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Chapter 1

Introduction

1.1 Overview

In this thesis, we study the non-abelian Galois action on arithmetic objects, such
as ideal class groups and Selmer groups. More precisely, we study the relation
between the non-abelian Galois module structure of arithmetic objects and the
special values of L-functions. As a result, we obtain some results on Nickel’s
conjectures, which are generalizations of Stickelberger’s classical result, and the
annihilation of Selmer groups of abelian varieties. Not many results are obtained
in the non-abelian cases; it is a very interesting problem to find phenomena which
is unique to the non-abelian case. We hope our research would in the future also
shed light to the abelian case. We start with the historical background.

In number theory, one of the most important subjects is to study the rela-
tion between analytic objects and arithmetic objects. There exists a classical and
remarkable formula concerning this subject, which is called the analytic class num-
ber formula. We see the explicit statement in §4.1. By this formula, we can see
that the special values of the Dedekind zeta functions know the orders of the ideal
class groups, the class numbers. In other words, the Dedekind zeta functions know
information on the ideal class groups as Z-modules. The Dedekind zeta function
is a generalization of the Riemann zeta function and a purely analytic object. On

the other hand, the ideal class group is defined by a purely algebraic method and



the class number tells us how far the world of the ideals is from that of the usual
numbers.

Let K/k be a finite Galois extension of number fields with Galois group G.
Then the ideal class group of K has a natural G-action. We take a finite set S
of places of k which contains all infinite places and all finite places of k£ which
ramify in K. Stickelberger [34] proved that for an absolute abelian extension
K/Q, the Stickelberger element 0k ;g s in the group ring Q[G] “annihilates” the
ideal class group of K. Since the Stickelberger elements are defined by using the
special values of Artin L-functions, Stickelberger’s theorem tells us that Artin
L-functions know information on the structures of the ideal class groups as Z[G]-
modules. The Stickelberger elements and Artin L-functions are defined in §4.3
and §4.2, respectively.

For an arbitrary abelian extension K/k, Brumer formulated the following con-

jecture, which is a generalization of Stickelberger’s theorem:

Conjecture 1.1.1 (Brumer’s conjecture). Stickelberger elements annihilates ideal

class groups.

For the precise statement of the above conjecture, see Remark 4.4.2 in §4.4. We
remark that there exists a refinement of the above conjecture, the Brumer-Stark
conjecture. We see the precise statement in Remark 4.4.6 in §4.4. There exists a
large body of evidence of Brumer’s conjecture and the Brumer-Stark conjecture.

For example,

e if K/k is a quadratic extensions, the conjectures are true for K/k by Tate
[36, §3, case(c)],

e if K/k is an extension with Galois group Z/27Z & 7 /27, the conjectures are
true for K/k by Sands [32, Theorem 2.1],

e if K/k is an extension of degree 4 which is contained in some non-abelian
extension of degree 8, the conjectures are true for K/k by Tate [36, §3,

case(e)],



e if K/k is a cyclic extension of degree 2p for some odd prime p which sat-
isfies some conditions concerning the ramifications of the primes of k, the
conjectures are true for K /k by Greither, Roblot and Tangedal [11],

e if an odd prime p is “non-exceptional” and the Iwasawa p-invariant of K
vanishes, the “p-parts” of the conjectures are true for K /k and p by Nickel
[21],

e if the set S contains all finite places of £ above an odd prime p and the
Iwasawa p-invariant of K((,) vanishes, where ¢, is a complex primitive p-th
root of unity, the “p-parts” of the conjectures are true for K/k, S and p by
Grither and Popescu [13].

Until quite recently, Brumer’s conjecture and the Brumer-Stark conjecture
were formulated only for abelian extensions. Andreas Nickel [23] recently formu-
lated nmon-abelian generalizations of these conjectures, which are the most impor-
tant objects in this thesis. The biggest difficulty of the conjectures are concerned
with the “integrality” of the Stickelberger elements. In order to get over the dif-
ficulty, we have to introduce the “denominator ideal,” which is defined in §2.2.4.

With the denominator ideal, Nickel’s generalization of Brumer’s conjecture asserts

Conjecture 1.1.2. Stickelberger elements multiplied by denominator ideals anni-

hilate ideal class groups.

We review the precise statements of his conjectures in §4.4. Nickel himself proved

the following two results in [22] and [24]:

e if p is “non-exceptional” and the Iwasawa p-invariant of K vanishes, the

p-part of Conjecture 1.1.2 is true for K /k and p,

e if the set S contains all finite places of £ above an odd prime p and the

Iwasawa p-invariant of K'((,) vanishes, the p-part of Conjecture 1.1.2 is true
for K/k and S.

The same claims are true for Nickel’s non-abelian generalization of the Brumer-

Stark conjecture. These results were proved via the non-commutative Twasawa



main conjecture, which was proved independently by Kakde [16] and Ritter and
Weiss [30] under Iwasawa’s 1 = 0 conjecture. The conjecture claims that there
exists a deep relation between the ideal class groups and the p-adic L-functions
in certain p-adic Lie extensions, which are infinite Galois extensions.

Nickel [23] also formulated the “weak versions” of his conjectures. The term
“weak” means the conjectures state a weaker integrality of the Stickelberger el-
ements. Moreover, we replace the denominator ideal by the “central condcutor,”
which is also defined in §2.2.4. We note that the central conductor is always con-
tained in the denominator ideal. With the central conductor, the weaker version

of Conjecture 1.1.2 asserts

Conjecture 1.1.3. Stickelberger elements multiplied by the central conductors

annihilate ideal class groups.

We review the precise statements of his weak conjectures in §4.4. Concerning this

conjecture, he proved the following:

e if the places of K+ above p do not split in K or K ¢ (K)*((,), the p-part
of Conjecture 1.1.3 is true for K /k and p, where superscripts ¢ and * mean

the Galois closure over Q and the maximal real subfield, respectively.

The same claim is true for the weak version of Nickel’s non-abelian generaliza-
tion of the Brumer-Stark conjecture. This result is proved via the strong Stark
conjecture.

In this thesis, we reduce Nickel’s conjectures for certain non-abelian extensions
to those for abelian extensions. We study the extensions whose Galois group is
the dihedral group of order 4p with an odd prime p, the generalized quaternion
group of 2-power order or the direct product of the alternating group on 4 letters
and a cyclic group of order 2. We prove for primes [ which do not split in certain
cyclotomic fields, “l-parts” of Conjecture 1.1.3 for the extensions. We see the
precise statement of these results in the next section. The proofs of these results are
given in §4.4.2, §4.4.3. Thanks to the reduction step, we can avoid the assumption

pw = 0, and in fact we get slightly stronger results than Nickel’s conjectures.



Moreover, we can prove the “2-parts” of the weak versions of Nickel’s conjectures,
which are excluded in known results.

The proof of the reduction step of Nickel’s conjectures is purely algebraic and
only needs the Artin formalism of Artin L-functions. We prove an abstract version
of the reduction step in chapter 3. Using the result, we study the (classical) Selmer
group of an abelian variety. As a result, we prove in §5.5.3 that a certain element
which is defined by using the special values of the Hasse-Weil L-functions annihi-
lates the Pontryagin dual of the p-primary part of the Selmer group for extensions
whose Galois groups are the dihedral group of order 4p. We remark that in order
to prove the annihilation result we assume the Birch and Swinnerton-Dyer con-
jecture, the analytic continuation of the Hasse-Weil L-functions and Conjecture
5.3.5 in §5.3.2.

1.2 Main results on Nickel’s conjectures

In this section we see the main results on Nickel’s conjectures more precisely. For
the explicit statements of Nickel’s conjectures, see §4.4.

We first recall that a finite group G is called a monomial group if each of the
irreducible characters of G is induced by a linear character of a subgroup of G.

Then our first main results are

Theorem 1.2.1. Let K/k be a finite Galois extension of number fields whose
Galois group is monomial and S a finite set of places of k which contains all

infinite places. Then if Conjecture 1.1.3 is true for the abelian subextensions of
K/k, Conjecture 1.1.3 is true for K/k and S.

Theorem 1.2.2. Let p be a prime. Then the statement of Theorem 1.2.1 holds
with “Conjecture 1.1.3” replaced by “the p-part of Conjecture 1.1.37.

In the statements of the original versions of Nickel’s conjectures, the finite set S has
to contain not only all infinite places but also all finite places which ramify in K.
Hence if we believe the weak versions of Nickel’s conjectures for abelian extensions,

we get stronger annihilation results than Nickel’s conjectures. We could get this



fact because we directly compared conjectures for non-abelian extensions with
conjectures for abelian extensions.
Although the above theorems are on Conjecture 1.1.3, in some cases Conjecture

1.1.3 is equivalent to Conjecture 1.1.2. For example,

e for a prime [ which does not divide the order of GG, the [-part of Conjecture

1.1.2 is equivalent to that of Conjecture 1.1.3,

e for a prime p, if Z,(G) = ((m,(G)) and the degrees of all the irreducible
characters of G are prime to p, the p-part of Conjecture 1.1.2 is equivalent
to that of Conjecture 1.1.3, where Z,(G) is the module generated by the

reduced norms of matrices over Z,[G] and m,(G) is a maximal Z,-order in
Q,[G] which contains Z,[G].

Remark 1.2.3. If GG is isomorphic to the dihedral group of order 4p with an odd
prime p, we see by [15, Example 6] (also see [26, Lemma 3.22]) that Z,(G) =
((m,(G)). Moreover, all the irreducible characters of the dihedral groups are 1
or 2-dimensional. Hence the p-part of Conjecture 1.1.2 is equivalent to that of

Conjecture 1.1.3 if G is isomorphic to the dihedral group of order 4p.
As an application of Theorem 1.2.2, we get the following results:

Theorem 1.2.4. Let K/k be a finite Galois extension of number fields whose
Galois group is isomorphic to the dihedral group of order 4p with an odd prime p.
We take a finite set S of places of k which contains all infinite places of k. Then

(1) for each odd prime | (I can be p) which does not split in Q((,), the l-part of
Conjecture 1.1.2 is true for K/k and S,

(2) if the prime 2 does not split in Q((,), the 2-part of Conjecture 1.1.3 is true
for K/k and S.

Theorem 1.2.5. Let K/k be a finite Galois CM-extension whose Galois group
is isomorphic to the generalized quaternion group of order 2"*? with a natural

number n and S be a finite set of places of k which contains all infinite places.
Then the 2-part of Conjecture 1.1.3 is true for K/k and S.
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Theorem 1.2.6. Let K/k be a finite Galois CM-extension whose Galois group is
isomorphic to the direct product of Z/2Z and the alternating group on 4-letters,
and S be a finite set of places of k which contains all infinite places. Then

(1) for each odd prime 1 such that 1 =2 mod 3, the l-part of Conjecture 1.1.2 is
true for K/k and S,

(2) the 2-part and the 3-part of Conjecture 1.1.3 are true for K/k and S.

Remark 1.2.7. (1) The above three theorems say that the set S does not have
to contain the places which ramify in K in contrast with Nickel’s formulation.
Hence we give stronger results than Nickel’s works in [22] and [24] in the above
special cases.

(2) Our results contain the 2-parts of conjectures which are excluded in known
results.

(3) We use only the analytic class number formula to prove the above three re-
sults in contrast with known results which were proven via the non-commutative
Iwasawa main conjecture or the strong Stark conjecture.

All the above theorems are true if we replace Conjectures 1.1.2 and 1.1.3 by
Nickel’s non-abelian generalization of the Brumer-Stark conjecture and its weak

version, respectively.

We denote by Dy, the dihedral group of order 4p with an odd prime p. Then
we know that the group ring Zs[Dy,| is a “nice Fitting order”. Using this fact, we

can improve Theorem 1.2.4. More explicitly, we get the following:

Theorem 1.2.8. Let K/k be a finite Galois CM-extension of number fields whose
Galois group is isomorphic to Dy, and S a finite set of places of k which contains

all infinite places and all finite places of k which ramify in K. Then if the prime
2 does not split in Q((,), the 2-part of Congecture 1.1.2 is true for K/k and S.



1.3 Main results concerning Selmer groups of

abelian varieties

Let K/k be a finite Galois extension of number fields with Galois group G, A an
abelian variety over k and A® the dual abelian variety of A. We set Ax := A x, K.
Then the Galois group G acts naturally on the (classical) Selmer group Sel(Ag),
which is a subgroup of H'(K, Ay,s). On the other hand, we can define the L-
function L(A, K/k, x, s) attached to A and a character x in Irr G, which is called
the x-twisted Hasse-Weil L-function (for the explicit definition, see §5.3.1). For
a finite set S of places which contains all infinite places and all finite places of k
which ramify in K, we define in §5.3.3 an element £ 4 g /x5 in the center of C[G] by
using the special values of the twisted Hasse-Weil L-functions. As an analogue of
Nickel’s conjectures, we formulate in §5.5.1 Problems 5.5.1, 5.5.2, 5.5.4 and 5.5.5
which state the element L4 gk, annihilates Sel(Ax)" = Hom(Sel(Ak),Q/Z).

Then we get the following exact analogue of Theorem 1.2.2:

Theorem 1.3.1. We take an odd prime p. Let K/k be a finite Galois CM-
extension of number fields whose Galois group G is monomial and A an abelian
variety over k. Take a finite set S of places of k which contains all infinite places
of k. We assume A(K)[p] = A'(K)[p] = 0, namely the Mordell-Weil groups A(K)
and A'(K) have no non-trivial torsion points of order p. Then if Problems in
§5.5.1 have the affirmative answers for all the abelian subextensions of K/k, the

element L 4 kx5 multiplied by the central conductor annihilates the p-primary part

of Sel(Ak)".

Remark 1.3.2. (1) If A(K) has non-trivial p-torsion points, we can prove in
§5.5.2 a similar result to the above theorem, Theorem 5.5.11 but we need an extra
“modification” of L4 x/k.s.

(2) In fact, we can prove the above theorem in a slightly general set up, that is, we
only need the fact that k is totally real. In chapter 5, we prove the above theorem

in the general set up.

For an odd prime p, we fix a Sylow p-subgroup P of G and set N := K.
For a Z,|G]-module M, we set M* := {m € M | jm = £+m}. Then as an

10



application of Theorem 1.3.1, we get the following theorem, which is an analogue
of Theorem1.2.4:

Theorem 1.3.3. Let K/k be a finite Galois CM-extension whose Galois group is
isomorphic to the dihedral group of order 4p and o € {x}. We take a finite set
of places of k which contains all infinite places of k. Let A be an abelian variety
over k such that Hypa(K/k, p) is satisfied (Hypa(K/k,p) is defined in §5.2). We
also assume that A'(N)[p] = 0, A(N)* is finite, IL,(Ay) injects into 111, (Ak)
and the Birch and Swinnerton-Dyer conjecture holds for the intermediate fields of
K/k. Then the element L4 ks multiplied by the central conductor annihilates

the p-primary part of (Sel(Ag)Y)®.

Remark 1.3.4. Burns, Macias Castillo and Wuthrich [4] proved that the p-part
of the equivariant Tamagawa number conjecture for the pair (h'(Ag)(1),Z[G])
(with some technical assumptions) implies that the element £4 x/x s annihilates
the Tate-Shafarevich group III(Ag)" if the set S contains all infinite places and
all finite places which ramify in K. This implies Problem 5.5.5 with the same
assumption as Theorem 1.3.3. In the statement of Theorem 1.3.3, the fixed set
S need not contain finite places of & which ramify in K /k and in fact L4 p/p.s is
defined with 7(Q, Indg ) rather than 7(Q, Indg ), which are defined in §5.3.2.
Therefore, this result is stronger than the result in [4] in this special set up (we

also remove the assumption that p is unramified in F/Q).

1.4 Abstract annihilation theorem

The key point of the proofs of Theorems 1.2.1, 1.2.2 and 1.3.1 is that the character
components of Ok s and L g/ g satisfy the Artin formalism. We use a purely
algebraic lemma for the proof of the above theorems. The key lemma, which is an

abstract annihilation theorem, is stated in §3.2

11



Chapter 2
Algebraic preliminaries

Throughout this section, we let 0 be a noetherian integrally closed domain with

field F' of quotients. We assume char(F") = 0.

2.1 Character theory for finite groups

Let GG be a finite group. In this section, we review the character theory for G over

C.

2.1.1 Restriction, inflation and induction of characters

For a C|G]-module V' of G with character y, we write
p:G— GL(V)
for the representation. If H is a subgroup of GG, we get a representation
pn:H— G — GL(V)

of H. We set
Res% x := Tr(py).

This character is said to be the restriction of y to H.

12



For a normal subgroup H of G and a C|G/H]-module V' with character ¢, we
write
pcu: G/H — GL(V')

for the representation. Using this representation, we can define a representation
G by

N PG/H

pem G — G/H ——= GL(V).

Then we set
Inf% ¢ = Tr(pau).

This character is said to be the inflation of ¢ to G.
For a subgroup of H and C[H]-module W with character ¢, we can define a

representation G by
p: G — GL(C[G] @cia W).

We set
Ind$, ¢ := Tr(p).

This characters is said to be the character induced by ¢. Induced characters have

the following formula:

Proposition 2.1.1. For each g in G, we have

ndf ¢(g) = Y dlrgr ).

TEG,
Tgr—teH

2.1.2 Inner product of characters

For characters x; and xs of G, we define the inner product of x; and xs by

(X1, X2)G = é ZX1<Q)X2(9_1) eR.

geG
Then we have

e for an irreducible character x, we have (x, x) = 1,

13



e for two irreducible characters x; and yo of G with y; # x2, we have

(X1, x2)=0,

e if a character )’ is of the form x' = >
X5 x) =y

velrre MyX with n, € Z, we have

Concerning this inner product, we know the following theorem by Frobenius:

Theorem 2.1.2 (Frobenius reciprocity law). Let H be a subgroup of G. We take
characters ¢ of H and x of G. Then we have

<Il’ldg ¢7 X>G = <¢7 Resg X)H

2.1.3 Ring of virtual characters

We set
R = @ Zx =A Z ayx | ay € Z}.

xe€hrG xehrG
We call the elements of Rg wirtual characters of G. We can define a ring struc-
ture of R by tensor products of characters. Thus we call Rg the ring of virtual

characters of G. For each subgroup H of G we can define the map
Ry — Rg, ©— Ind% z.

