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（内容の要旨） 
 
 グラフの頂点彩色に関する研究はグラフ理論の中心的話題である。グラフの各頂点に、

隣接した頂点対には異なる色を割り当てるという規則のもと色を割り当てるとき、必要な

色数の最小数をグラフの染色数という。長い間未解決であったことで有名な「四色問題」

は、任意の平面グラフの染色数は 4 以下であるかという問題である。四色問題は 1976 年

に肯定的に解決されたが、多くの問題と研究の流れを生み出した。その主なものに「種数

の高い閉曲面上のグラフの染色数」や、「染色数を抑えるためのグラフへの制限」、「特

殊な条件を付加した彩色問題」などがある。本論文では偶角形分割となるグラフに焦点を

あて、これらの問題を考える。 
グラフを辺の交差なく閉曲面に描くことを、グラフの閉曲面への埋め込みという。閉曲

面上のグラフの染色数の上限を決定するには、計算上求まる上界の値だけ色数を必要とす

るグラフがその閉曲面に埋め込めるかどうかが重要である。それには完全グラフの三角形

分割や四角形分割埋め込みといった特徴的な埋め込みが存在することを示すことが鍵と

なっている。それらのグラフの埋め込みを構成する手法の一つに、current graph を用い

るものがある。これはグラフの埋め込みと一対一に対応する rotation system を別のグラ

フから与える方法である。 
 本論文での主題である偶角形分割埋め込みとは、全ての面が偶角形となるようなグラフ

の閉曲面への埋め込みのことである。平面上の偶角形分割埋め込みは 2 部グラフの平面埋

め込みと同値であるが、一般閉曲面上のグラフには非可縮なサイクルが存在するため、偶

角形分割埋め込みに対して cycle parity という代数的不変量が定義される。本論文では、

どのような current graph が偶角形分割グラフに対応し、また current graph のどのよう

な性質が対応する偶角形分割の埋め込みに反映されるのかについて明らかにする。その結

果として偶角形分割における帝国問題の染色数の上限を達成する例と、完全グラフの四角

形分割埋め込みについて cycle parity のタイプ別の存在を示す。ここで帝国問題とは、飛

び地を含む地図に対応するグラフの頂点彩色問題である。特に current graph から非可縮

なサイクルの長さをコントロールするという手法は既存の定理にはない新しい手法であ

る。 
 代表的な偶角形分割である四角形分割に関しては、上述の研究のほかに、多色彩色問題

や、特別な彩色的性質をもつ三角形分割への拡張についても議論する。特に、一般閉曲面

におけるそれらの彩色問題においては cycle parity やそれに類似する代数的不変量との関

係を明らかにする。 
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  The study of vertex colorings of graphs is one of the main topics in graph theory. 
The chromatic number of a graph is the number of colors to color vertices so that 
adjacent vertices receive different colors. Four Color Problem is the one asking 
whether the chromatic number of a plane graph is at most 4 or more. This problem 
was solved in 1976, and it produced a lot of problems and good streams of studies. 
The followings are examples: “Chromatic numbers in the case of the surfaces with 
higher genus,” “restrictions of graphs for reducing the chromatic number” and 
“coloring problems with special conditions.” In this thesis, we consider these 
problems while focusing on even embeddings of graphs. 

To draw a graph on a surface without edge crossings is called an embedding of the 
graph on the surface. To determine the upper bound of chromatic numbers of 
graphs embedded on a surface, we need to show the existence of special 
embeddings, such as, a triangulation or a quadrangulation of the complete graph. 
One of the methods to construct such an embedding is to use a current graph, which 
gives a rotation system corresponding to the embedding. 

An even embedding of a graph, which is the main theme of this thesis, is one in 
which each face has even length. On the sphere, an even embedding of a graph is 
equivalent to an embedding of a bipartite graph. But on general surfaces, there are 
essential cycles in graphs, and then an algebraic invariant which is called cycle 
parity is defined as the parities of the lengths of them. We study relations between 
current graphs and even embeddings of graphs. We construct even embeddings of 
empire graphs which achieve the upper bounds of the chromatic number. Here an 
empire graph is one which corresponds to a map having detached territories. We 
also construct quadrangulations of the complete graphs which have several types of 
cycle parities by using current graphs. Especially, we propose an entirely new 
method to control cycle parities by using current graphs. 
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has a special coloring. In these problems on general surfaces, we show relationships 
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Preface

In this thesis we study even embeddings of graphs. We focus on current graphs and

the graphs generated from them, in particular, we deal with even embeddings as those

generated graphs. We also investigate extension and coloring problems of graphs even

embedded on closed surfaces.

After an introductory chapter, the reader will find six chapters. First, terminology of

graphs is found in Chapter 2. To represent embedded graphs on closed surfaces, we use

two powerful methods; rotation systems and current graphs. We introduce them and how

to generate another graph from a current graph in Chapter 3. In Chapter 4, we introduce

an invariant of even embeddings of graphs, which is called a cycle parity. The empire

problem is one of vertex-coloring problems of graphs. We discuss the empire problem in

even embeddings of graphs in Chapters 5 and 6. Finally, we mention some related topics

of even embeddings; extension and coloring problems, they are discussed in Chapter 7.
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Chapter 1

Introduction

In the history of graph theory, one of the biggest problems is Four Color Problem. Four

Color Problem is suggested by Francis Guthrie, in 1852. When we consider a map on the

plane, we want to know how many colors we need to color the map so that the neighboring

countries receive different colors. It is easy to see that there exists a map which needs four

colors, but it is quite difficult to find a map which needs five or more colors. Then it was

conjectured that four is the best possible. Many researchers intended to solve Four Color

Problem by several ways, but no one could solve it for a long time. Finally, Appel and

Haken solved the problem in 1976.

Theorem 1.1. (Appel and Haken [1]) Every map M on the sphere can be colored with

four colors.

But their solution uses a computer program to check four colors are enough to color

maps: fundamental 1405 cases. This problem is the origin of many variations of map color

problems.

Map color problems are equivalent to vertex-coloring problems of graphs. When you

take the dual of a map, you can get the graph corresponding to the map, see Figure 1.1.

In this thesis after the introductory chapter, we deal with not map color problems but

vertex-coloring problems of graphs.

First, we consider graphs on a closed surface F 2. The following theorem is called Map

Color Theorem.

Theorem 1.2. (Ringel et al. [45]) Let G be a graph on a closed surface F 2 with the

Euler characteristic ε < 2. Then G can be colored with the Heawood number H(ε) of

1



Figure 1.1: A map and its dual

colors, where

H(ε) =

⌊
7 +

√
49− 24ε

2

⌋
.

This value is best possible unless F 2 is the Klein bottle. A graph on the Klein bottle can

be colored with six colors, and this is best possible.

Showing that the Heawood number is the upper bound for the number of colors is a

little bit easy. But it is quite difficult to show that the Heawood number is the lower

bound. In order to show this, you must find a graph whose chromatic number is equal

to the Heawood number in each closed surface. In particular, you may show that the

complete graph on H(ε) vertices can be embedded as a minimum genus embedding. We

define the genus (resp. nonorientable genus) of a graph G as the minimum g such that G

has an embedding into the closed surface Sg (resp. Nk). A minimum genus embedding of

G is such an embedding.

