions is analytically obtained as

F = F0 + F∇T , (2.57)

where,

F0 = − C

4π

nb

2Tb

Φ(ṽa)− ṽaΦ
′(ṽa)

ṽ3a
· ṽa, (2.58)

F∇T = − C

10π
√
π

√
mb

2Tb

1

T 2
b

exp(−ṽ2a) · [qb − 2(qb · ṽa)ṽa] . (2.59)

Here, we have introduced the following symbols,

C := (lnΛ)

(
qaqb
ϵ0

)2(
1 +

mb

ma

)
, (2.60)

ṽa :=

√
mb

2Tb

(va − vb), (2.61)

Φ(v) :=
2√
π

∫ v

0

exp (−t2)dt, (2.62)

Φ′(v) :=
dΦ(v)

dv
=

2√
π
exp (−v2). (2.63)
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Figure 2.4: Parallel thermal force due to parallel temperature gradient ∇∥Tb. (cited from Ref. [30].)

The frictional force is denoted by F0, and the thermal force is F∇T .

The frictional force F0 usually slows down the test particle, depending on its velocity va and the

background plasma flow vb. Background temperature gradient does not affect F0.

The thermal force F∇T consists of the three components of different direction with respect to the

B-field line,

F∇T = F∇T
∥ + F∇T

∧ + F∇T
⊥ . (2.64)

We will call such F∇T
∥ , F∇T

∧ , and F∇T
⊥ , respectively as the parallel thermal force, the diamagnetic

thermal force, and the perpendicular thermal force. The characteristics of these thermal forces are

discussed in the following sections.

2.3.1 Parallel thermal force F∇T
∥

The parallel thermal force is caused by the parallel temperature gradient ∇∥Tb. From Eq. (2.51),

the gradient ∇∥Tb leads to a heat flux

qb, ∥ := −κ∥∇∥Tb = −3.9
nbTbτb
mb

∇∥Tb. (2.65)
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Figure 2.5: Thermal force due to perpendicular temperature gradient ∇⊥Tb: The diamagnetic thermal

force F∇T
∧ is much larger than the perpendicular thermal force F∇T

⊥ under the strongly magnetized

condition (Ωbτb ≫ 1). (cited from Ref. [30].)
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Figure 2.6: Temperature screening effect. (cited from Ref. [30].)
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Substituting such qb, ∥ in Eq. (2.59), we obtain the expression

F∇T
∥ =

(3.9) · 12
10
√
2

(
1 +

mb

ma

)(
qa
qb

)2

exp(−ṽ2a) ·
[
∇∥Tb − 2(∇∥Tb · ṽa)ṽa

]
. (2.66)

The parallel thermal force F∇T
∥ is characterized as follows.

1. Magnitude of the thermal force: The magnitude of the parallel thermal force is proportional to

that of the temperature gradient |F∇T
∥ | ∝ |∇∥Tb| .

2. Thermal force on a slower test particle: When a test particle moves much more slowly com-

pared with the background thermal speed, meaning |ṽa| ≪ 1, the second term in the square

brackets in Eq. (2.66) can be ignored 3. Then, the thermal force acts in the direction of the

temperature gradient,

F∇T
∥ ∝ ∇∥Tb, (2.67)

driving the test particle from lower to higher temperature region along the magnetic field line.

It is a distinguished feature of parallel thermal force, in contrast with other physical phenomena

such as the diffusion where the transport occurs in the opposite direction to the number density

gradient ∇n.

3. Thermal force on a faster test particle: On the other hand, when the test particle moves faster

than the background thermal speed (|ṽa| ≥ 1), the second term in the square brackets in Eq.

(2.66) becomes dominant, i.e. F∇T
∥ ∝ −(∇∥Tb · ṽa)ṽa. In this situation, if va is parallel to

the temperature gradient ∇∥Tb, then F∇T
∥ acts in the opposite direction to ∇∥Tb. It is a reversal

phenomenon of parallel thermal force, and its mechanism is explained qualitatively as follows.

When a test particle moves very fast along the temperature gradient, less background ions from

the lower Tb region can catch up with the test particle. Consequently, the test particle collides

only with ions coming from the higher Tb region, and the net force on the test particle is directed

toward the lower Tb region.

As mentioned by Reiser et al. [17], this mechanism prevents test particles from being infinitely

accelerated by the thermal force. While a test particle moves slowly along the temperature

gradient, it is continuously accelerated by the parallel thermal force. However, it cannot exceed

a certain velocity limit, at which the magnitude of parallel thermal force changes the sign.

4. Dependence on the background number density: Parallel thermal force does not depend on the

number density of background plasma nb as seen in Eq. (2.66), whereas the frictional force is

proportional to nb.
3When considering high-Z heavy impurities for test particle, the condition |ṽa| ≪ 1 is almost always satisfied.
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In the next chapter 3, we will check if these characteristics listed above can be correctly simulated by

our numerical model.

2.3.2 Diamagnetic thermal force F∇T
∧ and perpendicular thermal force

F∇T
⊥

The diamagnetic and perpendicular thermal force are caused by perpendicular temperature gradi-

ent ∇⊥Tb. Their characteristics are summarized here.

The diamagnetic thermal force F∇T
∧ acts on the test particle in the diamagnetic direction as shown

in Fig. 2.5, and produces the temperature screening effect (TSE) [19]. The TSE is understood as

a guiding center drift by the diamagnetic thermal force, as shown in Fig. 2.6. The test particles

are transported, as a whole, to the opposite direction to ∇⊥Tb, i.e. perpendicularly from higher

to lower temperature. The temperature screening effect may be non-negligible under steep

temperature gradient in the edge region of fusion plasma (See Sec. 4.6.3). In existing impurity

transport simulation codes, the perpendicular temperature gradient ∇⊥Tb and the diamagnetic

thermal force F∇T
∧ have not been taken into account yet.

It is also interesting to note that the diamagnetic thermal force does not include the collision

time of background ions τb (See κ∧ in Eq. (2.53)). Even in a very hot plasma where Coulomb

collisions occur less frequently (νb ∝ τ−1
b with increased τb), e.g. in the core, the same magni-

tude of diamagnetic thermal force F∇T
∧ always occurs.

The perpendicular thermal force F∇T
⊥ acts along the perpendicular temperature gradient ∇⊥Tb (See

Fig. 2.5). However, F∇T
⊥ is negligibly small in the fusion plasmas. The reason is described as

below.

When we consider the test particle to be heavier than the background ion, its velocity ṽa nor-

malized to the thermal speed of background ion is small (ṽa ≪ 1). Hence, the following relation

holds from Eq. (2.59),

F∇T ∝ −qb. (2.68)

Due to the ordering of the heat flux components qb,∥, qb,∧, qb,⊥ in Eq. (2.56), the same ordering

is applied to each component of the thermal force,

|F∇T
∥ | : |F∇T

∧ | : |F∇T
⊥ | = |∇∥Tb| :

1

Ωbτb
|∇⊥Tb| :

(
1

Ωbτb

)2

|∇⊥Tb|. (2.69)

Since fusion plasmas are strongly magnetized (Ωbτb ≫ 1), the perpendicular thermal force

F∇T
⊥ becomes much smaller than the other forces such as the Lorentz force, the frictional force,
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the parallel and the diamagnetic thermal force, roughly by a factor of Ωbτb. In this study, the

perpendicular thermal force F∇T
⊥ is neglected.

In the chapter 4, we will check the diamagnetic thermal force F∇T
∧ and its macroscopic effect on

test particle transport, TSE.
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Chapter 3

Numerical model of thermal force based
on Monte Carlo Binary Collision model
in unmagnetized plasma

This section describes a numerical model of thermal force in unmagnetized plasma. As an impor-

tant first step toward our goal, we have started from such simpler case without magnetic field. In fact,

this model can be applied straightforwardly for simulation of the parallel thermal force in magnetized

plasma. It is because that the motion of charged particles along the B-field line is not restricted by

the Lorentz force, i.e. the equation of motion along B-field is identical with the case without B-field.

Therefore, the thermal force in unmagnetized plasma is equivalent to the parallel thermal force in

magnetized plasma.

Figure 3.1 presents graphically the basic concept of our thermal force model. Basic procedures of

the model, for a single test particle at a single collision time step, are shown in Fig. 3.2. The details

of Figs. 3.1 and 3.2 will be described step by step in Sec. 3.2.

By test simulations in the latter part of this chapter, we will check our new numerical model. The

same characteristics as those of parallel thermal force mentioned in Sec. 2.3.1 will be examined.

3.1 Distorted Maxwellian and thermal force in unmagne-

tized plasma

Following the same discussion as in Chapter 2, we can derive velocity distribution function of

unmagnetized plasma ions by solving the kinetic equation Eq. (2.38) without B-field. The distorted
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3.1. DISTORTED MAXWELLIAN AND THERMAL FORCE IN
UNMAGNETIZED PLASMA
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Figure 3.1: Basic concept of the present thermal force model.
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Maxwellian distribution of unmagnetized plasma is given by [33, 50]

fb(w) = nb

(
mb

2πTb

) 3
2

exp

(
−mbw

2

2Tb

)
×

[
1 + A(Tb) ·

(
1− w2

5v2th,b

)(
w

vth,b
· ∇Tb

)]
, (3.1)

where the coefficient A(Tb) is defined as 1

A(Tb) :=
75

2
π3/2 ϵ20

(lnΛ)

Tb

nbq4b
. (3.2)

Eq. (3.1) is basically the same function as the distorted Maxwellian in magnetized plasma in Eq.

(2.50) caused by only parallel temperature gradient ∇Tb = ∇∥Tb.

By substituting fb in Eq. (2.33), the thermal force in unmagnetized plasma is analytically obtained

as

F∇T
B=0 =

15
√
2

8

(
1 +

mb

ma

)(
qa
qb

)2

exp (−ṽ2a) · [∇Tb − 2(∇Tb · ṽa)ṽa] . (3.3)

Equation (3.3) is expressed in the same manner as the parallel thermal force in Eq. (2.66). The same

characteristic features in Sec. 2.3.1 are expected to be true for F∇T
B=0.

3.2 Numerical model of the thermal force based on BCM

The basic steps of the present model are summarized as follows:

1. The parameters of the test particle and the background plasma are specified. The mass ma,

charge state Za, position ra(t), and velocity va(t), of the test particle are given. As for the

background plasma ions, the mass mb, charge state Zb, number density nb, temperature Tb,

temperature gradient ∇Tb, and flow velocity vb, are necessary.

2. The velocity of a background ion vb, coming to collide with the test particle, is found from the

distorted Maxwell distribution in Eq. (3.1) (given in Sec. 3.3.2). A detailed algorithm for this

step will be explained in Sec. 3.3.

3. The Binary Collision Model (BCM) calculates the random scattering of test particle velocity

∆va due to collisions with background ions. The BCM will be explained in Sec. 3.5.

4. Time is advanced by the collision time step, ∆t. New velocity and position of the test particle

are calculated:

va(t+∆t) = va(t) + ∆va,

ra(t+∆t) = ra(t) + va(t)∆t.

1Roughly evaluated by A(Tb) ∼ λMFP/Tb (λMFP is the mean free path of background ions).
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Step 2:

Background ion velocity

sampling (See Sec. 3.3) => v
b
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Figure 3.2: Basic procedures of the model. (cited from Ref. [50].)
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3.3. RANDOM VELOCITY SAMPLING FROM THE DISTORTED
MAXWELLIAN (STEP 2)

For general simulation where we use many test particles, we iterate the basic steps above at every

collision event for each test particle.

3.3 Random velocity sampling from the distorted Maxwellian

(Step 2)

For the Step 2 in the basic procedures of the model in Fig. 3.2, the numerical random sampling

of the background ion velocity from the distorted Maxwellian, is now described. This method plays

a key role in our new model.

3.3.1 Preparation: Two coordinate systems for the velocity space

To sample ion velocity easily from the distorted Maxwell distribution in Eq. (3.1), we use two

coordinate systems for the velocity space, called “System I” and “System II”. Hereinafter, we distin-

guish variables for Systems I and II by subscripts I and II, respectively. The coordinate System I (XI,

YI, ZI) is the laboratory frame at rest. A temperature gradient ∇Tb is assumed to exist in System I,

such as

∇Tb = |∇Tb|


sin θ cosϕ

sin θ sinϕ

cos θ

 , (3.4)

where angles θ and ϕ are defined as in Fig. 3.3. On the other hand, the System II (XII, YII, ZII) is the

coordinate system with the ZII-axis parallel to the temperature gradient, as shown in Fig. 3.4.

