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（内容の要旨） 

グラフとは道路網などネットワーク構造の数学的抽象化に相当する基本的な離散構造である．マッ

チングとはグラフの部分構造の一種であり，互いに素な枝の集合として定義される．マッチングは

離散数学の最も代表的な研究対象の一つであり，長年に渡り関心を集めてきた．マッチングに関す

る研究の蓄積はマッチング理論と呼ばれるグラフ理論の一大分野を成している．本論文はマッチン

グ理論の基盤に対し，標準分解・双対性に基づく構造解明・完全マッチングの数え上げ問題の三つ

の方向から貢献するものである． 

従来マッチングの構造を把握する強力なツールとして，総称して標準分解と呼ばれるいくつかの

分解型構造定理が重要な役割を果たしてきた．しかしこれらはそれぞれ特殊なクラスのグラフのみ

を実質的な適用対象としており，互いの相互関係やこれらをまとめ上げ統一して理解する方法は不

明であった．これに対し本論文では任意のグラフを適用対象とし，かつ既存の標準分解をまとめ上

げる新しい標準分解を提案する．これは既存の標準分解の洗練された記述も含んでおり，完全マッ

チングを持つ一般のグラフに対しても非自明な構造を明らかにするものである． 

バリアもまたグラフの部分構造の一種であるが，これは最大マッチング問題の双対最適解の組合

せ的解釈に相当しており，すなわちマッチングと対をなす概念である．双対性は組合せ最適化の理

論体系の軸となる概念であり，事実バリアもマッチングの研究において重要な役割を果たす．しか

しバリアについて知られていることは少なく，特に重要である極大バリアについてすらも解明は進

んでいなかった．これに対し本論文では，一般のグラフに対し極大バリアの構造を明らかにする定

理を与える．これは1972 年にLovászによって与えられた canonical partition の一般化に相当す

る． 

グラフがもつ完全マッチングの総数を調べることは数え上げ組合せ論の代表的な問題の一つで

あり，様々な側面からの研究がなされている．カテドラル定理は飽和グラフの特徴づけを与えてお

り，次数などグラフの構造に関するパラメタと完全マッチングの総数との関係を調べる際に有用で

ある．カテドラル定理は1972年にLovász によって与えられたのち，2001年にSzigeti によって

別証明が与えられている．本論文では，飽和グラフの性質を新しい標準分解を用いて精査すること

によってカテドラル定理のさらなる別証明を与える．この新しい証明では，カテドラル定理の背後

にある構造を明らかにすることでより洗練された事実を副産物として与えつつ，非常に自然な形で

の別証明を与えている． 

また，本論文で提案された新しい標準分解を計算する多項式時間アルゴリズムをいくつか提案す

る．これはカテドラル定理によって明らかにされる構造を計算するものにも対応する． 
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Preface

Graphs are fundamental discrete structures, which arise as a mathematical for-

mulation of network structures such as road networks. A matching is a kind of

substructures of a graph; a set of edges is called a matching if any two of them

are disjoint. The notion of matchings is one of the central concerns in discrete

mathematics and has attracted attention for years. Studies on matchings form

one of the largest branches of graph theory called matching theory. This thesis

is devoted to refining the foundation of matching theory, from three directions:

canonical decompositions, structures of barriers, and the enumeration problem of

perfect matchings.

A kind of decomposition of graphs called collectively canonical decompositions

has been a fundamental and powerful tool to see matchings. Several canonical

decompositions have been known, however each of them can be substantially ap-

plicable to a special class of graphs, respectively; also, we have not had any way

to know relationships between them or to integrate and unify them. In this thesis,

we give theorems that introduce a new canonical decomposition; this new decom-

position can be applicable to any graph, describing much more detailed structures

even for the general graphs with perfect matchings, and enables us to understand

the other known canonical decompositions in a unified way.

A barrier is also a kind of substructures of graphs, which corresponds to a com-

binatorial interpretation of the dual optimal solutions of the maximum matching

problem; that is to say, a barrier is a notion acting as a counterpart of matchings.

Duality is a concept that supports the theory of combinatorial optimization, and

indeed barriers play important roles when we investigate matchings. However,
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not so much has been known about barriers, even for those maximal, which are

considered to be especially important. In this thesis we give a theorem which de-

scribes structures of maximal barriers of general graphs. This structure theorem

corresponds to a generalization of the canonical partition formulated by Lovász in

1972.

Enumerating all the perfect matchings of a given graph is one of the most fun-

damental problems in enumerative combinatorics and has been studied by various

approaches. The cathedral theorem is a characterization of the saturated graphs and

has been useful in investigating relations between the number of perfect match-

ings and some graph parameters such as degrees. The cathedral theorem was first

given by Lovász in 1972, and later Szigeti gave another proof in 2001. Here in this

thesis we give yet another proof by considering the saturated graphs with the new

canonical decomposition. In this new proof, we reveal the intrinsic structure exists

behind the cathedral theorem and show it in quite a natural way providing more

refined properties as by-products. Moreover, we propose several polynomial time

algorithms to compute the new canonical decompositions, which also correspond

to algorithmic results of the cathedral theorem.
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Chapter 1

Introduction

1.1 Background

Given a graph, a matching (1-matching) is a set of edges no two of which have

common vertices. This basic notion has gathered attention in discrete mathemat-

ics for years, and numerous related notions or problems including generalizations

such as k-matchings have been studied extensively; these studies form one of the

largest branches of graph theory: matching theory [30]. The notion of matchings

is so fundamental that sometimes problems which do not appear to be related

directly to matching problems can be solved with the help of matching theory,

e.g., the Chinese postman problem, the Hamilton cycle problem, and so on [30].

Applications are not limited to graph theory; some linear algebraic problems are

also such examples [4–6,13].

What is more, we must mention that matching theory has played an important

role at the heart of the rapid growth of combinatorial optimization in the past

decades. Efficiency in the sense of computational costs is what matters most in

combinatorial optimization, and since advocated by Edmonds [7], the concept of

polynomial time solvability has been obtained broad acceptance as a measure of

“well-solvability”. The maximum matching problem is considered as the most

fundamental one among problems solved in polynomial time, and it is said that

1
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matching theory serves as an archetypal example of how a well-solved

problem can be studied [30].

In fact, fundamental structural results and algorithms on matchings let us pio-

neer the new paradigm, i.e., polyhedral combinatorics; here important notions and

techniques that capture and handle well-solved problems somewhat comprehen-

sively, e.g., min-max theorems and integrality of polyhedra, have originated out of

matching theory [30,34].

This thesis is devoted to contributing to the foundation of matching theory,

and we approach it from three aspects: canonical decompositions, structures of

barriers, and the enumeration problem of perfect matchings.

In the succeeding sections of this chapter, first we give fundamental definitions

and notations in Section 1.2, then in Section 1.3 introduce concepts and theorems

in matching theory related to the theme of this thesis such as barriers and canonical

decompositions, and finally state an overview of this thesis in Section 1.4.

1.2 Fundamentals

1.2.1 Graphs

Graphs

A graph G is a pair (V (G), E(G)) of a set V (G) and a multiset E(G) disjoint from

V (G), each of whose elements is an unordered pair of not necessarily distinct two

elements of V (G). Each element of V (G) and E(G) is called a vertex and an edge

of G, respectively. For an edge {x, y}, we say it joins x and y, and denote it by

xy; we also say x is adjacent to y. For an edge e, we call the elements of e the end

vertices or the ends of e. An edge is a loop if it is consists of identical vertices.

Edges are parallel if they possess the same sets of end vertices and are distinguished

respectively. The graphs we treat in this thesis are usually multigraphs, i.e., they

might have loop edges or parallel edges. In this thesis we assume graphs are finite,

i.e., V (G) and E(G) are finite sets. A graph whose vertex set and edge set are
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empty, i.e., (∅, ∅) is called empty. We assume all graphs under discussion is not

empty unless otherwise specified. In figures, a graph is represented with each

vertex indicated by a point and each edge by a line. Two graphs G1 and G2 are

identical if V (G1) = V (G2) and E(G1) = E(G2) hold; we write G1 = G2. Two

graphs G1 and G2 are isomorphic if there is a bijection f : V (G1) → V (G2) such

that uv ∈ E(G1) if and only if f(u)f(v) ∈ E(G2).

Subgraphs

Hereafter for a while let G be a graph and let X ⊆ V (G). A graph H is a subgraph

of G if V (H) ⊆ V (G) and E(H) ⊆ V (G) hold. In this thesis, if a graph H

is a subgraph of G, we sometimes denote H ⊆ G. We say a subgraph H of G

is maximal with respect to a certain property if for any subgraph Ĥ of G with

H ⊆ Ĥ , Ĥ satisfying the property yields H = Ĥ. Given a set of edges F ⊆ E(G)

of G, the graph such that its vertices are the end vertices of F and the edge set is

F is called the subgraph of G determined by F and is denoted by G.F . The graph

such that its vertex set is X and its edges are the edges of G both of whose end

vertices are in X is called the subgraph of G induced by X and is denoted by G[X].

We denote G[V (G) \X] by G−X.

Operations on Graphs

The graph obtained by regarding all the vertices of X as a single vertex is called

the contraction of G by X and is denoted by G/X; more precisely, V (G/X) =

(V (G)\X)∪{x}, where x is a new vertex disjoint from V (G)∪E(G), and E(G/X)

is obtained from E(G) by removing all edges of G[X] and replacing each edge

uv ∈ E(G) with u ∈ X and v ∈ V (G) \X by xv.

Let G be a subgraph of a graph Ĝ, and let e = xy ∈ E(Ĝ). If G does

not have an edge joining x and y with x 6= y, then we call xy a complement

edge of G. The graph G + e denotes the graph (V (G) ∪ {x, y}, E(G) ∪ {e}), and

G − e the graph (V (G), E(G) \ {e}). For F = {e1, . . . , ek} ⊆ E(Ĝ), we define

G+F := G+e1 + · · ·+ek and G−F := G−e1−· · ·−ek. For simplicity, regarding
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the operations creating new graphs out of some given graphs, such as contraction

and taking the union of graphs, we identify vertices, edges, and subgraphs of the

newly created graph with those of old graphs that naturally correspond to them.

Graph Parameters

A neighbor of X is a vertex not in X which is joined to a vertex of X by an

edge. We denote the set of neighbors of X by NG(X). Given Y, Z ⊆ V (G), the

notation EG[Y, Z] denotes the set of edges joining Y and Z, and δG(Y ) denotes

EG[Y, V (G) \ Y ]. For a vertex v ∈ V (G), the degree of v is the number of edges

adjacent to v, each loop counted as two edges.

We sometimes regard a graph as the set of its vertices. For example, given a

subgraph H of G, we denote NG(V (H)) by NG(H).

Special Classes of Graphs, Connectivity, Connected Components

A graph G without loops or multiple edges is a path if |V (G)| = 1 and |E(G)| = 0

holds or |V (G)| ≥ 2 and exactly two vertices are of degree one and any other

vertex is of degree two. We call the former type of paths trivial. Given a path P ,

vertices with degree no more than one are called end vertices or ends and vertices

with degree two are called internal vertices of P . We say a path is between x and

y if its end vertices are x and y; we also say a path connects x and y, or sometimes

say it is from x to y.

A graph is called connected if for any two vertices x and y there is a path

connects x and y. Given a graph G, a maximal connected subgraph is called a

connected component or just a component of G. A graph G is 2-connected if it is

connected and for any v ∈ V (G) the graph G− v is connected. Given a connected

graph G, a block of G is a maximal 2-connected subgraph.

A graph is a circuit if it is connected and any of its vertices is of degree two.

Note that in this thesis, we treat paths and circuits as graphs. A tree is a connected

graph without circuits as its subgraphs.

A graph G is bipartite if there is a partition of V (G) into two sets, say A and
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B, color classes, which satisfies E(G) = EG[A,B]; we write G = (A,B;E(G)).

1.2.2 Matchings

A set of edges without loops is called a matching if no two of them share end

vertices. A matching of cardinality |V (G)|/2 (resp. (|V (G)| − 1)/2) is called a

perfect matching (resp. a near-perfect matching). A graph is called factorizable if

it has a perfect matching. Hereafter for a while let M be a matching of a graph

G. We say M exposes (resp. covers) a vertex v ∈ V (G) if δG(v) ∩M = ∅ (resp.

δG(v)∩M 6= ∅). For a matching M of G and u ∈ V (G), u′ denote the vertex such

that uu′ ∈ M , if u is not exposed. Such vertex u′ is called matched to u by M .

For X ⊆ V (G), MX denotes M ∩ E(G[X]). A subgraph H of G is called nice if

G− V (H) is factorizable.

For a path or circuit Q of G, Q is M -alternating if E(Q) \M is a matching

of Q, in other words, if edges of M and E(Q) \M appear alternately in Q. Let

P be an M -alternating path of G with end vertices u and v. If P has an even

number of edges and M ∩ E(P ) is a near-perfect matching of P exposing only v,

we call it an M -balanced path from u to v. We regard a trivial path, that is, a

path composed of one vertex and no edges as an M -balanced path. If P has an

odd number of edges and M ∩E(P ) (resp. E(P ) \M) is a perfect matching of P ,

we call it M -saturated (resp. M -exposed).

A path P of G is an ear relative to X if both end vertices of P are in X while

internal vertices are not. Also, a circuit C is an ear relative to X if exactly one

vertex of C is in X. For simplicity, we call the vertices of V (P ) ∩X end vertices

of P , even if P is a circuit. Given Y ⊆ V (G), an ear P relative to X is through Y

if P has a vertex other than end vertices that is in Y . For an ear P of G relative

to X, we call it an M -ear if P −X is an M -saturated path.

A graph is called factor-critical if a deletion of an arbitrary vertex results in

a factorizable graph. For convenience, we regard a graph with only one vertex as

factor-critical.

An edge e ∈ E(G) is called allowed if there is a perfect matching containing
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e. Let M̂ be the set of allowed edges of G. For each connected component C of

the subgraph of G determined by M̂ , we call the subgraph of G induced by V (C)

as a factor-connected component or a factor-component for short. The set of all

the factor-components of G is denoted by G(G). Therefore, a factorizable graph is

composed of factor-components and some edges joining between different factor-

components. A factorizable graph with exactly one factor-component is called

elementary.

1.2.3 Digraphs

A directed graph or digraph D is a pair (V (D), A(D)) of a set V (D) and a multiset

A(D) disjoint from V (D), each of whose elements is an ordered pair of elements of

V (D). Here each element of V (D) and A(D) is a vertex and an arc. We denote an

arc by (u, v) for some u, v ∈ V (D), or sometimes by uv; here u (resp. v) is called

the tail (resp. the head) of (u, v). Digraphs we treat in this thesis are generally

multidigraphs, i.e., they might possess a loop, an arc (u, u) for some u ∈ V (D) and

there might be parallel arcs, the same as ordered pairs but are distinguished. In

this thesis we assume that digraphs are finite, i.e., V (D) and A(D) are finite sets.

Analogous to graphs, a subgraph D′ of a digraph D is a digraph with V (D′) ⊆
V (D) and A(D′) ⊆ A(D). We say a subgraph D′ of D is maximal with respect to

a certain property if for any subgraph D′′ of D such that D′ is a subgraph of D′′,

D′′ satisfying the property yields V (D′) = V (D′′) and E(D′) = E(D′′).

Given a digraph D, for v ∈ V (D), outdegree (resp. indegree) of v is the number

of edges whose tails (resp. heads) are v. A digraph P without loops or multiple

arcs is a dipath if |V (D)| = 1 and |A(D)| = 0 hold or it has a single vertex of

outdegree one and indegree zero and a single vertex of indegree one and outdegree

zero and for any other vertex outdegree and indegree are respectively one. We say

a dipath P is from u to v if u = v and V (P ) = {u} hold or u (resp. v) is the

vertex of P with outdegree one and indegree zero (resp. with indegree one and

outdegree zero).

A digraph D is strongly-connected if for any two vertices of u and v there is a
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dipath such that the vertex with indegree zero is u and the vertex with outdegree

zero is v. Give a digraph, a strongly-connected component is a maximal strongly-

connected subgraph of it.

A dicircuit is a digraph which is strongly-connected and any of its vertices

satisfies outdegree one and indegree one.

1.3 Structure Theorems in Matching Theory

1.3.1 Barriers

In matching theory, the notion of barriers plays significant roles. Given a graph,

we call a connected component of it with an odd (resp. even) number of vertices

odd component (resp. even component). Given X ⊆ V (G) of a graph G, we denote

as qG(X) the number of odd components that the graph resulting from deleting

X from G has; we denote the cardinality of a maximum matching of G as ν(G).

There is a min-max theorem called the Berge formula [30] that for any graph G,

|V (G)| − 2ν(G) = max{qG(X)− |X| : X ⊆ V (G)}.

A set of vertices that attains the maximum in the right side of the equation is

called a barrier. Roughly speaking, barriers essentially coincide with dual optimal

solutions of the maximum matching problem, and decompose graphs so that one

can see the structures of maximum matchings.

Definition 1.3.1. Given a graph G and X ⊆ V (G), we denote the vertices con-

tained in the odd components of G−X as DX , and V (G) \X \DX as CX .

The next proposition can be easily observed by the Berge formula.

Proposition 1.3.2 (folklore). Let G be a graph, and X ⊆ V (G) be a barrier of

G. Then for any maximum matching M of G,

(i) each vertex of X is matched to a vertex of DX ,
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(ii) for each component K of G[DX ], MK is a near-perfect matching of K, ac-

cordingly |δ(K) ∩M | ≤ 1,

(iii) there exist exactly |V (G)| − 2ν(G) components with |δ(K) ∩M | = 0,

(iv) M contains a perfect matching of G[CX ], and

(v) no edge in E[X,CX ] nor E(G[X]) is allowed.

By Proposition 1.3.2, we see how a given barrier enables us to understand

the size and structures of all maximum matchings at once. By this proposition,

barriers are very useful in numerous contexts in matching theory. However, com-

pared to numerous results on maximum matchings, “much less is known about

barriers [30]”.

1.3.2 Canonical Decompositions

Canonical Decompositions in Matching Theory

There is a fundamental and essential desire that we want to grasp in what way all

the maximum matchings exist in graphs. In matching theory, there are theorems

meeting this desire; these theorems decompose a given graph into subgraphs in

some ways which are uniquely determined by the given graph and describe the

structure of all the maximum matchings at once. These decompositions given

by these theorems are called canonical decompositions in general, since the word

canonical means “unique to given graphs” in matching theory. It seems barriers

take on a role similar to canonical decompositions. Indeed, as we saw in the pre-

vious section, a barrier gives a decomposition describing all maximum matchings.

However, a graph generally has a number of barriers and so decompositions they

give are not canonical. To the best of our knowledge, three canonical decomposi-

tions have been known:

1. the Gallai-Edmonds decomposition (Gallai [12], Edmonds [7]),

2. the canonical partition (Kotzig [24–26], Lovász [27]), and
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3. the Dulmage-Mendelsohn decomposition (Dulmage & Mendelsohn [4–6]).

In the following, we are going to explain them in detail.

The Gallai-Edmonds Structure Theorem

Definition 1.3.3. Given a graph G, we define D(G) as the set of vertices that

are exposed by some maximum matching, A(G) as N(D(G)) and C(G) as V (G) \
(D(G) ∪ A(G)). This partition of V (G) into three parts D(G), A(G), C(G) is

called the Gallai-Edmonds partition.

There is a famous theorem about the Gallai-Edmonds partition, called the

Gallai-Edmonds structure theorem:

Theorem 1.3.4 (The Gallai-Edmonds structure theorem [30]). Let G be a graph.

Then, D(G), A(G), C(G) satisfy the following:

(i) The set A(G) is a barrier with DA(G) = D(G) and CA(G) = C(G).

(ii) Each odd component of G− A(G) is factor-critical.

(iii) For each e ∈ E[A(G), D(G)], there exists a maximum matching M of G with

e ∈M .

When we refer to the decomposition of a graph determined naturally by the

Gallai-Edmonds partition considering its properties given by Theorem 1.3.4, we

call it the Gallai-Edmonds decomposition. Theorem 1.3.4 states that there is a spe-

cial barrier, A(G), existing canonically in a graph. The Gallai-Edmonds structure

theorem tells us the size and structures of all maximum matchings in a canonical

way, so it is useful in numerous contexts and is, without a doubt, the most powerful

theorem in matching theory.

The first polynomial time algorithm for the maximum matching problem is

Edmonds’ one [7], which has given rise to more efficient algorithms proposed

since then. Actually, to compute maximum matchings by Edmonds’ algorithm is

equivalent to compute the Gallai-Edmonds decomposition. Sometimes the Gallai-

Edmonds decomposition offers a clue to develop a new algorithm [30]. Hence, the
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Gallai-Edmonds decomposition lies in the essential part of the maximum matching

algorithms. It is also related to some algebraic problems [3, 13].

The Canonical Partition

The canonical partition is a decomposition for elementary graphs and plays a

crucial role in matching theory. First Kotzig introduced the canonical partition as

a quotient set of a certain equivalence relation [24–26], and later Lovász redefined

it from the point of view of barriers [30]. In fact, these are equivalent. For an

elementary graph G and u, v ∈ V (G), we say u ∼ v if u = v or G − u − v is not

factorizable.

Theorem 1.3.5 (Kotzig [24–26]). Let G be an elementary graph. Then ∼ is an

equivalence relation on V (G).

The family of equivalence classes of ∼ is called the canonical partition of G,

and denoted by P(G).

Theorem 1.3.6 (Lovász [30]). Let G be an elementary graph. Then, the family of

maximal barriers forms a partition of V (G). Additionally, this partition coincides

with the equivalence classes by ∼.

In the polyhedral study of matchings, the notion of elementary graphs appears

essential, and Lovász reformulated the canonical partition of elementary graphs so

as to obtain the structural results of the perfect matching polytope. Thanks to this

reformulation by Lovász, many graph theoretic results such as the two ear theorem

of ear-decompositions of elementary graphs, brick decompositions, and tight cut

decompositions have been obtained [8, 29, 30] (see also the survey article [2]), and

together with the canonical partition itself, they have underlain the studies of the

perfect matching polytope.
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The Dulmage-Mendelsohn Decomposition

Factor-components of a bipartite factorizable graph are known to have the follow-

ing partially ordered structure1:

Theorem 1.3.7 (The Dulmage-Mendelsohn Decomposition [4–6,30,32]). Let G =

(A,B;E) be a bipartite factorizable graph, and let G(G) =: {Gi}i∈I . Let Ai :=

A ∩ V (Gi) and Bi := B ∩ V (Gi) for each i ∈ I. Then, there exists a partial order

�A on G(G) such that for any i, j ∈ I,

(i) E[Bj, Ai] 6= ∅ yields Gj �A Gi, and

(ii) if Gj �A H �A Gi yields Gi = H or Gj = H for any H ∈ G(G), then

E[Bj, Ai] 6= ∅.