The problem of minimum genus embeddings of the complete graphs are solved sep-

arately by many researchers and gathered in one book by Ringel [45]. This problem is

divided into twelve cases depending on the number of vertices of the complete graph.

Then how is a minimum genus embedding of the complete graph constructed? To

construct it, current graphs are used, which we introduce in Chapter 3. For some cases, a

minimum genus embedding of a complete graph G is a triangulation, that is, every face of

G is triangular. A triangulation has some symmetries. Current graphs play an important

role in making symmetric graphs.

Now we consider even embeddings of graphs. An even embedding of a graph G is an

embedding of G where every face is bounded by an even closed walk. On the sphere, an

2



even embedding of a graph is equivalent to an embedding of a bipartite one. As bipartite

graphs have the chromatic number at most 2, we expect that the chromatic number of a

graph even embedded on a surface F 2 is less than that of a graph on F 2. The following

theorem is a kind of Map Color Theorem, which is one for even embedded graphs.

Theorem 1.3. (Hartsfield [16], Hutchinson [19]) Let F 2 be a closed surface with the

Euler characteristic ε < 2. Then for every even embedding of a graph G on F 2,

χ(G) ≤
⌊
5 +

√
25− 16ε

2

⌋
.

This value is best possible for any F 2 except for the Klein bottle N2 and the double torus

S2. Every graph on N2 can be colored with four colors, one on S2 can be colored with five

colors and these are best possible.

Theorem 1.3 is also proved by using current graphs to show the existence of quadran-

gulations of the complete graphs. A quadrangulation is an embedded graph where every

face is quadrangular.

We can classify even embeddings of graphs on closed surfaces into several types by the

parities of the lengths of essential closed walks. The concept of cycle parities is introduced

in Chapter 4. The following theorem says that there are two types of cycle parities in each

Sg and there are four types in each Nk.

Theorem 1.4. (Nakamoto, Negami and Ota [36]) Any non-trivial cycle parity ρ

on Sg is congruent to (1, 0, . . . , 0). Any non-trivial cycle parity ρ on N2k+1 with k ≥

1 is congruent to exactly one of A = (1, 0, 0, . . . , 0, 0), B = (1, 1, 0, . . . , 0, 0) and C =

(0, 1, 0, . . . , 0, 0). Any non-trivial cycle parity ρ on N2k with k ≥ 2 is congruent to exactly

one of D = (0, 0, 1, 0, . . . , 0, 0), E = (0, 1, 0, 0, . . . , 0, 0) and F = (1, 0, 0, 0, . . . , 0, 0). For

the Klein bottle N2, ρ is congruent to either E = (0, 1) or F = (1, 0).

Furthermore, we deal with cycle parities by using current graphs. We show the following

result which is the same as Theorem 4.2 in Section 4.1. This says that each quadrangulation

of the complete graph on Nk can have each non-trivial type of the cycle parity.

Theorem 1.5. For each pair s ≥ 1 and t ∈ {1, 4}, there exists a quadrangulation of the

complete graph on 8s+ t vertices whose cycle parity is of each type A, B and C. For each

pair s ≥ 1 and t ∈ {0, 5}, there exists a quadrangulation of the complete graph on 8s + t

vertices whose cycle parity is of each type D, E and F .

3



The next problem is one of the variations of map color problems, called the empire

problem. Let M be a map on a closed surface F 2 and suppose that each country of the

map has at most r disjoint detached territories. Such a map is called an r-pire map on F 2.

For each country, all disjoint detached territories have to be assigned by the same color.

In 1890, Heawood proved that the countries of M can be properly colored as follows.

Theorem 1.6. (Heawood [17]) Let M be an r-pire map on a closed surface F 2 with the

Euler characteristic ε. Then M can be properly colored with hε,r colors, where

hε,r =

⌊
6r + 1 +

√
(6r + 1)2 − 24ε

2

⌋
except possibly in the case ε = 2 and r = 1.

In addition, he conjectured that this is best possible. Note that the case ε = 2 and

r = 1 is Four Color Problem and h2,1 = 4, consequently, this case is also best possible.

Taylor proved the conjecture for the case where F 2 is the torus. Note that h0,r = 6r + 1.

Theorem 1.7. (Taylor [52]) Every r-pire map on the torus is (6r+1)-colorable, and for

each r, there is an r-pire map on the torus which is not 6r-colorable.

Jackson and Ringel proved it for the cases where F 2 is the projective plane and the

sphere. Note that h1,r = h2,r = 6r.

Theorem 1.8. (Jackson and Ringel [21]) Every r-pire map on the projective plane is

6r-colorable, and for each r, there is an r-pire map on the projective plane which is not

(6r − 1)-colorable.

Theorem 1.9. (Jackson and Ringel [22]) Every r-pire map on the sphere is 6r-

colorable, and for each r ≥ 2, there is an r-pire map on the sphere which is not (6r − 1)-

colorable.

For the Klein bottle, Jackson and Ringel proved it when r ≥ 3 and Borodin did it when

r = 2.

Theorem 1.10. (Jackson and Ringel [20], Borodin [7]) Every r-pire map on the

Klein bottle is (6r + 1)-colorable, and for each r ≥ 2, there is an r-pire map on the Klein

bottle which is not 6r-colorable.

For r = 1, Franklin proved that 6 colors suffice to color any map on the Klein bottle.

4



Theorem 1.11. (Franklin [12]) Every map on the Klein bottle is 6-colorable and there

is a map which is not 5-colorable.

This is the only known case where hε,r is not best possible. On general closed surfaces,

the lower bounds are determined in some cases, see Chapter 5.

The empire problem can be also considered as a graph coloring problem, see Section 2.7.

This is also proved by using current graphs. Thus, we see that vertex-coloring problems

of graphs is very related to current graphs.

In this thesis, we consider the empire problem in even embeddings of graphs. We can

show the upper bound for the number of colors and the lower bounds for some cases in

the same way as the above theorems. The followings are the same as Theorems 6.1, 6.2,

6.3, 6.4, 6.5 and 6.6 in Section 6.1. Empire graphs are that corresponding to empire maps,

defined in Section 2.7.

Theorem 1.12. Let G be an r-pire graph such that G has an even embedding on a closed

surface F 2 with ε ≤ 0. Then, G is nε,r-colorable, where

nε,r =

⌊
4r + 1 +

√
(4r + 1)2 − 16ε

2

⌋
.

Theorem 1.13. Every r-pire graph which has an even embedding on S0 is 4r-colorable.

Moreover, for each r ≥ 2, there is an r-pire graph even embedded on S0 which is not

(4r − 1)-colorable.

Theorem 1.14. Every r-pire graph which has an even embedding on N1 is 4r-colorable.

Moreover, for each r, there is an r-pire graph even embedded on N1 which is not (4r− 1)-

colorable.

Theorem 1.15. Every r-pire graph which has an even embedding on S1 is (4r + 1)-

colorable. Moreover, for each r, there is an r-pire graph even embedded on S1 which is not

4r-colorable.

Theorem 1.16. Every r-pire graph which has an even embedding on N2 is (4r + 1)-

colorable. Moreover, for each r ≥ 2, there is an r-pire graph even embedded on N2 which

is not 4r-colorable.