A variable transformation from System II to System I is realized by using the matrix TII→I,

TII→I :=


cosϕ cos θ − sinϕ cosϕ sin θ

sinϕ cos θ cosϕ sinϕ sin θ

− sin θ 0 cos θ

 . (3.5)

As a result, when we have vector vII in System II, we obtain its expression in System I, vI, by taking

its product with TII→I, vI = TII→I.vII.

3.3.2 Distorted Maxwellian expressed in System II

A background velocity vI in the laboratory frame consists of a background flow velocity vb and

a random velocity wI: vI = vb + wI. As vb is a given parameter, we only have to determine wI

distributed according to the distorted Maxwellian fb(wI) in Eq. (3.1).
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3.3. RANDOM VELOCITY SAMPLING FROM THE DISTORTED
MAXWELLIAN (STEP 2)

For the sake of computation, rather than choosing a value of wI directly from fb(wI) in Eq. (3.1),

it is easier to determine its expression, wII, in System II first. Then we convert wII into wI.

To specify wII, we use the three parameters as shown in Fig. 3.4: (i) speed w. (ii) inclination

angle θII, measured from the ZII-axis. (iii) rotational angle ϕII, around the ZII-axis, measured from

the XII-axis. Notice that the rotation by the matrix TII→I does not affect the absolute value of wI. So

we use w in common for the speed of both wI and wII.

Since the Jacobian determinant | detTII→I| is 1, we obtain the distribution, fb,II, of velocity wII in

System II as follows,

fb(wI)dwI = fb(T
II→I.wII) · | detTII→I|dwII = fb,II(wII)dwII. (3.6)

Hence, from Eq. (3.1),

fb,II(wII)dwII = nb

(
mb

2πTb

) 3
2

w2 sin θII · exp
(
−mbw

2

2Tb

)
×

[
1 + A(Tb)

(
1− w2

5v2th,b

)
· w

vth,b
|∇Tb| cos θII

]
dwdθIIdϕII. (3.7)

The distribution function fb,II can be decomposed into three functions f , g, and h, such that

(fb,II/nb)dwII = (fdw)(gdθII)(hdϕII), each of which is defined as

f(w)dw =

√
2

π

(
mb

Tb

) 3
2

w2 exp

(
−mbw

2

2Tb

)
dw, (3.8)

g(w, θII)dθII =
1

2

[
1 + A(Tb)

(
1− w2

5v2th,b

)
· w

vth,b
|∇Tb| cos θII

]
sin θIIdθII, (3.9)

h(ϕII)dϕII = dϕII/2π. (3.10)

The functions f , g, and h are the probability density functions associated with the random variables

w, θII, and ϕII.

3.3.3 Sampling of random variable w

In our numerical model, the speed of background ion w, is first chosen randomly from the prob-

ability density function f(w) in Eq. (3.8). This density function is, in fact, the same as that for the

speed of the Maxwell distribution with temperature Tb. We can generate w as follows:

1. Let R be a uniform random number over the interval [0, 1]. Hereinafter, it is written in the

manner R ∼ U [0, 1]. We generate four uniform random numbers Rk (k =1, 2, 3, 4).
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3.3. RANDOM VELOCITY SAMPLING FROM THE DISTORTED
MAXWELLIAN (STEP 2)

2. Then, by using the Box-Muller transform [39], we determine the values of three independent

random numbers wx, wy, and wz, which have a Gaussian distribution with mean zero and

standard deviation vth,b =
√
Tb/mb,

wx = vth,b ×
√
−2 lnR1 cos(2πR2),

wy = vth,b ×
√

−2 lnR1 sin(2πR2),

wz = vth,b ×
√

−2 lnR3 cos(2πR4).

3. The random speed w is then obtained as w =
√

w2
x + w2

y + w2
z .

3.3.4 Sampling of random variable θII

The inclination angle θII between wII and ∇Tb is next given from the distribution g(w, θII) in Eq.

(3.9). The correlation between w and θII is taken into account. By introducing the function α

α(w, Tb,∇Tb) := A(Tb)

(
1− w2

5v2th,b

)
· w

vth,b
|∇Tb|, (3.11)

we can rewrite g(w, θII) from Eq. (3.9) in a simpler form

g(w, θII)dθII =
1

2
[1 + α cos θII] sin θIIdθII. (3.12)

The angle θII is sampled from Eq. (3.12) by the following manner:

1. To fix the distribution g(w, θII), substitute into Eq. (3.11) the value of the random speed w′,

which is already chosen in the previous process (Sec. 3.3.3) .

2. According to the value of α, the variable θII is given by using a random number R ∼ U [0, 1],

such as

(a) If α = 0 : cos θII = 2R− 1.

(b) If 0 < α ≤ 1: cos θII =
{√

4αR + (1− α)2 − 1
}
/α.

(c) If α > 1 : The distribution function g(w′, θII) becomes negative at certain angle θII. In

order to avoid it, we take the limit of α → 1. Thus, cos θII = 2
√
R− 1.

(d) If −1 ≤ α < 0 : cos θII =
{√

−4αR + (1 + α)2 − 1
}
/α.

(e) If α < −1 : The function g(w′, θII) becomes negative at certain angle θII. In order to avoid

it, we take the limit of α → −1. Thus, cos θII = 1− 2
√
R.

Thus sampled θII obeys the distribution of Eq.(3.12) (see Appendix).
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3.3.5 Sampling of random variable ϕII

From distribution function h(ϕII) in Eq.(3.10), the rotational angle ϕII is given by ϕII = 2πR, with

R ∼ U [0, 1].

3.3.6 Background ion velocity, vI

By using three variables (w, θII, ϕII), the background ion velocity wII is expressed as

wII = w


sin θII cosϕII

sin θII sinϕII

cos θII

 . (3.13)

The random velocity wI in System I (the laboratory frame) is obtained by wI = TII→I.wII. Adding

the background flow velocity vb, we numerically obtain the background ion velocity vI(= wI + vb),

which follows the distorted Maxwell distribution in Eq. (3.1).

3.4 Applicable Condition for the Model

The distorted Maxwellian in Eq. (3.1) is in the form f = f0+f1, consisting of the Maxwell distri-

bution f0 and a correction term f1. The correction term f1 should be small enough when compared to

the Maxwellian term f0. By approximating the random speed w by the thermal speed vth,b, the ratio

|f1/f0| is estimated as: |f1/f0| ∼ λMFP/LT , where LT := Tb/|∇Tb|. Our model is applicable under

the condition: λMFP/LT ≪ 1.
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Figure 3.3: System I. (cited from Ref. [50].)
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Figure 3.4: System II. (cited from Ref. [50].)
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3.5. MONTE CARLO BINARY COLLISION MODEL (STEP 3)

3.5 Monte Carlo Binary Collision Model (Step 3)

ξ1: random number following

      a Gaussian distribution

ϑ = 2tan  ξ1
-1

Mean       : 〈ξ1〉 = 0

Variance  : 〈ξ1〉 = D(u)Δt
2

D(u)=(qa
2qb

2nb lnΛ)/(8πε0
2µab

2u3 )

Δt : collision time step

qa, qb: electric charges

nb: background ion density

µab:= mamb/(ma+mb) (reduced mass) 

u  := va - vb (relative velocity)

ξ2: uniform random number

      in the range of [0, 1].

ϕ = 2πξ2

b

a

u=va-vb

u’

ϑ

ϕ

Figure 3.5: Monte Carlo Binary Collision model. (cited from Ref. [50].)

In order to simulate Coulomb collision between the test particle and the background ion chosen

in Sec. 3.3, we use the Monte Carlo Binary Collision Model (BCM) [32]. From the relative velocity

between the colliding two particles, the BCM calculates the random velocity change ∆vColl by the

collision.

Suppose that we have two particles (species a and b). They are moving, respectively, with the

velocity va and vb, and they are to collide with each other. The collision is simulated by the following

procedures.

1. The two particles collide with relative velocity u = va − vb. At the collision, two scattering

angles, ϑ and φ (as shown in Fig. 3.5) are calculated. The angle ϑ is modeled as ϑ = 2 tan−1 ξ1,

where ξ1 is a random variable following a Gaussian distribution with the mean < ξ1 > and the

variance < ξ21 >, such as

< ξ1 >= 0, (3.14)

< ξ21 >= D(u)∆t, (3.15)

D(u) = q2aq
2
bnb(lnΛ)/(8πε

2
0µ

2
abu

3). (3.16)
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3.5. MONTE CARLO BINARY COLLISION MODEL (STEP 3)

The other rotation angle φ is obtained by φ = 2πξ2, where ξ2 is a uniform random number in

the interval [0, 1].

2. From the scattering angles ϑ and φ, the velocity change caused by the collision, ∆vj (j = a and

b), is calculated for the two particles. Detail of the calculations are described by Takizuka and

Abe [32]. The new velocities v′
j are then v′

j = vj +∆vj .

There exists a limitation of collision time step ∆t such as

< ξ21 >= D(u)∆t ≪ 1, (3.17)

because of the fact that the Coulomb scattering angle θ (or ξ1) is essentially quite small. In order to

find an appropriate time step ∆t, we approximate the relative velocity u in D(u) by the thermal speed

of the faster particle.
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Figure 3.6: Configuration of the test simulations. (cited from Ref. [50].)

3.6 Test simulations

3.6.1 Simulation parameters

Figure 3.6 shows the model geometry of the test simulations. Cartesian coordinates (X , Y , Z) are

used to describe the real space of the laboratory frame.

The numerical parameters for simulation are summarized in Table 3.1. The simulation starts with

the injection of N = 5 × 104 test particles from the origin (0, 0, 0). The test particle species is

tungsten ion W3+ (Za = 3), and all of them are injected in the positive Z-direction, with the initial

speed corresponding to the kinetic energy of 50 eV (i.e., va(t = 0) := v0 =
√

3E0/maeZ , where ma

is the mass of the W3+ ion, E0 = 50 eV, and eZ is the unit vector in the Z-direction).

The background plasma is assumed to be composed of hydrogen ions H+ (Zb = 1). The electrons

are not taken into account. The background flow velocity vb is set to 0, the number density of

background ions nb is 1020 m−3. The background temperature Tb(r = 0) is 50 eV. The temperature

gradient ∇Tb is along the Z-direction or X-direction in the following simulations. These parameters

are of a typical divertor plasma in present tokamaks.

We take the simulation time step as ∆t = 10−3/D(vth,b). To estimate D(u) in Eq. (3.16), we

have approximated the relative velocity u between two colliding particles, by the thermal speed of

background ion vth, b because vth, b ≫ v0.
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Table 3.1: Numerical Parameters for the reference case. (cited from Ref. [50].)

Test particle species W3+

Initial test particle velocity, va(t = 0) 8.84× 103 ms−1 eZ (50 eV)

Normalized test particle velocity, ṽa(t = 0) 0.13 eZ

No. of test particles, N 5× 104

Background plasma ion H+

Number density of background ions, nb 1020 m−3

Temperature at the origin, Tb(0) 50 eV

Temperature gradient, ∇Tb depends on each case

Coulomb logarithm, lnΛ 15

1/D(vth,b) 2.03× 10−7 s

Collision time step, ∆t 1/D(vth,b)× 10−3 s

Slowing-down time, τs 7.10× 10−5 s

3.6.2 Reference simulation with ∇Tb = 0

Prior to examining the thermal force, we perform a test calculation without temperature gradient

∇T = 0. Only the frictional force is examined as a basis for the following test simulations.

In this case, the initial test particle velocity is oriented in the +Z-direction and there is no tem-

perature gradient. According to Eqs. (2.58) and (2.59), i.e. only the frictional force acts on the test

particles in the negative Z-direction. Net collisional force does not act in the X and Y -direction.

Figures 3.7(a) and 3.7(b) show the time evolution of the average velocity va(t) of test particles.

The average velocity va(t) is defined by the ensemble average over the test particles at each time step,

va(t) :=
1

N

N∑
i=1

va,i(t). (3.18)

The X- and Z- component, va,X(t) and va,Z(t) are shown, respectively, in Figs. 3.7(a) and 3.7(b).