If we write Ry i for the subring of Ry generated by all linear characters of H,

we have the following fundamental and strong result:

Theorem 2.1.3 (Brauer Induction Theorem). The following map is surjective:

n G
D Ruyin 2% Re. (2.1)
H<G

Remark 2.1.4. In fact we can restrict subgroups H to “elementary subgroups”.
For details, see [8, §15B].

14



By this theorem, each of irreducible characters of GG is a Z-linear combination of
induced characters. In some cases, it happens that each of irreducible characters

is directly induced from a linear character of a subgroup of G.

Definition 2.1.5. We say G is a monomial group (or monomial) if each of irre-

ducible characters of G is induced by a linear character of a subgroup of G.
In the case where GG is monomial, we always fix the following notations:

e We write x1, X2, ..., Xrg for the irreducible characters of G,

For each i € {1, 2, ..., r¢}, we suppose that y; is induced from ¢; 1, ¢; o,

.., ¢is, of linear characters of H;,

We write ¢ ; for the character of H;/ker ¢; ; whose inflation to H; is ¢; ,

For each ¢, we fix a representative ¢; € {¢;1, di2, ..., i},

Finally, we set G := {Hy, Hs, ..., H,}.

Additionally, if K/k is a finite Galois extension of number fields whose Galois

group G is monomial, we fix the following notations:

e For each i € {1, 2, ...,rg} and j € {1, 2, ..., s}, we set k; = K
and K;; = K*'?. (since ¢;; is a linear character, K;;/k; is an abelian
extension).

e We fix a representative K; € {K; 1, K2, ..., K, } so that ¢; is a character

e Finally, we set

K:= {Kl,l/k’l, K1,2/k1, sy Kl,sl/kh
Ko /ke, Koo/ks, ..., Kog,/ko,
Kioi1/krg, Krgo/krg, -, Krc,sTG//er}- (2.2)

15



2.2  Group rings

2.2.1 Wedderburn decompositions and idempotents
In this section, we study Wedderburn decompositions and idempotents of group
rings.

For any finite group G, Irr G denotes the set of all the irreducible F-valued
characters of G. We put

ey 1= % Zx(gfl)g, pr, = %ex = Zx(gfl)g, x € Iir G.

geG geqG

Then the elements e, are orthogonal central primitive idempotents of F[G] and

pr, are associated projectors. For each x € Irr G, we fix a matrix representation
Px - G — Mx(l)(F)
Then we have the Wedderburn decomposition

F[G] = @ F[G]ex = @ Mx(l)(F>7 Zagg = (Z gpx(9))xetrc

x€lrr G XElrr G geG geG

and this implies

(FIG))= @ Fey= P F.

xelrr G

From the above isomorphisms, we have

CFEN = P Flo, (2:3)

xehr G/~

where we put F(x) := F(x(g) : ¢ € G) and the direct sum runs over all irreducible
characters modulo Gal(F/F)-action. The orthogonal idempotents of F[G] and

associated projectors are given by

ep = Z Exsy Dl 1= Z pro, X € irG/ ~,

o€Gal(F/F) o€Gal(F/F)

16



where we put x7 := o ox. We note that each element (¢, ), in the right hand side

g
>, ) e

x€lrr G/~ oceGal(F(x)/F)

of (2.3) corresponds to

in the left hand side. Let m,(G) be a maximal o-order in F[G]| which contains
0[G]. Then ((m,(G)) is the unique maximal order in F[G], and we have

(m(@) = P o (2.4)

x€lrr G/~
where 0, denote the integral closure of 0 in F'(x). From this isomorphism, we have
the following:

Lemma 2.2.1. Take an element & =3 1, q/ D peqal(r(x)/F) Yxxe i1 C(F[G]).

Then « lies in mo|[G| if and only if o, lies in o, for each x in Irr G/ ~.

In the rest of this section, we study idempotents e, of F[G]. For each 1-
dimensional character y € Irr G, we take a subgroup A of ker y which is normal

in G and let ya be the character of G/A whose inflation to G is x. Then we have
1
ey = eXAW Norma, (2.5)

where Normye,, == hekery v 1 X 1s induced by a character of a subgroup of G,

we can write down e, by the following lemma:

Lemma 2.2.2. Let G be a finite group and let H be a subgroup of G. If an

wrreducible character x of G is induced by an irreducible character of H, we have

Ex = Z Z €¢h,

¢elrr H/~y, heGal(F(¢)/F(x))
Ind p=x

where Trr H/ ~, means Irr H modulo Gal(F/F(x))-action.
Proof. Since F[G] is a left and right F[H]-algebra, F[G] decomposes into

B FiGles

¢elrr H
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and the components F[Ges are left and right F[H]-algebras. By the Frobenius
reciprocity law, we have (x, Ind$ ¢)q = (Res% x, @)y, where ( , ) is the usual
inner product of characters. This implies that the simple component F[Gle, of

F|[G)] decomposes into

(P FlGles)ex= P FlGley

¢elr H €T H, Ind$ p=x

as a left and right F[H]-algebra. This implies

€ = Z Eq)- (2.6)

¢€lrr H,
Ind$ p=x

Take a character ¢ € Irr H such that Ind% ¢ = y. Then for each g € G, we have

X@)= > o 'gr).

TEG,
T lgreH
Hence, we have Ind% ¢” = Ind$ ¢ for all ¢ € Gal(F(¢)/F(x)). Combining this
with (2.6), we have

R Y e

¢€lr H/~y, heGal(F(¢)/F(x))
Indg d=x

This completes the proof. O

2.2.2 Nice Fitting orders

In this section, following [15], we introduce the notion “nice Fitting order” for the
group ring o[G]. In [15], this notion is defined not only for group rings, however,
we do not introduce the general definition. For details, see [15, §4].

If 0 is an integrally closed complete commutative noetherian local domain, we
say o0 is a Fitting domain. For such a domain, we say o[G] is a Fitting order over

0.
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Definition 2.2.3 ([15], Definition 2). Suppose that o[G] = @F_, A;, where each
A; is either a maximal o-order or a ring of matrices over a commutative ring.

Then we say that o[G] is a nice Fitting order over o.

We assume the residue degree of o is p. Then if p does not divide the order of G,
0[G] is a maximal o-order in F/[G]. Hence, by definition, o[G] is a nice Fitting order.

The following proposition enables us to find non-maximal nice Fitting orders.

Proposition 2.2.4 ([15], Proposition 4.4). The group ring o[G] is a nice Fitting
order if and only if p does not divide the order of G'.

For example, we see that Zs[Dy,] is a (non-maximal) nice Fitting order since the

commutator subgroup of Dy, is a cyclic group of order p.

2.2.3 Reduced norms

In this section we study the reduced norm map of the group ring F[G] (for more
general theory of the reduced norm map, see [31, §9] and [8, §7D]). First we assume

F[G] is a split semisimple F-algebra, that is,

FIG = @ Mw(F).

xehr G

Note that in this case all irreducible representations are realized over F'. We fix
a natural number n and take a matrix H in M, (F[G]). For each y in Irr G, we

define the reduced characteristic polynomial fz, (X) of H as

nx(1)

Frp(X) 1= det(X - Luyqayny(y = o (H)) = Y ay:i X' € FIX].
i=1
We write

Ax,0 = (_1>nX(1) an[G],x<H)

and set

nrpey(H) = Y nrpa(H)ey € ((F[G)).

x€lhr G
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We call this element the reduce norm of H. We can regard the reduced norm as

the following composition map;

nrpic)  Ma(FIG) 22 @) Moy)(F) 255 ((F[G)).

xelrrG

In the case where G is abelian, the reduced norm map is the usual determinant

map. Hence if GG is abelian, we have

i) (Ma(0[G])) = det (M, (0[G) = o[G].

However in the case where G is non-abelian, the equality

01 () (Ma(0[G)) = ((0[G])

does not hold in general. Besides, nrpig(M,(0[G])) is not contained in ((o[G]) in

general. Then where does nrpig)(M,(0[G])) live 7 The general answer is as follows:

Proposition 2.2.5. We chose a mazimal o-order my(G) in F[G]| which contains
o[G]. Then we have

nrpie) (M (0]G])) € ((mo(G)).

Proof. Let V, be a F|G]-module with character x € Irr G. Then we can choose
a basis of V} so that p,(G) C GLyx1)(0). Then by the definition of the reduced
characteristic polynomial for x, we have nrpig) (M, (0[G])) € o,. Hence we have
by (2.4)

nrrie (M (0[G]) € €D 0y = ((mo(G)).

xelrr G

]

Next we study the case where F[G] is not a split algebra. In this case, we have

M(FIG) = D M, (Dy),

xElrr G/~

where D, is a skew filed with ((D,) = F(x). We take a splitting field £ of F[G]
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which is finite Galois over F'. Since we can regard H as an element in M, (E[G]),
for each x in Irr G, there exists the reduced characteristic polynomial fy, € E[X].
We set

nx(1)

frpg(X) = Z fhx = Z a[x]viXi € F(x)[H].
i=0

ceGal(E/F(x))

This polynomial is independent of the choice of E. We call this polynomial the
reduced characteristic polynomial of H for y € Irr G/ ~. We write

apgi = (=)™ nrp g (H)

and define the reduced norm of H as

III”F[G](H> = Z Z (HIF[G]’[X](H))Jexa S C(F[GD

x€lrr G/~ o€Gal(F(x)/F)
We can regard the reduced norm as the following composition map;

urpi) : Ma(F[G)) < M(E[G)) 225 @) M (E) =5 ((F[G)).

xelrr G

Concerning the image of M, (0[G]), the same result as Proposition 2.2.5 holds,

that is, we get the following proposition:

Proposition 2.2.6. We chose a mazimal o-order my(G) in F[G] which contains
0[G]. Then we have

(e (Ma(0[G])) C ((mo(G)).

Proof. By the same manner as the proof of Proposition 2.2.5, we see that for
each y € Irr G/ ~ the reduced characteristic polynomials of matrices in M, (0[G])

belong to o0,[X]. Hence we have

wrpig (Ma(o[G)) € @D 0y = C(my(@)):

XEIrr G/~
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We set
Z,(G) := (rpie)(H) | VH € My(0[G]), Vn € N)¢@oiap C ((mo(G)).

In the case 0 is Z (resp. Z, for some prime p), we abbreviate Z(G) (resp. Zz,(G))
by Z(G) (resp. Z,(G)). If G is an abelian group, we have

In contrast with this fact, if G is non-abelian, it is very hard to determine Z,(G).
However, in some cases we can see what Z,(G) is. If the order of |G| is invertible
in o, the group ring o[G] is a maximal order in F[G] (cf. [8, Proposition 27.1}).
Therefore we have

Zo(G) = ¢(mo[G]) = ((o[C]).
If o[G7] is a nice Fitting order, we have the following stronger result:

Proposition 2.2.7 ([15], Proposition 4.1). If 0[G] is a nice Fitting order, we have

2.2.4 Denominator ideals and central conductors

In commutative algebra, adjoint matrices are very useful tools, however, there is
no such matrices in non-commutative algebra in general (we can not even take
determinant maps). Johnston and Nickel [15] defined a non-commutative gener-
alization of adjoint matrices for finite dimensional semisimple algebras. In this
section, we first introduce the generalized adjoint matrix over F[G].

We fix a natural number n and take a matrix H in M, (F[G]). We write

H = G9)(€IrrG/~ 1 € @ Mnnx
X€lrr G/~
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For each x € Irr G/ ~, we set
nx(1)
o nx(1)+1 i—1
Hpyy = (1) Xt Z apgiffy
i=1
and define the generalized adjoint matrix H* of H by

H* = @XEIrrG/AJHF;(]-

If G is abelian, H* coincides with the usual adjoint matrix of H.

Proposition 2.2.8. For each matriz H in M, (F|G]), we have
HH*= H"H = an[G](H) . 1n><n.

Proof. 1t is enough to show H[X]H[*X] = 0 p(6),nd (H) - Lnyxn, - Since fr g (Hpy) =

0, we have

nx(1)

HyHpy = = (=)™ Y "y Hiy
=1
= (=1)™WH (—ap )

= WIFGLN -

O

If G is abelian and H belongs to M, (0[G]), we always have H* € M, (0]G]).
However, if G is not abelian, H* does not belong to M, (0[G]) in general. As well

as the reduced norm map, we get the following proposition:

Proposition 2.2.9. If H belongs to M, (0|G]), we have
H* € M, (m,[G]).

Proof. Since H belongs to M, (0[G]), we see that Hj,j belongs to M, (m,(G)ery)

and the coefficients ajyj; belong to o,. Therefore we have Hf\; € M, (mo(G)epy).
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Hence
H' = @yemenHig € P Mu(me(Gey) = Mo(mo(G)).
x€lrr G/~

O

Using the generalized adjoint matrices H*, we define the denominator ideal

Ho(G) by
Ho(G) = {z € C(o[G]) | £H* € My (0]G]), VH € M, (0]G]) and Vn € N}.

In the case where o0 is Z (resp. Z, for some prime p), we abbreviate Hz(G) (resp.
Hz,(G)) by H(G) (resp. H,(G)). By the definition of H,(G) and Proposition
2.2.8, we have

Ho(G)Lo(G) C ¢(o]G]).

The denominator ideal always has non-trivial elements, more precisely, the central
conductor §o(G) of my(G) over o[G] defined by

8o(G) == {z € ((o[G]) | 2my(G) C 0[]}

In the case where o is Z (resp. Z, for some prime p), we abbreviate §z(G) (resp.
$z,(G)) by §(G) (resp. §,(G)). By Proposition 2.2.8 we have

3o(G) C Ho(G).

By Jacobinski’s central conductor formula ([14, Theorem 3| also see [8, §27]), we
see the explicit structure of §,(G) as

Gl -
D S0 FN/F), (2.7)

XEIrr G/~ X(1>

1

3.(G)

where D7 1(F(x)/F) is the inverse different of F'(y) := F(x(g); g € G) over F' and

x runs over all irreducible characters of G' modulo Gal(F/F)-action. By contrast
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to this formula, the structure of H,(G) is not known in general. However, in some
cases we can determine the structure of H,(G). If the order of G is invertible in
o (that is, o[G] is a maximal order), we have §,(G) = ((0[G]). Hence we have
Ho(G) = §o(G). Even if the order of G is not invertible, we have the following:

Proposition 2.2.10 ([15], Remark 6.5 and Corollary 6.20). If Z,(G) = ((m,(G))

and the degrees of all the irreducible characters of G are invertible in o, we have
Ho(G) = 5o (G).

In the case Z,|G] is a nice Fitting order, we get the following stronger result:

Proposition 2.2.11 ([15], Proposition 4.1). If o[G] is a nice Fitting order, we
have H,o(G) = L,(G) = ((0[G]).

Finally, we prove the following technical lemma, which will be needed later:

Lemma 2.2.12. Let x be an irreducible character of G' which is induced by an

irreducible character of a subgroup H of G. Take an arbitrary element x in §,(G)

of the form
xr = Z T3 Pryo -

oceGal(F(x)/F)

Then we have

xr = Z Z $£ pl’¢f .

p€lrr H/~, feGal(F(¢)/F)
JoeGal(F(x)/F), Ind p=x7

In particular, x also lies in §,(H).

Proof. For each o € Gal(F(x)/F), we fix an extension ¢ to Gal(F(¢)/F'). Then
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we have

Z Z 1’52 PLys

o€lrr H/~, feGal(F(¢)/F)
JoeGal(F(x)/F), Ind ¢p=x

= Z Z Z xih Prysn

¢elrr H/~, ceGal(F(x)/F) heGal(F(¢)/F(x))
JoeGal(F(x)/F), Ind p=x°

- 2 2. > aypr

o€lrr H/~, c€Gal(F(x)/F) \h€Gal(F(¢)/F(x))
JoeGal(F(x)/F), Ind p=x°

- 2 2. >,

o€lrr H/~, c€Gal(F(x)/F) \h€Gal(F($)/F(x))
JoeGal(F(x)/F), Ind p=x°

- Z Ty Z Z PLgn

o€Gal(F(x)/F)  ¢€lrr H/~yo, \heGal(F(g)/F(x))

Qv

(o2

Ind p=x7
a
= > gl X PR
c€Gal(F(X)/F)  \ ¢€lir Hjmy, hEGal(F(9)/F(x))
Ind p=x
= Z T3 Pryo -

ceGal(F(x)/F)

The last equality follows from Lemma 2.2.2. Since , also lies in D' (F(¢)/F), =
lies in §,(H). O
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Chapter 3
Abstract annihilation theorem

In this chapter, o is a Dedekind domain with field F' of quotients.

3.1 Equivariant elements

3.1.1 Functions over virtual characters

Let G be a finite group. For a subgroup H of G and a normal subgroup N of H,

we choose a function

We set
LY .= {(H/N, L"" V26, nan-

We refer to the following hypothesis for L¢ as Art(IL¢):

(Artl) If x; and x are elements in Ry, we have
L"(x1 + x2) = L" (x1) L" (x2).

(Art2) For each normal subgroup N of H and v in Rp/y, we have

L7(Inf¢) = LN ().
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(Art3) For each subgroup J of H and ¢ in R;, we have
L*(Ind} ¢) = L7(9).
(Art4) For each o in Gal(F/F) and x inR};, we have
L7 (x7) = L" ()"

Note that the condition (Art4) implies that L¥(x) lies in F(y) for any x in R};.

Proposition 3.1.1. IfL¢ satisfies conditions (Art1) and (Art3), we have

L{idc}(l): H LE ()XW,

xelrr G

Proof. We recall that
Indgdc}l = Z x(1)x.

xehrG

Therefore, we have

L{i(ﬂc}(l) — LG(IndgdG} 1G) (by (Al‘t?)))

