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Chapter 1

Introduction

1.1 Overview

In this thesis, we study the non-abelian Galois action on arithmetic objects, such

as ideal class groups and Selmer groups. More precisely, we study the relation

between the non-abelian Galois module structure of arithmetic objects and the

special values of L-functions. As a result, we obtain some results on Nickel’s

conjectures, which are generalizations of Stickelberger’s classical result, and the

annihilation of Selmer groups of abelian varieties. Not many results are obtained

in the non-abelian cases; it is a very interesting problem to find phenomena which

is unique to the non-abelian case. We hope our research would in the future also

shed light to the abelian case. We start with the historical background.

In number theory, one of the most important subjects is to study the rela-

tion between analytic objects and arithmetic objects. There exists a classical and

remarkable formula concerning this subject, which is called the analytic class num-

ber formula. We see the explicit statement in §4.1. By this formula, we can see

that the special values of the Dedekind zeta functions know the orders of the ideal

class groups, the class numbers. In other words, the Dedekind zeta functions know

information on the ideal class groups as Z-modules. The Dedekind zeta function

is a generalization of the Riemann zeta function and a purely analytic object. On

the other hand, the ideal class group is defined by a purely algebraic method and
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the class number tells us how far the world of the ideals is from that of the usual

numbers.

Let K/k be a finite Galois extension of number fields with Galois group G.

Then the ideal class group of K has a natural G-action. We take a finite set S

of places of k which contains all infinite places and all finite places of k which

ramify in K. Stickelberger [34] proved that for an absolute abelian extension

K/Q, the Stickelberger element θK/Q,S in the group ring Q[G] “annihilates” the

ideal class group of K. Since the Stickelberger elements are defined by using the

special values of Artin L-functions, Stickelberger’s theorem tells us that Artin

L-functions know information on the structures of the ideal class groups as Z[G]-

modules. The Stickelberger elements and Artin L-functions are defined in §4.3
and §4.2, respectively.

For an arbitrary abelian extension K/k, Brumer formulated the following con-

jecture, which is a generalization of Stickelberger’s theorem:

Conjecture 1.1.1 (Brumer’s conjecture). Stickelberger elements annihilates ideal

class groups.

For the precise statement of the above conjecture, see Remark 4.4.2 in §4.4. We

remark that there exists a refinement of the above conjecture, the Brumer-Stark

conjecture. We see the precise statement in Remark 4.4.6 in §4.4. There exists a

large body of evidence of Brumer’s conjecture and the Brumer-Stark conjecture.

For example,

• if K/k is a quadratic extensions, the conjectures are true for K/k by Tate

[36, §3, case(c)],

• if K/k is an extension with Galois group Z/2Z⊕Z/2Z, the conjectures are

true for K/k by Sands [32, Theorem 2.1],

• if K/k is an extension of degree 4 which is contained in some non-abelian

extension of degree 8, the conjectures are true for K/k by Tate [36, §3,
case(e)],
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• if K/k is a cyclic extension of degree 2p for some odd prime p which sat-

isfies some conditions concerning the ramifications of the primes of k, the

conjectures are true for K/k by Greither, Roblot and Tangedal [11],

• if an odd prime p is “non-exceptional” and the Iwasawa μ-invariant of K

vanishes, the “p-parts” of the conjectures are true for K/k and p by Nickel

[21],

• if the set S contains all finite places of k above an odd prime p and the

Iwasawa μ-invariant of K(ζp) vanishes, where ζp is a complex primitive p-th

root of unity, the “p-parts” of the conjectures are true for K/k, S and p by

Grither and Popescu [13].

Until quite recently, Brumer’s conjecture and the Brumer-Stark conjecture

were formulated only for abelian extensions. Andreas Nickel [23] recently formu-

lated non-abelian generalizations of these conjectures, which are the most impor-

tant objects in this thesis. The biggest difficulty of the conjectures are concerned

with the “integrality” of the Stickelberger elements. In order to get over the dif-

ficulty, we have to introduce the “denominator ideal,” which is defined in §2.2.4.
With the denominator ideal, Nickel’s generalization of Brumer’s conjecture asserts

Conjecture 1.1.2. Stickelberger elements multiplied by denominator ideals anni-

hilate ideal class groups.

We review the precise statements of his conjectures in §4.4. Nickel himself proved

the following two results in [22] and [24]:

• if p is “non-exceptional” and the Iwasawa μ-invariant of K vanishes, the

p-part of Conjecture 1.1.2 is true for K/k and p,

• if the set S contains all finite places of k above an odd prime p and the

Iwasawa μ-invariant of K(ζp) vanishes, the p-part of Conjecture 1.1.2 is true

for K/k and S.

The same claims are true for Nickel’s non-abelian generalization of the Brumer-

Stark conjecture. These results were proved via the non-commutative Iwasawa
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main conjecture, which was proved independently by Kakde [16] and Ritter and

Weiss [30] under Iwasawa’s μ = 0 conjecture. The conjecture claims that there

exists a deep relation between the ideal class groups and the p-adic L-functions

in certain p-adic Lie extensions, which are infinite Galois extensions.

Nickel [23] also formulated the “weak versions” of his conjectures. The term

“weak” means the conjectures state a weaker integrality of the Stickelberger el-

ements. Moreover, we replace the denominator ideal by the “central condcutor,”

which is also defined in §2.2.4. We note that the central conductor is always con-

tained in the denominator ideal. With the central conductor, the weaker version

of Conjecture 1.1.2 asserts

Conjecture 1.1.3. Stickelberger elements multiplied by the central conductors

annihilate ideal class groups.

We review the precise statements of his weak conjectures in §4.4. Concerning this

conjecture, he proved the following:

• if the places of K+ above p do not split in K or Kcl �⊂ (Kcl)+(ζp), the p-part

of Conjecture 1.1.3 is true for K/k and p, where superscripts cl and + mean

the Galois closure over Q and the maximal real subfield, respectively.

The same claim is true for the weak version of Nickel’s non-abelian generaliza-

tion of the Brumer-Stark conjecture. This result is proved via the strong Stark

conjecture.

In this thesis, we reduce Nickel’s conjectures for certain non-abelian extensions

to those for abelian extensions. We study the extensions whose Galois group is

the dihedral group of order 4p with an odd prime p, the generalized quaternion

group of 2-power order or the direct product of the alternating group on 4 letters

and a cyclic group of order 2. We prove for primes l which do not split in certain

cyclotomic fields, “l-parts” of Conjecture 1.1.3 for the extensions. We see the

precise statement of these results in the next section. The proofs of these results are

given in §4.4.2, §4.4.3. Thanks to the reduction step, we can avoid the assumption

μ = 0, and in fact we get slightly stronger results than Nickel’s conjectures.
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Moreover, we can prove the “2-parts” of the weak versions of Nickel’s conjectures,

which are excluded in known results.

The proof of the reduction step of Nickel’s conjectures is purely algebraic and

only needs the Artin formalism of Artin L-functions. We prove an abstract version

of the reduction step in chapter 3. Using the result, we study the (classical) Selmer

group of an abelian variety. As a result, we prove in §5.5.3 that a certain element

which is defined by using the special values of the Hasse-Weil L-functions annihi-

lates the Pontryagin dual of the p-primary part of the Selmer group for extensions

whose Galois groups are the dihedral group of order 4p. We remark that in order

to prove the annihilation result we assume the Birch and Swinnerton-Dyer con-

jecture, the analytic continuation of the Hasse-Weil L-functions and Conjecture

5.3.5 in §5.3.2.

1.2 Main results on Nickel’s conjectures

In this section we see the main results on Nickel’s conjectures more precisely. For

the explicit statements of Nickel’s conjectures, see §4.4.
We first recall that a finite group G is called a monomial group if each of the

irreducible characters of G is induced by a linear character of a subgroup of G.

Then our first main results are

Theorem 1.2.1. Let K/k be a finite Galois extension of number fields whose

Galois group is monomial and S a finite set of places of k which contains all

infinite places. Then if Conjecture 1.1.3 is true for the abelian subextensions of

K/k, Conjecture 1.1.3 is true for K/k and S.

Theorem 1.2.2. Let p be a prime. Then the statement of Theorem 1.2.1 holds

with “Conjecture 1.1.3” replaced by “the p-part of Conjecture 1.1.3”.

In the statements of the original versions of Nickel’s conjectures, the finite set S has

to contain not only all infinite places but also all finite places which ramify in K.

Hence if we believe the weak versions of Nickel’s conjectures for abelian extensions,

we get stronger annihilation results than Nickel’s conjectures. We could get this
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fact because we directly compared conjectures for non-abelian extensions with

conjectures for abelian extensions.

Although the above theorems are on Conjecture 1.1.3, in some cases Conjecture

1.1.3 is equivalent to Conjecture 1.1.2. For example,

• for a prime l which does not divide the order of G, the l-part of Conjecture

1.1.2 is equivalent to that of Conjecture 1.1.3,

• for a prime p, if Ip(G) = ζ(mp(G)) and the degrees of all the irreducible

characters of G are prime to p, the p-part of Conjecture 1.1.2 is equivalent

to that of Conjecture 1.1.3, where Ip(G) is the module generated by the

reduced norms of matrices over Zp[G] and mp(G) is a maximal Zp-order in

Qp[G] which contains Zp[G].

Remark 1.2.3. If G is isomorphic to the dihedral group of order 4p with an odd

prime p, we see by [15, Example 6] (also see [26, Lemma 3.22]) that Ip(G) =

ζ(mp(G)). Moreover, all the irreducible characters of the dihedral groups are 1

or 2-dimensional. Hence the p-part of Conjecture 1.1.2 is equivalent to that of

Conjecture 1.1.3 if G is isomorphic to the dihedral group of order 4p.

As an application of Theorem 1.2.2, we get the following results:

Theorem 1.2.4. Let K/k be a finite Galois extension of number fields whose

Galois group is isomorphic to the dihedral group of order 4p with an odd prime p.

We take a finite set S of places of k which contains all infinite places of k. Then

(1) for each odd prime l (l can be p) which does not split in Q(ζp), the l-part of

Conjecture 1.1.2 is true for K/k and S,

(2) if the prime 2 does not split in Q(ζp), the 2-part of Conjecture 1.1.3 is true

for K/k and S.

Theorem 1.2.5. Let K/k be a finite Galois CM-extension whose Galois group

is isomorphic to the generalized quaternion group of order 2n+2 with a natural

number n and S be a finite set of places of k which contains all infinite places.

Then the 2-part of Conjecture 1.1.3 is true for K/k and S.
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Theorem 1.2.6. Let K/k be a finite Galois CM-extension whose Galois group is

isomorphic to the direct product of Z/2Z and the alternating group on 4-letters,

and S be a finite set of places of k which contains all infinite places. Then

(1) for each odd prime l such that l ≡ 2 mod 3, the l-part of Conjecture 1.1.2 is

true for K/k and S,

(2) the 2-part and the 3-part of Conjecture 1.1.3 are true for K/k and S.

Remark 1.2.7. (1) The above three theorems say that the set S does not have

to contain the places which ramify in K in contrast with Nickel’s formulation.

Hence we give stronger results than Nickel’s works in [22] and [24] in the above

special cases.

(2) Our results contain the 2-parts of conjectures which are excluded in known

results.

(3) We use only the analytic class number formula to prove the above three re-

sults in contrast with known results which were proven via the non-commutative

Iwasawa main conjecture or the strong Stark conjecture.

All the above theorems are true if we replace Conjectures 1.1.2 and 1.1.3 by

Nickel’s non-abelian generalization of the Brumer-Stark conjecture and its weak

version, respectively.

We denote by D4p the dihedral group of order 4p with an odd prime p. Then

we know that the group ring Z2[D4p] is a “nice Fitting order”. Using this fact, we

can improve Theorem 1.2.4. More explicitly, we get the following:

Theorem 1.2.8. Let K/k be a finite Galois CM-extension of number fields whose

Galois group is isomorphic to D4p and S a finite set of places of k which contains

all infinite places and all finite places of k which ramify in K. Then if the prime

2 does not split in Q(ζp), the 2-part of Conjecture 1.1.2 is true for K/k and S.

9



1.3 Main results concerning Selmer groups of

abelian varieties

Let K/k be a finite Galois extension of number fields with Galois group G, A an

abelian variety over k and At the dual abelian variety of A. We set AK := A×kK.

Then the Galois group G acts naturally on the (classical) Selmer group Sel(AK),

which is a subgroup of H1(K,Ators). On the other hand, we can define the L-

function L(A,K/k, χ, s) attached to A and a character χ in IrrG, which is called

the χ-twisted Hasse-Weil L-function (for the explicit definition, see §5.3.1). For
a finite set S of places which contains all infinite places and all finite places of k

which ramify in K, we define in §5.3.3 an element LA,K/k,S in the center of C[G] by

using the special values of the twisted Hasse-Weil L-functions. As an analogue of

Nickel’s conjectures, we formulate in §5.5.1 Problems 5.5.1, 5.5.2, 5.5.4 and 5.5.5

which state the element LA,K/k,S annihilates Sel(AK)
∨ = Hom(Sel(AK),Q/Z).

Then we get the following exact analogue of Theorem 1.2.2:

Theorem 1.3.1. We take an odd prime p. Let K/k be a finite Galois CM-

extension of number fields whose Galois group G is monomial and A an abelian

variety over k. Take a finite set S of places of k which contains all infinite places

of k. We assume A(K)[p] = At(K)[p] = 0, namely the Mordell-Weil groups A(K)

and At(K) have no non-trivial torsion points of order p. Then if Problems in

§5.5.1 have the affirmative answers for all the abelian subextensions of K/k, the

element LA,K/k,S multiplied by the central conductor annihilates the p-primary part

of Sel(AK)
∨.

Remark 1.3.2. (1) If A(K) has non-trivial p-torsion points, we can prove in

§5.5.2 a similar result to the above theorem, Theorem 5.5.11 but we need an extra

“modification” of LA,K/k,S.

(2) In fact, we can prove the above theorem in a slightly general set up, that is, we

only need the fact that k is totally real. In chapter 5, we prove the above theorem

in the general set up.

For an odd prime p, we fix a Sylow p-subgroup P of G and set N := KP .

For a Zp[G]-module M , we set M± := {m ∈ M | jm = ±m}. Then as an
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application of Theorem 1.3.1, we get the following theorem, which is an analogue

of Theorem1.2.4:

Theorem 1.3.3. Let K/k be a finite Galois CM-extension whose Galois group is

isomorphic to the dihedral group of order 4p and α ∈ {±}. We take a finite set

of places of k which contains all infinite places of k. Let A be an abelian variety

over k such that HypA(K/k, p) is satisfied (HypA(K/k, p) is defined in §5.2). We

also assume that At(N)[p] = 0, A(N)α is finite, Xp(AN) injects into Xp(AK)

and the Birch and Swinnerton-Dyer conjecture holds for the intermediate fields of

K/k. Then the element LA,K/k,S multiplied by the central conductor annihilates

the p-primary part of (Sel(AK)
∨)α.

Remark 1.3.4. Burns, Macias Castillo and Wuthrich [4] proved that the p-part

of the equivariant Tamagawa number conjecture for the pair (h1(AK)(1),Z[G])

(with some technical assumptions) implies that the element LA,K/k,S annihilates

the Tate-Shafarevich group X(AK)
∨ if the set S contains all infinite places and

all finite places which ramify in K. This implies Problem 5.5.5 with the same

assumption as Theorem 1.3.3. In the statement of Theorem 1.3.3, the fixed set

S need not contain finite places of k which ramify in K/k and in fact LA,F/k,S is

defined with τ(Q, IndQ
k ψ) rather than τ

∗(Q, IndQ
k ψ), which are defined in §5.3.2.

Therefore, this result is stronger than the result in [4] in this special set up (we

also remove the assumption that p is unramified in F/Q).

1.4 Abstract annihilation theorem

The key point of the proofs of Theorems 1.2.1, 1.2.2 and 1.3.1 is that the character

components of θK/k,S and LA,K/k,S satisfy the Artin formalism. We use a purely

algebraic lemma for the proof of the above theorems. The key lemma, which is an

abstract annihilation theorem, is stated in §3.2
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Chapter 2

Algebraic preliminaries

Throughout this section, we let o be a noetherian integrally closed domain with

field F of quotients. We assume char(F ) = 0.

2.1 Character theory for finite groups

Let G be a finite group. In this section, we review the character theory for G over

C.

2.1.1 Restriction, inflation and induction of characters

For a C[G]-module V of G with character χ, we write

ρ : G→ GL(V )

for the representation. If H is a subgroup of G, we get a representation

ρH : H ↪→ G→ GL(V )

of H. We set

ResGH χ := Tr(ρH).

This character is said to be the restriction of χ to H.
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For a normal subgroup H of G and a C[G/H]-module V ′ with character ψ, we

write

ρG/H : G/H → GL(V ′)

for the representation. Using this representation, we can define a representation

G by

ρ̂G/H : G→ G/H
ρG/H−−−→ GL(V ).

Then we set

InfGH ψ := Tr(ρ̂G/H).

This character is said to be the inflation of ψ to G.

For a subgroup of H and C[H]-module W with character φ, we can define a

representation G by

ρ̂ : G→ GL(C[G]⊗C[H] W ).

We set

IndG
H φ := Tr(ρ̂).

This characters is said to be the character induced by φ. Induced characters have

the following formula:

Proposition 2.1.1. For each g in G, we have

IndG
H φ(g) =

∑
τ∈G,

τgτ−1∈H

φ(τgτ−1).

2.1.2 Inner product of characters

For characters χ1 and χ2 of G, we define the inner product of χ1 and χ2 by

〈χ1, χ2〉G :=
1

|G|
∑
g∈G

χ1(g)χ2(g
−1) ∈ R.

Then we have

• for an irreducible character χ, we have 〈χ, χ〉 = 1,
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• for two irreducible characters χ1 and χ2 of G with χ1 �= χ2, we have

〈χ1, χ2〉=0,

• if a character χ′ is of the form χ′ =
∑

χ∈IrrGmχχ with nχ ∈ Z, we have

〈χ′, χ〉 = nχ.

Concerning this inner product, we know the following theorem by Frobenius:

Theorem 2.1.2 (Frobenius reciprocity law). Let H be a subgroup of G. We take

characters φ of H and χ of G. Then we have

〈IndG
H φ, χ〉G = 〈φ,ResGH χ〉H .

2.1.3 Ring of virtual characters

We set

RG :=
⊕

χ∈IrrG
Zχ = {

∑
χ∈IrrG

aχχ | aχ ∈ Z}.

We call the elements of RG virtual characters of G. We can define a ring struc-

ture of RG by tensor products of characters. Thus we call RG the ring of virtual

characters of G. For each subgroup H of G we can define the map

RH → RG, x �→ IndG
H x.

If we write RH,lin for the subring of RH generated by all linear characters of H,

we have the following fundamental and strong result:

Theorem 2.1.3 (Brauer Induction Theorem). The following map is surjective:

⊕
H<G

RH,lin
⊕ IndGH−−−−→ RG. (2.1)

Remark 2.1.4. In fact we can restrict subgroups H to “elementary subgroups”.

For details, see [8, §15B].
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By this theorem, each of irreducible characters of G is a Z-linear combination of

induced characters. In some cases, it happens that each of irreducible characters

is directly induced from a linear character of a subgroup of G.

Definition 2.1.5. We say G is a monomial group (or monomial) if each of irre-

ducible characters of G is induced by a linear character of a subgroup of G.

In the case where G is monomial, we always fix the following notations:

• We write χ1, χ2, . . . , χrG for the irreducible characters of G,

• For each i ∈ {1, 2, . . . , rG}, we suppose that χi is induced from φi,1, φi,2,

. . . , φi,si of linear characters of Hi,

• We write φ′
i,j for the character of Hi/ kerφi,j whose inflation to Hi is φi,j,

• For each i, we fix a representative φi ∈ {φi,1, φi,2, . . . , φi,si},

• Finally, we set G := {H1, H2, . . . , Hr}.

Additionally, if K/k is a finite Galois extension of number fields whose Galois

group G is monomial, we fix the following notations:

• For each i ∈ {1, 2, . . . , rG} and j ∈ {1, 2, . . . , si}, we set ki = KHi

and Ki,j = Kkerφi,j (since φi,j is a linear character, Ki,j/ki is an abelian

extension).

• We fix a representative Ki ∈ {Ki,1, Ki,2, . . . , Ki,si} so that φi is a character

of Gal(Ki/ki).