Their theoretical value is expressed by the solid line. The rate of change dva/dt (i.e. = F/ma)

is calculated from the formula of collisional force Eq. (2.58), with the initial test particle velocity

(va = v0). The ordinate of the figures is the averaged speed normalized to the initial speed v0, and

their abscissa is the time normalized to the slowing-down time τs, which is a characteristic time for

the test particle to slow down due to collisions, defined by [13]

τs :=
1(

1 + ma

mb

)
µ(x)

4πϵ20m
2
av

3
0

q2aq
2
bnb ln Λ

, (3.19)
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Figure 3.7: Time evolution of the average velocity va(t) (Eq. (3.18)): (a) X-component vX(t), (b)

Z-component vZ(t). The velocity is normalized to the initial speed v0, and the time is normalized to

the slowing-down time τs. (cited from Ref. [50].)

where x := mbv
2
0/2Tb, and µ(x) := (2/

√
π)
∫ x

0
exp(−ξ)

√
ξdξ.

As shown in Fig. 3.7(a), the numerical results of va,X(t) agree well with its theoretical value. The

va,X(t) remains almost zero throughout the simulated period 0 ≤ t ≤ 0.01τs, meaning that no net

collisional force acts in the X-direction. Although the result is not shown here, the same results have

been obtained for the Y -component (va,Y (t) ≈ 0).

On the other hand, the Z-component va,Z(t) is clearly decreasing as shown in Fig. 3.7(b). The

slope agrees well with the theoretical value. It means that the test particles have received a slowing-

down collisional force whose magnitude is the same as the frictional force deduced from Eq. (2.58).

Above comparisons between the numerical and theoretical results show that our numerical model

simulates the frictional force correctly.

3.6.3 Test simulations with finite test simulation ∇Tb

Conditions

After validating the frictional force in the reference case, we have performed a series of test

simulations on the thermal force, under various conditions. As summarized in Section 2.3.1, the

thermal force can change widely in magnitude and direction, depending on the temperature gradient

and test particle velocity. The calculation conditions are summarized in Table 3.2 and Fig. 3.8. The

remaining parameters are the same as those of the reference case (Table 3.1). These test conditions

are within the applicable condition of the model in Sec. 3.4. Each test condition is described below.

Case 1: F∇T//va. The temperature gradient is set to be in the Z-direction, parallel to the initial test

particle velocity. Two different magnitudes are supposed, i.e. 3 eV/m (Case 1-1), 5 eV/m (Case
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3.6. TEST SIMULATIONS

Table 3.2: Test conditions. (cited from Ref. [50].)

∇TX ∇TY ∇TZ |ṽa| nb

[eV/m] [eV/m] [eV/m] - [m−3 ]

Case 1 1-1 0 0 3 0.13 1× 1020

1-2 0 0 5 0.13 1× 1020

Case 2 2-1 3 0 0 0.13 1× 1020

2-2 5 0 0 0.13 1× 1020

Case 3 3-1 0 0 0 1.8 1× 1020

3-2 0 0 10 1.8 1× 1020

Case 4 4-1 0 0 5 0.13 0.85× 1020

4-2 0 0 5 0.13 2.0× 1020

∇Tb va F∇T F0

Case 1: ∇Tb // va

∇Tb

va

F∇T F0

Case 3: High Speed va

∇Tb

va

F∇T

F0

Case 2: ∇Tb ⊥ va

Case 4: Dependence

on the density nb

Same conditions as 

Case 1-2 

(∇Tb = 5 eV/m ez), 

except for the 

background density nb.

 4-1: nb = 0.85×1020 m-3

(1-2: nb = 1.0×1020 m-3)

 4-2: nb = 2.0×1020 m-3

Figure 3.8: Relationships between temperature gradient and the initial velocity of test particle for

each case. (cited from Ref. [50].)
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1-2). The test particles move sufficiently slowly (|ṽa| ≪ 1). The thermal force should act in

the Z-direction as discussed in Sec. 2.3.1 (characteristic feature 2: F∇T//∇Tb). We will also

check if the magnitude of the thermal force is proportional to that of the temperature gradient

(characteristic feature 1: |F∇T | ∝ |∇Tb|).

Case 2: F∇T ⊥ va. Differently from Case 1, the temperature gradient is set to be in the X-direction,

perpendicular to the initial test particle velocity. The thermal force should act in the X-

direction. We use two different magnitudes of temperature gradient: 3 eV/m (Case 2-1), 5

eV/m (Case 2-2), in order to check the proportionality of the thermal force (|F∇T | ∝ |∇Tb|).

Case 3: Thermal force on high-speed test particles. In Case 1 and 2, we have chosen the initial

test particle velocity slower than the background thermal speed (|ṽa| ≪ 1). For Case 3, we

examine the thermal force on faster test particles (|ṽa| ≥ 1). The initial test particle velocity is

set to be v0 =
√

3Ea/maeZ , with Ea = 10, 000 eV (|ṽa| = 1.8). At first, we have performed

a calculation without ∇T (Case 3-1). Next, we have given a temperature gradient in the Z-

direction with magnitude 10 eV/m (Case 3-2). Under this condition, the thermal force should

act in the opposite direction to the temperature gradient (characteristic feature 3. in Sec. 2.3.1).

Case 4: Dependence on the number density of background plasma. For this case, we use the same

condition as Case 1-2, except for the number density of background plasma nb. Case 4 exam-

ines whether the simulated thermal force is independent of the background number density

(characteristic feature 4 in Sec. 2.3.1).

Results of Case 1

We have a temperature gradient in the Z-direction: ∇T = 3 eV/m · eZ (Case 1-1), 5 eV/m · eZ
(Case 1-2), and the other parameters remain unchanged from Table 3.1. According to Eqs. (2.58)

and (2.59), the thermal force is generated in the (+Z)-direction while the frictional force is along

(−Z)-direction. Forces in the X- and Y -direction are null.

Figure 3.9 shows the velocity relaxation in the Z-direction of Case 1-1 and 1-2. The squares show

the simulated average velocity va,Z(t) in Case 1-1, and the circles are the results of Case 1-2. The

solid line and the dashed line represent the theoretical values calculated from Eqs. (2.58) and (2.59),

respectively, for Case 1-1 and 1-2. As a reference, the velocity simulated in the previous reference

case without thermal force, is plotted by the triangles.

The results of both Case 1-1 (squares) and 1-2 (circles) agree well with their theoretical values. It

should be noted that their slopes are less steep than that of the reference case (triangles). The thermal

force has acted in the direction of temperature gradient, i.e. in the positive Z-direction, and reduced

the total collisional force on the test particles. The slope of Case 1-2 is even less steep than that of
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Figure 3.9: Time evolution of the average velocity vZ(t) for Case 1-1 and 1-2. (cited from Ref. [50].)

Case 1-1. It suggests that simulated thermal force has become greater, as its theoretical value expects,

proportionally to the magnitude of temperature gradient which has been raised from Case 1-1 to 1-2.

From above results, the thermal force is correctly simulated both in direction and in magnitude

(F∇T//∇Tb, |F∇T | ∝ |∇Tb|), under a parallel temperature gradient (∇Tb//va).

Results of Case 2

In this case, the temperature gradients are taken in the X-direction: ∇T = 3 eV/m · eX (Case

2-1), 5 eV/m · eX (Case 2-2), and the other parameters are the same as those in Table 3.1.

Under perpendicular temperature gradients (∇Tb ⊥ va), as expected from Eqs. (2.58) and (2.59),

the thermal force acts in the X-direction and does not affect the frictional force in the Z-direction.

Contribution of the thermal force in the X-direction leads to acceleration of test particles toward the

positive X-direction. So we focus on the X-component of the velocity vZ(t) to examine the thermal

force 2.

Figure 3.10 shows the time evolution of simulated average velocity in the X-direction va,X(t) by

squares and circles, respectively, for Case 2-1 and 2-2. The solid and dashed line denote the expected

acceleration deduced from the theoretical thermal force F∇T
B=0 from Eq. (2.59), respectively, for Case

2-1 and 2-2. As a reference, the average velocity va,X(t) simulated in the reference case is plotted by

the triangles.

2Concerning the Z-component of velocity va,Z(t), the same result as Fig. 3.7(b) of the reference case has been

obtained (not shown). The frictional force in the Z-direction is correctly simulated.
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Figure 3.10: Time evolution of the average velocity vX(t) for Case 2-1 and 2-2. (cited from Ref. [50].)

The calculated results are in good agreement with the theoretical values. In addition, the result of

Case 2-2 has a slope greater than that of Case 2-1. The thermal force in Case 2-2 (with greater ∇T ) is

stronger than in Case 2-1. The thermal force is correctly simulated (i.e. F∇T//∇Tb, |F∇T | ∝ |∇Tb|)
by our model under a perpendicular temperature gradient (∇Tb ⊥ va).

Results of Case 3

Characteristic feature 3, discussed in Sec. 2.3.1, is to be examined below. We have raised the

initial velocity of test particles up to ṽ0 = 1.8eZ , and have simulated the velocity relaxation without

∇T in Case 3-1 at first. Then, we have introduced a temperature gradient ∇T = 10 eV/m ·eZ in Case

3-2 in order to see the effect of thermal force on fast test particles. Since the frictional and the thermal

force both act in the Z-direction in this case, we examine the Z-component of the average velocity

vZ(t).

Numerical results va,Z(t) are shown in Fig. 3.11 by squares and circles, respectively, for Case 3-1

and 3-2. Their theoretical values calculated from Eqs. (2.58) and (2.59) are expressed by solid and

dashed line, respectively, for Case 3-1 and 3-2.

Compared with the result of Case 3-1 without ∇T , the result of Case 3-2, with ∇T , shows a

steeper slope. It means that the thermal force occurred in the negative Z-direction, enhancing the

total collisional force. Differently from Case 1, the direction of the thermal force is in the opposite

direction to the temperature gradient. It is consistent with the theoretical characteristic 3 of the thermal

force. From good agreement of the numerical results with their theoretical value, we confirm that the
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Figure 3.11: Time evolution of the average velocity vZ(t) for Case 3-1 and 3-2. (cited from Ref. [50].)

thermal force on fast test particles is simulated accurately by our model.

Results of Case 4

In Case 4, we examine the dependence of the thermal force on the number density of background

plasma ions nb. By using the same parameters as Case 1-2, we change only the value of nb as shown

in Table 3.2.

Simulated average velocity va,Z(t) are presented in Fig. 3.12 by squares and circles, respectively,

for Case 4-1 and 4-2. Theoretical values of Eqs. (2.58) and (2.59) are also presented by solid and

dashed line, respectively, for Case 4-1 and 4-2. As a reference, the result of Case 1-2 is plotted by

triangles.

Good agreement between the numerical results and the theoretical values are seen for both Case

4-1 and 4-2 in Fig. 3.12. It confirms that the model simulates the frictional force and the thermal

force, with their correct dependence on the background number density (i.e. |F0| ∝ nb, |F∇T | is

independent of nb).

Quantitative discussion on simulation results

In above sections, we have seen that the thermal force is simulated qualitatively well. In the present

section, we examine the simulation results quantitatively. The results are summarized in Table 3.3.

To obtain these results, we have performed 10 times of calculation for each test case (from Case 1-1
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Figure 3.12: Time evolution of the average velocity vZ(t) for Case 4-1 and 4-2 (and 1-2). (cited from

Ref. [50].)

Table 3.3: Quantitative comparison of collisional force. (cited from Ref. [50].)

Simulated < F > Theoretical F

[×10−17 N] [×10−17 N]

Ref.:FZ -3.72 (±0.065) -3.83

Ref.:FX -0.026 (±0.075) 0

1-1:FZ -2.58 (±0.082) -2.70

1-2:FZ -1.855 (±0.081) -1.95

2-1:FX 1.22 (±0.088) 1.14

2-2:FX 1.87 (±0.11) 1.91

3-1:FZ -22.3 (±0.03) -22.5

3-2:FZ -23.9 (±0.03) -24.2

4-1:FZ -1.33 (±0.073) -1.38

4-2:FZ -5.61 (±0.155) -5.78
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Table 3.4: Estimation of simulated thermal force. (cited from Ref. [50].)