We call this decomposition of G into a poset the Dulmage-Mendelsohn decompo-

sition (in short, the DM-decomposition), and each element of G(G), in this context,

a DM-component. The DM-decomposition is uniquely determined by a graph, up

to the choice of roles of color classes. In this thesis, we call the DM-decomposition

of G = (A,B;E) as in Theorem 1.3.7 the DM-decomposition with respect to A.

Dulmage and Mendelsohn introduced the DM-decomposition with an appli-

cation to an efficient solution of the linear equations determined by large sparse

matrices [4–6]. Another notable history about the DM-decomposition is its con-

tribution to the theory of submodular function, namely, a branch of it about the

principal partition [10, 33].

1.4 Overview

This thesis consists of six chapters including this chapter of introduction and Chap-

ter 6, devoted to conclusion. Our main results are described in Chapter 2 to Chap-

ter 5. Although matching theory has been studied extensively for years, there are

1Though this is sometimes presented as a theorem for general bipartite graphs, we introduce

it as one for bipartite factorizable graphs.
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still some lacks in its foundation. This thesis contributes to the foundation of

matching theory, from three aspects: canonical decompositions, barriers, the enu-

meration problem of perfect matchings. In the following we give an overview of

this thesis.

Canonical decompositions are the most fundamental tools to investigate match-

ings, and as we saw in Section 1.3.2, to the best of our knowledge, exactly three

canonical decompositions have been known, i.e., the Gallai-Edmonds decompo-

sition, the canonical partition, the DM-decomposition. However, each of them

are substantially applicable to a special class of graphs, respectively; the Gallai-

Edmonds decomposition can be applicable non-trivially only for non-factorizable

graphs, the canonical partition is for a special class of factorizable graphs, i.e.,

elementary graphs, and the DM-decomposition is for bipartite graphs. Hence, we

have not had any ways to see non-trivial structure of general factorizable graphs.

Additionally, there have not been known any viewpoints to understand the known

canonical decompositions in a unified way.

The factorizable graphs form such a wide class that we cannot give up obtain-

ing non-trivial canonical decomposition. In this thesis, we present a new canonical

decomposition, which is applicable and tells non-trivial structures for general fac-

torizable graphs. By combining this new canonical decomposition with the Gallai-

Edmonds decomposition, we can easily formulate a structure theorem applicable

to any graph and give a refinement of the Gallai-Edmonds decomposition. The

new canonical decomposition also give a generalization of the canonical partition

for general graphs; our generalization here is based on Kotzig’s, among two formu-

lation of the canonical partition in Section 1.3.2. It also expresses a relationship

between the factor-components in a partial order. This partially ordered struc-

ture is actually not a generalization of the DM-decomposition. A generalization

of the DM-decomposition is not directly contained in the new decomposition, nor

do we give it in this thesis, however in our coming work [17] we show that a gen-

eralization of the DM-decomposition for general graphs can be obtained with the

new decomposition. Hence, in this sense, our new decomposition enables us to
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unify the three known canonical decompositions. In Chapter 2, we are going to

introduce this new canonical decomposition.

The notion of barriers corresponds to the dual optimal solutions of the maxi-

mum matching problem and can be regarded as a counterpart of maximum match-

ings. Duality is a notion that supports the heart of polyhedral combinatorics and

accordingly is one of the essential notions in combinatorial optimization. Maxi-

mal barriers seems especially important; one reason is that they are more useful

in purely combinatorial or graph-theoretic arguments, and another reason is that

canonical decompositions have some relationships with maximal barriers (recall

Theorem 1.3.6, or see Theorem 3.3.4) and this fact implies that maximal barriers

have something intrinsic. However, compared to numerous results about maximum

matchings, “much less is known about barriers [30]”. Even about maximal barri-

ers, not so much has been known. In Chapter 3, we give a theorem that describes

the structure of maximal barriers in general graphs, using the new canonical de-

composition we give in Chapter 2. (Actually, we work on a wider notion called

odd-maximal barriers.) This theorem turns out to be a generalization of Theo-

rem 1.3.6, which indicates that our generalization of the canonical partition in

Chapter 2 is reasonable considering both formulations of the canonical partition,

by Kotzig and by Lovász.

Another important direction of the study of matchings is counting the number

of perfect matchings [30]. Enumerating the perfect matchings of a given factoriz-

able graph is one of the most fundamental problems in enumerative combinatorics

and has been studied by various approaches. The cathedral theorem is a characteri-

zation of the saturated graphs and has been useful in investigating relations between

the number of perfect matchings and some graph parameters such as degrees. The

cathedral theorem was first given by Lovász in 1972 [27], and later Szigeti gave

another proof in 2001 [36]. In Chapter 4, we give yet another proof by considering

the saturated graphs with the new canonical decomposition. In this new proof, we

reveal the intrinsic structure exists behind the cathedral theorem and show it in

quite a natural way providing more refined properties as by-products.
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We also give several polynomial-time algorithms to compute the new canonical

decomposition. One algorithm is given in Chapter 2, and a bit more sophisticated

algorithm is presented in Chapter 5 with the results in Chapter 3.



Chapter 2

Canonical Structures of

Factorizable Graphs

2.1 Introduction

In this chapter, we show new results which give a new canonical decomposition.

When we want to know structures or to develop algorithms on graphs, it is quite

natural to decompose graphs appropriately into substructures so that we can con-

sider the problems using this decomposition. There is a kind of decompositions

that serve as fundamental tools to consider matchings, called canonical decom-

positions in general. In matching theory, we say something is canonical if it is

a concept determined uniquely to a given graph. Canonical decompositions de-

compose a given graph in some way uniquely determined to the graph and tell us

structures of all the maximum matchings at once.

As we mentioned in Chapter 1, to the best of our knowledge, exactly three

theorems are known as those give canonical decompositions: the Gallai-Edmonds

decomposition, the canonical partition, and the DM-decomposition [30]. They are

useful tools that support the basis of matching theory. However each of them is

substantially applicable only to a special class of graphs, respectively; the first one,

the Gallai-Edmonds decomposition are substantially for non-factorizable graphs,

the second one, the canonical partition is for elementary graphs, and the third

15
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one, the DM-decomposition is for bipartite graphs. Hence there are some classes

of graphs do not have canonical decompositions to analyze them; the general

factorizable graphs are such even though they form such a wide and fundamental

class that we cannot give up investigating them. Moreover, we do not know any

ways to see relations between the three canonical decompositions. In this chapter,

we are going to show theorems that give a new canonical decomposition, which

is applicable substantially and tells non-trivial structures for general factorizable

graphs. This new canonical decomposition is given mainly by theorems which

show

• a partially ordered structure on the factor-components,

• a generalization of the canonical partition, and

• a relationship between the above two notions.

The Gallai-Edmonds decomposition is by its definition applicable to all graphs,

however the decompositions it gives are rather sparse and there are some classes of

graphs that it treats as irreducible and does not give non-trivial decompositions;

the factorizable graphs are such. If a graph is elementary factorizable, then we can

analyze its matching-theoretic properties by the canonical partition. Otherwise,

that is, if a graph is non-elementary factorizable, of course we can apply the canon-

ical partition for each of its factor-components; however, this approach does not

give enough combinatorial information in general because it fails to considering the

overall structure of the graph. Here we generalize the canonical partition for gen-

eral factorizable graphs including non-elementary graphs, not in a non-trivial way

but considering the overall structure of given graphs. As we saw in Section 1.3.2,

there are two equivalent formulation of the canonical partition by Kotzig [24–26]

and Lovász [27, 30], respectively. In this chapter, we give a generalization based

on Kotzig’s formulation.

We should also investigate how the factor-components are related in a factor-

izable graphs. A factorizable graph consists of factor-components and some edges

joining between them, so elementary graphs are fundamental building blocks of
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a factorizable graph. Conversely, suppose we are given some elementary graphs,

say, G1, . . . , Gk, where k > 0, and create a new graph, say, G by joining these ele-

mentary graphs with edges in some way. The graph G will always be factorizable,

but will the factor-components of G be G1, . . . , Gk? The answer is no. There-

fore, there must be a certain non-trivial structure about relationship between the

factor-components in a factorizable graph. In fact, the DM-decomposition reveals

a relationship between the factor-components of bipartite factorizable graphs, stat-

ing that they form a poset. However, as for non-bipartite factorizable graphs, no

result has been known. In this chapter, we reveal a partially ordered structure

between factor-components of general factorizable graphs. It has some similar

natures to the DM-decomposition, however they are distinct.

Actually, there is a relationship between the partial order on the factor-components

and the generalization of the canonical partition. This relationship unites the two

notions and so give rise to a new canonical decomposition; we will name it the

generalized cathedral decomposition or just the cathedral decomposition, after the

cathedral theorem for saturated graphs, given by Lovász [28,30].

By combining the results here with the Gallai-Edmonds structure theorem, we

can formulate the new canonical decomposition as one applicable to general graphs

including those non-factorizable, which gives a refinement of the Gallai-Edmonds

decomposition.

The results in this chapter are also found in papers by the author [19, 20].

The rest of this section is to explain the succeeding sections in this chapter. In

Section 2.2, we give some basic definition and properties. In Section 2.3, we reveal a

canonical partially ordered structure on factor-components of factorizable graphs.

In Section 2.4, we give a generalization of the canonical partition based on Kotzig’s

way. In Section 2.5, we show some additional properties regarding the results in

Sections 2.3 and 2.4, including a relationship between the partial order and the

generalization of the canonical partition. In Section 2.6, we show some example

and figures about results in previous sections. In Section 2.7, we show that the

new canonical decomposition can be computed in polynomial time.
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2.2 Preliminary Facts

2.2.1 Factor-critical Graphs

Here we show some basic facts about factor-critical graphs. Some of them are easy

to see and might be regarded as folklores.

Property 2.2.1. Let M be a near-perfect matching of a graph G that exposes

v ∈ V (G). Then, G is factor-critical if and only if for any u ∈ V (G) there exists

an M-balanced path from u to v.

Proof. Take u ∈ V (G) arbitrarily. Since G is factor-critical, there is a near-perfect

matching M ′ of G exposing only u. Then, G.M4M ′ contains an M -balanced path

from u to v, and the sufficiency part follows.

Now suppose there is an M -balanced path P from u to v. Then, M4E(P ) is

a near-perfect matching of G exposing u. Hence, the necessity part follows.

Property 2.2.2. Let G be a graph. Then G is factor-critical if and only if each

block of G is factor-critical.

Proposition 2.2.3 (implicitly stated in [27]). Let G be a factor-critical graph,

v ∈ V (G), and M be a near-perfect matching that exposes v. Then for any non-

loop edge e = vu ∈ E(G), there is a nice circuit C of G which is an M-ear relative

to v and contains e.

Theorem 2.2.4 (implicitly stated in [27]). Let G be a factor-critical graph. For

any nice factor-critical subgraph G′ of G, G/G′ is factor-critical.

An ear-decomposition of a graph G is a sequence of subgraphs G0 ⊆ · · · ⊆
Gk = G such that G0 = ({r}, ∅) for some r ∈ V (G) and for each i ≥ 1, Gi is

obtained from Gi−1 by adding an ear Pi relative to Gi−1. We sometimes regard an

ear-decomposition as a family of ears P = {P1, . . . , Pk}. An ear-decomposition is

called odd if any of its ears has an odd number of edges.

Theorem 2.2.5 (Lovász [27]). A graph is factor-critical if and only if it has an

odd ear-decomposition.
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For a factor-critical graph G and a near-perfect matching M of G, an ear-

decomposition of G is alternating with respect to M or just M-alternating if each

ear is an M -ear.

Proposition 2.2.6 (Lovász [27]). Let G be a factor-critical graph. Then for any

near-perfect matching M of G, there is an M-alternating ear-decomposition of G.

2.2.2 Other Facts

The following are fundamental and basic facts about matchings. These are easy

to see. We use the these facts frequently all over in this thesis, sometimes without

explicitly mentioning it. Readers familiar with matching theory might skip this

section.

Property 2.2.7. Let G be a factorizable graph, M be a perfect matching of G, and

e = xy ∈ E(G) be such that e 6∈M . The following three properties are equivalent:

(i) The edge e is allowed in G.

(ii) There is an M-alternating circuit C such that e ∈ E(C).

(iii) There is an M-saturated path between x and y.

Proof. We first show that (i) and (ii) are equivalent. Let M ′ be a perfect matching

of G such that e ∈ M ′. Then, G.M4M ′ has a connected component which is an

M -alternating circuit containing e. Hence, (i) yields (ii).

Now let L := M4E(C). Then, L is a perfect matching of G such that e ∈ L.

Hence, (ii) yields (i); consequently, they are equivalent.

Since (ii) and (iii) are obviously equivalent, now we are done.

Property 2.2.8. Let G be a factorizable graph and M be a perfect matching of

G, and let u, v ∈ V (G). Then, G− u− v is factorizable if and only if there is an

M-saturated path of G between u and v.

Proof. For the sufficiency part, let M ′ be a perfect matching of G−u− v. Then,

G.M4M ′ has a connected component which is an M -saturated path between u
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and v. For the necessity part, let P be an M -saturated path between u and v.

Then, M4E(P ) is a perfect matching of G− u− v, and we are done.

Property 2.2.9. Let G be a factorizable graph and M be a perfect matching of

G, and let u, v ∈ V (G). If there is an M-alternating circuit C with u, v ∈ V (C),

then all edges of E(C) are allowed and therefore u and v are contained in the same

factor-component of G.

Proof. The set of edges M4E(C) is also a perfect matching of G. Therefore,

each edge of E(C) is allowed, and so u and v are connected by a path whose edges

are all allowed. Hence, u and v belong to the same factor-component.

Property 2.2.10. Let G be a graph and M be a matching of G. Let X ⊆ V (G) be

such that MX is a perfect matching of G[X]. Let P be an M-balanced path or an

M-saturated path, one of its end vertices, say u, is covered by M . Trace P from

u and let v be the first vertex we encounter that is in X. Then, the subpath uPv

is an M-balanced path from u to v.

Property 2.2.11. Let G be a graph, M be a matching of G, and X ⊆ V (G) be

such that MX is a perfect matching of G[X]. Let P be an M-exposed path with

both end vertices in X or an M-alternating circuit with some vertices in X. Each

connected component of P − E(G[X]) is an M-ear relative to X.

2.3 A Partially Ordered Structure in Factoriz-

able Graphs

In this section we show a relationship between factor-components of a given factor-

izable graph. We shall define a canonical binary relation on the factor-components,

which captures matching-theoretic properties well, and show that in fact it is a

partial order (Theorem 2.3.29).

Let G be a factorizable graph. For X ⊆ V (G) we call X a separating set if for

any H ∈ G(G), V (H) ⊆ X or V (H)∩X = ∅. The next property is easy to see by

the definition.
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Property 2.3.1. Let G be a factorizable graph, and X ⊆ V (G) be such that

X 6= ∅. The following properties are equivalent:

(i) The set X is separating.

(ii) There exist H1, . . . , Hk ∈ G(G), where k ≥ 1, such that X is a disjoint union

of V (H1), . . . , V (Hk).

(iii) For any perfect matching M of G, δ(X) ∩M = ∅.

(iv) For any perfect matching M of G, MX is a perfect matching of G[X].

Let G1, G2 ∈ G(G). We say a separating set X is a critical-inducing set for

G1 if V (G1) ⊆ X and G[X]/G1 is a factor-critical graph. Moreover, we say X

is a critical-inducing set for G1 to G2 if V (G1) ∪ V (G2) ⊆ X and G[X]/G1 is a

factor-critical graph.

Definition 2.3.2. Let G be a factorizable graph, and G1, G2 ∈ G(G). We say

G1 / G2 if there is a critical-inducing set for G1 to G2.

Lemma 2.3.3. Let G be a factorizable graph and M be a perfect matching of G,

and let X ⊆ V (G) and G1 ∈ G(G). Then, X is a critical-inducing set for G1 if

and only if for any x ∈ X \ V (G1) there exists y ∈ V (G1) such that there is an

M-balanced path from x to y whose vertices except y are in X \ V (G1).

Proof. The claim is rather easy from Property 2.2.1. The set X is a critical-

inducing set for G1 if and only if G[X]/G1 is factor-critical. Note that MX\V (G1)

forms a near-perfect matching of G[X]/G1. Therefore, G[X]/G1 is factor-critical

if and only if for any x ∈ X there is an M -balanced path from x to the contracted

vertex g1 corresponding to G1. Therefore, the claim follows.

Proposition 2.3.4. Let G be an elementary graph and M be a perfect matching

of G. Then for any two vertices u, v ∈ V (G) there is an M-saturated path between

u and v, or an M-balanced path from u to v.
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Proof. Let u ∈ V (G) be an arbitrary vertex. Let U ⊆ V (G) be the set of vertices

that can be reached from u by M -saturated or M -balanced paths. We are going

to obtain the claim by showing U = V (G). Suppose that it fails, namely that

U ( V (G).

Claim 2.3.5. Let v ∈ U , and let P be an M-saturated path between u and v or

an M-balanced path from u to v. Then V (P ) ⊆ U .

Proof. Let w ∈ V (P ). Then, uPw is an M -saturated path from u and w or an

M -balanced path from u to w. Therefore, w ∈ U . Hence we have V (P ) ⊆ U .

Since G is connected, G has some edges joining U and V (G) \ U .

Claim 2.3.6. Let v ∈ U ∩ N(V (G) \ U). Then, there is no M-saturated path

between u and v.

Proof. Suppose the claim fails, and let P be an M -saturated path between u and

v ∈ U ∩ N(V (G) \ U). By Claim 2.3.5, V (P ) ⊆ U . Therefore, the vertex v′ is in

U , and by letting w ∈ V (G) \ U be a vertex with vw ∈ E(G) we have vw 6∈ M .

Hence, P + vw is an M -balanced path from u to w; this contradicts w 6∈ U . Hence

we have this claim.

Claim 2.3.7. No edge joining U and V (G) \ U is in M .

Proof. Let vw ∈ E[U, V (G) \ U ] be an edge with v ∈ U and w ∈ V (G) \ U .

By Claim 2.3.5 and Claim 2.3.6, there is an M -balanced path P from u to v with

V (P ) ⊆ U . Hence, if vw ∈M then P +vw is an M -saturated path between u and

w, and this contradicts w 6∈ U . Therefore, vw 6∈M , and we have this claim.

Since G is elementary, of course some edges in E[U, V (G) \ U ] are allowed; let

e = vw be one of them. By Claim 2.3.7, e 6∈ M holds, and so by Property 2.2.7,

there is an M -saturated path Q between v and w. Trace P from u and let x be

the first vertex we encounter that is in Q; such x surely exists under the current

hypotheses since v ∈ V (P ) ∩ V (Q). Note that by this definition of x, uPx+ xQα

forms a path for each α ∈ {v, w}.
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Claim 2.3.8. The path uPx is M-balanced from u to x.

Proof. Suppose the claim fails, that is, uPx is an M -saturated path. Then, we

have x′ ∈ V (uPx); however, at the same time, we have x′ ∈ V (Q), since x ∈ V (Q)

holds and Q is an M -saturated path. This contradicts the definition of x, and we

have this claim.

Note also that for α which equals either v or w, the subpath of Q between x and

α is an M -saturated path. Hence, with Claim 2.3.8, for this α, it follows that

uPx + xQα is an M -saturated path between u and α. Thus w ∈ U holds, a

contradiction. Now we are done for this proposition.

Let G be a factorizable graph and M be a perfect matching of G. We call a se-

quence of factor-components S := (H0, . . . , Hk), where k ≥ 0, an M-ear sequence,

from H0 to Hk if S satisfies the following three properties:

(i) for each i = 0, . . . , k, Hi ∈ G(G),

(ii) for any i, j ∈ {0, . . . , k}, i 6= j yields Hi 6= Hj, and

(iii) if k ≥ 1, then for each i = 1, . . . , k there is an M -ear Pi relative to Hi−1 and

through Hi.

We call k the length of S. The distance from H0 to Hk is the length of the

shortest M -ear sequence from H0 to Hk. If k ≥ 1, we call the sequence of M -ears

P := (P1, . . . , Pk) associated with S. If k = 0, an empty sequence, P := (), is

defined to be the M -ears associated with S, for convenience.

For S and P , we define the sequence union of S and P as V (S;P ) :=
⋃k
i=1 V (Hi)∪⋃k

i=1 V (Pi) \ V (H0), if k ≥ 1. If k = 0, V (S;P ) := ∅.

Proposition 2.3.9. Let G be a factorizable graph and M be a perfect matching of

G. Let X ⊆ V (G), and let H ∈ G(G) be such that V (H) is disjoint from X and

there is an M-ear P relative to X and through H, whose end vertices are u, v ∈ X.

Let Y := V (H) ∪ V (P ) \ {u, v}. Then, for any x ∈ Y ,
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(i) there exists an internal vertex y of P such that there is an M-balanced path

Q from x to y with V (Q) ⊆ Y and V (Q) ∩ V (P ) = {y}, and

(ii) for a vertex w which is identical to either u or v, Q+ yPw is an M-balanced

path from x to w, whose vertices except w are contained in Y .

Proof. If x ∈ V (P ) \ {u, v}, the claims are obvious with the trivial path given by

x. Let x ∈ V (H) \ V (P ). Then, by Proposition 2.3.4, for an arbitrarily chosen

z ∈ V (P ) ∩ V (H), there is a path R which is M -saturated between x and z or

M -balanced from x to z, with V (R) ⊆ V (H). Trace R from x and let y be the first

vertex we encounter that is in V (P ). Then, xRy, which is an M -balanced path

by Property 2.2.10, gives a desired path for (i), and the path Q := xRy + yPw,

where w is either u or v, gives one for (ii). Therefore, we are done.