• Finally, we set

K := {K1,1/k1, K1,2/k1, . . . , K1,s1/k1,

K2,1/k2, K2,2/k2, . . . , K2,s2/k2,

· · ·
KrG,1/krG , KrG,2/krG , . . . , KrG,srG

/krG}. (2.2)
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2.2 Group rings

2.2.1 Wedderburn decompositions and idempotents

In this section, we study Wedderburn decompositions and idempotents of group

rings.

For any finite group G, IrrG denotes the set of all the irreducible F -valued

characters of G. We put

eχ :=
χ(1)

|G|
∑
g∈G

χ(g−1)g, prχ :=
|G|
χ(1)

eχ =
∑
g∈G

χ(g−1)g, χ ∈ IrrG.

Then the elements eχ are orthogonal central primitive idempotents of F [G] and

prχ are associated projectors. For each χ ∈ IrrG, we fix a matrix representation

ρχ : G→Mχ(1)(F ).

Then we have the Wedderburn decomposition

F [G] =
⊕

χ∈IrrG
F [G]eχ ∼=

⊕
χ∈IrrG

Mχ(1)(F ),
∑
g∈G

αgg �→ (
∑
g∈G

αgρχ(g))χ∈IrrG

and this implies

ζ(F [G]) =
⊕

χ∈IrrG
Feχ ∼=

⊕
χ∈IrrG

F .

From the above isomorphisms, we have

ζ(F [G]) ∼=
⊕

χ∈IrrG/∼
F (χ), (2.3)

where we put F (χ) := F (χ(g) : g ∈ G) and the direct sum runs over all irreducible

characters modulo Gal(F/F )-action. The orthogonal idempotents of F [G] and

associated projectors are given by

e[χ] :=
∑

σ∈Gal(F/F )

eχσ , pr[χ] :=
∑

σ∈Gal(F/F )

prχσ , χ ∈ IrrG/ ∼,
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where we put χσ := σ ◦χ. We note that each element (αχ)χ in the right hand side

of (2.3) corresponds to ∑
χ∈IrrG/∼

∑
σ∈Gal(F (χ)/F )

ασ
χeχσ

in the left hand side. Let mo(G) be a maximal o-order in F [G] which contains

o[G]. Then ζ(mo(G)) is the unique maximal order in F [G], and we have

ζ(mo(G)) ∼=
⊕

χ∈IrrG/∼
oχ, (2.4)

where oχ denote the integral closure of o in F (χ). From this isomorphism, we have

the following:

Lemma 2.2.1. Take an element α =
∑

χ∈IrrG/∼
∑

σ∈Gal(F (χ)/F ) α
σ
χeχσ in ζ(F [G]).

Then α lies in mo[G] if and only if αχ lies in oχ for each χ in IrrG/ ∼.

In the rest of this section, we study idempotents eχ of F [G]. For each 1-

dimensional character χ ∈ IrrG, we take a subgroup Δ of kerχ which is normal

in G and let χΔ be the character of G/Δ whose inflation to G is χ. Then we have

eχ = eχΔ

1

|Δ| NormΔ, (2.5)

where Normkerχ :=
∑

h∈kerχ h. If χ is induced by a character of a subgroup of G,

we can write down eχ by the following lemma:

Lemma 2.2.2. Let G be a finite group and let H be a subgroup of G. If an

irreducible character χ of G is induced by an irreducible character of H, we have

eχ =
∑

φ∈IrrH/∼χ,
Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

eφh ,

where IrrH/ ∼χ means IrrH modulo Gal(F/F (χ))-action.

Proof. Since F [G] is a left and right F [H]-algebra, F [G] decomposes into

⊕
φ∈IrrH

F [G]eφ
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and the components F [G]eφ are left and right F [H]-algebras. By the Frobenius

reciprocity law, we have 〈χ, IndG
H φ〉G = 〈ResGH χ, φ〉H , where 〈 , 〉 is the usual

inner product of characters. This implies that the simple component F [G]eχ of

F [G] decomposes into

(
⊕

φ∈IrrH
F [G]eφ)eχ =

⊕
φ∈IrrH, IndGH φ=χ

F [G]eφ

as a left and right F [H]-algebra. This implies

eχ =
∑

φ∈IrrH,
IndGH φ=χ

eψ. (2.6)

Take a character φ ∈ IrrH such that IndG
H φ = χ. Then for each g ∈ G, we have

χ(g) =
∑
τ∈G,

τ−1gτ∈H

φ(τ−1gτ).

Hence, we have IndG
H φ

σ = IndG
H φ for all σ ∈ Gal(F (φ)/F (χ)). Combining this

with (2.6), we have

eχ =
∑

φ∈IrrH/∼χ,
IndGH φ=χ

∑
h∈Gal(F (φ)/F (χ))

eφh .

This completes the proof.

2.2.2 Nice Fitting orders

In this section, following [15], we introduce the notion “nice Fitting order” for the

group ring o[G]. In [15], this notion is defined not only for group rings, however,

we do not introduce the general definition. For details, see [15, §4].
If o is an integrally closed complete commutative noetherian local domain, we

say o is a Fitting domain. For such a domain, we say o[G] is a Fitting order over

o.
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Definition 2.2.3 ([15], Definition 2). Suppose that o[G] =
⊕k

i=1 Λi, where each

Λi is either a maximal o-order or a ring of matrices over a commutative ring.

Then we say that o[G] is a nice Fitting order over o.

We assume the residue degree of o is p. Then if p does not divide the order of G,

o[G] is a maximal o-order in F [G]. Hence, by definition, o[G] is a nice Fitting order.

The following proposition enables us to find non-maximal nice Fitting orders.

Proposition 2.2.4 ([15], Proposition 4.4). The group ring o[G] is a nice Fitting

order if and only if p does not divide the order of G′.

For example, we see that Z2[D4p] is a (non-maximal) nice Fitting order since the

commutator subgroup of D4p is a cyclic group of order p.

2.2.3 Reduced norms

In this section we study the reduced norm map of the group ring F [G] (for more

general theory of the reduced norm map, see [31, §9] and [8, §7D]). First we assume

F [G] is a split semisimple F -algebra, that is,

F [G] =
⊕

χ∈IrrG
Mχ(1)(F ).

Note that in this case all irreducible representations are realized over F . We fix

a natural number n and take a matrix H in Mn(F [G]). For each χ in IrrG, we

define the reduced characteristic polynomial fH,χ(X) of H as

fH,χ(X) := det(X · 1nχ(1)×nχ(1) − ρχ(H)) =

nχ(1)∑
i=1

aχ,iX
i ∈ F [X].

We write

aχ,0 = (−1)nχ(1) nrF [G],χ(H)

and set

nrF [G](H) :=
∑

χ∈IrrG
nrF [G],χ(H)eχ ∈ ζ(F [G]).
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We call this element the reduce norm of H. We can regard the reduced norm as

the following composition map;

nrF [G] :Mn(F [G])
⊕ρχ−−→
∼

⊕
χ∈IrrG

Mnχ(1)(F )
⊕ detF−−−−→ ζ(F [G]).

In the case where G is abelian, the reduced norm map is the usual determinant

map. Hence if G is abelian, we have

nrF [G](Mn(o[G])) = det
F [G]

(Mn(o[G])) = o[G].

However in the case where G is non-abelian, the equality

nrF [G](Mn(o[G])) = ζ(o[G])

does not hold in general. Besides, nrF [G](Mn(o[G])) is not contained in ζ(o[G]) in

general. Then where does nrF [G](Mn(o[G])) live ? The general answer is as follows:

Proposition 2.2.5. We chose a maximal o-order mo(G) in F [G] which contains

o[G]. Then we have

nrF [G](Mn(o[G])) ⊂ ζ(mo(G)).

Proof. Let Vχ be a F [G]-module with character χ ∈ IrrG. Then we can choose

a basis of Vχ so that ρχ(G) ⊂ GLχ(1)(o). Then by the definition of the reduced

characteristic polynomial for χ, we have nrF [G],χ(Mn(o[G])) ∈ oχ. Hence we have

by (2.4)

nrF [G](Mn(o[G])) ⊂
⊕

χ∈IrrG
oχ = ζ(mo(G)).

Next we study the case where F [G] is not a split algebra. In this case, we have

Mn(F [G]) ∼=
⊕

χ∈IrrG/∼
Mnnχ(Dχ),

where Dχ is a skew filed with ζ(Dχ) = F (χ). We take a splitting field E of F [G]
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which is finite Galois over F . Since we can regard H as an element in Mn(E[G]),

for each χ in IrrG, there exists the reduced characteristic polynomial fH,χ ∈ E[X].

We set

fH,[χ](X) :=
∑

σ∈Gal(E/F (χ))

fσ
H,χ =

nχ(1)∑
i=0

a[χ],iX
i ∈ F (χ)[H].

This polynomial is independent of the choice of E. We call this polynomial the

reduced characteristic polynomial of H for χ ∈ IrrG/ ∼. We write

a[χ],i = (−1)nχ(1) nrF [G],[χ](H)

and define the reduced norm of H as

nrF [G](H) =
∑

χ∈IrrG/∼

∑
σ∈Gal(F (χ)/F )

(nrF [G],[χ](H))σeχσ ∈ ζ(F [G]).

We can regard the reduced norm as the following composition map;

nrF [G] :Mn(F [G]) ↪→Mn(E[G])
⊕ρχ−−→
∼

⊕
χ∈IrrG

Mnχ(1)(E)
⊕ detE−−−−→ ζ(F [G]).

Concerning the image of Mn(o[G]), the same result as Proposition 2.2.5 holds,

that is, we get the following proposition:

Proposition 2.2.6. We chose a maximal o-order mo(G) in F [G] which contains

o[G]. Then we have

nrF [G](Mn(o[G])) ⊂ ζ(mo(G)).

Proof. By the same manner as the proof of Proposition 2.2.5, we see that for

each χ ∈ IrrG/ ∼ the reduced characteristic polynomials of matrices in Mn(o[G])

belong to oχ[X]. Hence we have

nrF [G](Mn(o[G])) ⊂
⊕

χ∈IrrG/∼
oχ = ζ(mo(G)).
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We set

Io(G) := 〈nrF [G](H) | ∀H ∈Mn(o[G]), ∀n ∈ N〉ζ(o[G]) ⊂ ζ(mo(G)).

In the case o is Z (resp. Zp for some prime p), we abbreviate IZ(G) (resp. IZp(G))

by I(G) (resp. Ip(G)). If G is an abelian group, we have

Io(G) = o[G].

In contrast with this fact, if G is non-abelian, it is very hard to determine Io(G).

However, in some cases we can see what Io(G) is. If the order of |G| is invertible
in o, the group ring o[G] is a maximal order in F [G] (cf. [8, Proposition 27.1]).

Therefore we have

Io(G) = ζ(mo[G]) = ζ(o[G]).

If o[G] is a nice Fitting order, we have the following stronger result:

Proposition 2.2.7 ([15], Proposition 4.1). If o[G] is a nice Fitting order, we have

Io(G) = ζ(o[G]).

2.2.4 Denominator ideals and central conductors

In commutative algebra, adjoint matrices are very useful tools, however, there is

no such matrices in non-commutative algebra in general (we can not even take

determinant maps). Johnston and Nickel [15] defined a non-commutative gener-

alization of adjoint matrices for finite dimensional semisimple algebras. In this

section, we first introduce the generalized adjoint matrix over F [G].

We fix a natural number n and take a matrix H in Mn(F [G]). We write

H = ⊕χ∈IrrG/∼H[χ] ∈
⊕

χ∈IrrG/∼
Mnnχ(Dχ).
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For each χ ∈ IrrG/ ∼, we set

H∗
[χ] := (−1)nχ(1)+1

nχ(1)∑
i=1

a[χ],iH
i−1
[χ]

and define the generalized adjoint matrix H∗ of H by

H∗ := ⊕χ∈IrrG/∼H∗
[χ].

If G is abelian, H∗ coincides with the usual adjoint matrix of H.

Proposition 2.2.8. For each matrix H in Mn(F [G]), we have

HH∗ = H∗H = nrF [G](H) · 1n×n.

Proof. It is enough to show H[χ]H
∗
[χ] = nrF [G],[χ](H) · 1nχ×nχ . Since fH,[χ](H[χ]) =

0, we have

H[χ]H
∗
[χ] = = (−1)nχ(1)+1

nχ(1)∑
i=1

a[χ],iH
i
[χ]

= (−1)nχ(1)+1(−a[χ],0)
= nrF [G],[χ] .

If G is abelian and H belongs to Mn(o[G]), we always have H∗ ∈ Mn(o[G]).

However, if G is not abelian, H∗ does not belong to Mn(o[G]) in general. As well

as the reduced norm map, we get the following proposition:

Proposition 2.2.9. If H belongs to Mn(o[G]), we have

H∗ ∈Mn(mo[G]).

Proof. Since H belongs to Mn(o[G]), we see that H[χ] belongs to Mn(mo(G)e[χ])

and the coefficients a[χ],i belong to oχ. Therefore we have H∗
[χ] ∈ Mn(mo(G)e[χ]).
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Hence

H∗ = ⊕χ∈IrrG/∼H∗
[χ] ∈

⊕
χ∈IrrG/∼

Mn(mo(G)e[χ]) =Mn(mo(G)).

Using the generalized adjoint matrices H∗, we define the denominator ideal

Ho(G) by

Ho(G) := {x ∈ ζ(o[G]) | xH∗ ∈Mn(o[G]), ∀H ∈Mn(o[G]) and ∀n ∈ N}.

In the case where o is Z (resp. Zp for some prime p), we abbreviate HZ(G) (resp.

HZp(G)) by H(G) (resp. Hp(G)). By the definition of Hp(G) and Proposition

2.2.8, we have

Ho(G)Io(G) ⊂ ζ(o[G]).

The denominator ideal always has non-trivial elements, more precisely, the central

conductor Fo(G) of mo(G) over o[G] defined by

Fo(G) := {x ∈ ζ(o[G]) | xmo(G) ⊂ o[G]}.

In the case where o is Z (resp. Zp for some prime p), we abbreviate FZ(G) (resp.

FZp(G)) by F(G) (resp. Fp(G)). By Proposition 2.2.8 we have

Fo(G) ⊂ Ho(G).

By Jacobinski’s central conductor formula ([14, Theorem 3] also see [8, §27]), we
see the explicit structure of Fo(G) as

Fo(G) ∼=
⊕

χ∈IrrG/∼

|G|
χ(1)

D−1(F (χ)/F ), (2.7)

where D−1(F (χ)/F ) is the inverse different of F (χ) := F (χ(g); g ∈ G) over F and

χ runs over all irreducible characters of G modulo Gal(F/F )-action. By contrast
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to this formula, the structure of Ho(G) is not known in general. However, in some

cases we can determine the structure of Ho(G). If the order of G is invertible in

o (that is, o[G] is a maximal order), we have Fo(G) = ζ(o[G]). Hence we have

Ho(G) = Fo(G). Even if the order of G is not invertible, we have the following:

Proposition 2.2.10 ([15], Remark 6.5 and Corollary 6.20). If Io(G) = ζ(mo(G))

and the degrees of all the irreducible characters of G are invertible in o, we have

Ho(G) = Fo(G).

In the case Zp[G] is a nice Fitting order, we get the following stronger result:

Proposition 2.2.11 ([15], Proposition 4.1). If o[G] is a nice Fitting order, we

have Ho(G) = Io(G) = ζ(o[G]).

Finally, we prove the following technical lemma, which will be needed later:

Lemma 2.2.12. Let χ be an irreducible character of G which is induced by an

irreducible character of a subgroup H of G. Take an arbitrary element x in Fo(G)

of the form

x =
∑

σ∈Gal(F (χ)/F )

xσχ prχσ .

Then we have

x =
∑

φ∈IrrH/∼,
∃σ∈Gal(F (χ)/F ), Indφ=χσ

∑
f∈Gal(F (φ)/F )

xfχ prφf .

In particular, x also lies in Fo(H).

Proof. For each σ ∈ Gal(F (χ)/F ), we fix an extension σ̃ to Gal(F (φ)/F ). Then
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we have

∑
φ∈IrrH/∼,

∃σ∈Gal(F (χ)/F ), Indφ=χσ

∑
f∈Gal(F (φ)/F )

xfχ prφf

=
∑

φ∈IrrH/∼,
∃σ∈Gal(F (χ)/F ), Indφ=χσ

∑
σ∈Gal(F (χ)/F )

∑
h∈Gal(F (φ)/F (χ))

xσ̃hχ prφσ̃h

=
∑

φ∈IrrH/∼,
∃σ∈Gal(F (χ)/F ), Indφ=χσ

∑
σ∈Gal(F (χ)/F )

⎛
⎝ ∑

h∈Gal(F (φ)/F (χ))

xhχ prφh

⎞
⎠

σ̃

=
∑

φ∈IrrH/∼,
∃σ∈Gal(F (χ)/F ), Indφ=χσ

∑
σ∈Gal(F (χ)/F )

⎛
⎝ ∑

h∈Gal(F (φ)/F (χ))

xhχ prφh

⎞
⎠

σ

=
∑

σ∈Gal(F (χ)/F )

xσχ
∑

φ∈IrrH/∼χσ ,
Indφ=χσ

⎛
⎝ ∑

h∈Gal(F (φ)/F (χ))

prφh

⎞
⎠

σ

=
∑

σ∈Gal(F (χ)/F )

xσχ

⎛
⎜⎜⎝ ∑

φ∈IrrH/∼χ,
Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

prφh

⎞
⎟⎟⎠

σ

=
∑

σ∈Gal(F (χ)/F )

xσχ prχσ .

The last equality follows from Lemma 2.2.2. Since xχ also lies in D−1(F (φ)/F ), x

lies in Fo(H).
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Chapter 3

Abstract annihilation theorem

In this chapter, o is a Dedekind domain with field F of quotients.

3.1 Equivariant elements

3.1.1 Functions over virtual characters

Let G be a finite group. For a subgroup H of G and a normal subgroup N of H,

we choose a function

LH/N : RH/N → F .

We set

LG := {(H/N,LH/N)}H<G, N�H .

We refer to the following hypothesis for LG as Art(LG):

(Art1) If χ1 and χ2 are elements in RH , we have

LH(χ1 + χ2) = LH(χ1)L
H(χ2).

(Art2) For each normal subgroup N of H and ψ in RH/N , we have

LH(Inf ψ) = LH/N(ψ).
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(Art3) For each subgroup J of H and φ in RJ , we have

LH(IndH
J φ) = LJ(φ).

(Art4) For each σ in Gal(F/F ) and χ inR+
H , we have

LH(χσ) = LH(χ)σ.

Note that the condition (Art4) implies that LH(χ) lies in F (χ) for any χ in R+
H .

Proposition 3.1.1. If LG satisfies conditions (Art1) and (Art3), we have

L{idG}(1) =
∏

χ∈IrrG
LG(χ)χ(1).

Proof. We recall that

IndG
{idG} 1 =

∑
χ∈IrrG

χ(1)χ.

Therefore, we have

L{idG}(1) = LG(IndG
{idG} 1G) (by (Art3))

= LG(
∑

χ∈IrrG
χ(1)χ)

=
∏

χ∈IrrG
LG(χ)χ(1) (by (Art1)).

3.1.2 Equivariant elements

For each finite group G, we define the element LG as

LG :=
∑

χ∈IrrG
LG(χ̌)eχ ∈ ζ(F [G]).
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Proposition 3.1.2. If LG(·) satisfies the condition (Art4), we have

LG ∈ ζ(F [G]).

Proof.

LG =
∑

χ∈IrrG
LG(χ̌)eχ

=
∑
g∈G

( ∑
χ∈IrrG

LG(χ̌)
χ(1)

|G| χ(g
−1)

)
g

=
∑
g∈G

⎛
⎝ ∑

χ∈IrrG/∼

∑
σ∈Gal(Q(χ)/Q)

LG(χ̌σ)
χ(1)σ

|G| χ(g
−1)σ

⎞
⎠ g

=
∑
g∈G

⎛
⎝ ∑

χ∈IrrG/∼

∑
σ∈Gal(Q(χ)/Q)

LG(χ̌)σ
χ(1)σ

|G| χ(g
−1)σ

⎞
⎠ g (by (Art4))

=
∑
g∈G

⎛
⎝ ∑

χ∈IrrG/∼
TrF (χ)/F

(
LG(χ̌)

χ(1)

|G| χ(g
−1)

)⎞⎠ g.