< F∇T > F∇T < F∇T > /F∇T

[×10−17 N] [×10−17 N]

1-1:F∇T,Z 1.14 1.125 1.015

1-2:F∇T,Z 1.87 1.875 0.997

2-1:F∇T,X 1.24 1.14 1.09

2-2:F∇T,X 1.89 1.91 0.99

3-2:F∇T,Z -1.575 -1.7 0.93

4-1:F∇T,Z 1.81 1.875 0.96

4-2:F∇T,Z 1.78 1.875 0.95

to Case 4-2) under the same condition but with different series of random numbers. Then, the rate of

velocity change of test particles dva/dt has been calculated by using the least-square method. Finally,

we have obtained the average value < F > of the simulated collisional force over 10 runs, together

with its statistical error ±
√

< (F− < F >)2 > which is also presented in the parenthesis in Table

3.3. The theoretical value of F from Eqs. (2.58) and (2.59) are compared with the simulation results

in Table 3.3.

Unfortunately, it is difficult to directly separate the numerical results < F > in Table 3.3 into the

thermal force part and the frictional force part. However, we can still estimate the simulated thermal

force < F∇T > by the following manner: < F∇T >:=< F > − < F0 >, where we assume

< F0 >=< F >∇T=0, i.e. the frictional force is supposed to be the collisional force without ∇T .

The < F >∇T=0 has been newly calculated for each case, and the results of < F∇T > are presented

in Table 3.4. The ratio between estimated < F∇T > and its theoretical value F∇T from Eq. (2.59) are

also given in Table 3.4.

It is clearly confirmed from Table 3.4 that our model is able to simulate the thermal force accu-

rately in the quantitative sense, within the relative error of 10% under actual test simulation conditions

(Tables 3.1 and 3.2). It is of course possible to reduce further the statistical error by increasing the

number of test particles. The choice, however, depends on the trade-off between the calculation cost

and required accuracy of each problem to be solved.
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3.7 Summary of Chapter 3

A new numerical model of the thermal force, based on the Monte Carlo Binary Collision model

(BCM), has been developed. This model can be applied for the transport simulation of test ions in

a plasma without magnetic field. The model consists of two main procedures: (i) choosing a back-

ground plasma ion velocity from a distorted Maxwellian distribution under the temperature gradient,

and (ii) calculating a Coulomb collision between a test particle and the above chosen ion by using the

BCM.

To confirm the validity of the model, we have performed test simulations for various conditions

about background temperature gradients and initial velocities of test particle. The time rate of change

dv/dt of the test particle’s average velocity has been compared with its theoretical value calculated

from the analytical formulae of the frictional force and the thermal force. The comparisons have

shown good agreements for all the test cases. Our new model is able to simulate the thermal force

correctly, reproducing the important characteristic features listed in Sec. 2.3.1, i.e. dependences

on the temperature gradient, on the test particle velocity, and on the number density of background

plasma.

The numerical method proposed in this chapter will be extended to the case of magnetized plasma

in the next chapter.
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Chapter 4

Extended numerical model of thermal
force based on Monte Carlo Binary
Collision model in magnetized plasma

A numerical model of thermal force extended to magnetized background plasma is described in

this chapter. Figure 4.1 shows the basic procedure to calculate one collision event of a test particle.

They are basically the same as those in Chapter 3 (also in Ref. [50]), but now we use an extended

distorted Maxwellian and have added the step 5, Buneman-Boris method [43], to simulate the Larmor

gyration motion of test particles in the presence of magnetic field.

4.1 Algorithm of the model

Our model consists of the following steps as summarized in Fig. 4.1:

Step 1. Parameters of the test particle and those of the background plasma are specified. The mass

ma, charge state Za, present position ra(t), and velocity va(t), of the test particle are input

parameters. For the background plasma ion, likewise, the mass mb, charge state Zb, number

density nb, temperature Tb(ra), temperature gradient ∇Tb, and flow velocity vb are given. The

magnetic field B has to be also specified.

Step 2. The heat flux density q of background plasma ions is calculated by considering the magnetic

field B. (Sec. 4.2.1)

Step 3. Velocity of a background plasma ion vb is randomly chosen from the distorted Maxwellian

distribution in Eq. (2.50 or 4.6). (Sec. 4.2)
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Figure 4.1: Basic flowchart of the model. (cited from Ref. [30].)
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MAXWELLIAN (STEP 3)

Step 4. The velocity change ∆vColl of the test particle due to Coulomb collision with the chosen

background ion is calculated by the Monte Carlo Binary Collision Model (BCM) [32]. (Sec.

4.3)

Step 5. Larmor gyro motion of the test particle is integrated. Velocity change ∆vGyro due to the

Lorentz force is calculated by the Buneman-Boris method [43]. (Sec. 4.4)

Step 6. Time is advanced by the time step ∆t (Sec. 4.4). The new velocity and the new position of

the test particle are updated,

va(t+∆t) = va(t) + ∆vColl +∆vGyro, (4.1)

r(t+∆t) = r(t) + va(t)∆t. (4.2)

For general simulations with many test particles, we iterate the basic steps above at every collision

event for each test particle.

Our model can be applied to any scale system, because only the local values of the background

plasma parameters are referred to through the basic collision processes above.

Numerical efficiency of the model is mainly determined by the number of test particles used. The

efficiency is the trade-off with the statistical accuracy and the spatial resolution for the results needed.

4.2 Random velocity sampling from distorted Maxwellian

(Step 3)

In order to choose randomly a background ion velocity from the distorted Maxwellian distribution

in Eq. (2.50 or 4.6), we can use almost the same algorithm as presented in the previous Chapter 3.

4.2.1 Preparation

As in Ref. [50], we introduce two coordinate systems for the velocity space, called “System I”

and “System II”. We distinguish variables belonging to System I and II by using subscripts I and II,

respectively. The coordinates for System I (XI, YI, ZI) are those of the laboratory frame at rest. The

ZI-axis is defined along the magnetic field line B, and the XI-axis is taken to the direction of the

perpendicular temperature gradient ∇⊥Tb. The YI-axis is in the diamagnetic direction (B×∇⊥Tb).

In the presence of a temperature gradient ∇Tb = ∇∥Tb + ∇⊥Tb
1, the background heat flux is

calculated from Eq. (2.51) such as q = −κ∥∇∥Tb + κ∧e∥ × ∇⊥Tb − κ⊥∇⊥Tb. We express it in the

1Given the magnetic field vector B, an arbitrary gradient is easily separated in the parallel and perpendicular compo-

nent as, ∇∥T := ∇T · (B/|B|), and ∇T⊥ := ∇T −∇∥T .
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Figure 4.2: Coordinate system: System I (Laboratory frame at rest). (cited from Ref. [30].)
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Figure 4.3: Coordinate system: System II based on the heat flux q. (cited from Ref. [30].)
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laboratory frame (System I) as shown in Fig. 4.2,

q = |q|


sin θ cosϕ

sin θ sinϕ

cos θ

 , (4.3)

where θ := cos−1(q∥/q) and ϕ := tan−1(q∧/q⊥). On the basis of such q, we define the coordinate

System II (XII, YII, ZII) so as for the ZII-axis to take the direction of q. Variable transformation from

System II to System I is realized by the following transformation matrix:

TII→I :=


cosϕ cos θ − sinϕ cosϕ sin θ

sinϕ cos θ cosϕ sinϕ sin θ

− sin θ 0 cos θ

 . (4.4)

Once we have a vector vII in System II, its expression in System I is obtained by taking the product

with TII→I, i.e. vI = TII→I · vII.

4.2.2 Distorted Maxwellian in System II

Background ion velocity vI in the laboratory frame consists of a flow velocity vb (a given param-

eter) and a random velocity of thermal motion wI, hence vI = vb +wI. Rather than choosing a value

of wI directly from the distorted Maxwellian in Eq. (2.50), it is easier to determine its expression in

System II, wII, first. Then we convert wII into wI. Random velocity wII is specified by the speed w,

the inclination angle θII that is measured from the ZII-axis, and the rotational angle ϕII that is measured

from the XII-axis, as shown in Fig. 4.3. The rotational transformation matrix TII→I does not affect

the magnitude of a vector, because its Jacobian determinant | detTII→I| is 1. So we use the symbol w

in common to represent the speed of wI and wII. The velocity distribution fb,II of wII in System II is

obtained by,

fb(wI)dwI = fb(T
II→I.wII) · | detTII→I|dwII = fb,II(wII)dwII. (4.5)

Hence,

fb,II(wII)dwII = nb

(
mb

2πTb

) 3
2

· w2 sin θII · exp
(
−mbw

2

2Tb

)
×

[
1− mb

nb

1

T 2
b

(
1− w2

5v2th,b

)
w|q| cos θII

]
dwdθIIdϕII. (4.6)

The distribution function (fb,II/nb)dwII is decomposed into three parts fdw, gdθII, and hdϕII,

respectively defined as,

f(w)dw :=

√
2

π

(
mb

Tb

) 3
2

· w2 exp

(
−mbw

2

2Tb

)
dw, (4.7)
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g(w, θII)dθII :=
1

2
[1 + α cos θII] sin θIIdθII, (4.8)

h(ϕII)dϕII := dϕII/2π, (4.9)

where α(w, Tb(ra),q(ra)) := −mb

nb

1

T 2
b

(
1− w2

5v2th,b

)
w|q|.

From the relation (fb,II/nb)dwII = (fdw)(gdθII)(hdϕII), the functions f , g, and h are interpreted as

the probability density functions associated with the random variables w, θII, and ϕII.

4.2.3 Random sampling of background ion velocity

The three components w, θII, and ϕII are randomly chosen from their distributions Eqs. (4.7),

(4.8), and (4.9), by the same algorithm described in Chapter 3 (also in Ref. [50]). Then we obtain a

random velocity of a background ion in the laboratory frame (System I) by wI = TII→I ·wII.

For the calculation, we should pay attention to the values of Tb(ra), q(ra), and TII→I(ra) which

are dependent on the position of each test particle ra(t). They have to be updated, every time the

position ra(t) changes.

4.3 Binary Collision Model (Step 4)

In order to simulate Coulomb collision between the test particle and the background ion chosen in

Sec. 4.2, we use the Monte Carlo Binary Collision Model (BCM) which has been explained in detail

in Sec. 3.5. From the relative velocity between the colliding two particles, the BCM calculates the

velocity change ∆vColl of test particles by collision with a background ion.

For application of the BCM, we use a time step of ∆tBCM = {1/D(vth,b)}×10−3, where D(u) :=

q2aq
2
bnb(lnΛ)/(8πε

2
0µ

2
abu

3), as used in Refs. [50, 51]. The relative speed u is approximated by the

thermal speed of background ion vth,b, if it is much faster than the speed of test particle.

4.4 Buneman-Boris method (Step 5)

The Buneman-Boris method is applied to simulate the Larmor gyro-motion of charged test parti-

cles in a magnetic field. The velocity change of test particle by the Lorentz force ∆vGyro is calculated.

(Please refer to Ref. [43] for the details.)
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The Buneman-Boris method requires to use a time step ∆tGyro which satisfies the inequality

Ωa∆tGyro ≪ 1, where Ωa := qa|B|/ma is the cyclotron frequency of the test particle.

4.5 Applicability limits

Our numerical model of thermal force can work with any background velocity distribution which

has the structure,

fb(w) = f0 [1 +A(w) ·w] , (4.10)

where f0 is the normal Maxwellian, and A(w) is a known vector which can contain the random speed

w := |w|.
However, the classical limit supposed in this study (See Sec. 2.2) requires that the deformation

term f0 [A(w) ·w] has to be small enough than the Maxwellian f0. Applying such restriction to Eqs.

(2.50, 2.51), we obtain the applicability limits of the model within the classical limit,

|A(w)·w| =

∣∣∣∣∣−mb

nb

1

T 2
b

(
1− w2

5v2th,b

)
{−κ∥(∇∥Tb) ·w + κ∧(e∥ ×∇⊥Tb) ·w − κ⊥(∇⊥Tb) ·w}

∣∣∣∣∣≪ 1.

(4.11)

We substitute the thermal speed of background ion vth,b for its random speed w in the relation (4.11),

which leads to the typical classical conditions, such as

λb,∥

L∇T
∥

,
rb,L
L∇T
⊥

,
1

Ωbτb
≪ 1. (4.12)

Here the mean free path of background ions along the magnetic field line is denoted as λb,∥, the Larmor

radius of background ion is rb,L. The characteristic lengths along/perpendicular to the magnetic field

line are respectively defined as: L∇T
∥ := Tb/|∇∥Tb|, and L∇T

⊥ := Tb/|∇⊥Tb|. The conditions in Eq.