Theorem 1.17. The bound nε,r in Theorem 1.12 is best possible if one of the following

conditions is satisfied;

5



(i) F 2 is an orientable surface, r is even, and nε,r is congruent to 1 modulo 8.

(ii) F 2 is an orientable surface, r is odd, and nε,r is congruent to 5 modulo 8.

(iii) F 2 is a nonorientable surface and nε,r is congruent to 1 modulo 4 except in the case

F 2 is N2 and r = 1.

Next, we focus on quadrangulations. An extension problem is to find, from a given

graph G, a graph T with certain properties so that T is obtained from G by adding

some edges. Now we deal with the problem of extending a quadrangulation to Eulerian

triangulations, where a triangulation is Eulerian if all the vertices have even degree. This

problem was first considered by Hoffmann and Kriegel in 1996 for the spherical case. Zhang

and He improved the result for non-spherical orientable closed surfaces. We show that the

result also holds for nonorientable cases. The following is the same as Theorem 7.3 in

Section 7.1.

Theorem 1.18. Let G be a quadrangulation on a closed surface F 2. Then G can be

extended to an Eulerian triangulation.

Finally, we consider the coloring problems again. A quadrangulation on the sphere is

2-colorable and an Eulerian triangulation extended from a quadrangulation on the sphere

is 3-colorable. It is also natural to consider the following 4-colorings for a quadrangulation.

A cyclic coloring of a graph G on a surface F 2 is a vertex-coloring of G such that any two

vertices x and y receive different colors if x and y are incident with a common face of G.

The problem of cyclic 4-colorings of quadrangulations on the sphere was first considered

by Berman and Shank in 1979.

Theorem 1.19. (Berman and Shank [3]) Let G be a quadrangulation on the sphere.

Then G has a cyclic 4-coloring if and only if the edge set of the straight walk dual G̃ of G

has a proper 3-edge-coloring satisfying condition (C1).

The straight walk dual G̃ of a quadrangulation G is defined in Section 7.2 and condition

(C1) is defined in the next theorem. We extend the above result in two directions, that is,

considering graphs on a non-spherical surface and graphs called mosaics which may have

some triangular faces. The following is the same as Theorem 7.4 in Section 7.2.

Theorem 1.20. A mosaic G of a surface F 2 has a cyclic 4-coloring if and only if the

straight walk dual G̃ of G has a 3-edge-coloring c : E(G̃) → {1, 2, 3} satisfying the following

two conditions.

6



(C1) Any two edges of G̃ that are pairwise crossing on F 2 receive different colors by c.

(So, no edge intersects with itself.)

(C2) For every closed curve γ on F 2,

|c−1(1) ∩ γ| ≡ |c−1(2) ∩ γ| ≡ |c−1(3) ∩ γ| (mod 2).

7



Chapter 2

Definitions

In this chapter, we define some basic terminology of graph theory that are used throughout

this thesis.

2.1 Graphs

A graph G consists of finite sets V (G) and E(G), where V (G) is a nonempty set of elements

called vertices and E(G) is a set of unordered pairs of elements of V (G) called edges. An

edge {u, v} is often represented as uv or vu. If there exists an edge xy where x = y, we

call this edge a loop. If we allow at least two edges joining a pair of vertices, such edges

are called multiple edges. and the graph is called a multi-graph. Graphs with no loops or

multiple edges are called simple graphs. Let G and H be graphs. Note that V (G) is the

vertex set of G and E(G) is the edge set of G. If V (H) ⊂ V (G) and E(H) ⊂ E(G), then

H is called a subgraph of G. A simple graph is complete if there exists uv ∈ E(G) for every

u, v ∈ V (G) (u ̸= v). The complete graph on n vertices is denoted by Kn. The neighbor

NG(v) of a vertex v ∈ V (G) is the set of vertices of G : NG(v) := {u ∈ V (G)|uv ∈ E(G)}.

We define the degree d(v) of a vertex v ∈ V (G) as the number of the incident edges to

v. In particular, we can denote d(v) = |NG(v)| for a simple graph G. We also define an

average degree d̄(G) of a graph G as follows; d̄(G) =
∑

v∈V (G) d(v)/|V (G)|.

A walk of length k in a graph G is a sequence v0e0v1e1 . . . ek−1vk of vertices and edges

in G such that ei = vivi+1 for all i < k. We call a walk closed if vk = v0. A path of length

k in a graph G is a walk W of length k of G such that every vertex vi (0 ≤ i ≤ k) in W are

all distinct. A cycle of length k is a closed walk of length k with the set of distinct vertices

vi (0 ≤ i ≤ k − 1). We say that a closed walk W is even (resp. odd) if the length of W is

8



Figure 2.1: A graph

even (resp. odd). A graph G is connected if any two vertices of G are connected by a path

in G. We call a connected graph G Eulerian if every vertex of G has even degree.

Let A be a group. A graph with a weight function w : E(G) → A is called a weighted

graph. In a weighted graph, we say that each edge e has a weight w(e). A digraph G

is a multi-graph whose edges have orientations, and we call edges arcs. The indegree of

v ∈ V (G) is the number of incoming arcs to v, the outdegree of v ∈ V (G) is the number

of outgoing arcs to v and we denote them by deg−(v) and deg+(v), respectively. We see

that d(v) = deg−(v) + deg+(v) for every vertex v of a digraph G.

2.2 Colorings of graphs

A vertex-coloring of a graph G is a mapping c : V (G) → {1, 2, . . .} such that c(x) ̸= c(y)

whenever xy ∈ E(G). We say that a graph G is k-colorable if there exists a vertex-coloring

c : V (G) → {1, 2, . . . , k}. The chromatic number χ(G) of a graph G is the smallest integer

k such that G is k-colorable.

An edge-coloring of a graph G is a mapping c : E(G) → {1, 2, . . .} such that c(e1) ̸=

c(e2) whenever edges e1 and e2 share a vertex of G. A graph with loops has no vertex-

colorings or edge-colorings.

2.3 Closed surfaces

We call a connected compact 2-dimensional manifold without boundaries a closed surface.

There are two classes of closed surfaces, orientable ones and nonorientable ones. Let Sg
and Nk denote the orientable closed surface of genus g and the nonorientable closed surface

of genus (or crosscap number) k, respectively. See Figures 2.2 and 2.3.
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Theorem 2.1. (The classification theorem of closed surfaces) Any connected closed

surface F 2 is homeomorphic to one of the following surfaces.

• The sphere S0.

• The orientable closed surface Sg of genus g.

• The nonorientable closed surface Nk of genus k.

Figure 2.2: An orientable closed surface Sg Figure 2.3: A nonorientable closed surface Nk

Let ε(F 2) denote the Euler characteristic of a closed surface F 2. Note that ε(Sg) =

2− 2g and ε(Nk) = 2− k.

A simple closed curve l on F 2 is called essential if l does not bound a 2-cell. We say

that l is one-sided if the tubular neighborhood of l is homeomorphic to a Möbius band,

and l is two-sided otherwise.