Lemma 2.3.10. Let G be a factorizable graph and M be a perfect matching of

G. Let G1 ∈ G(G) and X ⊆ V (G) be a critical-inducing set for G1. Suppose

there exists an M-ear P relative to X, whose end vertices are u, v ∈ V (G), and

let I1, . . . , Is ∈ G(G), where s ≥ 1, be the factor-components that have common

vertices with the internal vertices of P . Then, X ∪
⋃s
i=1 V (Ii) is also a critical-

inducing set for G1.

Proof. We prove the claim by Lemma 2.3.3; let Y :=
⋃s
i=1 V (Ii). By Lemma 2.3.3,

Claim 2.3.11. for any x ∈ X there exists z ∈ V (G1) such that there is an M-

balanced path Qx from x to z with V (Qx) ⊆ X and V (Qx) ∩ V (G1) = {z}.

Claim 2.3.12. For any y ∈ Y there exists z ∈ V (G1) such that there exists an

M-balanced path Qy from y to z with V (Qy) ⊆ X ∪ Y and V (Qy) ∩ V (G1) = {z}.

Proof. Let i ∈ {1, . . . , s} be such that y ∈ V (Ii). By applying Proposition 2.3.9

to X, Ii and P , for w which equals either u or v, there is an M -balanced path R

from y to w such that V (R) \ {w} ⊆ Y . Therefore, R + Qw gives a desired path,

namely, Qy, where Qw denotes an M -balanced path in Claim 2.3.11.
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Apparently by the definition X∪Y is a separating set, therefore with Claims 2.3.11

and 2.3.12 we can conclude that X ∪ Y is a critical-inducing set for G1, by

Lemma 2.3.3.

Theorem 2.3.13. Let G be a factorizable graph, M be a perfect matching of G,

and let G1, G2 ∈ G(G). Then, G1/G2 if and only if there exists an M-ear sequence

from G1 to G2.

Proof. We first prove the sufficiency part of the theorem. Let G1 / G2, and let

X ⊆ V (G) be a critical-inducing set for G1 to G2. Let us define the following

three properties for Y ⊆ X:

C1(Y ): The set Y is a critical-inducing set for G1.

C2(Y ): For each H ∈ G(G) with V (H) ⊆ Y , there is an M -ear sequence from G1

to H.

Let X ′ be a maximal subset of X satisfying C1 and C2. Note that X ′ 6= ∅ holds

because V (G1) satisfies C1 and C2. We are going to prove the sufficiency part of

the theorem by showing X ′ = X. Suppose it fails, that is, X ′ ( X holds. Then,

Claim 2.3.14. there is an M-ear P relative to X ′ such that V (P ) ⊆ X.

Proof. The graph G[X]/G1 is factor-critical, and G[X ′]/G1 is a nice factor-critical

subgraph of G[X]/G1 by Property 2.3.1. Therefore, G[X]/X ′ is factor-critical

by Theorem 2.2.4, and MX\X′ forms a near-perfect matching of G[X]/X ′ expos-

ing only the contracted vertex x′ corresponding to X ′. By Proposition 2.2.3, in

G[X]/X ′ there is an M -ear P relative to x′, and in G it corresponds to an M -ear

relative to X ′ with V (P ) ⊆ X. Thus, the claim follows.

Let u, v ∈ X ′ be the end vertices of P . Let I1, . . . , Is ∈ G(G) be the factor-

components that have common vertices with internal vertices of P . We are going

to prove that X ′′ := X ′ ∪
⋃s
i=1 V (Ii) satisfies C1 and C2.

Claim 2.3.15. The set X ′′ satisfies C2.
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Proof. By Lemma 2.3.3, there exists an M -balanced path Qu (resp. Qv) from u

(resp. v) to a vertex of V (G1), which is contained in X and whose vertices except

the end vertex in V (G1) are disjoint from V (G1). Trace Qu from u, and let ru be

the first vertex we encounter that is contained in a factor-component I0 which has

common vertices also with Qv; such I0 surely exists since both Qu and Qv have

some vertices in G1. Trace Qv from v and let rv be the first vertex we encounter

that is in V (I0). For each w ∈ {u, v}, Property 2.2.10 yields that wQwrw is an M -

balanced path from w to rw with V (wQwrw) ⊆ X ′ and V (wQwrw)∩V (I0) = {rw},
and it holds that V (uQuru)∩V (vQvrv)\{ru, rv} = ∅. Therefore, uQuru+P+vQvrv

is an M -ear relative to I0 and through every I1, . . . , Is. By the definition of X ′,

there is an M -ear sequence from G1 to I0. Therefore, by adding subsequence

(I0, Ii) to it, we obtain an M -ear sequence from G1 to Ii, for each i = 1, . . . , s.

Thus, we obtain the claim.

Claim 2.3.16. The set X ′′ satisfies C1.

Proof. This is immediate by Lemma 2.3.10.

With Claims 2.3.15 and 2.3.16, the set X ′′ contradicts the maximality of X ′.

Therefore, we obtain X ′ = X, accordingly the sufficiency part of the theorem

follows.

From now on we prove the necessity. Let (G1 = H0, . . . , Hk = G2), where

k ≥ 0, be the M -ear sequence from G1 to G2. We are going to prove that there is

a critical-inducing set for G1 to G2. We proceed by induction on k. For the case

k = 0, that is, G1 = G2, the statement apparently holds by taking V (G1).

Let k > 0, and suppose the statement holds for k − 1. Consider the M -

ear subsequence (H0, . . . , Hk−1); by the induction hypothesis, there is a critical-

inducing set X ′ for H0 to Hk−1. If V (Hk) ⊆ X ′ holds, then X ′ is a critical-inducing

set of G1 to Hk and the statement holds. Hence hereafter we consider the case

of V (Hk) 6⊆ X ′; since X ′ is separating, this means V (Hk) ∩ X ′ = ∅. Thus, by

letting Pk be the associated M -ear relative to Hk−1 and through Hk, we have

V (Pk) \ X ′ 6= ∅ and the graph Pk − E(G[X ′]) is not empty. By Property 2.2.11,
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each connected component Pk − E(G[X ′]) is an M -ear relative to X ′, and one of

them, which we call P̃k, is through Hk. Therefore,

there is an M -ear P̃k relative to X ′ and through Hk.

Let I1, . . . , Is ∈ G(G), where s ≥ 1, be the factor-components that have com-

mon vertices with the internal vertices of P̃k, and let Y :=
⋃s
i=1 V (Ii). Then, by

applying Lemma 2.3.10 to the critical-inducing set X ′ for G1 and the M -ear P̃k,

we obtain that X ′ ∪ Y is a critical-inducing set for G1 to Hk. This completes the

proof.

Let G be a factorizable graph and M be a perfect matching of G. Let G1, G2 ∈
G(G), and let S := (G1 = H0, . . . , Hk = G2), where k ≥ 0, be an M -ear sequence

from G1 to G2, associated with M -ears P . For any i, j with 0 ≤ i ≤ j ≤ k, the

subsequence (Hi, . . . , Hj) is an M -ear sequence, from Hi to Hj, and we denote it

as S[i, j]. Additionally, if i < j, (Pi+1, . . . , Pj) is a sequence of M -ears associated

with S[i, j], and we denote it P [i, j]. If i = j, then the empty sequence is the one

associated with S[i, j], and it is also denoted as P [i, j]. We denote S[0, j] =: Sj,

and P [0, j] =: P j. Let us define in the following three properties for S and P :

D1(S, P ): If k ≥ 2, then by letting P = (P1, . . . , Pk), for each i = 2, . . . , k, V (Pi)

is disjoint from V (H0).

D2(S, P ): If k ≥ 1, by letting P = (P1, . . . , Pk), for each i = 1, . . . , k, for any

x ∈ V (Si;P i) there exists an internal vertex y of P1 such that there is an M -

balanced pathQ from x to y with V (Q) ⊆ V (Si;P i) and V (Q)∩V (P1) = {y}.

D3(S, P ): If k ≥ 1, by letting P = (P1, . . . , Pk), for each i = 1, . . . , k, for any

x ∈ V (Si;P i), for w which equals either of the end vertices of P1, there is

an M -balanced path R from x to w such that V (R) \ {w} ⊆ V (Si;P i).

Remark 2.3.17. By their definitions, if k = 0, then S and P trivially satisfy D1,

D2 and D3.

Remark 2.3.18. If k = 1, then S and P satisfy D1 trivially and also D2 and D3

by Proposition 2.3.9.
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Remark 2.3.19. D1, D2 and D3 are closed with respect to the substructures; if

S and P satisfy D1, D2 and D3, then for any i = 0, . . . , k, so does Si and P i.

Proposition 2.3.20. Let G be a factorizable graph and M be a perfect matching

of G. Let S be an M-ear sequence, and P be a sequence of M-ears associated with

S. Then, MV (S;P ) is a perfect matching of G[V (S;P )].

Proof. If the length k of S equals zero, the claim is trivially true. Let k ≥ 1, and

let S =: (H0, . . . , Hk) and P =: (P1, . . . , Pk). Of course, X := V (H0)∪̇ · · · ∪̇V (Hk)

has a perfect matching MX . For each Pi, the end vertices of Pi are in X and

any other vertex is covered by MPi
. Therefore, M contains a perfect matching of

Y := X ∪ V (P1) ∪ · · · ∪ V (Pk). Accordingly, V (S;P ) = Y \ V (H0) is covered by

MV (S;P ).

Lemma 2.3.21. Let G be a factorizable graph, and M be a perfect matching.

Let S := (H0, . . . , Hk), where k ≥ 1, be an M-ear sequence, associated with M-

ears P := (P1, . . . , Pk). Suppose Si and P i satisfy D1, D2, and D3 for each

i = 0, . . . , k − 1, V (Hk) is disjoint from V (Sk−1;P k−1), and S and P satisfy D1.

Then, S and P also satisfy D2 and D3.

Proof. If k = 1, then by applying Proposition 2.3.9 to V (H0), P1, and H1, it

holds that S and P satisfy D1, D2 and D3.

Hence hereafter let k ≥ 2. First note that each connected component of Pk −
E(G[V (Sk−1;P k−1)]) is an M -ear relative to V (Sk−1;P k−1) by Property 2.2.11,

and is disjoint from V (H0) since Pk is.

Take x ∈ V (S;P ) \ V (Sk−1;P k−1) arbitrarily, and let P x
k be a connected com-

ponent of Pk − E(G[V (Sk−1;P k−1)]) such that x is an internal vertex of P x
k if

x ∈ V (P ), or one through Hk if x ∈ V (Hk) \ V (P ).

Claim 2.3.22. There exists y ∈ V (Sk−1;P k−1) such that there exists an M-

balanced path Q from x to y whose vertices except y are contained in V (S;P ) \
V (Sk−1;P k−1).

Proof. By applying Proposition 2.3.9 to V (Sk−1;P k−1), P x
k , and Hk (if x ∈

V (Hk)), we obtain an internal vertex y of P1 and an M -balanced path Q from
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x to y with V (Q) \ {y} ⊆ V (Hk) ∪ V (P x
k ) \ V (Sk−1;P k−1). Since Pk is disjoint

from V (H0), we can see V (Hk) ∪ V (P x
k ) ⊆ V (S;P ). Therefore, V (Q) \ {y} ⊆

V (S;P ) \ V (Sk−1;P k−1), and the claim follows.

Claim 2.3.23. S and P satisfy D2.

Proof. By the hypothesis on Sk−1 and P k−1 there exists an internal vertex z of P1

such that there is an M -balanced path R from y to z with V (R) ⊆ V (Sk−1;P k−1)

and V (R) ∩ V (P1) = {z}. Therefore, by Claim 2.3.22, Q + R is an M -balanced

path from x to z, whose vertices are contained in V (S;P ) and disjoint from P1

except z.

Since x is chosen arbitrarily from V (S;P ) \ V (Sk−1;P k−1), we obtain that S

and P satisfy D2.

By similar arguments, we can say that S and P satisfy D3 too, and the claim

follows.

Proposition 2.3.24. Let G be a factorizable graph and M be a perfect matching

of G. Let G1, G2 ∈ G(G) be such that G1 / G2. Then, there exists an M-ear

sequence S from G1 to G2 of shortest length and M-ears P associated with S such

that D1(S, P ), D2(S, P ), and D3(S,P ) hold.

Proof. We proceed by induction on the distance k from G1 to G2. If k ∈ {0, 1},
then the statement apparently follows; see Remark 2.3.17 and Remark 2.3.18.

Let k ≥ 2, and suppose the statement is true for any two factor-components

with distance at most k − 1. Take arbitrarily an M -ear sequence S = (G1 =

H0, . . . , Hk = G2) from G1 to G2 of shortest length, and M -ears P = (P1, . . . , Pk)

associated with it. Let u1 and v1 be the end vertices of P1.

Claim 2.3.25. Without loss of generality we can assume that S and P are chosen

so that Sk−1 and P k−1 satisfy D1, D2, and D3.

Proof. Since Sk−1 and P k−1 give an M -ear sequence from H0 to Hk−1 of length

k− 1, the distance from H0 to Hk−1 is at most k− 1. Therefore, by the induction
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hypothesis, there is an M -ear sequence S ′ from H0 to Hk−1, associated with M -

ears P ′, whose length are at most k − 1, with D1, D2, D3 satisfied. By adding

Hk and Pk at the ends of S ′ and P ′, we obtain an M -ear sequence from G1 to

G2 of length at most k (in fact exactly k) and associated M -ears satisfying the

claim.

Claim 2.3.26. The vertices of Hk are disjoint from V (Sk−1;P k−1).

Proof. Suppose the claim fails, in other words, V (Hk)∩V (Sk−1;P k−1) 6= ∅ holds.

Since Hk is distinct from any factor-component of S, there exists i ∈ {1, . . . , k−1}
such that Pi has some internal vertices in V (Hk); in other words, Pi is an M -

ear relative to Hi−1 and through Hk. Then, (H0, . . . , Hi−1, Hk) gives an M -ear

sequence from G1 to G2, associated with M -ears (P1, . . . , Pi), whose length is i,

which is less than k; this contradicts the minimality of k, and we are done for this

claim.

Since Pk is an M -ear relative to Hk−1 and through Hk, Claim 2.3.26 yields

V (Pk) 6⊆ V (Sk−1;P k−1) and accordingly together with Property 2.2.9 it follows

that connected components of Pk − E(G[V (Sk−1;P k−1)]) are M -ears relative to

V (Sk−1;P k−1), one of which, say, Q is through Hk.

Claim 2.3.27. The M-ear Q is disjoint from V (H0).

Proof. Take x ∈ V (Q) ∩ V (Hk) arbitrarily, and let u and v be the end vertices

of Q. Trace xQu from x, and let y be the first vertex we encounter that is in

V (H0) ∪ {u}. On the other hand, trace xQv from x and let z be the first vertex

we encounter that is in V (H0) ∩ {v}. Then, yQz is an M -exposed path, whose

internal vertices contains x ∈ V (Hk), and whose vertices except the end vertices y

and z are disjoint from V (H0) ∪ V (Sk−1;P k−1). We are going to prove this claim

by showing y = u and z = v. First suppose the case where y, z ∈ V (H0). Then,

yQz is an M -ear relative to H0 and through Hk, which means (H0, Hk) forms an

M -ear sequence of length one, contradicting the definition of k, since k ≥ 2.

Second suppose the case where y ∈ V (H0) and z = v. Since Sk−1 and P k−1

satisfy D3, it follows that for either w ∈ {u1, v1} there is an M -balanced path R
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from z to w with V (R) \ {w} ⊆ V (Sk−1;P k−1). Therefore, yQz + R is an M -ear

relative to H0 and through Hk, again letting (H0, Hk) be an M -ear sequence, a

contradiction.

In the remaining case, where y = u and z ∈ V (H0), by symmetric arguments

we are again lead to a contradiction. Therefore, we obtain y = u and z = v, which

is equivalent to Q being disjoint from V (H0).

Since Sk−1 and P k−1 satisfy D2, for each α ∈ {u, v} there is an M -balanced

path Qα from α to rα, where rα is a internal vertex of P1, satisfying V (Qα) ⊆
V (Sk−1;P k−1). Trace Qu from u, and let s be the first vertex we encounter that is

contained in a factor-component I ∈ {H1, . . . , Hk−1}, which has common vertices

also with V (Qv); such I surely exists since both Qu and Qv have vertices in H1.

Trace Qu (resp. Qv) from u (resp. v), and let s (resp. t) be the first vertex we

encounter that is in V (I).

Claim 2.3.28. Let Q̃ := uQus+Q+ vQzt. Then Q̃ is an M-ear relative to I and

through Hk, which is disjoint from H0; accordingly, I = Hk−1.

Proof. By Property 2.2.10, the path uQus and vQzt are M -balanced from u

to s and from v to t, respectively, both of whose vertices are in V (Sk−1;P k−1),

satisfying (V (uQus) ∩ V (vQzt)) \ {s, t} = ∅. Therefore, Q̃ is an M -ear relative to

I and through Hk. Since Claim 2.3.27 says Q is disjoint from H0, we also have

that Q̃ is disjoint from H0.

If k = 2, then trivially we have I = Hk−1. Consider the case of k > 2, and

suppose I equals Hi for some i ∈ {1, . . . , k − 2}. Then, (H0, . . . , Hi, Hk) forms an

M -ear sequence from G1 to G2, associated with M -ears (P1, . . . , Pk−2, Q̃), whose

length is at most k − 1, a contradiction. Hence we have I = Hk−1.

By Claim 2.3.28, we obtain the M -ear sequence S = (H0, . . . , Hk) associated

with M -ears P ′ = (P1, . . . , Pk−1, Q̃) such that Sk−1 and P ′k−1 satisfy D1, D2, D3

and S and P ′ satisfy D1. Therefore, by Lemma 2.3.21, S and P ′ also satisfy D2

and D3, and we are done for the theorem.
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Theorem 2.3.29. For any factorizable graph G, the binary relation / is a partial

order on G(G).

Proof. The reflexivity is obvious from the definition. The transitivity obvi-

ously follows from Theorem 2.3.13. Hence, we shall prove the antisymmetry.

Let G1, G2 ∈ G(G) be factor-components with G1 / G2 and G2 / G1. Suppose

the antisymmetry fails, that is, G1 6= G2 holds. Let M be a perfect match-

ing of G. By Proposition 2.3.24, there exist an M -ear sequence from G1 to

G2, say S := (G1 = H0, . . . , Hk = G2), where k ≥ 1, and associated M -ears

P := (P1, . . . , Pk) satisfying D1, D2, and D3. Let u1 and v1 be the end vertices of

P1.

By Lemma 2.3.3, there exists w ∈ V (G2) such that there is an M -balanced path

Q from u1 to w. Trace Q from u1, and let x be the first vertex we encounter that

is in (V (S;P ) ∪ {v1}) \ {u1}; such a vertex surely exists since V (G2) ⊆ V (S;P ).

Claim 2.3.30. Without loss of generality we can assume that x 6= v1, i.e., x ∈
V (S;P ) holds and u1Qx is a path with v1 6∈ V (u1Qx) \ {u1}, which is M-balanced

from u1 to x.

Proof. Suppose the claim fails, that is, x = v1 holds. Then, u1 6= v1 holds by the

definition of x. If u1Qv1 is an M -saturated path, then P1 + u1Qv1 forms an M -

alternating circuit, containing non-allowed edges of E(P1)∩ δ(G1), a contradiction

by Property 2.2.9. Otherwise, that is, if u1Qv1 is an M -balanced path from u1

to v1, then v1Qw is an M -balanced path from v1 to w, disjoint from u1. Now

redefine x as the first vertex we encounter that is in V (S;P ) if we trace v1Qw

from v1. Then, v1Qx is a path disjoint from u1, which is M -balanced from v1 to x

by Property 2.2.10 and Proposition 2.3.20. Therefore, by changing the roles of u1

and v1, without loss of generality, we obtain this claim.

Therefore, hereafter let x ∈ V (S;P ) and let u1Qx be an M -balanced path from u1

to x with v1 6∈ V (u1Qx) \ {u1}. Since x ∈ V (S;P ) holds, Proposition 2.3.9 yields

that there is an M -balanced path R from x to an internal vertex of P1, say y, such

that V (R) ⊆ V (S;P ) and V (R) ∩ V (P1) = {y}.
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If u1P1y has an even number of edges, then u1Qx + xRy + yP1u1 is an M -

alternating circuit containing non-allowed edges, say, edges of E(P1) ∩ δ(u1), a

contradiction by Property 2.2.9.

Hence hereafter we assume u1P1y has an odd number of edges. By Proposi-

tion 2.3.4, there is a path L of G1 which is M -saturated between v1 and u1 or

M -balanced from v1 to u1. Trace L from v1, and let z be the first vertex on

u1Qx; note that v1Lz is an M -balanced path from v1 to z by Property 2.2.10,

since u1Qx ∩G1 consists of M -saturated paths. Also note that L is disjoint from

V (S;P ), since V (L) ⊆ V (G1) holds and V (S;P ) is disjoint from V (G1). If u1Qz

has an odd number of edges, then zQu1 + P1 + v1Lz is an M -alternating circuit

containing non-allowed edges, say, edges of E(P1)∩δ(G1), a contradiction by Prop-

erty 2.2.9. If u1Qz has an even number of edges, then v1Lz + zQx+ xRy+ yP1u1

is an M -alternating circuit, which is again a contradiction. Thus we get G1 = G2,

and the theorem follows.

2.4 A Generalization of the Canonical Partition

For non-elementary graphs, the family of maximal barriers never gives a parti-

tion of its vertex set [30]. Therefore, to analyze the structures of general graphs

with perfect matchings, we generalized the canonical partition based on Kotzig’s

way [24–26].

Definition 2.4.1. Let G be a factorizable graph. We define a binary relation ∼G
on V (G) as follows: For u, v ∈ V (G), u ∼G v if

(i) u and v are contained in the same factor-connected component and

(ii) either u and v are identical, or G− u− v is not factorizable.

Note the following fact, which is easy to see by Property 2.2.8:

Fact 2.4.2. Let G be a factorizable graph, and M be a perfect matching of G. Let

u, v ∈ V (G) be vertices contained in the same factor-connected component of G.

Then, u ∼G v if and only if there is no M-saturated path between u and v.
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Theorem 2.4.3. For any factorizable graph G, the binary relation ∼G is an equiv-

alence relation on V (G).

Proof. Since the reflexivity and the symmetry are obvious from the definition, we

prove the transitivity. Let M be a perfect matching of G. Let u, v, w ∈ V (H) be

such that u ∼G v and v ∼G w. If any two of them are identical, clearly the claim

follows. Therefore it suffices to consider the case that they are mutually distinct.