Clearly,
∑

χ∈IrrG/∼TrF (χ)/F (L
G(χ̌)χ(1)|G| χ(g

−1)) lies in F . Hence LG lies in F [G].

3.1.3 Integrality of LG

Definition 3.1.3 (Int(LG)). If the element LG has the following condition (3.1),

we say that LG satisfies Int(LG):

LG ∈ Io(G). (3.1)

We take a maximal o-order mo(G) in F [G] which contains o[G].

Definition 3.1.4 (Intw(LG)). If the element LG has the following condition (3.2),
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we say that LG satisfies Intw(LG):

LG ∈ ζ(mo(G)). (3.2)

Since Io(G) is contained in ζ(mo(G)), Int(LG) always implies Intw(LG). In general

it is very hard to see whether LG satisfies Int(LG) or not. However, by Lemma

2.2.1, we get the following criterion to determine whether LG lies in ζ(mo(G)):

Lemma 3.1.5. We assume LG satisfies the condition (Art4). Then LG lies in

ζ(mo(G)) if and only if LG(χ) lies in oχ for each χ in IrrG/ ∼.

Proposition 3.1.6. We assume G is a monomial group and Art(LG) is satisfied.

Then we have

LG =
r∑

i=1

LHi/ kerφi(φ̌′
i)eχi .

Moreover, if the element LHi/ kerφi satisfies Intw(LHi/ kerφi) for each abelian sub-

quotients Hi/ kerφi of G, LG satisfies Intw(LG).

Proof. Since Art(LG) is satisfied, we have

LG(χi) = LG(IndG
Hi
φi)

= LHi(φi)

= LH/ kerφi(φ′
i).

Hence we have

LG =

rG∑
i=1

LG(χ̌i)eχi

=

rG∑
i=1

LHi/ kerφi(φ̌′
i)eχi .

If Intw(LHi/ kerφi) is satisfied, we see that LH/ kerφi(φ′
i) lies in oφ′

i
= oφ. Since

Art(LG) is satisfied, LG(χi) = LH/ kerφ′
i(φ′

i) lies in F (χi). Recalling that oχi is
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integrally closed, we see that LG(χi) actually lies in oχi . By Lemma 3.1.5, we see

that LG satisfies Intw(LG).

3.2 Abstract annihilation theorem

Let G be a finite group andM a o[G]-module. We refer to the following conditions

as Ab(G,M):

(i) G is a monomial group,

(ii) Art(LG) is satisfied.

For each subgroup Hi in G

(iii) LHi/ kerφi,j satisfies Intw(LHi/ kerφi,j),

(iv) Mkerφi,j is annihilated by Fo(Hi/ kerφi,j)LHi/ kerφi,j .

Theorem 3.2.1. Let G be a monomial group and M an o[G]-module which sat-

isfies Ab(G,M). Then LG satisfies Intw(LG) and Fo(G)LG annihilates M .

Remark 3.2.2. (1) In the following proof, we do not need the condition (Art1).

(2) If the module M is a p-group for some prime p, we only need the conditions

of Ab(G,m) modulo p.

Proof. The first claim follows form Proposition 3.1.6. Next we take an element

x in Fo(G). Then x is of the form

x =
∑

χ∈IrrG/∼

∑
σ∈Gal(F (χ)/F )

xσχ prχσ , xχ ∈ D−1(F (χ)/F ).

By Lemma 2.2.12 , we have

∑
σ∈Gal(F (χi)/F )

xσχi prχσi =
∑

φ∈IrrHi/∼
∃σ∈Gal(F (χi)/F ), IndGHi

(φ)=χσi

∑
f∈Gal(F (φ)/F )

xfχi prφf ,
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and there exists a subscript j ∈ {1, 2, . . . , si} such that

∑
f∈Gal(F (φ)/F )

xfχi prφf =
∑

σ∈Gal(F (φi,j)/F )

xfχi prφfi,j
.

This element also lies in Fo(Hi) and its natural image

∑
σ∈Gal(F (φi,j)/F )

xfχi prφ′f
i,j

in o[Hi/ kerφi,j] lies in F(Hi/ kerφi,j). Also we have

∑
σ∈Gal(F (φi,j)/F )

xfχi prφfi,j
LHi =

∑
σ∈Gal(F (φi,j)/F )

xfχiL
Hi(φf

i,j) prφfi,j

=
∑

σ∈Gal(F (φi,j)/F )

xfχiL
Hi/ kerφi,j(φ′f

i,j) prφ′f
i,j
Normkerφi,j

=
∑

σ∈Gal(F (φi,j)/F )

xfχi prφ′f
i,j
LHi/ kerφi,jNormkerφi,j .

Since Normkerφi,j(M) is contained in Mkerφi,j , by the condition (iv) of Ab(G,M),

we have ∑
σ∈Gal(F (φi,j)/F )

xfχi prφfi,j
LHiM = 0.

Therefore, we have

∑
φ∈IrrHi/∼

∃σ∈Gal(F (χi)/F ), IndGHi
(φ)=χσi

∑
f∈Gal(F (φ)/F )

xfχi prφf LHiM = 0.
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Since

∑
φ∈IrrHi/∼

∃σ∈Gal(F (χi)/F ), IndGHi
(φ)=χσi

∑
f∈Gal(F (φ)/F )

xfχi prφf LHi

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠LHi

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠LHi

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

eχσi

⎞
⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠LHi

⎛
⎜⎜⎝ ∑

σ∈Gal(F (χi)/F )

⎛
⎜⎜⎝ ∑

φ∈IrrH/∼χ,
Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

eφh

⎞
⎟⎟⎠

σ⎞
⎟⎟⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠
⎛
⎜⎜⎝ ∑

σ∈Gal(F (χi)/F )

⎛
⎜⎜⎝ ∑

φ∈IrrH/∼χ,
Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

LHi(φh)eφh

⎞
⎟⎟⎠

σ⎞
⎟⎟⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠
⎛
⎜⎜⎝ ∑

σ∈Gal(F (χi)/F )

⎛
⎜⎜⎝ ∑

φ∈IrrH/∼χ,
Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

LG(χ)eφh

⎞
⎟⎟⎠

σ⎞
⎟⎟⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠
⎛
⎜⎜⎝ ∑

σ∈Gal(F (χi)/F )

⎛
⎜⎜⎝LG(χ)

∑
φ∈IrrH/∼χ,

Indφ=χ

∑
h∈Gal(F (φ)/F (χ))

eφh

⎞
⎟⎟⎠

σ⎞
⎟⎟⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠
⎛
⎝ ∑

σ∈Gal(F (χi)/F )

LG(χσ)eχσ

⎞
⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠LG

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

eχσ

⎞
⎠

=

⎛
⎝ ∑

σ∈Gal(F (χi)/F )

xσχi prχσi

⎞
⎠LG,

we have

(
∑

σ∈Gal(F (χi)/F )

xσχi prχσi )L
GM = 0.
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Thus we get

∑
χ∈IrrG/∼

∑
σ∈Gal(F (χ)/F )

xσχ prχσ LGM = xLGM = 0.

This completes the proof.
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Chapter 4

Ideal class groups

4.1 The analytic class number formula

Let K be a number field. In this section we review the analytic class number

formula of the Dedekind zeta function ζK(s) of K. We first fix the following

notations:
oK the ring of integers of K

o∗K the group of units in oK

Cl(K) the ideal class group of K

hK the class number of K i.e. hK = |Cl(K)|
dK the discriminant of K

RegK the regulator of K

μ(K) the group of the roots of unity in K

ωK the number of the roots of unity in K

The the following is the analytic class number formula:

Theorem 4.1.1.

lim
s→1

(s− 1)ζK(s) =
(2)r1(2π)r2hK RegK

ωK

√|dK |
,

where r1 and 2r2 are the numbers of real embeddings K ↪→ R and complex embed-

dings K ↪→ C, respectively.
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We set

A(s) := |dK |s− 1
2

(
cos

πs

2

)r1+r2 (
sin

πs

2

)r2
(2(2π)sΓ(s))r1+2r2 ,

where Γ(s) is the gamma function. Then we get the following:

Theorem 4.1.2 (The functional equation of ζK(s)).

ζK(1− s) = A(s)ζK(s).

Combining this functional equation with the analytic class number formula,

we get the following corollary:

Corollary 4.1.3. The leading term of the Taylor expansion of ζK(s) at s = 0 is

ζK(s) = −hk RegK
ωK

sr1+r2−1 + · · · .

4.2 Artin L-functions

Let K/k be a finite Galois extension of number fields with Galois group G. For

each finite place p of k, we fix a finite place P of K above p. We write GP (resp.

IP) for the decomposition subgroup (resp. inertia subgroup) of G at P. Finally,

we fix a lift FrobP of the Frobenius automorphism of GP/IP.

For each finite place p of k and character χ, we define the local Artin L-function

at p attached to K/k and χ as

Lp(K/k, χ, s) := det(1− FrobPNp−s|V IP
χ ).

Take a finite set S of places of k. Using local L-functions, we define the S-truncated

global Artin L-function attached to K/k and χ as

LS(K/k, χ, s) :=
∏

p∈Sf\S
Lp(K/k, χ, s).

This infinite product converges absolutely for all complex numbers s with real part
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�(s) > 1. Moreover, it has an analytic continuation to a meromorphic function

on the complex plane C. For each finite set T of places of k such that S ∩ T = ∅,
we set

δT (K/k, χ, s) :=
∏
p∈T

det(1− Frob−1
p Np1−s|V IP

χ )

and define the T -modified S-truncated Artin L-function LT
S (K/k, χ, s) attached

to K/k and χ as

LT
S (K/k, χ, s) = δT (K/k, χ̌, s)LS(K/k, χ, s).

This modified L-function has the following properties:

Proposition 4.2.1 (Artin formalism).

(i) LT
S (K/k, 1G, s) =

∏
p∈T (1−Np1−s)ζk,S(s),

(ii) If χ1 and χ2 are characters of G, we have

LT
S (K/k, χ1 + χ2, s) = LT

S (K/k, χ1, s)L
T
S (K/k, χ2, s),

(iii) If F is an intermediate field of K/k such that F/k is Galois and ψ is a

character of Gal(F/k), we have

LT
S (K/k, Inf

G
Gal(F/k) ψ, s) = LT

S (F/k, ψ, s),

(iv) If F is an intermediate field of K/k and φ is a character of Gal(K/F ), we

have

LT
S (K/k, Ind

G
Gal(K/F ) φ, s) = LTF

SF
(K/F, φ, s).

Next we study the value of LT
S (K/k, χ, s) at s = 0 for χ in R+

G. First we easily

see that

δT (K/k, χ
σ, 0) = δT (K/k, χ, 0)

σ, ∀σ ∈ Aut(C).

If we write rS(χ) for the vanishing order of LS(K/k, χ, s) at s = 0, we have by
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[35, p24, Proposition 3.4]

rS(χ) =
∑
p∈S

dimV GP
χ − dimV G

χ (4.1)

for each non-trivial character in R+
G. This implies that if LS(K/k, χ, 0) vanishes,

LS(K/k, χ
σ, 0) also vanishes for all σ. Therefore, we have

LS(K/k, χ
σ, 0) = LS(K/k, χ, 0)

σ, ∀σ ∈ Aut(C).

If LS(K/k, χ, 0) does not vanish, we have

LS(K/k, χ
σ, 0) = LS(K/k, χ, 0)

σ, ∀σ ∈ Aut(C)

by Stark’s conjecture, which was proved by Siegel [33] if G is abelian with rS(χ) =

0, and the general result is given by Brauer induction [35, p70, Theorem 1.2]. Thus

we have

LT
S (K/k, χ

σ, 0) = LT
S (K/k, χ, 0)

σ, ∀σ ∈ Aut(C).

This implies that LT
S (K/k, χ

σ, 0) lies in Q(χ) and

LT
S (K/k, χ

σ, 0) = LT
S (K/k, χ, 0)

σ, ∀σ ∈ Gal(Q(χ)/Q). (4.2)

For a Galois subextension K ′/k′ of K/k and a character ξ′ of Gal(K ′/k′), we set

LGal(K′/k′)(ξ′) := L
Tk′
Sk′

(K ′/k′, ξ′, 0)

and

LG := {LGal(K′/k′),Gal(K ′/k′))}K′/k′ .

By Proposition 4.2.1 and the equation (4.2), we have the following:

Proposition 4.2.2. For each finite Galois extension K/k of number fields with

Galois group G, Art(LG) is satisfied.

Next we study the vanishing of Artin L-functions. By the formula (4.1), we
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see that if k is not totally real or K is not totally imaginary, we always have

LS∞(K/k, χ, 0) = 0 for all χ in IrrG. Therefore, the only nontrivial case is the

case that K/k is a CM-extension, which means that k is a totally real field, K

is a CM-field and the complex conjugation induces a unique automorphism j

belonging to the center of G. For a CM-extension, we can split the irreducible

characters into odd and even characters. For each χ ∈ IrrG, we call χ is odd

(resp. even) if χ(j) = −χ(1) (resp. χ(j) = χ(1)). Hence in the case where K/k is

a CM-extension the formula (4.1) implies that

{
LS∞(K/k, χ, 0) = 0 if χ is even and χ �= 1,

LS∞(K/k, χ, 0) �= 0 if χ is odd.

Since LS∞(K/k, 1, s) = ζk(s), we see in the case where K/k is a CM-extension

that

LS∞(K/k, 1, 0) �= 0 if and only if k = Q.

We set

h−K = hK/hK+ .

We conclude this section with the following lemma:

Lemma 4.2.3. Let K/k be a finite Galois CM-extension of number fields with

Galois group G. Then we have

h−K = 2−r−1QωK

∏
χ∈IrrG,
χ is odd

L(K/k, χ, s)χ(1),

where we set Q = [o∗K : μ(K)o∗K+ ] and r =
1
2
[K : Q]− 1.

Remark 4.2.4. The unit index Q is equal to 1 or 2.

Proof. By Propositions 3.1.1 and 4.2.2, we have

ζK(s) =
∏

ψ∈IrrGal(K/K+)

L(K/K+, ψ, s)

= ζK+(s) · L(K/K+, ψ0, s),
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where ψ0 is the non-trivial irreducible character of Gal(K/K+). Since the vanish-

ing orders of ζK(s) and ζK(K
+) are the same, we have

lim
s→0

ζK(s)

ζK+(s)
=

hK/hK+ RegK /RegK+

ωK/ωK+

= 2
RegK /RegK+

ωK

h−K .

By [37, Proposition 4.16], we have

RegK
RegK+

=
1

Q2r.

Therefore, we have

lim
s→0

ζK(s)

ζK+(s)
=

2r+1

Q h−K .

Now we only have to prove

L(K/K+, ψ0, s) =
∏

χ∈IrrG,
χ is odd

L(K/k, χ, s)χ(1).

This equality follows form the fact that we have

IndG
Gal(K/K+) ψ0 =

∑
χ∈IrrG,
χ is odd

χ(1)χ

and Proposition 4.2.1.

4.3 Stickelberger elements

Let K/k be a finite Galois extension of number fields with Galois group G. In this

section we define the Stickelberger element and study its integrality.
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4.3.1 Stickelberger elements

We take a finite set S of places of k which contains all infinite places. For each

finite set T of places of k such that S ∩ T = ∅, we define the (S, T )-modified

Stickelberger element θTK.k,S as

θTK/k,S :=
∑

χ∈IrrG
LT
S (K/k, χ̌, 0)eχ ∈ C[G].

This element is characterized by the formula

χ(θTK/k,S) = χ(1)δT (K/k, χ, 0)LS(K/k, χ̌, 0). (4.3)

When S = Sram ∪ S∞ and T = ∅, we put θK/k := θTK/k,S. Moreover, in the case k

= Q we will always omit the trivial character component of θTK/k,S.

By Proposition 3.1.2 and 4.2.2, we have the following proposition:

Proposition 4.3.1. θTK/k,S belongs to ζ(Q[G]).

4.3.2 Integrality of Stickelberger elements

Let S and T be finite sets of places of k. We let ES(K) denote the group of S(K)-

units of K and set ET
S (K) := {x ∈ ES(K) | x ≡ 1 mod

∏
P∈TK P}. We refer to

the following hypothesis as Hyp(S, T ):

• S contains Sram ∪ S∞,

• S ∩ T = ∅,

• ET
S (K) is torsion free.

Theorem 4.3.2 (Deligne and Ribet [9], Barsky [1], Cassou-Noguès [7]). We as-

sume K/k is an abelian extension. If finite sets S and T satisfy Hyp(S, T ), we

have

θTK/k,S ∈ Z[G].
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Remark 4.3.3. By [23, Lemma 2.2], we have

AnnZ[G](μ(K)) =Z[G] 〈
∏
p∈T

(1− Frob−1
P Np) | Hyp(S, T ) is satisfied. 〉, (4.4)

where G is not necessarily abelian. Hence the above claim of Theorem 4.3.2 is

equivalent to the claim that we have

AnnZ[G](μ(K))θK/k,S ⊂ Z[G]

if K/k is abelian extension.

Now we introduce a conjecture by Nickel concerning the integrality of Stickelberger

elements.

Conjecture 4.3.4 (Integrality of Stickelberger elements). If finite sets S and T

satisfy Hyp(S, T ), we have

θTK/k,S ∈ I(G).

Remark 4.3.5. If G is abelian, I(G) coincides with Z[G]. Therefore, we can

regard the above conjecture as a generalization of Theorem 4.3.2.

We choose a maximal Z-order m(G) in Q[G] which contains Z[G]. He also

conjectured the following weak version of the above conjecture:

Conjecture 4.3.6 (Weak integrality of Stickelberger elements). If finite sets S

and T satisfy Hyp(S, T ), we have

θTK/k,S ∈ ζ(m(G)).

In the case where G is monomial, we define abelian subextensions as follows:

For each i ∈ {1, 2, . . . , rG} and j ∈ {1, 2, . . . , si}, we set ki = KHi and

Ki,j = Kkerφi,j , noting that Ki,j/ki is an abelian extension since φi,j is a linear

character. We fix a representative Ki ∈ {Ki,1, Ki,2, . . . , Ki,si} so that φi is a
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character of Gal(Ki/ki). Finally, we set

K := {K1,1/k1, K1,2/k1, . . . , K1,s1/k1,

K2,1/k2, K2,2/k2, . . . , K2,s2/k2,

· · ·
KrG,1/krG , KrG,2/krG , . . . , KrG,srG

/krG}. (4.5)

By Proposition 3.1.6, 4.2.2 and Theorem 4.3.2, we get the following:

Theorem 4.3.7. Let S be a finite set of places of k which contains all infinite

places. If G is a monomial group, we have

θTK/k,S =

rG∑
i=1

φ′
i(θ

Tki
Ki/ki,Ski

)eχi .

Moreover, if Hyp(S ∪ Sram, T ) is satisfied, we have

θTK/k,S ∈ ζ(m(G)).

Remark 4.3.8. The above theorem says that the finite set S need not contain

Sram to lie in ζ(m(G)) if G is a monomial group. Nickel [25] showed a stronger

result for K/k whose Galois group is monomial but requires the condition S to

contain Sram.

4.4 Nickel’s conjectures for non-abelian exten-

sions

In this section we review the formulations of the non-abelian Brumer and Brumer-

Stark conjectures by Andreas Nickel, for the details see [23].

First we introduce the non-abelian generalization of Brumer’s conjecture by

Nickel:
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Conjecture 4.4.1 (B(K/k, S)). Let S be a finite set of places of k which contains

all infinite places and all finite places which ramify in K. Then

• ASθS ⊂ I(G),

• For any x ∈ H(G), xASθS ⊂ AnnZ[G](Cl(K)).

Remark 4.4.2. We assume G is abelian. Then we have I(Z[G]) = H(Z[G]) =

Z[G] and can take x = 1. Moreover we have AS = AnnZ[G](μ(K)). Hence the

above claim is equivalent to

AnnZ[G](μ(K))θK/k,S ⊂ AnnZ[G](Cl(K)).

This is the exact claim of Brumer’s conjecture. Therefore we can regard Conjec-

ture4.4.1 as an generalization of Brumer’s conjecture.

We take a maximal Z-order m(G) in Q[G] which contains Z[G]. In [23], the

author also formulated the following weak version of Conjecture 4.4.1:

Conjecture 4.4.3 (Bw(K/k, S)). Let S be a finite set of places of k which con-

tains Sram ∪ S∞. Then

• ASθS ⊂ ζ(m(G)),

• For any x ∈ F(G), xASθS ⊂ AnnZ[G](Cl(K)).

