Canonical Decompositions Describing Structures of Matchings in Graphs

March 2014

Nanao Kita

報告番号	（田 乙 第	号	氏 名	喜多 奈々緒
主論文題目：				
Canonical Decompositions Describing Structures of Matchings in Graphs				

（グラフのマッチング構造を記述する標準分解）
（内容の要旨）
グラフとは道路網などネットワーク構造の数学的抽象化に相当する基本的な離散構造である。マッ チングとはグラフの部分構造の一種であり，互いに素な枝の集合として定義される．マッチングは離散数学の最も代表的な研究対象の一つであり，長年に渡り関心を集めてきた。マッチングに関す る研究の蓄積はマッチング理論と呼ばれるグラフ理論の一大分野を成している。本論文はマッチン グ理論の基盤に対し，標準分解•双対性に基づく構造解明•完全マッチングの数え上げ問題の三つ の方向から貢献するものである。
従来マッチングの構造を把握する強力なツールとして，総称して標準分解と呼ばれるいくつかの分解型構造定理が重要な役割を果たしてきた。 しかしこれらはそれぞれ特殊なクラスのグラフのみ を実質的な適用対象としており，互いの相互関係やこれらをまとめ上げ統一して理解する方法は不明であった。これに対し本論文では任意のグラフを適用対象とし，かつ既存の標準分解をまとめ上 げる新しい標準分解を提案する。これは既存の標準分解の洗練された記述も含んでおり，完全マッ チングを持つ一般のグラフに対しても非自明な構造を明らかにするものである。
バリアもまたグラフの部分構造の一種であるが，これは最大マッチング問題の双対最適解の組合 せ的解釈に相当しており，すなわちマッチングと対をなす概念である。双対性は組合せ最適化の理論体系の軸となる概念であり，事実バリアもマッチングの研究において重要な役割を果たす。しか しバリアについて知られていることは少なく，特に重要である極大バリアについてすらも解明は進 んでいなかった。これに対し本論文では，一般のグラフに対し極大バリアの構造を明らかにする定理を与える．これは1972年にLovász によって与えられた canonical partition の一般化に相当す る。
グラフがもつ完全マッチングの総数を調べることは数え上げ組合せ論の代表的な問題の一つで あり，様々な側面からの研究がなされている．カテドラル定理は飽和グラフの特徴づけを与えてお り，次数などグラフの構造に関するパラメタと完全マッチングの総数との関係を調べる際に有用で ある。カテドラル定理は1972年にLovász によって与えられたのち，2001年に Szigeti によって別証明が与えられている。本論文では，飽和グラフの性質を新しい標準分解を用いて精査すること によってカテドラル定理のさらなる別証明を与える。この新しい証明では，カテドラル定理の背後 にある構造を明らかにすることでより洗練された事実を副産物として与えつつ，非常に自然な形で の別証明を与えている。
また，本論文で提案された新しい標準分解を計算する多項式時間アルゴリズムをいくつか提案す る．これはカテドラル定理によって明らかにされる構造を計算するものにも対応する。

SUMMARY OF Ph.D. DISSERTATION

School Fundamental Science and Technology	Student Identification Number	SURNAME, First name KITA, Nanao

Title

Canonical Decompositions Describing Structures of Matchings in Graphs

Abstract

Graphs are fundamental discrete structures, which arise as a mathematical formulation of network structures such as road networks. A matching is a kind of substructures of a graph; a set of edges is called a matching if any two of them are disjoint. The notion of matchings is one of the central concerns in discrete mathematics and has attracted attention for years. Studies on matchings form one of the largest branches of graph theory called matching theory. This dissertation is devoted to refining the foundation of matching theory, from three directions: canonical decompositions, structures of barriers, and the enumeration problem of perfect matchings.

A kind of decomposition of graphs called canonical decompositions in general has been a fundamental and powerful tool to see matchings. Several canonical decompositions have been known, however each of them can be substantially applicable to a special class of graphs, respectively; also, we have not had any way to know relationships between them or to integrate and unify them. In this dissertation, we give theorems that introduce a new canonical decomposition; this new decomposition can be applicable to any graph, describing much more detailed structures even for the general graphs with perfect matchings, and enables us to understand the other known canonical decompositions in a unified way.
A barrier is also a kind of substructures of graphs, which corresponds to a combinatorial interpretation of the dual optimal solutions of the maximum matching problem; that is to say, a barrier is a notion acting as a counterpart of matchings. Duality is a concept that supports the theory of combinatorial optimization, and indeed barriers play important roles when we investigate matchings. However, not so much has been known about barriers, even for those maximal, which are considered to be especially important. In this dissertation we give a theorem which describes structures of maximal barriers of general graphs. This structure theorem corresponds to a generalization of the canonical partition formulated by Lovász in 1972.
Enumerating all the perfect matchings of a given graph is one of the most fundamental problems in enumerative combinatorics and has been studied by various approaches. The cathedral theorem is a characterization of the saturated graphs and has been useful in investigating relations between the number of perfect matchings and some graph parameters such as degrees. The cathedral theorem was first given by Lovász in 1972, and later Szigeti gave another proof in 2001. Here in this dissertation we give yet another proof by considering the saturated graphs with the new canonical decomposition. In this new proof, we reveal the intrinsic structure exists behind the cathedral theorem and show it in quite a natural way providing more refined properties as by-products.
Moreover, we propose several polynomial time algorithms to compute the new canonical decompositions, which also correspond to algorithmic results of the cathedral theorem.

A Thesis for the Degree of Ph.D. in Science

Canonical Decompositions Describing Structures of Matchings in Graphs

Nanao Kita

Graduate School of Science and Technology Keio University

March 2014
(C) 2014 Nanao Kita

Preface

Graphs are fundamental discrete structures, which arise as a mathematical formulation of network structures such as road networks. A matching is a kind of substructures of a graph; a set of edges is called a matching if any two of them are disjoint. The notion of matchings is one of the central concerns in discrete mathematics and has attracted attention for years. Studies on matchings form one of the largest branches of graph theory called matching theory. This thesis is devoted to refining the foundation of matching theory, from three directions: canonical decompositions, structures of barriers, and the enumeration problem of perfect matchings.

A kind of decomposition of graphs called collectively canonical decompositions has been a fundamental and powerful tool to see matchings. Several canonical decompositions have been known, however each of them can be substantially applicable to a special class of graphs, respectively; also, we have not had any way to know relationships between them or to integrate and unify them. In this thesis, we give theorems that introduce a new canonical decomposition; this new decomposition can be applicable to any graph, describing much more detailed structures even for the general graphs with perfect matchings, and enables us to understand the other known canonical decompositions in a unified way.

A barrier is also a kind of substructures of graphs, which corresponds to a combinatorial interpretation of the dual optimal solutions of the maximum matching problem; that is to say, a barrier is a notion acting as a counterpart of matchings. Duality is a concept that supports the theory of combinatorial optimization, and indeed barriers play important roles when we investigate matchings. However,
not so much has been known about barriers, even for those maximal, which are considered to be especially important. In this thesis we give a theorem which describes structures of maximal barriers of general graphs. This structure theorem corresponds to a generalization of the canonical partition formulated by Lovász in 1972.

Enumerating all the perfect matchings of a given graph is one of the most fundamental problems in enumerative combinatorics and has been studied by various approaches. The cathedral theorem is a characterization of the saturated graphs and has been useful in investigating relations between the number of perfect matchings and some graph parameters such as degrees. The cathedral theorem was first given by Lovász in 1972, and later Szigeti gave another proof in 2001. Here in this thesis we give yet another proof by considering the saturated graphs with the new canonical decomposition. In this new proof, we reveal the intrinsic structure exists behind the cathedral theorem and show it in quite a natural way providing more refined properties as by-products. Moreover, we propose several polynomial time algorithms to compute the new canonical decompositions, which also correspond to algorithmic results of the cathedral theorem.

Contents

1 Introduction 1
1.1 Background 1
1.2 Fundamentals 2
1.2.1 Graphs 2
1.2.2 Matchings 5
1.2.3 Digraphs 6
1.3 Structure Theorems in Matching Theory 7
1.3.1 Barriers 7
1.3.2 Canonical Decompositions 8
1.4 Overview 11
2 Canonical Structures of Factorizable Graphs 15
2.1 Introduction 15
2.2 Preliminary Facts 18
2.2.1 Factor-critical Graphs 18
2.2.2 Other Facts 19
2.3 A Partially Ordered Structure in Factorizable Graphs 20
2.4 A Generalization of the Canonical Partition 33
2.5 Correlations between \triangleleft and \sim_{G} 35
2.6 Examples 39
2.7 Algorithmic Result 42
2.8 Concluding Remarks 45
3 Barriers in General Graphs 47
3.1 Introduction 47
3.2 Our Aim on Barriers 48
3.3 More Details on Odd-maximal Barriers 50
3.3.1 Proof of Proposition 3.2.2 50
3.3.2 Proof of Proposition 3.2.3 51
3.4 The Main Result in This Chapter 51
3.5 Barriers vs. Alternating Paths 52
3.6 Canonical Structures of Odd-maximal Barriers 65
4 Lovász's Cathedral Theorem 79
4.1 Introduction 79
4.2 The Gallai-Edmonds Partition 81
4.3 Outline of the New Proof 83
4.4 Factorizable Graphs through the Gallai-Edmonds Partition 85
4.5 Another Proof of the Cathedral Theorem 88
4.5.1 The Cathedral Theorem 88
4.5.2 Proof of Theorem 4.5.3 92
4.5.3 Proof of Theorem 4.5.4 96
4.5.4 Proof of Theorem 4.5.2 and an Example 98
4.6 Concluding Remarks 98
5 Computing the Cathedral Structure More Efficiently 101
5.1 Preliminaries 101
5.2 A New Algorithm 102
6 Conclusion 107

List of Figures

2.1 A factorizable graph G 40
2.2 The factor-connected components of G 40
2.3 The Hasse diagram of $(\mathcal{G}(G), \triangleleft)$ 40
2.4 The generalized canonical partition of G 41
2.5 The strict upper bounds of G_{1} 42
3.1 A factorizable graph G with an odd-maximal barrier X 55
3.2 The bipartite graph $H_{G}(X)$ 55
3.3 The graph G with a perfect matching M 56
3.4 The graph $H_{G}(X)$ with the perfect matching M^{\prime}. 57
3.5 The path P in the proof of Proposition 3.5.9 (i) 60
3.6 The path P^{\prime} in the proof of Proposition 3.5.9 (i) 60
3.7 The path P^{\prime} in the proof of Proposition 3.5.9 (ii) 61
3.8 The path P is the proof of Proposition 3.5.9 (ii) 61
3.9 The DM-components of $H_{G}(X)$ 61
3.10 The expansions of the DM-components of $H_{G}(X)$ 62
3.11 The Hasse diagram that indicates the DM-decomposition of $H_{G}(X)$ 62
3.12 The proof of Lemma 3.6.4 67
3.13 The proof of Lemma 3.6.6 68
3.14 The definition procedure of x_{0}, x_{1}, \ldots in the proof of Theorem 3.6.8 71
3.15 The proof of Claim 3.6.10 in Theorem 3.6.8 71
3.16 A factorizable graph G with an odd-maximal barrier $X=\{b, f, h, i, j, r\}$ 74
3.17 The factor-components of G 75
3.18 The Hasse diagram of the poset $(\mathcal{G}(G), \triangleleft)$ 75
3.19 The generalized canonical partition of G 76
3.20 The canonical structure of the odd-maximal barrier $X=\{b, f, h, i, j, r\}$ 76
4.1 A saturated graph \tilde{G} 88
4.2 The foundation and the towers that create \tilde{G} 89
4.3 The foundation and the towers that create G_{R} 89
4.4 The factor-connected components of \tilde{G} 89
4.5 The Hasse diagram of $(\mathcal{G}(\tilde{G}), \triangleleft)$ 89
4.6 The generalized canonical partition of \tilde{G} 90

Chapter 1

Introduction

1.1 Background

Given a graph, a matching (1-matching) is a set of edges no two of which have common vertices. This basic notion has gathered attention in discrete mathematics for years, and numerous related notions or problems including generalizations such as k-matchings have been studied extensively; these studies form one of the largest branches of graph theory: matching theory [30]. The notion of matchings is so fundamental that sometimes problems which do not appear to be related directly to matching problems can be solved with the help of matching theory, e.g., the Chinese postman problem, the Hamilton cycle problem, and so on [30]. Applications are not limited to graph theory; some linear algebraic problems are also such examples [4-6,13].

What is more, we must mention that matching theory has played an important role at the heart of the rapid growth of combinatorial optimization in the past decades. Efficiency in the sense of computational costs is what matters most in combinatorial optimization, and since advocated by Edmonds [7], the concept of polynomial time solvability has been obtained broad acceptance as a measure of "well-solvability". The maximum matching problem is considered as the most fundamental one among problems solved in polynomial time, and it is said that
matching theory serves as an archetypal example of how a well-solved problem can be studied [30].

In fact, fundamental structural results and algorithms on matchings let us pioneer the new paradigm, i.e., polyhedral combinatorics; here important notions and techniques that capture and handle well-solved problems somewhat comprehensively, e.g., min-max theorems and integrality of polyhedra, have originated out of matching theory $[30,34]$.

This thesis is devoted to contributing to the foundation of matching theory, and we approach it from three aspects: canonical decompositions, structures of barriers, and the enumeration problem of perfect matchings.

In the succeeding sections of this chapter, first we give fundamental definitions and notations in Section 1.2, then in Section 1.3 introduce concepts and theorems in matching theory related to the theme of this thesis such as barriers and canonical decompositions, and finally state an overview of this thesis in Section 1.4.

1.2 Fundamentals

1.2.1 Graphs

Graphs

A graph G is a pair $(V(G), E(G))$ of a set $V(G)$ and a multiset $E(G)$ disjoint from $V(G)$, each of whose elements is an unordered pair of not necessarily distinct two elements of $V(G)$. Each element of $V(G)$ and $E(G)$ is called a vertex and an edge of G, respectively. For an edge $\{x, y\}$, we say it joins x and y, and denote it by $x y$; we also say x is adjacent to y. For an edge e, we call the elements of e the end vertices or the ends of e. An edge is a loop if it is consists of identical vertices. Edges are parallel if they possess the same sets of end vertices and are distinguished respectively. The graphs we treat in this thesis are usually multigraphs, i.e., they might have loop edges or parallel edges. In this thesis we assume graphs are finite, i.e., $V(G)$ and $E(G)$ are finite sets. A graph whose vertex set and edge set are
empty, i.e., (\emptyset, \emptyset) is called empty. We assume all graphs under discussion is not empty unless otherwise specified. In figures, a graph is represented with each vertex indicated by a point and each edge by a line. Two graphs G_{1} and G_{2} are identical if $V\left(G_{1}\right)=V\left(G_{2}\right)$ and $E\left(G_{1}\right)=E\left(G_{2}\right)$ hold; we write $G_{1}=G_{2}$. Two graphs G_{1} and G_{2} are isomorphic if there is a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $u v \in E\left(G_{1}\right)$ if and only if $f(u) f(v) \in E\left(G_{2}\right)$.

Subgraphs

Hereafter for a while let G be a graph and let $X \subseteq V(G)$. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq V(G)$ hold. In this thesis, if a graph H is a subgraph of G, we sometimes denote $H \subseteq G$. We say a subgraph H of G is maximal with respect to a certain property if for any subgraph \hat{H} of G with $H \subseteq \hat{H}, \hat{H}$ satisfying the property yields $H=\hat{H}$. Given a set of edges $F \subseteq E(G)$ of G, the graph such that its vertices are the end vertices of F and the edge set is F is called the subgraph of G determined by F and is denoted by G.F. The graph such that its vertex set is X and its edges are the edges of G both of whose end vertices are in X is called the subgraph of G induced by X and is denoted by $G[X]$. We denote $G[V(G) \backslash X]$ by $G-X$.

Operations on Graphs

The graph obtained by regarding all the vertices of X as a single vertex is called the contraction of G by X and is denoted by G / X; more precisely, $V(G / X)=$ $(V(G) \backslash X) \cup\{x\}$, where x is a new vertex disjoint from $V(G) \cup E(G)$, and $E(G / X)$ is obtained from $E(G)$ by removing all edges of $G[X]$ and replacing each edge $u v \in E(G)$ with $u \in X$ and $v \in V(G) \backslash X$ by $x v$.

Let G be a subgraph of a graph \hat{G}, and let $e=x y \in E(\hat{G})$. If G does not have an edge joining x and y with $x \neq y$, then we call $x y$ a complement edge of G. The graph $G+e$ denotes the graph $(V(G) \cup\{x, y\}, E(G) \cup\{e\})$, and $G-e$ the graph $(V(G), E(G) \backslash\{e\})$. For $F=\left\{e_{1}, \ldots, e_{k}\right\} \subseteq E(\hat{G})$, we define $G+F:=G+e_{1}+\cdots+e_{k}$ and $G-F:=G-e_{1}-\cdots-e_{k}$. For simplicity, regarding
the operations creating new graphs out of some given graphs, such as contraction and taking the union of graphs, we identify vertices, edges, and subgraphs of the newly created graph with those of old graphs that naturally correspond to them.

Graph Parameters

A neighbor of X is a vertex not in X which is joined to a vertex of X by an edge. We denote the set of neighbors of X by $N_{G}(X)$. Given $Y, Z \subseteq V(G)$, the notation $E_{G}[Y, Z]$ denotes the set of edges joining Y and Z, and $\delta_{G}(Y)$ denotes $E_{G}[Y, V(G) \backslash Y]$. For a vertex $v \in V(G)$, the degree of v is the number of edges adjacent to v, each loop counted as two edges.

We sometimes regard a graph as the set of its vertices. For example, given a subgraph H of G, we denote $N_{G}(V(H))$ by $N_{G}(H)$.

Special Classes of Graphs, Connectivity, Connected Components

A graph G without loops or multiple edges is a path if $|V(G)|=1$ and $|E(G)|=0$ holds or $|V(G)| \geq 2$ and exactly two vertices are of degree one and any other vertex is of degree two. We call the former type of paths trivial. Given a path P, vertices with degree no more than one are called end vertices or ends and vertices with degree two are called internal vertices of P. We say a path is between x and y if its end vertices are x and y; we also say a path connects x and y, or sometimes say it is from x to y.

A graph is called connected if for any two vertices x and y there is a path connects x and y. Given a graph G, a maximal connected subgraph is called a connected component or just a component of G. A graph G is 2 -connected if it is connected and for any $v \in V(G)$ the graph $G-v$ is connected. Given a connected graph G, a block of G is a maximal 2-connected subgraph.

A graph is a circuit if it is connected and any of its vertices is of degree two. Note that in this thesis, we treat paths and circuits as graphs. A tree is a connected graph without circuits as its subgraphs.

A graph G is bipartite if there is a partition of $V(G)$ into two sets, say A and
B, color classes, which satisfies $E(G)=E_{G}[A, B]$; we write $G=(A, B ; E(G))$.

1.2.2 Matchings

A set of edges without loops is called a matching if no two of them share end vertices. A matching of cardinality $|V(G)| / 2($ resp. $(|V(G)|-1) / 2)$ is called a perfect matching (resp. a near-perfect matching). A graph is called factorizable if it has a perfect matching. Hereafter for a while let M be a matching of a graph G. We say M exposes (resp. covers) a vertex $v \in V(G)$ if $\delta_{G}(v) \cap M=\emptyset$ (resp. $\left.\delta_{G}(v) \cap M \neq \emptyset\right)$. For a matching M of G and $u \in V(G), u^{\prime}$ denote the vertex such that $u u^{\prime} \in M$, if u is not exposed. Such vertex u^{\prime} is called matched to u by M. For $X \subseteq V(G), M_{X}$ denotes $M \cap E(G[X])$. A subgraph H of G is called nice if $G-V(H)$ is factorizable.

For a path or circuit Q of G, Q is M-alternating if $E(Q) \backslash M$ is a matching of Q, in other words, if edges of M and $E(Q) \backslash M$ appear alternately in Q. Let P be an M-alternating path of G with end vertices u and v. If P has an even number of edges and $M \cap E(P)$ is a near-perfect matching of P exposing only v, we call it an M-balanced path from u to v. We regard a trivial path, that is, a path composed of one vertex and no edges as an M-balanced path. If P has an odd number of edges and $M \cap E(P)$ (resp. $E(P) \backslash M$) is a perfect matching of P, we call it M-saturated (resp. M-exposed).

A path P of G is an ear relative to X if both end vertices of P are in X while internal vertices are not. Also, a circuit C is an ear relative to X if exactly one vertex of C is in X. For simplicity, we call the vertices of $V(P) \cap X$ end vertices of P, even if P is a circuit. Given $Y \subseteq V(G)$, an ear P relative to X is through Y if P has a vertex other than end vertices that is in Y. For an ear P of G relative to X, we call it an M-ear if $P-X$ is an M-saturated path.

A graph is called factor-critical if a deletion of an arbitrary vertex results in a factorizable graph. For convenience, we regard a graph with only one vertex as factor-critical.

An edge $e \in E(G)$ is called allowed if there is a perfect matching containing
e. Let \hat{M} be the set of allowed edges of G. For each connected component C of the subgraph of G determined by \hat{M}, we call the subgraph of G induced by $V(C)$ as a factor-connected component or a factor-component for short. The set of all the factor-components of G is denoted by $\mathcal{G}(G)$. Therefore, a factorizable graph is composed of factor-components and some edges joining between different factorcomponents. A factorizable graph with exactly one factor-component is called elementary.

1.2.3 Digraphs

A directed graph or digraph D is a pair $(V(D), A(D))$ of a set $V(D)$ and a multiset $A(D)$ disjoint from $V(D)$, each of whose elements is an ordered pair of elements of $V(D)$. Here each element of $V(D)$ and $A(D)$ is a vertex and an arc. We denote an arc by (u, v) for some $u, v \in V(D)$, or sometimes by $u v$; here u (resp. v) is called the tail (resp. the head) of (u, v). Digraphs we treat in this thesis are generally multidigraphs, i.e., they might possess a loop, an $\operatorname{arc}(u, u)$ for some $u \in V(D)$ and there might be parallel arcs, the same as ordered pairs but are distinguished. In this thesis we assume that digraphs are finite, i.e., $V(D)$ and $A(D)$ are finite sets.

Analogous to graphs, a subgraph D^{\prime} of a digraph D is a digraph with $V\left(D^{\prime}\right) \subseteq$ $V(D)$ and $A\left(D^{\prime}\right) \subseteq A(D)$. We say a subgraph D^{\prime} of D is maximal with respect to a certain property if for any subgraph $D^{\prime \prime}$ of D such that D^{\prime} is a subgraph of $D^{\prime \prime}$, $D^{\prime \prime}$ satisfying the property yields $V\left(D^{\prime}\right)=V\left(D^{\prime \prime}\right)$ and $E\left(D^{\prime}\right)=E\left(D^{\prime \prime}\right)$.

Given a digraph D, for $v \in V(D)$, outdegree (resp. indegree) of v is the number of edges whose tails (resp. heads) are v. A digraph P without loops or multiple arcs is a dipath if $|V(D)|=1$ and $|A(D)|=0$ hold or it has a single vertex of outdegree one and indegree zero and a single vertex of indegree one and outdegree zero and for any other vertex outdegree and indegree are respectively one. We say a dipath P is from u to v if $u=v$ and $V(P)=\{u\}$ hold or u (resp. v) is the vertex of P with outdegree one and indegree zero (resp. with indegree one and outdegree zero).

A digraph D is strongly-connected if for any two vertices of u and v there is a
dipath such that the vertex with indegree zero is u and the vertex with outdegree zero is v. Give a digraph, a strongly-connected component is a maximal stronglyconnected subgraph of it.

A dicircuit is a digraph which is strongly-connected and any of its vertices satisfies outdegree one and indegree one.

1.3 Structure Theorems in Matching Theory

1.3.1 Barriers

In matching theory, the notion of barriers plays significant roles. Given a graph, we call a connected component of it with an odd (resp. even) number of vertices odd component (resp. even component). Given $X \subseteq V(G)$ of a graph G, we denote as $q_{G}(X)$ the number of odd components that the graph resulting from deleting X from G has; we denote the cardinality of a maximum matching of G as $\nu(G)$. There is a min-max theorem called the Berge formula [30] that for any graph G,

$$
|V(G)|-2 \nu(G)=\max \left\{q_{G}(X)-|X|: X \subseteq V(G)\right\}
$$

A set of vertices that attains the maximum in the right side of the equation is called a barrier. Roughly speaking, barriers essentially coincide with dual optimal solutions of the maximum matching problem, and decompose graphs so that one can see the structures of maximum matchings.

Definition 1.3.1. Given a graph G and $X \subseteq V(G)$, we denote the vertices contained in the odd components of $G-X$ as D_{X}, and $V(G) \backslash X \backslash D_{X}$ as C_{X}.

The next proposition can be easily observed by the Berge formula.
Proposition 1.3.2 (folklore). Let G be a graph, and $X \subseteq V(G)$ be a barrier of G. Then for any maximum matching M of G,
(i) each vertex of X is matched to a vertex of D_{X},
(ii) for each component K of $G\left[D_{X}\right], M_{K}$ is a near-perfect matching of K, accordingly $|\delta(K) \cap M| \leq 1$,
(iii) there exist exactly $|V(G)|-2 \nu(G)$ components with $|\delta(K) \cap M|=0$,
(iv) M contains a perfect matching of $G\left[C_{X}\right]$, and
(v) no edge in $E\left[X, C_{X}\right]$ nor $E(G[X])$ is allowed.

By Proposition 1.3.2, we see how a given barrier enables us to understand the size and structures of all maximum matchings at once. By this proposition, barriers are very useful in numerous contexts in matching theory. However, compared to numerous results on maximum matchings, "much less is known about barriers [30]".

1.3.2 Canonical Decompositions

Canonical Decompositions in Matching Theory

There is a fundamental and essential desire that we want to grasp in what way all the maximum matchings exist in graphs. In matching theory, there are theorems meeting this desire; these theorems decompose a given graph into subgraphs in some ways which are uniquely determined by the given graph and describe the structure of all the maximum matchings at once. These decompositions given by these theorems are called canonical decompositions in general, since the word canonical means "unique to given graphs" in matching theory. It seems barriers take on a role similar to canonical decompositions. Indeed, as we saw in the previous section, a barrier gives a decomposition describing all maximum matchings. However, a graph generally has a number of barriers and so decompositions they give are not canonical. To the best of our knowledge, three canonical decompositions have been known:

1. the Gallai-Edmonds decomposition (Gallai [12], Edmonds [7]),
2. the canonical partition (Kotzig [24-26], Lovász [27]), and
3. the Dulmage-Mendelsohn decomposition (Dulmage \& Mendelsohn [4-6]). In the following, we are going to explain them in detail.

The Gallai-Edmonds Structure Theorem

Definition 1.3.3. Given a graph G, we define $D(G)$ as the set of vertices that are exposed by some maximum matching, $A(G)$ as $N(D(G))$ and $C(G)$ as $V(G) \backslash$ $(D(G) \cup A(G))$. This partition of $V(G)$ into three parts $D(G), A(G), C(G)$ is called the Gallai-Edmonds partition.

There is a famous theorem about the Gallai-Edmonds partition, called the Gallai-Edmonds structure theorem:

Theorem 1.3.4 (The Gallai-Edmonds structure theorem [30]). Let G be a graph. Then, $D(G), A(G), C(G)$ satisfy the following:
(i) The set $A(G)$ is a barrier with $D_{A(G)}=D(G)$ and $C_{A(G)}=C(G)$.
(ii) Each odd component of $G-A(G)$ is factor-critical.
(iii) For each $e \in E[A(G), D(G)]$, there exists a maximum matching M of G with $e \in M$.