Suppose that the claim fails, that is, u 6∼G w. Then there is an M -saturated path

P between u and w. By Proposition 2.3.4, there is an M -balanced path Q from v to

u. Trace Q from v and let x be the first vertex we encounter that in V (Q)∩V (P ).

If uPx has an odd number of edges, vQx+ xPu is an M -saturated path between

u and v, a contradiction. If uPx has an even number of edges, then xPw has an

odd number of edges, and by the same argument we have a contradiction.

If a graph G is elementary, then the family of equivalence classes by ∼G, i.e.,

V (G)/ ∼G coincides with Kotzig’s canonical partition [24–26, 30] (see [19, 20]).

Therefore, given a factorizable graph G, we call V (G)/ ∼G the generalized canon-

ical partition, and denote it by P(G). By the definition of ∼G, each member of

P(G) is contained in some factor-connected component.

Moreover our proof for Theorem 2.4.3 contains a short proof for Kotzig’s Theo-

rem on the canonical partition of elementary graphs (Theorem 1.3.5). Kotzig [24–

26] takes three papers to prove it, thus to prove that ∼ is an equivalence relation

“from scratch” is considered to be hard [30]. However, in fact, it can be shown in

a simple way even without the premise of the Gallai-Edmonds structure theorem

nor the notion of barriers.

Note also the following:

Fact 2.4.4. Let G be a factorizable graph, and let H ∈ G(G). Then, PG(H) is

a refinement of P(H) = PH(H); that is, if u, v ∈ V (H) satisfies u ∼G v, then

u ∼H v holds.

Proof. We prove the contrapositive. Let u, v ∈ V (H) be such that u 6∼H v, which

is equivalent to u and v satisfying u 6= v and H − u− v is factorizable. Let M be
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a perfect matching of H − u − v. Since G − V (H) is also factorizable, by letting

M ′ be a perfect matching of it, we can construct a perfect matching of G− u− v,

namely, M ∪M ′. Therefore, u 6∼G v.

2.5 Correlations between / and ∼G

In this section we further analyze properties of factorizable graphs. Let G be

a factorizable graph, and let H ∈ G(G). We denote the upper bounds of H in

the poset (G(G), /) by U∗G(H); that is, U∗G(H) := {H ′ ∈ G(G) : H / H ′}. We

define UG(H) := U∗G(H) \ {H}, and the vertices contained in U∗G(H) (resp. UG(H)

) as U∗G(H) (resp. UG(H) ); i.e., U∗G(H) :=
⋃
H′∈U∗G(H) V (H ′) and UG(H) :=⋃

H′∈UG(H) V (H ′). We often omit the subscripts “G” if they are apparent from

contexts.

Lemma 2.5.1. Let G be a factorizable graph, M be a perfect matching of G, and

H ∈ G(G). Let P be an M-ear relative to H with end vertices u, v ∈ V (H). Then

u ∼G v.

Proof. Suppose the claim fails, that is, u 6= v and there is an M -saturated path

Q between u and v. Trace Q from u and let x be the first vertex we encounter that

is on P − u. If uPx has an even number of edges, uQx+ xPu is an M -alternating

circuit containing non-allowed edges, a contradiction. Hence we suppose uPx has

an odd number of edges. Let I ∈ G(G) be such that x ∈ V (I). Then one of the

components of uQx + xPu − E(I) is an M -ear relative to I and through H, a

contradiction by Theorem 2.3.13.

Theorem 2.5.2. Let G be a factorizable graph, and G0 ∈ G(G). For each con-

nected component K of G[U(G0)] there exists TK ∈ PG(G0) such that N(K) ∩
V (G0) ⊆ TK.

Proof. Let M be a perfect matching of G.

Claim 2.5.3. Let H ∈ U(G0), and S and P be the shortest M-ear sequence from

G0 to H and associated M-ears which satisfy D1, D2 and D3. Then, there exists
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T ∈ PG(G0) such that for each factor-components H ′ that has common vertices

with V (S;P ), N(H ′) ∩ V (G0) ⊆ T holds.

Proof. Let us denote S = (G0 = H0, . . . , Hk = H), where k ≥ 1, and P =

(P1, . . . , Pk). Let u1, v1 ∈ V (G0) be the end vertices of P1. By Lemma 2.5.1, there

exists T ∈ PG(G0) such that u1, v1 ∈ T .

Let H ′ ∈ G(G) be such that V (H ′) ∩ V (S;P ) 6= ∅. Suppose there exists

w ∈ N(H ′) ∩ V (G0) and let z ∈ V (H ′) be such that wz ∈ E(G). Take x ∈
V (H ′) ∩ V (S;P ) arbitrarily. By Proposition 2.3.4, there exists a path Q which

is M -balanced from z to x or M -saturated between z and x such that V (Q) ⊆
V (H ′). Trace Q from z and let y be the first vertex we encounter that is in

V (S;P ). Then, zQy is an M -balanced path from z to y with V (zQy) ⊆ V (H ′)

and V (zQy) ∩ V (S;P ) = {y}. By D3(S, P ), for either of r ∈ {u1, v1}, there is an

M -balanced path R from y to r such that V (R) \ {r} ⊆ V (S;P ).

Therefore, R + zQy + wz forms an M -ear relative to G0, whose end vertices

are r and w. By Lemma 2.5.1, therefore, w ∈ T and the claim follows.

Immediately by Claim 2.5.3 we can see that for any H ∈ U(G0) there exists

T ∈ PG(G0) such that N(H) ∩ V (G0) ⊆ T . Hence for each T ∈ PG(G0) we can

define

KT := {H ∈ U(G0) : V (H) ⊆ V (K) and N(H) ∩ V (G0) ⊆ T}

and VT :=
⋃
H∈KT

V (H). Note that
⋃
T∈PG(G0)

VT = V (K).

We are going to prove the claim by showing that |{T ∈ PG(G0) : VT 6= ∅}| = 1.

Suppose it fails; Then, since K is connected, there exist T1, T2 ∈ PG(G0) with

T1 6= T2 such that E[VT1 , VT2 ] 6= ∅. Let s1 ∈ VT1 and s2 ∈ VT2 be such that

s1s2 ∈ E[VT1 , VT2 ].

Claim 2.5.4. For each i = 1, 2, there is an M-balanced path Li from si to a vertex

in Ti, say ri, such that V (Li) \ {ri} ⊆ VTi.

Proof. Let i ∈ {1, 2}. Let H ∈ G(G) be such that si ∈ V (H). Then, V (H) ⊆ VTi .

Take an M -ear sequence S = (G0 = H0, . . . , Hk = H), where k ≥ 1, from G0 to
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H and an associated M -ears P = (P1, . . . , Pk) which satisfy D1, D2 and D3; By

Claim 2.5.3, V (S;P ) ⊆ VTi . By D3, there is an M -balanced path Li from si to

either of the end vertices of P1, say ri ∈ V (G0) such that V (Li) \ {ri} ⊆ V (S;P ).

Therefore, V (Li) \ {ri} ⊆ VTi .

By Claim 2.5.4, L1 + s1s2 + L2 is an M -ear relative to G0, whose end vertices

are r1 ∈ T1 and r2 ∈ T2. By Lemma 2.5.1 this yields T1 = T2, a contradiction.

Therefore, we can conclude that there exists T ∈ PG(G0) such that VT = V (K),

namely the claim follows.

By Theorem 2.5.2, we can see that upper bounds of a factor-component are

each “attached” to an equivalence class of the generalized canonical partition.

Proposition 2.5.5. Let G be a graph and M be a matching of G. Let H1, H2 ⊆ G

be factor-critical subgraphs of G such that there exists v ∈ V (H1)∩V (H2) and that

for each i = 1, 2, MHi
is a near-perfect matching of Hi exposing only v. Then,

H1 ∪H2 is factor-critical.

Proof. Apparently, M1∪M2 is a near-perfect matching of H1∪H2, exposing only

v. Since H1 and H2 are both factor-critical, the claim follows by Property 2.2.1.

Lemma 2.5.6. Let G be a factorizable graph, and H ∈ G(G). Then, the graph

G[U∗(H)]/H is factor-critical.

Proof. Let M be a perfect matching of G. Let X ⊆ 2V (G) be the family of

separable set for H. Then, by Theorem 2.3.29,
⋃
X∈X X = U∗(H). On the other

hand, G[
⋃
X∈X X]/H is factor-critical by Proposition 2.5.5. Therefore, the claim

follows.

Theorem 2.5.7. Let G be a factorizable graph, and let H ∈ G(G) and S ⊆ PG(H).

Let K1, . . . , Kl, where l ≥ 1 be some connected components of G[U(H)] such that

N(Ki) ∩ V (H) ⊆ S for i = 1, . . . , l. Then, G[V (K1) ∪ · · · ∪ V (Kl) ∪ S]/S is

factor-critical.
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Proof. First note that G[U∗(H)]/H is factor-critical by Lemma 2.5.6. Let h be

the contracted vertex of G[U∗(H)]/H. Note also that K is a connected component

of G[U(H)] if and only if there is a block K̂ of G[U∗(H)]/H such that K = K̂−h.

Therefore, by Property 2.2.2 the claim follows.

Remark 2.5.8. There are factorizable graphs where / does not hold for any two

factor-components, in other words, where all the factor-components are minimal

in the poset. For example, we can see by Theorem 2.3.13 and Theorem 2.5.2

that bipartite factorizable graphs are such, which means Theorem 2.3.29 is not a

generalization of the DM-decomposition, even though they have similar natures.

The following theorem shows that most of the factorizable graphs with |G(G)| ≥
2, in a sense, have non-trivial structures as posets.

Theorem 2.5.9. Let G be a factorizable graph, G1, G2 ∈ G(G) be factor-components

for which G1/G2 does not hold, and let G1 be minimal in the poset (G(G), /). Then

there are possibly identical complement edges e, f of G between G1 and G2 such

that G(G+ e+ f) = G(G) and G1 / G2 in (G(G+ e+ f), /).

Proof. First we prove the case where there is an edge xy such that x ∈ V (G1)

and y ∈ V (G2). Let M be a perfect matching of G. Choose a vertex w ∈ V (G2)

such that w 6∼G2 y in G2, and let P be an M -saturated path between w and y. If

xw ∈ E(G), there is an M -ear xy + P +wx relative to G1 and through G2, which

means G1 /G2 by Theorem 2.3.13. Thus xw 6∈ E(G). Suppose G(G+xw) 6= G(G).

Then there is an M -alternating circuit C containing xw in G + xw. Give an

orientation to C so that it becomes a dicircuit with the arc xx′. Trace C from x

and let z be the first vertex we encounter that is in V (G2). Then xy + xCz is

an M -ear of G which is relative to G2 and through G1, which means G2 / G1 by

Theorem 2.3.13, a contradiction to the minimality of G1. Thus G(G+xw) = G(G)

and we are done for this case.

Now we prove the other case, where there is no edge of G connecting G1 and

G2. Choose any x ∈ V (G1) and y ∈ V (G2). If G(G + xy) = G(G), we can reduce

it to the first case and the claim follows. Therefore it suffices to consider the case
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that G(G + xy) 6= G(G). Then, for any perfect matching M of G, there is an

M -alternating circuit C in G + xy containing xy. Give an orientation to C so

that it becomes a dicircuit with the arc yy′. Trace C from y and let u be the first

vertex of G1, and let v be the first vertex in G2 if we trace C from u in the opposite

direction.

If G(G + uv) = G(G), the claim follows by the same argument. Otherwise,

that is, if G(G + uv) 6= G(G), there is an M -alternating circuit D containing uv.

Give an orientation to D so that it becomes a dicircuit with the arc uu′. If uDv is

disjoint from the internal vertices of vCu, then uDv+vCu forms an M -alternating

circuit containing non-allowed edges, a contradiction. Otherwise, trace D from u

and let w be the first vertex on vCu− u.

If wCu has an even number of edges, wCu+ uDw is an M -alternating circuit

of G, a contradiction. Therefore, we assume wCu has an odd number of edges.

Let H ∈ G(G) be such that w ∈ V (H). Then wCu + uDw −H leaves an M -ear

in G which is relative to H and through G1, contradicting the minimality of G1.

Thus this completes the proof.

2.6 Examples

Example 2.6.1. Consider the graph G in Figure 2.1. The allowed edges of G

are those indicated by bold lines in Figure 2.2. Hence, it has these six factor-

connected components G1 = G[{a, b, c, d}], G2 = G[{e, f}], G3 = G[{g, h}], G4 =

G[{i, j}], G5 = G[{k, l,m, n}], and G6 = G[{o, p}]. They form the poset (G(G) =

{G1, . . . , G6}, /), given by the Hasse diagram in Figure 2.3.

Example 2.6.2. Consider the factorizable graph G in Figure 2.1. Its generalized

canonical partition is shown in Figure 2.4. Here the set of all the vertices is

partitioned into fourteen parts {S1, . . . , S14} = P(G), and {S1, S2, S3} = PG(G1)

forms a partition of V (G1), {S4, S5} = PG(G2) of V (G2), {S6, S7} = PG(G3) of

V (G3), {S8, S9} = PG(G4) of V (G4), {S10, S11, S12} = PG(G5) of V (G5), and

{S13, S14} = PG(G6) of V (G6).
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Figure 2.1: A factorizable graph G

G1 G2

G3

G4

G5

G6

Figure 2.2: The factor-connected com-
ponents of G

G1 G2

G3 G4 G5

G6

Figure 2.3: The Hasse diagram of (G(G), /)
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S1
S 2 S3 S 4 S5

S6

S 7

S8

S9 S10
S11 S12

S13

S14

Figure 2.4: The generalized canonical partition of G

Example 2.6.3. Consider the elementary subgraph G1, which is given as one of

the factor-connected components in Figure 2.2. It is a circuit with four vertices

{a, b, c, d}, and it is easy to see that its canonical partition, P(G1), is composed of

two sets: P(G1) = {{a, d}, {b, c}}. Therefore, compared with Figure 2.4, the par-

tition PG(G1), which equals {{a}, {b, c}, {d}}, indeed gives a refinement (actually

a proper refinement in this case) of P(G1).

Example 2.6.4. Consider the factor-connected component G1 in Figure 2.2.

We have U∗(G1) = {G1, G3, G4, G5, G6} and U(G1) = {G3, G4, G5, G6}, while

U∗(G1) = {a, . . . , d, g, . . . p} and U(G1) = {g, . . . , p}. Therefore, as indicated in

Figure 2.5, G[U(G1)] has three connected components K1, K2, and K3, and they

satisfy N(K1) ∩ V (G1) ⊆ S1, N(K2) ∩ V (G1) ⊆ S2, and N(K3) ∩ V (G1) ⊆ S2.
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K 1

K 2

K 3
U (G1)

Figure 2.5: The strict upper bounds of G1

2.7 Algorithmic Result

In this section, we discuss the algorithmic aspects of the partial order and the

generalized canonical partition. We denote by n and m respectively the number of

vertices and edges of input graphs. As we work on factorizable graphs and graphs

with near-perfect matchings, we can assume m = Ω(n).

We start with some materials from Edmonds’ maximum matching algorithm [7],

referring mainly to [23, 30]. For a tree T with a specified root vertex r, we call a

vertex v ∈ V (T ) inner (resp. outer) if the unique path in T from r to v has an

odd (resp. even) number of edges. Let G be a graph and M be a matching of

G. A tree T ⊆ G is called M-alternating if exactly one vertex of it, the root, is

exposed by M in G, and each inner vertex v ∈ V (T ) satisfies |δ(v) ∩ E(T )| = 2

and one of the edges of δ(v) ∩ E(T ) is contained in M .

A subgraph S ⊆ G is called a special blossom tree with respect to M (M-SBT )

if there is a partition V (C1)∪̇ · · · ∪̇V (Ck) = V (S) such that
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(i) S ′ := S/C1/ · · · /Ck is an M -alternating tree,

(ii) MCi
is a near-perfect matching of Ci,

(iii) Ci is a maximal factor-critical subgraph of G if it corresponds to an outer

vertex of S ′, and called an outer blossom, and

(iv) |V (Ci)| > 1 only if Ci is an outer blossom, for each i = 1, . . . , k.

Edmonds’ maximum matching algorithm tells us the following facts. Let G

be a graph, M be a near-perfect matching of G, and r ∈ V (G) be the vertex

exposed by M . Then an M -SBT S, with root r, can be computed, if it is carefully

implemented [11,37], in O(m) time. Additionally, the set of vertices from which r

can be reached by an M -balanced path is exactly the set of vertices contained in

the outer blossoms of S.

Thus, due to an easy reduction of the above facts, the following proposition

holds; they can be regarded as a folklore. See [1]. (In [1] they are presented as those

for elementary graphs, but in fact, they can be applicable for general factorizable

graphs.)

Proposition 2.7.1. Let G be a factorizable graph, M be a perfect matching of G,

and u ∈ V (G).

(i) The set of vertices that can be reached from u by an M-saturated path can

be computed in O(m) time.

(ii) All the allowed edges adjacent to u can be computed in O(m) time.

(iii) All the factor-components of G can be computed in O(nm) time.

Proposition 2.7.2. Given a factorizable graph G, one of its perfect matchings

M and G(G), we can compute the generalized canonical partition of G in O(nm)

time.

Proof. For each H ∈ G(G), we can compute PG(H) in a similar way to compute

the canonical partition of an elementary graph [1]. That is, for each v ∈ V (H),
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compute the set of vertices U that can be reached from v by an M -saturated

path, and recognize V (H) \ U as a member of PG(H). This procedure is surely

compatible by Theorem 2.4.3. Thus, the claim follows by Proposition 2.7.1.

Let G be a factorizable graph and M be a perfect matching of G. We say two

distinct factor-components G1, G2 of G with G1/G2 are non-refinable if G1/H/G2

yields G1 = H or G2 = H for any H ∈ G(G). Note that if G1 and G2 are non-

refinable, then there is an M -ear relative to G1 and through G2 by Theorem 2.3.13.

Note also that the converse of the above fact does not hold.

Lemma 2.7.3. Let G be a factorizable graph, M be a perfect matching of G, and

H ∈ G(G). Let S be a maximal M-SBT in G/H and let C be the blossom of T

containing the contracted vertex h corresponding to H. Then any non-refinable

upper bound of H in (G(G), /) has common vertices with C. Additionally, if a

factor-component I ∈ G(G) has some common vertices with C, then H / I.

Proof. For the former part, let H ′ be a non-refinable upper bound of H, and P

be an M -ear relative to H and through H ′. Since P − C is a disjoint union of

M -ears relative to C, we have P ⊆ C by Theorem 2.2.5 and the maximality of the

outer blossoms in M -SBT. Thus the former part of the claim follows.

For the latter part, by the definition of M -SBT and Proposition 2.2.6, there is

an M -alternating odd ear-decomposition P = {P1, . . . , Pk} of C. Let I ∈ G(G) be

such that V (I) ∩ V (C) 6= ∅ and that V (Pj) ∩ V (I) = ∅ for j = 1, . . . , i − 1 and

V (Pi) ∩ V (I) 6= ∅. We proceed by induction on i. If i = 1, the claim obviously

follows. Let i > 1. Gi−1 := P1 + · · ·+Pi−1 is factor-critical by Theorem 2.2.5, and

MGi−1
is a near-perfect matching of Gi−1. Moreover, Pi is an M -ear relative to

Gi−1. Therefore, with the same technique as in the proof of Theorem 2.3.13, there

exists I ′ ∈ G(G) such that V (I ′)∩V (C) 6= ∅ and that there is an M -ear relative to

I ′ and through I. Thus, by the induction hypothesis, the latter part of the claim

follows.

Proposition 2.7.4. Given a factorizable graph G, its perfect matching M , and

G(G), we can compute the poset (G(G), /) in O(nm) time.
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Proof. It is sufficient to list all the non-refinable upper bounds for each factor-

component of G by the following procedure:

1: D := (G(G), ∅); A := ∅;
2: for all H ∈ G(G) do

3: compute a maximal M -SBT T ; let C be the blossom of T corresponding to

its root;

4: for all x ∈ V (C), which satisfies x ∈ V (I) for some I ∈ G(G) do

5: A := A ∪ {(H, I)};
6: end for

7: end for

8: D := (G(G), A); STOP.

By Lemma 2.7.3, the partial order on V (D) determined by the reachability cor-

responds to / after the above procedure. That is, if we define a binary relation

≺ on V (D) so that H ′ / I ′ if there is a dipath from H ′ to I ′ in D, then ≺ and /

coincide. For each H ∈ G(G), the above procedure costs O(m) time, thus it costs

O(nm) time over the whole computation.

Remark 2.7.5. Given the digraph D after the procedure in Proposition 2.7.4, we

can compute all the upper bounds of a factor-component in O(n2) time. Thus, an

efficient data structure that represents the poset, for example, a boolean-valued

matrix L where L[i, j] = true if and only if Gi / Gj, can be obtained in additional

O(n2) time.

As a maximum matching of a graph can be computed in O(
√
nm) time [31, 38],

we have the following, combining Propositions 2.7.1, 2.7.2, and 2.7.4.

Theorem 2.7.6. Let G be a factorizable graph. Then the poset (G(G), /) and the

generalized canonical partition P(G) can be computed in O(nm) time.

2.8 Concluding Remarks

Finally, we give remarks to conclude this chapter. We have investigated canonical

structures of general factorizable graphs, noting the concept of factor-components,
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the fundamental building blocks of factorizable graphs. The key points are as

follows. We show that the factor-components of a factorizable graph form a

poset with respect to the canonical binary relation /. On the other hand, the

canonical partition by Kotzig [24–26] is generalized for general factorizable graphs,

the generalized canonical partition, which induces a decomposition of each factor-

components representing the overall structures of given graphs. These two notions

are actually related as shown by Theorem 2.5.2. By this relationship, we can

view these two as introducing a new canonical decomposition in which they, the

partially ordered structure by / and the generalized canonical partition are uni-

fied. We name this canonical decomposition the generalized cathedral structure

or just the cathedral structure, after the cathedral theorem for saturated graphs by

Lovász [28]. As we will see in Chapter 4, this new canonical decomposition is

closely related to the cathedral theorem.