Remark 4.4.4. Even if G is a nontrivial abelian group, we always have m(G) �

Z[G]. Moreover, F(G) does not contain the element 1. Hence we can not recover

the usual Brumer’s conjecture from the conjecture 4.4.3 even in the case where G

is abelian. Roughly speaking, Conjecture 4.4.3 says |G|θTK/k,S annihilates Cl(K)

if G is abelian.

Replacing Z, Q and Cl(K) with Zp, Qp and Cl(K) ⊗ Zp respectively, we

can decompose B(S,K/k) (resp. Bw(S,K/k)) into local conjectures B(S,K/k, p)

(resp. Bw(S,K/k, p)).
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We call α ∈ K∗ an anti-unit if α1+j = 1 and set ωK = nr(|μ(K)|). We remark

that wk is no longer a rational integer but an element in ζ(m(G)) of the form∑
χ∈IrrG |μ(K)|χ(1)eχ. We define

Sα := {p | p is a prime of k and p divides NK/kα},

where NK/k is the usual norm of K over k. Then Nickel’s non-abelian generaliza-

tion of Brumer-Stark conjecture is as follows:

Conjecture 4.4.5 (BS(K/k, S)). Let S be a finite set of places which contains

Sram ∪ S∞. Then

• ωKθK/k,S ∈ I(G),

• For any fractional ideal A of K and for each x ∈ H(G), there exists an

anti-unit α = α(A, S, x) such that AxωKθK/k,S = (α).

Moreover, for any finite set T of places of k which satisfies Hyp(S ∪Sα, T ), there

exists αT ∈ ET
Sα
(K) such that

αzδT = αzωK
T (4.6)

for each z ∈ H(G).

Remark 4.4.6. We assume G is abelian. Then we can take x = z = 1. Moreover,

by [35, Proposition 1.2], the above statement is equivalent to the assertion that

AωKθK/k,S = (α) and K(α1/ωK )/k is an abelian extension.

This is the exact claim of the Brumer-Stark conjecture. Hence we can regard

Conjecture 4.4.5 as a non-abelian generalization of the Brumer-Stark conjecture.

As well as the non-abelian Brumer conjecture, there exits the following weak

version of Conjecture 4.4.5.

Conjecture 4.4.7 (BSw(K/k, S)). Let S be a finite set of places which contains

Sram ∪ S∞. Then
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• ωKθK/k,S ∈ ζ(m(G)),

• For any fractional ideal A of K and for each x ∈ F(G), there exists an

anti-unit α = α(A, S, x) such that AxωKθK/k,S = (α).

Moreover, for any finite set T of places of k which satisfies Hyp(S ∪Sα, T ), there

exists αT ∈ ET
Sα
(K) such that

αzδT = αzωK
T (4.7)

for each z ∈ F(G).

Remark 4.4.8. For the same reason as Remark 4.4.4, we can not recover the

usual Brumer-Stark conjecture from the Conjecture 4.4.7 in the case where G is

abelian.

Let mp(G) be a maximal Zp-order in Qp[G] which contains Zp[G]. Replacing

m(G) and A with mp(G) and A whose class in Cl(K) is of p-power order re-

spectively and in the equation (4.6), (4.7) replacing ωK with ωK,p := nr(|μK ⊗
Zp|), we can decompose BS(S,K/k) (resp. BSw(S,K/k)) into local conjectures

BS(S,K/k, p) (resp. BSw(S,K/k, p)).

For an intermediate field L of K/k and a set T of places of k, we write Cl(L)TL

for the ray class group of L to the ray
∏

PF∈TL PL and set Cl(L)TLp := Cl(L)TL⊗Zp.

Then we can interpret Conjecture 4.4.5 as the annihilation of ray class groups as

follows:

Proposition 4.4.9 ([28] Proposition 4.2 and [23] Proposition 3.8). Let S be a

finite set of places of k which contains S∞ and Sram. We assume θTK/k,S be-

longs to Ip(G) for each finite set T of places which satisfies Hyp(S, T ). Then

BS(K/k, S, p) is true if and only if for each finite set T of places of k such that

Hyp(S, T ) is satisfied, we have Hp(G)θ
T
K/k,S ⊂ AnnZp[G](Cl(K)TKp ).

Remark 4.4.10. The following proof of the sufficiency is essentially the same as

the proof of [23, Lemma 2.9].

Proof. Concerning the necessity, the same proof as [23, Proposition 3.8] works.

Hence we only prove the sufficiency. We take a finite set T of places of k such that
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Hyp(S, T ) is satisfied. Let A be a fractional ideal of K coprime to the primes in

TK whose class in Cl(K)TK has p-power order. Then for each x ∈ Hp(G), we have

AxωKθK/k,S = (α) (4.8)

for some anti-unit α ∈ K∗. Since A is coprime to the primes in TK , we see that

Hyp(S ∪Sα, T ) is satisfied. Hence there exists an element αT ∈ ET
Sα
(K) such that

αzδT = αzωK
T (4.9)

for any z in Hp(G). Since nr(|μ(K)|−1) belongs to ζ(Q[G]), there exists a nat-

ural number N such that N nr(|μ(K)|−1) ∈ ζ(Z[G]). Then N nr(|μ(K)|−1)δT ∈
ζ(mp(G)). Since |G| is an element in Fp(G) ⊂ Hp(G), by (4.8) and (4.9) we have

(AxωKθK/k,S)|G|N nr(|μ(K)|−1)δT = AxθT
K/k,S

|G|N

= (α)|G|N nr(|μ(K)|−1)δT

= (α|G|δT )N nr(|μ(K)|−1)

= (α
|G|ωK
T )N nr(|μ(K)|−1)

= (αT )
|G||N |.

Since we assume θTK/k,S ∈ Ip(G) and the group of fractional ideals has no torsion,

the above equation implies

AxθT
K/k,S = (αT ).

This completes the proof.

In the abelian case, the Brumer-Stark conjecture implies Brumer’s conjecture,

and the same claim holds in the non-abelian case as follows:

Lemma 4.4.11 ([23], Lemma 2.9).

• BS(K/k, S)(resp. BS(K/k, S, p)) implies B(K/k, S)(resp. B(K/k, S, p)),

• BSw(K/k, S)(resp. BSw(K/k, S, p)) implies Bw(K/k, S, )(resp. Bw(K/k, S, p)).
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For the local conjectures, we can state the relation between usual conjectures

and weaker conjectures as follows:

Lemma 4.4.12. If Ip(G) = ζ(mp(G)) and the degrees of all the irreducible char-

acters of G are prime to p,

• B(K/k, S, p) holds if and only if Bw(K/k, S, p) holds,

• BS(K/k, S, p) holds if and only if BSw(K/k, S, p) holds.

Proof. If p does not divide the order of G (in this case, the degrees of irreducible

characters are automatically prime to p, since they have to divide the order of

G), by [23, Lemma 2.5 and Lemma 2.8], the equivalences hold. If p divides the

order of G, by Proposition 2.2.10, we have Hp(G) = Fp(G), and hence we get the

equivalences.

Let Dn denote the dihedral group of order n for any even natural number

n > 0. Then as an application of Lemma 4.4.12, we get the following:

Lemma 4.4.13. Let K/k be a finite Galois extension whose Galois group is iso-

morphic to D4p for an odd prime p. Then we have for any odd prime l

• B(K/k, S, l) holds if and only if Bw(K/k, S, l) holds,

• BS(K/k, S, l) holds if and only if BSw(K/k, S, l) holds.

Proof. It is enough to treat the case l = p. First we recall that D4p is isomorphic

to Z/2Z × D2p. We set G = Z/2Z × D2p and j denotes the generator of Z/2Z.

Since we have

nrQp[G](
1 + j

2
) =

1 + j

2
and nrQp[G](

1− j

2
) =

1− j

2
,

we also have

I(Zp[G]) = Ip(D2p)
1 + j

2
⊕ Ip(D2p)

1− j

2
. (4.10)

By [15, Example 6.22], I(D2p) = ζ(Λ′
D2p

), where Λ′
D2p

is a maximal Zp-order

in Qp[D2p] which contains Zp[D2p]. We set Λ′ := Λ′
D2p

1+j
2

⊕ Λ′
D2p

1−j
2
, which is a
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maximal Zp-order in Qp[G] which contains Zp[G]. Then we have

Ip(G) = ζ(Λ′
D2p

)
1 + j

2
⊕ ζ(Λ′

D2p
)
1− j

2
= ζ(Λ′).

By Lemma 4.4.12, this completes the proof.

4.4.1 Monomial CM-extensions

In this section, we prove the following theorem:

Theorem 4.4.14. Let K/k be a finite Galois CM-extension whose Galois group

is monomial. We take a finite set S of places of k which contains S∞. Then if

Bw(Ki,j/ki, Ski) is true for all Ki,j/ki in K, Bw(K/k, S) is true.

Remark 4.4.15. In the above statement the set S does not have to contain Sram.

Therefore, if we believe (the weak) Brumer’s conjecture for abelian extensions, we

get a stronger annihilation result than Nickel’s conjecture.

Proof. We take another finite set T of places which satisfies Hyp(S ∪ Sram, T ).

Then we have to show the following two things:

• θTK/k,S lies in ζ(m(G)),

• for all x in F(G), we have xθTK/k,S · Cl(K) = 0.

The first claim is true by Theorem 4.3.7. To show the second claim, we only have

to show that the pair (LG, Cl(K)) satisfies Ab(LG, Cl(K)) by Theorem 3.2.1. The

condition (i) of Ab(LG, Cl(K)) is obviously satisfied. The condition (ii) is followed

by Proposition 4.2.2. The condition (iii) is followed by the fact that the extensions

Ki,j/ki are abelian extensions. The condition (iv) is followed by our assumption

that Bw(Ki,j/ki, Ski) is true for all Ki,j/ki in K.

4.4.2 Extensions with group D4p

In this section we study Nickel’s conjectures for extensions with group D4p. First

we review the character theory of D4p. After that we prove the main theorem of

this section.

49



Character theory of D4p

In this section, we review the character theory of D4p. As is well known, all

the irreducible characters of D4p are four 1-dimensional characters and p − 1 2-

dimensional characters. The group D4p is the direct product of Z/2Z and D2p.

Hence if we use the presentation D2p = 〈σ, τ | σp = τ 2 = 1, τστ−1 = σ−1〉,
the commutator subgroup of D4p is 〈σ〉 and we have D4p/〈σ〉 ∼= Z/2Z ⊕ Z/2Z.

Moreover, the 1-dimensional characters are determined by the following table,

where j is the generator of Z/2Z:

Table 4.1: 1-dimensional characters of D4p

σ τ j
χ0 1 1 1
χ1 1 1 −1
χ2 1 −1 1
χ3 1 −1 −1

Since the center of D4p is {1, j}, the element j corresponds to the unique complex

conjugation in the case where D4p is the Galois group of some CM-extension

of number fields. Hence we see that the only 1-dimensional odd (resp. even)

characters are χ1 and χ3 (resp. χ0 and χ2). For i = 1, 3, we write χab
i for

the character of Gal(Kab/k) whose inflation to G is χi. All the 2-dimensional odd

characters are induced by the faithful odd characters of 〈jσ〉. Form ∈ (Z/pZ)∗, let

φm be the character of 〈jσ〉 which sends σ and j to ζmp and −1, respectively. We set

χ2m+3 = Ind
D4p

〈jσ〉 φ
m (we use this numbering so that odd subscripts correspond to

odd characters). Using the Frobenius reciprocity law and the fact that χ2m+3(1) =

2 and χ2m+3(j) = −2, we see that Res
D4p

〈jσ〉 χ2m+3 = φm + φ−m and Ind
D4p

〈jσ〉 φ
m =

Ind
D4p

〈jσ〉 φ
−m. Therefore, the number of 2-dimensional odd characters is (p−1)/2. All

the even characters are induced by the characters φ2m for m = 1, 2, . . . , p − 1.

We set χ2m+2 = Ind
D4p

〈jσ〉 φ
2m. Then by the same way as odd characters we see

that Res
D4p

〈jσ〉 χ2m+2 = φ2m + φ−2m and Ind
D4p

〈jσ〉 φ
2m = Ind

D4p

〈jσ〉 φ
−2m. Finally we set

kφ := K〈jσ〉.
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Main Theorem

In this section we prove the following theorem:

Theorem 4.4.16 ([26], Theorem 5.1). Let K/k be a finite Galois extension of

number fields whose Galois group is isomorphic to D4p. We take a finite set S of

places of k which contains S∞. Then

(1) for each odd prime l (l can be p) which does not split in Q(ζp), the non-abelian

Brumer and Brumer-Stark conjectures are true for K/k and S,

(2) if the prime 2 does not split in Q(ζp), the weak non-abelian Brumer and

Brumer-Stark conjectures are true for K/k and S.

Remark 4.4.17. If S contains all finite places of k which ramify in K, we know

the following:

(1) In the case of k = Q, the above results except the 2-part is contained in Nickel’s

work [22], [24] if we assume μ = 0; (2) If no prime above p splits inK/K+ whenever

Kcl ⊂ (Kcl)+(ζp), the above result holds for odd p by [25, Corollary 4.2].

The observation we made in the previous subsection tells us that we have only

to verify the weak Brumer-Stark conjecture for two relative quadratic extensions

K3/k, K4/k and the cyclic extension K/k5. By [36, §3, case(c)], the Brumer-Stark

conjecture is true for any relative quadratic extensions and hence true for K3/k,

K4/k. In order to complete the proof of Theorem 4.4.16, we have to verify the

l-part of the weak Brumer-Stark conjecture for K/k5 for each prime l which does

not split in Q(ζp). Since K/k5 is a cyclic extension of degree 2p, it is enough to

show the following:

Proposition 4.4.18. Let l be a prime which does not split in Q(ζp). Let K/F

be any cyclic CM-extension of number fields of degree 2p. Then the l-part of the

weak Brumer-Stark conjecture for K/F is true.

Remark 4.4.19. The method of the proof of this proposition is essentially the

same as that of [11, Proposition 2.2 and Proposition 2.1] but we do not need the

classifications in loc. cit because we only need a weaker annihilation results than

the full Brumer-Stark conjecture.
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Proof of Proposition 4.4.18. By abuse of notation, we also denote by σ and

j elements of Gal(K/F ) whose orders are p and 2, respectively. For a prime l

which does not split in Q(ζp), we take an element x ∈ F(Gal(K/F )) of the form

x =
∑

φ∈IrrG/∼
φ is odd

∑
g∈Gal(Q(φ)/Q)

xgφ prφg , xφ ∈ D−1(Q(φ)/Q)

= xψ prψ +
∑

φ∈IrrG/∼
φ is odd and φ(σ) = 1

∑
g∈Gal(Q(φ)/Q)

xgφ prφg ,

where ψ is the character of Gal(K/F ) such that ψ(j) = −1 and ψ(σ) = 1 and xψ

belongs to Z. We set

x[φ] :=
∑

φ∈IrrG/∼
φ is odd and φ(σ) = 1

∑
g∈Gal(Ql(φ)/Ql)

xgφ prφg .

We take a finite set S of places of k which contains Sram∪S∞ and a fractional ideal

A of K whose class in Cl(K) has l-th power order. We set ωK,l := |μ(K) ⊗ Zl|.
With these notations, we prove the following two claims:

Claim 4.4.20. There exists anti-unit α1 such that

Axψ prψ ωKθK/k,S = (α1) and K(α
1/ωK,l
1 )/F is abelian.

Claim 4.4.21. There exists anti-unit α2 such that

Ax[φ]ωKθK/k,S = (α2) and K(α
1/ωK,l
2 )/F is abelian.

If we assume the above two claims, we have

AxωKθK/k = (α1α2) and K((α1α2)
1/ωK,l)/F is abelian.

Hence in order to prove Proposition 4.4.18, it is enough to prove the above two

claims. We first prove Claim 4.4.20.
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Proof of Claim 4.4.20. We set H := 〈σ〉 and E := KH . Then E/F is a

quadratic extension. We denote by ψ′ the nontrivial character of Gal(E/F ). Then

we have

xψ prψ ωKθK/k,S = xψ prψ ωKLS(K/F, ψ, 0) prψ

= xψωKLS(E/F, ψ
′, 0) prψ′ Norm〈σ〉

= xψωKθE/F,SNorm〈σ〉.

By [36, §3, case(c)], the Brumer-Stark conjecture is true for any relative quadratic

extensions. Hence there exists an anti-unit α′
1 ∈ E∗ such that

Norm〈σ〉(A)ωEθE/k,S = (α′) and E(α′1/ωE,l)/F is abelian, (4.11)

where ωE,l = |μ(E)⊗ Zl|. We set

α1 := α
′xψ

ωK,l
ωE,l .

Then α1 is an anti-unit in K∗ and we have by (4.11)

Axψ prψ ωKθK/k,S = AxψωKθE/F,SNorm〈σ〉 = (α1).

Moreover, we have

K(α
1/ωK,l
1 ) = K(α′xψ1/ωE,l).

Since xψ ∈ Z, we can conclude by (4.11) that

K(α
1/ωK,l
1 )/F is abelian.

Proof of Claim 4.4.21. (i) First, we suppose l = 2. In this case, by [11, The-

orem 3.2], Proposition 4.4.18 holds for p = 3 and exactly the same proof works

for any odd prime p if 2 does not split in Q(ζp) . Hence Proposition 4.4.18 holds

in this case.
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(ii) In what follows we assume l is odd. Let ψ be the irreducible character of

Gal(K/F ) which sends σ and j to 1 and −1, respectively. Then this character

is the inflation of the nontrivial character ψ′ of Gal(E/F ), where E = KH and

H = 〈σ〉. We put

AK :=
1− j

2
(Cl(K)⊗ Zl),

AE :=
1− j

2
(Cl(E)⊗ Zl).

Then by Lemma 4.2.3, we get

|AK | = ωK,lL(0, ψ,K/F )

p−1∏
j=1

L(0, φj, K/F )

= ωK,lL(0, ψ
′, E/F )NQ(ζp)/Q(L(0, φ,K/F )), (4.12)

|AE| = ωE,lL(0, ψ
′, E/F ), (4.13)

where the equalities are considered as equalities of the l-part and φ. If l �= p,

|AE|=|AH
K | since AE is canonically isomorphic to AH

K . If l = p, by [11, Lemma 2.5]

(also see the errata [12]), we know that

|AH
K | ≥

1

p
|AE| if ζp ∈ K and ωK,p/ωE,p = 1,

|AH
K | ≥ |AE| otherwise.

Since x[φ]A
H
K = 0, there is a natural surjection AK/A

H
K � x[φ]AK . Hence we have

|x[φ]AK | ≤ |AK |/|AH
K |

≤ pt|AK |/|AE|
= pt

ωK,l

ωE,l

NQ(ζp)/Q(L(0, φ,K/F )), (4.14)
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where we set

t = 1 if l = p, ζp ∈ K and ωK,p/ωE,p = 1,

t = 0 otherwise.

Since the minus part of Ql[G] is isomorphic to Ql[H] by sending j to −1, in what

follows, we identify the minus part of Ql[G] with Ql[H] just like [11, §2] (for
example θK/F will be regarded as an element of Ql[H] not of Ql[G]).

Case I. l �= p.

In this case, we have t = 0 and the equality holds in (4.14). Moreover, we have

ωK,l/ωE,l = 1 and hence the elements L(0, φm, K/F ) are contained in Zl[ζp]. Since

l �= p, we get an isomorphism

Zl[H] ∼=
⊕

η∈IrrH/∼
Zl[η],

where η runs over all the irreducible characters of H modulo Gal(Ql(ζp)/Ql)-

action. Hence we have

AK/A
H
K
∼= (

p−1∑
m=1

eφm)AK
∼=

⊕
η∈IrrH\{1}/∼

Zl[η]⊗Z[H] AK .

By assumption that l does not split in Q(ζp), we actually have

AK/A
H
K
∼= Zl[η]⊗Z[H] AK . (4.15)

By (4.14), we have

|x[φ]AK | ≤ |AK/A
H
K | = |Zl[η]⊗Z[H] AK | = [Zl[ζp] : (L(0, φ,K/F ))]

= [Zl[ζp] : (θK/F )], (4.16)

where θK/F is the image of θK/F under the surjection Zl[H] � Zl[ζp]. Since we
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have

(1 + σ + σ2 + · · · σp−1)x[φ] = 0,

we can regard x[φ]AK as a Zl[ζp]-module through the natural surjection Zl[H] �
Zl[η] = Zl[ζp]. Moreover, since x[φ]AK is a torsion module, there exist natural

numbers n1, n2, . . . , nk such that

x[φ]AK
∼=

k⊕
i=1

Zl[ζp]/(l)
ni .