When we refer to the decomposition of a graph determined naturally by the Gallai-Edmonds partition considering its properties given by Theorem 1.3.4, we call it the Gallai-Edmonds decomposition. Theorem 1.3.4 states that there is a special barrier, $A(G)$, existing canonically in a graph. The Gallai-Edmonds structure theorem tells us the size and structures of all maximum matchings in a canonical way, so it is useful in numerous contexts and is, without a doubt, the most powerful theorem in matching theory.

The first polynomial time algorithm for the maximum matching problem is Edmonds' one [7], which has given rise to more efficient algorithms proposed since then. Actually, to compute maximum matchings by Edmonds' algorithm is equivalent to compute the Gallai-Edmonds decomposition. Sometimes the GallaiEdmonds decomposition offers a clue to develop a new algorithm [30]. Hence, the

Gallai-Edmonds decomposition lies in the essential part of the maximum matching algorithms. It is also related to some algebraic problems $[3,13]$.

The Canonical Partition

The canonical partition is a decomposition for elementary graphs and plays a crucial role in matching theory. First Kotzig introduced the canonical partition as a quotient set of a certain equivalence relation [24-26], and later Lovász redefined it from the point of view of barriers [30]. In fact, these are equivalent. For an elementary graph G and $u, v \in V(G)$, we say $u \sim v$ if $u=v$ or $G-u-v$ is not factorizable.

Theorem 1.3.5 (Kotzig [24-26]). Let G be an elementary graph. Then \sim is an equivalence relation on $V(G)$.

The family of equivalence classes of \sim is called the canonical partition of G, and denoted by $\mathcal{P}(G)$.

Theorem 1.3.6 (Lovász [30]). Let G be an elementary graph. Then, the family of maximal barriers forms a partition of $V(G)$. Additionally, this partition coincides with the equivalence classes by \sim.

In the polyhedral study of matchings, the notion of elementary graphs appears essential, and Lovász reformulated the canonical partition of elementary graphs so as to obtain the structural results of the perfect matching polytope. Thanks to this reformulation by Lovász, many graph theoretic results such as the two ear theorem of ear-decompositions of elementary graphs, brick decompositions, and tight cut decompositions have been obtained $[8,29,30]$ (see also the survey article [2]), and together with the canonical partition itself, they have underlain the studies of the perfect matching polytope.

The Dulmage-Mendelsohn Decomposition

Factor-components of a bipartite factorizable graph are known to have the following partially ordered structure ${ }^{1}$:

Theorem 1.3.7 (The Dulmage-Mendelsohn Decomposition [4-6,30,32]). Let $G=$ $(A, B ; E)$ be a bipartite factorizable graph, and let $\mathcal{G}(G)=:\left\{G_{i}\right\}_{i \in I}$. Let $A_{i}:=$ $A \cap V\left(G_{i}\right)$ and $B_{i}:=B \cap V\left(G_{i}\right)$ for each $i \in I$. Then, there exists a partial order \preceq_{A} on $\mathcal{G}(G)$ such that for any $i, j \in I$,
(i) $E\left[B_{j}, A_{i}\right] \neq \emptyset$ yields $G_{j} \preceq_{A} G_{i}$, and
(ii) if $G_{j} \preceq_{A} H \preceq_{A} G_{i}$ yields $G_{i}=H$ or $G_{j}=H$ for any $H \in \mathcal{G}(G)$, then $E\left[B_{j}, A_{i}\right] \neq \emptyset$.

We call this decomposition of G into a poset the Dulmage-Mendelsohn decomposition (in short, the DM-decomposition), and each element of $\mathcal{G}(G)$, in this context, a DM-component. The DM-decomposition is uniquely determined by a graph, up to the choice of roles of color classes. In this thesis, we call the DM-decomposition of $G=(A, B ; E)$ as in Theorem 1.3.7 the DM-decomposition with respect to A.

Dulmage and Mendelsohn introduced the DM-decomposition with an application to an efficient solution of the linear equations determined by large sparse matrices [4-6]. Another notable history about the DM-decomposition is its contribution to the theory of submodular function, namely, a branch of it about the principal partition [10, 33].

1.4 Overview

This thesis consists of six chapters including this chapter of introduction and Chapter 6, devoted to conclusion. Our main results are described in Chapter 2 to Chapter 5 . Although matching theory has been studied extensively for years, there are

[^0]still some lacks in its foundation. This thesis contributes to the foundation of matching theory, from three aspects: canonical decompositions, barriers, the enumeration problem of perfect matchings. In the following we give an overview of this thesis.

Canonical decompositions are the most fundamental tools to investigate matchings, and as we saw in Section 1.3.2, to the best of our knowledge, exactly three canonical decompositions have been known, i.e., the Gallai-Edmonds decomposition, the canonical partition, the DM-decomposition. However, each of them are substantially applicable to a special class of graphs, respectively; the GallaiEdmonds decomposition can be applicable non-trivially only for non-factorizable graphs, the canonical partition is for a special class of factorizable graphs, i.e., elementary graphs, and the DM-decomposition is for bipartite graphs. Hence, we have not had any ways to see non-trivial structure of general factorizable graphs. Additionally, there have not been known any viewpoints to understand the known canonical decompositions in a unified way.

The factorizable graphs form such a wide class that we cannot give up obtaining non-trivial canonical decomposition. In this thesis, we present a new canonical decomposition, which is applicable and tells non-trivial structures for general factorizable graphs. By combining this new canonical decomposition with the GallaiEdmonds decomposition, we can easily formulate a structure theorem applicable to any graph and give a refinement of the Gallai-Edmonds decomposition. The new canonical decomposition also give a generalization of the canonical partition for general graphs; our generalization here is based on Kotzig's, among two formulation of the canonical partition in Section 1.3.2. It also expresses a relationship between the factor-components in a partial order. This partially ordered structure is actually not a generalization of the DM-decomposition. A generalization of the DM-decomposition is not directly contained in the new decomposition, nor do we give it in this thesis, however in our coming work [17] we show that a generalization of the DM-decomposition for general graphs can be obtained with the new decomposition. Hence, in this sense, our new decomposition enables us to
unify the three known canonical decompositions. In Chapter 2, we are going to introduce this new canonical decomposition.

The notion of barriers corresponds to the dual optimal solutions of the maximum matching problem and can be regarded as a counterpart of maximum matchings. Duality is a notion that supports the heart of polyhedral combinatorics and accordingly is one of the essential notions in combinatorial optimization. Maximal barriers seems especially important; one reason is that they are more useful in purely combinatorial or graph-theoretic arguments, and another reason is that canonical decompositions have some relationships with maximal barriers (recall Theorem 1.3.6, or see Theorem 3.3.4) and this fact implies that maximal barriers have something intrinsic. However, compared to numerous results about maximum matchings, "much less is known about barriers [30]". Even about maximal barriers, not so much has been known. In Chapter 3, we give a theorem that describes the structure of maximal barriers in general graphs, using the new canonical decomposition we give in Chapter 2. (Actually, we work on a wider notion called odd-maximal barriers.) This theorem turns out to be a generalization of Theorem 1.3.6, which indicates that our generalization of the canonical partition in Chapter 2 is reasonable considering both formulations of the canonical partition, by Kotzig and by Lovász.

Another important direction of the study of matchings is counting the number of perfect matchings [30]. Enumerating the perfect matchings of a given factorizable graph is one of the most fundamental problems in enumerative combinatorics and has been studied by various approaches. The cathedral theorem is a characterization of the saturated graphs and has been useful in investigating relations between the number of perfect matchings and some graph parameters such as degrees. The cathedral theorem was first given by Lovász in 1972 [27], and later Szigeti gave another proof in 2001 [36]. In Chapter 4, we give yet another proof by considering the saturated graphs with the new canonical decomposition. In this new proof, we reveal the intrinsic structure exists behind the cathedral theorem and show it in quite a natural way providing more refined properties as by-products.

We also give several polynomial-time algorithms to compute the new canonical decomposition. One algorithm is given in Chapter 2, and a bit more sophisticated algorithm is presented in Chapter 5 with the results in Chapter 3.

Chapter 2

Canonical Structures of Factorizable Graphs

2.1 Introduction

In this chapter, we show new results which give a new canonical decomposition. When we want to know structures or to develop algorithms on graphs, it is quite natural to decompose graphs appropriately into substructures so that we can consider the problems using this decomposition. There is a kind of decompositions that serve as fundamental tools to consider matchings, called canonical decompositions in general. In matching theory, we say something is canonical if it is a concept determined uniquely to a given graph. Canonical decompositions decompose a given graph in some way uniquely determined to the graph and tell us structures of all the maximum matchings at once.

As we mentioned in Chapter 1, to the best of our knowledge, exactly three theorems are known as those give canonical decompositions: the Gallai-Edmonds decomposition, the canonical partition, and the DM-decomposition [30]. They are useful tools that support the basis of matching theory. However each of them is substantially applicable only to a special class of graphs, respectively; the first one, the Gallai-Edmonds decomposition are substantially for non-factorizable graphs, the second one, the canonical partition is for elementary graphs, and the third
one, the DM-decomposition is for bipartite graphs. Hence there are some classes of graphs do not have canonical decompositions to analyze them; the general factorizable graphs are such even though they form such a wide and fundamental class that we cannot give up investigating them. Moreover, we do not know any ways to see relations between the three canonical decompositions. In this chapter, we are going to show theorems that give a new canonical decomposition, which is applicable substantially and tells non-trivial structures for general factorizable graphs. This new canonical decomposition is given mainly by theorems which show

- a partially ordered structure on the factor-components,
- a generalization of the canonical partition, and
- a relationship between the above two notions.

The Gallai-Edmonds decomposition is by its definition applicable to all graphs, however the decompositions it gives are rather sparse and there are some classes of graphs that it treats as irreducible and does not give non-trivial decompositions; the factorizable graphs are such. If a graph is elementary factorizable, then we can analyze its matching-theoretic properties by the canonical partition. Otherwise, that is, if a graph is non-elementary factorizable, of course we can apply the canonical partition for each of its factor-components; however, this approach does not give enough combinatorial information in general because it fails to considering the overall structure of the graph. Here we generalize the canonical partition for general factorizable graphs including non-elementary graphs, not in a non-trivial way but considering the overall structure of given graphs. As we saw in Section 1.3.2, there are two equivalent formulation of the canonical partition by Kotzig [24-26] and Lovász [27,30], respectively. In this chapter, we give a generalization based on Kotzig's formulation.

We should also investigate how the factor-components are related in a factorizable graphs. A factorizable graph consists of factor-components and some edges joining between them, so elementary graphs are fundamental building blocks of
a factorizable graph. Conversely, suppose we are given some elementary graphs, say, G_{1}, \ldots, G_{k}, where $k>0$, and create a new graph, say, G by joining these elementary graphs with edges in some way. The graph G will always be factorizable, but will the factor-components of G be G_{1}, \ldots, G_{k} ? The answer is no. Therefore, there must be a certain non-trivial structure about relationship between the factor-components in a factorizable graph. In fact, the DM-decomposition reveals a relationship between the factor-components of bipartite factorizable graphs, stating that they form a poset. However, as for non-bipartite factorizable graphs, no result has been known. In this chapter, we reveal a partially ordered structure between factor-components of general factorizable graphs. It has some similar natures to the DM-decomposition, however they are distinct.

Actually, there is a relationship between the partial order on the factor-components and the generalization of the canonical partition. This relationship unites the two notions and so give rise to a new canonical decomposition; we will name it the generalized cathedral decomposition or just the cathedral decomposition, after the cathedral theorem for saturated graphs, given by Lovász $[28,30]$.

By combining the results here with the Gallai-Edmonds structure theorem, we can formulate the new canonical decomposition as one applicable to general graphs including those non-factorizable, which gives a refinement of the Gallai-Edmonds decomposition.

The results in this chapter are also found in papers by the author [19, 20]. The rest of this section is to explain the succeeding sections in this chapter. In Section 2.2, we give some basic definition and properties. In Section 2.3, we reveal a canonical partially ordered structure on factor-components of factorizable graphs. In Section 2.4, we give a generalization of the canonical partition based on Kotzig's way. In Section 2.5, we show some additional properties regarding the results in Sections 2.3 and 2.4, including a relationship between the partial order and the generalization of the canonical partition. In Section 2.6, we show some example and figures about results in previous sections. In Section 2.7, we show that the new canonical decomposition can be computed in polynomial time.

2.2 Preliminary Facts

2.2.1 Factor-critical Graphs

Here we show some basic facts about factor-critical graphs. Some of them are easy to see and might be regarded as folklores.

Property 2.2.1. Let M be a near-perfect matching of a graph G that exposes $v \in V(G)$. Then, G is factor-critical if and only if for any $u \in V(G)$ there exists an M-balanced path from u to v.

Proof. Take $u \in V(G)$ arbitrarily. Since G is factor-critical, there is a near-perfect matching M^{\prime} of G exposing only u. Then, $G . M \triangle M^{\prime}$ contains an M-balanced path from u to v, and the sufficiency part follows.

Now suppose there is an M-balanced path P from u to v. Then, $M \triangle E(P)$ is a near-perfect matching of G exposing u. Hence, the necessity part follows.

Property 2.2.2. Let G be a graph. Then G is factor-critical if and only if each block of G is factor-critical.

Proposition 2.2.3 (implicitly stated in [27]). Let G be a factor-critical graph, $v \in V(G)$, and M be a near-perfect matching that exposes v. Then for any nonloop edge $e=v u \in E(G)$, there is a nice circuit C of G which is an M-ear relative to v and contains e.

Theorem 2.2.4 (implicitly stated in [27]). Let G be a factor-critical graph. For any nice factor-critical subgraph G^{\prime} of $G, G / G^{\prime}$ is factor-critical.

An ear-decomposition of a graph G is a sequence of subgraphs $G_{0} \subseteq \cdots \subseteq$ $G_{k}=G$ such that $G_{0}=(\{r\}, \emptyset)$ for some $r \in V(G)$ and for each $i \geq 1, G_{i}$ is obtained from G_{i-1} by adding an ear P_{i} relative to G_{i-1}. We sometimes regard an ear-decomposition as a family of ears $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$. An ear-decomposition is called odd if any of its ears has an odd number of edges.

Theorem 2.2.5 (Lovász [27]). A graph is factor-critical if and only if it has an odd ear-decomposition.

For a factor-critical graph G and a near-perfect matching M of G, an eardecomposition of G is alternating with respect to M or just M-alternating if each ear is an M-ear.

Proposition 2.2.6 (Lovász [27]). Let G be a factor-critical graph. Then for any near-perfect matching M of G, there is an M-alternating ear-decomposition of G.

2.2.2 Other Facts

The following are fundamental and basic facts about matchings. These are easy to see. We use the these facts frequently all over in this thesis, sometimes without explicitly mentioning it. Readers familiar with matching theory might skip this section.

Property 2.2.7. Let G be a factorizable graph, M be a perfect matching of G, and $e=x y \in E(G)$ be such that $e \notin M$. The following three properties are equivalent:
(i) The edge e is allowed in G.
(ii) There is an M-alternating circuit C such that $e \in E(C)$.
(iii) There is an M-saturated path between x and y.

Proof. We first show that (i) and (ii) are equivalent. Let M^{\prime} be a perfect matching of G such that $e \in M^{\prime}$. Then, G.M $\triangle M^{\prime}$ has a connected component which is an M-alternating circuit containing e. Hence, (i) yields (ii).

Now let $L:=M \triangle E(C)$. Then, L is a perfect matching of G such that $e \in L$. Hence, (ii) yields (i); consequently, they are equivalent.

Since (ii) and (iii) are obviously equivalent, now we are done.
Property 2.2.8. Let G be a factorizable graph and M be a perfect matching of G, and let $u, v \in V(G)$. Then, $G-u-v$ is factorizable if and only if there is an M-saturated path of G between u and v.

Proof. For the sufficiency part, let M^{\prime} be a perfect matching of $G-u-v$. Then, $G . M \triangle M^{\prime}$ has a connected component which is an M-saturated path between u
and v. For the necessity part, let P be an M-saturated path between u and v. Then, $M \triangle E(P)$ is a perfect matching of $G-u-v$, and we are done.

Property 2.2.9. Let G be a factorizable graph and M be a perfect matching of G, and let $u, v \in V(G)$. If there is an M-alternating circuit C with $u, v \in V(C)$, then all edges of $E(C)$ are allowed and therefore u and v are contained in the same factor-component of G.

Proof. The set of edges $M \triangle E(C)$ is also a perfect matching of G. Therefore, each edge of $E(C)$ is allowed, and so u and v are connected by a path whose edges are all allowed. Hence, u and v belong to the same factor-component.

Property 2.2.10. Let G be a graph and M be a matching of G. Let $X \subseteq V(G)$ be such that M_{X} is a perfect matching of $G[X]$. Let P be an M-balanced path or an M-saturated path, one of its end vertices, say u, is covered by M. Trace P from u and let v be the first vertex we encounter that is in X. Then, the subpath $u P v$ is an M-balanced path from u to v.

Property 2.2.11. Let G be a graph, M be a matching of G, and $X \subseteq V(G)$ be such that M_{X} is a perfect matching of $G[X]$. Let P be an M-exposed path with both end vertices in X or an M-alternating circuit with some vertices in X. Each connected component of $P-E(G[X])$ is an M-ear relative to X.

2.3 A Partially Ordered Structure in Factorizable Graphs

In this section we show a relationship between factor-components of a given factorizable graph. We shall define a canonical binary relation on the factor-components, which captures matching-theoretic properties well, and show that in fact it is a partial order (Theorem 2.3.29).

Let G be a factorizable graph. For $X \subseteq V(G)$ we call X a separating set if for any $H \in \mathcal{G}(G), V(H) \subseteq X$ or $V(H) \cap X=\emptyset$. The next property is easy to see by the definition.

Property 2.3.1. Let G be a factorizable graph, and $X \subseteq V(G)$ be such that $X \neq \emptyset$. The following properties are equivalent:
(i) The set X is separating.
(ii) There exist $H_{1}, \ldots, H_{k} \in \mathcal{G}(G)$, where $k \geq 1$, such that X is a disjoint union of $V\left(H_{1}\right), \ldots, V\left(H_{k}\right)$.
(iii) For any perfect matching M of $G, \delta(X) \cap M=\emptyset$.
(iv) For any perfect matching M of G, M_{X} is a perfect matching of $G[X]$.

Let $G_{1}, G_{2} \in \mathcal{G}(G)$. We say a separating set X is a critical-inducing set for G_{1} if $V\left(G_{1}\right) \subseteq X$ and $G[X] / G_{1}$ is a factor-critical graph. Moreover, we say X is a critical-inducing set for G_{1} to G_{2} if $V\left(G_{1}\right) \cup V\left(G_{2}\right) \subseteq X$ and $G[X] / G_{1}$ is a factor-critical graph.

Definition 2.3.2. Let G be a factorizable graph, and $G_{1}, G_{2} \in \mathcal{G}(G)$. We say $G_{1} \triangleleft G_{2}$ if there is a critical-inducing set for G_{1} to G_{2}.

Lemma 2.3.3. Let G be a factorizable graph and M be a perfect matching of G, and let $X \subseteq V(G)$ and $G_{1} \in \mathcal{G}(G)$. Then, X is a critical-inducing set for G_{1} if and only if for any $x \in X \backslash V\left(G_{1}\right)$ there exists $y \in V\left(G_{1}\right)$ such that there is an M-balanced path from x to y whose vertices except y are in $X \backslash V\left(G_{1}\right)$.

Proof. The claim is rather easy from Property 2.2.1. The set X is a criticalinducing set for G_{1} if and only if $G[X] / G_{1}$ is factor-critical. Note that $M_{X \backslash V\left(G_{1}\right)}$ forms a near-perfect matching of $G[X] / G_{1}$. Therefore, $G[X] / G_{1}$ is factor-critical if and only if for any $x \in X$ there is an M-balanced path from x to the contracted vertex g_{1} corresponding to G_{1}. Therefore, the claim follows.

Proposition 2.3.4. Let G be an elementary graph and M be a perfect matching of G. Then for any two vertices $u, v \in V(G)$ there is an M-saturated path between u and v, or an M-balanced path from u to v.

Proof. Let $u \in V(G)$ be an arbitrary vertex. Let $U \subseteq V(G)$ be the set of vertices that can be reached from u by M-saturated or M-balanced paths. We are going to obtain the claim by showing $U=V(G)$. Suppose that it fails, namely that $U \subsetneq V(G)$.

Claim 2.3.5. Let $v \in U$, and let P be an M-saturated path between u and v or an M-balanced path from u to v. Then $V(P) \subseteq U$.

Proof. Let $w \in V(P)$. Then, $u P w$ is an M-saturated path from u and w or an M-balanced path from u to w. Therefore, $w \in U$. Hence we have $V(P) \subseteq U$.

Since G is connected, G has some edges joining U and $V(G) \backslash U$.
Claim 2.3.6. Let $v \in U \cap N(V(G) \backslash U)$. Then, there is no M-saturated path between u and v.

Proof. Suppose the claim fails, and let P be an M-saturated path between u and $v \in U \cap N(V(G) \backslash U)$. By Claim 2.3.5, $V(P) \subseteq U$. Therefore, the vertex v^{\prime} is in U, and by letting $w \in V(G) \backslash U$ be a vertex with $v w \in E(G)$ we have $v w \notin M$. Hence, $P+v w$ is an M-balanced path from u to w; this contradicts $w \notin U$. Hence we have this claim.

Claim 2.3.7. No edge joining U and $V(G) \backslash U$ is in M.
Proof. Let $v w \in E[U, V(G) \backslash U]$ be an edge with $v \in U$ and $w \in V(G) \backslash U$. By Claim 2.3.5 and Claim 2.3.6, there is an M-balanced path P from u to v with $V(P) \subseteq U$. Hence, if $v w \in M$ then $P+v w$ is an M-saturated path between u and w, and this contradicts $w \notin U$. Therefore, $v w \notin M$, and we have this claim.

Since G is elementary, of course some edges in $E[U, V(G) \backslash U]$ are allowed; let $e=v w$ be one of them. By Claim 2.3.7, $e \notin M$ holds, and so by Property 2.2.7, there is an M-saturated path Q between v and w. Trace P from u and let x be the first vertex we encounter that is in Q; such x surely exists under the current hypotheses since $v \in V(P) \cap V(Q)$. Note that by this definition of $x, u P x+x Q \alpha$ forms a path for each $\alpha \in\{v, w\}$.

Claim 2.3.8. The path $u P x$ is M-balanced from u to x.

Proof. Suppose the claim fails, that is, $u P x$ is an M-saturated path. Then, we have $x^{\prime} \in V(u P x)$; however, at the same time, we have $x^{\prime} \in V(Q)$, since $x \in V(Q)$ holds and Q is an M-saturated path. This contradicts the definition of x, and we have this claim.

Note also that for α which equals either v or w, the subpath of Q between x and α is an M-saturated path. Hence, with Claim 2.3.8, for this α, it follows that $u P x+x Q \alpha$ is an M-saturated path between u and α. Thus $w \in U$ holds, a contradiction. Now we are done for this proposition.

Let G be a factorizable graph and M be a perfect matching of G. We call a sequence of factor-components $S:=\left(H_{0}, \ldots, H_{k}\right)$, where $k \geq 0$, an M-ear sequence, from H_{0} to H_{k} if S satisfies the following three properties:
(i) for each $i=0, \ldots, k, H_{i} \in \mathcal{G}(G)$,
(ii) for any $i, j \in\{0, \ldots, k\}, i \neq j$ yields $H_{i} \neq H_{j}$, and
(iii) if $k \geq 1$, then for each $i=1, \ldots, k$ there is an M-ear P_{i} relative to H_{i-1} and through H_{i}.

We call k the length of S. The distance from H_{0} to H_{k} is the length of the shortest M-ear sequence from H_{0} to H_{k}. If $k \geq 1$, we call the sequence of M-ears $P:=\left(P_{1}, \ldots, P_{k}\right)$ associated with S. If $k=0$, an empty sequence, $P:=()$, is defined to be the M-ears associated with S, for convenience.

For S and P, we define the sequence union of S and P as $V(S ; P):=\bigcup_{i=1}^{k} V\left(H_{i}\right) \cup$ $\bigcup_{i=1}^{k} V\left(P_{i}\right) \backslash V\left(H_{0}\right)$, if $k \geq 1$. If $k=0, V(S ; P):=\emptyset$.

Proposition 2.3.9. Let G be a factorizable graph and M be a perfect matching of G. Let $X \subseteq V(G)$, and let $H \in \mathcal{G}(G)$ be such that $V(H)$ is disjoint from X and there is an M-ear P relative to X and through H, whose end vertices are $u, v \in X$. Let $Y:=V(H) \cup V(P) \backslash\{u, v\}$. Then, for any $x \in Y$,
(i) there exists an internal vertex y of P such that there is an M-balanced path Q from x to y with $V(Q) \subseteq Y$ and $V(Q) \cap V(P)=\{y\}$, and
(ii) for a vertex w which is identical to either u or $v, Q+y P w$ is an M-balanced path from x to w, whose vertices except w are contained in Y.

Proof. If $x \in V(P) \backslash\{u, v\}$, the claims are obvious with the trivial path given by x. Let $x \in V(H) \backslash V(P)$. Then, by Proposition 2.3.4, for an arbitrarily chosen $z \in V(P) \cap V(H)$, there is a path R which is M-saturated between x and z or M-balanced from x to z, with $V(R) \subseteq V(H)$. Trace R from x and let y be the first vertex we encounter that is in $V(P)$. Then, $x R y$, which is an M-balanced path by Property 2.2.10, gives a desired path for (i), and the path $Q:=x R y+y P w$, where w is either u or v, gives one for (ii). Therefore, we are done.

Lemma 2.3.10. Let G be a factorizable graph and M be a perfect matching of G. Let $G_{1} \in \mathcal{G}(G)$ and $X \subseteq V(G)$ be a critical-inducing set for G_{1}. Suppose there exists an M-ear P relative to X, whose end vertices are $u, v \in V(G)$, and let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$, where $s \geq 1$, be the factor-components that have common vertices with the internal vertices of P. Then, $X \cup \bigcup_{i=1}^{s} V\left(I_{i}\right)$ is also a criticalinducing set for G_{1}.

Proof. We prove the claim by Lemma 2.3.3; let $Y:=\bigcup_{i=1}^{s} V\left(I_{i}\right)$. By Lemma 2.3.3,

Claim 2.3.11. for any $x \in X$ there exists $z \in V\left(G_{1}\right)$ such that there is an M balanced path Q_{x} from x to z with $V\left(Q_{x}\right) \subseteq X$ and $V\left(Q_{x}\right) \cap V\left(G_{1}\right)=\{z\}$.

Claim 2.3.12. For any $y \in Y$ there exists $z \in V\left(G_{1}\right)$ such that there exists an M-balanced path Q_{y} from y to z with $V\left(Q_{y}\right) \subseteq X \cup Y$ and $V\left(Q_{y}\right) \cap V\left(G_{1}\right)=\{z\}$.

Proof. Let $i \in\{1, \ldots, s\}$ be such that $y \in V\left(I_{i}\right)$. By applying Proposition 2.3.9 to X, I_{i} and P, for w which equals either u or v, there is an M-balanced path R from y to w such that $V(R) \backslash\{w\} \subseteq Y$. Therefore, $R+Q_{w}$ gives a desired path, namely, Q_{y}, where Q_{w} denotes an M-balanced path in Claim 2.3.11.