2.4 Embeddings of graphs

If a graph G can be drawn on a closed surface F 2 without edge crossings, we say that G

has an embedding on F 2, we also call an embedding of G an embedded graph on F 2. An

embedding of a graph G on a closed surface F 2 is also regarded as an injective continuous

map f : G → F 2. Throughout this thesis, we denote a fixed embedding of G on F 2 by

G→ F 2. An embedding G→ F 2 is called a 2-cell embedding if any connected component

of F 2\G is homeomorphic to an open disc. We only consider 2-cell embeddings of graphs

and we often write “an embedding” instead of “a 2-cell embedding” in this thesis. Suppose

that a graph G is embedded on a closed surface F 2, we denote the set of faces of G by F (G).

We call a graph G planar if there exists an embedding G→ S0, and the embedding a plane

graph G. We call an embedded graph G a triangulation if every face of the embedding of

G is triangular.
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2.5 Locally planar graphs

In this section, we consider graphs on surfaces with small chromatic number. Even if the

genus is much higher, the chromatic number of a graph is small if its representativity is

high depending on the genus.

By Theorem 1.2, we see that the upper bound of the chromatic number of a graph on a

closed surface F 2 depends on the genus of F 2. Roughly speaking, χ(G) = O(
√
g). On the

other hand, there exist infinitely many graphs which have a small chromatic number. It

is known that a graph G with high representativity on a closed surface F 2 can be colored

by only a few colors even if the genus of F 2 is high. Representativity is the measure of

the density of embeddings [47]. Let G be a graph embedded on a closed surface F 2. The

representativity r(G) of G is defined as

r(G) := min{|G ∩ l|: l is an essential simple closed curve on F 2}.

A graph with high representativity is sometimes called a locally planar graph. Chromatic

numbers of locally planar graphs are much less than general graphs, see the following.

Theorem 2.2. (Thomassen [53]) For any closed surface F 2 except for the sphere, there

is a number N = N(F 2) such that every graph G on F 2 with representativity r(G) ≥ N is

5-colorable.

2.6 Even embeddings of graphs

For a plane graph G, chromatic number of G is two if and only if G is bipartite. A bipartite

plane graph is also considered as an even embedded graph. An even embedding of a graph G

on a closed surface F 2 is a 2-cell embedding such that each face of G is bounded by an even

closed walk. Even if an embedding is not 2-cell, we also call it an even embedding if we can

add some edges to get a 2-cell even embedding. In particular, we call it quadrangulation if

every face is a quadrilateral.

In general surface, an even embedded graph may not be bipartite because essential

closed walks may have odd lengths. It means that we do not know whether chromatic

number is two of more. The followings are the results of chromatic numbers of locally

planar graphs even embedded on a closed surface F 2.

Theorem 2.3. (Fisk and Mohar [11]) For any closed surface F 2 except for the sphere,
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there is a number N = N(F 2) such that every even embedded graph G on F 2 with repre-

sentativity r(G) ≥ N is 4-colorable.

Theorem 2.4. (Hutchinson [19]) For any orientable closed surface Sg except for the

sphere, there is a number N = N(F 2) such that every even embedded graph G on Sg with

representativity r(G) ≥ N is 3-colorable.

2.7 Empire graphs

We define an empire map to be a map on a closed surface divided into regions, where the

set of regions is partitioned into disjoint subsets which we call empires. We call an empire

with exactly r regions an r-pire. An empire map where each empire has no more than r

regions is called an r-pire map. Each empire map can be associated with a simple graph

G, which is the dual of the map. The vertex set of G is the set of regions of the map and

two vertices are adjacent if the corresponding regions share a common boundary edge. We

call the graph obtained from the empire map an underlying graph.

We define an empire graph (G,P) as follows. Suppose that G is a simple graph and

P = {P1, P2, . . . , Pt} is a partition of V (G), that is,
∪

i Pi = V (G) and Pi ∩Pj = ∅ if i ̸= j

such that each Pi is a set of mutually nonadjacent vertices. We call each Pi an empire. If

|Pi| ≤ r for all i, we call (G,P) an r-pire graph.

We define a proper vertex-coloring of an empire graph (G,P) to be a mapping c :

V (G) → {1, 2, . . .} such that for x ∈ Pi and y ∈ Pj , c(x) = c(y) if i = j and c(x) ̸= c(y)

if i ̸= j and xy ∈ E(G). We say that (G,P) is k-colorable if there exists a proper

vertex-coloring c : V (G) → {1, 2, . . . , k} of the empire graph (G,P). We simply call

it a coloring instead of a proper vertex-coloring. A coloring of an empire graph (G,P)

is essentially equivalent to a coloring of the graph GP , which is obtained from G by

identifying all vertices in each Pi of P into a vertex pi, that is, V (GP) = {p1, p2, . . . , pt}

and E(GP) = {pipj |there exists an edge xy ∈ E(G) where x ∈ Pi and y ∈ Pj (i ̸= j)}.
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Chapter 3

Embedding methods and current

graphs

In this chapter, we study how to represent embeddings of graphs. Embedding methods have

been widely studied in the literature. See [14] and [30] for the foundation of topological

graph theory.

In each of Theorems 1.2 and 1.3, the proof of the sharpness is based on the fact that

KH(ε) and K⌊ 5+
√

25−16ε
2

⌋ can be embedded on F 2, respectively. These are minimum genus

embeddings of the complete graphs. To construct them, we use the notion of rotation

systems. In Section 3.1, we introduce rotation systems. In Section 3.2, we introduce

current graphs to get suitable rotation systems.

3.1 Rotation systems

We construct an (empire) graph by using the rotation systems. Let G be a connected

multi-graph with at least one edge. Suppose that we have a cyclic permutation πv of

the edges incident with the vertex v for each v ∈ V (G). We call such πv a rotation. A

rotation system π is the collection of πv for all v ∈ V (G). If G is simple, we may assume

that a rotation πv is a cyclic permutation of the neighbors of the vertex v ∈ V (G). In

this thesis, we often represent rotations by cyclic permutations of vertices. A closed walk

v1e1v2e2v3 . . . vkekv1 is called a π-polygon, if πvi is . . . , vi−1, vi+1, . . . for every i where

indices are taken modulo k. Each edge e in G is contained twice in π-polygons. We see

that all π-polygons construct a closed orientable surface and rotation systems represent
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embeddings of graphs on closed orientable surfaces.

To apply this method to nonorientable cases, in addition to the rotations, we use a

mapping λ : E(G) → {1,−1}, which is called a signature. We call an edge e twisted if

λ(e) = −1. We define an embedding of G on a surface F 2 so that the clockwise orderings at

u and v do not agree in the disk on F 2 around the edge uv if and only if λ(uv) = −1. By this

fact, we see the following. Let u and v be vertices joined by a twisted (resp. non-twisted)

edge in a graphG, πu be a rotation . . . , w, v, x, . . . and πv be a rotation . . . , y, u, z, . . .. Then

some π-polygon of G is . . . , w, wu, u, uv, v, vy, y, . . . (resp. . . . , w, wu, u, uv, v, vz, z, . . .).

For more details, see pp.91–94 in [30].