Though we present the new canonical decomposition for factorizable graphs,

actually we can also present it for non-factorizable graphs by combining it with the

Gallai-Edmonds decomposition. Given a graph G, the Gallai-Edmonds decompo-

sition outputs a factorizable subgraph, G[C(G)]; here this subgraph is treated as

irreducible, and no further information is provided. By applying our new canonical

decomposition to G[C(G)], we can combine it with the Gallai-Edmonds decompo-

sition and can formulate it as a decomposition for general graphs including those

non-factorizable, giving further information about G[C(G)]. Accordingly, the new

canonical decomposition provides a refinement of the Gallai-Edmonds decomposi-

tion.

As we note in Section 2.5, the partially ordered structure by / is not a general-

ization of the DM-decomposition. However, a generalization of the DM-decomposition

is given using our new canonical decomposition [18]. Therefore, the new canon-

ical decomposition provides a viewpoint to see the known canonical decomposi-

tions, i.e., the Gallai-Edmonds decomposition, the canonical partition the DM-

decomposition, in a unified way.
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Barriers in General Graphs

3.1 Introduction

In this chapter, we show new results about structure of barriers, using the new

canonical decomposition we introduced in Chapter 2. As we gave in Section 1.3.1,

a barrier is a set of vertices determined by the Berge formula, a min-max formula

characterizing the size of maximum matchings. The notion of barriers corresponds

to a combinatorial interpretation of the dual optimal solutions of the maximum

matching problem. Barriers also serve as effective tools in combinatorial argu-

ments, taking on a role similar to canonical decompositions. (Inclusion-wise) max-

imal barriers seem especially important not only because they are easier to deal

with but also because they are related to canonical decompositions and seem to

have something intrinsic. However, investigating structures of barriers is not easy,

and not so much has been known about barriers. The main difficulty may have

lain lack of tools to see structures of factorizable graphs.

In this chapter, using the canonical decomposition for factorizable graphs intro-

duced in Chapter 2, we reveal a structure of maximal barriers; actually we work on

a wider notion, odd-maximal barriers (see Section 3.2). The main theorem (The-

orem 3.4.1) here states that the equivalence classes of the generalized canonical

partition are actually the “atoms” that constitute odd-maximal barriers; it also

describes the structures of odd components associated with odd-maximal barriers.

47



48 CHAPTER 3

There is another meaning of the main theorem. As we stated in Section 1.3.2,

there are two formulation of the canonical partition of elementary graphs; Kotzig’s

formulation is by an equivalence relation [24–26], and Lovász’s is based on barriers,

stating that the family of maximal barriers forms a partition of the vertex set [27,

30]. In Chapter 2, we gave a generalization of the canonical partition based on

Kotzig’s formulation. On the other hand, in non-elementary graphs, the family

of maximal barriers never forms a partition and there has not been known any

generalization of Lovász canonical partition for general graphs. The structural

description of odd-maximal barriers we give in the main theorem can be regarded as

a generalization of the canonical partition based on Lovász formulation. Therefore,

it is also a contribution of the theory of canonical decompositions.

The results in this chapter are also found in papers by the authoer [18,21]. The

rest of this section is devoted to summarize the succeeding sections. In Section 3.2,

we give the definition and some properties of odd-maximal barriers and explain

why it is a reasonable notion to study, together with the observation that in order

to know odd-maximal barriers in general graphs it suffices to work on factorizable

graphs. In Section 3.3, we give more details about odd-maximal barriers and

present proofs of some propositions in Section 3.2; readers familiar with might

skip this section. In Section 3.4, we give the statement of the main theorem in

this chapter, and then in Sections 3.5 and 3.6, we completes the proof of it.

3.2 Our Aim on Barriers

As we mention in Section 1.3.2, there is a structure of elementary graphs called

the canonical partition; Kotzig first introduced it as the equivalence classes of

a certain equivalence relation, and later Lovász reformulated it with the notion

of barriers, stating that the family of maximal barriers forms a partition of the

vertices in elementary graphs. This reformulation by Lovász has produced many

fundamental properties in matching theory such as the two ear theorem [1,30], and

the brick decomposition or the tight cut decomposition, and underlies polyhedral
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studies of matching theory; see the survey article [2].

However, in non-elementary graphs, the family of maximal barriers never forms

a partition of the vertices, and there has not been known the counterpart structure

of Lovász’s canonical partition for general graphs.

The question remains: how all the maximal barriers exist in graphs and what

is the counterpart in general graphs? Therefore, we are going to investigate it.

Actually, we work on a wider notion: odd-maximal barriers. 1

Definition 3.2.1. Let G be a graph. A barrier X ⊆ V (G) is called an odd-

maximal barrier if it is maximal with respect to X ∪ DX , i.e., no Y ⊆ DX with

Y 6= ∅ satisfies that X ∪ Y is a barrier of G.

Odd-maximal barriers have some nice properties (see [15]):

• A maximal barrier is an odd-maximal barrier.

• For elementary graphs, the notion of maximal barriers and the notion of

odd-maximal barriers coincide.

Hence, it seems reasonable to work on the odd-maximal barriers. The first one is

easy to see by the definition. The second one is by the following proposition:

Proposition 3.2.2. For an elementary graph G, if X ⊆ V (G) is an odd-maximal

barrier then it is also a maximal barrier.

Since a maximal barrier is odd-maximal, two notions coincide for elementary

graphs by Proposition 3.2.2. For the proof of Proposition 3.2.2, see the next

section.

Actually, with the Gallai-Edmonds structure theorem and the following propo-

sition by Király [15], it suffices to work on factorizable graphs:

Proposition 3.2.3 (Király [15]). Let G be a graph. A set of vertices S ⊆ V (G)

is an odd-maximal barrier of G if and only if it is a disjoint union of A(G) and

1This is identical to those Király calls strong barriers [15], however we call it in the different

way so as to avoid the confusion with the notion of strong end by Frank [9].
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an odd-maximal barrier of the factorizable subgraph G[C(G)]. Now let S be an

odd-maximal barrier. Then, the odd components of G − S are the components of

G[D(G)] and the odd components of G[C(G)]− (S \ A(G)).

See the next section for a proof of Proposition 3.2.3. Given the above facts, in

this chapter we give canonical structures of

odd-maximal barriers in general factorizable graphs

that can be regarded as a generalization of Lovász’s canonical partition, aiming

to contribute to the foundation of matching theory. Here, the new canonical

decomposition, i.e., the generalized cathedral decomposition in Chapter 2 serves

as a language to describe barriers. We also reveal structures of odd components

associated with odd-maximal barriers.

3.3 More Details on Odd-maximal Barriers

3.3.1 Proof of Proposition 3.2.2

Here we give a proof of Proposition 3.2.2. This proposition is easy to see from

known facts; readers familiar with matching theory might skip this section.

Proposition 3.3.1 (see [30] or [15]). Let G be a graph and X ⊆ V (G) be an

odd-maximal barrier of G. Then, X is a maximal barrier if and only if CX = ∅.

Proof. The necessity part is obvious by the definition. For the sufficiency part,

let CX 6= ∅ and take u ∈ CX arbitrarily. Then X ∪ {u} is also a barrier of G,

contradicting X being a maximal one.

Proposition 3.3.2 (see [30] or [15]). Let G be an elementary graph and X be a

barrier of G. Then, CX = ∅.

Proof. If CX 6= ∅, then since no the edges of E[X,CX ] are allowed as stated in

Proposition 3.5.1, we can see that G is not elementary, a contradiction.

By combining Proposition 3.3.1 and Proposition 3.3.2, Proposition 3.2.2 is

obtained.
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3.3.2 Proof of Proposition 3.2.3

Here we give a proof of Proposition 3.2.3. Readers familiar with matching theory

might skip this section.

Proposition 3.3.3 (folklore, see [30] or [15]). Let G be a graph, X ⊆ V (G) be a

barrier of G, and Y ⊆ V (G) be such that X ⊆ Y . Then, Y is a barrier of G if

and only if Y \X is a union of barriers of some connected components of G−X.

Additionally, Király shows that A(G) is the minimum odd-maximal barriers in

any graph G.

Theorem 3.3.4 (Kiráry [15]). Let G be a graph, and X ⊆ 2V (G) be the family of

the odd-maximal barriers of G. Then,
⋂
X∈X X = A(G).

Therefore, combining up Theorem 1.3.4, Proposition 3.3.3, and Theorem 3.3.4,

we obtain Proposition 3.2.3 immediately.

3.4 The Main Result in This Chapter

Let G be a factorizable graph, and let H ∈ G(G) and S ∈ PG(H). Based on

Theorem 2.5.2, we denote the set of all the strict upper bounds of H “assigned”

to S by UG(S); that is to say, H ′ ∈ UG(S) if and only if H ′ ∈ U(H) and there

is a connected component K of G[U(H)] such that V (H ′) ⊆ V (K) and NG(K) ∩
V (H) ⊆ S. We define UG(S) :=

⋃
H′∈UG(S) V (H ′) and U∗G(S) := UG(S) ∪ S.

We often omit the subscripts “G” if they are apparent from contexts. Note that

U(H) =
⋃
S∈PG(H) U(S). Our main result in this chapter is the following:

Theorem 3.4.1. Let G be a factorizable graph, and X ⊆ V (G) be an odd-maximal

barrier of G. Then, X is a disjoint union of some members of P(G); namely, there

exist S1, . . . , Sk ∈ P(G) such that X = S1∪̇ · · · ∪̇Sk. Additionally, odd components

of G − X have structures as follows: DX = (U∗(G1) \ U∗(S1))∪̇ · · · ∪̇(U∗(Gk) \
U∗(Sk)), where Gi ∈ G(G) is such that Si ∈ PG(Gi) for each i ∈ {1, . . . , k}.
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This theorem states that in general graphs the equivalence classes of the gen-

eralized canonical partition are the “atoms” that constitute odd-maximal barriers,

and that odd components associated to odd-maximal barriers are also described

canonically by the generalized cathedral structure. As we see in previous chapters,

among two formulations of the canonical partition of elementary graphs, the gen-

eralization of the canonical partition introduced in Chapter 2 is attained based on

Kotzig’s formulation; here we show it is as well a generalization based on Lovász’s

formulation.

Sketch of the Proof: This theorem is an immediate corollary of Theo-

rem 3.6.11, and the rest of this chapter is to prove Theorem 3.6.11. We shall prove

it by examining the reachability of alternating paths from two viewpoints— regard-

ing odd-maximal barriers and regarding the generalized cathedral structure—and

showing their equivalence.

Let us mention some additional propositions used later in this chapter.

Proposition 3.4.2 (Király [15]). A barrier X ⊆ V (G) of a graph G is odd-

maximal if and only if all the odd components of G−X are factor-critical.

Proposition 3.4.3 (Dulmage & Mendelsohn [4–6, 32]). Let G = (A,B;E) be a

bipartite factorizable graph, and M be a perfect matching of G. Let G1, G2 ∈ G(G),

and let u ∈ A ∩ V (G1), v ∈ A ∩ V (G2), and w ∈ B ∩ V (G2). Then there is an

M-balanced path from u to v if and only if G1 �A G2; additionally, there is an

M-saturated path between u to w if and only if G1 �A G2.

3.5 Barriers vs. Alternating Paths

In this section we introduce some lemmas on the reachability of alternating paths

regarding odd-maximal barriers. Given an odd-maximal barrier X of a factorizable

graph G, we generate a bipartite graph, thus canonically decompose X ∪DX and

state the reachability using the DM-decomposition as a language to describe the

structures. This technique of generating a bipartite graph has been known [9, 30]
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and essences of ideas are found there. However, we first reveal it thoroughly to

obtain Proposition 3.5.9 and Theorem 3.5.16.

The following proposition can be obtained as an immediate corollary of Propo-

sition 1.3.2 and is for factorizable graphs.

Proposition 3.5.1. Let G be a factorizable graph, and X ⊆ V (G) be a barrier of

G. Then for any perfect matching M of G,

(i) each vertex of X is matched to a vertex of DX ,

(ii) for each component K of G[DX ], MK is a near-perfect matching of K, ac-

cordingly |δ(K) ∩M | = 1,

(iii) M contains a perfect matching of G[CX ], and

(iv) no edge in E[X,CX ] nor E(G[X]) is allowed.

Proposition 3.5.2. Let G be a factorizable graph, and M be a perfect matching

of G. If X ⊆ V (G) is a barrier, then for any u, v ∈ X there is no M-saturated

path between u and v.

Proof. Suppose the claim fails, namely, there is an M -saturated path, say P ,

between u ∈ X and v ∈ X. Then, M4E(P ), i.e., (M \ E(P )) ∪ (E(P ) \M),

forms a perfect matching of G − u − v; accordingly, G − u − v is factorizable.

Now recall that since X is a barrier of the factorizable graph G, G − X has

exactly |X| odd components by the definition of barriers. Therefore, the graph

(G−u− v)− (X \{u, v}), which equals G−X, also has |X| odd components; this

means by the Berge formula that G−u−v is not factorizable, a contradiction.

Proposition 3.5.3. Let G be a factorizable graph, M be a perfect matching, and

X be a barrier of G. Then, for any x ∈ X and y ∈ CX , there is no M-saturated

path between x and y nor M-balanced path from x to y.

Proof. Suppose otherwise, that is, for some x ∈ X and y ∈ CX there is a path P

which is M -saturated between x and y or M -balanced from x to y. Trace P from
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x; let z be the first vertex we encounter that is in CX , and let w be the last vertex

in X ∪DX we encounter if we trace xPz from x. Since apparently E[CX , DX ] = ∅
holds, we have w ∈ X and wz ∈ E(xPz), and by Proposition 3.5.1 (iv), wz 6∈ M
holds. Therefore, xPw is an M -saturated path between x and w, contradicting

Proposition 3.5.2.

Proposition 3.5.4. Let G be a factorizable graph, M be a perfect matching, and

X ⊆ V (G) be an odd-maximal barrier. Then, for any u ∈ X and v ∈ X ∪ CX
there is no M-saturated path between u and v.

Proof. This is immediate by Proposition 3.5.2 and Proposition 3.5.3.

Definition 3.5.5. LetG be a graph, X ⊆ V (G) be a set of vertices, andK1, . . . , Kl

be the odd components of G −X. We denote the bipartite graph resulting from

deleting the even components of G−X, removing the edges whose vertices are all

contained in X, and contracting each Ki, where i = 1, . . . , l, respectively into one

vertex, as HG(X). Namely, HG(X) := (G− CX − E(G[X]))/K1/ · · · /Kl.

Example 3.5.6. Figure 3.1 indicates a factorizable graph, say G, with an odd-

maximal barrier (actually a maximal barrier) X = {b, f, h, i, j, r}. Actually, this

graph is isomorphic to the one given in Figure 3.16. If you contract each of the six

odd components of G−X into one vertex and remove the two edges in E(G[X]),

then you obtain the bipartite graph HG(X) as indicated in Figure 3.2. There are

exactly two odd components with more than one vertex in G − X, say K and

L; we denote the new vertices resulting from contracting K and L as vK and vL,

respectively. On the other hand, there are four odd components of G − X each

composed of a single vertex, i.e., k, l, m, a, respectively; here in Figure 3.2 and

some following figures, we call the vertices of HG(X) corresponding to them in just

the same way: k, l, m, a. However, we identify edges of HG(X) with those of G

naturally corresponding to them; e.g., we treat the edges bc and bvL as equivalent.

The next proposition is easily seen by Propositions 3.5.1 and 3.4.2 and enables

us to discuss Proposition 3.5.9 and so on.
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Figure 3.1: A factorizable graph G with an odd-maximal barrier X
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Figure 3.2: The bipartite graph HG(X)
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Figure 3.3: The graph G with a perfect matching M

Proposition 3.5.7. Let G be a factorizable graph and X be an odd-maximal bar-

rier of G. If M ⊆ E(G) is a perfect matching of G, then M ∩δ(X) forms a perfect

matching of HG(X). Conversely, if M ′ is a perfect matching of HG(X), there is a

perfect matching M of G such that M ′ = M ∩ δ(X).

Proof. The first claim follows by Proposition 3.5.1. For the second claim, let

M ′ be a given perfect matching of HG(X). Note that G[CX ] is factorizable by

Proposition 3.5.1 (iii), and let M ′′ be a perfect matching of G[CX ]. By Proposi-

tion 3.4.2, the odd components K1, . . . , Kl of G −X are each factor-critical. For

each i = 1, . . . , l, let Mi be a near-perfect matching of Ki exposing only the vertex

covered by M ′. Now by letting M := M ′′ ∪M ′ ∪
⋃l
i=1Mi, we obtain a desired

perfect matching M of G.

Example 3.5.8. In Figure 3.3, the path of G induced by the vertices r, o, p, q,

f , a, b, c, d, e is an M -saturated path from r to e; we call this path P . In HG(X),
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Figure 3.4: The graph HG(X) with the perfect matching M ′

P corresponds to the M -saturated path P ′ induced by the vertices r, vK , f , a, b,

vL. These paths P and P ′ illustrate the statement of Proposition 3.5.9.

The next proposition shows that the reachabilities of alternating paths are

equivalent between G and HG(X), which, with Proposition 3.4.3, implies Theo-

rem 3.5.16 immediately.

Proposition 3.5.9. Let G be a factorizable graph, X ⊆ V (G) be an odd-maximal

barrier of G, and K := {Ki : i = 1, . . . , l} be the family of odd components of

G − X, where l = |X|. Let M be a perfect matching of G and M ′ be the perfect

matching of HG(X) with M ′ = M ∩ δ(X). Let u, v ∈ X and w ∈ V (K), where

K ∈ K, and let wK be the contracted vertex of HG(X) corresponding to K.

(i) Then, for any M-balanced path (resp. M-saturated path) P of G from u to v

(resp. between u and w), P ′ := P/K1/ · · · /Kl is an M ′-balanced path (resp.

M ′-saturated path) of HG(X) from u to v (resp. between u and wK).

(ii) Conversely, for any M ′-balanced path (resp. M ′-saturated path) P ′ from u



58 CHAPTER 3

to v in HG(X) (resp. between u and wK), there is an M-balanced path (resp.

M-saturated path) P from u to v in G (resp. between u and w) such that

P ′ = P/K1/ · · · /Kl.

Proof. (i): (See Figure 3.5 and Figure 3.6.) For (i), we first prove the case where

P is an M -balanced path. Let u = x1, . . . , xq = v be the vertices of X ∩V (P ), and

suppose, without loss of generality, they appear in this order if we trace P from u.

For each i = 1, . . . , q, let Li ∈ K be such that x′i ∈ V (Li), which is well-defined by

Proposition 3.5.1 (i), and let zi be the contracted vertex of HG(X) corresponding

to Li. Note that by Proposition 3.5.1 (ii),

Claim 3.5.10. if xi 6= xj, then Li 6= Lj and accordingly zi 6= zj.

We are going to prove a bit refined statement of (i):

Claim 3.5.11. P ′ is an M ′-balanced path from u to v, with V (P ′) = {xi : i =

1, . . . , q} ∪ {zi : i = 1, . . . , q} \ {zq}.

Proof. We prove this claim by induction on q. If q = 1 (i.e., u = v), then P and

P ′ are trivial paths and the claim is obviously true. Let q ≥ 2, and suppose the

claim is true for any case with a shorter path. Since u′ ∈ V (L1) holds, the internal

vertices of uPx2 are contained in L1. By Proposition 3.5.1 (ii), δ(Li)∩M = {uu′}.
Thus, if we trace uPx2 from u then the last edge is not in M , which means

• uPx2 is an M -balanced path from u to x2. Accordingly,

• x2Pv is also an M -balanced path from x2 to v.

Note that

P ′1 := uPx2/K1/ . . . /Kl, which equals uPx2/L1, is apparently an M -

balanced path whose vertices are {u, z1, x2},

since E(P ′1) = {uz1, z1x2}, uz1 ∈ M , z1x2 6∈ M hold. Therefore, if q = 2 (i.e.,

x2 = v) then the claim follows. Hence hereafter we prove the case where q ≥ 3

(i.e., x2 6= v). Since x2Pv is an M -balanced path from x2 to v, the induction

hypothesis yields that
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P ′2 := x2Pv/K1/ . . . /Kl is an M ′-balanced path of HG(X) from x2 to

v, whose vertices are {x2, . . . , xq = v} ∪ {z2, . . . , zq−1}.

Thus, V (P ′1) ∩ V (P ′2) = {x2} by Claim 3.5.10; accordingly, P ′ = P ′1 + P ′2 is an

M ′-balanced path of HG(X) from u to v with V (P ′) = {xi : i = 1, . . . , q} ∪ {zi :

i = 1, . . . , q} \ {zq}. Now we are done for this claim.

Since we obtain Claim 3.5.11, we are done for this case of (i). The other case of

(i) where the path P is an M -saturated path can be proved by similar arguments.

(ii): (See Figure 3.7 and Figure 3.8.) For (ii), we first prove the case where

P ′ is an M ′-balanced path of HG(X). Since it is apparently true if u = v, we prove

the case where u 6= v. Let u = x0, y0, . . . , xp, yp, xp+1 = v be the vertices of P ′,

and suppose they appear in this order if we trace P ′ from u. Note that

• xi ∈ X holds for each i ∈ {0, . . . , p+ 1},

• yi is a contracted vertex corresponding to an odd component of G−X, say

Li, for each i ∈ {0, . . . , p}, and

• xiyi ∈M ′ and yixi+1 6∈M ′ hold for each i ∈ {0, . . . , p}.

For each i = 0, . . . , p, let y1i , y
2
i ∈ V (Li) be such that G has edges xiy

1
i , y

2
i xi+1 ∈

E(G) that correspond to xiyi, yixi+1 ∈ E(HG(X)), respectively. Since xiyi ∈ M ′

and yixi+1 6∈M ′, we have

xiy
1
i ∈M and y2i xi+1 6∈M .

Claim 3.5.12. For each i ∈ {0, . . . , p}, there is an M-balanced path Qi from y2i

to y1i whose vertices are contained in V (Li).

Proof. The odd component Li is factor-critical by Proposition 3.4.2, and MLi

forms a near-perfect matching of Li, which exposes y1i , by Proposition 3.5.1 (ii).

Therefore, by Property 2.2.1, there is an M -balanced path Qi of Li from y2i to

y1i .
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Figure 3.5: The path P in the proof of
Proposition 3.5.9 (i)
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Figure 3.6: The path P ′ in the proof of
Proposition 3.5.9 (i)

Thus, with Claim 3.5.12, by replacing each yi by Qi on P ′, we can get an M -

balanced path P of G from u to v that satisfies P ′ = P/K1/ · · · /Kl. Now we are

done for this case of (ii). The other case of (ii) where the path P ′ is an M ′-saturated

path can be proved by similar arguments.