= L) x()x)

x€lrr G

= I 2900 (by (Art1)).

xelrr G

3.1.2 Equivariant elements

For each finite group G, we define the element LE as

L9:= )" LYX)e, € ((FIG)).

x€lrr G
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Proposition 3.1.2. If L¢() satisfies the condition (Art}), we have
L € ¢(F[G]).

Proof.

- Z( > LG(x)%fx@l)) ’

geG \xelrrG

=D DD MERLCLE - SR Y

geG \ xelrr G/~ o€Gal(Q(x)/Q)

= Z( > > LG(X)”X(é)Ux(gl)”)g (by (Artd))

9€G \x€lrr G/~ 0€Gal(Q(x)/Q)
X o
= 2. | 2o Trr (LG(X)WX(Q 1)) g-
geG \ xelrrG/~

Clearly, >~ cr )/ TrF(X)/F(LG()Z)%ﬁ)X(g*I)) lies in F. Hence L liesin F|G]. [

3.1.3 Integrality of £*

Definition 3.1.3 (Int(L%)). If the element LE has the following condition (3.1),
we say that LC satisfies Int(LY):

L% e I,(G). (3.1)

We take a maximal o-order m,(G) in F[G] which contains o[G].

Definition 3.1.4 (Int,(L%)). If the element LY has the following condition (3.2),
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we say that LY satisfies Int,,(L):
LY € ((m,(@)). (3.2)

Since Z,(G) is contained in ¢(m,(G)), Int(LY) always implies Int,,(£%). In general
it is very hard to see whether £ satisfies Int(L%) or not. However, by Lemma

2.2.1, we get the following criterion to determine whether £ lies in ((m,(G)):

Lemma 3.1.5. We assume LY satisfies the condition (Artf). Then LE lies in
C(mo(@)) if and only if LE(x) lies in o, for each x in Irr G/ ~.

Proposition 3.1.6. We assume G is a monomial group and Art(ILE) is satisfied.

Then we have

L8 = z LHilkerei(ghye, .

i=1
Moreover, if the element LHi/¥ % satisfies Int,, (L% %) for each abelian sub-

quotients H;/ ker ¢; of G, LC satisfies Int,(LY).

Proof. Since Art(LL%) is satisfied, we have

LG(Xz‘) = LG(Indfg ¢:)
= L™(¢s)
— LH/kerqS,((b/)

2

Hence we have
ra
ﬁG = ZLG()&)GM
i=1
TG .
- S,
i=1

If Int,(C"/%r%) is satisfied, we see that L7/ ?i(¢) lies in 0y = 04. Since
Art(LE) is satisfied, L%(y;) = LA/¥%(¢}) lies in F(y;). Recalling that o,, is
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integrally closed, we see that L%(y;) actually lies in o,,. By Lemma 3.1.5, we see
that £Y satisfies Int,,(L). O

3.2 Abstract annihilation theorem

Let G be a finite group and M a o[G]-module. We refer to the following conditions
as Ab(G, M):

(i) G is a monomial group,
(ii) Art(LY) is satisfied.
For each subgroup H; in G
(iii) LHi/keréii satisfies Int,, (LT kerdis)
(iv) MYer9ii is annihilated by §,(H;/ ker ¢, ;) LHi/keréii,

Theorem 3.2.1. Let G be a monomial group and M an o[G]-module which sat-
isfies Ab(G, M). Then LE satisfies Int,(LY) and Fo(G)LE annihilates M.

Remark 3.2.2. (1) In the following proof, we do not need the condition (Artl).
(2) If the module M is a p-group for some prime p, we only need the conditions
of Ab(G, m) modulo p.

Proof. The first claim follows form Proposition 3.1.6. Next we take an element
x in §,(G). Then z is of the form

r = Z Z 2y pryo, o € DTHF(x)/F).

x€lrr G/~ oc€Gal(F(x)/F)

By Lemma 2.2.12 |, we have

D, aprg = 2 >

oceGal(F(x:)/F) o€lrr Hy [~ JeGal(F(¢)/F)
JoeGal(F(xi)/F), Indf, (¢)=x7
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and there exists a subscript j € {1, 2, ..., s;} such that

Z l?g; pr¢f = Z l’{cl pr¢£j .

feGal(F(¢)/F) occGal(F(¢;,;)/F)

This element also lies in §,(H;) and its natural image

D

oe€Gal(F(¢;,5)/F)

in o[H;/ker ¢; ;| lies in F(H;/ ker ¢; ;). Also we have

S e = Y ey,

JEGal(F(¢i7j)/F) O'GGal(F(¢i7j)/F)

H;/ker ¢;_;
- Z l’g;L / P (925;{;) prqg;{j Normker bij
O'EGal(F((j)i’j)/F)

= Z a:f; Py LK bii N ormye i
o€Gal(F(1,5)/F)
Since Normyer g, ,(M) is contained in M5 by the condition (iv) of Ab(G, M),

we have

Z i,
o€Gal(F(¢;,5)/F)

Therefore, we have

Z Z xg; Prys LHM = 0.

$elr H; [~ fEGal(F(¢)/F)
Jo€Gal(F(xi)/F), Indg (¢)=x7
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Since

> > prgr £
pelr H; [~ fEGal(F(¢)/F)
JoeGal(F(xi)/F), ndf (9)=x7

— Z T, Prye L
o€Gal(F(x:)/F)
- > 2%, Pry | £ > GX;’)
oc€Gal(F(x:)/F) oceGal(F(x:)/F)
- Z x;i PIye £ Z Z Z Eph
o€Gal(F(x;)/F) oeGal(F(x;)/F) ¢€Ilrfig/~)<7 heGal(F(¢)/F(x))
nd ¢p=x
= ( Z Ty, PIyo Z Z Z L (th)%h
o€Gal(F(x:)/F) o€Gal(F (x:)/F) ¢€Ilrfig/~>a heGal(F(¢)/F(x))
nd ¢=x

_( >, oy 2 2. > L0y

o€Gal(F(xi)/F) ocGal(F(x:)/F) ¢€Ilrfif£/~><7 heGal(F(¢)/F(x))
nd ¢=x

o€Gal(F(xi)/F) o€Gal(F(xi)/F) ¢€lr H/~y, heGal(F(¢)/F(x))
Ind p=x

) ( >, T > DS 2. e

= Z T3, Prye Z LG(X")eXo>

o€Gal(F(xi)/F) o€Gal(F(xi)/F)

= Z x;l Pryo c¢ ( Z exo>

o€Gal(F (x:)/F) o€Gal(F(x:)/F)

= Z x;i PTye L:G’
o€Gal(F(x:)/F)

we have

( Z 3, prxg)EGM =0.

o€Gal(F(xi)/F)
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Thus we get

Z Z T3 Prye LM = 2L°M = 0.

x€lrr G/~ oceGal(F(x)/F)

This completes the proof.
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Chapter 4

Ideal class groups

4.1 The analytic class number formula

Let K be a number field. In this section we review the analytic class number
formula of the Dedekind zeta function (x(s) of K. We first fix the following

notations:
0K the ring of integers of K

0% the group of units in ox

CIl(K) the ideal class group of K

hx the class number of K i.e. hx = |Cl(K)|
d the discriminant of K

Reg;  the regulator of K

u(K)  the group of the roots of unity in K

WK the number of the roots of unity in K

The the following is the analytic class number formula:
Theorem 4.1.1.

lim(s — 1)(x(s) = (2)"(2m)2hk Regy
s—1 Wi |dK|

Y

where r1 and 2ry are the numbers of real embeddings K — R and complex embed-

dings K — C, respectively.
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We set

1 TS\ ritr2 TS\ 2
= S732 y — i s r1+2r2
A(s) = |dk]| (cos 5 ) (sm 5 ) (2(2m)°T'(s)) ,

where I'(s) is the gamma function. Then we get the following:

Theorem 4.1.2 (The functional equation of (x(s)).

Cr(1—s)=A(s)Ck(s).

Combining this functional equation with the analytic class number formula,

we get the following corollary:

Corollary 4.1.3. The leading term of the Taylor expansion of (x(s) at s =0 is

hi R
CK(S) — _k—%(371+r271 + .
WK

4.2 Artin L-functions

Let K/k be a finite Galois extension of number fields with Galois group G. For
each finite place p of k, we fix a finite place P of K above p. We write Gy (resp.
Iy) for the decomposition subgroup (resp. inertia subgroup) of G at B. Finally,
we fix a lift Frobg of the Frobenius automorphism of Gy /Iy.

For each finite place p of k£ and character y, we define the local Artin L-function
at p attached to K /k and y as

LP(K/k, X, S) = det(l — FrObm Np—S|VXIq3)

Take a finite set .S of places of k. Using local L-functions, we define the S-truncated
global Artin L-function attached to K/k and x as

LS(K/k7X7S) = H Lp(K//{},X,S).
PGSf\S

This infinite product converges absolutely for all complex numbers s with real part
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R(s) > 1. Moreover, it has an analytic continuation to a meromorphic function
on the complex plane C. For each finite set T of places of k such that SNT = (),
we set

0r(K/k, X, s) = [ [ det(1 — Frob, " Np'~*[V;[®)

peT

and define the T-modified S-truncated Artin L-function LL(K/k,y,s) attached
to K/k and x as

Lg(K/k7X7S> = 5T(K/kv>v(75>LS(K/k>X’S)‘

This modified L-function has the following properties:

Proposition 4.2.1 (Artin formalism).

(1) LE(K/IC’ 1G’ S) = HpeT(l - Npl_s)ck,s(s)f

(ii) If x1 and xo are characters of G, we have

L,ZS—’(K/kv X1 + X2 S) - LE(K/k%le S)LE(K/]{;7X27 8)7

(iii) If F' is an intermediate field of K/k such that F/k is Galois and v is a
character of Gal(F/k), we have

Lg(K/k7 Infgal(F/k) w? S) = Lg(F/k7 1/)7 8)7

(iv) If F is an intermediate field of K/k and ¢ is a character of Gal(K/F), we

have
LE(K/]C> Indgaul(K/F) ¢7 8) = Lg;(K/Fv ¢a S)-

Next we study the value of LL(K/k, x,s) at s =0 for x in R,. First we easily
see that
or(K/k,x?,0) = o7(K/k, x,0)?, Vo € Aut(C).

If we write rg(x) for the vanishing order of Lg(K/k, x,s) at s = 0, we have by
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[35, p24, Proposition 3.4]

rs(x) = Z dim VXGW’ — dim VXG (4.1)
pesS

for each non-trivial character in R. This implies that if Lg(K/k,x,0) vanishes,

Ls(K/k,x°,0) also vanishes for all o. Therefore, we have
Ls(K/k,x°,0) = Ls(K/k,x,0)?, Yo € Aut(C).
If Ls(K/k,x,0) does not vanish, we have
Ls(K/k,x?,0) = Ls(K/k, x,0)?, Yo € Aut(C)

by Stark’s conjecture, which was proved by Siegel [33] if G is abelian with rg(x) =
0, and the general result is given by Brauer induction [35, p70, Theorem 1.2]. Thus

we have

LE(K/k,x%,0) = LL(K/k, x,0)7, Yo € Aut(C).
This implies that LL(K/k,x?,0) lies in Q(x) and
L§(K/k,x7,0) = L§(K/k, x,0)7, Vo € Gal(Q(x)/Q). (4.2)
For a Galois subextension K'/k’ of K/k and a character ' of Gal(K'/E'), we set
LOMEIN(E) 1= L (KK, €,0)

and
LG = {LGaI(K///c/)7 Gal(K//k/))}K//k/_

By Proposition 4.2.1 and the equation (4.2), we have the following:

Proposition 4.2.2. For each finite Galois extension K/k of number fields with
Galois group G, Art(LLY) is satisfied.

Next we study the vanishing of Artin L-functions. By the formula (4.1), we
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see that if k is not totally real or K is not totally imaginary, we always have
Ls (K/k,x,0) = 0 for all x in Irr G. Therefore, the only nontrivial case is the
case that K/k is a CM-extension, which means that k is a totally real field, K
is a CM-field and the complex conjugation induces a unique automorphism j
belonging to the center of G. For a CM-extension, we can split the irreducible
characters into odd and even characters. For each x € Irr G, we call x is odd
(resp. even) if x(7) = —x(1) (resp. x(j) = x(1)). Hence in the case where K/k is

a CM-extension the formula (4.1) implies that

Ls.(K/k,x,0) =0 if x is even and y # 1,
Ls (K/k,x,0) # 0 if x is odd.

Since Lg.(K/k,1,s) = (i(s), we see in the case where K/k is a CM-extension
that
Ls (K/k,1,0) # 0 if and only if £k = Q.

We set
hy = hi/hg+.

We conclude this section with the following lemma:

Lemma 4.2.3. Let K/k be a finite Galois CM-extension of number fields with
Galois group G. Then we have

hg =2""Qux [[ L(E/k x. o)W,

x€lrr G,
X s odd

where we set Q = [0% : W(K)o%,] and r = [K : Q] — 1.
Remark 4.2.4. The unit index Q is equal to 1 or 2.

Proof. By Propositions 3.1.1 and 4.2.2, we have

CK(S) = H L(K/K+v¢>5)

Yelrr Gal(K/K)
= CK+(5) ’ L(K/K+77~/)078)7
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where 1) is the non-trivial irreducible character of Gal(K /K ™). Since the vanish-

ing orders of (x(s) and (x(K ™) are the same, we have

lim Ck(s) _ hi/hi+ Regy [ Regy+

s—0 CKJr(S) wK/wK+

2RegK/RegK+
WK

h.
By [37, Proposition 4.16], we have

Regy 1

r

Reg+ Q

Therefore, we have
o Cr(s) 2
1 = hr.
D0 Cre(s) QK

Now we only have to prove

L(K/K+7¢0,3> = | | L(K/k7X73>X(1)'
xelr G,
X is odd

This equality follows form the fact that we have

Indgal(K/K+) Yo = Z x(1)x

x€hlr G,
x is odd

and Proposition 4.2.1. O

4.3 Stickelberger elements

Let K/k be a finite Galois extension of number fields with Galois group G. In this

section we define the Stickelberger element and study its integrality.
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4.3.1 Stickelberger elements

We take a finite set S of places of k£ which contains all infinite places. For each
finite set T of places of k such that SNT = (), we define the (S,T)-modified

Stickelberger element 6, ¢ as

O s = Z Ls(K/k,X,0)e, € C[G].

x€lrr G

This element is characterized by the formula

X(e?(/k,bJ :X(l)éT(K/kvXvO)LS(K/kvao) (43)

When S = Syqm U Ss and T' = 0, we put Og . := H;Q/k s- Moreover, in the case k
= Q we will always omit the trivial character component of 67 Ik,S-

By Proposition 3.1.2 and 4.2.2, we have the following proposition:

Proposition 4.3.1. GIT(/,@S belongs to ((Q[G]).

4.3.2 Integrality of Stickelberger elements

Let S and T be finite sets of places of k. We let Eg(K') denote the group of S(K)-
units of K and set E§(K) := {z € Es(K) |z =1 mod [[ycp, P} We refer to
the following hypothesis as Hyp(S,T):

e S contains Sygm U Seo,
e SNT =10,
e FL(K) is torsion free.

Theorem 4.3.2 (Deligne and Ribet [9], Barsky [1], Cassou-Nogues [7]). We as-
sume K/k is an abelian extension. If finite sets S and T satisfy Hyp(S,T), we

have
O .5 € ZIG.
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Remark 4.3.3. By [23, Lemma 2.2|, we have

Anngiey(u(K)) =zicy (JJ(1 — Froby' Np) | Hyp(S,T) is satisfied. ), (4.4)
peT

where G is not necessarily abelian. Hence the above claim of Theorem 4.3.2 is

equivalent to the claim that we have
Anngq(u(K))0k ks C Z|G]

if K/k is abelian extension.

Now we introduce a conjecture by Nickel concerning the integrality of Stickelberger

elements.

Conjecture 4.3.4 (Integrality of Stickelberger elements). If finite sets S and T
satisfy Hyp(S,T'), we have
Ok i.s € Z(G).

Remark 4.3.5. If G is abelian, Z(G) coincides with Z[G]. Therefore, we can

regard the above conjecture as a generalization of Theorem 4.3.2.

We choose a maximal Z-order m(G) in Q[G] which contains Z[G]. He also

conjectured the following weak version of the above conjecture:

Conjecture 4.3.6 (Weak integrality of Stickelberger elements). If finite sets S
and T satisfy Hyp(S,T), we have

Qi/k,s € ((m(G)).

In the case where GG is monomial, we define abelian subextensions as follows:

For each i € {1, 2, ...,rg} and j € {1, 2, ..., s;}, we set k; = K and
K;; = K*T%. noting that K;;/k; is an abelian extension since ¢;; is a linear
character. We fix a representative K; € {K;1, K2, ..., K;,} so that ¢; is a
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character of Gal(K;/k;). Finally, we set

{Kl,l/kly Kl,?/kly ceey Kl,sl/klv
KQ,I/k27 K2,2/k2; ey K2752/k:27
Kigifkras Kegalkrgs oy Kigs,o/Fra} (4.5)

By Proposition 3.1.6, 4.2.2 and Theorem 4.3.2, we get the following:

Theorem 4.3.7. Let S be a finite set of places of k which contains all infinite

places. If G is a monomial group, we have

K/kS = Z¢ K/k S, )exi-
Moreover, if Hyp(S U Syam,T') is satisfied, we have

9?(/1@5 € ((m(G)).

Remark 4.3.8. The above theorem says that the finite set S need not contain
Sram to lie in ((m(G)) if G is a monomial group. Nickel [25] showed a stronger
result for K/k whose Galois group is monomial but requires the condition S to

contain Syqn,.

4.4 Nickel’s conjectures for non-abelian exten-

sions

In this section we review the formulations of the non-abelian Brumer and Brumer-
Stark conjectures by Andreas Nickel, for the details see [23].

First we introduce the non-abelian generalization of Brumer’s conjecture by
Nickel:
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Conjecture 4.4.1 (B(K/k,S)). Let S be a finite set of places of k which contains
all infinite places and all finite places which ramify in K. Then

o Ashs C Z(G),
o For any v € H(G), vAs0s C Anngg (CIU(K)).