(4.12) are the same as the orderings in Eqs. (2.44, 2.45) that we have assumed to solve the kinetic

equation Eq. (2.40).

More concretely, the test simulation results in Sec. 4.6 provide a rough criterion for the smallness

of |A(w) ·w|. It is better to satisfy the condition

|A(vth,b)|vth,b ≤ 0.1. (4.13)

All test simulations in Sec. 4.6 have been performed within this limit Eq. (4.13) 2 , and the reasonable

results of the thermal force have been obtained, as will be shown in Sec. 4.6. This fact means that our

model works correctly at least within this criterion.
2The most severe condition is that of Case I-2 with weaker magnetic field |B| = 0.1 T and steeper temperature gradient

∇⊥Tb = 300 eV/m, which gives |A(vth,b)|vth,b ≈ 0.09.
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In the present study, the deformation of the background velocity distribution function caused by

the ELM [15], the neo-classical transport [19], the turbulence effect [41], the strong viscosity due to

the flow-reversal [14], or any other effects occurring in fusion plasmas than the classical transport

are not taken into account. However, our model can be, in principle, still extended by using more

sophisticated forms of distribution function. It is an interesting study subject to define appropriate

distribution functions to include the above effects.

One currently available way of model extension is to use a more general form of distorted Maxwellian

distribution presented in Ref. [44], for the case where Ωbτb is arbitrary, ∇p ̸= 0, and E ̸= 0. It may

also be possible to model more realistic background plasma by using the expression of heat flux q

with the heat flux limiter [42].
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4.6 Test simulations

To validate our extended numerical model, we have performed the following two types of test

simulations.

Test Simulation I: short time scale (0 ≤ Ωat ≤ 0.01). We simulate the time evolution of the aver-

age velocity of test particles, in the presence of a perpendicular temperature gradient, for time

scales much shorter than the Larmor gyration period of test particles, in order to directly ex-

amine the thermal force F∇T . In such short time scale simulation, we can easily separate the

diamagnetic thermal force from the friction force and the Lorentz force in numerical results.

Test Simulation II: long time scale (0 ≤ Ωat ≤ 650). We solve the trajectories of test particles for

a long period of time. The ensemble-average position of test particles is simulated to check the

temperature screening effect. As is explained in Ref. [19], the diamagnetic thermal force F∇T
∧

drives the guiding center drift of test particles as shown in Fig. 2.6. The test particles move

continuously, as a whole, toward (−∇⊥Tb)-direction. Such macroscopic consequence of the

thermal force has not been taken into account in any kinetic test particle simulation model so

far.

4.6.1 Numerical parameters for test simulation I and II

Table 4.1: Numerical Parameters for test simulations. (cited from Ref. [30].)

Test particle species W3+

Initial position of test particles, ra,i(t = 0) 0

Initial test particle velocity, va(t = 0) 8.84× 103 ms−1 eX (50 eV)

Normalized test particle velocity, ṽa(t = 0) 0.09 eX

No. of test particles for test simulation I, N1 106

No. of test particles for test simulation II, N2 104

Background plasma ion species H+

Number density of background ions, nb 1020 m−3

Background flow velocity, vb 0 ms−1

Temperature at the origin, Tb(0) 50 eV

Temperature gradient, ∇Tb given for each case

Coulomb logarithm, lnΛ 15
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Table 4.2: Characteristic time scales. (cited from Ref. [30].)

Magnetic field B 0.1 T (Test I) 1 T (Test II)

Time step for BCM, ∆tBCM 2.03× 10−10 s 2.03× 10−10 s

Time step for Buneman-Boris method, ∆tGyro 6.40× 10−7 s 6.40× 10−8 s

Simulation time step, ∆t 2.03× 10−10 s 2.03× 10−10 s

Gyration period of test particle, Ω−1
a 6.40× 10−6 s 6.40× 10−7 s

Slowing-down time of test particle, τs 7.10× 10−5 s 7.10× 10−5 s

Energy-exchange time of test particle, τE 2.67× 10−5 s 2.67× 10−5 s

Total calculated time, t 0 ≤ Ωat ≤ 0.01 0 ≤ Ωat ≤ 650

Collision time of background ions, τb 4.91× 10−6 s 4.91× 10−6 s

Cyclotron frequency of background ion, Ωb 9.58× 106 s−1 9.58× 107 s−1

Degree of magnetization, Ωbτb 47 470

For the test simulations I and II, we use the Cartesian coordinates (X , Y , Z). The magnetic field

B is along the Z-axis. The perpendicular temperature gradient ∇⊥Tb is taken along the X-axis.

Numerical parameters used in the test simulation I and II are summarized in Table 4.1. The

test particle species is tungsten ion W3+ (mass ma, electric charge qa). The background plasma ion is

hydrogen ion H+ (mass mb, electric charge qb). Electrons are not considered. The plasma temperature

at the origin is 50 eV, and the temperature gradient is specified for each simulation case. The number

density of background plasma ion is nb = 1020 m−3, and the background flow velocity vb is set to 0.

The Coulomb logarithm is taken as lnΛ = 15.

Magnetic field and characteristic time scales are presented in Table 4.2. The slowing-down time

of the test particle τs is defined by,

τs :=
1(

1 + ma

mb

)
µ(x)

4πϵ20m
2
av

3
0

q2aq
2
bnb ln Λ

, (4.14)

where v0 := |va(t = 0)|, x := mbv
2
0/(2Tb), and µ(x) := (2/

√
π)
∫ x

0
exp(−ξ)

√
ξdξ. This is a

characteristic time scale for a test particle to be slowed down by collisions with background ions. The

gyration time scale of the test particle is Ω−1
a := (qa|B|/ma)

−1.

The simulation time step is decided by ∆t = min{∆tBCM ,∆tGyro }, where the time step required

for the BCM is ∆tBCM = {1/D(vth,b)} × 10−3, and the time step for the Buneman-Boris method is

∆tGyro = Ω−1
a × 10−1. The time step for BCM ∆tBCM has been estimated from the formula in Sec.

4.3 by approximating the relative speed of colliding two particles u := |va−vb| by the thermal speed

of the background ion vth,b, which is much faster than va (u ≈ vth,b ≫ va).

72



4.6. TEST SIMULATIONS

The test simulations are carried out for the case of collisional background plasma, where the heat

flux q is specified by the classical formula Eq. (2.51).

Magnetic field strength and number of test particles used in the test simulation I and

II

In the test simulation I, we use a weaker magnetic field (B = 0.1 T) and a large number of test

particles (N1 = 106). It enables us to make the diamagnetic thermal force relatively stronger, and take

a large ensemble average of the test particle velocity, in order to output and check the acceleration

by the diamagnetic thermal force, with negligible Monte Carlo noise. The following facts are being

exploited.

1. The magnitude of the diamagnetic thermal force F∇T
∧ is inversely proportional to that of the

magnetic field (|F∇T
∧ | ∝ |B|−1). When F∇T

∧ becomes stronger, it may be easier to separate the

thermal force from the other forces.

2. By weakening the magnetic field, we can reduce the Lorentz force (|FGyro| ∝ |B|) which acts

in the same direction as the diamagnetic thermal force (Fig. 2.5), at the initial moment of the

test simulation I.

3. The thermal force appears after averaging random collisions on the test particle. However, dur-

ing the short simulated time (Ωat ≈ 0.01) of the test simulation I, each test particle experiences

only a few times of Coulomb collisions. If the number of test particle and the total number of

collisions are insufficient, the standard deviation of the value of the averaged velocity of test

particles from its mean becomes non-negligible, so we cannot compare the numerical result

with its theoretical value, with a good statistical accuracy.

In the test simulation II (Fig. 2.6), we use a typical magnetic field strength for fusion plasma

(B = 1 T) and a smaller number of test particle (N2 = 104). It is because that the temperature

screening effect (|vScr.| ∝ B−2) is still non-negligible when B = 1 T, and also that the simulation

is performed for a long time scale (Ωat ≫ 100). Since each test particle collides with background

ions much more times than the test simulation I, the collisional force on test particle is sufficiently

averaged over the time. Therefore, a smaller number of test particle N2 is enough to simulate the

thermal force as well as the temperature screening effect occurring on a long time scale.

Both test simulations I and II prove the correctness of our model.

4.6.2 Test simulation I – Diamagnetic thermal force –

In the test simulation I with short time scale, simulated time evolution of test particle velocity will

be directly compared with the theoretical values of the thermal force calculated from Eq. (2.59). We
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start the simulation by injecting test particles with the initial velocity va(t = 0) in the +X-direction

(See Table 1). As shown in Fig. 2.5, the diamagnetic thermal force F∇T
∧ and the Lorentz force

FGyro. := qa(va(t)×B) act on the test particle, initially, in the (−Y )-direction under the presence of

perpendicular temperature gradient ∇⊥Tb and magnetic field B. The frictional force F0 (not shown

in Fig. 2.5) acts in the −X-direction, opposite to the test particle initial velocity. We focus on the

Y -component of test particle velocity, in order to see the diamagnetic thermal force F∇T
∧ . We will,

first, calculate the velocity changes of each test particle. Next we remove the acceleration by Lorentz

force from the simulated results. Finally we compare such results with the theoretical value of thermal

force Eq. (2.59).

We test the following three values of temperature gradients,

Case (I-1) ∇Tb = 100 eV/m eX ,

Case (I-2) ∇Tb = 300 eV/m eX ,

Case (I-3) ∇Tb = 300 eV/m eX + 5 eV/m eZ .

In Case (I-1) and (I-2), we examine the diamagnetic thermal force F∇T
∧ alone, focusing on its direction

(F∇T
∧ ∥ −e∧) and magnitude (|F∇T

∧ | ∝ |∇⊥Tb|). Then in Case (I-3), we check if the parallel (F∇T
∥ )

and diamagnetic (F∇T
∧ ) thermal force can be simulated simultaneously under complex temperature

gradient having both parallel and perpendicular components.

The magnetic field B is set to 0.1 T eZ . The number N1 = 106 of test particles start moving

along the X-axis from the coordinate origin 0 (Fig. 2.5), with the initial velocity va(t = 0) := v0 =√
3kE0/maeX , where E0 = 50 eV.

During a period of time much shorter than both the Larmor gyration period Ω−1
a and the slowing

down time of test particle τs (0 < Ωat < 0.01, i.e. 0 < t/τs < 0.001), we calculate the time evolution

of the average velocity of test particles va(t), defined as,

va(t) :=

N1∑
i=1

va,i(t)/N1, (4.15)

where va,i(t) is the velocity of i-th test particle (i = 1 ∼ N1) at the time t.

Before comparison with the theoretical value Eq. (2.59), we remove the acceleration of the

Lorentz force from va(t). Since the test particle velocity does not change substantially (vi(t) ≈ v0)

during the simulation (because of Ωat ≪ 1, and t/τs ≪ 1), the Lorentz force remains almost constant

(FGyro ≈ qa(v0 × B) ). By removing the Lorentz force, we define the average test particle velocity

accelerated only by the thermal force, such as

va
∇T (t) := va(t)− {qa(v0 ×B)/ma} · t. (4.16)

The values of va
∇T (t) will be outputted in the following sections 4.6.2-4.6.2 as simulated results.
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Figure 4.4: Result of Case I-1 and I-2: The Y -component of the average velocity of test particles

accelerated only by the diamagnetic thermal force va,Y
∇T (t). (cited from Ref. [30].)

Results of Case (I-1) and (I-2)

Figure 4.4 shows the Y -component of simulated average velocity without Lorentz force, va,Y ∇T (t),

for the vertical axis, and the normalized time Ωat for the horizontal axis. Closed squares and crosses

correspond to Case (I-1) and (I-2), respectively. The theoretical value calculated from Eq. (2.59) by

v∇T,Theo
Y = v0,Y +{F∇T

∧ (v0)/ma}·t, is presented by the dashed and solid line for Case (I-1) and (I-2).