Apparently by the definition $X \cup Y$ is a separating set, therefore with Claims 2.3.11 and 2.3.12 we can conclude that $X \cup Y$ is a critical-inducing set for G_{1}, by Lemma 2.3.3.

Theorem 2.3.13. Let G be a factorizable graph, M be a perfect matching of G, and let $G_{1}, G_{2} \in \mathcal{G}(G)$. Then, $G_{1} \triangleleft G_{2}$ if and only if there exists an M-ear sequence from G_{1} to G_{2}.

Proof. We first prove the sufficiency part of the theorem. Let $G_{1} \triangleleft G_{2}$, and let $X \subseteq V(G)$ be a critical-inducing set for G_{1} to G_{2}. Let us define the following three properties for $Y \subseteq X$:
$\mathbf{C 1}(Y)$: The set Y is a critical-inducing set for G_{1}.
$\mathbf{C 2}(Y)$: For each $H \in \mathcal{G}(G)$ with $V(H) \subseteq Y$, there is an M-ear sequence from G_{1} to H.

Let X^{\prime} be a maximal subset of X satisfying C 1 and C 2 . Note that $X^{\prime} \neq \emptyset$ holds because $V\left(G_{1}\right)$ satisfies C 1 and C 2 . We are going to prove the sufficiency part of the theorem by showing $X^{\prime}=X$. Suppose it fails, that is, $X^{\prime} \subsetneq X$ holds. Then,

Claim 2.3.14. there is an M-ear P relative to X^{\prime} such that $V(P) \subseteq X$.
Proof. The graph $G[X] / G_{1}$ is factor-critical, and $G\left[X^{\prime}\right] / G_{1}$ is a nice factor-critical subgraph of $G[X] / G_{1}$ by Property 2.3.1. Therefore, $G[X] / X^{\prime}$ is factor-critical by Theorem 2.2.4, and $M_{X \backslash X^{\prime}}$ forms a near-perfect matching of $G[X] / X^{\prime}$ exposing only the contracted vertex x^{\prime} corresponding to X^{\prime}. By Proposition 2.2.3, in $G[X] / X^{\prime}$ there is an M-ear P relative to x^{\prime}, and in G it corresponds to an M-ear relative to X^{\prime} with $V(P) \subseteq X$. Thus, the claim follows.

Let $u, v \in X^{\prime}$ be the end vertices of P. Let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$ be the factorcomponents that have common vertices with internal vertices of P. We are going to prove that $X^{\prime \prime}:=X^{\prime} \cup \bigcup_{i=1}^{s} V\left(I_{i}\right)$ satisfies C 1 and C 2 .

Claim 2.3.15. The set $X^{\prime \prime}$ satisfies C2.

Proof. By Lemma 2.3.3, there exists an M-balanced path Q_{u} (resp. Q_{v}) from u (resp. v) to a vertex of $V\left(G_{1}\right)$, which is contained in X and whose vertices except the end vertex in $V\left(G_{1}\right)$ are disjoint from $V\left(G_{1}\right)$. Trace Q_{u} from u, and let r_{u} be the first vertex we encounter that is contained in a factor-component I_{0} which has common vertices also with Q_{v}; such I_{0} surely exists since both Q_{u} and Q_{v} have some vertices in G_{1}. Trace Q_{v} from v and let r_{v} be the first vertex we encounter that is in $V\left(I_{0}\right)$. For each $w \in\{u, v\}$, Property 2.2.10 yields that $w Q_{w} r_{w}$ is an M balanced path from w to r_{w} with $V\left(w Q_{w} r_{w}\right) \subseteq X^{\prime}$ and $V\left(w Q_{w} r_{w}\right) \cap V\left(I_{0}\right)=\left\{r_{w}\right\}$, and it holds that $V\left(u Q_{u} r_{u}\right) \cap V\left(v Q_{v} r_{v}\right) \backslash\left\{r_{u}, r_{v}\right\}=\emptyset$. Therefore, $u Q_{u} r_{u}+P+v Q_{v} r_{v}$ is an M-ear relative to I_{0} and through every I_{1}, \ldots, I_{s}. By the definition of X^{\prime}, there is an M-ear sequence from G_{1} to I_{0}. Therefore, by adding subsequence $\left(I_{0}, I_{i}\right)$ to it, we obtain an M-ear sequence from G_{1} to I_{i}, for each $i=1, \ldots, s$. Thus, we obtain the claim.

Claim 2.3.16. The set $X^{\prime \prime}$ satisfies C1.

Proof. This is immediate by Lemma 2.3.10.
With Claims 2.3.15 and 2.3.16, the set $X^{\prime \prime}$ contradicts the maximality of X^{\prime}. Therefore, we obtain $X^{\prime}=X$, accordingly the sufficiency part of the theorem follows.

From now on we prove the necessity. Let $\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 0$, be the M-ear sequence from G_{1} to G_{2}. We are going to prove that there is a critical-inducing set for G_{1} to G_{2}. We proceed by induction on k. For the case $k=0$, that is, $G_{1}=G_{2}$, the statement apparently holds by taking $V\left(G_{1}\right)$.

Let $k>0$, and suppose the statement holds for $k-1$. Consider the M ear subsequence $\left(H_{0}, \ldots, H_{k-1}\right)$; by the induction hypothesis, there is a criticalinducing set X^{\prime} for H_{0} to H_{k-1}. If $V\left(H_{k}\right) \subseteq X^{\prime}$ holds, then X^{\prime} is a critical-inducing set of G_{1} to H_{k} and the statement holds. Hence hereafter we consider the case of $V\left(H_{k}\right) \nsubseteq X^{\prime}$; since X^{\prime} is separating, this means $V\left(H_{k}\right) \cap X^{\prime}=\emptyset$. Thus, by letting P_{k} be the associated M-ear relative to H_{k-1} and through H_{k}, we have $V\left(P_{k}\right) \backslash X^{\prime} \neq \emptyset$ and the graph $P_{k}-E\left(G\left[X^{\prime}\right]\right)$ is not empty. By Property 2.2.11,
each connected component $P_{k}-E\left(G\left[X^{\prime}\right]\right)$ is an M-ear relative to X^{\prime}, and one of them, which we call \tilde{P}_{k}, is through H_{k}. Therefore, there is an M-ear \tilde{P}_{k} relative to X^{\prime} and through H_{k}.

Let $I_{1}, \ldots, I_{s} \in \mathcal{G}(G)$, where $s \geq 1$, be the factor-components that have common vertices with the internal vertices of \tilde{P}_{k}, and let $Y:=\bigcup_{i=1}^{s} V\left(I_{i}\right)$. Then, by applying Lemma 2.3 .10 to the critical-inducing set X^{\prime} for G_{1} and the M-ear \tilde{P}_{k}, we obtain that $X^{\prime} \cup Y$ is a critical-inducing set for G_{1} to H_{k}. This completes the proof.

Let G be a factorizable graph and M be a perfect matching of G. Let $G_{1}, G_{2} \in$ $\mathcal{G}(G)$, and let $S:=\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 0$, be an M-ear sequence from G_{1} to G_{2}, associated with M-ears P. For any i, j with $0 \leq i \leq j \leq k$, the subsequence $\left(H_{i}, \ldots, H_{j}\right)$ is an M-ear sequence, from H_{i} to H_{j}, and we denote it as $S[i, j]$. Additionally, if $i<j,\left(P_{i+1}, \ldots, P_{j}\right)$ is a sequence of M-ears associated with $S[i, j]$, and we denote it $P[i, j]$. If $i=j$, then the empty sequence is the one associated with $S[i, j]$, and it is also denoted as $P[i, j]$. We denote $S[0, j]=: S^{j}$, and $P[0, j]=: P^{j}$. Let us define in the following three properties for S and P :

D1 (S, P) : If $k \geq 2$, then by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=2, \ldots, k, V\left(P_{i}\right)$ is disjoint from $V\left(H_{0}\right)$.

D2(S, P): If $k \geq 1$, by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=1, \ldots, k$, for any $x \in V\left(S^{i} ; P^{i}\right)$ there exists an internal vertex y of P_{1} such that there is an M balanced path Q from x to y with $V(Q) \subseteq V\left(S^{i} ; P^{i}\right)$ and $V(Q) \cap V\left(P_{1}\right)=\{y\}$.

D3(S, P): If $k \geq 1$, by letting $P=\left(P_{1}, \ldots, P_{k}\right)$, for each $i=1, \ldots, k$, for any $x \in V\left(S^{i} ; P^{i}\right)$, for w which equals either of the end vertices of P_{1}, there is an M-balanced path R from x to w such that $V(R) \backslash\{w\} \subseteq V\left(S^{i} ; P^{i}\right)$.

Remark 2.3.17. By their definitions, if $k=0$, then S and P trivially satisfy D1, D2 and D3.

Remark 2.3.18. If $k=1$, then S and P satisfy D1 trivially and also $D 2$ and $D 3$ by Proposition 2.3.9.

Remark 2.3.19. D1, D2 and D3 are closed with respect to the substructures; if S and P satisfy D1, D2 and D3, then for any $i=0, \ldots, k$, so does S^{i} and P^{i}.

Proposition 2.3.20. Let G be a factorizable graph and M be a perfect matching of G. Let S be an M-ear sequence, and P be a sequence of M-ears associated with S. Then, $M_{V(S ; P)}$ is a perfect matching of $G[V(S ; P)]$.

Proof. If the length k of S equals zero, the claim is trivially true. Let $k \geq 1$, and let $S=:\left(H_{0}, \ldots, H_{k}\right)$ and $P=:\left(P_{1}, \ldots, P_{k}\right)$. Of course, $X:=V\left(H_{0}\right) \dot{\cup} \cdots \dot{\cup} V\left(H_{k}\right)$ has a perfect matching M_{X}. For each P_{i}, the end vertices of P_{i} are in X and any other vertex is covered by $M_{P_{i}}$. Therefore, M contains a perfect matching of $Y:=X \cup V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)$. Accordingly, $V(S ; P)=Y \backslash V\left(H_{0}\right)$ is covered by $M_{V(S ; P)}$.

Lemma 2.3.21. Let G be a factorizable graph, and M be a perfect matching. Let $S:=\left(H_{0}, \ldots, H_{k}\right)$, where $k \geq 1$, be an M-ear sequence, associated with M ears $P:=\left(P_{1}, \ldots, P_{k}\right)$. Suppose S^{i} and P^{i} satisfy D1, D2, and D3 for each $i=0, \ldots, k-1, V\left(H_{k}\right)$ is disjoint from $V\left(S^{k-1} ; P^{k-1}\right)$, and S and P satisfy $D 1$. Then, S and P also satisfy D2 and D3.

Proof. If $k=1$, then by applying Proposition 2.3.9 to $V\left(H_{0}\right), P_{1}$, and H_{1}, it holds that S and P satisfy D1, D2 and D3.

Hence hereafter let $k \geq 2$. First note that each connected component of $P_{k}-$ $E\left(G\left[V\left(S^{k-1} ; P^{k-1}\right)\right]\right)$ is an M-ear relative to $V\left(S^{k-1} ; P^{k-1}\right)$ by Property 2.2.11, and is disjoint from $V\left(H_{0}\right)$ since P_{k} is.

Take $x \in V(S ; P) \backslash V\left(S^{k-1} ; P^{k-1}\right)$ arbitrarily, and let P_{k}^{x} be a connected component of $P_{k}-E\left(G\left[V\left(S^{k-1} ; P^{k-1}\right)\right]\right)$ such that x is an internal vertex of P_{k}^{x} if $x \in V(P)$, or one through H_{k} if $x \in V\left(H_{k}\right) \backslash V(P)$.

Claim 2.3.22. There exists $y \in V\left(S^{k-1} ; P^{k-1}\right)$ such that there exists an M balanced path Q from x to y whose vertices except y are contained in $V(S ; P) \backslash$ $V\left(S^{k-1} ; P^{k-1}\right)$.

Proof. By applying Proposition 2.3 .9 to $V\left(S^{k-1} ; P^{k-1}\right), P_{k}^{x}$, and H_{k} (if $x \in$ $V\left(H_{k}\right)$), we obtain an internal vertex y of P_{1} and an M-balanced path Q from
x to y with $V(Q) \backslash\{y\} \subseteq V\left(H_{k}\right) \cup V\left(P_{k}^{x}\right) \backslash V\left(S^{k-1} ; P^{k-1}\right)$. Since P_{k} is disjoint from $V\left(H_{0}\right)$, we can see $V\left(H_{k}\right) \cup V\left(P_{k}^{x}\right) \subseteq V(S ; P)$. Therefore, $V(Q) \backslash\{y\} \subseteq$ $V(S ; P) \backslash V\left(S^{k-1} ; P^{k-1}\right)$, and the claim follows.

Claim 2.3.23. S and P satisfy D2.
Proof. By the hypothesis on S^{k-1} and P^{k-1} there exists an internal vertex z of P_{1} such that there is an M-balanced path R from y to z with $V(R) \subseteq V\left(S^{k-1} ; P^{k-1}\right)$ and $V(R) \cap V\left(P_{1}\right)=\{z\}$. Therefore, by Claim 2.3.22, $Q+R$ is an M-balanced path from x to z, whose vertices are contained in $V(S ; P)$ and disjoint from P_{1} except z.

Since x is chosen arbitrarily from $V(S ; P) \backslash V\left(S^{k-1} ; P^{k-1}\right)$, we obtain that S and P satisfy D2.

By similar arguments, we can say that S and P satisfy D3 too, and the claim follows.

Proposition 2.3.24. Let G be a factorizable graph and M be a perfect matching of G. Let $G_{1}, G_{2} \in \mathcal{G}(G)$ be such that $G_{1} \triangleleft G_{2}$. Then, there exists an M-ear sequence S from G_{1} to G_{2} of shortest length and M-ears P associated with S such that D1 $(S, P), D 2(S, P)$, and $D 3(S, P)$ hold.

Proof. We proceed by induction on the distance k from G_{1} to G_{2}. If $k \in\{0,1\}$, then the statement apparently follows; see Remark 2.3.17 and Remark 2.3.18.

Let $k \geq 2$, and suppose the statement is true for any two factor-components with distance at most $k-1$. Take arbitrarily an M-ear sequence $S=\left(G_{1}=\right.$ $\left.H_{0}, \ldots, H_{k}=G_{2}\right)$ from G_{1} to G_{2} of shortest length, and M-ears $P=\left(P_{1}, \ldots, P_{k}\right)$ associated with it. Let u_{1} and v_{1} be the end vertices of P_{1}.

Claim 2.3.25. Without loss of generality we can assume that S and P are chosen so that S^{k-1} and P^{k-1} satisfy D1, D2, and D3.

Proof. Since S^{k-1} and P^{k-1} give an M-ear sequence from H_{0} to H_{k-1} of length $k-1$, the distance from H_{0} to H_{k-1} is at most $k-1$. Therefore, by the induction
hypothesis, there is an M-ear sequence S^{\prime} from H_{0} to H_{k-1}, associated with M ears P^{\prime}, whose length are at most $k-1$, with D1, D2, D3 satisfied. By adding H_{k} and P_{k} at the ends of S^{\prime} and P^{\prime}, we obtain an M-ear sequence from G_{1} to G_{2} of length at most k (in fact exactly k) and associated M-ears satisfying the claim.

Claim 2.3.26. The vertices of H_{k} are disjoint from $V\left(S^{k-1} ; P^{k-1}\right)$.
Proof. Suppose the claim fails, in other words, $V\left(H_{k}\right) \cap V\left(S^{k-1} ; P^{k-1}\right) \neq \emptyset$ holds. Since H_{k} is distinct from any factor-component of S, there exists $i \in\{1, \ldots, k-1\}$ such that P_{i} has some internal vertices in $V\left(H_{k}\right)$; in other words, P_{i} is an M ear relative to H_{i-1} and through H_{k}. Then, $\left(H_{0}, \ldots, H_{i-1}, H_{k}\right)$ gives an M-ear sequence from G_{1} to G_{2}, associated with M-ears $\left(P_{1}, \ldots, P_{i}\right)$, whose length is i, which is less than k; this contradicts the minimality of k, and we are done for this claim.

Since P_{k} is an M-ear relative to H_{k-1} and through H_{k}, Claim 2.3.26 yields $V\left(P_{k}\right) \nsubseteq V\left(S^{k-1} ; P^{k-1}\right)$ and accordingly together with Property 2.2.9 it follows that connected components of $P_{k}-E\left(G\left[V\left(S^{k-1} ; P^{k-1}\right)\right]\right)$ are M-ears relative to $V\left(S^{k-1} ; P^{k-1}\right)$, one of which, say, Q is through H_{k}.

Claim 2.3.27. The M-ear Q is disjoint from $V\left(H_{0}\right)$.
Proof. Take $x \in V(Q) \cap V\left(H_{k}\right)$ arbitrarily, and let u and v be the end vertices of Q. Trace $x Q u$ from x, and let y be the first vertex we encounter that is in $V\left(H_{0}\right) \cup\{u\}$. On the other hand, trace $x Q v$ from x and let z be the first vertex we encounter that is in $V\left(H_{0}\right) \cap\{v\}$. Then, $y Q z$ is an M-exposed path, whose internal vertices contains $x \in V\left(H_{k}\right)$, and whose vertices except the end vertices y and z are disjoint from $V\left(H_{0}\right) \cup V\left(S^{k-1} ; P^{k-1}\right)$. We are going to prove this claim by showing $y=u$ and $z=v$. First suppose the case where $y, z \in V\left(H_{0}\right)$. Then, $y Q z$ is an M-ear relative to H_{0} and through H_{k}, which means $\left(H_{0}, H_{k}\right)$ forms an M-ear sequence of length one, contradicting the definition of k, since $k \geq 2$.

Second suppose the case where $y \in V\left(H_{0}\right)$ and $z=v$. Since S^{k-1} and P^{k-1} satisfy D3, it follows that for either $w \in\left\{u_{1}, v_{1}\right\}$ there is an M-balanced path R
from z to w with $V(R) \backslash\{w\} \subseteq V\left(S^{k-1} ; P^{k-1}\right)$. Therefore, $y Q z+R$ is an M-ear relative to H_{0} and through H_{k}, again letting $\left(H_{0}, H_{k}\right)$ be an M-ear sequence, a contradiction.

In the remaining case, where $y=u$ and $z \in V\left(H_{0}\right)$, by symmetric arguments we are again lead to a contradiction. Therefore, we obtain $y=u$ and $z=v$, which is equivalent to Q being disjoint from $V\left(H_{0}\right)$.

Since S^{k-1} and P^{k-1} satisfy D2, for each $\alpha \in\{u, v\}$ there is an M-balanced path Q_{α} from α to r_{α}, where r_{α} is a internal vertex of P_{1}, satisfying $V\left(Q_{\alpha}\right) \subseteq$ $V\left(S^{k-1} ; P^{k-1}\right)$. Trace Q_{u} from u, and let s be the first vertex we encounter that is contained in a factor-component $I \in\left\{H_{1}, \ldots, H_{k-1}\right\}$, which has common vertices also with $V\left(Q_{v}\right)$; such I surely exists since both Q_{u} and Q_{v} have vertices in H_{1}. Trace Q_{u} (resp. Q_{v}) from u (resp. v), and let s (resp. t) be the first vertex we encounter that is in $V(I)$.

Claim 2.3.28. Let $\tilde{Q}:=u Q_{u} s+Q+v Q_{z}$ t. Then \tilde{Q} is an M-ear relative to I and through H_{k}, which is disjoint from H_{0}; accordingly, $I=H_{k-1}$.

Proof. By Property 2.2.10, the path $u Q_{u} s$ and $v Q_{z} t$ are M-balanced from u to s and from v to t, respectively, both of whose vertices are in $V\left(S^{k-1} ; P^{k-1}\right)$, satisfying $\left(V\left(u Q_{u} s\right) \cap V\left(v Q_{z} t\right)\right) \backslash\{s, t\}=\emptyset$. Therefore, \tilde{Q} is an M-ear relative to I and through H_{k}. Since Claim 2.3.27 says Q is disjoint from H_{0}, we also have that \tilde{Q} is disjoint from H_{0}.

If $k=2$, then trivially we have $I=H_{k-1}$. Consider the case of $k>2$, and suppose I equals H_{i} for some $i \in\{1, \ldots, k-2\}$. Then, $\left(H_{0}, \ldots, H_{i}, H_{k}\right)$ forms an M-ear sequence from G_{1} to G_{2}, associated with M-ears $\left(P_{1}, \ldots, P_{k-2}, \tilde{Q}\right)$, whose length is at most $k-1$, a contradiction. Hence we have $I=H_{k-1}$.

By Claim 2.3.28, we obtain the M-ear sequence $S=\left(H_{0}, \ldots, H_{k}\right)$ associated with M-ears $P^{\prime}=\left(P_{1}, \ldots, P_{k-1}, \tilde{Q}\right)$ such that S^{k-1} and $P^{\prime k-1}$ satisfy D1, D2, D3 and S and P^{\prime} satisfy $D 1$. Therefore, by Lemma 2.3.21, S and P^{\prime} also satisfy $D 2$ and $D 3$, and we are done for the theorem.

Theorem 2.3.29. For any factorizable graph G, the binary relation \triangleleft is a partial order on $\mathcal{G}(G)$.

Proof. The reflexivity is obvious from the definition. The transitivity obviously follows from Theorem 2.3.13. Hence, we shall prove the antisymmetry. Let $G_{1}, G_{2} \in \mathcal{G}(G)$ be factor-components with $G_{1} \triangleleft G_{2}$ and $G_{2} \triangleleft G_{1}$. Suppose the antisymmetry fails, that is, $G_{1} \neq G_{2}$ holds. Let M be a perfect matching of G. By Proposition 2.3.24, there exist an M-ear sequence from G_{1} to G_{2}, say $S:=\left(G_{1}=H_{0}, \ldots, H_{k}=G_{2}\right)$, where $k \geq 1$, and associated M-ears $P:=\left(P_{1}, \ldots, P_{k}\right)$ satisfying D1, D2, and D3. Let u_{1} and v_{1} be the end vertices of P_{1}.

By Lemma 2.3.3, there exists $w \in V\left(G_{2}\right)$ such that there is an M-balanced path Q from u_{1} to w. Trace Q from u_{1}, and let x be the first vertex we encounter that is in $\left(V(S ; P) \cup\left\{v_{1}\right\}\right) \backslash\left\{u_{1}\right\}$; such a vertex surely exists since $V\left(G_{2}\right) \subseteq V(S ; P)$.

Claim 2.3.30. Without loss of generality we can assume that $x \neq v_{1}$, i.e., $x \in$ $V(S ; P)$ holds and $u_{1} Q x$ is a path with $v_{1} \notin V\left(u_{1} Q x\right) \backslash\left\{u_{1}\right\}$, which is M-balanced from u_{1} to x.

Proof. Suppose the claim fails, that is, $x=v_{1}$ holds. Then, $u_{1} \neq v_{1}$ holds by the definition of x. If $u_{1} Q v_{1}$ is an M-saturated path, then $P_{1}+u_{1} Q v_{1}$ forms an M alternating circuit, containing non-allowed edges of $E\left(P_{1}\right) \cap \delta\left(G_{1}\right)$, a contradiction by Property 2.2.9. Otherwise, that is, if $u_{1} Q v_{1}$ is an M-balanced path from u_{1} to v_{1}, then $v_{1} Q w$ is an M-balanced path from v_{1} to w, disjoint from u_{1}. Now redefine x as the first vertex we encounter that is in $V(S ; P)$ if we trace $v_{1} Q w$ from v_{1}. Then, $v_{1} Q x$ is a path disjoint from u_{1}, which is M-balanced from v_{1} to x by Property 2.2.10 and Proposition 2.3.20. Therefore, by changing the roles of u_{1} and v_{1}, without loss of generality, we obtain this claim.

Therefore, hereafter let $x \in V(S ; P)$ and let $u_{1} Q x$ be an M-balanced path from u_{1} to x with $v_{1} \notin V\left(u_{1} Q x\right) \backslash\left\{u_{1}\right\}$. Since $x \in V(S ; P)$ holds, Proposition 2.3.9 yields that there is an M-balanced path R from x to an internal vertex of P_{1}, say y, such that $V(R) \subseteq V(S ; P)$ and $V(R) \cap V\left(P_{1}\right)=\{y\}$.

If $u_{1} P_{1} y$ has an even number of edges, then $u_{1} Q x+x R y+y P_{1} u_{1}$ is an M alternating circuit containing non-allowed edges, say, edges of $E\left(P_{1}\right) \cap \delta\left(u_{1}\right)$, a contradiction by Property 2.2.9.

Hence hereafter we assume $u_{1} P_{1} y$ has an odd number of edges. By Proposition 2.3.4, there is a path L of G_{1} which is M-saturated between v_{1} and u_{1} or M-balanced from v_{1} to u_{1}. Trace L from v_{1}, and let z be the first vertex on $u_{1} Q x$; note that $v_{1} L z$ is an M-balanced path from v_{1} to z by Property 2.2.10, since $u_{1} Q x \cap G_{1}$ consists of M-saturated paths. Also note that L is disjoint from $V(S ; P)$, since $V(L) \subseteq V\left(G_{1}\right)$ holds and $V(S ; P)$ is disjoint from $V\left(G_{1}\right)$. If $u_{1} Q z$ has an odd number of edges, then $z Q u_{1}+P_{1}+v_{1} L z$ is an M-alternating circuit containing non-allowed edges, say, edges of $E\left(P_{1}\right) \cap \delta\left(G_{1}\right)$, a contradiction by Property 2.2.9. If $u_{1} Q z$ has an even number of edges, then $v_{1} L z+z Q x+x R y+y P_{1} u_{1}$ is an M-alternating circuit, which is again a contradiction. Thus we get $G_{1}=G_{2}$, and the theorem follows.

2.4 A Generalization of the Canonical Partition

For non-elementary graphs, the family of maximal barriers never gives a partition of its vertex set [30]. Therefore, to analyze the structures of general graphs with perfect matchings, we generalized the canonical partition based on Kotzig's way [24-26].

Definition 2.4.1. Let G be a factorizable graph. We define a binary relation \sim_{G} on $V(G)$ as follows: For $u, v \in V(G), u \sim_{G} v$ if
(i) u and v are contained in the same factor-connected component and
(ii) either u and v are identical, or $G-u-v$ is not factorizable.

Note the following fact, which is easy to see by Property 2.2.8:
Fact 2.4.2. Let G be a factorizable graph, and M be a perfect matching of G. Let $u, v \in V(G)$ be vertices contained in the same factor-connected component of G. Then, $u \sim_{G} v$ if and only if there is no M-saturated path between u and v.

Theorem 2.4.3. For any factorizable graph G, the binary relation \sim_{G} is an equivalence relation on $V(G)$.

Proof. Since the reflexivity and the symmetry are obvious from the definition, we prove the transitivity. Let M be a perfect matching of G. Let $u, v, w \in V(H)$ be such that $u \sim_{G} v$ and $v \sim_{G} w$. If any two of them are identical, clearly the claim follows. Therefore it suffices to consider the case that they are mutually distinct. Suppose that the claim fails, that is, $u \not \chi_{G} w$. Then there is an M-saturated path P between u and w. By Proposition 2.3.4, there is an M-balanced path Q from v to u. Trace Q from v and let x be the first vertex we encounter that in $V(Q) \cap V(P)$. If $u P x$ has an odd number of edges, $v Q x+x P u$ is an M-saturated path between u and v, a contradiction. If $u P x$ has an even number of edges, then $x P w$ has an odd number of edges, and by the same argument we have a contradiction.