3.2 Current graphs

We explain how to obtain the rotation system. We use a powerful method of current

graphs. A current graph G with a group A is a weighted digraph (it can have loops and

multiple edges) such that each vertex v in G has a rotation σv which is a cyclic permutation

of the neighbors of v. In this thesis, we only consider the case A = Zn; the cyclic group

of order n. We define a weight function β : {uv, (uv)−1|uv ∈ E(G)} → Zn\{0} satisfying

β((uv)−1) = −β(uv), which is called a current. Here (uv)−1 represents the opposite

direction of the edge uv. Let

W1 = v11, v
1
1v

1
2, v

1
2, . . . , v

1
k1 , v

1
k1v

1
1, v

1
1,

W2 = v21, v
2
1v

2
2, v

2
2, . . . , v

2
k2 , v

2
k2v

2
1, v

2
1,

· · ·

Wr = vr1, v
r
1v

r
2, v

r
2, . . . , v

r
kr , v

r
krv

r
1, v

r
1

be all σ-polygons of G, where σ is the rotation system consisting of the collection of σv for

all v ∈ V (G).

We construct a new graph Gβ, which is called a generated graph, with a vertex set

Zn × {1, 2, . . . , r} =
{
is|i ∈ Zn, s ∈ {1, 2, . . . , r}

}
and a set of permutations π = {π0, π1, . . . , πn−1} defined by G, σ and β as follows. Each

value is an element of the cyclic group of order n.
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π0 =
(
β(v11v

1
2), β(v

1
2v

1
3), . . . , β(v

1
k1v

1
1)
)(
β(v21v

2
2), . . . , β(v

2
k2v

2
1)
)

· · ·
(
β(vr1v

r
2), . . . , β(v

r
krv

r
1)
)

π1 =
(
β(v11v

1
2) + 1, β(v12v

1
3) + 1, . . . , β(v1k1v

1
1) + 1

)(
β(v21v

2
2) + 1, . . . , β(v2k2v

2
1) + 1

)
· · ·

(
β(vr1v

r
2) + 1, . . . , β(vrkrv

r
1) + 1

)
· · ·

πi =
(
β(v11v

1
2) + i, β(v12v

1
3) + i, . . . , β(v1k1v

1
1) + i

)(
β(v21v

2
2) + i, . . . , β(v2k2v

2
1) + i

)
· · ·

(
β(vr1v

r
2) + i, . . . , β(vrkrv

r
1) + i

)
· · ·

πn−1 =
(
β(v11v

1
2) + n− 1, β(v12v

1
3) + n− 1, . . . , β(v1k1v

1
1) + n− 1

)
·
(
β(v21v

2
2) + n− 1, . . . , β(v2k2v

2
1) + n− 1

)
· · ·

(
β(vr1v

r
2) + n− 1, . . . , β(vrkrv

r
1) + n− 1

)
The elements of Zn correspond to the empires, and r represents the number of vertices

in an empire. Each πi has r cyclic permutations, each of which can be regarded as the

rotation of a vertex of the empire i. The sth cyclic permutation of πi is the rotation

πis of the vertex is. (Note that the cyclic permutations in πi is not a permutation of

Zn ×{1, 2, . . . , r}, but of Zn. If i is contained in sth cyclic permutation of πj , then j ∈ Zn

in πi is regarded as js ∈ Zn × {1, 2, . . . , r}.)

We show an example. A graph in Figure 3.1 is a weighted digraph with the cyclic

group of order 21. Each black vertex vi (1 ≤ i ≤ 4) has the neighbors with a clockwise

order as a rotation σi and the white vertex v5 has the neighbors with a counterclockwise

order as a rotation σ5.

Figure 3.1: An example of a current graph
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Now we take σ-polygons, we may start v1 first. Trace the arc v1v3 in the opposite

direction of the arrow, and reach the black vertex v3, turn left. Trace the arc v3v4 in the

direction of the arrow, and reach the black vertex v4, turn left. Trace the arc v4v1 in the

opposite direction of the arrow, and reach the black vertex v1, turn left. Then the first

σ-polygon is

W1 = v1, v3v
−1
1 , v3, v3v4, v4, v1v

−1
4 , v1.

Similarly, the other σ-polygons are

W2 = v1, v1v4, v4, v4v2, v2, v1v
−1
2 , v1 and

W3 = v1, v5v
−1
1 , v5, v2v

−1
5 , . . . , v3v1, v1.

Thus, r = 3 and

π0 =
(
β((v3v1)

−1), β(v3v4), β((v1v4)
−1)

)
·
(
β(v1v4), β(v4v2), β((v1v2)

−1)
)(
β((v5v1)

−1), β((v2v5)
−1), . . . , β(v3v1)

)
= (−1, 10,−2)(2, 3,−7)(−8,−4,−3, 9, 5,−6, 4,−9,−10,−5, 8, 7, 6, 1)

= (20, 10, 19)(2, 3, 14)(13, 17, 18, 9, 5, 15, 4, 12, 11, 16, 8, 7, 6, 1).

We can get the other permutations πi (1 ≤ i ≤ n− 1) using the method mentioned before.

We assume each empire i has three vertices i1, i2 and i3. Then we get rotations

π01 =
(
203, 103, 192

)
, π02 =

(
21, 33, 143

)
, π03 =

(
133, 173, . . . , 11

)
π11 =

(
03, 113, 202

)
, π12 =

(
31, 43, 153

)
, π13 =

(
143, 183, . . . , 21

)
· · ·

π201 =
(
193, 93, 182

)
, π202 =

(
11, 23, 133

)
, π203 =

(
123, 163, . . . , 01

)
.

Then we can get the the generated graph Gβ induced by the rotation system π, which

is the collection of πis for all is ∈ Z21 × {1, 2, 3}. We see that the current graph in Figure

3.1 generates a 3-pire graph with 21 mutually adjacent 3-pires on an orientable closed

surface.

We also apply this method to nonorientable cases. We refer pp.137–139 in [45]. To

construct a graph embedded on a nonorientable closed surface, we add the new idea which

is called broken arcs to the current graphs. We call the current graph involving some

broken arcs a cascade.

We show an example of a cascade. A graph in Figure 3.2 is a weighted digraph with

the cyclic group of order 17. Each black vertex vi(i ∈ {1, 2, 4}) has the neighbors with a
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clockwise order as a rotation σi and the white vertex v3 has the neighbors with a counter-

clockwise order as a rotation σ3. It has three broken arcs v1v1, v3v4 and v4v4. Broken arcs

work as follows. If we trace the broken arc, then the orientations of all arrows change, and

the black vertex changes to the white vertex and vice versa.

Figure 3.2: An example of a cascade

Now we take σ-polygons. Suppose that we may start v1. Trace the arc v1v2 in the

direction of the arrow, and reach the black vertex v2, turn left. Trace the arc v2v3 in the

direction of the arrow, and reach the white vertex v3, turn right. Trace the arc v3v4 in the

direction of the arrow, and this arc is broken, then reach the white vertex v4, turn right.

Trace the arc v4v4 in the direction of the arrow, and this arc is broken, then reach the

black vertex v4, turn left. Trace the arc v4v4 in the opposite direction of the arrow, and

so on. Then we get one σ-polygon

W1 = v1, v1v2, v2, v2v3, v3, v3v4, v4, v4v4, v4, (v4v4)
−1, v4, . . . , v1.