In both Cases, the results agree very well with the theoretical acceleration by the diamagnetic

thermal force F∇T
∧ . The comparison between the results of Case (I-1) and (I-2) shows that the strength

of the diamagnetic thermal force is proportional to the magnitude of temperature gradient (|F∇T
∧ | ∝

|∇⊥Tb|).

Result of Case (I-3)

We have already checked our model on the parallel thermal force in Sec. 5.2 (as well as in

Refs. [50, 51]), and on the diamagnetic thermal force in the previous Sec. 4.6.2. Here we check the

thermal force under the combined temperature gradient which has both parallel and perpendicular

component, ∇Tb = 300 eV/m eX + 5 eV/m eZ . The initial velocity of test particle is the same as

in Cases (I-1) and (I-2), i.e. along the X-axis. According to Eq. (2.59), the test particles should be

accelerated at once, to the (−Y )-direction by the diamagnetic thermal force (Fig. 2.5), and to the

(+Z)-direction by the parallel thermal force (Fig. 2.4).

Figure 4.5 shows the time evolution of the Y -component of simulated test particle speed (closed
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Figure 4.5: Result of Case I-3: The Y -component of the average velocity of test particles accelerated

only by the diamagnetic thermal force va,Y
∇T (t). (cited from Ref. [30].)

squares) without acceleration of the Lorenz force va,Y
∇T (t). The theoretical value is also plotted as a

solid line. The result agrees well with its theoretical value. The diamagnetic thermal force is correctly

simulated.

On the other hand, Figure 4.6 presents the simulated Z-component of test particle average velocity

vZ(t) by closed squares. The simulated time in the horizontal axis is normalized to the Larmor

gyration time scale Ω−1
a and also by the slowing down time τs. We can compare the result vZ(t)

directly with its theoretical value (F∇T
∥ (v0)/ma) · t, solid line in the figure, because neither the

frictional force F0 nor the Lorentz force act in the Z-direction (Fig. 2.4) on the initial condition that

v0 ∥ eX (Fig. 2.4). Good agreement has been obtained. The parallel thermal force F∇T
∥ is correctly

simulated simultaneously with the diamagnetic thermal force F∇T
∧ .

From the results of Cases (I-1), (I-2), and (I-3), it is concluded that our numerical model is able

to correctly simulate the thermal force caused by both the parallel and the perpendicular temperature

gradient.

4.6.3 Test simulation II – Temperature screening effect –

In the test simulation II, we solve the trajectories of test particles for a relatively long period of

time (Ωat ≈ 650), and discuss whether our kinetic model is able to simulate the temperature screening

effect [19].

Two perpendicular temperature gradients have been used,
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Figure 4.6: Result of Case I-3: The Z-component of the average velocity of test particles accelerated

by the parallel thermal force va,Z
∇T (t). (cited from Ref. [30].)

(II-1) ∇⊥Tb = 100 eV/m eX ,

(II-2) ∇⊥Tb = 300 eV/m eX .

The number N2 = 104 of test particles start from the coordinate origin 0. Velocity of each test

particle is randomly chosen from the Maxwellian distribution with average energy of Ta = 50 eV

(= Tb(ra = 0)). We use a magnetic field B = 1 T eZ . The calculation is performed for a long time

(t ≫ Ω−1
a ) so as for the test particles to gyrate for many times. The other parameters are the same as

those presented in Table 4.1 and 4.2.

The transport simulation of tungsten impurities under these values of parameters, which are typical

for the SOL-divertor plasma in present tokamaks, is one of the important topics for the fusion research.

Normally, a strong perpendicular temperature gradient in the direction toward the core exists close

to the separatrix in the SOL-divertor plasma. The temperature screening effect due to such steep

temperature gradient, which prevents impurities from penetrating the hot core, might have an impact

on the impurity transport in fusion plasmas.

Theoretical value of the temperature screening effect

Before the simulation, we explain the theoretical value of the drift velocity of test particle vScr.
a

driven by the diamagnetic thermal force F∇T
∧ that we use to check the simulation results. We use the
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fluid estimation of vScr.
a as presented in Ref. [19], because the test particles seem to be relaxed with

the background plasma, during the simulation time much longer than the energy-exchange time τE of

test particle (Table 4.2) 3.

Average diamagnetic thermal force acting on a fluid element of the test particle species per unit

volume [19] is given by

R∇T = − 3nb

2ΩbτB
ba

B×∇⊥Tb

|B|
, (4.17)

with the collision time τB
ba, and the number density of test particle species na. The collision time τB

ba

is defined by Braginskii [14] as,

τB
ba :=

12π3/2

√
2

ϵ20
√
mbT

3/2
b

naq2aq
2
b lnΛ

. (4.18)

We substitute R∇T in the usual formula of guiding center drift, vScr.
a = (R∇T ×B)/(manaΩa|B|), to

obtain

vScr.
a = −3

2

mb

qaqbB2

nb

naτB
ba

· ∇⊥Tb. (4.19)

The velocity vScr.
a is proportional to the gradient, vScr.

a ∝ −∇⊥Tb.

Here, we have to be careful to use such fluid estimation of vScr.
a to our kinetic test simulation,

because there exists theoretical uncertainty in the definition of the Braginskii collision time τB
ba. Orig-

inally, the collision time τB
ba has been derived under the condition that α := naq

2
a/(nbq

2
b ) = 1. In our

kinetic test simulation, however, we do not know exactly the number density na of the test particles,

neither the value of α 4. Even though the Braginskii collision time is widely used [14, 19, 45], we

should take care of the fact that the numerical coefficient of τB
ba is dependent on the value of α.

Instead, there is another definition of collision time. The basic collision time τT
ba has been defined

by Trubnikov [13] as,

τT
ba := 8

√
2π

ϵ20
√
mbT

3/2
b

naq2aq
2
b lnΛ

, (4.20)

under the condition that ma ≫ mb. This condition is satisfied in our test simulation II.

In the present study, we use the both collision times τB
ba and τT

ba for estimating the temperature

screening effect. They have the same order of magnitude, and are only different in their numerical

coefficient, τB
ba : τT

ba = 1 : 0.75. We expect that the both collision times may give reasonable and

useful estimations of vScr.
a (Eq. (4.19)), to examine the numerical results.

3The energy-exchange time τE is defined by, τE := |ṽa|2
4

(
1 + ma

mb

)
τs.

4Even though we do not know explicitly the number density of test particle na, we can still evaluate the temperature

screening effect in Eq. (4.19). The number density na disappears as a result of the term naτ
B
ba in the denominator.
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Figure 4.7: Examples of a test particle trajectory in the test simulation II, projected onto the XY -

plane. (cited from Ref. [30].)

Example of a test particle trajectory

Prior to the full results, we show some examples of test particle trajectory for better understanding

of the situation.

Figure 4.7 shows typical trajectories of test particles, projected onto the perpendicular XY -plane.

The dashed line (green) and solid line (red) correspond to the 1st and 2nd test particle, respectively.

Their trajectories tend to move gradually toward (−∇⊥Tb)-direction, as is expected from Eq. (4.19).

Result of test simulation II

Figures 4.8 and 4.9 show the time evolution of the average position of test particle r(t), respec-

tively for Case (II-1) and (II-2), which is defined as

r(t) :=

N2∑
i=1

ra,i(t)/N2, (4.21)

where ra,i(t) is the position of i-th test particle (i = 1 ∼ N2) at time t. Closed squares and cross marks

represent the value of the X-component X(t) and the Y -component Y (t) of the average position r(t),
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Figure 4.8: Result of Case II-1: Closed squares and cross marks represent the average value of the

simulated X-position X(t) and the Y -position Y (t) of the test particles. The Braginskii estimation

using τB
ba and the Trubnikov estimation by τT

ba are plotted, respectively by the dashed and the solid

line. (cited from Ref. [30].)
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Figure 4.9: Result of Case II-2: Closed squares and cross marks represent the average value of the

simulated X-position X(t) and the Y -position Y (t) of the test particles. The Braginskii estimation

using τB
ba and the Trubnikov estimation by τT

ba are plotted, respectively by the dashed and the solid

line. (cited from Ref. [30].)
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for each case.

In both Cases (II-1) and (II-2), the test particles are clearly moving as a whole toward the (−X)-

direction, i.e. to lower temperature region, while its averaged Y -position remains around 0. Fur-

thermore, as the magnitude of temperature gradient increases from Case (II-1) to (II-2), the slope of

X(t), i.e. the average speed along the X-axis vX(t) := dX(t)/dt, is enhanced. From these results,

the temperature screening effect is reproduced qualitatively well (for the direction and the magnitude

|vScr.
a | ∝ |∇⊥Tb|).

To examine more quantitatively the results in Figs. 4.8 and 4.9, we use Eq. (4.19). By substituting

the present parameters (Table 1 and 2, ∇Tb, Tb(r) ≈ Tb(0) = 50 eV) in Eq. (4.19) with the two

collision times τB
ba and τT

ba, we obtain the theoretical velocity of guiding center drift as follows,

Case (II-1):
vScr. = −1.33 ms−1 eX (using Braginskii τB

ba),

vScr. = −1.78 ms−1 eX (using Trubnikov τT
ba),

Case (II-2):
vScr. = −4.04 ms−1 eX (using Braginskii τB

ba),

vScr. = −5.39 ms−1 eX (using Trubnikov τT
ba).

The theoretical value of X-coordinate xTheo is calculated by xTheo = vScr.
a ·t. The Braginskii estimation

using τB
ba and the Trubnikov estimation by τT

ba are plotted, respectively by the dashed and the solid

line in Figs. 4.8 and 4.9. The simulated X-position of test particles X(t) shows good agreements

with both the Braginskii/Trubnikov estimation in Case (II-1) and Case (II-2), within the ambiguity of

theoretical definition of the collision times. Especially, the results agree quite well with the Trubnikov

estimation under the present simulation condition.

It has been confirmed that our numerical model is able to simulate the temperature screening

effect caused by the perpendicular temperature gradient which may have non-negligible effect on

the impurity transport processes in fusion plasmas. In the present tokamak plasmas, the anomalous

transport process is considered to have one of the dominant effects on the impurity transport in the

radial direction. In many existing impurity transport simulations, the anomalous transport is taken

into account. The particle diffusion velocity due to the anomalous transport is estimated from the

typical characteristic values as follows. A representative value of the radial anomalous diffusion

coefficient is estimated to be D⊥ ∼ 0.25 m2s−1, according to Refs. [?, 46]. And, if we assume that

the characteristic scale length of the impurity number density LW is of the same order as that of the

background electrons, then it is estimated as LW := |∇nW/nW|−1 = 0.01 ∼ 0.1m, from Ref. [47].

The anomalous diffusion is of the order of vanomalous = D⊥/L = 2.5 ∼ 25 ms−1. The temperature

screening effect vScr. above is expected to be non-negligible compared with such anomalous diffusion.
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4.7. SUMMARY OF CHAPTER 4

4.7 Summary of Chapter 4

We have developed a numerical model of the thermal force for test-ion transport simulation in

magnetized plasmas, based on the Monte Carlo Binary Collision Model. When the background

plasma has a temperature gradient with parallel (∇∥Tb) and perpendicular (∇⊥Tb) components to

the magnetic field, our kinetic model is able to simulate the thermal force on individual test parti-

cle, caused by such temperature gradients. The model is basically the same as presented in previous

Chapter 3 for the case without magnetic field, but this time, we have introduced a more extended form

of the distorted Maxwellian distribution for the velocity distribution of background plasma ions. The

most important part of the model is a numerical method for random sampling of a background plasma

ion velocity from the distorted Maxwellian distribution, including the background ion heat flux qb

caused by the temperature gradient ∇∥Tb and ∇⊥Tb.

In Sec. 2.2, the distorted Maxwellian distribution has been derived on the simple classical con-

ditions that the background plasma is collisional and strongly magnetized (q is expressed by the

classical formula, Ωbτb ≫ 1), and there exist neither pressure gradient nor electric field (∇p = 0,

E = 0). However, our model can be easily further extended to cases without such restrictions (i.e.

other suitable formula of q can be employed, the degree of magnetization Ωbτb is arbitrary, ∇p ̸= 0,

E ̸= 0), by using a more general form of distribution function, e.g. those given in Ref. [44].