If a graph G is elementary, then the family of equivalence classes by \sim_{G}, i.e., $V(G) / \sim_{G}$ coincides with Kotzig's canonical partition [24-26, 30] (see [19, 20]). Therefore, given a factorizable graph G, we call $V(G) / \sim_{G}$ the generalized canonical partition, and denote it by $\mathcal{P}(G)$. By the definition of \sim_{G}, each member of $\mathcal{P}(G)$ is contained in some factor-connected component.

Moreover our proof for Theorem 2.4.3 contains a short proof for Kotzig's Theorem on the canonical partition of elementary graphs (Theorem 1.3.5). Kotzig [2426] takes three papers to prove it, thus to prove that \sim is an equivalence relation "from scratch" is considered to be hard [30]. However, in fact, it can be shown in a simple way even without the premise of the Gallai-Edmonds structure theorem nor the notion of barriers.

Note also the following:
Fact 2.4.4. Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$. Then, $\mathcal{P}_{G}(H)$ is a refinement of $\mathcal{P}(H)=\mathcal{P}_{H}(H)$; that is, if $u, v \in V(H)$ satisfies $u \sim_{G} v$, then $u \sim_{H} v$ holds.

Proof. We prove the contrapositive. Let $u, v \in V(H)$ be such that $u \not \chi_{H} v$, which is equivalent to u and v satisfying $u \neq v$ and $H-u-v$ is factorizable. Let M be
a perfect matching of $H-u-v$. Since $G-V(H)$ is also factorizable, by letting M^{\prime} be a perfect matching of it, we can construct a perfect matching of $G-u-v$, namely, $M \cup M^{\prime}$. Therefore, $u \not \chi_{G} v$.

2.5 Correlations between \triangleleft and \sim_{G}

In this section we further analyze properties of factorizable graphs. Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$. We denote the upper bounds of H in the poset $(\mathcal{G}(G), \triangleleft)$ by $\mathcal{U}_{G}^{*}(H)$; that is, $\mathcal{U}_{G}^{*}(H):=\left\{H^{\prime} \in \mathcal{G}(G): H \triangleleft H^{\prime}\right\}$. We define $\mathcal{U}_{G}(H):=\mathcal{U}_{G}^{*}(H) \backslash\{H\}$, and the vertices contained in $\mathcal{U}_{G}^{*}(H)$ (resp. $\mathcal{U}_{G}(H)$) as $U_{G}^{*}(H)\left(\right.$ resp. $U_{G}(H)$); i.e., $U_{G}^{*}(H):=\bigcup_{H^{\prime} \in \mathcal{U}_{G}^{*}(H)} V\left(H^{\prime}\right)$ and $U_{G}(H):=$ $\bigcup_{H^{\prime} \in \mathcal{U}_{G}(H)} V\left(H^{\prime}\right)$. We often omit the subscripts " G " if they are apparent from contexts.

Lemma 2.5.1. Let G be a factorizable graph, M be a perfect matching of G, and $H \in \mathcal{G}(G)$. Let P be an M-ear relative to H with end vertices $u, v \in V(H)$. Then $u \sim_{G} v$.

Proof. Suppose the claim fails, that is, $u \neq v$ and there is an M-saturated path Q between u and v. Trace Q from u and let x be the first vertex we encounter that is on $P-u$. If $u P x$ has an even number of edges, $u Q x+x P u$ is an M-alternating circuit containing non-allowed edges, a contradiction. Hence we suppose $u P x$ has an odd number of edges. Let $I \in \mathcal{G}(G)$ be such that $x \in V(I)$. Then one of the components of $u Q x+x P u-E(I)$ is an M-ear relative to I and through H, a contradiction by Theorem 2.3.13.

Theorem 2.5.2. Let G be a factorizable graph, and $G_{0} \in \mathcal{G}(G)$. For each connected component K of $G\left[U\left(G_{0}\right)\right]$ there exists $T_{K} \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $N(K) \cap$ $V\left(G_{0}\right) \subseteq T_{K}$.

Proof. Let M be a perfect matching of G.
Claim 2.5.3. Let $H \in \mathcal{U}\left(G_{0}\right)$, and S and P be the shortest M-ear sequence from G_{0} to H and associated M-ears which satisfy D1, D2 and D3. Then, there exists
$T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that for each factor-components H^{\prime} that has common vertices with $V(S ; P), N\left(H^{\prime}\right) \cap V\left(G_{0}\right) \subseteq T$ holds.

Proof. Let us denote $S=\left(G_{0}=H_{0}, \ldots, H_{k}=H\right)$, where $k \geq 1$, and $P=$ $\left(P_{1}, \ldots, P_{k}\right)$. Let $u_{1}, v_{1} \in V\left(G_{0}\right)$ be the end vertices of P_{1}. By Lemma 2.5.1, there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $u_{1}, v_{1} \in T$.

Let $H^{\prime} \in \mathcal{G}(G)$ be such that $V\left(H^{\prime}\right) \cap V(S ; P) \neq \emptyset$. Suppose there exists $w \in N\left(H^{\prime}\right) \cap V\left(G_{0}\right)$ and let $z \in V\left(H^{\prime}\right)$ be such that $w z \in E(G)$. Take $x \in$ $V\left(H^{\prime}\right) \cap V(S ; P)$ arbitrarily. By Proposition 2.3.4, there exists a path Q which is M-balanced from z to x or M-saturated between z and x such that $V(Q) \subseteq$ $V\left(H^{\prime}\right)$. Trace Q from z and let y be the first vertex we encounter that is in $V(S ; P)$. Then, $z Q y$ is an M-balanced path from z to y with $V(z Q y) \subseteq V\left(H^{\prime}\right)$ and $V(z Q y) \cap V(S ; P)=\{y\}$. By $\mathrm{D} 3(S, P)$, for either of $r \in\left\{u_{1}, v_{1}\right\}$, there is an M-balanced path R from y to r such that $V(R) \backslash\{r\} \subseteq V(S ; P)$.

Therefore, $R+z Q y+w z$ forms an M-ear relative to G_{0}, whose end vertices are r and w. By Lemma 2.5.1, therefore, $w \in T$ and the claim follows.

Immediately by Claim 2.5.3 we can see that for any $H \in \mathcal{U}\left(G_{0}\right)$ there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $N(H) \cap V\left(G_{0}\right) \subseteq T$. Hence for each $T \in \mathcal{P}_{G}\left(G_{0}\right)$ we can define

$$
\mathcal{K}_{T}:=\left\{H \in \mathcal{U}\left(G_{0}\right): V(H) \subseteq V(K) \text { and } N(H) \cap V\left(G_{0}\right) \subseteq T\right\}
$$

and $V_{T}:=\bigcup_{H \in \mathcal{K}_{T}} V(H)$. Note that $\bigcup_{T \in \mathcal{P}_{G}\left(G_{0}\right)} V_{T}=V(K)$.
We are going to prove the claim by showing that $\left|\left\{T \in \mathcal{P}_{G}\left(G_{0}\right): V_{T} \neq \emptyset\right\}\right|=1$. Suppose it fails; Then, since K is connected, there exist $T_{1}, T_{2} \in \mathcal{P}_{G}\left(G_{0}\right)$ with $T_{1} \neq T_{2}$ such that $E\left[V_{T_{1}}, V_{T_{2}}\right] \neq \emptyset$. Let $s_{1} \in V_{T_{1}}$ and $s_{2} \in V_{T_{2}}$ be such that $s_{1} s_{2} \in E\left[V_{T_{1}}, V_{T_{2}}\right]$.

Claim 2.5.4. For each $i=1,2$, there is an M-balanced path L_{i} from s_{i} to a vertex in T_{i}, say r_{i}, such that $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq V_{T_{i}}$.

Proof. Let $i \in\{1,2\}$. Let $H \in \mathcal{G}(G)$ be such that $s_{i} \in V(H)$. Then, $V(H) \subseteq V_{T_{i}}$. Take an M-ear sequence $S=\left(G_{0}=H_{0}, \ldots, H_{k}=H\right)$, where $k \geq 1$, from G_{0} to
H and an associated M-ears $P=\left(P_{1}, \ldots, P_{k}\right)$ which satisfy D1, D2 and D3; By Claim 2.5.3, $V(S ; P) \subseteq V_{T_{i}}$. By D3, there is an M-balanced path L_{i} from s_{i} to either of the end vertices of P_{1}, say $r_{i} \in V\left(G_{0}\right)$ such that $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq V(S ; P)$. Therefore, $V\left(L_{i}\right) \backslash\left\{r_{i}\right\} \subseteq V_{T_{i}}$.

By Claim 2.5.4, $L_{1}+s_{1} s_{2}+L_{2}$ is an M-ear relative to G_{0}, whose end vertices are $r_{1} \in T_{1}$ and $r_{2} \in T_{2}$. By Lemma 2.5.1 this yields $T_{1}=T_{2}$, a contradiction. Therefore, we can conclude that there exists $T \in \mathcal{P}_{G}\left(G_{0}\right)$ such that $V_{T}=V(K)$, namely the claim follows.

By Theorem 2.5.2, we can see that upper bounds of a factor-component are each "attached" to an equivalence class of the generalized canonical partition.

Proposition 2.5.5. Let G be a graph and M be a matching of G. Let $H_{1}, H_{2} \subseteq G$ be factor-critical subgraphs of G such that there exists $v \in V\left(H_{1}\right) \cap V\left(H_{2}\right)$ and that for each $i=1,2, M_{H_{i}}$ is a near-perfect matching of H_{i} exposing only v. Then, $H_{1} \cup H_{2}$ is factor-critical.

Proof. Apparently, $M_{1} \cup M_{2}$ is a near-perfect matching of $H_{1} \cup H_{2}$, exposing only v. Since H_{1} and H_{2} are both factor-critical, the claim follows by Property 2.2.1.

Lemma 2.5.6. Let G be a factorizable graph, and $H \in \mathcal{G}(G)$. Then, the graph $G\left[U^{*}(H)\right] / H$ is factor-critical.

Proof. Let M be a perfect matching of G. Let $\mathcal{X} \subseteq 2^{V(G)}$ be the family of separable set for H. Then, by Theorem 2.3.29, $\bigcup_{X \in \mathcal{X}} X=U^{*}(H)$. On the other hand, $G\left[\bigcup_{X \in \mathcal{X}} X\right] / H$ is factor-critical by Proposition 2.5.5. Therefore, the claim follows.

Theorem 2.5.7. Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$ and $S \subseteq \mathcal{P}_{G}(H)$. Let K_{1}, \ldots, K_{l}, where $l \geq 1$ be some connected components of $G[U(H)]$ such that $N\left(K_{i}\right) \cap V(H) \subseteq S$ for $i=1, \ldots, l$. Then, $G\left[V\left(K_{1}\right) \cup \cdots \cup V\left(K_{l}\right) \cup S\right] / S$ is factor-critical.

Proof. First note that $G\left[U^{*}(H)\right] / H$ is factor-critical by Lemma 2.5.6. Let h be the contracted vertex of $G\left[U^{*}(H)\right] / H$. Note also that K is a connected component of $G[U(H)]$ if and only if there is a block \hat{K} of $G\left[U^{*}(H)\right] / H$ such that $K=\hat{K}-h$. Therefore, by Property 2.2.2 the claim follows.

Remark 2.5.8. There are factorizable graphs where \triangleleft does not hold for any two factor-components, in other words, where all the factor-components are minimal in the poset. For example, we can see by Theorem 2.3.13 and Theorem 2.5.2 that bipartite factorizable graphs are such, which means Theorem 2.3.29 is not a generalization of the DM-decomposition, even though they have similar natures.

The following theorem shows that most of the factorizable graphs with $|\mathcal{G}(G)| \geq$ 2 , in a sense, have non-trivial structures as posets.

Theorem 2.5.9. Let G be a factorizable graph, $G_{1}, G_{2} \in \mathcal{G}(G)$ be factor-components for which $G_{1} \triangleleft G_{2}$ does not hold, and let G_{1} be minimal in the poset $(\mathcal{G}(G), \triangleleft)$. Then there are possibly identical complement edges e, f of G between G_{1} and G_{2} such that $\mathcal{G}(G+e+f)=\mathcal{G}(G)$ and $G_{1} \triangleleft G_{2}$ in $(\mathcal{G}(G+e+f), \triangleleft)$.

Proof. First we prove the case where there is an edge $x y$ such that $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Let M be a perfect matching of G. Choose a vertex $w \in V\left(G_{2}\right)$ such that $w \chi_{G_{2}} y$ in G_{2}, and let P be an M-saturated path between w and y. If $x w \in E(G)$, there is an M-ear $x y+P+w x$ relative to G_{1} and through G_{2}, which means $G_{1} \triangleleft G_{2}$ by Theorem 2.3.13. Thus $x w \notin E(G)$. Suppose $\mathcal{G}(G+x w) \neq \mathcal{G}(G)$. Then there is an M-alternating circuit C containing $x w$ in $G+x w$. Give an orientation to C so that it becomes a dicircuit with the arc $x x^{\prime}$. Trace C from x and let z be the first vertex we encounter that is in $V\left(G_{2}\right)$. Then $x y+x C z$ is an M-ear of G which is relative to G_{2} and through G_{1}, which means $G_{2} \triangleleft G_{1}$ by Theorem 2.3.13, a contradiction to the minimality of G_{1}. Thus $\mathcal{G}(G+x w)=\mathcal{G}(G)$ and we are done for this case.

Now we prove the other case, where there is no edge of G connecting G_{1} and G_{2}. Choose any $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. If $\mathcal{G}(G+x y)=\mathcal{G}(G)$, we can reduce it to the first case and the claim follows. Therefore it suffices to consider the case
that $\mathcal{G}(G+x y) \neq \mathcal{G}(G)$. Then, for any perfect matching M of G, there is an M-alternating circuit C in $G+x y$ containing $x y$. Give an orientation to C so that it becomes a dicircuit with the arc $y y^{\prime}$. Trace C from y and let u be the first vertex of G_{1}, and let v be the first vertex in G_{2} if we trace C from u in the opposite direction.

If $\mathcal{G}(G+u v)=\mathcal{G}(G)$, the claim follows by the same argument. Otherwise, that is, if $\mathcal{G}(G+u v) \neq \mathcal{G}(G)$, there is an M-alternating circuit D containing $u v$. Give an orientation to D so that it becomes a dicircuit with the arc $u u^{\prime}$. If $u D v$ is disjoint from the internal vertices of $v C u$, then $u D v+v C u$ forms an M-alternating circuit containing non-allowed edges, a contradiction. Otherwise, trace D from u and let w be the first vertex on $v C u-u$.

If $w C u$ has an even number of edges, $w C u+u D w$ is an M-alternating circuit of G, a contradiction. Therefore, we assume $w C u$ has an odd number of edges. Let $H \in \mathcal{G}(G)$ be such that $w \in V(H)$. Then $w C u+u D w-H$ leaves an M-ear in G which is relative to H and through G_{1}, contradicting the minimality of G_{1}. Thus this completes the proof.

2.6 Examples

Example 2.6.1. Consider the graph G in Figure 2.1. The allowed edges of G are those indicated by bold lines in Figure 2.2. Hence, it has these six factorconnected components $G_{1}=G[\{a, b, c, d\}], G_{2}=G[\{e, f\}], G_{3}=G[\{g, h\}], G_{4}=$ $G[\{i, j\}], G_{5}=G[\{k, l, m, n\}]$, and $G_{6}=G[\{o, p\}]$. They form the poset $(\mathcal{G}(G)=$ $\left.\left\{G_{1}, \ldots, G_{6}\right\}, \triangleleft\right)$, given by the Hasse diagram in Figure 2.3.

Example 2.6.2. Consider the factorizable graph G in Figure 2.1. Its generalized canonical partition is shown in Figure 2.4. Here the set of all the vertices is partitioned into fourteen parts $\left\{S_{1}, \ldots, S_{14}\right\}=\mathcal{P}(G)$, and $\left\{S_{1}, S_{2}, S_{3}\right\}=\mathcal{P}_{G}\left(G_{1}\right)$ forms a partition of $V\left(G_{1}\right),\left\{S_{4}, S_{5}\right\}=\mathcal{P}_{G}\left(G_{2}\right)$ of $V\left(G_{2}\right),\left\{S_{6}, S_{7}\right\}=\mathcal{P}_{G}\left(G_{3}\right)$ of $V\left(G_{3}\right),\left\{S_{8}, S_{9}\right\}=\mathcal{P}_{G}\left(G_{4}\right)$ of $V\left(G_{4}\right),\left\{S_{10}, S_{11}, S_{12}\right\}=\mathcal{P}_{G}\left(G_{5}\right)$ of $V\left(G_{5}\right)$, and $\left\{S_{13}, S_{14}\right\}=\mathcal{P}_{G}\left(G_{6}\right)$ of $V\left(G_{6}\right)$.

Figure 2.1: A factorizable graph G
Figure 2.2: The factor-connected components of G

Figure 2.3: The Hasse diagram of $(\mathcal{G}(G), \triangleleft)$

Figure 2.4: The generalized canonical partition of G

Example 2.6.3. Consider the elementary subgraph G_{1}, which is given as one of the factor-connected components in Figure 2.2. It is a circuit with four vertices $\{a, b, c, d\}$, and it is easy to see that its canonical partition, $\mathcal{P}\left(G_{1}\right)$, is composed of two sets: $\mathcal{P}\left(G_{1}\right)=\{\{a, d\},\{b, c\}\}$. Therefore, compared with Figure 2.4, the partition $\mathcal{P}_{G}\left(G_{1}\right)$, which equals $\{\{a\},\{b, c\},\{d\}\}$, indeed gives a refinement (actually a proper refinement in this case) of $\mathcal{P}\left(G_{1}\right)$.

Example 2.6.4. Consider the factor-connected component G_{1} in Figure 2.2. We have $\mathcal{U}^{*}\left(G_{1}\right)=\left\{G_{1}, G_{3}, G_{4}, G_{5}, G_{6}\right\}$ and $\mathcal{U}\left(G_{1}\right)=\left\{G_{3}, G_{4}, G_{5}, G_{6}\right\}$, while $U^{*}\left(G_{1}\right)=\{a, \ldots, d, g, \ldots p\}$ and $U\left(G_{1}\right)=\{g, \ldots, p\}$. Therefore, as indicated in Figure 2.5, $G\left[U\left(G_{1}\right)\right]$ has three connected components K_{1}, K_{2}, and K_{3}, and they satisfy $N\left(K_{1}\right) \cap V\left(G_{1}\right) \subseteq S_{1}, N\left(K_{2}\right) \cap V\left(G_{1}\right) \subseteq S_{2}$, and $N\left(K_{3}\right) \cap V\left(G_{1}\right) \subseteq S_{2}$.

Figure 2.5: The strict upper bounds of G_{1}

2.7 Algorithmic Result

In this section, we discuss the algorithmic aspects of the partial order and the generalized canonical partition. We denote by n and m respectively the number of vertices and edges of input graphs. As we work on factorizable graphs and graphs with near-perfect matchings, we can assume $m=\Omega(n)$.

We start with some materials from Edmonds' maximum matching algorithm [7], referring mainly to $[23,30]$. For a tree T with a specified root vertex r, we call a vertex $v \in V(T)$ inner (resp. outer) if the unique path in T from r to v has an odd (resp. even) number of edges. Let G be a graph and M be a matching of G. A tree $T \subseteq G$ is called M-alternating if exactly one vertex of it, the root, is exposed by M in G, and each inner vertex $v \in V(T)$ satisfies $|\delta(v) \cap E(T)|=2$ and one of the edges of $\delta(v) \cap E(T)$ is contained in M.

A subgraph $S \subseteq G$ is called a special blossom tree with respect to M ($M-S B T$) if there is a partition $V\left(C_{1}\right) \dot{\cup} \cdots \dot{\cup} V\left(C_{k}\right)=V(S)$ such that
(i) $S^{\prime}:=S / C_{1} / \cdots / C_{k}$ is an M-alternating tree,
(ii) $M_{C_{i}}$ is a near-perfect matching of C_{i},
(iii) C_{i} is a maximal factor-critical subgraph of G if it corresponds to an outer vertex of S^{\prime}, and called an outer blossom, and
(iv) $\left|V\left(C_{i}\right)\right|>1$ only if C_{i} is an outer blossom, for each $i=1, \ldots, k$.

Edmonds' maximum matching algorithm tells us the following facts. Let G be a graph, M be a near-perfect matching of G, and $r \in V(G)$ be the vertex exposed by M. Then an M-SBT S, with root r, can be computed, if it is carefully implemented [11,37], in $O(m)$ time. Additionally, the set of vertices from which r can be reached by an M-balanced path is exactly the set of vertices contained in the outer blossoms of S.

Thus, due to an easy reduction of the above facts, the following proposition holds; they can be regarded as a folklore. See [1]. (In [1] they are presented as those for elementary graphs, but in fact, they can be applicable for general factorizable graphs.)

Proposition 2.7.1. Let G be a factorizable graph, M be a perfect matching of G, and $u \in V(G)$.
(i) The set of vertices that can be reached from u by an M-saturated path can be computed in $O(m)$ time.
(ii) All the allowed edges adjacent to u can be computed in $O(m)$ time.
(iii) All the factor-components of G can be computed in $O(n m)$ time.

Proposition 2.7.2. Given a factorizable graph G, one of its perfect matchings M and $\mathcal{G}(G)$, we can compute the generalized canonical partition of G in $O(n m)$ time.

Proof. For each $H \in \mathcal{G}(G)$, we can compute $\mathcal{P}_{G}(H)$ in a similar way to compute the canonical partition of an elementary graph [1]. That is, for each $v \in V(H)$,
compute the set of vertices U that can be reached from v by an M-saturated path, and recognize $V(H) \backslash U$ as a member of $\mathcal{P}_{G}(H)$. This procedure is surely compatible by Theorem 2.4.3. Thus, the claim follows by Proposition 2.7.1.

Let G be a factorizable graph and M be a perfect matching of G. We say two distinct factor-components G_{1}, G_{2} of G with $G_{1} \triangleleft G_{2}$ are non-refinable if $G_{1} \triangleleft H \triangleleft G_{2}$ yields $G_{1}=H$ or $G_{2}=H$ for any $H \in \mathcal{G}(G)$. Note that if G_{1} and G_{2} are nonrefinable, then there is an M-ear relative to G_{1} and through G_{2} by Theorem 2.3.13. Note also that the converse of the above fact does not hold.

Lemma 2.7.3. Let G be a factorizable graph, M be a perfect matching of G, and $H \in \mathcal{G}(G)$. Let S be a maximal $M-S B T$ in G / H and let C be the blossom of T containing the contracted vertex h corresponding to H. Then any non-refinable upper bound of H in $(\mathcal{G}(G), \triangleleft)$ has common vertices with C. Additionally, if a factor-component $I \in \mathcal{G}(G)$ has some common vertices with C, then $H \triangleleft I$.

Proof. For the former part, let H^{\prime} be a non-refinable upper bound of H, and P be an M-ear relative to H and through H^{\prime}. Since $P-C$ is a disjoint union of M-ears relative to C, we have $P \subseteq C$ by Theorem 2.2 .5 and the maximality of the outer blossoms in M-SBT. Thus the former part of the claim follows.

For the latter part, by the definition of M-SBT and Proposition 2.2.6, there is an M-alternating odd ear-decomposition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of C. Let $I \in \mathcal{G}(G)$ be such that $V(I) \cap V(C) \neq \emptyset$ and that $V\left(P_{j}\right) \cap V(I)=\emptyset$ for $j=1, \ldots, i-1$ and $V\left(P_{i}\right) \cap V(I) \neq \emptyset$. We proceed by induction on i. If $i=1$, the claim obviously follows. Let $i>1$. $G_{i-1}:=P_{1}+\cdots+P_{i-1}$ is factor-critical by Theorem 2.2.5, and $M_{G_{i-1}}$ is a near-perfect matching of G_{i-1}. Moreover, P_{i} is an M-ear relative to G_{i-1}. Therefore, with the same technique as in the proof of Theorem 2.3.13, there exists $I^{\prime} \in \mathcal{G}(G)$ such that $V\left(I^{\prime}\right) \cap V(C) \neq \emptyset$ and that there is an M-ear relative to I^{\prime} and through I. Thus, by the induction hypothesis, the latter part of the claim follows.

Proposition 2.7.4. Given a factorizable graph G, its perfect matching M, and $\mathcal{G}(G)$, we can compute the poset $(\mathcal{G}(G), \triangleleft)$ in $O(n m)$ time.

Proof. It is sufficient to list all the non-refinable upper bounds for each factorcomponent of G by the following procedure:
: $D:=(\mathcal{G}(G), \emptyset) ; A:=\emptyset ;$
: for all $H \in \mathcal{G}(G)$ do
compute a maximal M-SBT T; let C be the blossom of T corresponding to its root;
for all $x \in V(C)$, which satisfies $x \in V(I)$ for some $I \in \mathcal{G}(G)$ do

$$
A:=A \cup\{(H, I)\} ;
$$

end for
end for
8: $D:=(\mathcal{G}(G), A) ;$ STOP.
By Lemma 2.7.3, the partial order on $V(D)$ determined by the reachability corresponds to \triangleleft after the above procedure. That is, if we define a binary relation \prec on $V(D)$ so that $H^{\prime} \triangleleft I^{\prime}$ if there is a dipath from H^{\prime} to I^{\prime} in D, then \prec and \triangleleft coincide. For each $H \in \mathcal{G}(G)$, the above procedure costs $O(m)$ time, thus it costs $O(n m)$ time over the whole computation.

Remark 2.7.5. Given the digraph D after the procedure in Proposition 2.7.4, we can compute all the upper bounds of a factor-component in $O\left(n^{2}\right)$ time. Thus, an efficient data structure that represents the poset, for example, a boolean-valued matrix L where $L[i, j]=$ true if and only if $G_{i} \triangleleft G_{j}$, can be obtained in additional $O\left(n^{2}\right)$ time.

As a maximum matching of a graph can be computed in $O(\sqrt{n} m)$ time [31,38], we have the following, combining Propositions 2.7.1, 2.7.2, and 2.7.4.

Theorem 2.7.6. Let G be a factorizable graph. Then the poset $(\mathcal{G}(G), \triangleleft)$ and the generalized canonical partition $\mathcal{P}(G)$ can be computed in $O(n m)$ time.

2.8 Concluding Remarks

Finally, we give remarks to conclude this chapter. We have investigated canonical structures of general factorizable graphs, noting the concept of factor-components,
the fundamental building blocks of factorizable graphs. The key points are as follows. We show that the factor-components of a factorizable graph form a poset with respect to the canonical binary relation \triangleleft. On the other hand, the canonical partition by Kotzig [24-26] is generalized for general factorizable graphs, the generalized canonical partition, which induces a decomposition of each factorcomponents representing the overall structures of given graphs. These two notions are actually related as shown by Theorem 2.5.2. By this relationship, we can view these two as introducing a new canonical decomposition in which they, the partially ordered structure by \triangleleft and the generalized canonical partition are unified. We name this canonical decomposition the generalized cathedral structure or just the cathedral structure, after the cathedral theorem for saturated graphs by Lovász [28]. As we will see in Chapter 4, this new canonical decomposition is closely related to the cathedral theorem.