Combining the above isomorphism with (4.16), we have

|x[φ]AK | = |
k⊕

i=1

Zl[ζp]/(l)
ni | ≤ |Zl[ζp]/(θK/F )|.

This inequality implies that θK/F annihilates x[φ]AK . Therefore, for any fractional

ideal A of K whose class in Cl(L) is of l-power order, Ax[φ]ωKθK/F = (αωK ) for

some α ∈ K∗ and clearly K((αωK )1/ωK,l)/F is abelian. This completes the proof

of Proposition 4.4.18 in this case.

Case II. l = p and ζp �∈ K.

In this case, we have t = 0. Hence by (4.14), we have

|x[φ]AK | ≤ [Zp[ζp] : (θK/F )]. (4.17)

Since x[φ]AK is a torsion module, there exists n1, n2, . . . , nm ∈ N such that

x[φ]AK
∼=

m⊕
i=1

Zp[ζp]/(1− ζp)
ni .

Combining this with (4.17), we have

|x[φ]AK | = |
m⊕
i=1

Zp[ζp]/(1− ζp)
ni | ≤ |Zp[ζp]/(θK/F )|.
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This implies θK/F annihilates x[φ]AK . By the same argument as the final part of

Case II, we obtain the conclusion in this case.

Case III. l = p and ζp ∈ K.

If ωK,p/ωE,p = 1, we have t = 1. Hence by (4.14),

|x[φ]AK | ≤ p
ωK,p

ωE,p

NQ(ζp)/Q(L(0, φ,K/F ))

= [Zp[ζp] : (ζp − 1)(θK/F )].

If ωK,p/ωE,p �= 1, we have t = 0. We also see that ωK,p = pe, ωE,p = pe−1 for some

e ∈ N. Hence we have

|x[φ]AK | ≤ ωK,p

ωE,p

NQ(ζp)/Q(L(0, φ,K/F ))

= [Zp[ζp] : (ζp − 1)(θK/F )].

In both cases we see that (σ−1)x[φ]θK/F annihilates AK . Hence for any fractional

ideal A of K whose class in Cl(K) is of p-power order, there exists some β ∈ K

such that

AωK,p(σ−1)θK/F x[φ] = (β).

In the last paragraph of [11, Proposition 2.2], the authors show that if

(
∑p−1

j=0 σ
j)θK/F = 0, there exists α ∈ Zp[H] such that

peθK/F = (σ − 1)αγθK/F ,

where γ = σp−1 + gσp−2 + · · · + gp−1 and g is the minimal positive integer

which represents the action of σ on the peth-power root of unity in K. Since

(
∑p−1

j=0 σ
j)x[φ]θK/F = 0, replacing θK/F by x[φ]θK/F , we get

pex[φ]θK/F = (σ − 1)αγx[φ]θK/F
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for some α ∈ Zp[H]. This implies

ApeθK/F x[φ] = (βαγ).

To conclude the proof of Case IV, we use the following proposition:

Proposition 4.4.22 (Proposition 1.2, [35]). Let L/k be an arbitrary abelian ex-

tension of number fields with Galois group G, {σi}i∈I be a system of generators of

G, ζ be a primitive ωLth - root of unity. We suppose σi acts on ζ as ζσi = ζni. We

take an element β ∈ F . Then for any natural number m, the following statement

is equivalent to the condition that F (β1/m)/K is abelian:

There exists a system {βi}i∈I ⊂ EF such that

α
σj−nj
i = ασi−ni

j for any i, j ∈ I,

βσi−ni = αm
i for any i ∈ I.

Applying this proposition to our setting, we have

K((βαγ)1/p
e

)/F is abelian if and only if there exists α ∈ EK such that

(βαγ)σ−g = αpe .

Since (βαγ)σ−g = (βα)1−gp and 1 − gp is divisible by pe, we can conclude that

K((βαγ)1/p
e
)/F is abelian.

Improvement of the 2-part

As an application of Theorem 3.2.1, in the previous section we prove the 2-part

of the weak Brumer-Stark conjecture for extensions with group D4p. If we use the

fact that Z2[D4p] is a nice Fitting order, we can improve the result. More precisely

we can prove the following:

Theorem 4.4.23 ([28], Theorem 5.2). Let K/k be a finite Galois CM-extensions

of number fields whose Galois group is isomorphic to the dihedral group of order
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4p. Then if the prime 2 does not split in Q(ζp), the 2-part of the (non-weak)

non-abelian Brumer-Stark conjecture is true.

Before proving this theorem, we prove the following:

Proposition 4.4.24 ([28], Proposition 5.1). Let K/k be a finite Galois extension

of number fields whose Galois group G is isomorphic to D4p. We take two finite

sets S and T of places of k such that Hyp(S, T ) is satisfied. Then we have

θTK/k,S = θTKab/k,S

1

p
NormG′ + θ

Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3),

where G′ is the commutator subgroup of G. Moreover, θTK/k,S belongs to ζ(Z2[G]).

Proof. Recalling that Artin L-functions do not change by the inflation of char-

acters, we have by (2.5) and (4.3)

χ1(θ
T
K/k,S) =

∏
p∈T

det(1− Frob−1
P Np|Vχ1)LS(K/k, χ̌1, 0)eχ1

=
∏
p∈T

det(1− Frob−1
P Np|Vχab1 )LS(K

ab/k, χ̌ab
1 , 0)eχab1

1

p
NormG′

= χab
1 (θTKab/k,S)

1

p
NormG′ . (4.18)

The same is true for χ3, that is, we have

χ3(θ
T
K/k,S) = χab

3 (θTKab/k,S)
1

p
NormG′ . (4.19)

Since χab
1 and χab

3 are the only odd characters of Gal(Kab/k), we have by (4.18)

and (4.19)

χ1(θ
T
K/k,S)eχ1 + χ3(θ

T
K/k,S)eχ3 = (χab

1 (θTKab/k,S)eχab1

+χab
3 (θTKab/k,S)eχab3 )

1

p
NormG′

= θTKab/k,S

1

p
NormG′ .
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Next we compute χ2m+3(θ
T
K/k,S) for m = 1, 2, . . . , (p − 1)/2. By the induction

formula of Artin L-functions, we have

χ2m+3(θ
T
K/k,S) =

∏
p∈T

det(1− Frob−1
P Np|Vχ2m+3)LS(K/k, χ2m+3, 0)eχ2m+3

=
∏

pφ∈Tkφ

det(1− Frob
−fpφ
P Npφ|Vφm)LSkφ

(K/kφ, φ
m, 0)eχ2m+3 ,

(4.20)

where fpφ is the residue degree of pφ. We recall that χ2m+3 = IndG
〈jσ〉 φ

m =

IndG
〈jσ〉 φ

−m. Then we have

LSkφ
(K/kφ, φ

m, 0) = LSkφ
(K/kφ, φ

−m, 0),∏
pφ∈Tkφ

det(1− Frob
−fpφ
P Npφ|Vφm) =

∏
pφ∈Tkφ

det(1− Frob
−fpφ
P Npφ|Vφ−m)

and by Lemma 2.2.2 eχ2m+3 = eφm + eφ−m . These equations imply that

χ2m+3(θ
T
K/k,S)eχ2m+3 = θ

Tkφ
K/kφ,Skφ

e2m+3

and hence

p−1
2∑

m=1

χ2m+3(θ
T
K/k,S)eχ2m+3 =

p−1
2∑

m=1

θ
Tkφ
K/kφ,Skφ

e2m+3 = θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

e2m+3).

Combining this with (4.20), we get the first claim of Proposition 4.4.24.

Since Kab/k is an abelian extension, θT
Kab/k,S

belongs to Z[G/G′]. Therefore,

we see that θT
Kab/k,S

1
p
NormG′ belongs to Z2[G]. Next we show that

θ
Tkφ
K/kφ,Skφ

(
∑ p−1

2
m=1 eχ2m+3) belongs to Z2[Gal(K/kφ)]. First we write ψ for the char-

acter of Gal(K/kφ) which sends σ and j to 1 and −1, respectively. Since K/kφ is
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also an abelian extension, θ
Tkφ
K/kφ,Skφ

belongs to Z[Gal(K/kφ)]. Moreover, we have

θ
Tkφ
K/kφ,Skφ

= θ
Tkφ
K/kφ,Skφ

eψ + θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3)

= θ
Tkφ
Kab/kφ,Skφ

1

p
NormG′ + θ

Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3).

SinceKab/kφ is an abelian extension, θ
Tkφ
Kab/kφ,Skφ

belongs to Z[Gal(Kab/kφ)]. Hence

θ
Tkφ
Kab/kφ,Skφ

1
p
NormG′ belongs to Z2[Gal(K/kφ)]. Therefore, we see that

θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3) = θ
Tkφ
K/kφ,Skφ

− θ
Tkφ
Kab/kφ,Skφ

1

p
NormG′

belongs to Z2[Gal(K/kφ)]. The above arguments imply that θTK/k,S belongs to

Z2[G], in particular, to ζ(Z2[G]).

Proof of Theorem 4.4.23. First we take two finite sets S and T of places of

k such that Hyp(S, T ) is satisfied. Then it is enough to show the following two

statements by Proposition 4.4.9:

θTK/k,S ∈ Ip(G) and H2(G)θ
T
K/k,S ⊂ AnnZ2[G](Cl(K)TK2 ).

Since Z2[G] is a nice Fitting order, this is equivalent to

θTK/k,S ∈ ζ(Zp[G]) and θ
T
K/k,S ⊂ AnnZ2[G](Cl(K)TK2 )

by Proposition 2.2.11. The claim θTK/k,S ∈ ζ(Zp[G]) is true by Proposition 4.4.24.

Hence we only have to show θTK/k,S annihilates Cl(K)TK2 . We have by Proposition
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4.4.24

θTK/k,S(Cl(K)TK2 ) = θTKab/k,S

1

p
NormG′(Cl(K)TK2 )

+θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3)(Cl(K)TK2 ).

By [32, Theorem 2.1], the Brumer-Stark conjecture is true for biquadratic exten-

sions and hence true for Kab/k. Observing that

1

p
NormG′(Cl(K)TK2 ) ⊂ Cl(Kab)

T
Kab

2 ,

we have

θTKab/k,S

1

p
NormG′(Cl(K)TK2 ) = 0. (4.21)

By [11, Theorem 3.2], the 2-part of the Brumer-Stark conjecture is true for cyclic

extensions of degree 6. If 2 does not split in Q(ζp), exactly the same proof works

for cyclic extensions of degree 2p. Hence we have

θ
Tkφ
K/kφ,Skφ

(Cl(K)TK2 ) = θ
Tkφ
Kab/kφ,Skφ

1

p
NormG′(Cl(K)TK2 )

+θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3)(Cl(K)TK2 ) = 0.

By [36, §3, case(c)], the Brumer-Stark conjecture is true for quadratic extensions

and hence true for Kab/kφ. Therefore, we have

θ
Tkφ
Kab/kφ,Skφ

1

p
NormG′(Cl(K)TK2 ) = 0

and hence

θ
Tkφ
K/kφ,Skφ

(

p−1
2∑

m=1

eχ2m+3)(Cl(K)TK2 ) = 0.
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Combining this with (4.21), we have

θTK/k,S(Cl(K)TK2 ) = 0.

This completes the proof.

4.4.3 Extensions with group Q2n+2

Let K/k be a finite Galois extension whose Galois group is isomorphic to the

quaternion group Q2n+2 of order 2n+2. We use the presentation Q2n+2 = 〈x, y |
x2

n
= y2, x2

n+1
= 1, yxy−1 = x−1〉. Since the center of Q2n+2 is {1, x2n}, x2n

corresponds to the unique complex conjugation j.

Characters of Q2n+2

Q2n+2 has two types of irreducible characters. One type is given through the

natural surjection Q2n+2 � Q2n+2/〈xn〉 � D2n+1 . Clearly, characters which are

given in this way are even characters. The other type is two dimensional characters

which are induced by the faithful odd characters of 〈x〉 (in fact, a character of 〈x〉
is faithful if and only if it is odd). Let φ be the character of 〈x〉 which sends x and

xn to ζ2n+1 and −1 respectively. Then all faithful odd characters are of the form

φm for m ∈ (Z/2n+1Z)∗. We set χm := Ind
Q2n+2

〈x〉 φm. Then we have χm = χ−m and

km = k〈x〉 for all m. Since φm is faithful, we conclude Km,1 = Km,2 = K.

Main Theorem

In this subsection, we prove the following:

Theorem 4.4.25. Let K/k be a finite Galois CM-extension whose Galois group is

isomorphic to Q2n+2 and S be a finite set of places of k which contains all infinite

places. Then the 2-part of the weak non-abelian Brumer conjecture and the weak

non-abelian Brumer-Stark conjecture are true for K/k and S.

Remark 4.4.26. (1) If no prime above p splits in K/K+ whenever Kcl ⊂
(Kcl)+(ζp), the odd p-part of the above result holds by [25, Corollary 4.2].
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(2) Since all the subgroups of Q2n+2 are normal and all the odd representations

are faithful, θK/k,S∞∪Sram always coincides with θK/k,S∞ .

The observation in the previous section tells us that we have to verify the

2-part of the weak Brumer-Stark conjecture for K/K〈x〉. Since K/K〈x〉 is a cyclic

extension of degree 2n+1, it is enough to prove the following:

Proposition 4.4.27. Let K/F be a cyclic CM-extension of degree 2n+1. We as-

sume F contains k so that (F/k is quadratic and) K/k is CM with Galois group

Q2n+2. Then 2-part of the weak non-abelian Brumer-Stark conjecture is true for

K/F .

Before proving the above theorem, we prove the following lemma:

Lemma 4.4.28. Let K/F be a cyclic CM-extension of degree 2n+1 which is con-

tained in some Q2n+2-extension. Then all the roots of unity in K are ±1.

Proof of Lemma 4.4.28. Let ζ be a primitive ωKth roots of unity in K and

assume x(ζ) = ζcx and y(ζ) = ζcy for some cx, cy ∈ (Z/ωKZ)
∗. Then we have

yxy−1(ζ) = ζc
−1
y cxcy = ζcx . On the other hand yxy−1 = x−1, so we have yxy−1(ζ) =

ζc
−1
x . Hence we see that

cx ≡ c−1
x mod ωK ⇔ c2x ≡ 1 mod ωK .

Therefore, we have x2(ζ) = ζ and hence x2n(ζ) = ζ. This implies ζ lies in K+.

Proof of Proposition 4.4.27. We define the group I+K of the ambiguous ideals

by

I+K := {A | A is an ideal of K such that Aj = A},

where j is the unique complex conjugation in Gal(K/F ). Also we define AK :=

Coker(I+K → Cl(K))⊗Z2. Then by Sands’s formula [32, Proposition 3.2] (also see

[11, §3]), we have

ωKθK+/K = 2[K
+:Q]+d−2|AK |(1− j) mod Z∗

2, (4.22)
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where d is the number of primes of K+ which ramify in K. Let ξ be the non-trivial

character of Gal(K/K+). We set M := {a | 1 ≤ a ≤ 2n+1, a is odd}. Then we

have IndH
Gal(K/K+)(ξ) =

∑
m∈M φm and

ξ(θK/K+) = L(0, ξ,K/K+) =
∏
m∈M

L(0, φm, K/F ).

By (4.22), we have

|AK | = ωKξ(θK/K+)2−[K+:Q]−d+1

= ωK

∏
m∈M

L(0, φm, K/F )2−[K+:Q]−d+1,

where the equality is used in the sense that the 2-parts of the both sides coincide.

Since ωK,2 = 2 by Lemma 4.4.28, we also have

|AK | =
∏
m∈M

L(0, φm, K/F )2−[K+:Q]−d+2.

Since [K+ : Q] ≥ 2n+1 (recalling that K/F is contained in some Q2n+2-extension),

we get −[K+ : Q]− d+ 2 ≤ −2n+1 + 2. Hence we also get

|AK | ≤
∏
m∈M

L(0, φm, K/F )2−2n+1+2

=
4

22n
NQ(ζ2n+1 )/Q(

L(0, φ,K/F )

2
)

≤ NQ(ζ2n+1 )/Q(
L(0, φ,K/F )

2
) (4.23)

and the right hand side of the last inequality lies in Z2 and hence (1/2)L(0, φ,K/F )

lies in Z2[ζ2n+1 ]. We take an element x ∈ F2(Gal(K/F )) of the form

x =
∑
m∈M

xφm prφm , xφm ∈ D−1(Q2(φ
m)/Q2).

Since we have

NormGal(K/F )x = 0,
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we can regard the module xAK as a Z2[ζ2n+1 ]-module. Then we have by (4.23)

|xAK | ≤ [Z2[ζ2n+1 ] : ((1/2)L(0, φ,K/F ))] = [Z2[ζ2n+1 ] : ((1/2)θK/F )],

where θK/F is the image of θK/F under the surjection Z2[H] � Z2[ζ2n+1 ]. This

implies (1/2)xθK/F annihilates AK . Then for any fractional ideal A of K whose

class in Cl(K) is of 2-power order, we have that A(1/2)xθK/F lies in PK ·I+K , where PK

is the group of principal ideals of K and hence we have A(1/2)xθK/F (1−j) = AxθK/F

lies in P 1−j
K . This completes the proof.

4.4.4 Extensions with group Z/2Z× A4

Let K/k be a finite Galois extension whose Galois group is isomorphic to Z/2Z×
A4, where A4 is the alternating group on 4 letters. we regard A4 as the group of

even permutation of the set {1, 2, 3, 4}. Since the center of A4 is trivial, the

generator of Z/2Z corresponds to the unique complex conjugation j.

Characters of Z/2Z× A4

We set x = (12)(34) and y = (123). The irreducible characters of Z/2Z × A4

are determined by the following character table, where {·} indicates conjugacy

classes:

Table 4.2: The character table of Z/2Z× A4

{1} {x} {yx} {y2x} {j} {jx} {jyx} {jy2x}
χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1 −1
χ3 1 1 ζ3 ζ23 1 −1 ζ3 ζ23
χ4 1 1 ζ3 ζ23 −1 −1 −ζ3 -ζ23
χ5 1 1 ζ23 ζ3 1 1 ζ23 ζ3
χ6 1 1 ζ23 ζ3 −1 −1 −ζ23 −ζ3
χ7 3 −1 0 0 3 −1 0 0
χ8 3 −1 0 0 −3 1 0 0

From the above table, we see that the only odd characters are χ2, χ4, χ6 and
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χ8. Since kerχ2 has index 2, the corresponding subextension K2/k is a quadratic

extension, and since we have kerχ4 = kerχ6 and this subgroup has index 6, we

have K4 = K6 and K4/k is a cyclic extension of degree 6. Let V be Klein subgroup

of A4 and φ8,1, φ8,2 and φ8,3 be characters of Z/2Z×V whose restriction to V are

non-trivial. Then we have Ind
Z/2Z×Ak
Z/2Z×V (φ8,i) = χ8 for i = 1, 2, 3 and the indices of

their kernel in Z/2Z× V are 2. Hence we see that k8 = KZ/2Z×V and K8,i/k8 is a

quadratic extension for all i.

Proof of conjectures for extensions with group Z/2Z× A4

In this subsection, we prove the following theorem:

Theorem 4.4.29. Let K/k be a finite Galois CM-extension whose Galois group

is isomorphic to Z/2Z×A4 and S be a finite set of places of k which contains all

infinite places. Then

(1) for each odd prime l apart from 3 which does not split in Q(ζ3), the l-part of

the non-abelian Brumer and Brumer-Stark conjecture are true for K/k and

S,

(2) the 2-part and the 3-part of the weak non-abelian Brumer and Brumer-Stark

conjectures are true for K/k and S.

Remark 4.4.30. If S contains all finite places of k which ramify in K, we know

the following as well as Theorem 4.4.16:

(1) In the case of k = Q, the above result except the 2-part is contained in Nickel’s

work [22], [24] if we assume μ = 0.

(2) If no prime above p splits in K/K+ whenever Kcl ⊂ (Kcl)+(ζp), the above

result holds for odd p by [25, Corollary 4.2].