Remark 4.4.2. We assume G is abelian. Then we have Z(Z|G]) = H(Z|G]) =
Z|G] and can take # = 1. Moreover we have g = Anngjg(p(K)). Hence the

above claim is equivalent to

Annge(u(K))0k/k,s C Annge(ClHK)).

This is the exact claim of Brumer’s conjecture. Therefore we can regard Conjec-

ture4.4.1 as an generalization of Brumer’s conjecture.

We take a maximal Z-order m(G) in Q[G] which contains Z[G]. In [23], the

author also formulated the following weak version of Conjecture 4.4.1:

Conjecture 4.4.3 (B, (K/k,S)). Let S be a finite set of places of k which con-
tains Syem U Ss. Then

° ng@s C C(m(G)),
o For any x € §(G), 2As0s C Anngq(CIU(K)).

Remark 4.4.4. Even if G is a nontrivial abelian group, we always have m(G) 2
Z[G]. Moreover, §(G) does not contain the element 1. Hence we can not recover
the usual Brumer’s conjecture from the conjecture 4.4.3 even in the case where GG
is abelian. Roughly speaking, Conjecture 4.4.3 says |G|0}; /1,5 annihilates CI(K)

if G is abelian.

Replacing Z, Q and CIl(K) with Z,, Q, and CIl(K) ® Z, respectively, we
can decompose B(S, K/k) (resp. B, (S, K/k)) into local conjectures B(S, K/k,p)
(resp. By (S, K/k,p)).
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We call @ € K* an anti-unit if o' = 1 and set wx = nr(|u(K)|). We remark
that wy is no longer a rational integer but an element in ((m(G)) of the form
> el |u(K)XWe,. We define

So = {p | p is a prime of k£ and p divides N ra},

where Ng/y, is the usual norm of K over k. Then Nickel’s non-abelian generaliza-

tion of Brumer-Stark conjecture is as follows:

Conjecture 4.4.5 (BS(K/k,S)). Let S be a finite set of places which contains
Sram U Ss. Then

° CUKGK/]%S - I(G),

e For any fractional ideal A of K and for each x € H(G), there exists an

anti-unit o = (A, S, z) such that A*KIx/ks = (a).

Moreover, for any finite set T of places of k which satisfies Hyp(SU S, T), there
exists ap € EL (K) such that

QT = QK (4.6)
for each z € H(G).

Remark 4.4.6. We assume G is abelian. Then we can take x = z = 1. Moreover,

by [35, Proposition 1.2], the above statement is equivalent to the assertion that
AvKx/ks — (o) and K (a'/“%)/k is an abelian extension.

This is the exact claim of the Brumer-Stark conjecture. Hence we can regard

Conjecture 4.4.5 as a non-abelian generalization of the Brumer-Stark conjecture.

As well as the non-abelian Brumer conjecture, there exits the following weak

version of Conjecture 4.4.5.

Conjecture 4.4.7 (BS,(K/k,S)). Let S be a finite set of places which contains
Sram U Seo. Then
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o wrlgrs € ((M(G)),

e For any fractional ideal A of K and for each x € F(G), there exists an

anti-unit o = (A, S, z) such that A*Kx/ks = ().

Moreover, for any finite set T of places of k which satisfies Hyp(SU S,,T), there
exists ap € E§ (K) such that

QT = ar’® (4.7)
for each z € F(G).

Remark 4.4.8. For the same reason as Remark 4.4.4, we can not recover the
usual Brumer-Stark conjecture from the Conjecture 4.4.7 in the case where G is

abelian.

Let m,(G) be a maximal Z,-order in Q,[G] which contains Z,[G]. Replacing
m(G) and 2 with m,(G) and 2 whose class in CI(K) is of p-power order re-
spectively and in the equation (4.6), (4.7) replacing wx with wg, = nr(jux ®
Zypl|), we can decompose BS(S, K/k) (resp. BS,(S, K/k)) into local conjectures
BS(S,K/k,p) (resp. BS,(S, K/k,p)).

For an intermediate field L of K/k and a set T of places of k, we write CI(L)*
for the ray class group of L to the ray [ [y o, Bz and set CU(L)}* := Cl(L)"* RZ,.
Then we can interpret Conjecture 4.4.5 as the annihilation of ray class groups as

follows:

Proposition 4.4.9 (]28] Proposition 4.2 and [23] Proposition 3.8). Let S be a
finite set of places of k which contains So and Syem. We assume Qﬁ/hs be-
longs to Z,(G) for each finite set T of places which satisfies Hyp(S,T). Then
BS(K/k,S,p) is true if and only if for each finite set T' of places of k such that
Hyp(S,T) is satisfied, we have HP(G)G}';/,C,S C Anng, ¢ (CU(K)]).

Remark 4.4.10. The following proof of the sufficiency is essentially the same as
the proof of [23, Lemma 2.9].

Proof. Concerning the necessity, the same proof as [23, Proposition 3.8] works.

Hence we only prove the sufficiency. We take a finite set T" of places of k such that
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Hyp(S,T) is satisfied. Let 2 be a fractional ideal of K coprime to the primes in
Ty whose class in C1(K)x has p-power order. Then for each z € H,(G), we have

AT /ks = (@) (4.8)

for some anti-unit @ € K*. Since 2 is coprime to the primes in Tk, we see that

Hyp(SUS,,T) is satisfied. Hence there exists an element ay € EE (K) such that

QT = QK (4.9)

for any z in H,(G). Since nr(|u(K)|™") belongs to ((Q[G]), there exists a nat-
ural number N such that N nr(|u(K)|™!) € ((Z][G]). Then N nr(|u(K)|7')ér €
¢(m,(@)). Since |G| is an element in §,(G) C H,(G), by (4.8) and (4.9) we have

(Q[wwK9K/k,s)|G\N or(|p(K)|~Hér Q[MIT(/JC,S‘GW
a)|G|Nllr(|M(K)|71)5T
Q\GlfsT)Nﬂr(lu(K)l*l)

Qp
GIINT

(
(
( \GIWK)Nnr(Iu(K)I’l)
(

OéT)

Since we assume 67, Ikys € Z,(G) and the group of fractional ideals has no torsion,

the above equation implies

leaf(/k,s = (OCT).
This completes the proof. [

In the abelian case, the Brumer-Stark conjecture implies Brumer’s conjecture,

and the same claim holds in the non-abelian case as follows:
Lemma 4.4.11 ([23], Lemma 2.9).
e BS(K/k,S) (resp. BS(K/k,S,p)) implies B(K/k,S) (resp. B(K/k,S,p)),

e BS,(K/k,S)(resp. BS,,(K/k,S,p)) implies B,(K/k,S,) (resp. B,(K/k,S,p)).
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For the local conjectures, we can state the relation between usual conjectures

and weaker conjectures as follows:

Lemma 4.4.12. If Z,(G) = ((m,(G)) and the degrees of all the irreducible char-

acters of G are prime to p,
e B(K/k,S,p) holds if and only if B,,(K/k,S,p) holds,
e BS(K/k,S,p) holds if and only if BS,(K/k,S,p) holds.

Proof. 1f p does not divide the order of G (in this case, the degrees of irreducible
characters are automatically prime to p, since they have to divide the order of
G), by [23, Lemma 2.5 and Lemma 2.8], the equivalences hold. If p divides the
order of G, by Proposition 2.2.10, we have H,(G) = §,(G), and hence we get the

equivalences. ]

Let D, denote the dihedral group of order n for any even natural number

n > 0. Then as an application of Lemma 4.4.12, we get the following:

Lemma 4.4.13. Let K/k be a finite Galois extension whose Galois group is iso-

morphic to Dy, for an odd prime p. Then we have for any odd prime |
e B(K/k,S,1) holds if and only if B,(K/k,S,l) holds,
e BS(K/k,S,l) holds if and only if BS,(K/k,S,1) holds.

Proof. 1t is enough to treat the case [ = p. First we recall that Dy, is isomorphic
to Z/27 x Ds,. We set G = Z /27 x D, and j denotes the generator of Z/27Z.
Since we have

I+j5, 1+ 1—y 1—7

nrg, ¢ 5 )= 5 and nr@p[G]( 5 )= 5

we also have ‘
1+

1—J

5
By [15, Example 6.22], Z(Dy,) = ((Ap, ), where Aj,, ~is a maximal Z,-order
in Qp[Ds,] which contains Z,[Ds,]. We set A’ := A’D%% @ A’szl;j, which is a

I(ZP[G]) = Ip<D2p) @Ip<D2p) (4'10)

2
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maximal Zy-order in Q,[G] which contains Z,|G]. Then we have

1+ 1—3
L(G) = ((Ap,, )52 © (M, )52 = ().
By Lemma 4.4.12, this completes the proof. [

4.4.1 Monomial CM-extensions

In this section, we prove the following theorem:

Theorem 4.4.14. Let K/k be a finite Galois CM-extension whose Galois group
1s monomial. We take a finite set S of places of k which contains Sy. Then if
By (K ki, Sk,) is true for all K; ;/k; in K, B, (K/k,S) is true.

Remark 4.4.15. In the above statement the set S does not have to contain S,4,,.
Therefore, if we believe (the weak) Brumer’s conjecture for abelian extensions, we

get a stronger annihilation result than Nickel’s conjecture.

Proof. We take another finite set T' of places which satisfies Hyp(S U Syam,T).

Then we have to show the following two things:
° 9%,{75 lies in ((m(Q)),
e for all z in F(G), we have x@qu’s -Cl(K)=0.

The first claim is true by Theorem 4.3.7. To show the second claim, we only have
to show that the pair (LY, Cl(K)) satisfies Ab(L¢, CI(K)) by Theorem 3.2.1. The
condition (i) of Ab(LY, C1(K)) is obviously satisfied. The condition (ii) is followed
by Proposition 4.2.2. The condition (iii) is followed by the fact that the extensions
K, ;/k; are abelian extensions. The condition (iv) is followed by our assumption
that B, (K ;/ki, Sk,) is true for all K, ;/k; in K. O

4.4.2 Extensions with group Dy,

In this section we study Nickel’s conjectures for extensions with group Dy,. First
we review the character theory of Dy,. After that we prove the main theorem of

this section.
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Character theory of Dy,

In this section, we review the character theory of Dy,. As is well known, all
the irreducible characters of Dy, are four 1-dimensional characters and p — 1 2-
dimensional characters. The group Dy, is the direct product of Z/2Z and Day,.

2=1, tort =071,

Hence if we use the presentation Dy, = (0, 7 | o? = 7
the commutator subgroup of Dy, is (o) and we have Dy,/(0) = Z /27 & Z]27.
Moreover, the 1-dimensional characters are determined by the following table,

where j is the generator of Z/27Z:

Table 4.1: 1-dimensional characters of Dy,

ol T ¥
xoll 1] 1 1
xi||1] 1 |-1
xe || 1| —-1]1
xs||1]|—-1]-1

Since the center of Dy, is {1, j}, the element j corresponds to the unique complex
conjugation in the case where Dy, is the Galois group of some CM-extension
of number fields. Hence we see that the only 1-dimensional odd (resp. even)
characters are y; and x3 (resp. xo and xo). For i = 1, 3, we write x% for
the character of Gal(K®/k) whose inflation to G is y;. All the 2-dimensional odd
characters are induced by the faithful odd characters of (jo). For m € (Z/pZ)*, let
¢™ be the character of (jo) which sends o and j to (J* and —1, respectively. We set
X2m+3 = Indgfj’) ¢™ (we use this numbering so that odd subscripts correspond to
odd characters). Using the Frobenius reciprocity law and the fact that yo,.3(1) =

2 and Yams3(j) = —2, we see that Res_ xomis = ¢™ + ¢~ and Ind,% ¢™ =

Indgfff> ¢~ ". Therefore, the number of 2-dimensional odd characters is (p—1)/2. All
the even characters are induced by the characters ¢*™ form =1, 2, ..., p— 1.

Dyp
(o)
that Res| " Xamiz = 6*" + ¢~ 2" and Ind% ¢*" = Ind|% ¢~2". Finally we set

(o)
k‘¢ = K<jg>.

We set Yomso = Ind, % ¢*™. Then by the same way as odd characters we see
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Main Theorem

In this section we prove the following theorem:

Theorem 4.4.16 ([26], Theorem 5.1). Let K/k be a finite Galois extension of
number fields whose Galois group is isomorphic to Dy,. We take a finite set S of

places of k which contains S. Then

(1) for each odd primel (I can be p) which does not split in Q((,), the non-abelian

Brumer and Brumer-Stark conjectures are true for K/k and S,

(2) if the prime 2 does not split in Q((,), the weak non-abelian Brumer and

Brumer-Stark conjectures are true for K/k and S.

Remark 4.4.17. If S contains all finite places of k which ramify in K, we know
the following:

(1) In the case of k = Q, the above results except the 2-part is contained in Nickel’s
work [22], [24] if we assume p = 0; (2) If no prime above p splits in K /K whenever
K% C (K)*"(¢,), the above result holds for odd p by [25, Corollary 4.2].

The observation we made in the previous subsection tells us that we have only
to verify the weak Brumer-Stark conjecture for two relative quadratic extensions
K3/k, K4/k and the cyclic extension K /ks. By [36, §3, case(c)], the Brumer-Stark
conjecture is true for any relative quadratic extensions and hence true for K3/k,
K4/k. In order to complete the proof of Theorem 4.4.16, we have to verify the
[-part of the weak Brumer-Stark conjecture for K /ks for each prime [ which does
not split in Q(¢,). Since K/k; is a cyclic extension of degree 2p, it is enough to

show the following:

Proposition 4.4.18. Let | be a prime which does not split in Q((,). Let K/F
be any cyclic CM-extension of number fields of degree 2p. Then the l-part of the

weak Brumer-Stark conjecture for K/F is true.

Remark 4.4.19. The method of the proof of this proposition is essentially the
same as that of [11, Proposition 2.2 and Proposition 2.1] but we do not need the
classifications in loc. cit because we only need a weaker annihilation results than

the full Brumer-Stark conjecture.
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Proof of Proposition 4.4.18. By abuse of notation, we also denote by ¢ and
j elements of Gal(K/F) whose orders are p and 2, respectively. For a prime [
which does not split in Q((,), we take an element x € §(Gal(K/F)) of the form

e = Y Y o 5 e DQA/Q)

¢€lrr G/~ geGal(Q(¢)/Q)
¢ is odd

= TyPpry+ > > iy,

pelr G/~ 9€Gal(Q(¢)/Q)
¢ is odd and ¢(o) # 1

where 1 is the character of Gal(K/F') such that ¢(j) = —1 and ¢(0) = 1 and zy,
belongs to Z. We set

Ty = Z Z xi DT -

pelrr G/~ g€Gal(Qi(¢)/Qi)
¢ is odd and ¢(o) # 1

We take a finite set S of places of £ which contains S,,,, US,, and a fractional ideal
2 of K whose class in CI(K) has [-th power order. We set wg,; = |u(K) ® Z.

With these notations, we prove the following two claims:

Claim 4.4.20. There exists anti-unit oy such that
Q7w Pry wxfi/ns = (ay) and K(a}/wK’l)/F is abelian.
Claim 4.4.21. There exists anti-unit ay such that
Wl Pr ks = (ap) and K (g ")/ F is abelian.
If we assume the above two claims, we have
A7rIx/k = (ay0n) and K ((agag)/“51)/F is abelian.

Hence in order to prove Proposition 4.4.18, it is enough to prove the above two

claims. We first prove Claim 4.4.20.
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Proof of Claim 4.4.20. We set H := (o) and E := K. Then E/F is a
quadratic extension. We denote by ¢’ the nontrivial character of Gal(£/F'). Then

we have

Loy prw WKHK/I@,S = Ty prw wKLs(K/F, w, 0) prw
= zywiLs(E/F,4',0)pry Norm,

= wywrlp/psNormy.

By [36, §3, case(c)], the Brumer-Stark conjecture is true for any relative quadratic

extensions. Hence there exists an anti-unit o/f € E* such that
Norm gy (2)*=%/ks = (/) and E(aV/“E1)/F is abelian, (4.11)

where wg; = |W(E) & Z;|. We set

WK1
L /:BwTEZ
a1 = [

Then a4 is an anti-unit in K* and we have by (4.11)

QLw Pry wkOr ks — mmwwKé’E/FysNormw) _ (al)-

Moreover, we have
K(O&/UJK,l) _ K(Oé/xwl/wE’l).

Since x,, € Z, we can conclude by (4.11) that
K(ai/wK’l)/F is abelian.

]

Proof of Claim 4.4.21. (i) First, we suppose | = 2. In this case, by [11, The-
orem 3.2], Proposition 4.4.18 holds for p = 3 and exactly the same proof works
for any odd prime p if 2 does not split in Q(¢,) . Hence Proposition 4.4.18 holds

in this case.
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(ii) In what follows we assume [ is odd. Let ¢ be the irreducible character of
Gal(K/F) which sends ¢ and j to 1 and —1, respectively. Then this character
is the inflation of the nontrivial character 1’ of Gal(E/F), where E = K and
H = (o). We put
A = 1%‘j((Jl(I()(@Zl),
1

Ag = %(CZ(E) R Z).

Then by Lemma 4.2.3, we get

4kl = w0, 1/) [ 10.6% K/F)
= wrL(0,9', E/F)Ng,)/0(L(0, ¢, K/F)), (4.12)
Al = wriL(0,/, B/F), (4.13)

where the equalities are considered as equalities of the [-part and ¢. If [ # p,
|Ap|=|AL] since Ag is canonically isomorphic to A% If [ = p, by [11, Lemma 2.5]

(also see the errata [12]), we know that

|A | > - |AE| if ¢, € K and wgp/we,p, = 1,

|AH] > |Ag|  otherwise.

Since w45 AL = 0, there is a natural surjection Ag /Al — x4 Ax. Hence we have

214 Ak |

VAN

|Ak|/| A%
p |AK|/|AE|
pﬁgﬂ@@mﬁ(Q¢JWFD, (4.14)

IN
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where we set

t:]_ lflzl)7 ngKaHd WKVP/WE@::L

t=20 otherwise.