Given a factorizable graph G and an odd-maximal barrier X, we denote the

DM-decomposition of HG(X) with respect to X as just the DM-decomposition of

HG(X). In this case, we sometimes denote �X as just �, omitting the subscript

“X”.

Definition 3.5.13. Let G be a factorizable graph and X be an odd-maximal

barrier of G. Let D be a DM-component of HG(X), and K1, . . . , Kl, where l =

|X ∩ V (D)|, be such that V (D) \ X are the vertices resulting from contracting

K1, . . . , Kl. We say D̂ is the expansion of D if it is the subgraph of G induced by

(V (D) ∩X) ∪
⋃l
i=1 V (Ki).
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Figure 3.7: The path P ′ in the proof of
Proposition 3.5.9 (ii)
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Figure 3.8: The path P is the proof of
Proposition 3.5.9 (ii)
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Figure 3.9: The DM-components of HG(X)
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Figure 3.10: The expansions of the DM-components of HG(X)

D1

D2 D3

Figure 3.11: The Hasse diagram that indicates
the DM-decomposition of HG(X)
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Example 3.5.14. Let G and X be the graph and the barrier given in Figure 3.1.

The bipartite graph HG(X), indicated in Figure 3.2, has three DM-components

shown by Figure 3.9: D1 = HG(X)[{r, vK}], D2 = HG(X)[{h, i, j, k, l,m}], D3 =

HG(X)[{b, f, vL, a}]. Therefore, the expansions of D1, D2, D3 are those indi-

cated in Figure 3.10: D̂1 = G[{o, p, q, r, s, t}], D̂2 = G[{h, i, j, k, l,m}], D̂3 =

G[{a, b, c, d, e, f}], respectively. The DM-decomposition of HG(X) (with respect

with X) has the poset structure ({D1, D2, D3},�), indicated by the Hasse diagram

given in Figure 3.11.

The next proposition is a basic observation on expansions.

Proposition 3.5.15. Let G be a factorizable graph, and X be an odd-maximal

barrier of G. Let D1, . . . , Dk be the DM-components of HG(X). For each i =

1, . . . , k, let D̂i be the expansion of Di. Then,

(i) {V (D̂i)}ki=1 forms a partition of X ∪DX ,

(ii) V (D̂i) is separating, accordingly D̂i is factorizable,

(iii) X ∩ V (D̂i) is an odd-maximal barrier of D̂i, and

(iv) HD̂i
(X ∩ V (D̂i)) is isomorphic to Di, for each i = 1, . . . , k.

Proof. Since the DM-components of HG(X) give the partition of V (HG(X)), (i)

apparently follows from the definition of expansions. For the first half of (ii),

suppose that V (D̂i) is not separating, equivalently by Property 2.3.1, that there

is a perfect matching M of G with δ(D̂i) ∩M 6= ∅. Then, by Proposition 3.5.7,

M ′ := M ∩ δ(X) forms a perfect matching of HG(X) satisfying δ(Di) ∩M ′ 6= ∅;
this is a contradiction, since of course V (Di) is a separating set. Therefore, V (D̂i)

is separating; accordingly, D̂i is factorizable, and we are done for (ii).

Apparently by the definition of expansions, D̂i \X is composed of |X ∩V (D̂i)|
number of odd components; moreover, since X is an odd-maximal barrier, Propo-

sition 3.4.2 yields that each of them are factor-critical. Therefore, V (D̂i) ∩ X is

an odd-maximal barrier of D̂i by the statement (ii) and Proposition 3.4.2 again.

Thus, we are done for (iii). The statement (iv) is apparent from the definition.
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Theorem 3.5.16. Let G be a factorizable graph, X be an odd-maximal barrier,

and M be a perfect matching of G. Let u, v ∈ X and w ∈ DX , and for each

α ∈ {u, v, w} let Dα be the DM-component of HG(X) whose expansion D̂α satisfies

α ∈ V (D̂α). Then, there is an M-balanced path from u to v (resp. an M-saturated

path from u to w) in G if and only if Du � Dv (resp. Du � Dw).

Proof. First note that D̂α is well-defined for each α ∈ {u, v, w} by Proposi-

tion 3.5.15 (i). Now the claim is immediate from Proposition 3.4.3 and Proposi-

tion 3.5.9.

Lemma 3.5.17. Let G = (A,B;E) be a bipartite factorizable graph, M be a perfect

matching of G, and D1, D2 be DM-components of G with D1 �A D2. Then, for

any u ∈ V (D1) ∩ A and v ∈ V (D2) ∩ B, any M-saturated path between u and v

traverses A ∩ V (D2).

Proof. Let P be an M -saturated path between u ∈ V (D1)∩A and v ∈ V (D2)∩B.

Apparently vv′ ∈ E(P ) holds, and since V (D2) is of course a separating set,

v′ ∈ V (D2) ∩ A holds. Namely, P has a vertex in V (D2) ∩ A, i.e., v′; the claim

follows.

The following lemma is obtained by Propositions 3.5.9 and Lemma 3.5.17.

Lemma 3.5.18. Let G be a factorizable graph, X be an odd-maximal barrier, and

M be a perfect matching of G. Let D̂1 and D̂2 be the subgraphs of G which are

respectively the expansions of DM-components D1 and D2 such that D1 � D2.

Then, for any u ∈ X ∩ V (D̂1) and w ∈ V (D̂2) \X, any M-saturated path between

u and w traverses X ∩ V (D̂2).

Proof. Let P be an M -saturated path between u ∈ X∩V (D̂1) and w ∈ V (D̂2)\X.

Let K1, . . . , Kl, where l = |X|, be the odd components of G − X. By Proposi-

tion 3.5.9, P ′ := P/K1/ · · · /Kl is an M ′-saturated path, where M ′ = M ∩ δ(X),

whose end vertices are respectively in X ∩ V (D1) and V (D2) \X. Therefore, P ′

traverses X ∩ V (D2) by Lemma 3.5.17, which means P traverses X ∩ V (D̂2).
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3.6 Canonical Structures of Odd-maximal Bar-

riers

In this section we examine the reachability of alternating paths regarding the

cathedral structure and show Theorem 3.4.1.

Proposition 3.6.1. Let G be a factorizable graph, and let H ∈ G(G) and S ∈
PG(H). Then, G[U∗(S)]/S is factor-critical.

Proof. This is immediately obtained by Theorem 2.5.7.

The next lemma is obtained by Proposition 3.6.1 and Property 2.2.1.

Lemma 3.6.2. Let G be a factorizable graph and M be a perfect matching of G,

and let H ∈ G(G) and S ∈ PG(H). Then, for any x ∈ U∗(S), there is an M-

balanced path from x to some vertex y ∈ S, whose vertices except y are contained

in U(S).

Proof. Since U(S) is separating, MU(S) forms a perfect matching of G[U(S)].

Therefore, MU(S) forms a near-perfect matching ofG′ := G[U∗(S)]/S exposing only

the contracted vertex s corresponding to S. Additionally, by Proposition 3.6.1, G′

is factor-critical. Therefore, by Property 2.2.1, in G′ for any x ∈ U∗(S) there is an

MU(S)-balanced path from x to s; this path corresponds to a desired path in G.

Thus, the claim follows.

Immediately by Theorem 2.4.3, we can see the next proposition:

Proposition 3.6.3. Let G be a factorizable graph and M be a perfect matching of

G, and let H ∈ G(G). A set of vertices S ⊆ V (H) is a member of PG(H) if and

only if it is a maximal subset of V (H) satisfying that there is no M-saturated path

between any two vertices of it.

Proof. This follows easily from Theorem 2.4.3 and Property 2.2.8.

The next one is by Proposition 2.3.24 and Lemma 3.6.2.
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Lemma 3.6.4. Let G be a factorizable graph and M be a perfect matching of G,

and let H ∈ G(G) and S ∈ PG(H). Then, for any s ∈ S and x ∈ U(S), there is

no M-saturated path between s and x nor M-balanced path from s to x.

Proof. (See Figure 3.12.) Suppose the claim fails, that is, there is a path P that

is M -balanced from s to x or M -saturated between s and x. Trace P from s and

let y be the first vertex we encounter that is in U(S). Trace sPy from y and let

z be the first vertex we encounter that is in V (H). Then, since V (H) and U(S)

are separating, Property 2.3.1 yields δ(V (H)) ∩M = ∅ and δ(U(S)) ∩M = ∅;
therefore,

zPy is an M -exposed path.

Consequently sPz is an M -saturated path between s and z, which means

z 6∈ S

by Proposition 3.6.3.

On the other hand, by Lemma 3.6.2, there is an M -balanced path Q from y

to some vertex t ∈ S whose vertices except t are contained in U(S). Therefore,

zPy+yQt is anM -ear relative to H, whose end vertices are z and t; this contradicts

Lemma 2.5.1 since z 6∼G t.

The next one, Lemma 3.6.5, is rather easy to see by Proposition 2.3.24, and com-

bining it with Lemma 3.6.2 we can obtain Lemma 3.6.6.

Lemma 3.6.5. Let G be a factorizable graph and M be a perfect matching of

G. Let H ∈ G(G), and let u, v ∈ V (H) be such that u 6∼G v. Let P be an M-

saturated path between u and v such that E(P ) \ E(H) 6= ∅, and let P1, . . . , Pl be

the connected components of P −E(H). Let S0, Sl+1 ∈ PG(H) be such that u ∈ S0

and v ∈ Sl+1. Then,

(i) two end vertices of Pi belong to the same member of PG(H), say Si,

(ii) Pi is, except its end vertices, contained in U(Si) for each i = 1, . . . , l, and
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sz t
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U (S )

V (H )

S

sPy
yQt

Figure 3.12: The proof of Lemma 3.6.4

(iii) Si 6= Sj holds, for any i, j ∈ {0, . . . , l + 1} with i 6= j.

Proof. Since V (H) is of course separating, Pi is an M -ear relative to H for each

i = 1, . . . , l; therefore, (i) follows by Lemma 2.5.1. Thus, the statement (ii) follows

by Theorem 2.3.13. For proving (iii), let xi and yi be the end vertices of Pi for

each i = 1, . . . , l. Without loss of generality, we can assume that the vertices

u =: y0, x1, y1, . . . , xl, yl, xl+1 := v appear in this order if we trace P from u. Then,

for any i, j with 0 ≤ i < j ≤ l + 1, yiPxj forms an M -saturated path between

yi ∈ Si and xj ∈ Sj. Thus we have Si 6= Sj by Proposition 3.6.3; this means (iii),

and we are done.

Lemma 3.6.6. Let G be a factorizable graph and M be a perfect matching of G.

Let H ∈ G(G), and let S, T ∈ PG(H) be such that S 6= T . Then, for any s ∈ S
and t ∈ U∗(T ), there is an M-saturated path between s and t, whose vertices are

contained in U∗(H) \ U(S).

Proof. (See Figure 3.13.) By Lemma 3.6.2, there is an M -balanced path P1 from

t to a vertex x ∈ T whose vertices except x are contained in U(T ). By Proposi-

tion 3.6.3, there is an M -saturated path P2 between s and x. By Lemma 3.6.5,
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S T

U (S ) U (T )

s

t

P1
P2

x

V (H )

Figure 3.13: The proof of Lemma 3.6.6

V (P2) is contained in U∗(H) \ U(S) \ U(T ); accordingly, V (P1) ∩ V (P2) = {x}.
Hence, P := P1 + P2 is an M -saturated path between s and t, contained in

U∗(H) \ U(S).

Lemma 3.6.6 immediately yields the following: Lemma 3.6.7.

Lemma 3.6.7. Let G be a factorizable graph and M be a perfect matching of G.

Let H ∈ G(G), and let S, T ∈ PG(H) be such that S 6= T . Then, for any s ∈ S
and t ∈ U∗(T ), there is an M-saturated path P between s and t such that for any

u ∈ S and v ∈ V (P ) \ S there is an M-saturated path between u and v.

Theorem 3.6.8. Let G be a factorizable graph, M be a perfect matching of G,

and u, v ∈ V (G) be such that G−u−v is not factorizable. If there are M-balanced

paths respectively from u to v and from v to u, then u and v are in the same

factor-component of G.

Proof. Let P be an M -balanced path from u to v, and Q be an M -balanced path

from v to u. Let x0, x1, . . . be the sequence of vertices in V (P ) ∩ V (Q) defined by

the following procedure (see Figure 3.14):

1: x0 := v; i := 0;

2: while xi 6= u do



69

3: trace xiQu from xi and let xi+1 be the first vertex we encounter that is in

V (uPxi) \ {xi};
4: i+ +.

5: end while

Note that this procedure surely stops in finite time (since at each repetition of

the while-loop xi draws nearer to u) and returns v = x0, . . . , xl = u for some l ≥ 0.

Note also the next claim, which is easy to see by the definition procedure.

Claim 3.6.9. (i) Tracing P from u, we encounter xl, . . . , x0 in this order.

(ii) For each i = 0, . . . , l− 1, uPxi and xiQxi+1 have only {xi, xi+1} as common

vertices.

(iii) For each i = 0, . . . , l, uPxi and vQxi has only xi as a common vertex.

Proof. By the definition procedure, for each i = 0, . . . , l− 1, xi+1 is located on P

nearer to u than xi is; this yields (i). The statement (ii) is also apparent from the

definition.

For (iii) note that vQxi = x0Qx1 + · · · + xi−1Qxi. Therefore it suffices to

prove that for each 0 ≤ j ≤ i − 1 only xi can be a common vertex of uPxi and

xjQxj+1; this holds true, since V (uPxj) ∩ V (xjQxj+1) = {xj, xj+1} by (ii), and

V (uPxi) ⊆ V (uPxj) \ {xj, . . . , xi−1} by (i).

Claim 3.6.10. For each i = 0, . . . , l − 1, xiQxi+1 is an M-balanced path from xi

to xi+1. For each i = 0, . . . , l, uPxi and vQxi are M-balanced paths from u to xi

and from v to xi, respectively.

Proof. (See Figure 3.15.) We give it by the induction on i. If i = 0 then both of

the claims are rather trivially true, and if i = l then the second claim is trivially

true. Therefore let 0 < i < l and suppose the claims are true for i− 1, i.e.,

(a) xi−1Qxi is an M -balanced path from xi−1 to xi,

(b) uPxi−1 is an M -balanced path from u to xi−1, and

(c) vQxi−1 is an M -balanced path from v to xi−1.
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Since vQxi = vQxi−1 + xi−1Qxi holds, the induction hypotheses (a) and (c) yield

that

vQxi is also an M -balanced path, from v to xi.

Now suppose the remaining claim fails, namely suppose uPxi is an M -saturated

path between u and xi. Note that uPxi +xiQv forms a path, since they have only

xi as a common vertex by Claim 3.6.9 (iii). Thus, uPxi + xiQv is an M -saturated

path between u and v; this means G− u− v is factorizable by Property 2.2.8, and

we have a contradiction. Therefore,

uPxi is an M -balanced path from u to xi.

Hence, we have x′i ∈ V (xiPv). Therefore, by the definition procedure of xi+1,

xiQxi+1 is an M -balanced path from xi to xi+1, and we are done.

Since

• Claim 3.6.10 states that uPxi is an M -balanced path for each i = 0, . . . , l,

and

• Claim 3.6.9 (ii) yields uPxi = uPxi+1 + xi+1Pxi for each i = 0, . . . , l − 1,

it follows that xi+1Pxi is an M -balanced path from xi+1 to xi for each i = 0, . . . , l−
1. In addition to this fact, recall that

• xiQxi+1 is an M -balanced path from xi to xi+1 by Claim 3.6.10, and

• xiQxi+1 and xi+1Pxi have only {xi, xi+1} as common vertices by Claim 3.6.9

(ii),

for each i = 0, . . . , l − 1. Therefore, xiQxi+1 + xi+1Pxi forms an M -alternating

circuit. Therefore, by Property 2.2.9, xi and xi+1 are contained in the same factor-

component of G for each i = 0, . . . , l − 1. This yields that u and v are contained

in the same factor-component.

Now we are ready to prove the main theorem, combining up the results in this

chapter.
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Figure 3.14: The definition procedure of x0, x1, . . . in the proof of Theorem 3.6.8
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Figure 3.15: The proof of Claim 3.6.10 in Theorem 3.6.8
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Theorem 3.6.11. Let G be a factorizable graph, and X be an odd-maximal barrier

of G. Let D1, . . . , Dk be the DM-components of HG(X). Let V̂1, . . . , V̂k be the

partition of X ∪DX such that for each i = 1, . . . , k, D̂i := G[V̂i] is the expansion

of Di. Then, for each i = 1, . . . , k, Si := X∩V̂i coincides with a member of PG(Hi)

for some Hi ∈ G(G), and V̂i coincides with U∗(Hi) \ U(Si).

Proof. Note that such a partition of X ∪DX surely exists by Proposition 3.5.15.

Let M be a perfect matching of G. Let i ∈ {1, . . . , k}.

Claim 3.6.12. There is no M-saturated path between any two vertices of Si.

Proof. This is immediate from Proposition 3.5.4.

Claim 3.6.13. Any vertex of Si is contained in the same factor-component of G,

say Hi.

Proof. Take u, v ∈ Si arbitrarily. Note first that there is no M -saturated path

between u and v, by Claim 3.6.12. Additionally, there are M -balanced paths from

u to v and from v to u respectively, which is immediate from Theorem 3.5.16 and

Proposition 3.4.3. Therefore by Theorem 3.6.8, u and v are contained in the same

factor-component. Thus, we have the claim.

Since Proposition 3.5.15 says V̂i is separating,

Claim 3.6.14. V (Hi) ⊆ V̂i.

Claim 3.6.15. For any u ∈ Si and any v ∈ V̂i \ Si, there is an M-saturated path

between u and v whose vertices are contained in V̂i.

Proof. Note that MV̂i
is a perfect matching of D̂i, Si is an odd-maximal barrier of

D̂i, and HD̂i
(Si) is a factorizable bipartite graph with exactly one DM-component

by Proposition 3.5.15. Thus, by applying Theorem 3.5.16 to D̂i, MV̂i
and Si, there

is an M -saturated path of D̂i between any u ∈ Si and any v ∈ V̂i \ Si. Namely,

the claim follows.
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By combining Claims 3.6.12, 3.6.13, 3.6.14, and 3.6.15, we obtain that Si is a

maximal subset of V (Hi) such that there is no M -saturated path between any two

vertices of it. Hence, by Proposition 3.6.3, Si ∈ PG(Hi) holds.

Claim 3.6.16. V̂i ⊇ U∗(Hi) \ U(Si).

Proof. Take y ∈ U∗(Hi) \U(Si) arbitrarily; recall U∗(Hi) \U(Si) = Si∪̇(U∗(Hi) \
U∗(Si)). If y ∈ Si, then of course y ∈ V̂i. Hence hereafter let y ∈ U∗(Hi) \ U∗(Si),
and let T ∈ PG(Hi) \ {Si} be such that y ∈ U∗(T ).

Let u ∈ Si. There is an M -saturated path P between u and y by Lemma 3.6.6.

Hence, by Proposition 3.5.4, y ∈ DX . Therefore, there exists j ∈ {1, . . . , k} such

that y ∈ V̂j. By Theorem 3.5.16 and Proposition 3.4.3, Di � Dj.

If i 6= j, then by Lemma 3.5.18, P has some internal vertices which belong

to Sj. However, by Proposition 3.5.4, there is no M -saturated path between any

two vertices respectively in Si and Sj, and of course V (P )∩Sj is disjoint from Si.

Namely, every M -saturated path between u ∈ Si and y ∈ U∗(Hi) \ U∗(Si) must

traverse a vertex not in Si, say p, such that there is no M -saturated path between

y and p. This contradicts Lemma 3.6.7. Hence, we obtain i = j; accordingly,

U∗(Hi) \ U(Si) is contained in V̂i.

Claim 3.6.17. V̂i ⊆ U∗(Hi) \ U(Si).

Proof. Let z ∈ V̂i \ V (Hi). By Claim 3.6.15, there is an M -saturated path P

between z and some vertex of Si which is contained in V̂i. Trace P from z and let

w be the first vertex we encounter that is in V (Hi). Since V (Hi) is separating, zPw

is an M -balanced path from z to w by Property 2.3.1. In D̂i/Hi, zPw corresponds

to an M -balanced path from z to the contracted vertex h, corresponding to Hi.

Obviously, M contains a near-perfect matching of D̂i/Hi exposing only h.

Therefore, D̂i/Hi is factor-critical by Property 2.2.1; accordingly, every factor-

components with vertices in V̂i is an upper bound of Hi with respect to / and

therefore V̂i is contained in U∗(Hi). Additionally, by Claim 3.6.15 again and

Lemma 3.6.4, we can see that V̂i is disjoint from U(Si) and so V̂i is contained

in U∗(Hi) \ U(Si).
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Figure 3.16: A factorizable graph G with an odd-maximal barrier X =
{b, f, h, i, j, r}

Thus, by Claims 3.6.16 and 3.6.17, we have V̂i = U∗(Hi) \ U(Si).

Example 3.6.18. The graph in Figure 3.16 is actually isomorphic to the graph

in Figure 3.1; recall that the set of vertices {b, f, h, i, j, r} is an odd-maximal bar-

rier, X. Its factor-components, the poset (G(G), /), and the generalized canonical

partition are indicated in Figures 3.17, 3.18, and 3.19. Figure 3.20 shows that X

is indeed the disjoint union of three equivalent classes of the generalized canonical

partition; i.e., X = S2∪̇S5∪̇S8. Additionally, the vertices in the odd compo-

nents of G−X, namely DX , can be also written canonically as the disjoint union

of three sets; DX = cU(S2)∪̇cU(S5)∪̇cU(S8), where cU(S2) = U∗(G1) \ U∗(S2),

cU(S5) = U∗(G2) \ U∗(S5), and cU(S8) = U∗(G3) \ U∗(S8).

Remark 3.6.19. If G in Theorem 3.6.11 is elementary, then k = 1 and V̂1 =

V (G), which follows by Propositions 3.5.1 and 3.5.15. Therefore, in this case,

Theorem 3.6.11 claims that P(G) is the family of (odd-) maximal barriers; namely,
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G1 G2

G3

G4

Figure 3.17: The factor-components of G

G1 G2

G3

G4

Figure 3.18: The Hasse diagram of the poset (G(G), /)
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Figure 3.19: The generalized canonical partition of G

S 2

S5

S8

cU (S 2) cU (S5)

cU (S8)

Figure 3.20: The canonical structure of the odd-maximal barrier X =
{b, f, h, i, j, r}
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Theorem 3.6.11 coincides with Theorem 1.3.5. Therefore, Theorem 3.6.11 can be

regarded as a generalization of Theorem 1.3.5.