Though we present the new canonical decomposition for factorizable graphs, actually we can also present it for non-factorizable graphs by combining it with the Gallai-Edmonds decomposition. Given a graph G, the Gallai-Edmonds decomposition outputs a factorizable subgraph, $G[C(G)]$; here this subgraph is treated as irreducible, and no further information is provided. By applying our new canonical decomposition to $G[C(G)]$, we can combine it with the Gallai-Edmonds decomposition and can formulate it as a decomposition for general graphs including those non-factorizable, giving further information about $G[C(G)]$. Accordingly, the new canonical decomposition provides a refinement of the Gallai-Edmonds decomposition.

As we note in Section 2.5, the partially ordered structure by \triangleleft is not a generalization of the DM-decomposition. However, a generalization of the DM-decomposition is given using our new canonical decomposition [18]. Therefore, the new canonical decomposition provides a viewpoint to see the known canonical decompositions, i.e., the Gallai-Edmonds decomposition, the canonical partition the DMdecomposition, in a unified way.

Chapter 3

Barriers in General Graphs

3.1 Introduction

In this chapter, we show new results about structure of barriers, using the new canonical decomposition we introduced in Chapter 2. As we gave in Section 1.3.1, a barrier is a set of vertices determined by the Berge formula, a min-max formula characterizing the size of maximum matchings. The notion of barriers corresponds to a combinatorial interpretation of the dual optimal solutions of the maximum matching problem. Barriers also serve as effective tools in combinatorial arguments, taking on a role similar to canonical decompositions. (Inclusion-wise) maximal barriers seem especially important not only because they are easier to deal with but also because they are related to canonical decompositions and seem to have something intrinsic. However, investigating structures of barriers is not easy, and not so much has been known about barriers. The main difficulty may have lain lack of tools to see structures of factorizable graphs.

In this chapter, using the canonical decomposition for factorizable graphs introduced in Chapter 2, we reveal a structure of maximal barriers; actually we work on a wider notion, odd-maximal barriers (see Section 3.2). The main theorem (Theorem 3.4.1) here states that the equivalence classes of the generalized canonical partition are actually the "atoms" that constitute odd-maximal barriers; it also describes the structures of odd components associated with odd-maximal barriers.

There is another meaning of the main theorem. As we stated in Section 1.3.2, there are two formulation of the canonical partition of elementary graphs; Kotzig's formulation is by an equivalence relation [24-26], and Lovász's is based on barriers, stating that the family of maximal barriers forms a partition of the vertex set [27, 30]. In Chapter 2, we gave a generalization of the canonical partition based on Kotzig's formulation. On the other hand, in non-elementary graphs, the family of maximal barriers never forms a partition and there has not been known any generalization of Lovász canonical partition for general graphs. The structural description of odd-maximal barriers we give in the main theorem can be regarded as a generalization of the canonical partition based on Lovász formulation. Therefore, it is also a contribution of the theory of canonical decompositions.

The results in this chapter are also found in papers by the authoer [18,21]. The rest of this section is devoted to summarize the succeeding sections. In Section 3.2, we give the definition and some properties of odd-maximal barriers and explain why it is a reasonable notion to study, together with the observation that in order to know odd-maximal barriers in general graphs it suffices to work on factorizable graphs. In Section 3.3, we give more details about odd-maximal barriers and present proofs of some propositions in Section 3.2; readers familiar with might skip this section. In Section 3.4, we give the statement of the main theorem in this chapter, and then in Sections 3.5 and 3.6, we completes the proof of it.

3.2 Our Aim on Barriers

As we mention in Section 1.3.2, there is a structure of elementary graphs called the canonical partition; Kotzig first introduced it as the equivalence classes of a certain equivalence relation, and later Lovász reformulated it with the notion of barriers, stating that the family of maximal barriers forms a partition of the vertices in elementary graphs. This reformulation by Lovász has produced many fundamental properties in matching theory such as the two ear theorem [1,30], and the brick decomposition or the tight cut decomposition, and underlies polyhedral
studies of matching theory; see the survey article [2].
However, in non-elementary graphs, the family of maximal barriers never forms a partition of the vertices, and there has not been known the counterpart structure of Lovász's canonical partition for general graphs.

The question remains: how all the maximal barriers exist in graphs and what is the counterpart in general graphs? Therefore, we are going to investigate it. Actually, we work on a wider notion: odd-maximal barriers. ${ }^{1}$

Definition 3.2.1. Let G be a graph. A barrier $X \subseteq V(G)$ is called an oddmaximal barrier if it is maximal with respect to $X \cup D_{X}$, i.e., no $Y \subseteq D_{X}$ with $Y \neq \emptyset$ satisfies that $X \cup Y$ is a barrier of G.

Odd-maximal barriers have some nice properties (see [15]):

- A maximal barrier is an odd-maximal barrier.
- For elementary graphs, the notion of maximal barriers and the notion of odd-maximal barriers coincide.

Hence, it seems reasonable to work on the odd-maximal barriers. The first one is easy to see by the definition. The second one is by the following proposition:

Proposition 3.2.2. For an elementary graph G, if $X \subseteq V(G)$ is an odd-maximal barrier then it is also a maximal barrier.

Since a maximal barrier is odd-maximal, two notions coincide for elementary graphs by Proposition 3.2.2. For the proof of Proposition 3.2.2, see the next section.

Actually, with the Gallai-Edmonds structure theorem and the following proposition by Király [15], it suffices to work on factorizable graphs:

Proposition 3.2.3 (Király [15]). Let G be a graph. A set of vertices $S \subseteq V(G)$ is an odd-maximal barrier of G if and only if it is a disjoint union of $A(G)$ and

[^1]an odd-maximal barrier of the factorizable subgraph $G[C(G)]$. Now let S be an odd-maximal barrier. Then, the odd components of $G-S$ are the components of $G[D(G)]$ and the odd components of $G[C(G)]-(S \backslash A(G))$.

See the next section for a proof of Proposition 3.2.3. Given the above facts, in this chapter we give canonical structures of
odd-maximal barriers in general factorizable graphs
that can be regarded as a generalization of Lovász's canonical partition, aiming to contribute to the foundation of matching theory. Here, the new canonical decomposition, i.e., the generalized cathedral decomposition in Chapter 2 serves as a language to describe barriers. We also reveal structures of odd components associated with odd-maximal barriers.

3.3 More Details on Odd-maximal Barriers

3.3.1 Proof of Proposition 3.2.2

Here we give a proof of Proposition 3.2.2. This proposition is easy to see from known facts; readers familiar with matching theory might skip this section.

Proposition 3.3.1 (see [30] or [15]). Let G be a graph and $X \subseteq V(G)$ be an odd-maximal barrier of G. Then, X is a maximal barrier if and only if $C_{X}=\emptyset$.

Proof. The necessity part is obvious by the definition. For the sufficiency part, let $C_{X} \neq \emptyset$ and take $u \in C_{X}$ arbitrarily. Then $X \cup\{u\}$ is also a barrier of G, contradicting X being a maximal one.

Proposition 3.3.2 (see [30] or [15]). Let G be an elementary graph and X be a barrier of G. Then, $C_{X}=\emptyset$.

Proof. If $C_{X} \neq \emptyset$, then since no the edges of $E\left[X, C_{X}\right]$ are allowed as stated in Proposition 3.5.1, we can see that G is not elementary, a contradiction.

By combining Proposition 3.3.1 and Proposition 3.3.2, Proposition 3.2.2 is obtained.

3.3.2 Proof of Proposition 3.2 .3

Here we give a proof of Proposition 3.2.3. Readers familiar with matching theory might skip this section.

Proposition 3.3.3 (folklore, see [30] or [15]). Let G be a graph, $X \subseteq V(G)$ be a barrier of G, and $Y \subseteq V(G)$ be such that $X \subseteq Y$. Then, Y is a barrier of G if and only if $Y \backslash X$ is a union of barriers of some connected components of $G-X$.

Additionally, Király shows that $A(G)$ is the minimum odd-maximal barriers in any graph G.

Theorem 3.3.4 (Kiráry [15]). Let G be a graph, and $\mathcal{X} \subseteq 2^{V(G)}$ be the family of the odd-maximal barriers of G. Then, $\bigcap_{X \in \mathcal{X}} X=A(G)$.

Therefore, combining up Theorem 1.3.4, Proposition 3.3.3, and Theorem 3.3.4, we obtain Proposition 3.2.3 immediately.

3.4 The Main Result in This Chapter

Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$ and $S \in \mathcal{P}_{G}(H)$. Based on Theorem 2.5.2, we denote the set of all the strict upper bounds of H "assigned" to S by $\mathcal{U}_{G}(S)$; that is to say, $H^{\prime} \in \mathcal{U}_{G}(S)$ if and only if $H^{\prime} \in \mathcal{U}(H)$ and there is a connected component K of $G[U(H)]$ such that $V\left(H^{\prime}\right) \subseteq V(K)$ and $N_{G}(K) \cap$ $V(H) \subseteq S$. We define $U_{G}(S):=\bigcup_{H^{\prime} \in \mathcal{U}_{G}(S)} V\left(H^{\prime}\right)$ and $U_{G}^{*}(S):=U_{G}(S) \cup S$. We often omit the subscripts " G " if they are apparent from contexts. Note that $\mathcal{U}(H)=\bigcup_{S \in \mathcal{P}_{G}(H)} \mathcal{U}(S)$. Our main result in this chapter is the following:

Theorem 3.4.1. Let G be a factorizable graph, and $X \subseteq V(G)$ be an odd-maximal barrier of G. Then, X is a disjoint union of some members of $\mathcal{P}(G)$; namely, there exist $S_{1}, \ldots, S_{k} \in \mathcal{P}(G)$ such that $X=S_{1} \dot{\cup} \cdots \dot{\cup} S_{k}$. Additionally, odd components of $G-X$ have structures as follows: $D_{X}=\left(U^{*}\left(G_{1}\right) \backslash U^{*}\left(S_{1}\right)\right) \dot{\cup} \cdots \dot{\cup}\left(U^{*}\left(G_{k}\right) \backslash\right.$ $\left.U^{*}\left(S_{k}\right)\right)$, where $G_{i} \in \mathcal{G}(G)$ is such that $S_{i} \in \mathcal{P}_{G}\left(G_{i}\right)$ for each $i \in\{1, \ldots, k\}$.

This theorem states that in general graphs the equivalence classes of the generalized canonical partition are the "atoms" that constitute odd-maximal barriers, and that odd components associated to odd-maximal barriers are also described canonically by the generalized cathedral structure. As we see in previous chapters, among two formulations of the canonical partition of elementary graphs, the generalization of the canonical partition introduced in Chapter 2 is attained based on Kotzig's formulation; here we show it is as well a generalization based on Lovász's formulation.

Sketch of the Proof: This theorem is an immediate corollary of Theorem 3.6.11, and the rest of this chapter is to prove Theorem 3.6.11. We shall prove it by examining the reachability of alternating paths from two viewpoints - regarding odd-maximal barriers and regarding the generalized cathedral structure - and showing their equivalence.

Let us mention some additional propositions used later in this chapter.

Proposition 3.4.2 (Király [15]). A barrier $X \subseteq V(G)$ of a graph G is oddmaximal if and only if all the odd components of $G-X$ are factor-critical.

Proposition 3.4.3 (Dulmage \& Mendelsohn [4-6,32]). Let $G=(A, B ; E)$ be a bipartite factorizable graph, and M be a perfect matching of G. Let $G_{1}, G_{2} \in \mathcal{G}(G)$, and let $u \in A \cap V\left(G_{1}\right), v \in A \cap V\left(G_{2}\right)$, and $w \in B \cap V\left(G_{2}\right)$. Then there is an M-balanced path from u to v if and only if $G_{1} \preceq_{A} G_{2}$; additionally, there is an M-saturated path between u to w if and only if $G_{1} \preceq_{A} G_{2}$.

3.5 Barriers vs. Alternating Paths

In this section we introduce some lemmas on the reachability of alternating paths regarding odd-maximal barriers. Given an odd-maximal barrier X of a factorizable graph G, we generate a bipartite graph, thus canonically decompose $X \cup D_{X}$ and state the reachability using the DM-decomposition as a language to describe the structures. This technique of generating a bipartite graph has been known [9,30]
and essences of ideas are found there. However, we first reveal it thoroughly to obtain Proposition 3.5.9 and Theorem 3.5.16.

The following proposition can be obtained as an immediate corollary of Proposition 1.3.2 and is for factorizable graphs.

Proposition 3.5.1. Let G be a factorizable graph, and $X \subseteq V(G)$ be a barrier of G. Then for any perfect matching M of G,
(i) each vertex of X is matched to a vertex of D_{X},
(ii) for each component K of $G\left[D_{X}\right], M_{K}$ is a near-perfect matching of K, accordingly $|\delta(K) \cap M|=1$,
(iii) M contains a perfect matching of $G\left[C_{X}\right]$, and
(iv) no edge in $E\left[X, C_{X}\right]$ nor $E(G[X])$ is allowed.

Proposition 3.5.2. Let G be a factorizable graph, and M be a perfect matching of G. If $X \subseteq V(G)$ is a barrier, then for any $u, v \in X$ there is no M-saturated path between u and v.

Proof. Suppose the claim fails, namely, there is an M-saturated path, say P, between $u \in X$ and $v \in X$. Then, $M \triangle E(P)$, i.e., $(M \backslash E(P)) \cup(E(P) \backslash M)$, forms a perfect matching of $G-u-v$; accordingly, $G-u-v$ is factorizable. Now recall that since X is a barrier of the factorizable graph $G, G-X$ has exactly $|X|$ odd components by the definition of barriers. Therefore, the graph $(G-u-v)-(X \backslash\{u, v\})$, which equals $G-X$, also has $|X|$ odd components; this means by the Berge formula that $G-u-v$ is not factorizable, a contradiction.

Proposition 3.5.3. Let G be a factorizable graph, M be a perfect matching, and X be a barrier of G. Then, for any $x \in X$ and $y \in C_{X}$, there is no M-saturated path between x and y nor M-balanced path from x to y.

Proof. Suppose otherwise, that is, for some $x \in X$ and $y \in C_{X}$ there is a path P which is M-saturated between x and y or M-balanced from x to y. Trace P from
x; let z be the first vertex we encounter that is in C_{X}, and let w be the last vertex in $X \cup D_{X}$ we encounter if we trace $x P z$ from x. Since apparently $E\left[C_{X}, D_{X}\right]=\emptyset$ holds, we have $w \in X$ and $w z \in E(x P z)$, and by Proposition 3.5.1 (iv), $w z \notin M$ holds. Therefore, $x P w$ is an M-saturated path between x and w, contradicting Proposition 3.5.2.

Proposition 3.5.4. Let G be a factorizable graph, M be a perfect matching, and $X \subseteq V(G)$ be an odd-maximal barrier. Then, for any $u \in X$ and $v \in X \cup C_{X}$ there is no M-saturated path between u and v.

Proof. This is immediate by Proposition 3.5.2 and Proposition 3.5.3.
Definition 3.5.5. Let G be a graph, $X \subseteq V(G)$ be a set of vertices, and K_{1}, \ldots, K_{l} be the odd components of $G-X$. We denote the bipartite graph resulting from deleting the even components of $G-X$, removing the edges whose vertices are all contained in X, and contracting each K_{i}, where $i=1, \ldots, l$, respectively into one vertex, as $H_{G}(X)$. Namely, $H_{G}(X):=\left(G-C_{X}-E(G[X])\right) / K_{1} / \cdots / K_{l}$.

Example 3.5.6. Figure 3.1 indicates a factorizable graph, say G, with an oddmaximal barrier (actually a maximal barrier) $X=\{b, f, h, i, j, r\}$. Actually, this graph is isomorphic to the one given in Figure 3.16. If you contract each of the six odd components of $G-X$ into one vertex and remove the two edges in $E(G[X])$, then you obtain the bipartite graph $H_{G}(X)$ as indicated in Figure 3.2. There are exactly two odd components with more than one vertex in $G-X$, say K and L; we denote the new vertices resulting from contracting K and L as v_{K} and v_{L}, respectively. On the other hand, there are four odd components of $G-X$ each composed of a single vertex, i.e., k, l, m, a, respectively; here in Figure 3.2 and some following figures, we call the vertices of $H_{G}(X)$ corresponding to them in just the same way: k, l, m, a. However, we identify edges of $H_{G}(X)$ with those of G naturally corresponding to them; e.g., we treat the edges $b c$ and $b v_{L}$ as equivalent.

The next proposition is easily seen by Propositions 3.5.1 and 3.4.2 and enables us to discuss Proposition 3.5.9 and so on.

Figure 3.1: A factorizable graph G with an odd-maximal barrier X

Figure 3.2: The bipartite graph $H_{G}(X)$

Figure 3.3: The graph G with a perfect matching M

Proposition 3.5.7. Let G be a factorizable graph and X be an odd-maximal barrier of G. If $M \subseteq E(G)$ is a perfect matching of G, then $M \cap \delta(X)$ forms a perfect matching of $H_{G}(X)$. Conversely, if M^{\prime} is a perfect matching of $H_{G}(X)$, there is a perfect matching M of G such that $M^{\prime}=M \cap \delta(X)$.

Proof. The first claim follows by Proposition 3.5.1. For the second claim, let M^{\prime} be a given perfect matching of $H_{G}(X)$. Note that $G\left[C_{X}\right]$ is factorizable by Proposition 3.5.1 (iii), and let $M^{\prime \prime}$ be a perfect matching of $G\left[C_{X}\right]$. By Proposition 3.4.2, the odd components K_{1}, \ldots, K_{l} of $G-X$ are each factor-critical. For each $i=1, \ldots, l$, let M_{i} be a near-perfect matching of K_{i} exposing only the vertex covered by M^{\prime}. Now by letting $M:=M^{\prime \prime} \cup M^{\prime} \cup \bigcup_{i=1}^{l} M_{i}$, we obtain a desired perfect matching M of G.

Example 3.5.8. In Figure 3.3, the path of G induced by the vertices r, o, p, q, f, a, b, c, d, e is an M-saturated path from r to e; we call this path P. In $H_{G}(X)$,

Figure 3.4: The graph $H_{G}(X)$ with the perfect matching M^{\prime}
P corresponds to the M-saturated path P^{\prime} induced by the vertices r, v_{K}, f, a, b, v_{L}. These paths P and P^{\prime} illustrate the statement of Proposition 3.5.9.

The next proposition shows that the reachabilities of alternating paths are equivalent between G and $H_{G}(X)$, which, with Proposition 3.4.3, implies Theorem 3.5.16 immediately.

Proposition 3.5.9. Let G be a factorizable graph, $X \subseteq V(G)$ be an odd-maximal barrier of G, and $\mathcal{K}:=\left\{K_{i}: i=1, \ldots, l\right\}$ be the family of odd components of $G-X$, where $l=|X|$. Let M be a perfect matching of G and M^{\prime} be the perfect matching of $H_{G}(X)$ with $M^{\prime}=M \cap \delta(X)$. Let $u, v \in X$ and $w \in V(K)$, where $K \in \mathcal{K}$, and let w_{K} be the contracted vertex of $H_{G}(X)$ corresponding to K.
(i) Then, for any M-balanced path (resp. M-saturated path) P of G from u to v (resp. between u and w), $P^{\prime}:=P / K_{1} / \cdots / K_{l}$ is an M^{\prime}-balanced path (resp. M^{\prime}-saturated path) of $H_{G}(X)$ from u to v (resp. between u and w_{K}).
(ii) Conversely, for any M^{\prime}-balanced path (resp. M^{\prime}-saturated path) P^{\prime} from u
to v in $H_{G}(X)$ (resp. between u and w_{K}), there is an M-balanced path (resp. M-saturated path) P from u to v in G (resp. between u and w) such that $P^{\prime}=P / K_{1} / \cdots / K_{l}$.

Proof. (i): (See Figure 3.5 and Figure 3.6.) For (i), we first prove the case where P is an M-balanced path. Let $u=x_{1}, \ldots, x_{q}=v$ be the vertices of $X \cap V(P)$, and suppose, without loss of generality, they appear in this order if we trace P from u. For each $i=1, \ldots, q$, let $L_{i} \in \mathcal{K}$ be such that $x_{i}^{\prime} \in V\left(L_{i}\right)$, which is well-defined by Proposition 3.5.1 (i), and let z_{i} be the contracted vertex of $H_{G}(X)$ corresponding to L_{i}. Note that by Proposition 3.5.1 (ii),

Claim 3.5.10. if $x_{i} \neq x_{j}$, then $L_{i} \neq L_{j}$ and accordingly $z_{i} \neq z_{j}$.
We are going to prove a bit refined statement of (i):
Claim 3.5.11. P^{\prime} is an M^{\prime}-balanced path from u to v, with $V\left(P^{\prime}\right)=\left\{x_{i}: i=\right.$ $1, \ldots, q\} \cup\left\{z_{i}: i=1, \ldots, q\right\} \backslash\left\{z_{q}\right\}$.

Proof. We prove this claim by induction on q. If $q=1$ (i.e., $u=v$), then P and P^{\prime} are trivial paths and the claim is obviously true. Let $q \geq 2$, and suppose the claim is true for any case with a shorter path. Since $u^{\prime} \in V\left(L_{1}\right)$ holds, the internal vertices of $u P x_{2}$ are contained in L_{1}. By Proposition 3.5.1 (ii), $\delta\left(L_{i}\right) \cap M=\left\{u u^{\prime}\right\}$. Thus, if we trace $u P x_{2}$ from u then the last edge is not in M, which means

- $u P x_{2}$ is an M-balanced path from u to x_{2}. Accordingly,
- $x_{2} P v$ is also an M-balanced path from x_{2} to v.

Note that
$P_{1}^{\prime}:=u P x_{2} / K_{1} / \ldots / K_{l}$, which equals $u P x_{2} / L_{1}$, is apparently an M balanced path whose vertices are $\left\{u, z_{1}, x_{2}\right\}$,
since $E\left(P_{1}^{\prime}\right)=\left\{u z_{1}, z_{1} x_{2}\right\}, u z_{1} \in M, z_{1} x_{2} \notin M$ hold. Therefore, if $q=2$ (i.e., $x_{2}=v$) then the claim follows. Hence hereafter we prove the case where $q \geq 3$ (i.e., $x_{2} \neq v$). Since $x_{2} P v$ is an M-balanced path from x_{2} to v, the induction hypothesis yields that
$P_{2}^{\prime}:=x_{2} P v / K_{1} / \ldots / K_{l}$ is an M^{\prime}-balanced path of $H_{G}(X)$ from x_{2} to v, whose vertices are $\left\{x_{2}, \ldots, x_{q}=v\right\} \cup\left\{z_{2}, \ldots, z_{q-1}\right\}$.

Thus, $V\left(P_{1}^{\prime}\right) \cap V\left(P_{2}^{\prime}\right)=\left\{x_{2}\right\}$ by Claim 3.5.10; accordingly, $P^{\prime}=P_{1}^{\prime}+P_{2}^{\prime}$ is an M^{\prime}-balanced path of $H_{G}(X)$ from u to v with $V\left(P^{\prime}\right)=\left\{x_{i}: i=1, \ldots, q\right\} \cup\left\{z_{i}\right.$: $i=1, \ldots, q\} \backslash\left\{z_{q}\right\}$. Now we are done for this claim.

Since we obtain Claim 3.5.11, we are done for this case of (i). The other case of (i) where the path P is an M-saturated path can be proved by similar arguments.
(ii): (See Figure 3.7 and Figure 3.8.) For (ii), we first prove the case where P^{\prime} is an M^{\prime}-balanced path of $H_{G}(X)$. Since it is apparently true if $u=v$, we prove the case where $u \neq v$. Let $u=x_{0}, y_{0}, \ldots, x_{p}, y_{p}, x_{p+1}=v$ be the vertices of P^{\prime}, and suppose they appear in this order if we trace P^{\prime} from u. Note that

- $x_{i} \in X$ holds for each $i \in\{0, \ldots, p+1\}$,
- y_{i} is a contracted vertex corresponding to an odd component of $G-X$, say L_{i}, for each $i \in\{0, \ldots, p\}$, and
- $x_{i} y_{i} \in M^{\prime}$ and $y_{i} x_{i+1} \notin M^{\prime}$ hold for each $i \in\{0, \ldots, p\}$.

For each $i=0, \ldots, p$, let $y_{i}^{1}, y_{i}^{2} \in V\left(L_{i}\right)$ be such that G has edges $x_{i} y_{i}^{1}, y_{i}^{2} x_{i+1} \in$ $E(G)$ that correspond to $x_{i} y_{i}, y_{i} x_{i+1} \in E\left(H_{G}(X)\right)$, respectively. Since $x_{i} y_{i} \in M^{\prime}$ and $y_{i} x_{i+1} \notin M^{\prime}$, we have

$$
x_{i} y_{i}^{1} \in M \text { and } y_{i}^{2} x_{i+1} \notin M .
$$

Claim 3.5.12. For each $i \in\{0, \ldots, p\}$, there is an M-balanced path Q_{i} from y_{i}^{2} to y_{i}^{1} whose vertices are contained in $V\left(L_{i}\right)$.

Proof. The odd component L_{i} is factor-critical by Proposition 3.4.2, and $M_{L_{i}}$ forms a near-perfect matching of L_{i}, which exposes y_{i}^{1}, by Proposition 3.5.1 (ii). Therefore, by Property 2.2.1, there is an M-balanced path Q_{i} of L_{i} from y_{i}^{2} to y_{i}^{1}.

Figure 3.5: The path P in the proof of Figure 3.6: The path P^{\prime} in the proof of Proposition 3.5.9 (i)

Thus, with Claim 3.5.12, by replacing each y_{i} by Q_{i} on P^{\prime}, we can get an M balanced path P of G from u to v that satisfies $P^{\prime}=P / K_{1} / \cdots / K_{l}$. Now we are done for this case of (ii). The other case of (ii) where the path P^{\prime} is an M^{\prime}-saturated path can be proved by similar arguments.

Given a factorizable graph G and an odd-maximal barrier X, we denote the DM-decomposition of $H_{G}(X)$ with respect to X as just the DM-decomposition of $H_{G}(X)$. In this case, we sometimes denote \preceq_{X} as just \preceq, omitting the subscript " X ".

Definition 3.5.13. Let G be a factorizable graph and X be an odd-maximal barrier of G. Let D be a DM-component of $H_{G}(X)$, and K_{1}, \ldots, K_{l}, where $l=$ $|X \cap V(D)|$, be such that $V(D) \backslash X$ are the vertices resulting from contracting K_{1}, \ldots, K_{l}. We say \hat{D} is the expansion of D if it is the subgraph of G induced by $(V(D) \cap X) \cup \bigcup_{i=1}^{l} V\left(K_{i}\right)$.

Figure 3.7: The path P^{\prime} in the proof of Figure 3.8: The path P is the proof of Proposition 3.5.9 (ii)

Figure 3.9: The DM-components of $H_{G}(X)$

Figure 3.10: The expansions of the DM-components of $H_{G}(X)$

Figure 3.11: The Hasse diagram that indicates the DM-decomposition of $H_{G}(X)$

Example 3.5.14. Let G and X be the graph and the barrier given in Figure 3.1. The bipartite graph $H_{G}(X)$, indicated in Figure 3.2, has three DM-components shown by Figure 3.9: $D_{1}=H_{G}(X)\left[\left\{r, v_{K}\right\}\right], D_{2}=H_{G}(X)[\{h, i, j, k, l, m\}], D_{3}=$ $H_{G}(X)\left[\left\{b, f, v_{L}, a\right\}\right]$. Therefore, the expansions of D_{1}, D_{2}, D_{3} are those indicated in Figure 3.10: $\hat{D}_{1}=G[\{o, p, q, r, s, t\}], \hat{D}_{2}=G[\{h, i, j, k, l, m\}], \hat{D}_{3}=$ $G[\{a, b, c, d, e, f\}]$, respectively. The DM-decomposition of $H_{G}(X)$ (with respect with X) has the poset structure $\left(\left\{D_{1}, D_{2}, D_{3}\right\}, \preceq\right)$, indicated by the Hasse diagram given in Figure 3.11.