Since the minus part of @Q;[G] is isomorphic to @Q;[H] by sending j to —1, in what
follows, we identify the minus part of Q;[G] with Q;[H] just like [11, §2] (for
example 0k, p will be regarded as an element of Q;[H] not of Q;[G]).

Case L. [ # p.

In this case, we have ¢t = 0 and the equality holds in (4.14). Moreover, we have
wr,/wg,; = 1 and hence the elements L(0, ¢™, K/F) are contained in Z;[(,]. Since

[ # p, we get an isomorphism

mH = @ )]

nelrr H/~

where 7 runs over all the irreducible characters of H modulo Gal(Q;(¢,)/Qy)-

action. Hence we have

p—1
Ag/AR = (D epm)Ac = P Ziln) @z Ax.
m=1 ne€lrr H\{1}/~

By assumption that I does not split in Q((,), we actually have

Ag /AR 2 Zi[n) @z1m) Ak (4.15)
By (4.14), we have
o Ax| < Ak /AR = |Z[n] ®zpm Ax| = [Z1[G] : (L(0, ¢, K/ F))]
= [ZilG) = (Bxesp)), (4.16)

where @K/p is the image of O/ under the surjection Z;[H| — 7Z[(,]. Since we
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have
(1+O+O’2+"'O'p_l)$[¢] =0,

we can regard x(yAx as a Z;[(,-module through the natural surjection Z;[H] —

Zaln) = Zy[¢p]. Moreover, since x4 Ak is a torsion module, there exist natural
numbers ny, na, ..., ng such that
k
Ak = @ TG/ )"
i=1

Combining the above isomorphism with (4.16), we have

|21 Axc| = | @ ZalGp)/ ()™ < |Za[Go) /Oy

This inequality implies that 0/ annihilates z(g Ax. Therefore, for any fractional
ideal 2 of K whose class in CI(L) is of I-power order, A%w*x%x/r = (q¥K) for
some a € K* and clearly K ((a*x)Y“xt)/F is abelian. This completes the proof

of Proposition 4.4.18 in this case.

CaseIl. I =p and ¢, & K.
In this case, we have ¢t = 0. Hence by (4.14), we have

g1 Ar | < [Zp[Gp] - @K/F)] (4.17)

Since x4 Ag is a torsion module, there exists ni, na, ..., n, € N such that

T Ag = @ZPKP]/(l — )"
i=1

Combining this with (4.17), we have

|20 Ax| = I@Zp[ép]/(l — )" < 1Zy[G)/ Byr)l.
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This implies 0/ annihilates (4 Ax. By the same argument as the final part of

Case II, we obtain the conclusion in this case.
Case III. [ = p and ¢, € K.
If wip/we, =1, we have t = 1. Hence by (4.14),

WK p
WE

|z Ax| < p—"No,)e(L(0, ¢, K/F))
7p

= [Z[G) : (G = 1)(Ox/r))-

If wi p/wep # 1, we have t = 0. We also see that wg, = p°, wg, = p°~ " for some

e € N. Hence we have

(,UK,
[z Ar| < o N, /o(L(0, ¢, K/F))
P

= (Z,[G]: (& — 1)(Oxyr))-

In both cases we see that (o — 1)z(40k/r annihilates Ag. Hence for any fractional
ideal 2 of K whose class in CI(K) is of p-power order, there exists some € K

such that
Qerp(o—1)0k rrs) — (ﬁ)

In the last paragraph of [11, Proposition 2.2], the authors show that if
( ?;3 07)0kr = 0, there exists o € Z,[H] such that

POx/r = (0 — D)ayblk p,

where v = oP7! + go? 2 + --- + ¢?"! and ¢ is the minimal positive integer
which represents the action of ¢ on the p°th-power root of unity in K. Since

(Z?;é o7 )xy 0k r = 0, replacing Ok /p by 250k /r, we get

Pl r = (0 — 1)aywglk r
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for some o € Z,[H]|. This implies
AP O/ rTiel = (57,

To conclude the proof of Case IV, we use the following proposition:

Proposition 4.4.22 (Proposition 1.2, [35]). Let L/k be an arbitrary abelian ex-
tension of number fields with Galois group G, {o;}icr be a system of generators of
G, ¢ be a primitive wrth - root of unity. We suppose o; acts on ¢ as (7 = (™. We
take an element p € F. Then for any natural number m, the following statement
is equivalent to the condition that F(3Y™)/K is abelian:

There exists a system {f;}ier C Er such that

o;j—n; oi—n; . .
; = aj" " foranyi, j€El,
primm = ol foranyie I

Applying this proposition to our setting, we have

K((B*")Y#")/F is abelian  if and only if there exists a € Fx such that
() =
Since (37)°79 = ()19 and 1 — ¢ is divisible by p°, we can conclude that
K((B*)Y/P)/F is abelian. O

]

Improvement of the 2-part

As an application of Theorem 3.2.1, in the previous section we prove the 2-part
of the weak Brumer-Stark conjecture for extensions with group Dy,. If we use the
fact that Zs[Dy,) is a nice Fitting order, we can improve the result. More precisely

we can prove the following:

Theorem 4.4.23 ([28], Theorem 5.2). Let K/k be a finite Galois CM-extensions

of number fields whose Galois group is isomorphic to the dihedral group of order
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4p. Then if the prime 2 does not split in Q((,), the 2-part of the (non-weak)

non-abelian Brumer-Stark conjecture is true.
Before proving this theorem, we prove the following:

Proposition 4.4.24 ([28], Proposition 5.1). Let K/k be a finite Galois extension
of number fields whose Galois group G is isomorphic to Dy,. We take two finite
sets S and T of places of k such that Hyp(S,T) is satisfied. Then we have

p—1
1 Ty 2
9?{/1@73 = efzgab/k,sz_jNormG’ + QK;;%,S,% (Z Exomis)s
m=1
where G' is the commutator subgroup of G. Moreover, GIT(/kﬁ belongs to ((Zs|G)).

Proof. Recalling that Artin L-functions do not change by the inflation of char-
acters, we have by (2.5) and (4.3)

X1(0%s) = ] det(1 —Froby' Np|Vy,)Ls(K/k, x1,0)ey,

peT
- 1
= H det(1 — Flrob;;;1 Np|Via)Ls(K® [k, X", 0)e a0 —Normes
1 1 p
peT
1
= thlb(egab/kys)]—)]\formgu (4.18)

The same is true for ys, that is, we have
T ab/nT 1
X3(9K/k,5) = X3 (eKab/k,S)ﬁNormG" (4.19)

Since x$* and x§® are the only odd characters of Gal(K/k), we have by (4.18)
and (4.19)

Xl(e?(/k,s)@m + X3(9£/k,5)6><3 = (X‘fb(efT(ab/k,s)exgb
u 1
+X3b(9}T<ab/k,S)€xgb)];NOTmG/
1

_ T
— eKa”/k,S];NOTmG"
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Next we compute X2m+3(9£/,€73) form=1, 2, ..., (p—1)/2. By the induction

formula of Artin L-functions, we have

X2m+3(9£/k,5) = H det(l - FrObikl NP|VX2m+3)LS(K/k7 X2m+3; O)€X2m+3
peT

—f m
=[] det(1 — Froby™ Npy|Vim) L, (K/kg, 6™, 0)ex,s

Po €Tk,
(4.20)

where f,, is the residue degree of p;. We recall that xomiz = Inda,) oM =
Indm7 ¢~ ™. Then we have

Ls,, (K/kg,¢™,0) = Lg, (K/ky, ¢, 0),
[T det(1 — Froby™ NpsVym) = [ det(1 — Froby™ Npg|Vy )

P¢€Tk¢ P¢€Tk¢

and by Lemma 2.2.2 e, .., = egm + e4-m. These equations imply that

T
T _ ke
X2m+3(91</k,s)exzm+3 = VK /ksSk, €2m+3
and hence
p 1 p—1
Ty
@
§ X2m+3 eK/kS Cxam+3 Z 9[(/1% Sk, €2m+3 = 9[(/1%,5%(2 €2m+3)-
m=1 m=1

Combining this with (4.20), we get the first claim of Proposition 4.4.24.
ia s Delongs to Z[G/G']. Therefore,
we see that 6L Kk 1 Norme: belongs to Zy[G]. Next we show that
T,
0;/"’% Sk, (Zm 1 Examys) Delongs to Zy[Gal(K'/ky)]. First we write ¢ for the char-

acter of Gal(K/k,) which sends o and j to 1 and —1, respectively. Since K/k, is

Since K /k is an abelian extension, 6%
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T
also an abelian extension, ¢ Kk /“;% g, belongs to Z[Gal(K/ks)]. Moreover, we have
ke

p—1
Ty Ty Ty 2
Kikose, = Oi/hosn, € T Ok, s, (D xanss)
m=1
p=1
Ty, 1 Ty, 2
= eKi/kqb,Squ;NormGl + QK/¢k¢7Sk¢(Z 6X2m+3)'
m=1
Since K®/k, is an abelian extension, QKQ,,/k Sy belongs to Z|Gal(K®/k,)]. Hence
T
9;fb/k¢ s NormG/ belongs to Zs [Gal(K/l%)] Therefore, we see that

Tk Tk Ty, 1
6 6 o z
K/k¢ Sk, E , Exames) K/k:¢ Sk, — Ogar Jks:Sk, pN orme

belongs to Z,|Gal(K/k,)]. The above arguments imply that Qf(/k’s belongs to
Zs|G], in particular, to ((Zs[G]). O

Proof of Theorem 4.4.23. First we take two finite sets S and T of places of
k such that Hyp(S,T) is satisfied. Then it is enough to show the following two
statements by Proposition 4.4.9:

Ok s € To(G) and Ha(G)b )y ¢ C Anng,(CLEK)5").
Since Z»[G] is a nice Fitting order, this is equivalent to
0k ks € C(Zy[G]) and 9?{/16,5 - AnnZz[G](Cl(K);FK)

by Proposition 2.2.11. The claim 6% K/ks € ((Z,|G]) is true by Proposition 4.4.24.

Hence we only have to show 6% /1,5 annihilates C1(K)3¥. We have by Proposition
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4.4.24

1
Oiens(CUK) ) = 9Kab/ks NOTmG'(Cl(K)§K>

Tk
K/¢k¢5k Z€X2m+3 )(CU( ) ).

By [32, Theorem 2.1], the Brumer-Stark conjecture is true for biquadratic exten-

sions and hence true for K% /k. Observing that
1
= Norme (CUK)I<) ¢ CIUK™) =,
p

we have

1
O ca /kvsz—jNormG/(Cl(K)gK) =0. (4.21)

By [11, Theorem 3.2], the 2-part of the Brumer-Stark conjecture is true for cyclic
extensions of degree 6. If 2 does not split in Q(¢,), exactly the same proof works

for cyclic extensions of degree 2p. Hence we have

Tk¢

7 1
9;/¢k¢,sk¢(Cl(K)2TK) = eKab/k¢,5 —NormG/(C’l(K)QTK)

de)

K/k¢ Sk, Zex2m+3 )(CU ) *) =

By [36, §3, case(c)], the Brumer-Stark conjecture is true for quadratic extensions

and hence true for K®/k,. Therefore, we have

de)
b
K /k,Sk,

9 %NormG/(Cl(K)gK) ~0

and hence
p—1

T,
Onc/ip s, (D Examsa) (CUEK)F) = 0.

v ‘

3
[N
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Combining this with (4.21), we have
0% 1 s(CLR)E%) = 0.

This completes the proof. O

4.4.3 Extensions with group Qon+2

Let K/k be a finite Galois extension whose Galois group is isomorphic to the
quaternion group Qqn+2 of order 272, We use the presentation Qgniz = (z, y |
2 2

2" =2, 27 =1, yzy ' = 1), Since the center of Quni2 is {1, 2"}, 22"

corresponds to the unique complex conjugation j.

Characters of (Jyn+2

(Qon+2 has two types of irreducible characters. One type is given through the
natural surjection Qgn+z —» Qgn+2/(2™) ~ Dan+1. Clearly, characters which are
given in this way are even characters. The other type is two dimensional characters
which are induced by the faithful odd characters of (z) (in fact, a character of (x)
is faithful if and only if it is odd). Let ¢ be the character of (x) which sends x and
2" to (on+1 and —1 respectively. Then all faithful odd characters are of the form
o™ for m € (Z/2" ' 7Z)*. We set x,, := Ind%wr2 ¢™. Then we have Y, = X—m and
ky, = k'@ for all m. Since ¢™ is faithful, we conclude Ky =Kpo =K.

Main Theorem

In this subsection, we prove the following:

Theorem 4.4.25. Let K/k be a finite Galois CM-extension whose Galois group is
1somorphic to Qan+2 and S be a finite set of places of k which contains all infinite
places. Then the 2-part of the weak non-abelian Brumer conjecture and the weak

non-abelian Brumer-Stark conjecture are true for K/k and S.

Remark 4.4.26. (1) If no prime above p splits in K/K* whenever K C
(K?)*(¢,), the odd p-part of the above result holds by [25, Corollary 4.2].
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(2) Since all the subgroups of @Qan+2 are normal and all the odd representations

are faithful, Ox/k 5. Us,q, always coincides with Oy s .

The observation in the previous section tells us that we have to verify the
2-part of the weak Brumer-Stark conjecture for K/K @ . Since K/K® is a cyclic

extension of degree 2"*! it is enough to prove the following:

Proposition 4.4.27. Let K/F be a cyclic CM-extension of degree 2", We as-
sume F' contains k so that (F/k is quadratic and) K/k is CM with Galois group

Qan+2. Then 2-part of the weak non-abelian Brumer-Stark conjecture is true for
K/F.

Before proving the above theorem, we prove the following lemma:

Lemma 4.4.28. Let K/F be a cyclic CM-extension of degree 2" which is con-

tained in some Qqn+2-extension. Then all the roots of unity in K are £1.

Proof of Lemma 4.4.28. Let ( be a primitive wgth roots of unity in K and
assume z(¢) = ¢ and y(¢) = (% for some c;, ¢, € (Z/wgZ)*. Then we have
yry1(¢) = ¢ e = (% On the other hand yzy~' = 271, so we have yzy~(¢) =
(e . Hence we see that

—1
T

e =c;' modwg <2 =1 mod wg.

Therefore, we have x?(¢) = ¢ and hence x*"(¢) = ¢. This implies  lies in K*. [

Proof of Proposition 4.4.27. We define the group I;; of the ambiguous ideals
by
Ir ;= {2 | A is an ideal of K such that 2 = 2},

where j is the unique complex conjugation in Gal(K/F). Also we define A :=
Coker(I}; — CI(K)) ®Zy. Then by Sands’s formula [32, Proposition 3.2] (also see
[11, §3]), we have

wiclics e = 28T VT2 A 11— 5) mod Z3, (4.22)
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where d is the number of primes of K+ which ramify in K. Let £ be the non-trivial
character of Gal(K/K™"). We set M := {a | 1 < a < 2" aisodd}. Then we

have Indgal(K/K+)(f) - ZmGM (Z)m and

EOk/ir) = L0, & K/KY) = ] L0, 0™ K/F).

meM

By (4.22), we have
|Ag| = wKﬁ(QK/K+)2_[K+:Q]_d+1
= wie [] L0, ¢, K/py2- ez,
meM
where the equality is used in the sense that the 2-parts of the both sides coincide.

Since wk 2 = 2 by Lemma 4.4.28, we also have

Akl = [T L0, 6™, K/Fy2 =,
meM

Since [KT : Q] > 2" (recalling that K/F is contained in some Qqn+2-extension),

we get —[K+: Q] —d+ 2 < —2""! 4 2. Hence we also get

Al <[] L(0,¢™ K/F)27>"
meM

4 L(0,¢, K/F)
= QWN@(CWH)/@(f)

L(0,6, K/ F
< N@(cwm/@(%) (4.23)

and the right hand side of the last inequality lies in Zy and hence (1/2)L(0, ¢, K/ F')
lies in Zs[(on+1]. We take an element = € Fo(Gal(K/F')) of the form

T = Z Tgm Prym, Tym € D7HQ2(¢™)/ Q).

meM

Since we have

Normgayx/ryxr =0,
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we can regard the module 2 Ay as a Zs[(an+1]-module. Then we have by (4.23)

|2 Ak | < [Za[Gorer]  (1/2)L(0, ¢, K/ F))] = [Za[Conr] = ((1/2)0/r)],

where §K/F is the image of Ok r under the surjection Zy[H] — Zs[(on+1]. This
implies (1/2)x0/p annihilates Ag. Then for any fractional ideal 2 of K whose
class in CI(K) is of 2-power order, we have that 2/2#x/F lies in Py -1, where P
is the group of principal ideals of K and hence we have 2A(1/2#0x/r(1=3) — Q0x/r

lies in P}{j . This completes the proof. ]

4.4.4 Extensions with group Z /27 x Ay

Let K/k be a finite Galois extension whose Galois group is isomorphic to Z /27 x
Ay, where Ay is the alternating group on 4 letters. we regard Ay as the group of
even permutation of the set {1, 2, 3, 4}. Since the center of A, is trivial, the

generator of Z /27 corresponds to the unique complex conjugation j.

Characters of Z /27 x A,

We set z = (12)(34) and y = (123). The irreducible characters of Z/2Z x A,
are determined by the following character table, where {-} indicates conjugacy

classes:

Table 4.2: The character table of Z/27Z x A,

07 [ [ e) [ [0 e | el | o)
X1 1 1 1 1 1 1 1 1
X2 1 1 1 1 —1 —1 —1 —1
X3 | 1 1 (3 3 1 —1 (3 3
X4 | 1 1 (3 3 -1 -1 —(3 -C3
X5 || 1 1 3 € 1 1 3 (3
Xe || 1 1 3 G | -1 -1 | -G —(3
X7 3 —1 0 0 3 -1 0 0
Xs 3 —1 0 0 -3 1 0 0

From the above table, we see that the only odd characters are s, Y4, X6 and
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Xs- Since ker x5 has index 2, the corresponding subextension K5 /k is a quadratic
extension, and since we have ker x4 = ker yg and this subgroup has index 6, we
have Ky = K¢ and K4/k is a cyclic extension of degree 6. Let V' be Klein subgroup
of Ay and ¢s 1, ¢s2 and ¢g3 be characters of Z/2Z x V whose restriction to V' are
non-trivial. Then we have Ind%@%iék((ﬁ&i) = xg for : = 1, 2, 3 and the indices of
their kernel in Z/27 x V are 2. Hence we see that kg = KZ/22xV and Kgi/ks is a

quadratic extension for all i.