The observation in the previous subsection tells us that we have only to verify

the Brumer-Stark conjecture for K2/k, K4/k and K8,i/k8 for i = 1, 2, 3. By

[36, §3, case(c)], the Brumer-Stark conjecture is true for any relative quadratic

extensions and hence true for extensions K2/k, K8,i/k8. In order to complete the

proof of Theorem 4.4.29, it is enough to prove the following proposition:
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Proposition 4.4.31. Let l be a prime which does not split in Q(ζ3). Let F/k be

any cyclic CM-extension of number fields of degree 6. Then the l-part of the weak

non-abelian Brumer-Stark conjecture is true for F/k.

Proof. Exactly the same proof as Proposition 4.4.18 works.

4.5 Numerical examples

In this section, we give some numerical examples for the non-abelian Brumer

conjecture. Throughout this section, we use the same notation as in §4.4.2

4.5.1 Reduced norms of Qp[D12]

We fix a prime p. In this section, we review the way how to compute the reduced

norm of Qp[D12].

From Table 4.1, we see all the 1-dimensional representations of D12. We set

ρχ4(σ) :=

(
0 −1

1 −1

)
, ρχ4(τ) :=

(
1 −1

0 −1

)
, ρχ4(j) :=

(
1 0

0 1

)

and

ρχ5(σ) :=

(
0 −1

1 −1

)
, ρχ5(τ) :=

(
1 −1

0 −1

)
, ρχ5(j) :=

(
−1 0

0 −1

)
.

We can easily see that these determine all the 2-dimensional representations (there

is no deep reason we choose these forms). We also set ρχi := χi for i = 0, 1, 2, 3.

Then we have

Qp[D12]
∼−→ Qp ⊕Qp ⊕Qp ⊕Qp ⊕M2(Qp)⊕M2(Qp), α �→ ⊕ρχi(α).

The reduced norm map is defined by the following composition map:

Qp[D12]
⊕ρχi−−−→
∼

5⊕
i=0

Mχi(1)(Qp)
⊕ det−−−→

5⊕
i=0

Qp

(⊕ρχi )
−1

−−−−−→
∼

ζ(Qp[D12]).
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Take an element

α =A+Bσ+Cσ2+Dτ +Eστ +Fσ2τ +Gj+Hσj+ Iσ2j+Jτj+Kστj+Lσ2τj

in Qp[D12]. Then the coefficient of the identity of D12 is

1

3
(A+ 2A2 +B − 2AB + 2B2 + C − 2AC − 2BC + 2C2 − 2D2 + 2DE − 2E2

+2DF + 2EF − 2F 2 + 2G2 − 2GH + 2H2 − 2GI − 2HI + 2I2 − 2J2 + 2JK

−2K2 + 2JL+ 2KL− 2L2).

4.5.2 Stickelberger elements for D12-extensions

We assume K/k is a finite Galois CM-extension whose Galois group G is iso-

morphic to D12. As we observed in §4.4.2, D12 is the direct sum of Z/2Z and

D6 = 〈σ, τ | σ3 = τ 2 = 1, τστ−1 = σ−1〉 (D6 coincides with the symmetric group

S3 of degree 3). As we have seen in §4.4.2, the only odd characters of D12 are χ1,

χ3 and χ5. By the definition of the Stickelberger elements, we have

θK/k,S = LS(K/k, χ1, 0)eχ1 + LS(K/k, χ3, 0)eχ3 + LS(K/k, χ5, 0)eχ5

= εχ1,SLS∞(K/k, χ1, 0)eχ1 + εχ3,SLS∞(K/k, χ3, 0)eχ3

+εχ5,SLS∞(K/k, χ5, 0)eχ5 ,

where we set

εχi,S = lim
s→0

∏
p∈S\S∞

det(1− FrobPNp−s | V IP
χi

).

For i = 1, 3, we set Ki := Kkerχi and write χ′
i for the character of Gal(Ki/k)

whose inflation to G is χi. Then

θK/k,S = εχ1,SLS∞(K1/k, χ
′
1, 0)eχ1 + εχ3,SLS∞(K3/k, χ

′
3, 0)eχ3

+εχ5,SLS∞(K/kφ, φ, 0)eχ5

= εχ1,Sχ
′
1(θK1/k)eχ1 + εχ3,Sχ

′
3(θK3/k)eχ3 + εχ5,Sφ(θK/kφ)eχ5 .

(4.24)
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This is a special case of [26, Lemma 3.1].

4.5.3 Integrality of Stickelberger elements

In the case that K/k is an abelian CM-extension, the first claim of Conjecture

4.4.1 is equivalent to

AnnZp[G](μ(K))θK/k,S ⊂ Zp[G]. (4.25)

Hence one may expect the same strong integrality ASθK/k,S ⊂ ζ(Zp[G]) holds even

if G is non-abelian. However, the following example tells us that it is reasonable

to conjecture that ASθK/k,S is contained in Ip(G) but not in ζ(Zp[G]).

Let α be a root of the cubic equation x3 − 11x + 7 = 0 and set K =

Q(
√−3,

√
4001, α). Then K/Q is a finite Galois CM-extension, K contains the

3rd roots of unity and its Galois group is isomorphic to

Gal(Q(
√−3)/Q)×Gal(Q(

√
4001, α)/Q) ∼= Z/2Z×S3

∼= D12.

Using the same notations as §4.5.2, we see that

K1 = Q(
√−3), K3 = Q(

√−12003) and kφ = Q(
√
4001).

The only primes which ramify in K/Q are 3 and 4001. If we suitably choose the

primes P3 and P4001 of K above 3 and 4001, we see that

GP3 = Gal(K/Q(α)) ∼= 〈j〉 × 〈τ〉, IP3 = Gal(K/Q(
√
4001, α)) ∼= 〈j〉,

GP4001 = Gal(K/Q(α)) ∼= 〈j〉 × 〈τ〉, IP4001 = Gal(K/Q(
√−3, α)) ∼= 〈τ〉.
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From this, we have

εχ1,Sram = lim
s→0

∏
p∈Sram

det(1− FrobP p
−s | V IP

χ1
)

= lim
s→0

det(1− FrobP4001 4001
−s | V 〈τ〉

χ1
)

= lim
s→0

det(1− j4001−s | Vχ1) = 2.

By the same way, we also have εχ3,Sram = 1 and εχ5,Sram = 2. By PARI/GP, we

can compute L-values attached to χ1, χ3 and χ5 as

LS∞(K1/Q, χ
′
1, 0) =

1

3
, LS∞(K3/Q, χ

′
3, 0) = 30, and LS∞(K/kφ, φ, 0) = 48.

Hence we see from (4.24) that

θK/Q =
2

3
eχ1 + 30eχ3 + 96eχ5 =

1

9
(1− j)(311− 121(σ + σ2)− 22(τ + στ + σ2τ)).

(4.26)

Take the prime 7. This prime is completely decomposed in K and Hyp(Sram ∪
S∞, {7}) is satisfied. Also we have

δ{7} = nr(1− Frob−1
P7

7) = nr(1− 7) = nr(−6).

Then

δ{7}θK/Q =
1

3
(1− j)(3410− 1774(σ + σ2) + 44(τ + στ + σ2τ)). (4.27)

Obviously this element does not belong to ζ(Z3[G]) and hence we can not expect

the strong inclusion ASθK/k,S ⊂ ζ(Zp[G]) in general. However, we actually have

δ{7}θK/Q = nr((1− j)(−71

2
+
1

2
σ−11σ2+19τ +

13

2
στ +

37

2
σ2τ)) ∈ I3(G). (4.28)

As long as we see this example, it seems reasonable to conjecture ASθK/k,S ⊂
Ip(G). In fact, by [26, Lemma 4.1] (and [26, Lemma 3.11]), if G is isomorphic
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to D4p, we always have ASθK/k,S ⊂ Ip(G). Note that the preimage of δ{7}θK/Q is

found in an ad hoc way, and as far as the author knows, there are no theoretical

approaches to find concrete preimages of Stickelberger elements.

We have seen where ASθK/k,S should live. Then where does the Stickelberger

element θK/k,S itself live? First we return to the case where G is abelian. Since

|μ(K)| belongs to AnnZp[G](μ(K)), we have by (4.25)

|μ(K)|θK/k,S ∈ Zp[G]

or equivalently,

θK/k,S ∈ 1

|μ(K)|Zp[G].

This implies the denominator of θK/k,S is at most |μ(K)|. In the case where G is

non-abelian, we see by (4.26) that the denominator of θK/k,S can not be bounded

by |μ(K)|. However, if we believe the first claim of Conjecture 4.4.5, we have

ωKθK/k,S ∈ Ip(G)

and hence

θK/k,S ∈ 〈nr( 1

|μ(K)|H) | H ∈Mn(Zp[G]), n ∈ N〉ζ(Zp[G]). (4.29)

Namely, the first claim of Conjecture 4.4.5 predicts that the denominators of

preimages are at most |μ(K)| (not the denominators of θK/k,S itself). In fact, by

(4.28), we see that

θK/Q = nr(
1

6
(1− j)(

71

2
− 1

2
σ + 11σ2 − 19τ − 13

2
στ − 37

2
σ2τ)). (4.30)

The reduced norm map is not injective, but the explicit computation of the re-

duced norm in §4.5.1 tells us the preimages of θK/Q does not belong to Z3[G].

More explicitly we see that the preimages of θK/Q must belong to (1/3)Z3[G] =

(1/|μ(K)|)Z3[G]. If we set L = Q(
√−2,

√
33, β) (β satisfies β3 − 9β + 3 = 0), we
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have μ(L) = {±1}, Gal(L/Q) ∼= D12 and as computed in [26, §5.1.3]

θL/Q =
2

3
(1− j)(1 + σ + σ2 − τ − στ − σ2τ).

Since L does not contain non-trivial roots of unity, we expect θL/Q itself belongs

to I3(D12). In fact, we have

θL/Q = nr(2(1− j)(−1 + σ + σ2 − τ + στ − σ2τ)).

As long as we see these numerical examples, in the non-abelian cases it seems

that the direct influence of the existence of the group μ(K) does not appear in

the denominators of the Stickelberger elements themselves but in those of the

preimages of Stickelberger elements.

Finally, we introduce an example which tells us that Stickelberger elements

can belong to ζ(Zp[G]) even if Zp[G] is not a nice Fitting order. We take a root

γ of the cubic equation x3 − 12x+ 13 = 0 and set M = Q(
√−6,

√
29, γ). By the

same manner as the calculation of θK/Q, we see that

εχ1,Sram = εχ5,Sram = 0 and εχ3,Sram = 1,

and by PARI/GP

LS∞(M/Q, χ3, 0) = 12.

Therefore, we have

θM/Q = 12eχ3 = prχ3
.

Obviously, this element belongs to ζ(Z3[G]). Moreover, θM/Q comes from the re-

duced norm. In fact, we have

θM/Q = nr(prχ3
).

Since M does not contain non-trivial roots of unity, this is also an example of the

inclusion (4.29).
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4.5.4 Annihilation of ideal class groups

As we have seen in the previous section, the elements δT θK/k,S have denominators

in general. Therefore, they can not act on the ideal class groups just as they are.

This is one of the main reason why we adopt Fp(G) and Hp(G) (in the latter half

of this section, we will see that this is not the only reason). In this section, we

see how Stickelberger elements annihilate ideal class groups with concrete Galois

extensions appearing in the previous section.

First we study K/Q, where we recall K = Q(
√−3,

√
4001, α) with α3− 11α+

7 = 0. By PARI/GP, we can see the structure as an abelian group of the ideal

class group of K as follows:

Cl(K) ∼= Z/180Z⊕ Z/12Z, Cl(K)3 ∼= Z/9Z⊗ Z/3Z.

We denote by c1 and c2 the basis of Cl(K)3 which is chosen in the computation

of PARI/GP. Then also using PARI/GP, we see the Galois action on Cl(K)3 as

follows: {
σ(c1) = 4c1 + c2,

σ(c2) = 6c1 + c2,

τ(c1) = −c1,
τ(c2) = c2,

j(c1) = −c1,
j(c2) = −c2.

(4.31)

The above relations imply that Cl(K)3 is generated by c1 as a Z3[G]-module.

By Proposition 2.2.10, H3(G) coincides with F3(G), and hence, by (2.7) each

element x in H3(G) is of the form

x =
∑

χ∈IrrG
xχ prχ, xχ ∈ Z3.

Then we have

xδ{7}θK/Q = −4xχ1 prχ1
−180xχ3 prχ3

+3456xχ5 prχ5
.

Obviously this element belongs to ζ(Z3[D12]). Since 180 and 3456 are multiples of

9, we have

180xχ3 prχ3
c1 = 3456xχ5 prχ5

c1 = 0.
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Moreover, we see by (4.31) that

prχ1
c1 = (1− j)(1 + σ + σ2)(1 + τ)c1 = (1− j)(1 + σ + σ2)(1− 1)c1 = 0.

Hence

xδ{7}θK/Qc1 = 0.

Thus thanks to the denominator ideal Hp(G) (and the central conductor Fp(G)),

δ{7}θK/k,S becomes an element in ζ(Z3[G]) and annihilates Cl(K)3. Then what

will happen in the case where the Stickelberger elements have no denominators?

If Zp[G] is a nice Fitting order, we do not need Hp(G). However, the following

calculation tells us that we need Hp(G) in general.

We studyM/Q, where we recallM = Q(
√−6,

√
29, γ) with γ3−12γ+13 = 0.

By PARI/GP, we can see the explicit structure of the ideal class group of M and

the Galois action on it as follows:

Cl(M) ∼= Z/12Z⊕ Z/6Z⊕ Z/6Z, Cl(M)3 ∼= Z/3Z⊕ Z/3Z⊕ Z/3Z.

We denote by c1, c2 and c3 the basis of Cl(M)3 which is chosen in the computation

of PARI/GP. Then we have

⎧⎪⎪⎨
⎪⎪⎩

σ(c1) = −c1 − c2,

σ(c2) = c1 + c3,

σ(c3) = c3,

τ(c1) = −c1,
τ(c2) = c1 + c2 − c3,

τ(c1) = −c,

j(c1) = −c1,
j(c2) = −c2,
j(c3) = −c3.

(4.32)

By the above relations, we can see that Cl(M)3 is generated by c1 as a Z3[G]-

module.

Take the prime 173. This prime is completely decomposed in M and satisfies

Hyp(Sram ∪ S∞, {173}). Also we have

δ{173}θM/Q = nr(−172) prχ3 = −172eχ3 prχ3
= −172 prχ3

.
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This element also belongs to ζ(Z3[G]). However, from (4.32) we have

δ{173}θM/Qc1 = −172 prχ3
c1 = −172(1− j)(1 + σ + σ2)(1− τ)c1

= −172 · 2 · (−1) · 2c3 �= 0.

We take an element x =
∑

χ∈IrrG xχ prχ ∈ H3(G). Then we have

xδ{173}θM/Qc1 = −172 · 2 · (−1) · 2 · 12xχ3c3 = 0.

Therefore, even in the case that Stickelberger elements do not have denominators,

we need denominator ideal Hp(G).

Finally, we study why we need H3(G). We recall that

eχ3 =
1

12
prχ3

and θM/Q = LS∞(M/Q, χ3, 0)eχ3 = 12eχ3 = prχ3
.

The important thing here is that the L-value attached to χ3 is canceled by the

denominator of eχ3 and hence θM/Q has no information on the L-value. However,

if we multiply θM/Q by x, we have

xθM/Q = xχ3 prχ3
prχ3

= xχ312 prχ3
= xχ3LS∞(M/Q, χ3, 0) prχ3

.

In this way, thanks to the element x, we obtain information on the L-value from

θM/Q. This is the reason why we need the denominator ideal H3(G).
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Chapter 5

Selmer groups of abelian varieties

Let K/k be a finite Galois extension of number fields with Galois group G and A

be an abelian variety over k. In this chapter we study the Galois module structure

of the (classical) Selmer group Sel(AK) of AK .

5.1 Selmer and Tate-Shafarevich groups

Let p be a prime. For each intermediate field L of K/k, we write Selp(AL) and

Xp(AL) for the p-primary Selmer and the p-primary Tate-Shafarevich groups of

AL, respectively. Then there exists an exact sequence

0 → A(L)⊗Qp/Zp → Selp(AL) → Xp(AL) → 0

of Zp[G]-modules.

For any fields L and L′ with k ⊂ L ⊂ L′ ⊂ F , we set

XL′
p (AL) := ker

(
Xp(AL)

πL
′

L−−→ Xp(AL′)

)
,

where πL′
L is the natural restriction map.
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5.2 Some algebraic lemmas

In this subsection, we prove some technical lemmas. Let K/k be a finite Galois

extension of number fields with Galois group G and p a rational prime. We fix a

p-Sylow subgroup P of G and set N := KP . We refer to the following conditions

as HypA(K/k, p):

(a) A(N)[p] = 0,

(b) The Tamagawa number of AN at each finite place of k is not divisible by p,

(c) AN has good reduction for all p-adic places,

(d) For all p-adic places v that ramify in K/k, A has an ordinary reduction at p

and A(κp)[p] = 0, where κp is the residue field at p,

(e) No bad reduction place for Ak is ramified in K/k,

(f) p is odd,

(g) If a prime pk of k is ramified in K, we have A(κpN )[p] = 0 for any prime pN

of N above pk,

(h) X(AK) is finite.

For each intermediate field L of K/k, we write rk(A(L)) for the Mordell-Weil rank

of A(L). We first prove the following lemma:

Lemma 5.2.1. Let K/k be a CM-extension of number fields and A an abelian

variety such that HypA(K/k, p) is satisfied. We assume XK
p (AKH ) = 0 for each

subgroup H of P . Then for each α ∈ {±}, if A(N)α is finite, so is A(K)α.

Proof. By [4, Proposition 2.7], rk(A(K)) ≤ |P | rk(A(N)) holds. Therefore, we

have

rk(A(K)+) + rk(A(K)−) ≤ |P |(rk(A(N)+) + rk(A(N)−)),
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and again by [4, Proposition 2.7] (and since HypA(K
+/k, p) is also satisfied), we

have

rk(A(K+)) ≤ |P | rk(A(N+)).

Since rk(A(K)+) = rk(A(K+)) and rk(A(N)+) = rk(A(N+)), we conclude the

claim.

Lemma 5.2.2. Let K/k be a finite Galois extension of number fields and A

an abelian variety such that the triple (A,K/k, p) satisfies (b) and (e). Then,

the Tamagawa number of AK′ at each place in SK′
b is not divisible by p for any

intermediate field K ′ of K/k.

Proof. First we prove the claim for K. Take a place p at which AN has bad

reduction and let P be a place of K above p. By the assumption (e), AK still

has bad reduction at P. Let ANp be the Néron model of ANp over ONp and A0
Np

the connected component of the identity of ANp . We set ÃNp := ANp ×ONp
κp

and Ã0
Np

:= A0
Np

×ONp
κp, where κp is the residue field at p. Then the Tamagawa

number cp at p is defined to be |Φp(κp)|, where Φp is a finite étale group scheme

over κp such that

1 → Ã0
Np

→ ÃNp → Φp → 1

is exact. Since P is unramified in KP/Np, ANp ×OKP
is the Néron model of AKP

over OKP
and hence we have ΦP = Φp × κP. Since κP/κp is a p-extension, we see

that ΦP(κP)[p] = Φp(κp)[p] = 0. Therefore, |ΦP(κP)| is not divisible by p. Next,

we take a subfield K ′ of K and let P′ be a place of K ′ at which AK′ has bad

reduction. Take a place P of K above P′(again by the assumption (e), AK has

bad reduction at P). Since KP/K
′
P′ is unramified, we have ΦP = ΦP′ × κP. This

implies there is natural inclusion ΦP′(κP′) ↪→ ΦP(κP). Therefore, |ΦP′(κP′)| is not
divisible by p.
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5.3 Equivariant Hasse-Weil L-functions

5.3.1 Twisted Hasse-Weil L-functions

For each finite place p of k, we denote the Inertia subgroup of Gkp by Ikp . We

choose a rational prime l which is coprime to the character of κp. We denote by

Tl(A) the Tate-module of A at l and set Vl(A) := Ql ⊗Zl Tl(A). We define

Pp(X) := det(1− Frob−1
P X | Hom(VlA,Ql)

Ikp )−1.