Remark 3.6.20. Let G be a factorizable graph. For an arbitrary vertex x ∈ V (G),

take a maximal barrier of G − x, say X. Then, X ∪ {x} is a maximal barrier of

G; namely, for any vertex x there is an odd-maximal barrier that contains x.

Therefore, for any S ∈ P(G), there exists an odd-maximal barrier that contains

S.

Remark 3.6.21. With Király [15], if G is a non-factorizable graph, then {A(G)}∪
P(G[C(G)]) are the “atoms” that constitute odd-maximal barriers. For each odd-

maximal barrier X, the odd components of G−X are the components of G[D(G)]

and the odd components of G[C(G)]− (X \ A(G)); here G[C(G)] forms a factor-

izable graph and X \ A(G) is an odd-maximal barrier.
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Chapter 4

Lovász’s Cathedral Theorem

4.1 Introduction

A factorizable graph G, with the edge set E(G), is called saturated if G+e has more

perfect matchings than G for any edge e 6∈ E(G). There is a constructive charac-

terization of the saturated graphs known as the cathedral theorem [28, 30, 35, 36].

Counting the number of perfect matchings is one of the most fundamental enu-

meration problems, which has applications to physical science, and the cathedral

theorem is known to be useful for such a counting problem. For a given factor-

izable graph, we can obtain a saturated graph which possesses the same family

of perfect matchings by adding appropriate edges repeatedly. Many matching-

theoretic structural properties are preserved by this procedure. Therefore, we can

find several properties on perfect matchings of factorizable graphs using the cathe-

dral theorem, such as relationships between the number of perfect matchings of a

given factorizable graph and its structural properties such as its connectivity [30]

or the numbers of vertices and edges [14].

The cathedral theorem was originally given by Lovász [28] (see also [30]), and

later another proof was given by Szigeti [35, 36]. Lovász’s proof is based on the

Gallai-Edmonds structure theorem [30], which is one of the most powerful theo-

rem in matching theory. The Gallai-Edmonds structure theorem tells non-trivial

structures only for non-factorizable graphs, because it treats factorizable graphs

79
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as irreducible. Thus, Lovász proved the cathedral theorem by applying the Gallai-

Edmonds structure theorem to non-factorizable subgraphs of saturated graphs.

Szigeti’s proof is based on some results on the optimal ear-decompositions by

Frank [9], which is also based on the Gallai-Edmonds structure theorem and is not

a “matching-theory-closed” notion, while the cathedral theorem itself is closed.

The cathedral theorem is outlined as follows:

• There is a constructive characterization of the saturated graphs with an

operation called the cathedral construction.

• A set of edges of a saturated graph is a perfect matching if and only if it

is a disjoint union of perfect matchings of each “component part” of the

cathedral construction that creates the saturated graph.

• For each saturated graph, the way to construct it by the cathedral construc-

tion uniquely exists.

• There is a relationship between the cathedral construction and the Gallai-

Edmonds partition.

In Chapter 2, we introduced canonical structure theorems which tells non-

trivial structures for general factorizable graphs. Based on these results, we provide

yet another proof of the cathedral theorem in this chapter. The features of the

new proof are the following: First, it is quite natural and provides new facts as by-

products. The notion of “saturated” is defined by edge-maximality. By considering

this edge-maximality over the canonical structures of factorizable graphs, we obtain

the new proof in quite a natural way. Therefore, our proof reveals the essential

structure that underlies the cathedral theorem, and provides a bit more refined or

generalized statements from the point of view of the canonical structure of general

factorizable graphs.

Second, it shows that the cathedral theorem can be proved without the Gallai-

Edmonds structure theorem nor the notion of barriers, since our previous works,

as well as the proofs presented in this chapter, are obtained without them. Even
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the portion of the statements of the cathedral theorem stating its relationship to

the Gallai-Edmonds partition can be obtained without them.

The results in this chapter are also found in papers by the author [16, 22].

The rest of this section is to summarize the succeeding sections in this chapter.

In Section 4.2, we show some rather well-known propositions about the Gallai-

Edmonds partition, which are distinct from the Gallai-Edmonds structure theorem.

In Section 4.3, we present an outline of how we give the new proof of the cathedral

theorem. In Section 4.4, we further consider the theorems in Chapter 2 and show

one of the new theorems, which later turns out to provide a generalized version

of the part of the cathedral theorem regarding the Gallai-Edmonds partition. In

Section 4.5, we complete the new proof of the cathedral theorem. Finally, in

Section 4.6 we conclude this chapter.

4.2 The Gallai-Edmonds Partition

In this section, we present a proposition which shows another property of the

Gallai-Edmonds partition that is different from the Gallai-Edmonds structure the-

orem. This proposition is a well-known fact that connects the Gallai-Edmonds

structure theorem and Edmonds’ maximum matching algorithm, and we can find

it in [1, 23]. However, this proposition can be proved in an elementary way with-

out using them, nor the notion of barriers. In the following we present it with a

proof to confirm it. Note that Proposition 4.2.1 itself is NOT the Gallai-Edmonds

structure theorem.

Proposition 4.2.1. Let G be a graph, M be a maximum matching of G, and S

be the set of vertices that are exposed by M . Then, the following hold:

(i) A vertex u is in D(G) if and only if there exists v ∈ S such that there is an

M-balanced path from u to v.

(ii) A vertex u is in A(G) if and only if there is no M-balanced path from u to

any vertex of S, while there exists v ∈ S such that there is an M-exposed

path between u and v.
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(iii) A vertex u is in C(G) if and only if for any v ∈ S there is neither an

M-balanced path from u to v nor an M-exposed path between u and v.

Proof. For the necessity part of (i), let P be the M -balanced path from u to v.

Then, M4E(P ) is a maximum matching of G that exposes u. Thus, u ∈ D(G).

Now we move on to the sufficiency part of (i). If u ∈ D(G)∩ S, the trivial M -

balanced path ({u}, ∅) satisfies the property. Otherwise, that is, if u ∈ D(G) \ S,

by the definition of D(G) there is a maximum matching M ′ of G that exposes u.

Then, G.M4M ′ has a connected component which is an M -balanced path from

u to some vertex in S. Hence, we are done for (i).

For (ii), we first prove the necessity part. Let P be theM -exposed path between

u and v, and w ∈ V (P ) be such that uw ∈ E(P ). Then, P − u is an M -balanced

path from w to v, which means w ∈ D(G) by (i). Then, we have u ∈ A(G), since

the first part of the condition on P yields u 6∈ D(G) by (i).

Now we move on to the sufficiency part of (ii). Note that the first part of

the conclusion follows by (i). By the definition of A(G), there exists w ∈ D(G)

such that wu ∈ E(G). By (i), there is an M -balanced path Q from w to a vertex

v ∈ S. If u ∈ V (Q), then since u 6∈ D(G), the subpath of Q from v to u is an

M -exposed path between v and u by (i). Thus, the claim follows. Otherwise,

that is, if u 6∈ V (Q), then Q + wu forms an M -exposed path between v and u.

Therefore, again the claim follows. Thus, we are done for (ii).

Since we obtain (i) and (ii), consequently (iii) follows.

The next proposition is also known (see [1]) and is easily obtained from Proposi-

tion 4.2.1.

Proposition 4.2.2. Let G be a factorizable graph and M be a perfect matching of

G. Then, for any x ∈ V (G), the following hold:

(i) A vertex u is in D(G−x) if and only if there is an M-saturated path between

x and u.

(ii) A vertex u is in A(G− x) ∪ {x} if and only if there is no M-saturated path

between x and u, while there is an M-balanced path from x to u.
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(iii) A vertex u is in C(G−x) if and only if there is neither an M-saturated path

between u and x nor an M-balanced path from x to u.

Proof. Let x′ ∈ V (G) be such that xx′ ∈M . LetG′ := G−x andM ′ := M\{xx′}.
Note that apparently

M ′ is a maximum matching of G′, exposing only x′.

By Propositions 4.2.1, u ∈ D(G′) if and only if there is an M ′-balanced path from

u to x′. Additionally, the following apparently holds: there is an M ′-balanced path

from u to x′ in G′ if and only if there is an M -saturated path between u and x

in G. Thus, we obtain (i). The other claims, (ii) and (iii), also follow by similar

arguments.

Proposition 4.2.2 associates factorizable graphs with the Gallai-Edmonds par-

tition, and it will be used later in the proof of Theorem 4.4.1. Hence it will

contribute to the new proof of the cathedral theorem.

4.3 Outline of the New Proof

Here we give an outline of how we give a new proof of the cathedral theorem

together with backgrounds of the theorem. In Chapter 2, we introduced a new

canonical decomposition of factorizable graphs. The key points of it are as follows.

(a) For a factorizable graph G, a partial order / can be defined on the factor-

connected components G(G) (Theorem 2.3.29).

(b) An equivalence relation ∼G based on factor-connected components can be

defined on V (G) (Theorem 2.4.3). The equivalence classes by ∼G can be

regarded as a generalization of Kotzig’s canonical partition [24–26].

(c) These two notions / and ∼G are related each other in the sense that for

H ∈ G(G) a relationship between H and its strict upper bounds in the poset

(G(G), /) can be described using ∼G (Theorem 2.5.2).



84 CHAPTER 4

In Section 4.4, we begin to present new results in this paper. We further consider

the structures given by (a) (b) (c) and show a relationship between the structures

and the Gallai-Edmonds partition:

If the poset (G(G), /) of a factorizable graph G has the minimum ele-

ment G0, then V (G0) = V (G) \
⋃
x∈V (G)C(G− x) (Theorem 4.4.1).

This theorem later plays a crucial role in the new proof of the cathedral theorem.

In Section 4.5, we consider saturated graphs and present a new proof of the

cathedral theorem. Given a saturated elementary graph and a family of saturated

graphs satisfying a certain condition, we can define an operation, the cathedral

construction, that creates a new graph obtained from the given graphs by adding

new edges. Here the given graphs are called the foundation and the family of

towers, respectively. We consider the canonical decomposition in Chapter 2 for

saturated graphs and obtain the following:

If G is a saturated graph, then the poset (G(G), /) has the minimum

element G0 (Lemma 4.5.7).

Moreover, G0 and all connected components of G− V (G0) are saturated and they

are well-defined as a foundation and towers (Lemmas 4.5.9 and 4.5.11). We show

that G is the graph obtained from them by the cathedral construction (Theo-

rem 4.5.3).

Conversely, if a graph G obtained by the cathedral construction from

a foundation G0 and some towers is saturated, and G0 is the minimum

element of the poset (G(G), /) (Theorem 4.5.4).

By Theorems 4.5.3 and 4.5.4, the constructive characterization of the saturated

graphs—the most important part of the cathedral theorem—is obtained. Addi-

tionally, the other parts of the cathedral theorem follow quite smoothly by Theo-

rem 4.4.1 and the natures of the canonical decomposition in Chapter 2.
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4.4 Factorizable Graphs through the Gallai-Edmonds

Partition

In this section, we present a new result on a relationship between the Gallai-

Edmonds partition and the canonical structures of factorizable graphs in Chap-

ter 2. As we later see in Section 4.5, Theorem 4.4.1 can be regarded as a general-

ization of a part of the statements of the cathedral theorem.

Theorem 4.4.1. Let G be a factorizable graph such that the poset (G(G), /) has

the minimum element G0. Then, V (G0) is exactly the set of vertices that is disjoint

from C(G− x) for any x ∈ V (G); that is, V (G0) = V (G) \
⋃
x∈V (G)C(G− x).

To show Theorem 4.4.1, we give some lemmas.

In the following lemma, we present a structure of factorizable graphs, combining

up some results in previous Chapters.

Lemma 4.4.2. Let G be a factorizable graph, and M be a perfect matching of G.

Let H ∈ G(G), S ∈ PG(H), and T ∈ PG(H) \ {S}.

(i) For any u ∈ U∗(S), there is an M-balanced path from u to some vertex v ∈ S
whose vertices except v are in U(S).

(ii) For any u ∈ S and v ∈ U∗(T ), there is an M-saturated path between u and

v whose vertices are all contained in U∗(H) \ U(S).

(iii) For any u ∈ S and v ∈ U(S), there are neither M-saturated paths between u

and v nor M-balanced paths from u to v.

(iv) For any u, v ∈ S, there is no M-saturated path between u and v, while there

is an M-balanced path from u to v.

Proof. The statements (i), (ii), and (iii) are stated in Lemma 3.6.2, Lemma 3.6.6,

Lemma 3.6.4, respectively. The statement (iv) is immediately obtained by com-

bining Fact 2.4.2 and Proposition 2.3.4.

By Proposition 2.3.4 and Lemma 4.4.2, the next lemma follows.
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Lemma 4.4.3. Let G be a factorizable graph, and M be a perfect matching of G.

Let H ∈ G(G) and S ∈ PG(H). Then, the following hold:

(i) For any u ∈ U(S) and v ∈ U∗(H) \ U∗(S), there is an M-saturated path

between u and v.

(ii) For any u ∈ U(S) and v ∈ S, there is no M-saturated path between u and v;

however, there is an M-balanced path from u to v.

(iii) For any w ∈ S and v ∈ U∗(H)\U∗(S), there is an M-saturated path between

w and v.

(iv) For any w, v ∈ S, there is no M-saturated path between w and v; however,

there is an M-balanced path from w and v.

(v) For any w ∈ S and v ∈ U(S), there is neither an M-saturated path between

w and v nor an M-balanced path from w to v.

Proof. The statements (iii), (iv), and (v) are immediate from (ii), (iv), and (iii)

of Lemma 4.4.2, respectively.

For (i), let P1 be an M -balanced path from u to some vertex x ∈ S such that

V (P1) \ {x} ⊆ U(S), given by (i) of Lemma 4.4.2. By (ii) of Lemma 4.4.2, there is

an M -saturated path P2 between x and v such that V (P2) ⊆ U∗(H)\U(S). Hence,

the path obtained by adding P1 and P2 forms an M -saturated path between u and

v, and (i) follows.

The first and the latter halves of (ii) are restatements of (iii) and (i) of Lemma 4.4.2,

respectively.

By comparing Proposition 4.2.2 and Lemma 4.4.3, the next lemma follows.

Lemma 4.4.4. Let G be a factorizable graph such that the poset (G(G), /) has the

minimum element G0. Let S ∈ PG(G0).

(i) If x ∈ U(S), then D(G − x) ⊇ U∗(G0) \ U∗(S), A(G − x) ∪ {x} ⊇ S, and

C(G− x) ⊆ U(S).
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(ii) If x ∈ S, then D(G − x) = U∗(G0) \ U∗(S), A(G − x) ∪ {x} = S, and

C(G− x) = U(S).

Proof. The claims are all obtained by comparing the reachabilities of alternating

paths regarding Proposition 4.2.2 and Lemma 4.4.3. Let x ∈ U(S). By Proposi-

tion 4.2.2 (i) and Lemma 4.4.3 (i), we have D(G − x) ⊇ U∗(G0) \ U∗(S). It also

follows that A(G−x)∪{x} ⊇ S by a similar argument, comparing Proposition 4.2.2

(ii) and Lemma 4.4.3 (ii). Therefore, since V (G) = D(G)∪̇A(G)∪̇C(G) = (U∗(G0)\
U∗(S))∪̇S∪̇U(S), we have C(G− x) ⊆ U(S), and we are done for (i). The state-

ment (ii) also follows by similar arguments with Proposition 4.2.2 and Lemma 4.4.3

(iii) (iv) (v).

Now we can prove Theorem 4.4.1 using Lemma 4.4.4.

Proof of Theorem 4.4.1.

Claim 4.4.5. For any x ∈ V (G), V (G0) ∩ C(G− x) = ∅.

Proof. Let u ∈ V (G0) and let S ∈ PG(G0) be such that u ∈ S. By Lemma 4.4.4,

if x ∈ U∗(S) then u ∈ A(G − x), and if x ∈ U∗(G0) \ U∗(S) then u ∈ D(G − x).

Thus, anyway we have u 6∈ C(G− x), and the claim follows.

Claim 4.4.6. For any u ∈ V (G) \ V (G0), there exists x ∈ V (G) such that u ∈
C(G− x).

Proof. Let u ∈ V (G) \ V (G0) and let S ∈ PG(G0) be such that u ∈ U(S). Then,

for any x ∈ S, we have u ∈ C(G−x) by Lemma 4.4.4. Thus, we have the claim.

By Claims 4.4.5 and 4.4.6, we obtain the theorem.

We will obtain in Section 4.5 that if a graph is saturated then the poset by / has

the minimum element. Thus, the above theorem, Theorem 4.4.1, will turn out to

be regarded as a generalized version of the part of the cathedral theorem related

to the Gallai-Edmonds partition.
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Figure 4.1: A saturated graph G̃

4.5 Another Proof of the Cathedral Theorem

4.5.1 The Cathedral Theorem

In this section, we give yet another proof as a consequence of the structures given in

Chapter 2. For convenience, we treat empty graphs as factorizable and saturated.

Definition 4.5.1 (The Cathedral Construction). Let G0 be a saturated elemen-

tary graph and let {GS}S∈P(G0) be a family of saturated graphs, some of which

might be empty. For each S ∈ P(G0), join every vertex in S and every vertex of

GS. We call this operation the cathedral construction. Here G0 and {GS}S∈P(G0)

are respectively called the foundation and the family of towers.

Figures 4.1, 4.2, 4.3 show examples of the cathedral construction. In Fig-

ure 4.2, the graph G0 is an elementary saturated graph with the canonical parti-

tion P(G0) = {S, T,R}, and the graphs GS, GT , GR are saturated graphs such

that GS and GR are respectively elementary and non-elementary while GT is an

empty graph. If we conduct the cathedral construction with the foundation G0

and the family of towers T = {GS, GT , GR}, we obtain the saturated graph G̃
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G0

GS

GR

S

T R

Figure 4.2: The foundation and the towers that
create G̃

P Q

H 0

H P

Figure 4.3: The foundation and
the towers that create GR

C1

C 2

C3C 4

Figure 4.4: The factor-connected components of
G̃

C1

C 2

C3

C 4

Figure 4.5: The Hasse diagram
of (G(G̃), /)
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Figure 4.6: The generalized canonical partition of G̃

in Figure 4.1. Moreover, Figure 4.3 shows that if we conduct the cathedral con-

struction with the foundation H0 with P(H0) = {P,Q} and the family of towers

{HP , HQ}, where HP is an elementary saturated graph and HQ is an empty graph,

then we obtain the saturated graph GR. (Therefore, in other words, the graph G̃

is constructed by a repetition of the cathedral construction using the elementary

saturated graphs H0, HP , G0, and GS as fundamental building blocks.)

Theorem 4.5.2 (The Cathedral Theorem [28,30]). A factorizable graph G is sat-

urated if and only if it is constructed from smaller saturated graphs by the cathedral

construction. In other words, if a factorizable graph G is saturated, then there is

a subgraph G0 and a family of subgraphs T of G which are well-defined as a foun-

dation and a family of towers, and G is the graph constructed from G0 and T by

the cathedral construction; conversely, if G is a graph obtained from a foundation

and towers by the cathedral construction, then G is saturated.

Additionally, if G is a saturated graph obtained from a foundation G0 and a
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family of towers T = {GS}S∈P(G0) by the cathedral construction, then,

(i) e ∈ E(G) is allowed if and only if it is an allowed edge of G0 or GS for some

S ∈ P(G0),

(ii) such G0 uniquely exists; that is, if G can be obtained from a foundation G′0

and a family of towers T ′ by the cathedral construction, then V (G0) = V (G′0)

holds, and

(iii) V (G0) is exactly the set of vertices that is disjoint from C(G − x) for any

x ∈ V (G).

In the cathedral construction, each tower is saturated. Therefore, the first

sentence of Theorem 4.5.2 reveals a nested or inductive structure and gives a con-

structive characterization of the saturated graphs by the cathedral construction. In

this characterization, the elementary saturated graphs are the fundamental build-

ing blocks. Theorem 4.5.2 (i) tells that a set of edges in a saturated graph G is

a perfect matching if and only if it is a disjoint union of perfect matchings of the

foundation and the towers that create G. Theorem 4.5.2 (ii) tells that for each sat-

urated graph, the way to construct it uniquely exists, and (iii) shows a relationship

between the cathedral construction and the Gallai-Edmonds partition.

In the new proof, the following two theorems, Theorems 4.5.3 and 4.5.4, to-

gether with Theorem 4.4.1, will serve as nuclei, referring to the special features of

the poset and the canonical partition for saturated graphs.

Theorem 4.5.3. If a factorizable graph G is saturated, then the poset (G(G), /)

has the minimum element, say G0, and it satisfies PG(G0) = P(G0) =: P0. Ad-

ditionally, for each S ∈ P0, the connected component GS of G− V (G0) such that

NG(GS) ⊆ S exists uniquely or is an empty graph, and G is the graph obtained

from the foundation G0 and the family of towers T := {GS}S∈P0 by the cathedral

construction.

Theorem 4.5.4. Let G0 be a saturated elementary graph, and T := {GS}S∈P(G0)

be a family of saturated graphs. Let G be the graph obtained from the foundation
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G0 and the family of towers T by the cathedral construction. Then, G is saturated,

G0 forms a factor-connected component of G, that is, G[V (G0)] ∈ G(G), and it is

the minimum element of the poset (G(G), /).

In the remaining part of this chapter, we are going to prove Theorem 4.5.3

and Theorem 4.5.4 and then obtain Theorem 4.5.2. With Theorem 4.5.3 and The-

orem 4.5.4, we obtain the constructive characterization of the saturated graphs.

We also obtain a new characterization of foundations and families of towers, which

gives a clear comprehension of saturated graphs by the canonical structures of fac-

torizable graphs in Chapter 2. Thanks to this new characterization, the remaining

statements of the cathedral theorem will be obtained quite smoothly.

4.5.2 Proof of Theorem 4.5.3

Here we show some lemmas etc. to show that any saturated graph is constructed by

the cathedral construction and prove Theorem 4.5.3. Hereafter note the following

properties, which will be used frequently, sometimes without explicitly mentioning

it.

Property 4.5.5. Let G be a factorizable graph, M be a perfect matching, and

x, y ∈ V (G) be such that xy 6∈ E(G). Then, the following properties are equivalent:

(i) The complement edge xy creates a new perfect matching in G+ xy.