Since r = 1, we see that

π0 =
(
β(v1v2), β(v2v3), β(v3v4), β(v4v4), β((v4v4)

−1), . . . , β((v1v1)
−1)

)
= (3, 2, 1, 5,−5, 8,−2, 6,−3, 7,−1,−8,−7,−6, 4,−4)

= (3, 2, 1, 5, 12, 8, 15, 6, 14, 7, 16, 9, 10, 11, 4, 13).

Now we see that the signature λ of the generated graph is determined as follows. If an

arc e is traced twice in the same direction on the cascade, then we define λ(e) = 1, and if

an arc e is traced twice in both direction on the cascade, then we define λ(e) = −1.

We use the following lemma.

Lemma 3.1. (Ringel [45], p.145) If a cascade with at least one broken arc defines a

graph embedded on an orientable surface, then the following two properties must hold.
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(F1) The order n of the group is even.

(F2) If the current of an arc (broken or not) is odd then the arc is traced twice in the same

direction. If the current is even then the arc is traced in both directions.

By Lemma 3.1, we see that the cascade in Figure 3.2 generates K17 on a nonorientable

closed surface, since the order of the group n = 17 is odd.

LetG be a current graph or a cascade with a rotation system π, and β : {uv, (uv)−1|uv ∈

E(G)} → Zn\{0} be a weight function. If we suppose that broken arcs are twisted arcs, G

has a 2-cell embedding on some closed surface S. Then the current graph or the cascade

is denoted ⟨G→ S, β⟩n and the generated embedded graph is denoted Gβ → Sβ. If we get

the graph Gβ from the current graph G in this way, we say “G generates Gβ”. For more

details, see [14, 45].

To get the desired graph, we construct current graphs or cascades with the following

properties.

Lemma 3.2. (Hartsfield [15], Jackson and Ringel [21]) A current graph or a cascade

⟨G→ S, β⟩n where n is odd which satisfies (P1), (P2), (P3) and (P4) generates a graph Gβ

such that Gβ is the complete graph on n vertices and its embedding is a quadrangulation.

(P1) Each vertex has degree 4.

(P2) Each element from 1 to (n − 1)/2 of Zn appears exactly once among the arcs of G

as a current.

(P3) At each vertex the sum of the currents outgoing from the vertex is zero modulo n.

(P4) The number of σ-polygons is one.

Lemma 3.3. A cascade ⟨G → S, β⟩n where n is odd which satisfies (P2) in Lemma 3.2

generates the empire graph (G,P) such that GP is Kn.

Proof. We assume that broken arcs are twisted edges. Since a cascade G has a rotation

system σ, it has a 2-cell embedding on some closed surface F 2. If F 2 is orientable, then we

can take fixed orientations of the all faces of G. Then we trace the arc with the direction

of the orientations, we see that each arc is traveled twice in both direction. If F 2 is

nonorientable, we cut open F 2 into an orientable surface S, and we take fixed orientations

of the all faces of G on S. We trace the arc with the direction of the orientations. When we
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trace the broken arc, we trace the following arcs in the opposite direction of the orientations

and the orientations of the arrows change. Then if we take good orientations of the facial

walks of the σ-polygons of G, each arc with current a is traced twice and it is appeared

as a and −a in π0. Since π0 has all elements ±1, . . ., ±(n− 1)/2, we see that empire 0 is

adjacent to any other empire in the generated empire graph Gβ. Since the construction of

each πi, Gβ has n mutually adjacent r-pires.

The following lemma is lead by the relation between current graphs and generated

graphs (see [14]).

Lemma 3.4. A current graph or a cascade ⟨G → S, β⟩n where n is odd which satisfies

(P1’), (P2), (P3’) and (P4) generates a graph Gβ such that Gβ is the complete graph on

n vertices and its embedding has one 2n-gonal face and all other faces quadrangular.

(P1’) One vertex has degree 2, the others has degree 4.

(P2) Each number from 1 to (n− 1)/2 appears exactly once as a current.

(P3’) At each vertex of degree 4 the sum of the currents outgoing from the vertex is zero

modulo n, and at vertex of degree 2, the sum of those is relatively prime to n.

(P4) The number of σ-polygons is one.

Corollary 3.5. If there exists a current graph (resp. a cascade) satisfying the properties of

Lemma 3.4, Kn+1 can be embedded on a closed surface Sg (resp. Nk) as a quadrangulation.

Proof. Let G be an embedding of Kn with conditions in Lemma 3.4. Add a new vertex

in the 2n-gonal face, and join it to every other vertex of the face boundary. By (P3’),

such all n vertices are distinct. Then we see that we have the desired quadrangulation of

Kn+1.
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Chapter 4

Cycle parity

In this chapter, we study cycle parities. It is an invariant of even embeddings of graphs.

All the new results we prove in this chapter can be found in [43].

4.1 Motivation

Minimum genus embeddings of complete graphs have been studied by many researchers.

It is known that the number of minimum genus embeddings of the complete graphs is at

least exponential in n, see [28, 27, 25, 26].

From Theorem 1.3, the following holds.

Corollary 4.1. Kn has a quadrangular embedding on some closed surface Sg if and only

if n ≡ 0, 5 (mod 8). Kn has a quadrangular embedding on some closed surface Nk if and

only if n ≡ 0, 1 (mod 4) and n ̸= 5.

It is also known that the number of minimum genus even embeddings of K8s+5 on Sg
is at least exponential in n, see [28].

Now we consider several types of minimum genus even embeddings of complete graphs.

It is known that there is an invariant of even embeddings of graphs, which is called a cycle

parity. It divides non-bipartite even embeddings of graphs into three classes on a fixed

nonorientable closed surface.

Then we expect that for all n, there are minimum genus even embeddings of the

complete graph on n vertices with each type. One of our main results in this section is the

following. The types from A to F of cycle parities are defined in Section 4.2.
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Theorem 4.2. For each pair s ≥ 1 and t ∈ {1, 4}, there exists a minimum genus even

embedding of the complete graph on 8s+ t vertices whose cycle parity is of each type A, B

and C. For each pair s ≥ 1 and t ∈ {0, 5}, there exists a minimum genus even embedding

of the complete graph on 8s+ t vertices whose cycle parity is of each type D, E and F .

Let us consider a transformation of triangulations on surfaces, called an edge contrac-

tion. Let G be a triangulation on a surface and let e = xy be an edge of G. Let xyz and

xyw be two faces in G. Contraction of e in G is to remove e, identify x and y and replace

two pairs of multiple edges (xz and yz, xw and yw) with two single edges respectively. If

the contraction of e transforms G into a simple triangulation on the same surface, then we

say e is contractible. We say that G is contractible to a triangulation T if T is obtained

from G by a sequence of edge contractions. A triangulation G is called irreducible if G

has no contractible edge. It is known that every surface admits finitely many irreducible

triangulations, up to homeomorphism [9, 13, 23, 39], and the complete lists of irreducible

triangulations are known for S0 [49], S1 [29], S2 [50], and N1 [4], N2 [51], N3, N4 [50].

Irreducible triangulations have many applications, see [9]．

Let F 2 be a closed surface which can be triangulated by some Kn. By definition,

every triangulation on a fixed surface F 2 is contractible to an irreducible triangulation.