The next proposition is a basic observation on expansions.
Proposition 3.5.15. Let G be a factorizable graph, and X be an odd-maximal barrier of G. Let D_{1}, \ldots, D_{k} be the DM-components of $H_{G}(X)$. For each $i=$ $1, \ldots, k$, let \hat{D}_{i} be the expansion of D_{i}. Then,
(i) $\left\{V\left(\hat{D}_{i}\right)\right\}_{i=1}^{k}$ forms a partition of $X \cup D_{X}$,
(ii) $V\left(\hat{D}_{i}\right)$ is separating, accordingly \hat{D}_{i} is factorizable,
(iii) $X \cap V\left(\hat{D}_{i}\right)$ is an odd-maximal barrier of \hat{D}_{i}, and
(iv) $H_{\hat{D}_{i}}\left(X \cap V\left(\hat{D}_{i}\right)\right)$ is isomorphic to D_{i}, for each $i=1, \ldots, k$.

Proof. Since the DM-components of $H_{G}(X)$ give the partition of $V\left(H_{G}(X)\right)$, (i) apparently follows from the definition of expansions. For the first half of (ii), suppose that $V\left(\hat{D}_{i}\right)$ is not separating, equivalently by Property 2.3.1, that there is a perfect matching M of G with $\delta\left(\hat{D}_{i}\right) \cap M \neq \emptyset$. Then, by Proposition 3.5.7, $M^{\prime}:=M \cap \delta(X)$ forms a perfect matching of $H_{G}(X)$ satisfying $\delta\left(D_{i}\right) \cap M^{\prime} \neq \emptyset$; this is a contradiction, since of course $V\left(D_{i}\right)$ is a separating set. Therefore, $V\left(\hat{D}_{i}\right)$ is separating; accordingly, \hat{D}_{i} is factorizable, and we are done for (ii).

Apparently by the definition of expansions, $\hat{D}_{i} \backslash X$ is composed of $\left|X \cap V\left(\hat{D}_{i}\right)\right|$ number of odd components; moreover, since X is an odd-maximal barrier, Proposition 3.4.2 yields that each of them are factor-critical. Therefore, $V\left(\hat{D}_{i}\right) \cap X$ is an odd-maximal barrier of \hat{D}_{i} by the statement (ii) and Proposition 3.4.2 again. Thus, we are done for (iii). The statement (iv) is apparent from the definition.

Theorem 3.5.16. Let G be a factorizable graph, X be an odd-maximal barrier, and M be a perfect matching of G. Let $u, v \in X$ and $w \in D_{X}$, and for each $\alpha \in\{u, v, w\}$ let D_{α} be the DM-component of $H_{G}(X)$ whose expansion \hat{D}_{α} satisfies $\alpha \in V\left(\hat{D}_{\alpha}\right)$. Then, there is an M-balanced path from u to v (resp. an M-saturated path from u to w) in G if and only if $D_{u} \preceq D_{v}$ (resp. $D_{u} \preceq D_{w}$).

Proof. First note that \hat{D}_{α} is well-defined for each $\alpha \in\{u, v, w\}$ by Proposition 3.5.15 (i). Now the claim is immediate from Proposition 3.4.3 and Proposition 3.5.9.

Lemma 3.5.17. Let $G=(A, B ; E)$ be a bipartite factorizable graph, M be a perfect matching of G, and D_{1}, D_{2} be DM-components of G with $D_{1} \preceq_{A} D_{2}$. Then, for any $u \in V\left(D_{1}\right) \cap A$ and $v \in V\left(D_{2}\right) \cap B$, any M-saturated path between u and v traverses $A \cap V\left(D_{2}\right)$.

Proof. Let P be an M-saturated path between $u \in V\left(D_{1}\right) \cap A$ and $v \in V\left(D_{2}\right) \cap B$. Apparently $v v^{\prime} \in E(P)$ holds, and since $V\left(D_{2}\right)$ is of course a separating set, $v^{\prime} \in V\left(D_{2}\right) \cap A$ holds. Namely, P has a vertex in $V\left(D_{2}\right) \cap A$, i.e., v^{\prime}; the claim follows.

The following lemma is obtained by Propositions 3.5.9 and Lemma 3.5.17.
Lemma 3.5.18. Let G be a factorizable graph, X be an odd-maximal barrier, and M be a perfect matching of G. Let \hat{D}_{1} and \hat{D}_{2} be the subgraphs of G which are respectively the expansions of $D M$-components D_{1} and D_{2} such that $D_{1} \preceq D_{2}$. Then, for any $u \in X \cap V\left(\hat{D}_{1}\right)$ and $w \in V\left(\hat{D}_{2}\right) \backslash X$, any M-saturated path between u and w traverses $X \cap V\left(\hat{D}_{2}\right)$.

Proof. Let P be an M-saturated path between $u \in X \cap V\left(\hat{D}_{1}\right)$ and $w \in V\left(\hat{D}_{2}\right) \backslash X$. Let K_{1}, \ldots, K_{l}, where $l=|X|$, be the odd components of $G-X$. By Proposition 3.5.9, $P^{\prime}:=P / K_{1} / \cdots / K_{l}$ is an M^{\prime}-saturated path, where $M^{\prime}=M \cap \delta(X)$, whose end vertices are respectively in $X \cap V\left(D_{1}\right)$ and $V\left(D_{2}\right) \backslash X$. Therefore, P^{\prime} traverses $X \cap V\left(D_{2}\right)$ by Lemma 3.5.17, which means P traverses $X \cap V\left(\hat{D}_{2}\right)$.

3.6 Canonical Structures of Odd-maximal Barriers

In this section we examine the reachability of alternating paths regarding the cathedral structure and show Theorem 3.4.1.

Proposition 3.6.1. Let G be a factorizable graph, and let $H \in \mathcal{G}(G)$ and $S \in$ $\mathcal{P}_{G}(H)$. Then, $G\left[U^{*}(S)\right] / S$ is factor-critical.

Proof. This is immediately obtained by Theorem 2.5.7.

The next lemma is obtained by Proposition 3.6.1 and Property 2.2.1.
Lemma 3.6.2. Let G be a factorizable graph and M be a perfect matching of G, and let $H \in \mathcal{G}(G)$ and $S \in \mathcal{P}_{G}(H)$. Then, for any $x \in U^{*}(S)$, there is an M balanced path from x to some vertex $y \in S$, whose vertices except y are contained in $U(S)$.

Proof. Since $U(S)$ is separating, $M_{U(S)}$ forms a perfect matching of $G[U(S)]$. Therefore, $M_{U(S)}$ forms a near-perfect matching of $G^{\prime}:=G\left[U^{*}(S)\right] / S$ exposing only the contracted vertex s corresponding to S. Additionally, by Proposition 3.6.1, G^{\prime} is factor-critical. Therefore, by Property 2.2.1, in G^{\prime} for any $x \in U^{*}(S)$ there is an $M_{U(S)}$-balanced path from x to s; this path corresponds to a desired path in G. Thus, the claim follows.

Immediately by Theorem 2.4.3, we can see the next proposition:
Proposition 3.6.3. Let G be a factorizable graph and M be a perfect matching of G, and let $H \in \mathcal{G}(G)$. A set of vertices $S \subseteq V(H)$ is a member of $\mathcal{P}_{G}(H)$ if and only if it is a maximal subset of $V(H)$ satisfying that there is no M-saturated path between any two vertices of it.

Proof. This follows easily from Theorem 2.4.3 and Property 2.2.8.
The next one is by Proposition 2.3.24 and Lemma 3.6.2.

Lemma 3.6.4. Let G be a factorizable graph and M be a perfect matching of G, and let $H \in \mathcal{G}(G)$ and $S \in \mathcal{P}_{G}(H)$. Then, for any $s \in S$ and $x \in U(S)$, there is no M-saturated path between s and x nor M-balanced path from sto x.

Proof. (See Figure 3.12.) Suppose the claim fails, that is, there is a path P that is M-balanced from s to x or M-saturated between s and x. Trace P from s and let y be the first vertex we encounter that is in $U(S)$. Trace $s P y$ from y and let z be the first vertex we encounter that is in $V(H)$. Then, since $V(H)$ and $U(S)$ are separating, Property 2.3.1 yields $\delta(V(H)) \cap M=\emptyset$ and $\delta(U(S)) \cap M=\emptyset$; therefore,
$z P y$ is an M-exposed path.
Consequently $s P z$ is an M-saturated path between s and z, which means

$$
z \notin S
$$

by Proposition 3.6.3.
On the other hand, by Lemma 3.6.2, there is an M-balanced path Q from y to some vertex $t \in S$ whose vertices except t are contained in $U(S)$. Therefore, $z P y+y Q t$ is an M-ear relative to H, whose end vertices are z and t; this contradicts Lemma 2.5.1 since $z \not \chi_{G} t$.

The next one, Lemma 3.6.5, is rather easy to see by Proposition 2.3.24, and combining it with Lemma 3.6.2 we can obtain Lemma 3.6.6.

Lemma 3.6.5. Let G be a factorizable graph and M be a perfect matching of G. Let $H \in \mathcal{G}(G)$, and let $u, v \in V(H)$ be such that $u \not \chi_{G} v$. Let P be an M saturated path between u and v such that $E(P) \backslash E(H) \neq \emptyset$, and let P_{1}, \ldots, P_{l} be the connected components of $P-E(H)$. Let $S_{0}, S_{l+1} \in \mathcal{P}_{G}(H)$ be such that $u \in S_{0}$ and $v \in S_{l+1}$. Then,
(i) two end vertices of P_{i} belong to the same member of $\mathcal{P}_{G}(H)$, say S_{i},
(ii) P_{i} is, except its end vertices, contained in $U\left(S_{i}\right)$ for each $i=1, \ldots, l$, and

Figure 3.12: The proof of Lemma 3.6.4
(iii) $S_{i} \neq S_{j}$ holds, for any $i, j \in\{0, \ldots, l+1\}$ with $i \neq j$.

Proof. Since $V(H)$ is of course separating, P_{i} is an M-ear relative to H for each $i=1, \ldots, l$; therefore, (i) follows by Lemma 2.5.1. Thus, the statement (ii) follows by Theorem 2.3.13. For proving (iii), let x_{i} and y_{i} be the end vertices of P_{i} for each $i=1, \ldots, l$. Without loss of generality, we can assume that the vertices $u=: y_{0}, x_{1}, y_{1}, \ldots, x_{l}, y_{l}, x_{l+1}:=v$ appear in this order if we trace P from u. Then, for any i, j with $0 \leq i<j \leq l+1, y_{i} P x_{j}$ forms an M-saturated path between $y_{i} \in S_{i}$ and $x_{j} \in S_{j}$. Thus we have $S_{i} \neq S_{j}$ by Proposition 3.6.3; this means (iii), and we are done.

Lemma 3.6.6. Let G be a factorizable graph and M be a perfect matching of G. Let $H \in \mathcal{G}(G)$, and let $S, T \in \mathcal{P}_{G}(H)$ be such that $S \neq T$. Then, for any $s \in S$ and $t \in U^{*}(T)$, there is an M-saturated path between s and t, whose vertices are contained in $U^{*}(H) \backslash U(S)$.

Proof. (See Figure 3.13.) By Lemma 3.6.2, there is an M-balanced path P_{1} from t to a vertex $x \in T$ whose vertices except x are contained in $U(T)$. By Proposition 3.6.3, there is an M-saturated path P_{2} between s and x. By Lemma 3.6.5,

Figure 3.13: The proof of Lemma 3.6.6
$V\left(P_{2}\right)$ is contained in $U^{*}(H) \backslash U(S) \backslash U(T)$; accordingly, $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\{x\}$. Hence, $P:=P_{1}+P_{2}$ is an M-saturated path between s and t, contained in $U^{*}(H) \backslash U(S)$.

Lemma 3.6.6 immediately yields the following: Lemma 3.6.7.
Lemma 3.6.7. Let G be a factorizable graph and M be a perfect matching of G.
Let $H \in \mathcal{G}(G)$, and let $S, T \in \mathcal{P}_{G}(H)$ be such that $S \neq T$. Then, for any $s \in S$ and $t \in U^{*}(T)$, there is an M-saturated path P between s and t such that for any $u \in S$ and $v \in V(P) \backslash S$ there is an M-saturated path between u and v.

Theorem 3.6.8. Let G be a factorizable graph, M be a perfect matching of G, and $u, v \in V(G)$ be such that $G-u-v$ is not factorizable. If there are M-balanced paths respectively from u to v and from v to u, then u and v are in the same factor-component of G.

Proof. Let P be an M-balanced path from u to v, and Q be an M-balanced path from v to u. Let x_{0}, x_{1}, \ldots be the sequence of vertices in $V(P) \cap V(Q)$ defined by the following procedure (see Figure 3.14):

1: $x_{0}:=v ; i:=0$;
2: while $x_{i} \neq u$ do

3: $\quad \operatorname{trace} x_{i} Q u$ from x_{i} and let x_{i+1} be the first vertex we encounter that is in $V\left(u P x_{i}\right) \backslash\left\{x_{i}\right\} ;$
$i++$.

end while

Note that this procedure surely stops in finite time (since at each repetition of the while-loop x_{i} draws nearer to u) and returns $v=x_{0}, \ldots, x_{l}=u$ for some $l \geq 0$. Note also the next claim, which is easy to see by the definition procedure.

Claim 3.6.9. (i) Tracing P from u, we encounter x_{l}, \ldots, x_{0} in this order.
(ii) For each $i=0, \ldots, l-1, u P x_{i}$ and $x_{i} Q x_{i+1}$ have only $\left\{x_{i}, x_{i+1}\right\}$ as common vertices.
(iii) For each $i=0, \ldots, l, u P x_{i}$ and $v Q x_{i}$ has only x_{i} as a common vertex.

Proof. By the definition procedure, for each $i=0, \ldots, l-1, x_{i+1}$ is located on P nearer to u than x_{i} is; this yields (i). The statement (ii) is also apparent from the definition.

For (iii) note that $v Q x_{i}=x_{0} Q x_{1}+\cdots+x_{i-1} Q x_{i}$. Therefore it suffices to prove that for each $0 \leq j \leq i-1$ only x_{i} can be a common vertex of $u P x_{i}$ and $x_{j} Q x_{j+1}$; this holds true, since $V\left(u P x_{j}\right) \cap V\left(x_{j} Q x_{j+1}\right)=\left\{x_{j}, x_{j+1}\right\}$ by (ii), and $V\left(u P x_{i}\right) \subseteq V\left(u P x_{j}\right) \backslash\left\{x_{j}, \ldots, x_{i-1}\right\}$ by (i).

Claim 3.6.10. For each $i=0, \ldots, l-1, x_{i} Q x_{i+1}$ is an M-balanced path from x_{i} to x_{i+1}. For each $i=0, \ldots, l, u P x_{i}$ and $v Q x_{i}$ are M-balanced paths from u to x_{i} and from v to x_{i}, respectively.

Proof. (See Figure 3.15.) We give it by the induction on i. If $i=0$ then both of the claims are rather trivially true, and if $i=l$ then the second claim is trivially true. Therefore let $0<i<l$ and suppose the claims are true for $i-1$, i.e.,
(a) $x_{i-1} Q x_{i}$ is an M-balanced path from x_{i-1} to x_{i},
(b) $u P x_{i-1}$ is an M-balanced path from u to x_{i-1}, and
(c) $v Q x_{i-1}$ is an M-balanced path from v to x_{i-1}.

Since $v Q x_{i}=v Q x_{i-1}+x_{i-1} Q x_{i}$ holds, the induction hypotheses (a) and (c) yield that
$v Q x_{i}$ is also an M-balanced path, from v to x_{i}.
Now suppose the remaining claim fails, namely suppose $u P x_{i}$ is an M-saturated path between u and x_{i}. Note that $u P x_{i}+x_{i} Q v$ forms a path, since they have only x_{i} as a common vertex by Claim 3.6.9 (iii). Thus, $u P x_{i}+x_{i} Q v$ is an M-saturated path between u and v; this means $G-u-v$ is factorizable by Property 2.2.8, and we have a contradiction. Therefore,
$u P x_{i}$ is an M-balanced path from u to x_{i}.
Hence, we have $x_{i}^{\prime} \in V\left(x_{i} P v\right)$. Therefore, by the definition procedure of x_{i+1}, $x_{i} Q x_{i+1}$ is an M-balanced path from x_{i} to x_{i+1}, and we are done.

Since

- Claim 3.6.10 states that $u P x_{i}$ is an M-balanced path for each $i=0, \ldots, l$, and
- Claim 3.6.9 (ii) yields $u P x_{i}=u P x_{i+1}+x_{i+1} P x_{i}$ for each $i=0, \ldots, l-1$, it follows that $x_{i+1} P x_{i}$ is an M-balanced path from x_{i+1} to x_{i} for each $i=0, \ldots, l-$ 1. In addition to this fact, recall that
- $x_{i} Q x_{i+1}$ is an M-balanced path from x_{i} to x_{i+1} by Claim 3.6.10, and
- $x_{i} Q x_{i+1}$ and $x_{i+1} P x_{i}$ have only $\left\{x_{i}, x_{i+1}\right\}$ as common vertices by Claim 3.6.9 (ii),
for each $i=0, \ldots, l-1$. Therefore, $x_{i} Q x_{i+1}+x_{i+1} P x_{i}$ forms an M-alternating circuit. Therefore, by Property 2.2.9, x_{i} and x_{i+1} are contained in the same factorcomponent of G for each $i=0, \ldots, l-1$. This yields that u and v are contained in the same factor-component.

Now we are ready to prove the main theorem, combining up the results in this chapter.

Figure 3.14: The definition procedure of x_{0}, x_{1}, \ldots in the proof of Theorem 3.6.8

Figure 3.15: The proof of Claim 3.6.10 in Theorem 3.6.8

Theorem 3.6.11. Let G be a factorizable graph, and X be an odd-maximal barrier of G. Let D_{1}, \ldots, D_{k} be the DM-components of $H_{G}(X)$. Let $\hat{V}_{1}, \ldots, \hat{V}_{k}$ be the partition of $X \cup D_{X}$ such that for each $i=1, \ldots, k, \hat{D}_{i}:=G\left[\hat{V}_{i}\right]$ is the expansion of D_{i}. Then, for each $i=1, \ldots, k, S_{i}:=X \cap \hat{V}_{i}$ coincides with a member of $\mathcal{P}_{G}\left(H_{i}\right)$ for some $H_{i} \in \mathcal{G}(G)$, and \hat{V}_{i} coincides with $U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$.

Proof. Note that such a partition of $X \cup D_{X}$ surely exists by Proposition 3.5.15. Let M be a perfect matching of G. Let $i \in\{1, \ldots, k\}$.

Claim 3.6.12. There is no M-saturated path between any two vertices of S_{i}.

Proof. This is immediate from Proposition 3.5.4.

Claim 3.6.13. Any vertex of S_{i} is contained in the same factor-component of G, say H_{i}.

Proof. Take $u, v \in S_{i}$ arbitrarily. Note first that there is no M-saturated path between u and v, by Claim 3.6.12. Additionally, there are M-balanced paths from u to v and from v to u respectively, which is immediate from Theorem 3.5.16 and Proposition 3.4.3. Therefore by Theorem 3.6.8, u and v are contained in the same factor-component. Thus, we have the claim.

Since Proposition 3.5.15 says \hat{V}_{i} is separating,
Claim 3.6.14. $V\left(H_{i}\right) \subseteq \hat{V}_{i}$.
Claim 3.6.15. For any $u \in S_{i}$ and any $v \in \hat{V}_{i} \backslash S_{i}$, there is an M-saturated path between u and v whose vertices are contained in \hat{V}_{i}.

Proof. Note that $M_{\hat{V}_{i}}$ is a perfect matching of \hat{D}_{i}, S_{i} is an odd-maximal barrier of \hat{D}_{i}, and $H_{\hat{D}_{i}}\left(S_{i}\right)$ is a factorizable bipartite graph with exactly one DM-component by Proposition 3.5.15. Thus, by applying Theorem 3.5.16 to $\hat{D}_{i}, M_{\hat{V}_{i}}$ and S_{i}, there is an M-saturated path of \hat{D}_{i} between any $u \in S_{i}$ and any $v \in \hat{V}_{i} \backslash S_{i}$. Namely, the claim follows.

By combining Claims 3.6.12, 3.6.13, 3.6.14, and 3.6.15, we obtain that S_{i} is a maximal subset of $V\left(H_{i}\right)$ such that there is no M-saturated path between any two vertices of it. Hence, by Proposition 3.6.3, $S_{i} \in \mathcal{P}_{G}\left(H_{i}\right)$ holds.

Claim 3.6.16. $\hat{V}_{i} \supseteq U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$.
Proof. Take $y \in U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$ arbitrarily; recall $U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)=S_{i} \dot{\cup}\left(U^{*}\left(H_{i}\right) \backslash\right.$ $\left.U^{*}\left(S_{i}\right)\right)$. If $y \in S_{i}$, then of course $y \in \hat{V}_{i}$. Hence hereafter let $y \in U^{*}\left(H_{i}\right) \backslash U^{*}\left(S_{i}\right)$, and let $T \in \mathcal{P}_{G}\left(H_{i}\right) \backslash\left\{S_{i}\right\}$ be such that $y \in U^{*}(T)$.

Let $u \in S_{i}$. There is an M-saturated path P between u and y by Lemma 3.6.6. Hence, by Proposition 3.5.4, $y \in D_{X}$. Therefore, there exists $j \in\{1, \ldots, k\}$ such that $y \in \hat{V}_{j}$. By Theorem 3.5.16 and Proposition 3.4.3, $D_{i} \preceq D_{j}$.

If $i \neq j$, then by Lemma 3.5.18, P has some internal vertices which belong to S_{j}. However, by Proposition 3.5.4, there is no M-saturated path between any two vertices respectively in S_{i} and S_{j}, and of course $V(P) \cap S_{j}$ is disjoint from S_{i}. Namely, every M-saturated path between $u \in S_{i}$ and $y \in U^{*}\left(H_{i}\right) \backslash U^{*}\left(S_{i}\right)$ must traverse a vertex not in S_{i}, say p, such that there is no M-saturated path between y and p. This contradicts Lemma 3.6.7. Hence, we obtain $i=j$; accordingly, $U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$ is contained in \hat{V}_{i}.

Claim 3.6.17. $\hat{V}_{i} \subseteq U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$.
Proof. Let $z \in \hat{V}_{i} \backslash V\left(H_{i}\right)$. By Claim 3.6.15, there is an M-saturated path P between z and some vertex of S_{i} which is contained in \hat{V}_{i}. Trace P from z and let w be the first vertex we encounter that is in $V\left(H_{i}\right)$. Since $V\left(H_{i}\right)$ is separating, $z P w$ is an M-balanced path from z to w by Property 2.3.1. In $\hat{D}_{i} / H_{i}, z P w$ corresponds to an M-balanced path from z to the contracted vertex h, corresponding to H_{i}. Obviously, M contains a near-perfect matching of \hat{D}_{i} / H_{i} exposing only h.

Therefore, \hat{D}_{i} / H_{i} is factor-critical by Property 2.2.1; accordingly, every factorcomponents with vertices in \hat{V}_{i} is an upper bound of H_{i} with respect to \triangleleft and therefore \hat{V}_{i} is contained in $U^{*}\left(H_{i}\right)$. Additionally, by Claim 3.6.15 again and Lemma 3.6.4, we can see that \hat{V}_{i} is disjoint from $U\left(S_{i}\right)$ and so \hat{V}_{i} is contained in $U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$.

Figure 3.16: A factorizable graph G with an odd-maximal barrier $X=$ $\{b, f, h, i, j, r\}$

Thus, by Claims 3.6.16 and 3.6.17, we have $\hat{V}_{i}=U^{*}\left(H_{i}\right) \backslash U\left(S_{i}\right)$.

Example 3.6.18. The graph in Figure 3.16 is actually isomorphic to the graph in Figure 3.1; recall that the set of vertices $\{b, f, h, i, j, r\}$ is an odd-maximal barrier, X. Its factor-components, the poset $(\mathcal{G}(G), \triangleleft)$, and the generalized canonical partition are indicated in Figures 3.17, 3.18, and 3.19. Figure 3.20 shows that X is indeed the disjoint union of three equivalent classes of the generalized canonical partition; i.e., $X=S_{2} \dot{\cup} S_{5} \dot{\cup} S_{8}$. Additionally, the vertices in the odd components of $G-X$, namely D_{X}, can be also written canonically as the disjoint union of three sets; $D_{X}={ }^{c} U\left(S_{2}\right) \dot{\cup}^{c} U\left(S_{5}\right) \dot{\cup}^{c} U\left(S_{8}\right)$, where ${ }^{c} U\left(S_{2}\right)=U^{*}\left(G_{1}\right) \backslash U^{*}\left(S_{2}\right)$, ${ }^{c} U\left(S_{5}\right)=U^{*}\left(G_{2}\right) \backslash U^{*}\left(S_{5}\right)$, and ${ }^{c} U\left(S_{8}\right)=U^{*}\left(G_{3}\right) \backslash U^{*}\left(S_{8}\right)$.

Remark 3.6.19. If G in Theorem 3.6.11 is elementary, then $k=1$ and $\hat{V}_{1}=$ $V(G)$, which follows by Propositions 3.5.1 and 3.5.15. Therefore, in this case, Theorem 3.6.11 claims that $\mathcal{P}(G)$ is the family of (odd-) maximal barriers; namely,

Figure 3.17: The factor-components of G

Figure 3.18: The Hasse diagram of the poset $(\mathcal{G}(G), \triangleleft)$

Figure 3.19: The generalized canonical partition of G

Figure 3.20: The canonical structure of the odd-maximal barrier $X=$ $\{b, f, h, i, j, r\}$

Theorem 3.6.11 coincides with Theorem 1.3.5. Therefore, Theorem 3.6.11 can be regarded as a generalization of Theorem 1.3.5.

Remark 3.6.20. Let G be a factorizable graph. For an arbitrary vertex $x \in V(G)$, take a maximal barrier of $G-x$, say X. Then, $X \cup\{x\}$ is a maximal barrier of G; namely, for any vertex x there is an odd-maximal barrier that contains x. Therefore, for any $S \in \mathcal{P}(G)$, there exists an odd-maximal barrier that contains S.

Remark 3.6.21. With Király [15], if G is a non-factorizable graph, then $\{A(G)\} \cup$ $\mathcal{P}(G[C(G)])$ are the "atoms" that constitute odd-maximal barriers. For each oddmaximal barrier X, the odd components of $G-X$ are the components of $G[D(G)]$ and the odd components of $G[C(G)]-(X \backslash A(G))$; here $G[C(G)]$ forms a factorizable graph and $X \backslash A(G)$ is an odd-maximal barrier.