By Weil conjecture, the coefficients of this polynomial actually lie in Z. Using this

polynomial, we define the local L-function of A at p to be

Lp(A, s) := Pp(|κp|−s),

where s is the complex variable. For each character χ of G, we denote by Vχ a

representation of G over C which has the character χ. We fix an isomorphism

il : C ∼= Cl and define the χ-twisted local L-function of A at p to be

Lp(A,K/k, χ, s) := i−1
l (det(1− Frob−1

P |κp|−s | (il(Vχ)⊗Ql Hom(VlA,Ql))
Ikp )−1).

Finally, we define the global L-function and the χ-twisted global L-function to be

L(A, s) :=
∏

p:finite

Lp(A, s) and L(A,K/k, χ, s) :=
∏

p:finite

Lp(A,K/k, χ, s).

This twisted L-function satisfies the following properties:

Proposition 5.3.1 (Artin formalism).

(LA1) L(A,K/k, 1G, s) = L(A, s),

(LA2) If χ1 and χ2 are characters of G,

L(A,K/k, χ1 + χ2, s) = L(A,K/k, χ1, s)L(A,K/k, χ2, s),
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(LA3) If L/k is a Galois extension with L ⊂ K, for each character ψ of Gal(L/k),

we have

L(A,K/k, InfGGal(L/k) ψ, s) = L(A,L/k, ψ, s),

(LA4) For any intermediate field F of K/k and any character φ of Gal(K/F ),

we have

L(A,K/k, IndG
Gal(K/F ) φ, s) = L(A,K/F, φ, s).

Proof. The proof of these properties is just the same as that of the Artin L-

function (cf. [19, Proposition 10.4]).

From the above proposition, we have

L(AK , s) = L(A, s)
∏

χ∈IrrG
χ =1G

L(A,K/k, χ, s)χ(1). (5.1)

We set

L�(A, s) := (s−1)−rAL(A, s) and L�(A,K/k, χ, s) := (s−1)−rA(χ)L(A,K/k, χ, s),

where rA and rA(χ) are vanishing orders at s = 1 of L(A, s) and L(A,K/k, χ, s),

respectively. Then the same formulas as Proposition 5.3.1 are true for L�(A, s)

and L�(A,K/k, χ, s). Hence we have

L�(AK , s) = L�(A, s)
∏

χ∈IrrG
χ =1G

L�(A,K/k, χ, s)χ(1). (5.2)

Finally, for any finite set S of places of k, we denote by LS(A,K/k, χ, s)

the χ-twisted S-truncated global L-function with complex variable s. In the case

S = S∞, LS(A,K/k, χ, s) coincides with L(A,K/k, χ, s).

5.3.2 Period and Galois Gauss sum

We fix Néron models A of A over Ok and Akp of Akp over Okp for each p-adic place

p of k. We take a k-basis {ω1, ω2, . . . , ωd} of H0(A,Ω1
A) such that they give an
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Okp-basis of H
0(Akp ,Ω

1
Akp

) for each p-adic place of k. For each real place v of k, we

fix Z-bases {γ+v,1, γ+v,2, . . . , γ+v,d} of H1(σv(A)(C),Z)
c=1 and {γ−v,1, γ−v,2, . . . , γ−v,d}

of H1(σv(A)(C),Z)
c=−1, where c denotes the complex conjugation. We set

Ω+
v (A) :=

∣∣∣∣∣∣det
(∫

γ+
v,a

ωb

)
1≤a,b≤d

∣∣∣∣∣∣ , Ω−
v (A) :=

∣∣∣∣∣∣det
(∫

γ−
v,a

ωb

)
1≤a,b≤d

∣∣∣∣∣∣ .
For each place v in Sk

C, we take a Z-basis {γv,1, γv,2, . . . , γv,2d} of H1(σv(A)(C),Z)

and set

Ωv(A) :=

∣∣∣∣∣∣det
(∫

γ+
v,a

ωb, c(

(∫
γ−
v,a

ωb

))
1≤a≤d
1≤b≤2d

∣∣∣∣∣∣ .
For each χ ∈ IrrG, we set χ+

v (1) := dimC V
Gkv
χ and χ−

v (1) := χ(1) − χ+
v (1). We

define the periods

Ωv(A,χ) :=

⎧⎨
⎩Ω+

v (A)
χ+
v (1)Ω−

v (A)
χ−
v (1) if v ∈ Sk

R,

Ωv(A)
χ(1) if v ∈ Sk

C

and Ω(A,χ) =
∏

v∈S∞ Ωv(A,χ). The periods Ω(A,χ) satisfy the following proper-

ties:

Proposition 5.3.2. We use the same notation as (LA1) ∼ (LA4). Then we have

(P1) Ω(A, 1G) =
∏

v∈Sk
R

Ω+
v (A)

∏
v∈Sk

C

Ωv(A),

(P2) Ω(A,χ1 + χ2) = Ω(A,χ1)Ω(A,χ2),

(P3) Ω(A, InfGGal(L/k) ψ) = Ω(A,ψ),

(P4) If k is totally real, Ω(A, IndG
Gal(K/F ) φ) = Ω(A, φ) up to the 2-primary part.

Proof. (P1) ∼ (P3) are obvious. For (P4), it is enough to show that up to the

2-primary part, we have

Ωv(A, Ind
G
Gal(K/F ) φ) =

∏
w′∈SF∞
w′|v

Ωw′(A, φ).
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The same method as the proof of [19, Proposition 12.1]) implies

Ωv(A, Ind
G
Gal(K/F ) φ) =

∏
w′∈SK′

C

w′|v

(Ω+
v (A)Ω

−
v (A))

φ(1)
∏

w′∈SK′
R

w′|v

Ω+
v (A)

φ+
w′ (1)Ω−

v (A)
φ−
w′ (1)

=
∏

w′∈SF
C

w′|v

(Ω+
v (A)Ω

−
v (A))

φ(1)
∏

w′∈SF
R

w′|v

Ω+
w′(A)

φ+
w′ (1)Ω−

w′(A)
φ−
w′ (1).

Since k is totally real, ω1, ω2, . . . , ωd are defined over R. Therefore, we have

c

(∫
γ+
v,a

ωb

)
=

∫
c(γ+

v,a)

ωb =

∫
γ+
v,a

ωb, c

(∫
γ−
v,a

ωb

)
=

∫
c(γ−

v,a)

ωb = −
∫
γ−
v,a

ωb

and hence (suitable elementary column operations imply)

Ωw′(A) =

∣∣∣∣∣∣det
(∫

γv,a

ωb, c

(∫
γv,a

ωb

))
1≤a≤d
1≤b≤2d

∣∣∣∣∣∣ = 2dΩ+
v (A)Ω

−
v (A).

From this, we finally get, up to the 2-primary part,

Ωv(A, Ind
G
Gal(K/F ) φ) =

∏
w′∈SF

C

w′|v

Ωw′(A)φ(1)
∏

w′∈SF
R

w′|v

Ω+
w′(A)

φ+
w′ (1)Ω−

w′(A)
φ−
w′ (1)

=
∏

w′∈SF∞
w′|v

Ωw′(A, φ).

From this proposition, if k is totally real, we have up to the 2-primary part

∏
w∈SK

C

Ωw(A)
∏

w∈SK
R

Ω+
w(A) =

∏
χ∈IrrG

Ω(A,χ)χ(1). (5.3)

We set

ωv(χ) :=

⎧⎨
⎩i

χ−
v (1) if v ∈ Sk

R,

iχ(1) if v ∈ Sk
C
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and ω∞(χ) :=
∏

v∈S∞ ωv(χ). The elements ω∞(χ) satisfy the following proposition:

Proposition 5.3.3. (O1) ω∞(1G) = i|S
k
C
|,

(O2) ω∞(χ1 + χ2) = ω∞(χ1)ω∞(χ2),

(O3) ω∞(InfGGal(L/k) ψ) = ω∞(ψ),

(O4) ω∞(IndG
Gal(K/F ) φ) = ω∞(φ).

Proof. The properties (O1) ∼ (O3) are obvious and (O4) follows from the same

method as the proof of Proposition 5.3.2.

For each χ ∈ IrrG, we denote by τ(Q, IndQ
k χ) the Galois Gauss sum for IndQ

k χ

which is defined in [17], where IndQ
k means Ind

Gal(Q/Q)

Gal(Q/k)
. Then we have

Proposition 5.3.4. We use the same notation as (LA1) ∼ (LA4). Then, we have

(G1) τ(Q, IndQ
k 1G) = i|S

k
C
|√|dk|,

(G2) τ(Q, IndQ
k (χ1 + χ2)) = τ(Q, IndQ

k χ1)τ(Q, Ind
Q
k χ2),

(G3) τ(Q, IndQ
k InfGGal(L/K) ψ) = τ(Q, IndQ

k ψ),

(G4) τ(Q, IndQ
k IndG

Gal(K/F ) φ) = τ(Q, IndQ
F φ).

Proof. (G4) is obvious. (G2) and (G3) follow from the definition of the Galois

Gauss sum. By [17, Theorem 8.1], we have

τ(Q, IndQ
k χ) = τ(k, χ)(i|S

k
C
|√|dk|)χ(1).

Since τ(k, 1G) = 1, we have

τ(Q, IndQ
k 1G) = τ(k, 1G)i

|Sk
C
|√|dk| = i|S

k
C
|√|dk|.
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Combining the properties (G1) ∼ (G4) with (O1) ∼ (O4), we have

√
|dF | =

∏
χ∈IrrG

τ(Q, IndQ
k χ)

χ(1)

ω∞(χ)χ(1)
. (5.4)

For each finite place p of k, we fix a place P of F above p. We denote by GP (resp.

IP) the decomposition subgroup (resp. the inertia subgroup) of G. For each place

p ∈ Sk
r and χ ∈ IrrG, we set

up(χ) := det(−Frob−1
P |V IP

χ )

and

u(χ) :=
∏
p∈Skr

up(χ). (5.5)

Finally, we define

τ ∗(Q, IndQ
k , χ) = up(χ)τ(Q, Ind

Q
k , χ).

Note that if χ is faithful and IP is normal in G, we have τ ∗(Q, IndQ
k , χ) =

τ(Q, IndQ
k , χ).

In what follows, we always assume the following conjecture:

Conjecture 5.3.5. For each χ ∈ IrrG,

L(A,K/k, χ, 1) · τ(Q, IndQ
k χ)

d

Ω(A,χ) · ω∞(χ)d
∈ Q(χ)

and for each σ ∈ Gal(Q(χ)/Q),

L(A,K/k, χσ, 1) · τ(Q, IndQ
k χ

σ)d

Ω(A,χσ) · ω∞(χσ)d
=

(
L(A,K/k, χ, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

)σ

.

Remark 5.3.6. This conjecture is a special case of the rationality conjecture [5,

Conjecture 4(iii)], that is, a special case of the Deligne - Beilinson conjecture. For

the Tate motives, this conjecture corresponds to Stark’s conjecture.
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For each Galois subextension K ′/k′ of K/k and χ in RGal(K′/k′) , we set

LGal(K′/k′)(χ) :=
LS(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A, χ) · ω∞(χ)d

and

LG := {LGal(K′/k′),Gal(K ′/k′))}K′/k′ .

By Propositions 5.3.1, 5.3.2, 5.3.3 and 5.3.4, we get the following:

Proposition 5.3.7. We assume k is totally real. Then Art(LG) is satisfied up to

the 2-primary part.

5.3.3 Equivariant L-functions

Let S be a finite set of places of k which contains Sk
∞ and Sk

r . We set

LA,K/k,S :=
∑

χ∈IrrG
eχ
LS(A,K/k, χ̌, 1) · τ ∗(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d
.

In [4], this element is used as an annihilator of Tate-Shafarevich groups, however,

in this paper, we use

L′
A,K/k,S :=

∑
χ∈IrrG

eχ
LS(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d
.

The relation of these two elements is

L′
A,K/k,S = (

∑
χ∈IrrG

u(χ)eχ)LA,K/k,S, (5.6)

where u(χ) is defined in (5.5). In the following, we do not assume S contains Sk
r

(S has only to contain Sk
∞). If L(A,K/k, χ, 1) does not vanish for any χ ∈ IrrG,

we have

L′
A,K/k,S∞ =

∑
χ∈IrrG

eχ
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d
.
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Moreover, we have by (5.2), (5.3) and (5.4)

L�(AK , 1)(
√|dK |)d

Ω(AK)
=

∏
χ∈IrrG

(
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

)χ(1)

, (5.7)

where Ω(AK) =
∏

ω∈SK
R

Ω+
ω (AK)

∏
ω∈Sk

C

Ωω(AK). Now, we assume K/k is a CM-

extension with the unique complex conjugation j. Set Irr±G = {χ ∈ IrrG |
χ(j) = ±χ(1)}. We define

L±
A,K/k,S = (

∑
χ∈Irr± G

eχ)L′
A,K/k,S.

If L(A,K/k, χ, 1) does not vanish for all χ ∈ IrrG, we have

L±
A,K/k,S∞ =

∑
χ∈Irr± G

eχ
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d
.

We set

L�(AK , 1)
+ := L�(AK+ , 1),

√
|dK |

+
:=
√

|dK+ |, Ω(AK)
+ := Ω(AK+)

and

L�(AK , 1)
− :=

L�(AK , 1)

L�(AK , 1)+
,
√

|dK |
−
:=

√|dK |√|dK |+
, Ω(AK)

− :=
Ω(AK)

Ω(AK)+
.

Recalling the properties (LA3), (P3), (O3) and (G3), we have,

L�(AK , 1)
+(
√|dK |+)d

Ω(AK)+
=

∏
χ∈Irr+ G

(
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

)χ(1)

(5.8)

by the same method as (5.7). Dividing (5.7) by (5.8), we also have

L�(AK , 1)
−(
√|dK |−)d

Ω(AK)−
=

∏
χ∈Irr− G

(
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

)χ(1)

. (5.9)
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In the next section, we compare these formulas with the Birch and Swinnerton-

Dyer conjecture of A.

Thanks to Conjecture 5.3.5, we have

LA,K/k,S ∈ ζ(Q[G]).

Therefore, Propositions 3.1.6 and 5.3.7 imply the following:

Proposition 5.3.8. We assume k is totally real and G is monomial. We take

a finite set S of places of k which contains S∞. Then if L′
A,Ki,j/ki,S

belongs to

ζ(mp(Gal(Ki,j/ki))) for all Ki,j/ki in K, L′
A,K/k,S belongs to ζ(mp(G)).

We assume K/k is a CM-extension. Take α ∈ {±1}. Then by the same way

as Proposition 5.3.8 we get the following:

Proposition 5.3.9. We assume G is monomial. We take a finite set S of places

of k which contains S∞. Then if Lα
A,Ki,j/ki,S

belongs to ζ(mp(Gal(Ki,j/ki)))
α for

all Ki,j/ki in K, Lα
A,K/k,S belongs to ζ(mp(G))

α.

5.4 The Birch and Swinnerton-Dyer Conjecture

In this section, we review the formulation of the Birch and Swinnerton-Dyer con-

jecture for abelian varieties and prove some propositions needed in the next sec-

tion. In what follows, we use the same notation as §5.3.
We set ωA := ω1 ∧ ω2 ∧ · · · ∧ ωd and take a fractional ideal aK of K so

that ωAaK =
∧dH0(AK ,Ω

1
AK

). We let Reg(AK) denote the regulator of AK

defined by the Néron-Tate pairing of AK . For each finite place P of K, we

denote by cP the Tamagawa number of AK at P. Finally, we set Ω(AK) :=∏
w∈SK

R

Ω+
w(AK)

∏
w∈SK

C

Ωw(AK). Now, the Birch and Swinnerton-Dyer conjecture

of A over K asserts that

Conjecture 5.4.1.

(1) The order of vanishing at s = 1 of L(AK , s) is equal to rk(A(K)),
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(2) X(AK) is finite,

(3) We have

|X(AK)| = L�(AK , 1)
√|dK |d|A(K)tors||At(K)tors|

Ω(AK)
∏

P∈SKf |a−1
K |P

∏
P∈SKf cP Reg(AK)

. (5.10)

If At(K)[p] = 0 and the triple (A,K/k, p) satisfies (a), (b), (e) and (f), by Lemma

5.2.2, we can derive from (5.10),

|Xp(AK)| = the p-part of
L�(AK , 1)

√|dK |d
Ω(AK) Reg(AK)

,

where we can omit
∏

P∈SKf |a−1
K |P since we took the elements ωi so that they are

also Okp-bases of H
0(Akp ,Ω

1
Akp ) for each p-adic place p of k.

Now, we assume K/k is a CM-extension. We set

Xp(AK)
+ := Xp(AK+), A(K)+ = A(K+), Reg(AK)

+ = Reg(AK+)

and

Xp(AK)
− :=

Xp(AK)

πK
K+(Xp(AK)+)

, A(K)− =
A(K)

A(K)+
, Reg(AK)

− :=
Reg(AK)

Reg(AK)+
.

Then for each α ∈ {±}, if A(K)α is finite, we can see Reg(AK)
α = 1. Therefore,

by (5.8) and (5.9), we have the following proposition:

Proposition 5.4.2. We assume that At(K)[p] = 0 and the triple (A,K/k, p) sat-

isfies (a), (b), (e) and (f). Then if A(K)α is finite and the Birch and Swinnerton-

Dyer conjecture is true for AK, we have

|Xp(AK)
α| =

L�(AK , 1)
α · (√|dK |α)d

Ω(AK)α

=
∏

χ∈IrrαG

(
L�(A,K/k, χ̌, 1) · τ(Q, IndQ

k χ)
d

Ω(A, χ) · ω∞(χ)d

)χ(1)

.
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5.5 Annihilation problems

5.5.1 Formulations

Let K/k be a finite Galois extension of number fields with Galois group G. We

fix a rational prime p. We write gAF for the minimal number of generators of

A(K)[p∞]∨ as a Zp[G]-module, where A(K)[p∞] is the p-power torsion points of

A(K). Now, we consider the following problem:

Problem 5.5.1.

(i) Does aG(A(K)[p∞]∨)gAKLA,K/k,S lie in Ip(G)?

(ii) Does Hp(G)aG((A(K)[p∞]∨)gAKLA,K/k,S annihilate Selp(AK)
∨?

We chose a maximal Zp-order mp(G) in Qp[G] which contains Zp[G]. Then by

the same method as in [23] we can get the following weaker versions of Problem

5.5.1

Problem 5.5.2.

(i) Does aG(A(K)[p∞]∨)gAKLA,K/k,S lie in ζ(mp(G))?

(ii) Does Fp(G)aG((A(K)[p∞]∨)gAKLA,K/k,S annihilate Selp(AK)
∨?

If the prime p does not divide the order of G, the above two Problems are

equivalent. Even in the case p divides the order of G, we get the following relation

by Proposition 2.2.10.

Proposition 5.5.3. With the same assumption as Proposition 2.2.10, Problem

5.5.1 is equivalent to Problem 5.5.2.

We assume K/k is a CM-extension with the unique complex conjugation j.

We take α ∈ {±1}. Then we can consider the following problems:

Problem 5.5.4.

(i) Does aG(A(K)[p∞]∨)gAKLα
A,K/k,S lie in ζ(mα

p (G))?
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(ii) Does Fp(G)
αaG((A(K)[p∞]∨)gAKLα

A,K/k,S annihilate (Selp(AK)
∨)α?

Problem 5.5.5.

(i) Does aG(A(K)[p∞]∨)gAKLα
A,K/k,S lie in ζ(mp(G))

α?

(ii) Does Fp(G)
αaG((A(K)[p∞]∨)gAKLα

A,K/k,S annihilate (Selp(AK)
∨)α?

As well as Proposition 5.5.3, we get the following:

Proposition 5.5.6. With the same assumption as Proposition 2.2.10, Problem

5.5.4 is equivalent to Problem 5.5.5.

Next we consider the case G = D4p with odd prime p. Each of the irreducible

characters of D4p is 1-dimensional or 2-dimensional, and as in the proof of [26,

Lemma 2.1] (also see [15, Example 6.22]) we have Ip(D4p) = ζ(mp(D4p)). There-

fore, we have by Proposition 2.2.10

Proposition 5.5.7. If G is isomorphic to D4p, Problem 5.5.4 is equivalent to

Problem 5.5.5.

5.5.2 Monomial extensions

In this section we prove the following theorem:

Theorem 5.5.8. We take an odd prime p. Let k be a totally real number field,

K/k be a Galois extension of number fields whose Galois group G is monomial

and A an abelian variety over k. We assume A(K)[p] = At(K)[p] = 0. Then if

Problem 5.5.2 has the affirmative answers for subextensions in K, Problem 5.5.2

has the affirmative answer for K/k.