Moreover, we know that every complete triangulation (i.e., a triangular embedding of Kn)

on F 2 is irreducible. However, every triangulation on F 2 is not necessarily contractible

to a complete triangulation, since there exists an irreducible triangulation which is not a

complete triangulation. On the other hand, by a consequence of the proof of Negami’s

theorem [40] on diagonal flips in triangulations on surfaces, for any surface F 2, there is an

integer N(F 2) such that

any triangulation G on F 2 with at least N(F 2) vertices can be transformed into

a complete triangulation by edge contractions and diagonal flips.

Let us consider whether a similar fact holds for quadrangulations on surfaces. To do so,

we begin by introducing an important homological invariant for quadrangulations, called

a cycle parity.

Let G be an even embedding on a closed surface F 2. It is easy to see that any two

homotopic closed walks of G have a same length modulo 2. Hence, regarding each closed

walk W of G as a closed curve on F 2, we can assign “0” or “1” to each element of π1(F
2)
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of F 2. Hence we can define a homomorphism ρG : π1(F
2) → Z2. It is easy to see that G is

bipartite if and only if ρG is trivial, that is, ρ(l) = 0 for every simple closed curve l on F 2.

A face contraction of a face f = wxyz in a quadrangulation on a closed surface F 2 is

to identify an opposite pair w and y and replace the resulting two pairs of multiple edges

(wx and yx, wz and yz) with two simple edges. Then it is easy to see that face contraction

preserves a cycle parity of quadrangulations. We say f is contractible if the resulting graph

obtained from G by a face contraction of f at one of the two diagonal pairs is simple. If G

can be transformed into a quadrangulation H by a sequence of face contractions, then G

is called contractible to H. We say G is irreducible if G has no contractible face, and the

complete lists of irreducible quadrangulations on S0 [35], S1 [33] and N1 [35], N2 [32] have

been determined so far. The finiteness of the number of irreducible quadrangulations is

also known [39].

Suppose that Kn quadrangulates a closed surface F 2, then the corresponding quad-

rangulation must be irreducible, by definition. As in the triangulation case, since there is

a non-complete irreducible quadrangulation, not every quadrangulation is contractible to

a complete quadrangulation. On the other hand, Nakamoto [31] shows that for any F 2,

there exists a positive integerM(F 2) such that any two quadrangulations G1 and G2 of F
2

with |V (G1)| = |V (G2)| ≥M(F 2) can be transformed each other by a sequence of diagonal

slides and diagonal rotations (see [31] for their definitions) if and only if ρG1 is congruent

to ρG2 . Analogous to this result, we try to get a positive answer for the problem:

Can every quadrangulation on F 2 with sufficiently large order be transformed

into a complete quadrangulation by face contractions, diagonal slides and diag-

onal rotations?

Then, we need to know that a complete quadrangulation of F 2 byKn can have an arbitrary

non-trivial cycle parity. (Note that a complete quadrangulation is not bipartite, and hence

its cycle parity must be non-trivial.)

We restate our main result in this paper.

Theorem 4.2’. Suppose that Kn quadrangulates a closed surface F 2. Let ρ be any non-

trivial cycle parity over F 2. Then Kn has a quadrangulation whose cycle parity is ρ.

By Theorem 4.2’, using the result in [31], we have the following:

Corollary 4.3. Suppose that Kn quadrangulates a closed surface F 2. Then there exists

a positive integer M(F 2) such that any non-bipartite quadrangulation on F 2 with order

22



at least M(F 2) can be transformed into a complete quadrangulation by edge contractions,

diagonal slides and diagonal rotations.

Theorem 4.2’ has another application for the minor relation of embedded graphs. Let

G and H be embeddings on the same surface F 2. We say that H is a minor of G if

H is obtained from a subgraph of G by contracting edges. By the well-known result of

Robertson and Seymour [46], every locally planar triangulation on F 2 is contractible to a

complete triangulation if F 2 admits a complete triangulation.

Let us consider an analogy for even embeddings on F 2. Let G and H be connected

graphs. Let n = |V (H)| and V (H) = {v1, v2, . . . , vn}. We say that H is an odd minor of

G if

(i) H is obtained from a subgraph of G by contracting edges, and

(ii) For every cycle C of H, the cycles in G corresponding to C have a same length

modulo 2 as C.

For details, see [24]. Hence, if H is an odd minor of G, then G and H have a same cycle

parity. Using Theorem 4.2’ and the argument in [34], we can prove the following.

Corollary 4.4. For any closed surface F 2 except for the sphere, there is a number N =

N(F 2) such that every non-bipartite even embedded graph G on F 2 with representativity

r(G) ≥ N has an odd minor that is a complete quadrangulation if and only if F 2 admits a

complete quadrangulation.

In order to prove Theorem 4.2’, we construct quadrangulations of complete graphs

with particular parities of the lengths of cycles. We deal with the current graphs in the

construction of quadrangulation but we clarify the structures of the current graph and the

cycle parity of the generated quadrangulation. Moreover, we describe how to control cycle

parities of the embeddings by using the current graphs.

4.2 Cycle parities

Let π1(F
2) be the fundamental group of a closed surface F 2. We call any homomorphism

ρ : π1(F
2) → Z2 a cycle parity over F 2. A closed curve l is called even (resp. odd)

under a cycle parity ρ if ρ([l]) = 0 (resp. = 1), where [l] denotes the homotopy class

corresponding to l. We often write ρ(l) instead of ρ([l]). Two cycle parities ρ and ρ′ are
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called congruent if there is a homeomorphism h : F 2 → F 2 which induces an automorphism

h∗ : π1(F
2) → π1(F

2) with ρh∗ = ρ′.

To express cycle parities, we fix a system {a1, b1, . . . , ag, bg} of simple closed curves on

the orientable closed surface Sg like Figure 4.1, which is a generator of π1(Sg). Note that

a cycle parity can be represented as ρ = (ρ(a1), ρ(b1), . . ., ρ(ag), ρ(bg)). In particular,

ρ = (0, 0, . . . , 0, 0) is called trivial. For the nonorientable closed surface N2k+1, we fix a

system {x, a1, b1, . . . , ak, bk} of simple closed curves like Figure 4.2, which is a generator

of π1(N2k+1). Note that x is the only one-sided closed curve and the others are two-sided.

Note that a cycle parity can be represented as ρ = (ρ(x), ρ(a1), ρ(b1), . . ., ρ(ak), ρ(bk)).

For the nonorientable closed surface N2k, we fix a system {m, l, a2, b2, . . . , ak, bk} of simple

closed curves like Figure 4.3, which is a generator of π1(N2k). Note that l is the only

one-sided closed curve and the others are two-sided. Note that a cycle parity can be

represented as ρ = (ρ(m), ρ(l), ρ(a2), ρ(b2), . . ., ρ(ak), ρ(bk)).

Figure 4.1: A set of generators for Sg Figure 4.2: A set of generators for N2k−1

Figure 4.3: A set of generators for N2k

Another terminologies are referred to [36]. The following two theorems are shown.