In order to confirm the validity of the model, we have performed two types of test simulations. In

the first test simulation, we have calculated the time evolution of the average velocity of test particles,

in the presence of a perpendicular temperature gradient, for time scales much shorter than the test par-

ticle Larmor gyration period. The results agreed very well with the theoretical values of acceleration

by the thermal force obtained from the kinetic theory.

Then we have performed the second test simulation, for time scales much longer than the test

particle Larmor gyration period, in order to check the temperature screening effect caused by the

diamagnetic thermal force. The simulated trajectories of test particles have moved, as a whole, toward

(−∇⊥Tb) direction as expected by the theory [19]. We expect that such temperature screening effect

may be non-negligible compared with the order of magnitude of the anomalous diffusion in fusion

plasmas.

Good agreement of these test simulation results with the theory has shown that our thermal force

model is correct and reliable enough to be applied for realistic transport simulations. Our next step is

to integrate this model into existing kinetic impurity transport simulation codes (e.g. the IMPGYRO

code [26, 48, 49] which solves the full orbit of test impurities by using the BCM for Coulomb colli-

sion) for realizing more accurate, reliable impurity transport simulation in nuclear fusion plasmas.

Furthermore, the present BCM-based model can be easily applied to more sophisticated integrated

impurity transport simulations which can consider dynamic changes in background fusion plasmas.
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Chapter 5

Numerical kinetic model of thermal force
based on Fokker-Planck collision
operator

We have developed another type of thermal force model for magnetized background plasmas, by

using the Fokker-Planck (FP) collision operator to simulate Coulomb collisions. The FP collision

operators are obtained on the basis of the study done in the previous Chapters 2, 3, and 4. In addition

to the Binary Collision model, the FP method is also widely used (e.g. ASCOT code [46]) because

the FP approximation realizes more rapid calculation as far as the trace impurity limit holds. Since

almost all the kinetic impurity transport simulation codes for fusion plasmas use either of BCM or FP

approximation for Coulomb collision, the FP-based algorithm presented in this chapter will largely

expand the applicability of our model.

Model validation are performed to confirm that the FP approximation model can simulate the

thermal force as accurately as the BCM-based model in Chapter 4.

5.1 Model description

According to Refs [19, 53], the Coulomb collision process can be modeled by the Fokker-Planck

collision operators: the drift vector A and the diffusion coefficient matrix D. They are defined by,
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5.1. MODEL DESCRIPTION

respectively

A := −
(
1 +

ma

mb

)
L
a/b
SI ∇v(△vΨ(va)) = F/ma, (5.1)

Dij := −L
a/b
SI

∂2

∂vi∂vj
Ψ(va) = D0

ij +D∇T
ij , (5.2)

D0
ij =

nb

16π

√
mb

2Tb

L
a/b
SI

([(
2

ṽ
− 1

ṽ3

)
Φ(ṽ) +

1

ṽ2
Φ′(ṽ)

]
δij

+

[(
− 2

ṽ3
+

3

ṽ5

)
Φ(ṽ)− 3

ṽ4
Φ′(ṽ)

]
ṽiṽj

)
, (5.3)

D∇T
ij =

mb

40πT 2
b

L
a/b
SI

([
− 3

2ṽ5
Φ(ṽ) +

(
1

ṽ2
+

3

2ṽ4

)
Φ′(ṽ)

]
{qiṽj + qj ṽi + (q · ṽ)δij}

+

[
15

2ṽ7
Φ(ṽ) +

(
− 2

ṽ2
− 5

ṽ4
− 15

2ṽ6

)
Φ′(ṽ)

]
(q · ṽ)ṽiṽj

)
. (5.4)

The force F in Eq. (5.1) is the Coulomb collisional force given in Eqs. (2.57), (2.58), and (2.59). The

constant La/b
SI is defined in the SI-unit system L

a/b
SI := (qaqb/(maϵ0))

2 lnΛ. The Cartesian coordinates

(X, Y, Z) are supposed, and the subscripts i and j in Eqs. (5.3) and (5.4) indicate X-, Y -, and Z-

component, respectively. The subscript a of the normalized velocity of test particle ṽa (Eq. (2.61)) has

been omitted in Eqs. (5.2), (5.3), and (5.4) for simplicity. The function δij is the Kronecker’s delta1.

The Rosenbluth potential Ψ(va), already defined in Eq.(2.28), is a function of the test particle velocity

Ψ(va) := −(1/8π)
∫∫∫

|va − vb|fb(vb)dvb. These operators A and D describe the time evolution

of the velocity distribution of test particle fa(va) due to Coulomb collisions with background ions,

according to the Fokker-Planck equation [53, 17, 19]

∂fa(va, t)

∂t

∣∣∣∣
collisions

= −
∑

i=X,Y,Z

∂

∂vi
(Aifa) +

1

2

∑
i,j=X,Y,Z

∂2

∂vi∂vj
(Dijfa) . (5.5)

The random velocity change dva of a test particle due to Coulomb collisions with background

ions, over a time step ∆tColl., is simulated as follows. Given the background velocity distribution fb

and the test particle actual velocity va, we calculate the operators A and D. Since the diffusion co-

efficient matrix D is almost always positive-definite, it can be decomposed into a matrix product, i.e.

D = BBT, where B is a lower triangular matrix and BT is B’s transpose (Cholesky decomposition).

Then, dva is simulated by the Ito stochastic differential equation [53]: dva = Adt + B · dW. The

vector dW is consisting of the Wiener process increment dWi. Each component dWi follows the

Gaussian probability density distribution with the mean 0 and the variance ∆tColl., and is independent

of each other. Finally, the test particle velocity is updated as va(t+∆tColl.) = va(t) + dva.

1δij := 1 if i = j, δij := 0 otherwise.
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5.2. TEST SIMULATION

5.1.1 Numerical implementation of the model

Numerical implementation of the Fokker-Planck (FP) collision process is easily done. For test

simulations in the next Sec. 5.2, we have replaced the Coulomb collision part in the BCM-based

simulation algorithm in Fig. 4.1 of previous Chapter 4, by the FP process described above in Sec. 5.1.

5.2 Test simulation

We have performed a series of test simulations to confirm the validity of our FP-based thermal

force model and its numerical efficiency.

5.2.1 Test simulation 1: evaluation of the thermal force

The 1st test simulation for checking the thermal force has been performed under the identical

conditions as the test simulations I and II in Chapter 4 (also in Ref. [30]). The simulated results on

thermal force by temperature gradient ∇Tb = ∇∥Tb +∇⊥Tb are compared with the theoretical value

from Eq. (2.59). The results agreed well with the theory, as accurately as the results obtained by our

previous BCM-based Coulomb collision model (Almost the same figures as Figs. 4.4, 4.5, and 4.6 of

Chapter 4 have been obtained. The results are omitted here.)

In addition, the temperature screening effect (TSE) has been examined. As described in Ref. [30],

the TSE is a guiding center drift of test particle by the thermal force, whose drift velocity is analyti-

cally estimated [19, 30] as

vScr.
a = −3

2

mb

qaqbB2

nb

naτT
ba

· ∇⊥Tb, (5.6)

where τT
ba is the basic collision time defined by Trubnikov [13] τT

ba := 8
√
2πϵ20

√
mbT

3/2
b /(naq

2
aq

2
b lnΛ).

This effect may have important impact on test particle transport, especially in the SOL-Divertor re-

gion of the tokamak where steep temperature gradients exist. Simulated results (omitted here) have

shown good agreements with the theory, just as shown in Figs. 4.8 and 4.9 of Chapter 4 obtained by

the BCM-based model. Our present numerical model based on FP operator is able to simulate the

thermal force correctly.

5.2.2 Test simulation 2: effective length of collision time step ∆tColl.

The 2nd test simulation focuses on effective length of the simulation time step of collision ∆tColl..

All the parameters remain the same as those used in the test simulation case (II-2) in Sec. 4.6.3,

except the length of time step ∆tColl., which was originally taken very small ∆tColl. = 2.03× 10−10 s.

We have increased ∆tColl., and checked to which extent of ∆tColl. the TSE is correctly simulated.
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We use the Cartesian coordinate system, where the magnetic field B = 1 T eZ is taken along the

Z-axis and the perpendicular temperature gradient ∇⊥Tb = 300 eV/m eX is along the X-direction.

The test particle species is tungsten ion W3+, and the background plasma ion is hydrogen ion H+.

Electrons are not considered. The plasma temperature Tb(r) at the origin of position (r = 0) is 50

eV. The number density of background plasma ions is nb = 1020 m−3, its flow velocity vb is set to 0.

The Coulomb logarithm is lnΛ = 15. More details should be referred to in Ref. [30]. The number of

N = 104 test particles are used. They start moving from the coordinate origin r = 0, with random

velocity which are chosen from the Maxwellian distribution of 50 eV. Their trajectories ra,i(t) and

ensemble average of position r(t) :=
∑N

i=1 ra,i(t)/N , are simulated. The value of X-component X

of r(t) is compared with its theoretical value XTheo.(t) calculated from Eq. (4.19).

Simulations have been performed by varying ∆tColl. from 0.001τs, to 0.50τs. The slowing-down

time τs is a characteristic time for a test particle to be slowed down by collisions with background

ions, defined as τs := {(1 +ma/mb)µ(x)}−1 (4πϵ20m
2
av

3
a)/(q

2
aq

2
bnb ln Λ), where x := mbv

2
a/2Tb, and

µ(x) := (2/
√
π)
∫ x

0
exp(−ξ)

√
ξdξ.

Simulated results are shown for the cases ∆tColl. = (1) 0.05 × τs, (2) 0.15 × τs . Figures 5.1

and 5.3 show typical trajectories of 2 test particles, projected onto the XY -plane, respectively for

the case (1) and (2). And figures 5.2 and 5.4 present time evolution of the averaged position X and

Y for each case, where the horizontal axis is the simulated time normalized to the Larmor gyration

time Ω−1
a := (qa|B|/ma)

−1 and the vertical axis means the traveled distance. Theoretical values

XTheo.(t) = vScr.
a t and Y Theo.(t) = 0 are also shown in broken lines. In Figs. 5.2 and 5.4, the simulated

values X and Y agree well with their theoretical values. It means that the test particles move toward

(−∇⊥Tb)-direction, i.e. to the (−X)-direction as a whole, but stay in the Y -direction as is expected

by Eq. (4.19). In addition, the trajectories in Figs. 5.1 and 5.3 change their Larmor gyration radius

ceaselessly. This feature reflects an important characteristics of Coulomb collision that it acts on test

particles continuously over the time because of its long interaction distance.

As a result of test simulations, we have confirmed that, in the range of ∆tColl. = 0.001τs ∼ 0.15τs,

the simulated X and Y have agreed well with their theoretical value. Beyond ∆tColl. = 0.15τs, the

both values X and Y , have started to deviate largely from their theoretical value.

This result is consistent with the criteria mentioned in Refs. [54, 55] that a time step of Fokker-

Planck collision method up to ∆tColl. ≈ 0.25τs yields sufficiently correct simulation results of Coulomb

collision.

5.3 Summary of Chapter 5

The numerical model of the thermal force based on the Fokker-Planck collision operator has been

presented. For the model validation, we have performed the same test simulations as those performed
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Test Particle No. 1

Test Particle No. 2

Figure 5.1: Exemplar trajectory of 2 test particles with ∆tColl. = 0.05τs. The solid line and broken

line correspond, respectively, to the 1st and 2nd test particle. (cited from Ref. [52].)
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Figure 5.2: Time evolution of average test particle position X and Y with ∆tColl. = 0.05τs. (cited

from Ref. [52].)
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Test Particle No. 1

Test Particle No. 2

Figure 5.3: Exemplar trajectory of 2 test particles with ∆tColl. = 0.15τs. The solid line and broken

line correspond, respectively, to the 1st and 2nd test particle. (cited from Ref. [52].)
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Figure 5.4: Time evolution of average test particle position X and Y with ∆tColl. = 0.15τs. (cited

from Ref. [52].)
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previously for our thermal force model based on the Binary Collision model (Chapter 4). The results

have shown good agreements with the theory. Our numerical model based on the FP collision operator

is able to correctly simulate the thermal force caused by both the parallel ∇∥T and the perpendicular

∇⊥T temperature gradient. The temperature screening effect has also been simulated correctly.