Chapter 4

Lovász's Cathedral Theorem

4.1 Introduction

A factorizable graph G, with the edge set $E(G)$, is called saturated if $G+e$ has more perfect matchings than G for any edge $e \notin E(G)$. There is a constructive characterization of the saturated graphs known as the cathedral theorem $[28,30,35,36]$. Counting the number of perfect matchings is one of the most fundamental enumeration problems, which has applications to physical science, and the cathedral theorem is known to be useful for such a counting problem. For a given factorizable graph, we can obtain a saturated graph which possesses the same family of perfect matchings by adding appropriate edges repeatedly. Many matchingtheoretic structural properties are preserved by this procedure. Therefore, we can find several properties on perfect matchings of factorizable graphs using the cathedral theorem, such as relationships between the number of perfect matchings of a given factorizable graph and its structural properties such as its connectivity [30] or the numbers of vertices and edges [14].

The cathedral theorem was originally given by Lovász [28] (see also [30]), and later another proof was given by Szigeti $[35,36]$. Lovász's proof is based on the Gallai-Edmonds structure theorem [30], which is one of the most powerful theorem in matching theory. The Gallai-Edmonds structure theorem tells non-trivial structures only for non-factorizable graphs, because it treats factorizable graphs
as irreducible. Thus, Lovász proved the cathedral theorem by applying the GallaiEdmonds structure theorem to non-factorizable subgraphs of saturated graphs.

Szigeti's proof is based on some results on the optimal ear-decompositions by Frank [9], which is also based on the Gallai-Edmonds structure theorem and is not a "matching-theory-closed" notion, while the cathedral theorem itself is closed.

The cathedral theorem is outlined as follows:

- There is a constructive characterization of the saturated graphs with an operation called the cathedral construction.
- A set of edges of a saturated graph is a perfect matching if and only if it is a disjoint union of perfect matchings of each "component part" of the cathedral construction that creates the saturated graph.
- For each saturated graph, the way to construct it by the cathedral construction uniquely exists.
- There is a relationship between the cathedral construction and the GallaiEdmonds partition.

In Chapter 2, we introduced canonical structure theorems which tells nontrivial structures for general factorizable graphs. Based on these results, we provide yet another proof of the cathedral theorem in this chapter. The features of the new proof are the following: First, it is quite natural and provides new facts as byproducts. The notion of "saturated" is defined by edge-maximality. By considering this edge-maximality over the canonical structures of factorizable graphs, we obtain the new proof in quite a natural way. Therefore, our proof reveals the essential structure that underlies the cathedral theorem, and provides a bit more refined or generalized statements from the point of view of the canonical structure of general factorizable graphs.

Second, it shows that the cathedral theorem can be proved without the GallaiEdmonds structure theorem nor the notion of barriers, since our previous works, as well as the proofs presented in this chapter, are obtained without them. Even
the portion of the statements of the cathedral theorem stating its relationship to the Gallai-Edmonds partition can be obtained without them.

The results in this chapter are also found in papers by the author [16, 22]. The rest of this section is to summarize the succeeding sections in this chapter. In Section 4.2, we show some rather well-known propositions about the GallaiEdmonds partition, which are distinct from the Gallai-Edmonds structure theorem. In Section 4.3, we present an outline of how we give the new proof of the cathedral theorem. In Section 4.4, we further consider the theorems in Chapter 2 and show one of the new theorems, which later turns out to provide a generalized version of the part of the cathedral theorem regarding the Gallai-Edmonds partition. In Section 4.5, we complete the new proof of the cathedral theorem. Finally, in Section 4.6 we conclude this chapter.

4.2 The Gallai-Edmonds Partition

In this section, we present a proposition which shows another property of the Gallai-Edmonds partition that is different from the Gallai-Edmonds structure theorem. This proposition is a well-known fact that connects the Gallai-Edmonds structure theorem and Edmonds' maximum matching algorithm, and we can find it in $[1,23]$. However, this proposition can be proved in an elementary way without using them, nor the notion of barriers. In the following we present it with a proof to confirm it. Note that Proposition 4.2.1 itself is NOT the Gallai-Edmonds structure theorem.

Proposition 4.2.1. Let G be a graph, M be a maximum matching of G, and S be the set of vertices that are exposed by M. Then, the following hold:
(i) A vertex u is in $D(G)$ if and only if there exists $v \in S$ such that there is an M-balanced path from u to v.
(ii) A vertex u is in $A(G)$ if and only if there is no M-balanced path from u to any vertex of S, while there exists $v \in S$ such that there is an M-exposed path between u and v.
(iii) A vertex u is in $C(G)$ if and only if for any $v \in S$ there is neither an M-balanced path from u to v nor an M-exposed path between u and v.

Proof. For the necessity part of (i), let P be the M-balanced path from u to v. Then, $M \triangle E(P)$ is a maximum matching of G that exposes u. Thus, $u \in D(G)$.

Now we move on to the sufficiency part of (i). If $u \in D(G) \cap S$, the trivial M balanced path $(\{u\}, \emptyset)$ satisfies the property. Otherwise, that is, if $u \in D(G) \backslash S$, by the definition of $D(G)$ there is a maximum matching M^{\prime} of G that exposes u. Then, $G . M \triangle M^{\prime}$ has a connected component which is an M-balanced path from u to some vertex in S. Hence, we are done for (i).

For (ii), we first prove the necessity part. Let P be the M-exposed path between u and v, and $w \in V(P)$ be such that $u w \in E(P)$. Then, $P-u$ is an M-balanced path from w to v, which means $w \in D(G)$ by (i). Then, we have $u \in A(G)$, since the first part of the condition on P yields $u \notin D(G)$ by (i).

Now we move on to the sufficiency part of (ii). Note that the first part of the conclusion follows by (i). By the definition of $A(G)$, there exists $w \in D(G)$ such that $w u \in E(G)$. By (i), there is an M-balanced path Q from w to a vertex $v \in S$. If $u \in V(Q)$, then since $u \notin D(G)$, the subpath of Q from v to u is an M-exposed path between v and u by (i). Thus, the claim follows. Otherwise, that is, if $u \notin V(Q)$, then $Q+w u$ forms an M-exposed path between v and u. Therefore, again the claim follows. Thus, we are done for (ii).

Since we obtain (i) and (ii), consequently (iii) follows.
The next proposition is also known (see [1]) and is easily obtained from Proposition 4.2.1.

Proposition 4.2.2. Let G be a factorizable graph and M be a perfect matching of G. Then, for any $x \in V(G)$, the following hold:
(i) A vertex u is in $D(G-x)$ if and only if there is an M-saturated path between x and u.
(ii) A vertex u is in $A(G-x) \cup\{x\}$ if and only if there is no M-saturated path between x and u, while there is an M-balanced path from x to u.
(iii) A vertex u is in $C(G-x)$ if and only if there is neither an M-saturated path between u and x nor an M-balanced path from x to u.

Proof. Let $x^{\prime} \in V(G)$ be such that $x x^{\prime} \in M$. Let $G^{\prime}:=G-x$ and $M^{\prime}:=M \backslash\left\{x x^{\prime}\right\}$. Note that apparently
M^{\prime} is a maximum matching of G^{\prime}, exposing only x^{\prime}.
By Propositions 4.2.1, $u \in D\left(G^{\prime}\right)$ if and only if there is an M^{\prime}-balanced path from u to x^{\prime}. Additionally, the following apparently holds: there is an M^{\prime}-balanced path from u to x^{\prime} in G^{\prime} if and only if there is an M-saturated path between u and x in G. Thus, we obtain (i). The other claims, (ii) and (iii), also follow by similar arguments.

Proposition 4.2.2 associates factorizable graphs with the Gallai-Edmonds partition, and it will be used later in the proof of Theorem 4.4.1. Hence it will contribute to the new proof of the cathedral theorem.

4.3 Outline of the New Proof

Here we give an outline of how we give a new proof of the cathedral theorem together with backgrounds of the theorem. In Chapter 2, we introduced a new canonical decomposition of factorizable graphs. The key points of it are as follows.
(a) For a factorizable graph G, a partial order \triangleleft can be defined on the factorconnected components $\mathcal{G}(G)$ (Theorem 2.3.29).
(b) An equivalence relation \sim_{G} based on factor-connected components can be defined on $V(G)$ (Theorem 2.4.3). The equivalence classes by \sim_{G} can be regarded as a generalization of Kotzig's canonical partition [24-26].
(c) These two notions \triangleleft and \sim_{G} are related each other in the sense that for $H \in \mathcal{G}(G)$ a relationship between H and its strict upper bounds in the poset $(\mathcal{G}(G), \triangleleft)$ can be described using \sim_{G} (Theorem 2.5.2).

In Section 4.4, we begin to present new results in this paper. We further consider the structures given by (a) (b) (c) and show a relationship between the structures and the Gallai-Edmonds partition:

If the poset $(\mathcal{G}(G), \triangleleft)$ of a factorizable graph G has the minimum element G_{0}, then $V\left(G_{0}\right)=V(G) \backslash \bigcup_{x \in V(G)} C(G-x)$ (Theorem 4.4.1).

This theorem later plays a crucial role in the new proof of the cathedral theorem.
In Section 4.5, we consider saturated graphs and present a new proof of the cathedral theorem. Given a saturated elementary graph and a family of saturated graphs satisfying a certain condition, we can define an operation, the cathedral construction, that creates a new graph obtained from the given graphs by adding new edges. Here the given graphs are called the foundation and the family of towers, respectively. We consider the canonical decomposition in Chapter 2 for saturated graphs and obtain the following:

If G is a saturated graph, then the poset $(\mathcal{G}(G), \triangleleft)$ has the minimum element G_{0} (Lemma 4.5.7).

Moreover, G_{0} and all connected components of $G-V\left(G_{0}\right)$ are saturated and they are well-defined as a foundation and towers (Lemmas 4.5.9 and 4.5.11). We show that G is the graph obtained from them by the cathedral construction (Theorem 4.5.3).

Conversely, if a graph G obtained by the cathedral construction from a foundation G_{0} and some towers is saturated, and G_{0} is the minimum element of the poset $(\mathcal{G}(G), \triangleleft)$ (Theorem 4.5.4).

By Theorems 4.5.3 and 4.5.4, the constructive characterization of the saturated graphs - the most important part of the cathedral theorem - is obtained. Additionally, the other parts of the cathedral theorem follow quite smoothly by Theorem 4.4.1 and the natures of the canonical decomposition in Chapter 2.

4.4 Factorizable Graphs through the Gallai-Edmonds Partition

In this section, we present a new result on a relationship between the GallaiEdmonds partition and the canonical structures of factorizable graphs in Chapter 2. As we later see in Section 4.5, Theorem 4.4.1 can be regarded as a generalization of a part of the statements of the cathedral theorem.

Theorem 4.4.1. Let G be a factorizable graph such that the poset $(\mathcal{G}(G), \triangleleft)$ has the minimum element G_{0}. Then, $V\left(G_{0}\right)$ is exactly the set of vertices that is disjoint from $C(G-x)$ for any $x \in V(G)$; that is, $V\left(G_{0}\right)=V(G) \backslash \bigcup_{x \in V(G)} C(G-x)$.

To show Theorem 4.4.1, we give some lemmas.
In the following lemma, we present a structure of factorizable graphs, combining up some results in previous Chapters.

Lemma 4.4.2. Let G be a factorizable graph, and M be a perfect matching of G. Let $H \in \mathcal{G}(G), S \in \mathcal{P}_{G}(H)$, and $T \in \mathcal{P}_{G}(H) \backslash\{S\}$.
(i) For any $u \in U^{*}(S)$, there is an M-balanced path from u to some vertex $v \in S$ whose vertices except v are in $U(S)$.
(ii) For any $u \in S$ and $v \in U^{*}(T)$, there is an M-saturated path between u and v whose vertices are all contained in $U^{*}(H) \backslash U(S)$.
(iii) For any $u \in S$ and $v \in U(S)$, there are neither M-saturated paths between u and v nor M-balanced paths from u to v.
(iv) For any $u, v \in S$, there is no M-saturated path between u and v, while there is an M-balanced path from u to v.

Proof. The statements (i), (ii), and (iii) are stated in Lemma 3.6.2, Lemma 3.6.6, Lemma 3.6.4, respectively. The statement (iv) is immediately obtained by combining Fact 2.4.2 and Proposition 2.3.4.

By Proposition 2.3.4 and Lemma 4.4.2, the next lemma follows.

Lemma 4.4.3. Let G be a factorizable graph, and M be a perfect matching of G. Let $H \in \mathcal{G}(G)$ and $S \in \mathcal{P}_{G}(H)$. Then, the following hold:
(i) For any $u \in U(S)$ and $v \in U^{*}(H) \backslash U^{*}(S)$, there is an M-saturated path between u and v.
(ii) For any $u \in U(S)$ and $v \in S$, there is no M-saturated path between u and v; however, there is an M-balanced path from u to v.
(iii) For any $w \in S$ and $v \in U^{*}(H) \backslash U^{*}(S)$, there is an M-saturated path between w and v.
(iv) For any $w, v \in S$, there is no M-saturated path between w and v; however, there is an M-balanced path from w and v.
(v) For any $w \in S$ and $v \in U(S)$, there is neither an M-saturated path between w and v nor an M-balanced path from w to v.

Proof. The statements (iii), (iv), and (v) are immediate from (ii), (iv), and (iii) of Lemma 4.4.2, respectively.

For (i), let P_{1} be an M-balanced path from u to some vertex $x \in S$ such that $V\left(P_{1}\right) \backslash\{x\} \subseteq U(S)$, given by (i) of Lemma 4.4.2. By (ii) of Lemma 4.4.2, there is an M-saturated path P_{2} between x and v such that $V\left(P_{2}\right) \subseteq U^{*}(H) \backslash U(S)$. Hence, the path obtained by adding P_{1} and P_{2} forms an M-saturated path between u and v, and (i) follows.

The first and the latter halves of (ii) are restatements of (iii) and (i) of Lemma 4.4.2, respectively.

By comparing Proposition 4.2.2 and Lemma 4.4.3, the next lemma follows.

Lemma 4.4.4. Let G be a factorizable graph such that the poset $(\mathcal{G}(G), \triangleleft)$ has the minimum element G_{0}. Let $S \in \mathcal{P}_{G}\left(G_{0}\right)$.
(i) If $x \in U(S)$, then $D(G-x) \supseteq U^{*}\left(G_{0}\right) \backslash U^{*}(S), A(G-x) \cup\{x\} \supseteq S$, and $C(G-x) \subseteq U(S)$.
(ii) If $x \in S$, then $D(G-x)=U^{*}\left(G_{0}\right) \backslash U^{*}(S), A(G-x) \cup\{x\}=S$, and $C(G-x)=U(S)$.

Proof. The claims are all obtained by comparing the reachabilities of alternating paths regarding Proposition 4.2.2 and Lemma 4.4.3. Let $x \in U(S)$. By Proposition 4.2.2 (i) and Lemma 4.4.3 (i), we have $D(G-x) \supseteq U^{*}\left(G_{0}\right) \backslash U^{*}(S)$. It also follows that $A(G-x) \cup\{x\} \supseteq S$ by a similar argument, comparing Proposition 4.2.2 (ii) and Lemma 4.4.3 (ii). Therefore, since $V(G)=D(G) \dot{\cup} A(G) \dot{U} C(G)=\left(U^{*}\left(G_{0}\right) \backslash\right.$ $\left.U^{*}(S)\right) \dot{\cup} S \dot{\cup} U(S)$, we have $C(G-x) \subseteq U(S)$, and we are done for (i). The statement (ii) also follows by similar arguments with Proposition 4.2.2 and Lemma 4.4.3 (iii) (iv) (v).

Now we can prove Theorem 4.4.1 using Lemma 4.4.4.

Proof of Theorem 4.4.1.

Claim 4.4.5. For any $x \in V(G), V\left(G_{0}\right) \cap C(G-x)=\emptyset$.

Proof. Let $u \in V\left(G_{0}\right)$ and let $S \in \mathcal{P}_{G}\left(G_{0}\right)$ be such that $u \in S$. By Lemma 4.4.4, if $x \in U^{*}(S)$ then $u \in A(G-x)$, and if $x \in U^{*}\left(G_{0}\right) \backslash U^{*}(S)$ then $u \in D(G-x)$. Thus, anyway we have $u \notin C(G-x)$, and the claim follows.

Claim 4.4.6. For any $u \in V(G) \backslash V\left(G_{0}\right)$, there exists $x \in V(G)$ such that $u \in$ $C(G-x)$.

Proof. Let $u \in V(G) \backslash V\left(G_{0}\right)$ and let $S \in \mathcal{P}_{G}\left(G_{0}\right)$ be such that $u \in U(S)$. Then, for any $x \in S$, we have $u \in C(G-x)$ by Lemma 4.4.4. Thus, we have the claim.

By Claims 4.4.5 and 4.4.6, we obtain the theorem.
We will obtain in Section 4.5 that if a graph is saturated then the poset by \triangleleft has the minimum element. Thus, the above theorem, Theorem 4.4.1, will turn out to be regarded as a generalized version of the part of the cathedral theorem related to the Gallai-Edmonds partition.

Figure 4.1: A saturated graph \tilde{G}

4.5 Another Proof of the Cathedral Theorem

4.5.1 The Cathedral Theorem

In this section, we give yet another proof as a consequence of the structures given in Chapter 2. For convenience, we treat empty graphs as factorizable and saturated.

Definition 4.5.1 (The Cathedral Construction). Let G_{0} be a saturated elementary graph and let $\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ be a family of saturated graphs, some of which might be empty. For each $S \in \mathcal{P}\left(G_{0}\right)$, join every vertex in S and every vertex of G_{S}. We call this operation the cathedral construction. Here G_{0} and $\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ are respectively called the foundation and the family of towers.

Figures 4.1, 4.2, 4.3 show examples of the cathedral construction. In Figure 4.2, the graph G_{0} is an elementary saturated graph with the canonical partition $\mathcal{P}\left(G_{0}\right)=\{S, T, R\}$, and the graphs G_{S}, G_{T}, G_{R} are saturated graphs such that G_{S} and G_{R} are respectively elementary and non-elementary while G_{T} is an empty graph. If we conduct the cathedral construction with the foundation G_{0} and the family of towers $\mathcal{T}=\left\{G_{S}, G_{T}, G_{R}\right\}$, we obtain the saturated graph \tilde{G}

Figure 4.3: The foundation and the towers that create G_{R}

Figure 4.2: The foundation and the towers that create \tilde{G}

Figure 4.4: The factor-connected components of
Figure 4.5: The Hasse diagram of $(\mathcal{G}(\tilde{G}), \triangleleft)$

Figure 4.6: The generalized canonical partition of \tilde{G}
in Figure 4.1. Moreover, Figure 4.3 shows that if we conduct the cathedral construction with the foundation H_{0} with $\mathcal{P}\left(H_{0}\right)=\{P, Q\}$ and the family of towers $\left\{H_{P}, H_{Q}\right\}$, where H_{P} is an elementary saturated graph and H_{Q} is an empty graph, then we obtain the saturated graph G_{R}. (Therefore, in other words, the graph \tilde{G} is constructed by a repetition of the cathedral construction using the elementary saturated graphs H_{0}, H_{P}, G_{0}, and G_{S} as fundamental building blocks.)

Theorem 4.5.2 (The Cathedral Theorem $[28,30]$). A factorizable graph G is saturated if and only if it is constructed from smaller saturated graphs by the cathedral construction. In other words, if a factorizable graph G is saturated, then there is a subgraph G_{0} and a family of subgraphs \mathcal{T} of G which are well-defined as a foundation and a family of towers, and G is the graph constructed from G_{0} and \mathcal{T} by the cathedral construction; conversely, if G is a graph obtained from a foundation and towers by the cathedral construction, then G is saturated.

Additionally, if G is a saturated graph obtained from a foundation G_{0} and a
family of towers $\mathcal{T}=\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ by the cathedral construction, then,
(i) $e \in E(G)$ is allowed if and only if it is an allowed edge of G_{0} or G_{S} for some $S \in \mathcal{P}\left(G_{0}\right)$,
(ii) such G_{0} uniquely exists; that is, if G can be obtained from a foundation G_{0}^{\prime} and a family of towers \mathcal{T}^{\prime} by the cathedral construction, then $V\left(G_{0}\right)=V\left(G_{0}^{\prime}\right)$ holds, and
(iii) $V\left(G_{0}\right)$ is exactly the set of vertices that is disjoint from $C(G-x)$ for any $x \in V(G)$.

In the cathedral construction, each tower is saturated. Therefore, the first sentence of Theorem 4.5.2 reveals a nested or inductive structure and gives a constructive characterization of the saturated graphs by the cathedral construction. In this characterization, the elementary saturated graphs are the fundamental building blocks. Theorem 4.5.2 (i) tells that a set of edges in a saturated graph G is a perfect matching if and only if it is a disjoint union of perfect matchings of the foundation and the towers that create G. Theorem 4.5.2 (ii) tells that for each saturated graph, the way to construct it uniquely exists, and (iii) shows a relationship between the cathedral construction and the Gallai-Edmonds partition.

In the new proof, the following two theorems, Theorems 4.5.3 and 4.5.4, together with Theorem 4.4.1, will serve as nuclei, referring to the special features of the poset and the canonical partition for saturated graphs.

Theorem 4.5.3. If a factorizable graph G is saturated, then the poset $(\mathcal{G}(G), \triangleleft)$ has the minimum element, say G_{0}, and it satisfies $\mathcal{P}_{G}\left(G_{0}\right)=\mathcal{P}\left(G_{0}\right)=: \mathcal{P}_{0}$. Additionally, for each $S \in \mathcal{P}_{0}$, the connected component G_{S} of $G-V\left(G_{0}\right)$ such that $N_{G}\left(G_{S}\right) \subseteq S$ exists uniquely or is an empty graph, and G is the graph obtained from the foundation G_{0} and the family of towers $\mathcal{T}:=\left\{G_{S}\right\}_{S \in \mathcal{P}_{0}}$ by the cathedral construction.

Theorem 4.5.4. Let G_{0} be a saturated elementary graph, and $\mathcal{T}:=\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ be a family of saturated graphs. Let G be the graph obtained from the foundation
G_{0} and the family of towers \mathcal{T} by the cathedral construction. Then, G is saturated, G_{0} forms a factor-connected component of G, that is, $G\left[V\left(G_{0}\right)\right] \in \mathcal{G}(G)$, and it is the minimum element of the poset $(\mathcal{G}(G), \triangleleft)$.

In the remaining part of this chapter, we are going to prove Theorem 4.5.3 and Theorem 4.5.4 and then obtain Theorem 4.5.2. With Theorem 4.5.3 and Theorem 4.5.4, we obtain the constructive characterization of the saturated graphs. We also obtain a new characterization of foundations and families of towers, which gives a clear comprehension of saturated graphs by the canonical structures of factorizable graphs in Chapter 2. Thanks to this new characterization, the remaining statements of the cathedral theorem will be obtained quite smoothly.

4.5.2 Proof of Theorem 4.5.3

Here we show some lemmas etc. to show that any saturated graph is constructed by the cathedral construction and prove Theorem 4.5.3. Hereafter note the following properties, which will be used frequently, sometimes without explicitly mentioning it.

Property 4.5.5. Let G be a factorizable graph, M be a perfect matching, and $x, y \in V(G)$ be such that $x y \notin E(G)$. Then, the following properties are equivalent:
(i) The complement edge xy creates a new perfect matching in $G+x y$.
(ii) The edge $x y$ is allowed in $G+x y$.
(iii) There is an M-saturated path between x and y in G.

Property 4.5.6. Let G be a factorizable graph and M be a perfect matching of G. Let $X \subseteq V(G)$ be a separating set and P be an M-saturated path. Then,
(i) each connected component of $P[X]$ is an M-saturated path, and
(ii) any connected component of $P-E(G[X])$ that does not contain any end vertices of P is an M-ear relative to X.

Lemma 4.5.7. If a factorizable graph G is saturated, then the poset $(\mathcal{G}(G), \triangleleft)$ has the minimum element.

Proof. Suppose the claim fails, that is, the poset has distinct minimal elements $G_{1}, G_{2} \in \mathcal{G}(G)$. Then, by Theorem 2.5.9, there exist possibly identical complement edges e, f joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ such that $\mathcal{G}(G+e+f)=\mathcal{G}(G)$. This means that adding e or f to G does not create any new perfect matchings, which contradicts G being saturated.

In order to obtain Theorem 4.5.3, by letting G be a saturated graph, we show in the following that the minimum element G_{0} of the poset by \triangleleft and the connected components of $G-V\left(G_{0}\right)$ are well-defined as a foundation and towers of the cathedral construction and G is the graph obtained by the cathedral construction with them.

The next fact is easy to see from Fact 2.4.2 and Property 4.5.5. We will use this fact in the proofs of Lemma 4.5.9 and Lemma 4.5.11 later.

Fact 4.5.8. Let G be a saturated graph, and let $H \in \mathcal{G}(G)$. Then, for any $u, v \in$ $V(H)$ with $u \sim_{G} v, u v \in E(G)$.

Next, we give the following lemma, which will contribute to the proofs of both of Theorems 4.5.3 and 4.5.4, actually.

Lemma 4.5.9. Let G be a saturated graph, and let $G_{0} \in \mathcal{G}(G)$. Then, $\mathcal{P}_{G}\left(G_{0}\right)=$ $\mathcal{P}\left(G_{0}\right)$.

Proof. Since we know by Fact 2.4.4 that $\mathcal{P}_{G}\left(G_{0}\right)$ is a refinement of $\mathcal{P}\left(G_{0}\right)$, it suffices to prove that $\mathcal{P}\left(G_{0}\right)$ is a refinement of $\mathcal{P}_{G}\left(G_{0}\right)$, that is, if $u \sim_{G_{0}} v$, then $u \sim_{G} v$. We prove the contrapositive of this.

Let $u, v \in V\left(G_{0}\right)$ with $u \not \nsim G^{v}$. Let M be a perfect matching of G. By Fact 2.4.2, there are M-saturated paths between u and v; let P be a shortest one. Suppose $E(P) \backslash E\left(G_{0}\right) \neq \emptyset$, and let Q be one of the connected components of $P-E\left(G_{0}\right)$, with end vertices x and y. Since Q is an M-ear relative to G_{0} by Property 4.5.6, $x \sim_{G} y$ follows by Lemma 2.5.1. Therefore, $x y \in E(G)$ by

Fact 4.5.8, which means we can get a shorter M-saturated path between u and v by replacing Q by $x y$ on P, a contradiction. Thus, we have $E(P) \backslash E\left(G_{0}\right)=\emptyset$; that is, P is a path of G_{0}. Accordingly, $u \not \chi_{G_{0}} v$ by Fact 2.4.2.

As we mention in Fact 2.4.4, for a factorizable graph G and $H \in \mathcal{G}(G), \mathcal{P}_{G}(H)$ is generally a refinement of $\mathcal{P}(H)$. However, the above lemma states that if G is a saturated graph then they coincide. Therefore this lemma associates the generalized canonical partition with the cathedral theorem.

Next, note the following fact, which we present to prove Lemma 4.5.11:

Fact 4.5.10. If a factorizable graph G is saturated, G is connected.

Proof. Suppose the claim fails, that is, G has two distinct connected components, K and L. Let $u \in V(K)$ and $v \in V(L)$, and let M be a perfect matching of G. By Property 4.5.5, there is an M-saturated path between u and v, contradicting the hypothesis that K and L are distinct.

Before reading Lemma 4.5.11, note that if a factorizable graph G has the minimum element G_{0} for the poset $(\mathcal{G}(G), \triangleleft)$, then for each connected component K of $G-V\left(G_{0}\right), N_{G}(K) \subseteq V\left(G_{0}\right)$ holds.