Proof of conjectures for extensions with group Z/27 x A,

In this subsection, we prove the following theorem:

Theorem 4.4.29. Let K/k be a finite Galois CM-extension whose Galois group
is isomorphic to 727 x Ay and S be a finite set of places of k which contains all
infinite places. Then

(1) for each odd prime | apart from 3 which does not split in Q((3), the l-part of
the non-abelian Brumer and Brumer-Stark conjecture are true for K/k and

S,

(2) the 2-part and the 3-part of the weak non-abelian Brumer and Brumer-Stark

conjectures are true for K/k and S.

Remark 4.4.30. If S contains all finite places of £ which ramify in K, we know
the following as well as Theorem 4.4.16:

(1) In the case of k = @, the above result except the 2-part is contained in Nickel’s
work [22], [24] if we assume p = 0.

(2) If no prime above p splits in K/K* whenever K% C (K%)™((,), the above
result holds for odd p by [25, Corollary 4.2].

The observation in the previous subsection tells us that we have only to verify
the Brumer-Stark conjecture for Ky/k, K4/k and Kg;/ks for i = 1, 2, 3. By
[36, §3, case(c)], the Brumer-Stark conjecture is true for any relative quadratic
extensions and hence true for extensions Ky /k, Kg;/ks. In order to complete the

proof of Theorem 4.4.29, it is enough to prove the following proposition:
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Proposition 4.4.31. Let [ be a prime which does not split in Q((3). Let F'/k be
any cyclic CM-extension of number fields of degree 6. Then the l-part of the weak

non-abelian Brumer-Stark conjecture is true for F'/k.

Proof. Exactly the same proof as Proposition 4.4.18 works. ]

4.5 Numerical examples

In this section, we give some numerical examples for the non-abelian Brumer

conjecture. Throughout this section, we use the same notation as in §4.4.2

4.5.1 Reduced norms of Q,[D;s]

We fix a prime p. In this section, we review the way how to compute the reduced
norm of Q,[D12).

From Table 4.1, we see all the 1-dimensional representations of Dq5. We set

0 —1 1 -1 (1o
Pra(0) = (1 _1>, Pra(T) = <0 _1), Prad) = (0 1)
0 —1 I -1 N e
plo) = <1 _1), o) 1= (O _1), i) = (O _1>.

We can easily see that these determine all the 2-dimensional representations (there

and

is no deep reason we choose these forms). We also set p,, := x; for i =0, 1, 2, 3.

Then we have

Qp[DH] 1> Qp D Qp S Qp D Qp S5 MQ(QP) S MQ(QP)? Q= 6910Xi (CY)

The reduced norm map is defined by the following composition map:

—1

QD1 2% @Mm (Q,) 2% @@p ) (@, [Dra)).
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Take an element
a=A+Bo+Co*>+Dr+FEor+Fo*r+Gj+Hoj+10%j+ Jrj+ Korj+ Lo*tj
in Q,[D12]. Then the coefficient of the identity of Dy is

1

g(A+2A2+B—2AB+2B2+C’—2AC—QBC+202—2D2+2DE—2E2

+2DF +2EF — 2F? +2G? —2GH + 2H? — 2GI — 2HI + 2I* — 2J%* + 2JK
—2K?+2JL +2KL —2L?).

4.5.2 Stickelberger elements for Dis;-extensions

We assume K/k is a finite Galois CM-extension whose Galois group G is iso-
morphic to Dis. As we observed in §4.4.2, Dis is the direct sum of Z/27 and
D¢ = (0,7 | 0> =712=1,707"t = 07 !) (D¢ coincides with the symmetric group
G3 of degree 3). As we have seen in §4.4.2, the only odd characters of D15 are xq,

X3 and xs. By the definition of the Stickelberger elements, we have

QK/k,S = LS(K/k7X170)eX1 +LS<K/k7X3>O>6X3 +LS(K/k7X5aO)€X5
= ElesLSoo (K/kv X1, 0)6X1 + €X37SLSO<> (K/kv X3, O)€X3
+€X575L5'oo (K/kv X5, 0)6)(57

where we set
exs =lim [ det(1 — Froby Np~ | V/*).
iy 50 Xi
pES\Soo

For i = 1, 3, we set K; := K "Xi and write x} for the character of Gal(K;/k)

whose inflation to G is x;. Then

Ok/rs = €xshse (Ki/k, X1, 0)ex, + €y sls. (K3/k, X3, 0)ey,
+€X57SL500 (K/kqﬁa q5, 0)€X5
6X1,5X/1(91(1/79)€X1 + 6X3,5X5(9K3/k>ex3 + €X5,S¢<0K/k¢)e><5'

(4.24)
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This is a special case of [26, Lemma 3.1].

4.5.3 Integrality of Stickelberger elements

In the case that K/k is an abelian CM-extension, the first claim of Conjecture

4.4.1 is equivalent to
Anan[G] <M<K))9K/k,5 C Zp[G] (425)

Hence one may expect the same strong integrality As0x /x5 C ((Z,[G]) holds even
if G is non-abelian. However, the following example tells us that it is reasonable
to conjecture that Asbr ks is contained in Z,(G) but not in ((Z,[G]).

Let a be a root of the cubic equation 2 — 11z + 7 = 0 and set K =
Q(v/=3,v/4001, o). Then K/Q is a finite Galois CM-extension, K contains the

3rd roots of unity and its Galois group is isomorphic to
Gal(Q(v/=3)/Q) x Gal(Q(v4001, a)/Q) = Z/2Z x S5 = Ds,.
Using the same notations as §4.5.2, we see that
Ky = Q(v/=3), K3 =Q(v/—12003) and ks = Q(v/4001).

The only primes which ramify in K/Q are 3 and 4001. If we suitably choose the
primes B3 and Pypo1 of K above 3 and 4001, we see that

Gy, = Gal(K/Q(a)) = (j) x (1), Iy, = Gal(K/Q(v4001,a)) = (j),
G‘l‘4001 = Gal(K/Q(a» = <.7> X <T>7 I‘ﬁ4001 = Gal(K/Q( _3704)) = <T>
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From this, we have

. : —s I
pe ram

= lim det(1 — Froby,,,, 401" | Vi)
= limdet(1 — j40017* | V3,) = 2.
s—0

By the same way, we also have €,, ..., = 1 and €, = 2. By PARI/GP, we

STam

can compute L-values attached to i, x3 and y; as

! 1 !
Ls. (K1/Q, x},0) = 3’ Ls (K3/Q,x3,0) =30, and Ls_(K/ky, ¢,0) = 48.

Hence we see from (4.24) that

Ok /0 = %exl + 30e,, + 96¢,, = %(1 — (B = 121(0 + 0?) — 22(7 + o7 + 0°7)).

(4.26)
Take the prime 7. This prime is completely decomposed in K and Hyp(S,qm U
Seo, {7}) is satisfied. Also we have

dgry = nr(1 — Frobq}i 7) =nr(l = 7) = nr(—6).
Then
1
SinOx/q = §(1 — 5)(3410 — 1774(0 + 0*) + 44(7 + o7 + 027)). (4.27)

Obviously this element does not belong to ((Z3[G]) and hence we can not expect

the strong inclusion Asfx /g C ((Z,[G]) in general. However, we actually have
71 1 13 37
5{7}91(/@ = IlI‘((]_ —j)(—? + 50’— 110’2 + 197'—|— 70’7’4‘ ?(727')) - Ig(G) (428)

As long as we see this example, it seems reasonable to conjecture AgOx/p s C
Z,(G). In fact, by [26, Lemma 4.1] (and [26, Lemma 3.11]), if G is isomorphic
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to Dy, we always have As0x/r.s C I,(G). Note that the preimage of 010k g is
found in an ad hoc way, and as far as the author knows, there are no theoretical
approaches to find concrete preimages of Stickelberger elements.

We have seen where 250 /i s should live. Then where does the Stickelberger
element Oy ¢ itself live? First we return to the case where G is abelian. Since
|11(K)| belongs to Anng, jq(p(k)), we have by (4.25)

’N(KMHK/IC,S € Zy|G]

or equivalently,

1
0 e —7,|G].
sk € Gy

This implies the denominator of f ks is at most [(K)|. In the case where G is
non-abelian, we see by (4.26) that the denominator of 0/, ¢ can not be bounded

by |u(K)|. However, if we believe the first claim of Conjecture 4.4.5, we have
WKHK/k:,S € Ip<G)
and hence

1
Ok /k.s € <m"(‘ ( H) | H € My(Zy[G]), n € N)¢(z,[c)- (4.29)

p(E))|
Namely, the first claim of Conjecture 4.4.5 predicts that the denominators of
preimages are at most [p(K)| (not the denominators of Ok g itself). In fact, by
(4.28), we see that

1 1 13 37
Ok = nr(é(l - j)(7 — 50+ 110% — 197 — 50T~ 702 ). (4.30)
The reduced norm map is not injective, but the explicit computation of the re-
duced norm in §4.5.1 tells us the preimages of f/g does not belong to Zs3[G].
More explicitly we see that the preimages of 0k ,q must belong to (1/3)Zs[G] =

(1/|(K)|)Zs[G]. If we set L = Q(v/—2,+/33, B) (B satisfies 2 — 98 + 3 = 0), we
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have p(L) = {£1}, Gal(L/Q) = D;, and as computed in [26, §5.1.3]
2 . 2 2
010 = 5(1—])(14-0—&-0 —T—0T—0°T).

Since L does not contain non-trivial roots of unity, we expect 0y, /g itself belongs
to Z3(D1). In fact, we have

00 =nr(2(1 —j)(-1+o+0>—7+07 —0°7)).

As long as we see these numerical examples, in the non-abelian cases it seems
that the direct influence of the existence of the group p(K’) does not appear in
the denominators of the Stickelberger elements themselves but in those of the
preimages of Stickelberger elements.

Finally, we introduce an example which tells us that Stickelberger elements
can belong to ((Z,[G]) even if Z,[G] is not a nice Fitting order. We take a root
7 of the cubic equation 2% — 12z + 13 = 0 and set M = Q(v/—6, /29, 7). By the

same manner as the calculation of 0 /g, we see that

6XlaS'/'am, = €X5,Sram. = 0 and €X3,S7-am = 1’

and by PARI/GP
Ls (M/Q,xs,0) = 12.

Therefore, we have

Orq = 12e4, = pr,, -

Obviously, this element belongs to ((Z3[G]). Moreover, #);/g comes from the re-

duced norm. In fact, we have

Orjg = nr(prx3).

Since M does not contain non-trivial roots of unity, this is also an example of the
inclusion (4.29).
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4.5.4 Annihilation of ideal class groups

As we have seen in the previous section, the elements 670k 1 s have denominators
in general. Therefore, they can not act on the ideal class groups just as they are.
This is one of the main reason why we adopt §,(G) and H,(G) (in the latter half
of this section, we will see that this is not the only reason). In this section, we
see how Stickelberger elements annihilate ideal class groups with concrete Galois
extensions appearing in the previous section.

First we study K/Q, where we recall K = Q(v/—3, /4001, o) with o — 11a +
7 = 0. By PARI/GP, we can see the structure as an abelian group of the ideal

class group of K as follows:
ClK)=Z/180Z & 7/127Z, Cl(K)3 = Z/9Z ® 7./ 3.

We denote by ¢; and ¢y the basis of Cl(K)s which is chosen in the computation
of PARI/GP. Then also using PARI/GP, we see the Galois action on CI(K)3 as

follows:

{ o) =dait e, 7(a)=—a, jla)=—a, (4.31)

o(ca) =601 +c2, T(C2) =cC2,  Jle2) = —co.

The above relations imply that C1(K)s is generated by ¢; as a Z3[G]-module.
By Proposition 2.2.10, H3(G) coincides with §3(G), and hence, by (2.7) each

element x in H;(G) is of the form

r = Z Ty Pry, Ty € Zs3.

xelrr G

Then we have
oy = —4xy, pry, —180z,, pr,, +3456z,, pr,_ .

Obviously this element belongs to ((Zs[D12]). Since 180 and 3456 are multiples of
9, we have

1802y, pr,, 1 = 34562, pr,, c1 = 0.
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Moreover, we see by (4.31) that
pr,ci=1=j)1+0+0)(1+7)er=(1—j)1+0c+0°)(1—1)c =0.

Hence

.735{7}9[(/@61 =0.

Thus thanks to the denominator ideal H,(G) (and the central conductor §,(G)),
dt1}0k/k,s becomes an element in ((Z3]|G]) and annihilates CI(K)3. Then what
will happen in the case where the Stickelberger elements have no denominators?
If Z,(G] is a nice Fitting order, we do not need H,(G). However, the following
calculation tells us that we need H,(G) in general.

We study M /Q, where we recall M = Q(v/—6,v/29, ) with v* —12y+13 = 0.
By PARI/GP, we can see the explicit structure of the ideal class group of M and

the Galois action on it as follows:
CIM)=Z/12Z S Z/6Z & Z/6Z, Cl(M)3s =27Z/37 & Z/3Z D 7/37Z.

We denote by ¢, ¢ and c¢3 the basis of Cl(M )3 which is chosen in the computation
of PARI/GP. Then we have

0(01) = —C1 — Ca, T(Cl) = —(y, j(Cl) = —C1,
U(Cz) =1 +c3, T(CQ) =+ ¢ — C3, j(Cz) = —Cg, (4~32)
o(c3) = cs, 7(c1) = —c, j(e3) = —cs.

By the above relations, we can see that Cl(M)s is generated by ¢; as a Z3[G]-
module.

Take the prime 173. This prime is completely decomposed in M and satisfies
Hyp(Sram U S, {173}). Also we have

dprsytayg = nr(—172) pr 3 = —172ey, pr,, = —172pr .
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This element also belongs to ((Z3[G]). However, from (4.32) we have

Spmybueer = —172pr e = —172(1 = j)(1 + 0 +0*)(1 = 7)ey
— 1722 (—1)-2c5 £0.

We take an element x = > o2, pry, € H3(G). Then we have
335{173}9]\4/@01 =—-172-2- (—1) -2 123:)(303 = 0.

Therefore, even in the case that Stickelberger elements do not have denominators,
we need denominator ideal H,(G).

Finally, we study why we need H3(G). We recall that

1
€xs = T3 Pl and Oyr/g = Ls,,(M/Q, x3,0)ey, = 12e,, = pr,,.

The important thing here is that the L-value attached to xs is canceled by the
denominator of e,, and hence 6);/¢ has no information on the L-value. However,

if we multiply 0,7/ by x, we have

TOM/Q = Ty Py Plyy = Ty 121y, = Ty, L, (M/Q, x3,0) pr, , -

In this way, thanks to the element x, we obtain information on the L-value from

Orr/q- This is the reason why we need the denominator ideal Hs(G).
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Chapter 5
Selmer groups of abelian varieties

Let K/k be a finite Galois extension of number fields with Galois group G and A
be an abelian variety over k. In this chapter we study the Galois module structure

of the (classical) Selmer group Sel(Ax) of Ak.

5.1 Selmer and Tate-Shafarevich groups

Let p be a prime. For each intermediate field L of K/k, we write Sel,(AL) and
I1,(Ay) for the p-primary Selmer and the p-primary Tate-Shafarevich groups of

Ap, respectively. Then there exists an exact sequence
0— A(L) ® Q,/Z, — Sel,(AL) — II,(AL) — 0

of Z,|G]-modules.
For any fields L and L' with k C L C L' C F, we set

’ ﬂ—Ll
I (AL) := ker (Hlp(AL) 5 HIP(AU)) :

. . .
where 7 is the natural restriction map.
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5.2 Some algebraic lemmas

In this subsection, we prove some technical lemmas. Let K /k be a finite Galois
extension of number fields with Galois group G and p a rational prime. We fix a

p-Sylow subgroup P of G and set N := K¥. We refer to the following conditions
as Hypa(K/k, p):

(a) A(N)[p] =0,
(b) The Tamagawa number of Ay at each finite place of k is not divisible by p,
(c) An has good reduction for all p-adic places,

(d) For all p-adic places v that ramify in K/k, A has an ordinary reduction at p
and A(ky)[p] = 0, where &, is the residue field at p,

(e) No bad reduction place for Ay is ramified in K/k,
(f) pis odd,

(g) If a prime pj, of k is ramified in K, we have A(ky, )[p] = 0 for any prime py
of N above py,

(h) II(Ag) is finite.

For each intermediate field L of K/k, we write rk(A(L)) for the Mordell-Weil rank
of A(L). We first prove the following lemma:

Lemma 5.2.1. Let K/k be a CM-extension of number fields and A an abelian
variety such that Hypa(K/k,p) is satisfied. We assume 1 (Agn) = 0 for each
subgroup H of P. Then for each o € {£}, if A(N)® is finite, so is A(K)“.

Proof. By [4, Proposition 2.7], rk(A(K)) < |P|rk(A(NN)) holds. Therefore, we

have

rk(A(K)") +1k(A(K)7) < [PI(k(A(N)T) + tk(A(N)7)),
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and again by [4, Proposition 2.7] (and since Hypa (K™ /k,p) is also satisfied), we

have
rk(A(K™)) < |P|rk(A(NT)).

Since tk(A(K)T) = tk(A(K™)) and tk(A(N)") = rk(A(NT)), we conclude the

claim. ]

Lemma 5.2.2. Let K/k be a finite Galois extension of number fields and A
an abelian variety such that the triple (A, K/k,p) satisfies (b) and (e). Then,

the Tamagawa number of Ax: at each place in Slf/ 15 not diwvisible by p for any
intermediate field K" of K/k.