In order to improve numerical efficiency of the model, effective simulation time step of collision

has been examined. We have confirmed that, under our test simulation conditions, with collision time

step ∆tColl. up to about 15 % of the test particle slowing-down time τs, our model can simulate the

temperature screening effect by thermal force.
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Chapter 6

Conclusion

To promote fusion reactions steadily, impurity particles have to be well controlled in order to keep

the main fuel plasma hot and dense enough. Correct understanding of impurity transport processes in

plasmas is one of the most important research subjects of nuclear fusion. Numerical simulations are

widely used to investigate important effects of impurities in fusion plasmas, such as the cooling of

core plasma or the mitigation of plasma heat load onto device walls.

In order to improve the impurity transport simulation, we have developed a new numerical model

to simulate the thermal force acting on kinetic test-impurity particles. The thermal force is caused

by Coulomb collisions with background plasma ions if the plasma has temperature gradient. The

motion of impurity particles can be largely influenced by the thermal force. For example, in the

parallel direction along the magnetic field line B, the balance of frictional force and thermal force

due to parallel temperature gradient determines the impurity transport. In the perpendicular direction

to B-line, guiding center drift of impurity particles (temperature screening effect, TSE) occurs by

the thermal force due to perpendicular temperature gradient. Although the TSE can compete against

other transport mechanisms across the B-field such as the anomalous diffusion, the thermal force and

its TSE have not been correctly taken into account in the existing impurity transport simulation codes

so far.

Chapter 1 summarizes the motivation and the research subject. Importance of impurity transport

process in fusion plasmas is emphasized. Our efforts are devoted to develop a new thermal force

model to improve the impurity transport simulations.

Chapter 2 explains the basic theories. The kinetic transport model of charged test particle in

plasma, and the Boltzmann equation describing the behavior of background plasma ions are the main

physics fields of the study. Coulomb collisions are modeled as a random walk process in velocity

change of particles, and background plasma ions with temperature gradient are modeled by the dis-

torted Maxwellian velocity distribution. Averaging all collisions between the test particle and the
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plasma ions, the formula of thermal force is analytically derived. Many interesting and important

characteristics of the thermal force are presented.

Chapter 3 presents a new numerical model of thermal force in unmagnetized background plasma.

Efficient algorithm to randomly sample plasma ion velocities from the distorted Maxwellian has been

newly developed. After sampling background ion velocities, Coulomb collisions with the test impu-

rity particles are simulated by the Binary Collision model (BCM). A series of test simulations has been

carried out for model validation. The important characteristics of the thermal force in unmagnetized

plasma have been examined such as:

• The thermal force pushes the test particles toward hotter plasma region.

• The magnitude of thermal force is directly proportional to the that of background temperature

gradient.

• The direction of thermal force is reversed ( i.e. toward lower temperature area) when the test

particle moves as fast as, or even faster than the thermal speed of background plasma ion. This

mechanism prevents the test particles from being infinitely accelerated by the thermal force.

• The direction and magnitude of thermal force is independent of the number density of back-

ground plasma ions.

This model is equivalent and applicable to the simulation of thermal force along magnetic field line

in magnetized plasmas.

Chapter 4 extends the model to the case of magnetized background plasmas. By adopting more

extended form of the distorted Maxwellian, we have succeeded, for the first time, to kinetically simu-

late the thermal force due to temperature gradient perpendicular to the magnetic field. As in Chapter

3, the BCM is used to simulate Coulomb collisions.

Because of the presence of magnetic field B, the thermal force becomes anisotropic:

Parallel temperature gradient along the magnetic field line causes the parallel thermal force
which acts on each test particle in the same direction as the magnetic field. The parallel thermal

force has the same characteristic features as listed above since it is identical with the thermal

force in unmagnetized plasma.

Perpendicular temperature gradient with respect to the magnetic field causes the diamagnetic
thermal force which acts on test particles in the direction perpendicular to both the magnetic

field and the temperature gradient. The diamagnetic thermal force drives the guiding center drift

of test particles, which leads to macroscopic transport of test particles across the magnetic field,

from higher to lower temperature region of background plasma. It is called temperature screen-

ing effect (TSE). The TSE drift velocity may be non-negligible compared with the anomalous

diffusion process which has been considered to be dominant to the impurity transport across the

B-field so far.
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Test simulations have been performed to check the correct evaluation of parallel and diamagnetic

thermal force, as well as the temperature screening effect. All the simulation results have agreed well

with the theoretical prediction. Our thermal force model has been confirmed to be able to correctly

simulate the thermal force in magnetized fusion plasmas. This extended BCM-based model can be

easily applied to more sophisticated integrated impurity transport simulations [48, 49, 56] which can

consider dynamic changes in background fusion plasmas.

On the basis of the work done in Chapters 3 and 4, another new thermal force model based on the

Fokker-Planck (FP) collision approximation has been developed in Chapter 5. The FP approximation

realizes more rapid calculation as far as the trace impurity limit holds. The validity of the model

has been checked by comparison with the results obtained in Chapter 4. We have confirmed that

the Fokker-Planck version of the model can provide the same simulation results as accurately as the

BCM-based model in Chapter 4.

Chapter 6 is the conclusion. Our new model has succeeded to simulate the thermal force due to

parallel and perpendicular temperature gradient. Numerical impurity transport simulation in fusion

plasmas will be further improved by implementing our model. We hope that this research can con-

tribute to develop an effective way of controlling impurities in fusion plasmas, in order to achieve the

net energy production by sustained fusion reactions.
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Appendix A

Coulomb logarithm

A.1 Definition of Coulomb logarithm

The integral that appears in Eq. (2.10) diverges logarithmically when the impact parameter ϱ

extends to infinity,∫ ∞

0

ρ

ρ2 + ρ2⊥
dρ = lim

ρ′→∞

∫ ρ′

0

ρ

ρ2 + ρ2⊥
dρ

= lim
ρ′→∞

(
ln

√
ρ′2 + ρ2⊥
ρ⊥

)
→ ∞. (A.1)

In the plasma gas, the ions and electrons can freely move because their kinetic energy is too high for

their mutual recombination reactions to occur. Therefore, microscopic electric field generated by each

ions and electrons is suppressed by such freely moving particles. This is one of the most remarkable

features of plasma called Debye shielding (Fig. A.1). The Debye shielding effect makes the plasma

gas macroscopically neutral, otherwise known as quasi-neutral state.

The electric field of individual ion and electron is shielded at the characteristic length, called

Debye length λDebye , which is defined as

λDebye =

√
ϵ0Tb

q2bnb

. (A.2)

The incident b-ions passing with the impact parameter larger than λDebye does not feel anymore the

Coulomb interaction force from the fixed a-particle in Fig. 2.1. Therefore, the integration range of

the diverging integral in Eqs. (2.10, A.1) can be reduced from (0 ≤ ρ ≤ ∞) to (0 ≤ ρ ≤ λDebye). The

integral converges with a finite value called Coulomb logarithm (lnΛ),

lnΛ ≡
∫ ∞

0

ρ

ρ2 + ρ2⊥
dρ ≈

∫ λDebye

0

ρ

ρ2 + ρ2⊥
dρ. (A.3)

The Coulomb logarithm is one of the most important parameters to characterize plasma. For typical

tokamak plasma, the value is about 10 ∼ 17 [18].
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A.2. JUSTIFICATION FOR THE VALUE OF COULOMB LOGARITHM
TO BE REGARDED AS CONSTANT

Θ

Θmin

Debye Shielding length 

too far to feel Coulomb potential

λDebye

Minimum Coulomb
scattering angle

Figure A.1: Debye shielding.

A.2 Justification for the value of Coulomb logarithm to be

regarded as constant

In Eq.(2.27), the Coulomb logarithm lnΛ has been treated as constant in the integration over the

background b-ion velocities vb, although this logarithm depends on vb,

lnΛ = lim
ρ′→λDebye

(
ln

√
ρ′2 + ρ2⊥
ρ⊥

)
≈ ln

λDebye

ρ⊥
= ln

(
λDebye ·

4πϵ0mab|va − vb|2

qaqb

)
. (A.4)

Eq.(2.4) has been substituted into Eq. (A.4) for the impact parameter ρ⊥ for 90◦ scattering. And we

have made use of the fact that the Debye length λDebye in fusion plasmas is very much larger than ρ⊥:

λDebye ≫ ρ⊥.1

Since the logarithm is a slowly varying function, it is usually permitted in fusion plasmas to

substitute a mean value (3/2)(Ta + Tb) for the vb-dependent term mab|va − vb|2/2,

lnΛ ≈ ln
λDebye

⟨ρ⊥⟩
, (A.5)

⟨ρ⊥⟩ =
qaqb

4πϵ0 · 3(Ta + Tb)
. (A.6)

1λDebye ≈ 0.5× 10−5 m, ρ⊥ ≈ 0.5× 10−12 m, λDebye/ρ⊥ ≈ 107, under conditions that T = 1000 eV and n = 1021

m−3. [13]
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Appendix B

Sampling of inclination angle θII from
density distribution g(w′, θII)

To sample the inclination angle θII from the probability density g(w′, θII) given in Eq. (3.12), we

make use of a variable transformation. Firstly, we introduce a variable ζ , defined as ζ := cos θII. Its

density gζ is then deduced from

gζ(ζ) = g(θII(ζ))|dθII/dζ| = [1 + αζ]/2. (B.1)

In (B.1), we find that the value of the function α := α(w, Tb,∇Tb) determines the profile of gζ .

If α = 0, the distribution gζ is a uniform distribution for the variable ζ . It is easy to determine the

angle θII.

If 0 < α ≤ 1, the variable ζ is transformed again into η by 1 + αζ =
√
η. The density gη of η is

deduced in the following manner,

gη(η) = g(ζ(η))|dζ/dη| = 1/(4α). (B.2)

The function gη denotes a uniform distribution of η in the interval [(1 − α)2, (1 + α)2]. Thus, we

generate η by using a uniform random number R (R ∼ U [0, 1]) as, η = 4αR+(1−α)2. Consequently,

the value of cos θII is obtained,

cos θII = ζ =

√
4αR + (1− α)2 − 1

α
. (B.3)

We can also consider the case of −1 ≤ α < 0, in the same manner as above, to obtain the results

presented in Section 3.3.4.
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Appendix C

Examples of numerically sampled
distorted Maxwellian distribution

In Figs. C.1, C.2, C.3, and C.4, we show examples of the distorted Maxwellian distribution of

background ion velocity in Eq. (2.50) with parallel temperature gradient ∇∥T , numerically sampled

by our method in Sec. 3.3. Anisotropic distribution in the inclination angle θII of test particle’s random

velocity (Fig. 3.4)

w = |w|


sin θII cosϕII

sin θII sinϕII

cos θII

 , (C.1)

is clearly shown. We have used the total sampling number N = 7 × 107 of particles to obtain

each result. The abscissa is the value of normalized inclination angle θ̃II = θII/π. The ordinate is

the normalized number of particles ∆N(θII)/N having the velocities w being in the range between

w1 ≤ w ≤ w2, 0 ≤ ϕII ≤ 2π, θII and θII + dθII, where w1, w2 and dθII are taken as w1 = 0.99vth and

w2 = 1.01vth (vth =
√

Tb/mb), and dθII = π/180, respectively. The theoretical value of ∆N(θII)/N

is obtained from Eq. (3.7) by(
∆N(θII)

N

)
Theo.

=

∫ w2

w1

dw

∫ 2π

0

dϕIIf(w, θII, ϕII)dθII.

Four temperature gradients ∇∥T = 0 eV/m eZ , ∇∥T = 10 eV/m eZ , ∇∥T = 20 eV/m eZ , and

∇∥T = 30 eV/m eZ have been supposed, respectively for Figs. C.1, C.2, C.3, and C.4. The remaining

parameters are the same as shown in Table 3.1. Numerically sampled distribution is shown by the bar

graph, while the theoretical value is presented by the bold dashed line. As a reference, the normal

Maxwellian distribution with ∇∥T = 0 is also shown by the thin dashed line.
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Figure C.1: Velocity distribution under ∇T = 0 eV/m eZ . (cited from Ref. [50].)
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Figure C.2: Velocity distribution under ∇T = 10 eV/m eZ . (cited from Ref. [50].)
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Figure C.3: Velocity distribution under ∇T = 20 eV/m eZ . (cited from Ref. [50].)
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Figure C.4: Velocity distribution under ∇T = 30 eV/m eZ . (cited from Ref. [50].)
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