Lemma 4.5.11. Let G be a saturated graph, and G_{0} be the minimum element of the poset $(\mathcal{G}(G), \triangleleft)$. Then, G_{0} and the connected components of $G-V\left(G_{0}\right)$ are each saturated. Additionally, for each $S \in \mathcal{P}_{G}\left(G_{0}\right)$, a connected component K of $G-V\left(G_{0}\right)$ such that $N_{G}(K) \subseteq S$ exists uniquely or does not exist.

Proof. We first prove that G_{0} is saturated. Let $e=x y$ be a complement edge of G_{0}. By the contrapositive of Fact 4.5.8, $x \not \chi_{G} y$, which means $x \not \chi_{G_{0}} y$ by Lemma 4.5.9. Therefore, by Fact 2.4.2 and Property 4.5.5, the complement edge e creates a new perfect matching if it is added to G_{0}. Hence, G_{0} is saturated.

Now we move on to the remaining claims. Take $S \in \mathcal{P}_{G}\left(G_{0}\right)$ arbitrarily, and let K_{1}, \ldots, K_{l} be the connected components of $G-V\left(G_{0}\right)$ which satisfy $N_{G}\left(K_{i}\right) \subseteq S$ for each $i=1, \ldots, l$. Let $\hat{K}:=G\left[V\left(K_{1}\right) \dot{\cup} \cdots \dot{\cup} V\left(K_{l}\right)\right]$.

We are going to obtain the remaining claims by showing that \hat{K} is saturated. Now let $e=x y$ be a complement edge of \hat{K}, i.e., $x, y \in V(\hat{K})$ and $x y \notin E(\hat{K})$. Let M be a perfect matching of G. With Property 4.5.5, in order to show that \hat{K} is saturated it suffices to prove that there is an M-saturated path between x and y in \hat{K}. Since G is saturated, there is an M-saturated path P between x and y in G by Property 4.5.5.

Obviously by the definition, $N_{G}(\hat{K}) \subseteq S$; on the other hand, $V(G) \backslash V(\hat{K})$ is of course a separating set. Therefore, if $E(P) \backslash E(\hat{K}) \neq \emptyset$, each connected component of $P-V(\hat{K})$ is an M-saturated path, both of whose end vertices are contained in S, by Property 4.5.6. This contradicts Fact 2.4.2. Hence, $E(P) \subseteq E(\hat{K})$, which means \hat{K} is itself saturated. Thus, by Fact 4.5.10, it follows \hat{K} is connected, which is equivalent to $l=1$. This completes the proof.

By Lemma 4.5.9 and Lemma 4.5.11, it follows that G_{0} is well-defined as a foundation and the connected components of $G-V\left(G_{0}\right)$ are well-defined as towers (of course if indices out of $\mathcal{P}\left(G_{0}\right)$ are assigned to them appropriately).

Lemma 4.5.12. Let G be a saturated graph, and G_{0} be the minimum element of the poset $(\mathcal{G}(G), \triangleleft)$, and let K be a connected component of $G-V\left(G_{0}\right)$, whose neighbors are in $S \in \mathcal{P}_{G}\left(G_{0}\right)$. Then, for any $u \in V(K)$ and for any $v \in S$, $u v \in E(G)$.

Proof. Suppose the claim fails, that is, there are $u \in V(K)$ and $v \in S$ such that $u v \notin E(G)$. Then, by Property 4.5.5, there is an M-saturated path between u and v, where M is an arbitrary perfect matching of G. By the definitions, $V(K) \subseteq U(S)$; therefore, $u \in U(S)$. Hence, this contradicts (iii) of Lemma 4.4.2, and we have the claim.

Now we are ready to prove Theorem 4.5.3:
Proof of Theorem 4.5.3. The first sentence of Theorem 4.5.3 is immediate from Lemma 4.5.7 and Lemma 4.5.9. The former of the second sentence is also immediate by Lemma 4.5.11.

For the remaining claim, first note that by Lemma 4.5.11, G_{0} and any G_{S} are saturated. Therefore, G_{0} and $\mathcal{T}=\left\{G_{S}\right\}_{S \in \mathcal{P}_{0}}$ are well-defined as a foundation and a family of towers of the cathedral construction.

By the definition, for each $S \in \mathcal{P}_{0}$, it follows that $N_{G}\left(G_{S}\right) \subseteq S$. Additionally by Lemma 4.5.12 every vertex of $V\left(G_{S}\right)$ and every vertex of S are joined. Therefore, it follows that G has a saturated subgraph G^{\prime} obtained from G_{0} and \mathcal{T} by the cathedral construction. Moreover, by Theorem 2.5.2, for each connected component K of $G-V\left(G_{0}\right)$ there exists $S \in \mathcal{P}_{0}$ such that $N(K) \subseteq S$; in other words, K denotes the same subgraph of G as G_{S}. Hence, $V(G)=V\left(G_{0}\right) \cup \bigcup_{S \in \mathcal{P}_{0}} V\left(G_{S}\right)$ holds and actually G^{\prime} is G. Thus, G is the graph obtained from G_{0} and \mathcal{T} by the cathedral construction.

4.5.3 Proof of Theorem 4.5.4

Next we consider the graphs obtained by the cathedral construction and show Theorem 4.5.4, which states that the foundations of them are the minimum elements of the posets by \triangleleft.

Since the necessity of the first claim of Theorem 4.5.2, the next proposition, is not so hard (see [30]), we here present it without a proof.

Proposition 4.5.13 (Lovász $[28,30]$). Let G_{0} be a saturated elementary graph, and $\mathcal{T}=\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ be a family of saturated graphs. Then, the graph G obtained from the foundation G_{0} and the family of towers \mathcal{T} by the cathedral construction is saturated.

We give one more lemma:

Lemma 4.5.14. Let G be a saturated graph, obtained from the foundation G_{0} and the family of towers $\left\{G_{S}\right\}_{S \in \mathcal{P}\left(G_{0}\right)}$ by the cathedral construction. Then, $G^{\prime}:=$ $G / V\left(G_{0}\right)$ is factor-critical.

Proof. Let M^{S} be a perfect matching of G_{S} for each $S \in \mathcal{P}\left(G_{0}\right)$, and let $M:=$ $\bigcup_{S \in \mathcal{P}\left(G_{0}\right)} M^{S}$. Then, M forms a near-perfect matching of G^{\prime}, exposing only the
contracted vertex g_{0} corresponding to $V\left(G_{0}\right)$. Take $u \in V\left(G^{\prime}\right) \backslash\left\{g_{0}\right\}$ arbitrarily and let u^{\prime} be the vertex such that $u u^{\prime} \in M$. Since $u u^{\prime} \in M \cap E\left(G^{\prime}\right)$ and $u^{\prime} g_{0} \in$ $E\left(G^{\prime}\right) \backslash M$, there is an M-balanced path from u to g_{0} in G^{\prime}, namely, the one with edges $\left\{u u^{\prime}, u^{\prime} g_{0}\right\}$. Thus, by Property 2.2.1, G^{\prime} is factor-critical.

Now we shall prove Theorem 4.5.4:

Proof of Theorem 4.5.4. By Proposition 4.5.13, G is saturated. Since we have Lemma 4.5.14, in order to complete the proof, it suffices to prove $G_{0} \in \mathcal{G}(G)$. Let p be the number of non-empty graphs in \mathcal{T}. We proceed by induction on p. If $p=0$, the claim obviously follows. Let $p>0$ and suppose the claim is true for $p-1$. Take a non-empty graph G_{S} from \mathcal{T}, and let $G^{\prime}:=G-V\left(G_{S}\right)$. Then, G^{\prime} is the graph obtained by the cathedral construction with G_{0} and $\mathcal{T} \backslash\left\{G_{S}\right\} \cup\left\{H_{S}\right\}$, where H_{S} is an empty graph. Therefore, Proposition 4.5.13 yields that G^{\prime} is saturated, and the induction hypothesis yields that $G_{0} \in \mathcal{G}\left(G^{\prime}\right)$ and G_{0} is the minimum element of the poset $\left(\mathcal{G}\left(G^{\prime}\right), \triangleleft\right)$. Thus, by Lemma 4.5.9,

Claim 4.5.15. $\mathcal{P}_{G^{\prime}}\left(G_{0}\right)=\mathcal{P}\left(G_{0}\right)$.
Let M^{\prime} be a perfect matching of G^{\prime} and M^{S} be a perfect matching of G_{S}, and construct a perfect matching $M:=M^{\prime} \cup M^{S}$ of G.

Claim 4.5.16. No edge of $E_{G}\left[S, V\left(G_{S}\right)\right]$ is allowed in G.

Proof. Suppose the claim fails, that is, an edge $x y \in E_{G}\left[S, V\left(G_{S}\right)\right]$ is allowed in G. Then, there is an M-saturated path Q between x and y by Property 2.2.7, and $Q\left[V\left(G^{\prime}\right)\right]$ is an M-saturated path by Property 4.5.6. Moreover, since $N_{G}\left(G_{S}\right) \cap$ $V\left(G^{\prime}\right) \subseteq S$, it follows that $Q\left[V\left(G^{\prime}\right)\right]$ is an M-saturated path of G^{\prime} between two vertices in S. With Fact 2.4 .2 this is a contradiction, because $S \in \mathcal{P}_{G^{\prime}}\left(G_{0}\right)$ by Claim 4.5.15. Hence, we have the claim.

By Claim 4.5.16, it follows that a set of edges is a perfect matching of G if and only if it is a disjoint union of a perfect matching of G^{\prime} and G_{S}. Thus, G_{0} forms a factor-connected component of G, and we are done.

4.5.4 Proof of Theorem 4.5.2 and an Example

Now we can prove the cathedral theorem, combining Theorems 4.5.3, 4.5.4, and 4.4.1:

Proof of Theorem 4.5.2. By Proposition 4.5.13 and Theorem 4.5.3, the first claim of Theorem 4.5.2 is proved. The statement (i) is by Theorem 4.5.4, since it states that $G_{0} \in \mathcal{G}(G)$. The statement (ii) is also by Theorem 4.5.4, since the poset $(\mathcal{G}(G), \triangleleft)$ is a canonical notion. The statement (iii) is by combining Theorem 4.5.4 and Theorem 4.4.1.

Example 4.5.17. The graph \tilde{G} in Figure 4.1 consists of four factor-connected components, say C_{1}, \ldots, C_{4} in Figure 4.4, and Figure 4.5 shows the Hasse diagram of $(\mathcal{G}(\tilde{G}), \triangleleft)$, which has the minimum element C_{1}, as stated in Lemma 4.5.7. Figure 4.6 indicates the generalized canonical partition of \tilde{G} :

$$
\mathcal{P}(\tilde{G})=\{\{p\},\{q, r\},\{s\},\{t\},\{u\},\{v\},\{w\},\{x\},\{y\}\} .
$$

Here we have $\mathcal{P}_{\tilde{G}}\left(C_{i}\right)=\mathcal{P}\left(C_{i}\right)$ for each $i=1, \ldots, 4$, as stated in Lemma 4.5.9. From these two figures we see examples for other statements on the saturated graphs in this section.

4.6 Concluding Remarks

Finally, we give some remarks.
Remark 4.6.1. Theorems 4.5 .3 and 4.5 .4 can be regarded as a refinement, and Theorem 4.4.1 as a generalization of Theorem 4.5.2, from the point of view of the canonical structures of Chapter 2.

Remark 4.6.2. The poset $(\mathcal{G}(G), \triangleleft)$ and $\mathcal{P}(G)$ can be computed in $O(|V(G)| \cdot$ $|E(G)|$) time (Theorem 2.7.6), where G is any factorizable graph. Therefore, given a saturated graph, we can also find how it is constructed by iterating the cathedral construction in the above time by computing the associated poset and the generalized canonical partition.

Remark 4.6.3. The canonical structures of general factorizable graphs in Chapter 2 can be obtained without the Gallai-Edmonds structure theorem nor the notion of barriers. The other properties we cite to prove the cathedral theorem are also obtained without them. Therefore, our proof shows that the cathedral theorem holds without assuming either of them.

With the whole proof, we can conclude that the structures in Chapter 2 is what essentially underlie the cathedral theorem. We see how a factorizable graph leads to a saturated graph having the same family of perfect matchings by sequentially adding complement edges. Our proof is quite a natural one because the cathedral theorem - a characterization of a class of graphs defined by a kind of edge-maximality "saturated" - is derived as a consequence of considering edgemaximality over the underlying general structure. We hope yet more would be found on the field of counting the number of prefect matchings with the results in this thesis.

Chapter 5

Computing the Cathedral Structure More Efficiently

5.1 Preliminaries

Hereafter we denote by n and m the number of vertices and edges (resp. arcs) of an input graph (resp. digraph), respectively. Note that factorizable graphs satisfy $m=\Omega(n)$ and accordingly $O(n+m)=O(m)$.

In Section 2.7, we show that the partial order \triangleleft and the generalized canonical partition can be computed in $O(n m)$ time if an input graph is factorizable. The algorithm is composed of three stages, each of which is $O(n)$ times iteration of $O(m)$ time procedure of growing alternating trees. It first computes the factorcomponents, then computes \triangleleft and $\mathcal{P}(G)$ respectively.

With the results in this thesis including Chapter 3, we present another $O(n m)$ time algorithm to compute them. The upper bound of its time complexity is the same as the known one, however the factor-components, \triangleleft, and $\mathcal{P}(G)$ are here computed simultaneously. Thus, it has some possibility of exhibiting a bit more efficiency.

Theorem 5.1.1 (Micali \& Vazirani [31], Vazirani [38]). A maximum matching of a graph can be computed in $O(\sqrt{n} m)$ time.

Theorem 5.1.2 (Edmonds [7], Tarjan [37], Gabow \& Tarjan [11]). Let G be a graph with $m=\Omega(n)$ and suppose we are given a perfect matching of G. Then, $D(G), A(G)$, and $C(G)$ can be computed in $O(m)$ time.

Theorem 5.1.3 (Dulmage \& Mendelsohn [4-6,32]). For any bipartite factorizable graph G, the Dulmage-Mendelsohn decomposition of G can be computed in $O(m)$ time.

Proposition 5.1.4 (folklore, see [32]). Let D be a digraph, and \mathcal{D} be the set of strongly-connected components of D. For $D_{1}, D_{2} \in \mathcal{D}$ we say $D_{1} \rightarrow D_{2}$ if for any $u \in V\left(D_{1}\right)$ and any $v \in V\left(D_{2}\right)$ there is a dipath from u to v. Then, \rightarrow is a partial order on \mathcal{D}.

Proposition 5.1.5 (see [34]). For any digraph D, the strongly connected components of D can be computed in $O(n+m)$ time.

5.2 A New Algorithm

Below is the new algorithm, Algorithm 1:
Require: a factorizable graph G
Ensure: the generalized canonical partition $\mathcal{P}(G)$ and the digraph $\operatorname{Aux}(G)$ representing $(\mathcal{G}(G), \triangleleft)$
compute a perfect matching M of G;
$U:=V(G)$; initialize $f: V(G) \rightarrow\{0,1\}$ by $0 ;$
$A:=\emptyset ; \mathcal{P}(G):=\emptyset ;$
while $U \neq \emptyset$ do
choose $u \in U$;
compute $X:=A(G-u) \cup\{u\}$;
compute the DM-decomposition of $H_{G}(X)$;
for all DM-component D of $H_{G}(X)$ do
let $S:=X \cap V(D)$; choose arbitrary $v \in S$;
10: if $f(v)=0$ then

11:

12:
13:
14:
15:
$16:$
$17:$
$18:$
$19:$
20:
21: end while
22: output $\mathcal{P}(G)$;
23: $\operatorname{Aux}(G):=(V(G), A)$; decompose $A u x(G)$ into its strongly-connected components and output it; STOP.

Proposition 5.2.1. While Algorithm 1 is running,
(i) $X=A(G-u) \cup\{u\}$ of Line 6 is an odd-maximal barrier of G,
(ii) S defined at Line 9 coincides with a member of $\mathcal{P}(G)$, and
(iii) $V(\hat{D}) \backslash X$ at Line 14 coincides with ${ }^{c} U(S)^{1}$.

Proof. The statement (i) follows by a simple counting argument. Therefore, (ii) and (iii) follows by Theorem 3.6.11.

Lemma 5.2.2. Let G be a factorizable graph and $\operatorname{Aux}(G)=(V(G), A)$ be the digraph obtained by inputting G to Algorithm 1. Let $H_{1}, H_{2} \in \mathcal{G}(G), u \in V\left(H_{1}\right)$, and $v \in V\left(H_{2}\right)$.
(i) If $(u, v) \in A$, then $H_{1} \triangleleft H_{2}$.
(ii) If there exists a dipath from u to v in $\operatorname{Aux}(G)$, then $H_{1} \triangleleft H_{2}$.

[^2]Proof. The arc (u, v) is added to A only at Line 15 if $u \in X \cap V(\hat{D})$ and $v \in V(\hat{D}) \backslash$ X. Thus (i) follows by Proposition 5.2.1. Hence (ii) follows by the transitivity of \triangleleft.

Lemma 5.2.3. Let G be a factorizable graph and $\operatorname{Aux}(G)=(V(G), A)$ be the digraph obtained by inputting G to Algorithm 1. Let $H_{1}, H_{2} \in \mathcal{G}(G)$ be such that $H_{1} \triangleleft H_{2}$. Then, for any $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right)$, there is a dipath from u to v in $A u x(G)$.

Proof. Let $S \in \mathcal{P}_{G}\left(H_{1}\right)$ be such that $u \in S$. First suppose that $v \in{ }^{c} U(S)$. Then, (u, v) is added to A at Line 15 when $X \cap V(D)$ of Line 13 coincides with S, which surely occurs by Proposition 5.2.1. Hence, the claim holds for this case.

Now suppose the other case that $v \in U^{*}(S)$. Take $T \in \mathcal{P}_{G}\left(H_{1}\right) \backslash\{S\}$ and $w \in T$ arbitrarily. The arc (u, w) is added to A at Line 15 when S coincides with $X \cap V(D)$ of Line 13 , so is the arc (w, v) when T coincides with $X \cap V(D)$. Therefore the dipath $u w+w v$ satisfies the claim for this case, and we are done.

Theorem 5.2.4. Let G be a factorizable graph and $\operatorname{Aux}(G)=(V(G), A)$ be the digraph obtained by inputting G to Algorithm 1. Then, $H \in \mathcal{G}(G)$ holds if and only if there is a strongly-connected component D of $\operatorname{Aux}(G)$ with $V(H)=V(D)$. Additionally, for any $H_{1}, H_{2} \in \mathcal{G}(G), H_{1} \triangleleft H_{2}$ holds if and only if $D_{1} \rightarrow D_{2}$, where D_{i} is the strongly-connected component of $\operatorname{Aux}(G)$ with $V\left(H_{i}\right)=V\left(D_{i}\right)$, for each $i=1,2$.

Proof. Combining Lemmas 5.2.2 and 5.2.3, we immediately obtain the following claim:

Claim 5.2.5. $H_{1} \triangleleft H_{2}$ holds if and only if for any $u \in V\left(H_{1}\right)$ and any $v \in V\left(H_{2}\right)$ there is a dipath from u to v in $\operatorname{Aux}(G)$.

Therefore, we are done by Proposition 5.1.4.

Theorem 5.2.6. Given a factorizable graph G, the poset $(\mathcal{G}(G), \triangleleft)$ and the generalized canonical partition $\mathcal{P}(G)$ can be computed in $O(n m)$ time by Algorithm 1.

Proof. The correctness follows by Proposition 5.2.1 and Theorem 5.2.4.
Hereafter we prove the complexity. Line 1 costs $O(\sqrt{n} m)$ time by Theorem 5.1.1. Line 2 costs $O(n)$ time, and Line 3 costs $O(1)$ time. Lines 4 to 7 cost $O(m)$ time per each iteration of the while-loop in Line 4. As the while-loop in Line 4 is repeated $O(n)$ times, they cost $O(n m)$ time over the whole algorithm.

Each operations in Lines 8 to 10 costs $O(1)$ time per iteration, and they are iterated $O\left(n^{2}\right)$ time over the whole computation; therefore, they cost $O\left(n^{2}\right)$ time.

Note that $f(v)=0$ at Line 10 holds true for at most n times. Therefore, Lines 11 and 12 cost $O(n)$ time. The number of repetition of Lines 13 to 19 is bounded by $|A|=O\left(n^{2}\right)$. Therefore, the operations there costs $O\left(n^{2}\right)$ over the algorithm.

Chapter 6

Conclusion

In this chapter, we conclude this thesis. We investigated two central notions which supports the foundation of matching theory, i.e., canonical decompositions and barriers.

In Chapter 2, we gave a new canonical decomposition, the cathedral decomposition. While any other known canonical decompositions is not applicable substantially to general factorizable graphs, the new canonical decomposition is applicable non-trivially to and describe structures of general factorizable graphs. Although this result is given as those for factorizable graphs, it can be formulated as a canonical decomposition for general graphs including non-factorizable graphs by combining our results with the Gallai-Edmonds structure theorem. Additionally, it enables us to see all the known canonical decompositions in a unified way.

Thanks to this new canonical decomposition, we become able to see matchingtheoretic properties we have not been able to see so far; the structure of barriers is one such example. In Chapter 3, we gave a canonical description of the structures of odd-maximal barriers in general graphs. Although the notion of barriers is important, not so much results has been known about barriers; actually, this is because of lack of effective tools to analyze general factorizable graphs. Considering the history of the study of barriers, this result is an explosive advance in the theory of barriers. Additionally, this result corresponds to a generalization of the canonical partition based on Lovász's formulation, among two formulation of the
canonical partition, and therefore can be regarded as a piece of contribution to the theory of canonical decompositions.

We also contributed to the enumeration problem of perfect matchings. In Chapter 4, as a consequence of the new canonical decomposition, we gave another proof of Lovász's cathedral theorem [28,30]. Our new proof reveals that the intrinsic structure behind the cathedral theorem is the new canonical decomposition in Chapter 2 and proves the cathedral theorem in quite a natural way providing more refined statements.

In Chapter 5, using results in Chapter 3, we propose more efficient algorithms to compute the new canonical decomposition than the one presented in Chapter 2.

Our results in thesis form a great step in the foundation of matching theory, and yet more consequences will be produced from our results. Considering the nature of matchings, we are sure that our results here will contribute to developing the heart of discrete mathematics and combinatorial optimization.

Bibliography

[1] M. H. Carvalho and J. Cheriyan. An $O(V E)$ algorithm for ear decompositions of matching-covered graphs. ACM Transactions on Algorithms, 1(2):324-337, 2005.
[2] M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. The matching lattice. In B. Reed and C. L. Sales, editors, Recent Advances in Algorithms and Combinatorics. Springer, 2003.
[3] J. Cheriyan. Randomized $\tilde{O}(M(|V|))$ algorithms for problems in matching theory. SIAM Journal on Computing, 26(6):1635-1669, 1997.
[4] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of Mathematics, 10:517-534, 1958.
[5] A. L. Dulmage and N. S. Mendelsohn. A structure theory of bipartite graphs of finte exterior dimension. Transactions of the Royal Society of Canada, Section III, 53:1-13, 1959.
[6] A. L. Dulmage and N. S. Mendelsohn. Two algorithms for bipartite graphs. Journal of the Society for Industrial and Applied Mathematics, 11(1):183-194, 1963.
[7] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.
[8] J. Edmonds, L. Lovász, and W. R. Pulleyblank. Brick decompositions and the matching rank of graphs. Combinatorica, 2(3):247-274, 1982.
[9] A. Frank. Conservative weightings and ear-decompositions of graphs. Combinatorica, 13(1):65-81, 1993.
[10] S. Fujishige. Submodular Functions and Optimization. Elsevier Science, second edition, 2005.
[11] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30:209-221, 1985.
[12] T. Gallai. Maximale systeme unabhängiger kanten. A Magyer Tudományos Akadémia: Kutató Intézetének Közleményei, 8:401-413, 1964.
[13] J. F. Geelen. An algebraic matching algorithm. Combinatorica, 20(1):61-70, 2000.
[14] S. G. Hartke, D. Stolee, D. B. West, and M. Yancey. Extremal graphs with a given number of perfect matchings. Journal of Graph Theory, 73(4):449-468, 2013.
[15] Z. Király. The calculus of barriers. Technical Report TR-9801-2, ELTE, 1998.
[16] N. Kita. An alternative proof of Lovász's cathedral theorem. Journal of the Operations Research Society of Japan. to appear.
[17] N. Kita. A generalization of the Dulmage-Mendelsohn decomposition for general graphs. preprint.
[18] N. Kita. A canonical characterization of the family of barriers in general graphs. CoRR, abs/1212.5960, 2012.
[19] N. Kita. A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. CoRR, abs/1205.3816, 2012.
[20] N. Kita. A partially ordered structure and a generalization of the canonical partition for general graphs with perfect matchings. LNCS, 7676:85-94, 2012.
[21] N. Kita. Disclosing barriers: A generalization of the canonical partition based on Lovász's formulation. LNCS, 8287:402-413, 2013.
[22] N. Kita. The third proof of Lovász's cathedral theorem. CoRR, abs/1301.7597, 2013.
[23] B. Korte and J. Vygen. Combinatorial Optimization; Theory and Algorithms. Springer, fourth edition, 2007.
[24] A. Kotzig. Z teórie konečných grafov s lineárnym faktorom. I (in slovak). Mathematica Slovaca, 9(2):73-91, 1959.
[25] A. Kotzig. Z teórie konečných grafov s lineárnym faktorom. II (in slovak). Mathematica Slovaca, 9(3):136-159, 1959.
[26] A. Kotzig. Z teórie konečných grafov s lineárnym faktorom. III (in slovak). Mathematica Slovaca, 10(4):205-215, 1960.
[27] L. Lovász. A note on factor-critical graphs. Studia Scientiarum Mathematicarum Hungarica, 7:279-280, 1972.
[28] L. Lovász. On the structure of factorizable graphs. Acta Mathematica Hungarica, 23(1-2):179-195, 1972.
[29] L. Lovász. Matching structure and the matching lattice. Journal of Combinatorial Theory, Series B, 43:187-222, 1987.
[30] L. Lovász and M. D. Plummer. Matching Theory. Elsevier Science, 1986.
[31] S. Micali and V. V. Vazirani. An $O(\sqrt{|v|} \cdot|E|)$ algorithm for finding maximum matching in general graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, pages 17-27, 1980.
[32] K. Murota. Matrices and Matroids for Systems Analysis. Springer, 2000.
[33] M. Nakamura. Structural theorems for submodular functions, polymatroids and polymatroid intersections. Graphs and Combinatorics, 4:257-284, 1988.
[34] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[35] Z. Szigeti. On Lovász's cathedral theorem. In Proceedings of the 3rd Integer Programming and Combinatorial Optimization Conference (IPCO 1993), pages 413-423, 1993.
[36] Z. Szigeti. On generalizations of matching-covered graphs. European Journal of Combinatorics, 22(6):865-877, 2001.
[37] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, 1983.
[38] V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the $O(\sqrt{V} E)$ general graph maximum matching algorithm. Combinatorica, 14:71-109, 1994.

[^0]: ${ }^{1}$ Though this is sometimes presented as a theorem for general bipartite graphs, we introduce it as one for bipartite factorizable graphs.

[^1]: ${ }^{1}$ This is identical to those Király calls strong barriers [15], however we call it in the different way so as to avoid the confusion with the notion of strong end by Frank [9].

[^2]: ${ }^{1}$ Given $H \in \mathcal{G}(G)$ and $S \in \mathcal{P}_{G}(H)$, we denote $U^{*}(H) \backslash U^{*}(S)$ as ${ }^{c} U(S)$