Proof. First we prove the claim for K. Take a place p at which Ay has bad
reduction and let P be a place of K above p. By the assumption (e), Ax still
has bad reduction at B. Let Ay, be the Néron model of Ay, over Oy, and -A(z)v,,
the connected component of the identity of Ay,. We set Ay, = A, X0y, Kp
and A?Vp = .A?Vp X0y, Kp, Where ky is the residue field at p. Then the Tamagawa
number ¢, at p is defined to be |®,(k,)|, where @, is a finite étale group scheme
over Ky such that

1= A — Ay, = &, — 1

is exact. Since B is unramified in Ky /N,, An, X O, is the Néron model of A,
over Ok, and hence we have @y = &, X ryp. Since rp /K, is a p-extension, we see
that O (kyp)[p] = Py(ky)[p] = 0. Therefore, |Poy(ky)| is not divisible by p. Next,
we take a subfield K’ of K and let ¢’ be a place of K’ at which A, has bad
reduction. Take a place P of K above J’(again by the assumption (e), Ax has
bad reduction at *B). Since Kg/K}y is unramified, we have ®g = $gv X k. This
implies there is natural inclusion ®gqy (kg ) — Pg(kg). Therefore, |y (ryy)| is not
divisible by p. O]
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5.3 Equivariant Hasse-Weil L-functions

5.3.1 Twisted Hasse-Weil L-functions

For each finite place p of k, we denote the Inertia subgroup of Gy, by Ij,. We
choose a rational prime ! which is coprime to the character of x,. We denote by
T;(A) the Tate-module of A at [ and set Vi(A) := Q; ®z, T;(A). We define

P,y(X) := det(1 — Froby,' X | Hom(V;A, Q;)™)~".

By Weil conjecture, the coefficients of this polynomial actually lie in Z. Using this

polynomial, we define the local L-function of A at p to be
Ly(A, s) == By(|rp] ),

where s is the complex variable. For each character x of G, we denote by V, a
representation of G over C which has the character x. We fix an isomorphism
1; : C =2 C; and define the y-twisted local L-function of A at p to be

Ly(A, K[k, x,s) =i, ' (det(1 — Frobgg1 k|7 | (11(Vy) ®q, Hom(ViA, Q) ) ~1).
Finally, we define the global L-function and the y-twisted global L-function to be

L(A,s) = [] Ly(A s) and L(A, K[k, x,s) == [] Lo(A. K/k, x.5).

p:finite p:finite
This twisted L-function satisfies the following properties:
Proposition 5.3.1 (Artin formalism).
(LA1) L(A, K/k,1g,s) = L(A,s),

(LA2) If x1 and x2 are characters of G,

L(AaK/k7X1 + X273> = L(AaK/k7X17S)L(A7K/kJX27 8)7
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(LA3) IfL/k is a Galois extension with L C K, for each character of Gal(L/k),
we have
L(A7 K/kv Infgal(L/k:) W S) = L(A7 L/ka ¢7 8)7

(LA4) For any intermediate field F' of K/k and any character ¢ of Gal(K/F),
we have
L(A7 K/kv Indgal(K/F) ¢7 8) = L(A> K/F7 ¢7 5)'

Proof. The proof of these properties is just the same as that of the Artin L-

function (cf. [19, Proposition 10.4]). O

From the above proposition, we have
L(Ak,s) = L(A,s) [ L(A K/k, x, s)XO. (5.1)
x€lrr G

x#la

We set
L*(A,s) :== (s—1)"L(A,s) and L*(A, K/k,x,s) == (s—1) "W L(A, K/k, x, s),

where 74 and 74(x) are vanishing orders at s = 1 of L(A,s) and L(A, K/k, x, s),
respectively. Then the same formulas as Proposition 5.3.1 are true for L*(A,s)
and L*(A, K/k, x, s). Hence we have

L*(Ag,s) =LA, s) [ LA K[k x, )W, (5.2)

xelrr G
x#la

Finally, for any finite set S of places of k, we denote by Lg(A, K/k,x,s)
the y-twisted S-truncated global L-function with complex variable s. In the case
S =S, Ls(A, K/k, x,s) coincides with L(A, K/k,x,s).

5.3.2 Period and Galois Gauss sum

We fix Néron models A of A over Oy and Ay, of Ay, over Oy, for each p-adic place
p of k. We take a k-basis {w;, wo,...,wq} of HY(A, QL) such that they give an
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Oy,-basis of H(Ag,, Qhkp) for each p-adic place of k. For each real place v of k, we

fix Z-bases {7:[’1, 7:2, o %fyd} of Hy(c,(A)(C),Z)=" and {7;1, Yo2r - ’y;d}
of Hy(0,(A)(C),Z)*=!, where ¢ denotes the complex conjugation. We set

QF(A) == |det (/ wb> , Q,(A) := |det (/ wb> :
Va 1<a,b<d Vv.a 1<a,b<d

For each place v in S, we take a Z-basis {Y,.1, Vo2, s Yo2d} of Hi(0,(A)(C),Z)
and set
Q,(A) := |det / wp, ¢( / Wh .
Ta Tora 1<a<d
1<6<2d

For each x € Irr G, we set x7(1) == dime V™ and y; (1) == x(1) — x;(1). We
define the periods

QHAP OO (AP O ify € Sk
v v R

Qu(A, x) =
Q, (AW if ve Sk

and Q(A, x) =1

ties:

Q,(A, x). The periods (A, x) satisfy the following proper-

'UESOO

Proposition 5.3.2. We use the same notation as (LAL) ~ (LA4). Then we have
(P1) Q(A.16) = [eq 2 (A) ess 2u(A)

(P2) QA x1 + x2) = A, x1)Q(A, x2),

(P3) Q(4, Infgal(L/k) V) = Q(A, 1),

(P4) If k is totally real, (A, Indgal(K/F) o) = QA, @) up to the 2-primary part.
Proof. (P1) ~ (P3) are obvious. For (P4), it is enough to show that up to the

2-primary part, we have

(A IndG, m @) = [ Qu(4, ).
w'eSE
w'|v
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The same method as the proof of [19, Proposition 12.1]) implies

SHERULPTORE I | CHECYIER | e EVA e EV
w’eSé(' w’ESné(/
w'|v w'|v
= H (Q;"(A)Q;(A))(ﬁ(l) H Qil(A)cbzl(l)Q;,(A)tﬁ;/(l)‘
w’eSg w’ESﬂg
w’|v w'|v
Since k is totally real, wy, ws,..., wy are defined over R. Therefore, we have

C / Wy :/ (A)b:/ Wy, C / Wy :/ Wb:—/ Wy
'Yj)—ya C(’Yj—,a) 71-1':& Yv,a C('Yv_,a) Yv,a

and hence (suitable elementary column operations imply)

Qu(A) = |det (/mwb, c </wb>> o =210 (A)Q; (A).

From this, we finally get, up to the 2-primary part,

+ _ —
Q’U (A, Indgal(K/F) d)) = H Qw,(A>¢(1) H Q;:/(A)d’w/(l)gw/ (A)¢w/(1)
w'eSE w'eSE
w'|v w'|v
— H Qu (A, ¢)
w'eSE
w'|v

From this proposition, if k is totally real, we have up to the 2-primary part

TT 2wt T 25 = TT 20X, (53)

weSE weSK xehrG

We set
o @) if g € Sk

wy(X) =
X ify e Sk
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and woo (X) = [],cq. wu(X)- The elements w, (x) satisfy the following proposition:
Proposition 5.3.3. (01) we(1g) = i5¢,

(02) woolX1 + X2) = Woo(X1)wWoo(X2),

(03) Woo(Infgal(L/k) V) = woo(¥),

(04) Wm(lndgal(K/F) P) = woo(9).

Proof. The properties (O1) ~ (0O3) are obvious and (0O4) follows from the same
method as the proof of Proposition 5.3.2. ]

For each x € Irr G, we denote by 7(Q, Ind(,? X) the Galois Gauss sum for Ind(,? X
which is defined in [17], where Ind? means Ind“* D Then we have

Gal(Q/k)
Proposition 5.3.4. We use the same notation as (LA1) ~ (LA4). Then, we have
(G1) 7(Q,Ind? 1¢) = il5¢1\/]dy],
(G2) 7(Q, Indg(x1+ x2)) = 7(Q, Indg x1)7(Q, Indy} x»),
(G3) 7(Q,Indy Iy ) ¥) = 7(Q, Indy ),
(G4) 7(Q, Indy ndGy /) 6) = 7(Q, Inds 6).

Proof. (G4) is obvious. (G2) and (G3) follow from the definition of the Galois
Gauss sum. By [17, Theorem 8.1], we have

(@ Indg x) = 7(k ) (%1 /[di )X,
Since 7(k, 1) = 1, we have

7(Q,Ind? 15) = 7(k, 1)1/ |dy| = i15¢1\/|dy].
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Combining the properties (G1) ~ (G4) with (O1) ~ (O4), we have

Ind x(1)
Videl = T © Q (1)) : (5.4)

x€lrr G

For each finite place p of k, we fix a place P of " above p. We denote by Gy (resp.
Iy) the decomposition subgroup (resp. the inertia subgroup) of G. For each place
p € S¥and y € Irr G, we set

up(x) = det(— Frobq}1 V)

and

X) = 1T wo)- (5.5)

pesk

Finally, we define

7(Q,Indy, x) = uy(x)7(Q, Ind?, ).

Note that if x is faithful and Iy is normal in G, we have T*(Q,Indg,x) =
7(Q, Indy, x).

In what follows, we always assume the following conjecture:

Conjecture 5.3.5. For each x € Irr G,

L(A, K/k,x,1) - 7(Q, Ind? x)?
Q(A, x) - weo(x)?

and for each o € Gal(Q(x)/Q),

€ Q(x)

L(A, K[k, x7, 1) - 7(Q,Ind2 x7) (LA, K/k, x, 1) - 7(Q, Tnd2 )\
Q(A, x7) - woo (x7)* B Q(A, x) - weo(x)*

Remark 5.3.6. This conjecture is a special case of the rationality conjecture [5,
Conjecture 4(iii)], that is, a special case of the Deligne - Beilinson conjecture. For

the Tate motives, this conjecture corresponds to Stark’s conjecture.
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For each Galois subextension K'/k" of K/k and x in Rgak' k) , we set

cacsiy+ Ls(A K[k, 1) - 7(Q,Tnd® y)
- = (A, \) - om ()"

and
LG — {LGal(K'/k')7 Ga](K,/k/))}K//k"

By Propositions 5.3.1, 5.3.2, 5.3.3 and 5.3.4, we get the following:

Proposition 5.3.7. We assume k is totally real. Then Art(ILY) is satisfied up to
the 2-primary part.

5.3.3 Equivariant L-functions

Let S be a finite set of places of k which contains S* and S*. We set

s(A, K /k, X, “(Q, Ind® y)¢
Laspsi= 3 o /<A>,<x>) oi%dn =X

xelrr G

In [4], this element is used as an annihilator of Tate-Shafarevich groups, however,

in this paper, we use

, -y Ls(A, K/k, %, 1) - 7(Q, Indy’ x)*
ISR * Q(A, X) - woo (x) '

xelrr G

The relation of these two elements is

E/A,K/k,s = ( Z U(X>€x)ﬁA,K/k,Sv (5.6)

x€lrr G

where u(y) is defined in (5.5). In the following, we do not assume S contains S*
(S has only to contain Sk ). If L(A, K/k,x,1) does not vanish for any x € Irr G,

we have
Z . *(A K/k X, 1) - T(Q,Indgx)d
X Q(A, x) - Woo(X)?

!/
EA,K/k,SOO
x€lrr G
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Moreover, we have by (5.2), (5.3) and (5.4)

L (A, D(WVIARD? LA Kk, % 1) - 7(Q,Ind® )\
W) H( A ) - @) ) S

x€lrr G

where Q(Ag) = Hwesﬂg QF (Ak) Hwesfg 0, (Ag). Now, we assume K/k is a CM-
extension with the unique complex conjugation j. Set Irr*G = {x € IirG |

x(7) = £x(1)}. We define

Ej,K/k,S = ( Z ex)ﬁiél,K/k,S‘

xelrr® G

If L(A, K/k,x,1) does not vanish for all y € Irr G, we have

“(A,K/k,x,1) - 7(Q,Indg y)?
> ef QAN o)t

A Kk, Soo
xelrrt G

We set

L*(AK, ) = L* AK+, \/|dK‘ \/|dK+|, Q(AK>+ = Q(AK+)
and

o L*(AKal) ’ |
_—L*(AK,1)+7 K

" Vx| Q(Ag)” = i)

+

L*(Ag, 1)~

|dk|

Recalling the properties (LA3), (P3), (0O3) and (G3), we have,

L (Ar ) (el )t LA Kk, 1 1) - (@, Tnd )2\
Q(Ax)* -l ( Q(A, X) - woo () ) )

x€lrrt G

by the same method as (5.7). Dividing (5.7) by (5.8), we also have

LAk, ) (VIde] ) LA, Kk, %,1) - (@, Ind® )\ "
Q(Ax)™ -l ( Q(A,X) - woo (X)" ) -0

x€lrr~ G
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In the next section, we compare these formulas with the Birch and Swinnerton-
Dyer conjecture of A.

Thanks to Conjecture 5.3.5, we have

L ks € C(QG]).

Therefore, Propositions 3.1.6 and 5.3.7 imply the following:

Proposition 5.3.8. We assume k is totally real and G s monomial. We take
a finite set S of places of k which contains Sy. Then if E,A,Kij/ki,s belongs to
C(mp(Gal(Ky5/k:))) for all Kij/ki in K, L gy ¢ belongs to ¢(m,(G)).

We assume K /k is a CM-extension. Take o € {#1}. Then by the same way
as Proposition 5.3.8 we get the following:

Proposition 5.3.9. We assume G is monomial. We take a finite set S of places
of k which contains Se. Then if LS i . o belongs to ((my(Gal(K;/k;)))* for
all Kij/ki in K, LG ) 5 belongs to ((m,(G)).

5.4 The Birch and Swinnerton-Dyer Conjecture

In this section, we review the formulation of the Birch and Swinnerton-Dyer con-
jecture for abelian varieties and prove some propositions needed in the next sec-
tion. In what follows, we use the same notation as §5.3.

We set wy := wi Awy A --- A wy and take a fractional ideal ax of K so
that waax = A H(Ag, Q). We let Reg(Agk) denote the regulator of Ay
defined by the Néron-Tate pairing of Ax. For each finite place P of K, we
denote by ¢y the Tamagawa number of Ax at . Finally, we set Q(Ag) =
Hwesﬂg QF(Agk) Hwesg Q2 (Ak). Now, the Birch and Swinnerton-Dyer conjecture

of A over K asserts that
Conjecture 5.4.1.

(1) The order of vanishing at s =1 of L(Ak,s) is equal to rk(A(K)),
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(2) II(Ak) is finite,

(3) We have

I (Ag)| = L*(Ag, 1)/l di| JAUS ) sors || A" () tors|

- 1 . (5.10)
Q(Ak) Hmes;f Jag Hqsesf oy Reg(Ak)

If AY(K)[p] = 0 and the triple (A, K/k, p) satisfies (a), (b), (e) and (f), by Lemma

5.2.2, we can derive from (5.10),

d
L*(Ak, 1)/ |dk|
II,(Ak)| = the p-part of ,

where we can omit [ [g. 5K lag' |y since we took the elements w; so that they are
also Oy, -bases of HY(Ay,, Q}Akp) for each p-adic place p of k.

Now, we assume K /k is a CM-extension. We set
II,(Ag) " = T(Ak+), A(K)" = A(K™), Reg(Ax)" = Reg(Ax+)

and

Hlp(AK)
7T§<<+ (Hlp(AK)+)

A(K)
A(R)+

Reg(Ag)™ = —Reg(AK)

b (Ar)” =  Reg(Ag)*

, AK)” =

Then for each o € {£}, if A(K)* is finite, we can see Reg(Ax)® = 1. Therefore,
by (5.8) and (5.9), we have the following proposition:

Proposition 5.4.2. We assume that A'(K)[p] = 0 and the triple (A, K/k,p) sat-
isfies (a), (b), (e) and (f). Then if A(K)® is finite and the Birch and Swinnerton-

Dyer conjecture is true for Ay, we have

L

- (L*(A, K/k,%,1) - 7(Q, Ind} X)d> X |

Q(A, X) * woo (X)?

x€E€lrr* G
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5.5 Annihilation problems

5.5.1 Formulations

Let K/k be a finite Galois extension of number fields with Galois group G. We
fix a rational prime p. We write g4, for the minimal number of generators of
A(K)[p™]Y as a Z,|G]-module, where A(K)[p™] is the p-power torsion points of
A(K). Now, we consider the following problem:

Problem 5.5.1.
(i) Does aq(A(K)[p™]Y)94x La ks lie in L,(G)?
(ii) Does Hy(G)ac((A(K)[p®]")%4x L a k/k,s annihilate Sel,(Ag)" ?

We chose a maximal Z,-order m,(G) in Q,[G| which contains Z,[G]. Then by
the same method as in [23] we can get the following weaker versions of Problem
5.5.1

Problem 5.5.2.
(i) Does ag(A(K)[p™]Y)I4x La k/k,s lie in ((my(G))?
(ii) Does Fp(G)ac((A(K)[p>®]")%x Lak/k,s annihilate Sel,(Ag)" ?

If the prime p does not divide the order of GG, the above two Problems are
equivalent. Even in the case p divides the order of GG, we get the following relation

by Proposition 2.2.10.

Proposition 5.5.3. With the same assumption as Proposition 2.2.10, Problem
5.5.1 1s equivalent to Problem 5.5.2.

We assume K/k is a CM-extension with the unique complex conjugation j.

We take ov € {£1}. Then we can consider the following problems:
Problem 5.5.4.

(i) Does aq(A(K)[p™1")7x LG k. g lie in ((m(G))?
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(ii) Does §,(G)*ac((A(K)[p>]")?4x LY k.5 annihilate (Sel,(Ax)")*?