Proof. We take a finite set S of places of k which contains S∞. We have to prove

the following two things:

• LA,K/k,S belongs to ζ(mp(G)),

• Fp(G)LA,K/k,S annihilates Selp(AK)
∨.
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The first claim is true by Proposition 5.3.8. To prove the second claim, we

only have to show that the pair (LG, Selp(AK)
∨) satisfies Ab(LG, Selp(AK)

∨) by

Theorem 3.2.1. The condition (i) of Ab(LG, Selp(AK)
∨) is obviously satisfied. Con-

cerning the condition (ii), we only need the Art(LG) modulo p by Remark 3.2.2.

By Proposition 5.3.1, we see that Art(LG) modulo p is true (since p is odd). The

conditions (iii) and (iv) are followed by our assumption that Problem 5.5.2 has

the affirmative answers for all Ki,j/ki in K.

By the same proof as Theorem 5.5.8, we get the following:

Theorem 5.5.9. We take an odd prime p. Let K/k be a Galois CM-extension of

number fields whose Galois group G is monomial and A an abelian variety over k.

We assume A(K)[p] = At(K)[p] = 0. Then if Problem 5.5.5 has the affirmative

answers for subextensions in K, Problem 5.5.5 has the affirmative answer for K/k.

Next we study the case where A(K)[p] does not vanish. For each Ki,j/ki in

K, we write gAKi,j for the minimal number of generators of A(Ki,j)[p
∞]∨ as a

Zp[Hi,j/ kerφi,j]-module and set

g := l.c.m1≤i≤s(gAKi,j ). (5.11)

If A(K)[p] does not vanish, we can not apply Theorem 3.2.1 as it is. However, we

can prove the following:

Lemma 5.5.10. We take an odd prime p. Let k be a totally real number field,

K/k be a Galois extension of number fields whose Galois group G is monomial and

A an abelian variety over k. We take a finite set S of places of k which contains

Sk
∞. If φ′

i(aHi/ kerφi(A(Ki)[p
∞]∨)gAKiL

A,Ki/ki,S
ki∞
)eφ′

i
lies in mp(Hi/ kerφi)eφ′

i
for all

Ki/ki in F, aG(A(K)[p∞]∨)g
2L′

A,K/k,S lies in ζ(mp(G)).

Theorem 5.5.11. We take an odd prime p. Let k be a totally real number field,

K/k be a Galois extension of number fields whose Galois group G is monomial

and A an abelian variety over k. We take a finite set S of places of k which

contains Sk
∞. Then if Problem 5.5.2 has the affirmative answers for subextensions
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in F,

Fp(G)aG(A(K)[p∞]∨)g
2L′

A,K/k,S

lies in ζ(Zp[G]) and annihilates Selp(AK)
∨.

Proof of Lemma 5.5.10. If we set

tS :=
∏

p∈S\Sk∞
Lp(A,K/k, χ̌, 1)

−1eχ,

then tS lies in ζ(mp(G)). Hence it suffices to show the claim for L′
A,K/k,Sk∞

. Take

an element α in aG(A(K)[p∞]∨) and write

α =
∑

χ∈IrrG
αχeχ

as an element in Cp[G]. Note that αχ is an algebraic integer in Qp(χ). Thanks to

Conjecture 5.3.5 in §5.3.3, it is sufficient to show that for each χi ∈ IrrG

αg2

χi

LSk∞(A,K/k, χ̌i, 1) · τ(Q, IndQ
k (χi))

d

Ω(A, χi) · ω∞(χi)d

is an algebraic integer. Since this factor does not change by inflation and induction

of characters except αχ as we saw in §5.3, we have

LSk∞(A,K/k, χ̌i, 1) · τ(Q, IndQ
k (χi))

d

Ω(A,χi) · ω∞(χi)d
=

L
S
ki∞
(A,F/ki, φ̌i, 1) · τ(Q, IndQ

ki
(φi))

d

Ω(A, φi) · ω∞(φi)d

=
L

S
ki∞
(A,Ki/ki, φ̌

′
i, 1) · τ(Q, IndQ

ki
(φ′

i))
d

Ω(A, φ′
i) · ω∞(φ′

i)
d

= φ′
i(L′

A,Ki/ki,S
ki∞
).

Since αχi lies in Qp(χi) ⊂ Qp(φi), by Lemma 2.2.2,
∑

σ∈Gal(Qp(χi)/Qp)
ασ
χi
eχσi lies in

ζ(Qp[Hi]) and hence lies in ζ(mp(Hi)) (recall that αχi is an algebraic integer). This

implies that
∑

σ∈Gal(Qp(χi)/Qp)
ασ
χi
eχσi lies in Annζ(mp(Hi))(ζ(mp(Hi))⊗A(K)[p∞]∨).

Let (
∑

σ∈Gal(Qp(χi)/Qp)
ασ
χi
eχσi )|Ki

be the natural image of∑
σ∈Gal(Qp(χi)/Qp)

ασ
χi
eχσi under the natural surjection Zp[Hi] � Zp[Hi/ kerφi]. In
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what follows we set Hi := Hi/ kerφi. Then, we have

(
∑

σ∈Gal(Qp(χi)/Qp)

ασ
χi
eχσi )|Ki

∈ Annmp(Hi)
(mp(Hi)⊗ A(Ki)[p

∞]∨). (5.12)

Moreover, by the definition of g and [29, Theorem5], we have

Annmp(Hi)
(mp(Hi)⊗ A(Ki)[p

∞]∨))g
2 ⊂ (Fittmp(Hi)(mp(Hi)⊗ A(Ki)[p

∞]∨))g

= (mp(Hi) · FittZp[Hi](A(Ki)[p
∞]∨))g,

(5.13)

where FittZp[Hi](·) denotes the initial Fitting ideal over Zp[Hi]. By our assumption,

we have

φ′
i(aHi(A(Ki)[p

∞]∨)gL′
A,Ki/ki,S

ki∞
)eφ′

i
∈ mp(Hi)eφ′ .

Hence we also have

φ′
i((mp(Hi) · aHi(A(Ki)[p

∞]∨))gL′
A,Ki/ki,S

ki∞
)eφ′

i
∈ mp(Hi)eφ′ .

Combining this with (5.13) (and recalling the fact that the initial Fitting ideal is

contained in the annihilator ideal), we know that

φ′
i((

∑
σ∈Gal(Qp(χi)/Qp)

ασ
χi
eχσi )

g2 |Ki
L′

A,Ki/ki,S
ki∞
) = φ′

i(α
g2

χi
L′

A,Ki/ki,S
ki∞
)

= αg2

χi
· φ′

i(L′
A,Ki/ki,S

ki∞
)

is an algebraic integer. This completes the proof.

Proof of Theorem 5.5.11. Since tS lies in ζ(mp(G)) and Fp(G) is an ideal of

ζ(mp(G)), it is sufficient to show the claim for L′
A,F/k,Sk∞

. Take an element α in

aG(A(K)[p∞]∨). As in the proof of Lemma 5.5.10, we write,

α =
∑

χ∈IrrG
αχeχ.

94



By Lemma 5.5.10, we see that αg2L′
A,F/k,S∞ lies in ζ(mp(G)). We take an element

x ∈ Fp(G). Then x is of the form

∑
χ∈IrrG/∼

∑
σ∈Gal(Qp(χ)/Qp)

xσχ prχσ

with xχ ∈ D−1(Qp(χ)/Qp). By Lemma 2.2.12, we have

∑
σ∈Gal(Qp(χi)/Qp)

xσχi prχσi =
∑

φ∈IrrHi/∼
∃σ∈Gal(Qp(χi)/Qp), IndGHi

(φ)=χσi

∑
f∈Gal(Qp(φ)/Qp)

xfχi prφf ,

and there exists a subscript j ∈ {1, 2, . . . , si} such that

∑
f∈Gal(Qp(φ)/Qp)

xfχi prφf =
∑

σ∈Gal(Qp(φi,j)/Qp)

xfχi prφfi,j
.

This element also lies in Fp(Hi) and its restriction to Ki,j lies in Fp(H i,j), where

H i,j = Hi/ kerφi,j. By (5.12) and (5.13), we see that

(
∑

σ∈Gal(Qp(χi)/Qp)

ασ
χi
eχσi )

g2 |Ki,j
∈ (mp(H i,j) · aHi,j

(A(Ki,j)[p
∞]∨))g.

Since we have Fp(H i,j)mp(H i,j) ⊂ Fp(H i,j), the product

(
∑

f∈Gal(Qp(φi,j)/Qp)

xfχi prφfi,j
)|Ki,j

(
∑

σ∈Gal(Qp(χi)/Qp)

ασ
χi
eχσi )

g2 |Ki,j

=
∑

f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
prφ′f

i,j

lies in Fp(H i,j)aHi,j
(A(Ki,j)[p

∞]∨). Hence, by our assumption,

(
∑

f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
prφ′f

i,j
)L

A,Ki,j/ki,S
ki∞

=
∑

f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
φ′f
i,j(LA,Ki,j/ki,S

ki∞
) prφ′f

i,j
(5.14)
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annihilates Selp(AKi,j
)∨. We write i� for the involution map on Qp[G] which sends

each element in G to its inverse. Then

i�(
∑

f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
φ′f
i,j(LA,Ki,j/ki,S

ki∞
) prφ′f

i,j
)

annihilates Selp(AKi,j
). Since we have φ′f

i,j(L′
A,Ki/ki,S

ki∞
) = φf

i,j(L′
A,F/ki,S

ki∞
) and

prφi,j = prφ′
i,j
(
∑

h∈kerφi,j h),

i�(
∑

f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
φ′f
i,j(LA,Ki,j/ki,S

ki∞
) prφfi,j

)

annihilates Selp(AF ), and hence

∑
f∈Gal(Qp(φi,j)/Qp)

xfχiα
fg2

χi
φ′f
i,j(LA,Ki,j/ki,S

ki∞
) prφfi,j

annihilates Selp(AF )
∨. We recall that χf

i = IndG
Hi
(φf

i ). Then we have φf
i (L′

A,F/ki,S
ki∞
)

= χf
i (LA,F/k,Sk∞)/χf

i (1), and hence

∑
f∈Gal(Qp(φi,j)/Qp)

xfχi prφfi,j
αfg2

χi

χf
i (L′

A,F/k,Sk∞
)

χf
i (1)

annihilates Selp(AF )
∨. Therefore,

∑
φ∈IrrHi/∼

∃σ∈Gal(Qp(χi)/Qp), IndGHi
(φ)=χσi

∑
f∈Gal(Qp(φ)/Qp)

xfχi prφf α
fg2

χi

χf
i (L′

A,F/k,Sk∞
)

χf
i (1)

= (
∑

σ∈Qp(χi)/Qp
xσχi prχσi )α

g2L′
A,F/k,Sk∞

annihilates Selp(AF )
∨. Hence, we know that

(
∑

χ∈IrrG/∼

∑
σ∈Qp(χ)/Qp

xσχ prχσ)α
g2L′

A,F/k,Sk∞
= xαg2L′

A,F/k,Sk∞
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annihilates Selp(AF )
∨. This completes the proof.

By the same method, we obtain the following:

Theorem 5.5.12. Let F/k be a CM-extension whose Galois group is monomial

and A an abelian variety over k. We take a finite set S of places of k which

contains Sk
∞. Then if Problem 5.5.4 has the affirmative answers for subextensions

in K,

Fp(G)
αaG(A(K)[p∞]∨)g

2Lα
A,F/k,S

lies in ζ(Zp[G])
α and annihilates (Selp(AF )

∨)α.

5.5.3 Extensions with group D4p

In this section, we use the same notations as in §4.4.2. We set

K′ := {K1, K2, K3, . . . , K(p−1)/2}
= {k, K2, K3, K4, K, K

+}. (5.15)

Then our main result in this section is

Theorem 5.5.13. Let K/k be a finite Galois CM-extension whose Galois group

is isomorphic to the dihedral group of order 4p. Let A be an abelian variety over

k such that HypA(K/k, p) is satisfied. We also assume that At(N)[p] = 0, A(N)α

is finite, XK
p (AN)=0 and the Birch and Swinnerton-Dyer conjecture holds for

intermediate fields in K′. Then Problem 5.5.4 has the affirmative answer.

By Theorem 5.5.9, in order to prove this theorem, we only have to show anni-

hilation results corresponding to Problem 5.5.4 for subextensions Ki/ki.

For i = 1, 2, 3, 4, the triples (A,Ki/ki, p) do not satisfy HypA(A,Ki/ki, p) but

still satisfy (a), (b), (e) and (f) by Lemma 5.2.2. Therefore, for these extensions,

it is enough to show the following:

Proposition 5.5.14. Let K/k be a quadratic CM-extension and A be an abelian

variety over k such that the triple (A,K/k, p) satisfies (a), (b), (e) and (f).
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We also assume that A(K)t[p] = 0 and A(K)α is finite. Then if the Birch and

Swinnerton-Dyer conjecture is true for AK, Problem 5.5.4 has the affirmative

answer for A and K/k.

Proof. First we prove for Lα
A,K/k,Sk∞

. We take the unique element χ ∈ IrrαG.

Then we have by Proposition 5.4.2,

|(Selp(AK)
∨)α| = |(Xp(AF )

∨)α|
= |Xp(AF )

α|

=
L�(AK , 1)

α · (√dF α
)d

Ω(AK)α

=
L�(A,K/k, χ, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

=
L(A,K/k, χ, 1) · τ(Q, IndQ

k χ)
d

Ω(A,χ) · ω∞(χ)d

= χ(L′
A,K/k,Sk∞

).

This implies that Lα
A,K/k,Sk∞

lies in Zp[Gal(K/k)] and

Lα
A,K/k,Sk∞

· (Selp(AK)
∨)α = 0. (5.16)

This completes the proof for Sk
∞. Take an arbitrary finite set Sk of places of k

which contains Sk
∞. Then we have

Lα
A,K/k,Sk = tSkLα

A,K/k,Sk∞
,

where tSk is an element in ζ(mp(G)) defined in the proof of Lemma 5.5.10. Take

any element x in Fp(G)
α. Then xtSk lies in ζ(Zp[G])

α. Therefore, we have by

(5.16)

xLα
A,K/k,Sk · (Selp(AK)

∨)α = xtSkLα
A,K/k,Sk∞

· (Selp(AK)
∨)α = 0.

This completes the proof.

Next we consider the case of i = 5, 6, . . . , p+3. Since extensionsKi/ki satisfies

98



HypA(Ki/ki, p) for i = 5, 6, . . . , p+ 3, it is enough to show the following:

Proposition 5.5.15. Let K/F be a cyclic CM-extension of degree 2p with Galois

group G and A an abelian variety over k such that HypA(K/F, p) is satisfied. We

assume that A(N)α is finite and XK
p (AN) = 0. Then if the Birch and Swinnerton-

Dyer conjecture is true for AK and AN , Problem 5.5.5 has the affirmative answer

for K/k.

Proof. In what follows, we use the same notation as in the proof of Proposition

4.4.18. By the same argument as in the proof of Theorem 5.5.11, it is enough to

prove the claim for Lα
A,K/F,Sk∞

. We observe that A(K)α is finite by Lemma 5.2.1.

Take an element x in Fp(G). Then x is of the form

x =
∑

φ∈IrrG/∼
φ is odd

∑
g∈Gal(Q(φ)/Q)

xgφ prφg , xφ ∈ D−1(Q(φ)/Q)

= xψ prψ +
∑

φ∈IrrG/∼
φ is odd and φ(σ) = 1

∑
g∈Gal(Q(φ)/Q)

xgφ prφg ,

where ψ is the character of Gal(K/k) such that ψ(j) = −1 and ψ(σ) = 1 and xψ

belongs to Z. We set

x[φ] :=
∑

φ∈IrrG/∼
φ is odd and φ(σ) = 1

∑
g∈Gal(Ql(φ)/Ql)

xgφ prφg .

Since P = 〈σ〉, we have N := K〈σ〉. Moreover, N/F is a quadratic extension. We

denote by ψ′ the nontrivial character of Gal(N/F ). Then we have

xψ prψ LA,K/k,S = xψLA,N/F,SNorm〈σ〉.

Since A(K)α is finite, we also have A(N)α is finite. Moreover, the triple (A,N/F, p)

satisfies the conditions (a), (b), (e) and (f). Therefore, we have by Proposition

5.5.14

xψ prψ LA,K/F,S(Selp(AK)
∨)α = 0.
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Next we show

x[φ]LA,K/F,S(Selp(AK)
∨)α = 0.

Since A(K)α is finite, we have by Proposition 5.4.2

|(Selp(AK)
∨)α| = |(Xp(AK)

∨)α|
= |Xp(AK)

α|

=
L�(AK , 1)

α · (√dKα
)d

Ω(AK)α

=
∏

φ∈IrrαG

L�(A,K/F, φ̌, 1) · τ(Q, IndQ
F φ)

d

Ω(A, φ) · ω∞(φ)d

=
∏

φ∈IrrαG

L(A,K/F, φ̌, 1) · τ(Q, IndQ
F φ)

d

Ω(A, φ) · ω∞(φ)d
. (5.17)

We take the unique element ψ ∈ Irrα Gal(N/F ). Then by the same way, we have

|(Selp(AN)
∨)α| = |(Xp(AN)

∨)α|
= |Xp(AN)

α|

=
L�(A,N/F, ψ, 1) · τ(Q, IndQ

F ψ)
d

Ω(A,ψ) · ω∞(ψ)d

=
L(A,N/F, ψ, 1) · τ(Q, IndQ

F ψ)
d

Ω(A,ψ) · ω∞(ψ)d
. (5.18)

Since InfGGal(K/k) ψ is the element in IrrG whose kernel contains P , dividing (5.17)

by (5.18), we have

|(Selp(AF )
∨)α|

|(Selp(AK)∨)α| =
∏

φ∈IrrαG
φ(P )=1

L(A,K/F, φ̌, 1) · τ(Q, IndQ
k φ)

d

Ω(A, φ) · ω∞(φ)d
.

Recalling that x[φ] is of the form

x[φ] :=
∑

φ∈IrrG/∼
φ is odd and φ(σ) = 1

∑
g∈Gal(Ql(φ)/Ql)

xgφ prφg ,
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we see that P does not act trivially on x Selp(AK)
α. Since we assume XK

p (AN) =

0, we have

|x[φ](Selp(AK)
∨)α| ≤ |(Selp(AK)

∨)α|
|(Selp(AK)∨)αP |

=
|(Xp(AK)

∨)α|
|(Xp(AK)∨)αP |

≤ |(Xp(AK)
∨)α|

|(Xp(AN)∨)α|
=

|(Selp(AK)
∨)α|

| Selp(AN)∨)α|

=
∏

φ∈IrrαG
φ(P ) =1

L(A,K/F, φ̌, 1) · τ(Q, IndQ
k φ)

d

Ω(A, φ) · ω∞(φ)d

= NQ(ζp)/Q(
L(A,K/F, φ̌0, 1) · τ(Q, IndQ

k φ0)
d

Ω(A, φ0) · ω∞(φ0)d
), (5.19)

where φ0 is a generator of IrrαG and the last equality follows from Conjecture

5.3.5. The last three equalities of (5.19) imply that for each φ ∈ IrrαG such that

φ(P ) �= 1, the element

L(A, φ̌,K/F, 1) · τ(Q, IndQ
k φ)

Ω(A, φ) · ω∞(φ)

actually lies in Zp[ζp] and hence φ(Lα
A,K/F,Sk∞

) lies in ζ(mp(Gal(K/F )))eφ. In what

follows, we regard x(Selp(AF )
∨)α as a Zp[ζp]-module (this is possible because

(
∑

σ∈P σ)x[φ](Selp(AK)
∨)α = 0). Then we have by (5.19),

|x[φ](Selp(AK)
∨)α| ≤ [Zp[ζp] : (

L(A, φ̌0, K/F, 1) · τ(Q, IndQ
k φ0)

Ω(A, φ0) · ω∞(φ0)
)]

≤ [Zp[ζp] : (Lα

A,K/F,Sk∞)],

where Lα

A,K/F,Sk∞ is the image of Lα
A,K/F,Sk∞

under the natural surjection Qp[G]
α ∼=

Qp[P ]
α � Qp[ζp]. This implies that x[φ]Lα

A,K/F,Sk∞
annihilates (Selp(AK)

∨)α. This

completes the proof.
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