(ii) The edge xy is allowed in G+ xy.

(iii) There is an M-saturated path between x and y in G.

Property 4.5.6. Let G be a factorizable graph and M be a perfect matching of

G. Let X ⊆ V (G) be a separating set and P be an M-saturated path. Then,

(i) each connected component of P [X] is an M-saturated path, and

(ii) any connected component of P − E(G[X]) that does not contain any end

vertices of P is an M-ear relative to X.
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Lemma 4.5.7. If a factorizable graph G is saturated, then the poset (G(G), /) has

the minimum element.

Proof. Suppose the claim fails, that is, the poset has distinct minimal elements

G1, G2 ∈ G(G). Then, by Theorem 2.5.9, there exist possibly identical comple-

ment edges e, f joining V (G1) and V (G2) such that G(G + e + f) = G(G). This

means that adding e or f to G does not create any new perfect matchings, which

contradicts G being saturated.

In order to obtain Theorem 4.5.3, by letting G be a saturated graph, we show in

the following that the minimum element G0 of the poset by / and the connected

components of G − V (G0) are well-defined as a foundation and towers of the

cathedral construction and G is the graph obtained by the cathedral construction

with them.

The next fact is easy to see from Fact 2.4.2 and Property 4.5.5. We will use

this fact in the proofs of Lemma 4.5.9 and Lemma 4.5.11 later.

Fact 4.5.8. Let G be a saturated graph, and let H ∈ G(G). Then, for any u, v ∈
V (H) with u ∼G v, uv ∈ E(G).

Next, we give the following lemma, which will contribute to the proofs of both

of Theorems 4.5.3 and 4.5.4, actually.

Lemma 4.5.9. Let G be a saturated graph, and let G0 ∈ G(G). Then, PG(G0) =

P(G0).

Proof. Since we know by Fact 2.4.4 that PG(G0) is a refinement of P(G0), it

suffices to prove that P(G0) is a refinement of PG(G0), that is, if u ∼G0 v, then

u ∼G v. We prove the contrapositive of this.

Let u, v ∈ V (G0) with u 6∼G v. Let M be a perfect matching of G. By

Fact 2.4.2, there are M -saturated paths between u and v; let P be a shortest

one. Suppose E(P ) \ E(G0) 6= ∅, and let Q be one of the connected components

of P − E(G0), with end vertices x and y. Since Q is an M -ear relative to G0

by Property 4.5.6, x ∼G y follows by Lemma 2.5.1. Therefore, xy ∈ E(G) by
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Fact 4.5.8, which means we can get a shorter M -saturated path between u and v

by replacing Q by xy on P , a contradiction. Thus, we have E(P ) \ E(G0) = ∅;
that is, P is a path of G0. Accordingly, u 6∼G0 v by Fact 2.4.2.

As we mention in Fact 2.4.4, for a factorizable graph G and H ∈ G(G), PG(H)

is generally a refinement of P(H). However, the above lemma states that if G

is a saturated graph then they coincide. Therefore this lemma associates the

generalized canonical partition with the cathedral theorem.

Next, note the following fact, which we present to prove Lemma 4.5.11:

Fact 4.5.10. If a factorizable graph G is saturated, G is connected.

Proof. Suppose the claim fails, that is, G has two distinct connected components,

K and L. Let u ∈ V (K) and v ∈ V (L), and let M be a perfect matching of G.

By Property 4.5.5, there is an M -saturated path between u and v, contradicting

the hypothesis that K and L are distinct.

Before reading Lemma 4.5.11, note that if a factorizable graph G has the minimum

element G0 for the poset (G(G), /), then for each connected component K of

G− V (G0), NG(K) ⊆ V (G0) holds.

Lemma 4.5.11. Let G be a saturated graph, and G0 be the minimum element of

the poset (G(G), /). Then, G0 and the connected components of G − V (G0) are

each saturated. Additionally, for each S ∈ PG(G0), a connected component K of

G− V (G0) such that NG(K) ⊆ S exists uniquely or does not exist.

Proof. We first prove that G0 is saturated. Let e = xy be a complement edge

of G0. By the contrapositive of Fact 4.5.8, x 6∼G y, which means x 6∼G0 y by

Lemma 4.5.9. Therefore, by Fact 2.4.2 and Property 4.5.5, the complement edge

e creates a new perfect matching if it is added to G0. Hence, G0 is saturated.

Now we move on to the remaining claims. Take S ∈ PG(G0) arbitrarily, and let

K1, . . . , Kl be the connected components of G− V (G0) which satisfy NG(Ki) ⊆ S

for each i = 1, . . . , l. Let K̂ := G[V (K1)∪̇ · · · ∪̇V (Kl)].
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We are going to obtain the remaining claims by showing that K̂ is saturated.

Now let e = xy be a complement edge of K̂, i.e., x, y ∈ V (K̂) and xy 6∈ E(K̂).

Let M be a perfect matching of G. With Property 4.5.5, in order to show that K̂

is saturated it suffices to prove that there is an M -saturated path between x and

y in K̂. Since G is saturated, there is an M -saturated path P between x and y in

G by Property 4.5.5.

Obviously by the definition, NG(K̂) ⊆ S; on the other hand, V (G)\V (K̂) is of

course a separating set. Therefore, if E(P )\E(K̂) 6= ∅, each connected component

of P − V (K̂) is an M -saturated path, both of whose end vertices are contained in

S, by Property 4.5.6. This contradicts Fact 2.4.2. Hence, E(P ) ⊆ E(K̂), which

means K̂ is itself saturated. Thus, by Fact 4.5.10, it follows K̂ is connected, which

is equivalent to l = 1. This completes the proof.

By Lemma 4.5.9 and Lemma 4.5.11, it follows that G0 is well-defined as a foun-

dation and the connected components of G− V (G0) are well-defined as towers (of

course if indices out of P(G0) are assigned to them appropriately).

Lemma 4.5.12. Let G be a saturated graph, and G0 be the minimum element of

the poset (G(G), /), and let K be a connected component of G − V (G0), whose

neighbors are in S ∈ PG(G0). Then, for any u ∈ V (K) and for any v ∈ S,

uv ∈ E(G).

Proof. Suppose the claim fails, that is, there are u ∈ V (K) and v ∈ S such

that uv 6∈ E(G). Then, by Property 4.5.5, there is an M -saturated path between

u and v, where M is an arbitrary perfect matching of G. By the definitions,

V (K) ⊆ U(S); therefore, u ∈ U(S). Hence, this contradicts (iii) of Lemma 4.4.2,

and we have the claim.

Now we are ready to prove Theorem 4.5.3:

Proof of Theorem 4.5.3. The first sentence of Theorem 4.5.3 is immediate from

Lemma 4.5.7 and Lemma 4.5.9. The former of the second sentence is also imme-

diate by Lemma 4.5.11.
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For the remaining claim, first note that by Lemma 4.5.11, G0 and any GS are

saturated. Therefore, G0 and T = {GS}S∈P0 are well-defined as a foundation and

a family of towers of the cathedral construction.

By the definition, for each S ∈ P0, it follows that NG(GS) ⊆ S. Additionally

by Lemma 4.5.12 every vertex of V (GS) and every vertex of S are joined. There-

fore, it follows that G has a saturated subgraph G′ obtained from G0 and T by

the cathedral construction. Moreover, by Theorem 2.5.2, for each connected com-

ponent K of G− V (G0) there exists S ∈ P0 such that N(K) ⊆ S; in other words,

K denotes the same subgraph of G as GS. Hence, V (G) = V (G0) ∪
⋃
S∈P0

V (GS)

holds and actually G′ is G. Thus, G is the graph obtained from G0 and T by the

cathedral construction.

4.5.3 Proof of Theorem 4.5.4

Next we consider the graphs obtained by the cathedral construction and show The-

orem 4.5.4, which states that the foundations of them are the minimum elements

of the posets by /.

Since the necessity of the first claim of Theorem 4.5.2, the next proposition, is

not so hard (see [30]), we here present it without a proof.

Proposition 4.5.13 (Lovász [28, 30]). Let G0 be a saturated elementary graph,

and T = {GS}S∈P(G0) be a family of saturated graphs. Then, the graph G obtained

from the foundation G0 and the family of towers T by the cathedral construction

is saturated.

We give one more lemma:

Lemma 4.5.14. Let G be a saturated graph, obtained from the foundation G0

and the family of towers {GS}S∈P(G0) by the cathedral construction. Then, G′ :=

G/V (G0) is factor-critical.

Proof. Let MS be a perfect matching of GS for each S ∈ P(G0), and let M :=⋃
S∈P(G0)

MS. Then, M forms a near-perfect matching of G′, exposing only the
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contracted vertex g0 corresponding to V (G0). Take u ∈ V (G′) \ {g0} arbitrarily

and let u′ be the vertex such that uu′ ∈ M . Since uu′ ∈ M ∩ E(G′) and u′g0 ∈
E(G′) \M , there is an M -balanced path from u to g0 in G′, namely, the one with

edges {uu′, u′g0}. Thus, by Property 2.2.1, G′ is factor-critical.

Now we shall prove Theorem 4.5.4:

Proof of Theorem 4.5.4. By Proposition 4.5.13, G is saturated. Since we have

Lemma 4.5.14, in order to complete the proof, it suffices to prove G0 ∈ G(G). Let p

be the number of non-empty graphs in T . We proceed by induction on p. If p = 0,

the claim obviously follows. Let p > 0 and suppose the claim is true for p−1. Take

a non-empty graph GS from T , and let G′ := G− V (GS). Then, G′ is the graph

obtained by the cathedral construction with G0 and T \ {GS} ∪ {HS}, where HS

is an empty graph. Therefore, Proposition 4.5.13 yields that G′ is saturated, and

the induction hypothesis yields that G0 ∈ G(G′) and G0 is the minimum element

of the poset (G(G′), /). Thus, by Lemma 4.5.9,

Claim 4.5.15. PG′(G0) = P(G0).

Let M ′ be a perfect matching of G′ and MS be a perfect matching of GS, and

construct a perfect matching M := M ′ ∪MS of G.

Claim 4.5.16. No edge of EG[S, V (GS)] is allowed in G.

Proof. Suppose the claim fails, that is, an edge xy ∈ EG[S, V (GS)] is allowed in

G. Then, there is an M -saturated path Q between x and y by Property 2.2.7, and

Q[V (G′)] is an M -saturated path by Property 4.5.6. Moreover, since NG(GS) ∩
V (G′) ⊆ S, it follows that Q[V (G′)] is an M -saturated path of G′ between two

vertices in S. With Fact 2.4.2 this is a contradiction, because S ∈ PG′(G0) by

Claim 4.5.15. Hence, we have the claim.

By Claim 4.5.16, it follows that a set of edges is a perfect matching of G if and

only if it is a disjoint union of a perfect matching of G′ and GS. Thus, G0 forms

a factor-connected component of G, and we are done.
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4.5.4 Proof of Theorem 4.5.2 and an Example

Now we can prove the cathedral theorem, combining Theorems 4.5.3, 4.5.4, and

4.4.1:

Proof of Theorem 4.5.2. By Proposition 4.5.13 and Theorem 4.5.3, the first

claim of Theorem 4.5.2 is proved. The statement (i) is by Theorem 4.5.4, since it

states that G0 ∈ G(G). The statement (ii) is also by Theorem 4.5.4, since the poset

(G(G), /) is a canonical notion. The statement (iii) is by combining Theorem 4.5.4

and Theorem 4.4.1.

Example 4.5.17. The graph G̃ in Figure 4.1 consists of four factor-connected

components, say C1, . . . , C4 in Figure 4.4, and Figure 4.5 shows the Hasse dia-

gram of (G(G̃), /), which has the minimum element C1, as stated in Lemma 4.5.7.

Figure 4.6 indicates the generalized canonical partition of G̃:

P(G̃) = {{p}, {q, r}, {s}, {t}, {u}, {v}, {w}, {x}, {y}}.

Here we have PG̃(Ci) = P(Ci) for each i = 1, . . . , 4, as stated in Lemma 4.5.9.

From these two figures we see examples for other statements on the saturated

graphs in this section.

4.6 Concluding Remarks

Finally, we give some remarks.

Remark 4.6.1. Theorems 4.5.3 and 4.5.4 can be regarded as a refinement, and

Theorem 4.4.1 as a generalization of Theorem 4.5.2, from the point of view of the

canonical structures of Chapter 2.

Remark 4.6.2. The poset (G(G), /) and P(G) can be computed in O(|V (G)| ·
|E(G)|) time (Theorem 2.7.6), where G is any factorizable graph. Therefore,

given a saturated graph, we can also find how it is constructed by iterating the

cathedral construction in the above time by computing the associated poset and

the generalized canonical partition.
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Remark 4.6.3. The canonical structures of general factorizable graphs in Chap-

ter 2 can be obtained without the Gallai-Edmonds structure theorem nor the

notion of barriers. The other properties we cite to prove the cathedral theorem

are also obtained without them. Therefore, our proof shows that the cathedral

theorem holds without assuming either of them.

With the whole proof, we can conclude that the structures in Chapter 2 is

what essentially underlie the cathedral theorem. We see how a factorizable graph

leads to a saturated graph having the same family of perfect matchings by se-

quentially adding complement edges. Our proof is quite a natural one because

the cathedral theorem—a characterization of a class of graphs defined by a kind

of edge-maximality “saturated”—is derived as a consequence of considering edge-

maximality over the underlying general structure. We hope yet more would be

found on the field of counting the number of prefect matchings with the results in

this thesis.
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Chapter 5

Computing the Cathedral

Structure More Efficiently

5.1 Preliminaries

Hereafter we denote by n and m the number of vertices and edges (resp. arcs) of

an input graph (resp. digraph), respectively. Note that factorizable graphs satisfy

m = Ω(n) and accordingly O(n+m) = O(m).

In Section 2.7, we show that the partial order / and the generalized canonical

partition can be computed in O(nm) time if an input graph is factorizable. The

algorithm is composed of three stages, each of which is O(n) times iteration of

O(m) time procedure of growing alternating trees. It first computes the factor-

components, then computes / and P(G) respectively.

With the results in this thesis including Chapter 3, we present another O(nm)

time algorithm to compute them. The upper bound of its time complexity is the

same as the known one, however the factor-components, /, and P(G) are here

computed simultaneously. Thus, it has some possibility of exhibiting a bit more

efficiency.

Theorem 5.1.1 (Micali & Vazirani [31], Vazirani [38]). A maximum matching of

a graph can be computed in O(
√
nm) time.
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Theorem 5.1.2 (Edmonds [7], Tarjan [37], Gabow & Tarjan [11]). Let G be a

graph with m = Ω(n) and suppose we are given a perfect matching of G. Then,

D(G), A(G), and C(G) can be computed in O(m) time.

Theorem 5.1.3 (Dulmage & Mendelsohn [4–6,32]). For any bipartite factorizable

graph G, the Dulmage-Mendelsohn decomposition of G can be computed in O(m)

time.

Proposition 5.1.4 (folklore, see [32]). Let D be a digraph, and D be the set of

strongly-connected components of D. For D1, D2 ∈ D we say D1 → D2 if for any

u ∈ V (D1) and any v ∈ V (D2) there is a dipath from u to v. Then, → is a partial

order on D.

Proposition 5.1.5 (see [34]). For any digraph D, the strongly connected compo-

nents of D can be computed in O(n+m) time.

5.2 A New Algorithm

Below is the new algorithm, Algorithm 1:

Require: a factorizable graph G

Ensure: the generalized canonical partition P(G) and the digraph Aux(G) rep-

resenting (G(G), /)

1: compute a perfect matching M of G;

2: U := V (G); initialize f : V (G)→ {0, 1} by 0;

3: A := ∅; P(G) := ∅;
4: while U 6= ∅ do

5: choose u ∈ U ;

6: compute X := A(G− u) ∪ {u};
7: compute the DM-decomposition of HG(X);

8: for all DM-component D of HG(X) do

9: let S := X ∩ V (D); choose arbitrary v ∈ S;

10: if f(v) = 0 then
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11: P(G) := P(G) ∪ {S};
12: let D̂ ⊆ G be the expansion of D;

13: for all x ∈ S do

14: for all y ∈ V (D̂) \X do

15: A := A ∪ {(x, y)};
16: end for

17: U := U \ {x}; f(x) := 1;

18: end for

19: end if

20: end for

21: end while

22: output P(G);

23: Aux(G) := (V (G), A); decompose Aux(G) into its strongly-connected compo-

nents and output it; STOP.

Proposition 5.2.1. While Algorithm 1 is running,

(i) X = A(G− u) ∪ {u} of Line 6 is an odd-maximal barrier of G,

(ii) S defined at Line 9 coincides with a member of P(G), and

(iii) V (D̂) \X at Line 14 coincides with cU(S)1.

Proof. The statement (i) follows by a simple counting argument. Therefore, (ii)

and (iii) follows by Theorem 3.6.11.

Lemma 5.2.2. Let G be a factorizable graph and Aux(G) = (V (G), A) be the

digraph obtained by inputting G to Algorithm 1. Let H1, H2 ∈ G(G), u ∈ V (H1),

and v ∈ V (H2).

(i) If (u, v) ∈ A, then H1 / H2.

(ii) If there exists a dipath from u to v in Aux(G), then H1 / H2.

1Given H ∈ G(G) and S ∈ PG(H), we denote U∗(H) \ U∗(S) as cU(S)
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Proof. The arc (u, v) is added to A only at Line 15 if u ∈ X∩V (D̂) and v ∈ V (D̂)\
X. Thus (i) follows by Proposition 5.2.1. Hence (ii) follows by the transitivity of

/.

Lemma 5.2.3. Let G be a factorizable graph and Aux(G) = (V (G), A) be the

digraph obtained by inputting G to Algorithm 1. Let H1, H2 ∈ G(G) be such that

H1 / H2. Then, for any u ∈ V (H1) and v ∈ V (H2), there is a dipath from u to v

in Aux(G).

Proof. Let S ∈ PG(H1) be such that u ∈ S. First suppose that v ∈ cU(S). Then,

(u, v) is added to A at Line 15 when X ∩V (D) of Line 13 coincides with S, which

surely occurs by Proposition 5.2.1. Hence, the claim holds for this case.

Now suppose the other case that v ∈ U∗(S). Take T ∈ PG(H1) \ {S} and

w ∈ T arbitrarily. The arc (u,w) is added to A at Line 15 when S coincides

with X ∩ V (D) of Line 13, so is the arc (w, v) when T coincides with X ∩ V (D).

Therefore the dipath uw+wv satisfies the claim for this case, and we are done.

Theorem 5.2.4. Let G be a factorizable graph and Aux(G) = (V (G), A) be the

digraph obtained by inputting G to Algorithm 1. Then, H ∈ G(G) holds if and

only if there is a strongly-connected component D of Aux(G) with V (H) = V (D).

Additionally, for any H1, H2 ∈ G(G), H1 /H2 holds if and only if D1 → D2, where

Di is the strongly-connected component of Aux(G) with V (Hi) = V (Di), for each

i = 1, 2.

Proof. Combining Lemmas 5.2.2 and 5.2.3, we immediately obtain the following

claim:

Claim 5.2.5. H1 / H2 holds if and only if for any u ∈ V (H1) and any v ∈ V (H2)

there is a dipath from u to v in Aux(G).

Therefore, we are done by Proposition 5.1.4.

Theorem 5.2.6. Given a factorizable graph G, the poset (G(G), /) and the gen-

eralized canonical partition P(G) can be computed in O(nm) time by Algorithm 1.
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Proof. The correctness follows by Proposition 5.2.1 and Theorem 5.2.4.

Hereafter we prove the complexity. Line 1 costs O(
√
nm) time by Theo-

rem 5.1.1. Line 2 costs O(n) time, and Line 3 costs O(1) time. Lines 4 to 7

cost O(m) time per each iteration of the while-loop in Line 4. As the while-loop

in Line 4 is repeated O(n) times, they cost O(nm) time over the whole algorithm.

Each operations in Lines 8 to 10 costs O(1) time per iteration, and they are

iterated O(n2) time over the whole computation; therefore, they cost O(n2) time.

Note that f(v) = 0 at Line 10 holds true for at most n times. Therefore,

Lines 11 and 12 cost O(n) time. The number of repetition of Lines 13 to 19 is

bounded by |A| = O(n2). Therefore, the operations there costs O(n2) over the

algorithm.
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Chapter 6

Conclusion

In this chapter, we conclude this thesis. We investigated two central notions

which supports the foundation of matching theory, i.e., canonical decompositions

and barriers.

In Chapter 2, we gave a new canonical decomposition, the cathedral decompo-

sition. While any other known canonical decompositions is not applicable substan-

tially to general factorizable graphs, the new canonical decomposition is applicable

non-trivially to and describe structures of general factorizable graphs. Although

this result is given as those for factorizable graphs, it can be formulated as a

canonical decomposition for general graphs including non-factorizable graphs by

combining our results with the Gallai-Edmonds structure theorem. Additionally,

it enables us to see all the known canonical decompositions in a unified way.

Thanks to this new canonical decomposition, we become able to see matching-

theoretic properties we have not been able to see so far; the structure of barriers is

one such example. In Chapter 3, we gave a canonical description of the structures

of odd-maximal barriers in general graphs. Although the notion of barriers is

important, not so much results has been known about barriers; actually, this is

because of lack of effective tools to analyze general factorizable graphs. Considering

the history of the study of barriers, this result is an explosive advance in the

theory of barriers. Additionally, this result corresponds to a generalization of the

canonical partition based on Lovász’s formulation, among two formulation of the
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canonical partition, and therefore can be regarded as a piece of contribution to the

theory of canonical decompositions.

We also contributed to the enumeration problem of perfect matchings. In

Chapter 4, as a consequence of the new canonical decomposition, we gave another

proof of Lovász’s cathedral theorem [28, 30]. Our new proof reveals that the in-

trinsic structure behind the cathedral theorem is the new canonical decomposition

in Chapter 2 and proves the cathedral theorem in quite a natural way providing

more refined statements.

In Chapter 5, using results in Chapter 3, we propose more efficient algorithms

to compute the new canonical decomposition than the one presented in Chapter 2.

Our results in thesis form a great step in the foundation of matching theory, and

yet more consequences will be produced from our results. Considering the nature

of matchings, we are sure that our results here will contribute to developing the

heart of discrete mathematics and combinatorial optimization.
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