Problem 5.5.5.

(i) Does ac(AC)p™]Y )4 L5 g s lie in C(my(G))*?

(ii) Does §p(G)*ac((A(K)[p™]V)*4x LG 1)y, s annihilate (Sel,(Ax)")*?
As well as Proposition 5.5.3, we get the following:

Proposition 5.5.6. With the same assumption as Proposition 2.2.10, Problem
5.5.4 1s equivalent to Problem 5.5.5.

Next we consider the case G' = Dy, with odd prime p. Each of the irreducible
characters of Dy, is 1-dimensional or 2-dimensional, and as in the proof of [26,
Lemma 2.1] (also see [15, Example 6.22]) we have Z,(Dy,) = ((m,(Dy,)). There-
fore, we have by Proposition 2.2.10

Proposition 5.5.7. If G is isomorphic to Dy,, Problem 5.5.4 is equivalent to
Problem 5.5.5.

5.5.2 Monomial extensions

In this section we prove the following theorem:

Theorem 5.5.8. We take an odd prime p. Let k be a totally real number field,
K/k be a Galois extension of number fields whose Galois group G is monomial
and A an abelian variety over k. We assume A(K)[p] = AY(K)[p] = 0. Then if
Problem 5.5.2 has the affirmative answers for subextensions in K, Problem 5.5.2

has the affirmative answer for K/k.

Proof. We take a finite set S of places of k which contains S,,. We have to prove
the following two things:

® L4 k/ks belongs to ((m,(G)),

o §,(G)La K ks annihilates Sel,(Ag)".

91



The first claim is true by Proposition 5.3.8. To prove the second claim, we
only have to show that the pair (L%, Sel,(Ax)Y) satisfies Ab(LY, Sel,(Ax)") by
Theorem 3.2.1. The condition (i) of Ab(LY, Sel,(Ax)") is obviously satisfied. Con-
cerning the condition (ii), we only need the Art(L%) modulo p by Remark 3.2.2.
By Proposition 5.3.1, we see that Art(L%) modulo p is true (since p is odd). The
conditions (iii) and (iv) are followed by our assumption that Problem 5.5.2 has

the affirmative answers for all K; ;/k; in K. O
By the same proof as Theorem 5.5.8, we get the following:

Theorem 5.5.9. We take an odd prime p. Let K/k be a Galois CM-extension of
number fields whose Galois group G is monomial and A an abelian variety over k.
We assume A(K)[p] = AY(K)[p] = 0. Then if Problem 5.5.5 has the affirmative

answers for subextensions in K, Problem 5.5.5 has the affirmative answer for K /k.

Next we study the case where A(K)[p| does not vanish. For each K;;/k; in

K, we write ga,, = for the minimal number of generators of A(K;;)[p™]Y as a
ZyH,; j/ ker ¢; ;]-module and set
g = l.c.mlgigs(gAKi’j). (5.11)

If A(K)[p] does not vanish, we can not apply Theorem 3.2.1 as it is. However, we

can prove the following:

Lemma 5.5.10. We take an odd prime p. Let k be a totally real number field,
K /k be a Galois extension of number fields whose Galois group G is monomial and

A an abelian variety over k. We take a finite set S of places of k which contains
Sfo If Qb;(aHi/ker@<A<Ki)[poo]v)gAKi ‘CA,Ki/ki,Slgé)eq% lies in mp(Hi/ker gbi)qu; for all
K;/k; inT, ag(A(K)[pOO]V)92E’A7K/k75 lies in ((m,(G)).

Theorem 5.5.11. We take an odd prime p. Let k be a totally real number field,
K/k be a Galois extension of number fields whose Galois group G is monomial

and A an abelian variety over k. We take a finite set S of places of k which

contains SE . Then if Problem 5.5.2 has the affirmative answers for subextensions
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mn [F,
§(Gac(AK) ™) Ly x/n.s

lies in ((Zy|G]) and annihilates Sel,(Ax)" .

Proof of Lemma 5.5.10. If we set

tsi= ] Lo(AE/k X 1) ey,

peS\Sk,

then ¢s lies in ¢(m,(G)). Hence it suffices to show the claim for £/, ., . . Take

an element « in ag(A(K)[p™]") and write
a= Z Qyy
xelrr G

as an element in C,[G]. Note that o, is an algebraic integer in Q,(x). Thanks to
Conjecture 5.3.5 in §5.3.3, it is sufficient to show that for each y; € Irr G

ot o (A K TR, X 1) - (@, Ind (i)
X Q(/‘L Xi) 'woo<Xi)d

is an algebraic integer. Since this factor does not change by inflation and induction

of characters except «, as we saw in §5.3, we have

Lsé“o (A’ K/k7 Xis 1) ) T(@v Indg(XE»d o LSQ& (A’ F/k“ d;i’ 1) ' T(@’ Ind% (QbZ))d
Q(A, xi) - woo(X1)* a Q(A, i) - Woold)?
Lgfg‘ (Av Ki/kiv “2’ 1) : T(@’ Ind% (¢;>)d
Q(A, ¢}) - weo ()

- 1l

Since ay, lies in Q,(x;) C Qp(¢:), by Lemma 2.2.2, 37 1@, ()/@,) @ Ex7 Lies in
¢(Q,[H;]) and hence lies in ((m,(H;)) (recall that o, is an algebraic integer). This

implies that deGal(@p(Xi)/Qp) ag eye lies in Anng(m, 1,)) (C (M, (H;)) @ AK) [p™]Y).
Let (3, ccai@,(x)/a,) @xx7)| K, be the natural image of
D oeGal(Qy(xi)/Qy) Y Exg under the natural surjection Z,[H;] — Z,[H;/ker ¢;]. In
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what follows we set H; := H;/ker ¢;. Then, we have

(Y afew)lk € Amny g (my(Hy) @ A(K)[p™]Y). (5.12)
o€Gal(Qp(xi)/Qp)

Moreover, by the definition of g and [29, Theorem5], we have

Ann,, 7 (0, () © A(IG) ™))" (Fitty, g7 (mp () © A(K) [p™]Y)
= (my(H;) - Fitty, g (A(K) [p™]7))?,

(5.13)

where Fitt; 7(-) denotes the initial Fitting ideal over Z,[H;]. By our assumption,

we have
Silam (A P™T)L, o aw)es € my(Hi)ey.
Hence we also have

S ((mp () - age(AUK) =1L o gri)es; € myp(Hideg

Combining this with (5.13) (and recalling the fact that the initial Fitting ideal is

contained in the annihilator ideal), we know that

/ o 2 / _ / /
ai(l( 2. o) 1Ly e pst) = OLOE i)
o€Gal(Qp(x:)/Qp)
o g2 (!
Y ¢l( A,Ki/kz',sl;é)
is an algebraic integer. This completes the proof. O]

Proof of Theorem 5.5.11. Since tg lies in ((m,(G)) and §,(G) is an ideal of
¢(m,(G)), it is sufficient to show the claim for £, ., o .

ac(A(K)[p™]Y). As in the proof of Lemma 5.5.10, we write,

a = E QyCy.

xehrG

Take an element « in
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By Lemma 5.5.10, we see that a9 £, F/ks. les in ((my(G)). We take an element
z € §,(G). Then z is of the form

> > mpe
X€lrr G/~ 0€Gal(Qp(x)/Qp)

with ,, € D7 1Q,(x)/Q,). By Lemma 2.2.12, we have

D, aprg = 2 D TP

o€Gal(Qp(xi)/Qp) oelrr H;/n FEGal(Qp(6)/Qy)
0€Gal(Qp(x:)/Qp), IndF (8)=x7

and there exists a subscript j € {1, 2, ..., s;} such that
R D DRSO
fEGal(Qz)(¢)/QIJ) UEGal(Qp(¢i,j)/Qz:)

This element also lies in §,(H;) and its restriction to K;; lies in §,(H,;), where
H,; = H;/ker ¢; ;. By (5.12) and (5.13), we see that

( Z O‘xl eX )512

o€Gal(Qp(xi)/Qp)

kS

(m, (i) - ag, (A(Ki;)[p¥]"))*

Since we have §,(H, ;)m,(H, ;) C §,(H,;), the product

2
( Z ‘T{a prqg{j) Ki,j( Z axlexl )g

Ki,j

FEGal(Qp(i5)/Qp) ’ o€Gal(Qp(x:)/Qp)
_ Z mf fg pr, ,f

feGal(Qp(di,;)/Qp)

lies in §,(H;j)ag. (A(K;;)[p™®]"). Hence, by our assumption,

Y

f fg
( Z Ty brys )EA K i S5

feGal(Qyp(di,;)/Qp)
— Z f fg gb ( AKi,j/ki,S];%) prq% (514)
fFeGal(Qp(¢i,;)/Qp)
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annihilates Sel,(Ag, ;)". We write ¢ for the involution map on Q,[G] which sends

each element in G to its inverse. Then

i Z e fg¢ e AKi,j/ki,s’;g)p%;{‘j)

fFe€Gal(Qp(¢i,;5)/Qp)
annihilates Sel,(Ag, ;). Since we have ng (L Kkt ) = ng (L ks r,) and
Plg, ; = Ply; (Zhekerqsi,j h),

i 2. w0l oi(C ALKy ks PEgS )

F€Gal(Qp(¢i,5)/Qp)

annihilates Sel,(Ar), and hence
. vl oL o (L A Ko ks PRt

f€Gal(Qp(9i,5)/Qp)

annihilates Sel,(Ap)Y. We recall that Xz Ind$, ((bf ). Then we have ¢f (E;} ksl k)

= X! (Larprse)/x] (1), and hence
f g2 Xi (££4,F/k73§0)
Z I’ p ¢f aXz f(l)
JEGaI(Qp(1.5)/Q) Xi
annihilates Sel,(Ap)Y. Therefore,

X ( A/ SE )
2 >, el

pElr H [~ JE€Gal(Qp(0)/Qp) Xi (1)
3o€Gal(Qp(x:)/Qp), Indf, (#)=x7

2
= Z 23, P )T Ly i s,
a€Qp(xi)/Qp

annihilates Sel,(Ar)Y. Hence, we know that

2 2
o g / — g /
E , E , TP )T LYy e = 20T Ly sk
XEIr G/~ o€Qp(x)/Qp
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annihilates Sel,(Ap)Y. This completes the proof. O
By the same method, we obtain the following;:

Theorem 5.5.12. Let F'/k be a CM-extension whose Galois group is monomial
and A an abelian variety over k. We take a finite set S of places of k which
contains SE . Then if Problem 5.5.4 has the affirmative answers for subextensions
n K,

5O ac (A1) L5 s

lies in ((Zy|G])™ and annihilates (Sel,(Ap)¥)*.

5.5.3 Extensions with group Dy,

In this section, we use the same notations as in §4.4.2. We set

K' = {Ki, Ky, K3,..., Kp 12}
= {kv K27 K?n K47 Ka K+} (515)

Then our main result in this section is

Theorem 5.5.13. Let K/k be a finite Galois CM-extension whose Galois group
1s isomorphic to the dihedral group of order 4p. Let A be an abelian variety over
k such that Hypa(K/k,p) is satisfied. We also assume that A'(N)[p] =0, A(N)*
15 finite, IH?(AN):O and the Birch and Swinnerton-Dyer conjecture holds for
intermediate fields in K'. Then Problem 5.5.4 has the affirmative answer.

By Theorem 5.5.9, in order to prove this theorem, we only have to show anni-
hilation results corresponding to Problem 5.5.4 for subextensions K;/k;.

For i = 1,2, 3,4, the triples (A, K;/k;, p) do not satisty Hypa(A, K;/k;,p) but
still satisfy (a), (b), (e) and (f) by Lemma 5.2.2. Therefore, for these extensions,

it is enough to show the following:

Proposition 5.5.14. Let K/k be a quadratic CM-extension and A be an abelian
variety over k such that the triple (A, K/k,p) satisfies (a), (b), (e) and (f).
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We also assume that A(K)'[p] = 0 and A(K)® is finite. Then if the Birch and
Swinnerton-Dyer conjecture is true for Ay, Problem 5.5.4 has the affirmative
answer for A and K /k.

Proof. First we prove for £ ;. Ik - We take the unique element y € Irr® G.

Then we have by Proposition 5.4.2,

|(Sel,(Ak)")?| = [(I,(Ar)")"|
= |, (Ar)"]
L*(Ag, )™ - (Vdp")?
Q(Ax)~

L*(A, K /k, x, 1) - 7(Q, Ind}} x)*
Q(A, X) - weo (x)*
L(A, K[k, x,1) - 7(Q, Ind x)*
Q(A, X) - woo (X)*
= x( /A,K/k,S’go)'

This implies that £ ;. q lies in Z,[Gal(K/k)] and

Scmsk, - (Selp(Ag)")™ =0. (5.16)

This completes the proof for S* . Take an arbitrary finite set S* of places of k

which contains S* . Then we have

« . «
AK/k,Sk — tgw EA,K/k,SLjO )

where tgr is an element in ((m,(G)) defined in the proof of Lemma 5.5.10. Take
any element z in §,(G)* Then xtge lies in ((Z,[G])*. Therefore, we have by
(5.16)

mﬁi,K//ﬂ,Sk ) (Selp(AK)v)a = xtSkﬁi,K/k,S’go ) (Selp(AK)V)O‘ = 0.

This completes the proof. [

Next we consider the case of i = 5,6, ..., p+3. Since extensions K;/k; satisfies

98



Hypa(K;/k;,p) fori =5,6, ..., p+ 3, it is enough to show the following:

Proposition 5.5.15. Let K/F be a cyclic CM-extension of degree 2p with Galois
group G and A an abelian variety over k such that Hypa(K/F,p) is satisfied. We
assume that A(N)* is finite and 1LY (Ay) = 0. Then if the Birch and Swinnerton-
Dyer conjecture is true for Ax and Ay, Problem 5.5.5 has the affirmative answer
for K/k.

Proof. In what follows, we use the same notation as in the proof of Proposition
4.4.18. By the same argument as in the proof of Theorem 5.5.11, it is enough to
prove the claim for £ . .-, . We observe that A(K)* is finite by Lemma 5.2.1.
Take an element z in §,(G). Then z is of the form

e = Y Y b, o€ DHQG)/Q)

¢€lr G/~ geGal(Q(¢)/Q)
¢ is odd

— zypr,+ > S adprg,

pElr G/~ g€Gal(Q(#)/Q)
¢ is odd and ¢(o) # 1

where ¢ is the character of Gal(K/k) such that ¢(j) = —1 and ¢(0) = 1 and zy,
belongs to Z. We set

Ty 1= Z Z T Py -

Pl G/~ 9€Gal(Qi(¢)/Qu)
¢ is odd and ¢(o) # 1

Since P = (¢), we have N := K'?). Moreover, N/F is a quadratic extension. We
denote by ¢’ the nontrivial character of Gal(N/F). Then we have

Ty Pry Lok /ks = TypLan/psNorm ).

Since A(K)® is finite, we also have A(N)® is finite. Moreover, the triple (A, N/F, p)
satisfies the conditions (a), (b), (e) and (f). Therefore, we have by Proposition
5.5.14

Ty PTy, £A7K/F7S(Selp(AK)v)a = 0.
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Next we show
2 Lak/rs(Sel,(Ax)" )" = 0.

Since A(K)* is finite, we have by Proposition 5.4.2

|(Sel,(Ax)")"] |(TLL, (Ag) )|
= ‘]-Hp(AK)a|
L(Ag, 1) - (V)"
Q(Ag)~
B H L*(A,K/F,¢,1) - 7(Q, Ind} ¢)*
T e QA 9) - wool9)]
H L(A’ K/F7 (£7 1) ) T(@a Ind% ¢)d
Q(A’ ¢) ' w%(¢)d '

(5.17)
pelhr™ G

We take the unique element ¢ € Irr® Gal(N/F). Then by the same way, we have

|(Sel(An) ")

(I, (An)Y)?|

= [, (An)%|

L*(A,N/F,4,1) - 7(Q, Ind% ¢)?
QA Y) - wao(¥)4

L(A,N/F,4,1) - 7(Q, Ind% )¢

- A () (5:18)

Since Infgal( /) ¥ 1s the element in Irr G whose kernel contains P, dividing (5.17)
by (5.18), we have

(Sely(Ar)')| _ pp LAK/FG 1) 7(Q, Indy? ¢)
Q(A, ) - woo(@) '

el G
#(P)#1

Recalling that z) is of the form

Tlg) = > > TP,

pelr G/~ 9€Gal(Q(¢)/ Q)
¢ is odd and ¢(o) # 1
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we see that P does not act trivially on  Sel,(Ax)®. Since we assume Hlff (An) =

0, we have

|(Sel,(Ak)”)"|
|(Sel,(Ax) V)|
| (I, (A ) )|

g (Sel,(Ax) )| <

Q(Aa ¢) ’ w00(¢>d

N o LK/ F 60, 1) - 7(Q Indy 6o)
- Q(¢p)/Q Q(A,Qbo) ] woo(qﬁo)d

), (5.19)

where ¢ is a generator of Irr® G and the last equality follows from Conjecture
5.3.5. The last three equalities of (5.19) imply that for each ¢ € Irr® G such that
®(P) # 1, the element

L(A, ¢, K/F,1) - 7(Q, Ind? ¢)
QA 9) - we(9)

actually lies in Z,[(,] and hence (b(ﬁi,K/F,sg;O) lies in {(m,(Gal(K/F)))e,. In what
follows, we regard z(Sel,(Ap)")* as a Z,[(p]-module (this is possible because
(> gep 0)rg(Sel,(Ax)Y)* = 0). Then we have by (5.19),

) - 7(Q, Ind? 6,

< [Zy[G) (ZZ,K/F,S[;O)])

)]

~

where Ziy K/r.sx, 1s the image of £9 st under the natural surjection Q,[G]*
Qu[P]* = Q[Gy). This implies that () L9 ;. p g annihilates (Sel,(Ax)Y)*. This
completes the proof. ]
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