Theorem 4.5. (Nakamoto, Negami and Ota [36]) Any non-trivial cycle parity ρ on

N2k+1 with k ≥ 1 is congruent to exactly one of A = (1, 0, 0, . . . , 0, 0), B = (1, 1, 0, . . . , 0, 0)

and C = (0, 1, 0, . . . , 0, 0). Any non-trivial cycle parity ρ on N2k with k ≥ 2 is congruent to

exactly one of D = (0, 0, 1, 0, . . . , 0, 0), E = (0, 1, 0, 0, . . . , 0, 0) and F = (1, 0, 0, 0, . . . , 0, 0).

For the Klein bottle N2, ρ is congruent to either E = (0, 1) or F = (1, 0).
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Theorem 4.6. (Nakamoto, Negami and Ota [36]) There is a simple closed curve on

the nonorientable closed surface Nk which is odd under a cycle parity ρ and which cuts

open Nk into an orientable surface if and only if ρ is of either type A, B or F .

4.3 Relations between cascades and cycle parities

In this section, we consider relations between cascades and generated graphs. We use the

technique of Theorem 9 in [2].

Let G be a directed graph 2-cell embedded on Nk. We see that Nk has a closed curve C

which cuts open Nk into an orientable surface. Let W be a closed walk which is homotopic

to C. Furthermore, let S be the orientable surface obtained from Nk by cutting it open

along W and G′ be the graph on S obtained from G cut by W . The resulting surface S

has one (resp. two) boundary component(s) if W is one-sided (resp. two-sided). Since

S is orientable, we can give an orientation of all faces of G′ in which two faces incident

to an edge e ∈ E(G) are consistent to each other if e does not lie on W . That is, these

orientations induce different directions of e.

Let f ∈ F (G′). We assign +1 (resp. −1) to each edge e on the boundary of f if

its direction is the same as (resp. different from) the orientation of f . We denote this

assignment by σf (e). Let σ+(f) and σ−(f) be the number of edges on the boundary of

f with σf (e) = 1 and −1, respectively. Define ψ(f) = σ+(f) − σ−(f) for all faces f and

consider their summation,

ψ(G′) :=
∑

f∈F (G′)

ψ(f) =
∑

f∈F (G′)

(σ+(f)− σ−(f)).

If an edge e does not lie on W in G′, then σf (e) = −σf ′(e) for two faces f and f ′ incident

to e in G. Then e contributes 0 to ψ(G′). If e lies on W , then σf (e) = σf ′(e) since Nk is

nonorientable. Then ψ(G′) is the summation of 2σf (e) over all edges e lying on W .

Consequently, we can show the following corollary.

Corollary 4.7. Let G be a directed graph 2-cell embedded on Nk, C be a closed curve

on Nk which cuts open Nk into an orientable surface and W be a closed walk which is

homotopic to C. Furthermore, let S be the orientable surface obtained from Nk by cutting

it open along W and G′ be the graph on S obtained from G cut by W . If the length of W

is odd, then ψ(G′) ≡ 2 (mod 4). If the length of W is even, then ψ(G′) ≡ 0 (mod 4).
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Now let ⟨G → S, β⟩2l+1 be a cascade and Gβ be the generated graph. Let Z2l+1 be a

vertex set of Gβ. We define the orientations of all edges in G. Let π0 = (a1, a2, . . . , a2l) be

a rotation of vertex 0 in Gβ. We determine an orientation of an arc 0ai to {0, ai} if ai ≤ l,

{ai, 0} if ai ≥ l + 1. We also define an orientation of an edge st same as an edge 0(t− s)

with indices taken modulo n.

For a graph G embedded on Nk, we notice that we cannot define the value ψ(f) but

|ψ(f)| of f ∈ F (G). We also define |ψ(G)| =
∑

f∈F (G) |ψ(f)|.

Lemma 4.8. Let ⟨G → S, β⟩2l+1 be an Eulerian cascade and Gβ be the generated graph.

Let c(v) be the sum of the currents of v ∈ V (G) and r(v) be the order of c(v) in Z2l+1.

Then for the faces f1, . . . , f(2l+1)/r(v) of Gβ corresponding to the vertex v, it holds that

|ψ(fi)| = r(v)| deg+(v)− deg−(v)|

for all 1 ≤ i ≤ (2l + 1)/r(v).

Proof. See Theorem 4.4.1 of [14]. We see an example, Figures 4.4 and 4.5. Let v1 and v2

be neighbors of v such that σv(v1) = v2, β(v1v) = i and β(vv2) = j. Since a σ-polygon

goes through the arc vv2 just after the arc v1v, there exist vertices 0, i, j ∈ Gβ such that

π0(i) = j. From defined orientations, we see that the arcs 0i and 0j outgo from 0. Then

we see that an incoming edge and an outgoing edge from v are of different contribution

for |ψ(f)| in Gβ. Then |ψ(f)| is equal to the difference between deg+(v) and deg−(v).

Figure 4.4: A part of a cascade Figure 4.5: The generated graph

Lemma 4.9. Let ⟨G → S, β⟩2l+1 be an Eulerian cascade and Gβ be a generated graph.

Then the parity of the number of broken arcs in G is equal to the parity of the number of

faces in Gβ which satisfy |ψ(f)| ≡ 2 (mod 4).
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Proof. By Lemma 4.8,∑
f∈F (Gβ)

|ψ(f)| =
∑

v∈V (G)

2l + 1

r(v)
· r(v)| deg+(v)− deg−(v)|

=
∑

v∈V (G)

(2l + 1)| deg+(v)− deg−(v)|. (4.1)

Now a non-broken arc contributes 1 to both deg+ and deg− of its end vertices and a

broken arc contributes 2 to either of the deg+ or deg− of its end vertices. Since 2l + 1

is odd and (4.1), |ψ(Gβ)| ≡ 2 · #{e ∈ E(G)|e is a broken arc} (mod 4). This leads the

desired result.

Theorem 4.10. Let ⟨G → S, β⟩2l+1 be an Eulerian cascade with m ≥ 1 broken arcs.

Then the generated graph Gβ is an even embedding on a nonorientable closed surface Nk.

Moreover, if m is odd, then the cycle parity ρ of Gβ is of type A, B or F . If m is even,

then the cycle parity ρ of Gβ is of type C, D or E.

Proof. We easily see that Gβ is an even embedding since G is Eulerian, the embedding is

on Nk by Lemma 3.1 and its cycle parity ρ is non-trivial since 2l+1 is odd. Then Theorem

4.10 holds by Theorem 4.6, Corollary 4.7 and Lemma 4.9.

We present another way to distinguish cycle parities.

Lemma 4.11. Let G → Nk be a non-trivial 2-cell even embeddings of a graph G. There

exists one-sided even closed walk in G if and only if ρ of G is of either type B, C, D or

F . There exists two-sided odd closed walk in G if and only if ρ of G is of either type B,

C, D or F .

Proof. We easily see that there is no even one-sided closed walk and odd two-sided closed

walk in an even embedding of a graph whose cycle parity ρ is of either type A or E. Thus

sufficiency is established. To establish necessity, we show the existence of closed walks.

Suppose first that ρ of G is of type B. Take a closed walk C1 of G which cuts open Nk

into an orientable surface and let G′ be the graph obtained from G cut by C1. Note that

C1 is one-sided. By the definition of cycle parities, the length of C1 is odd and G′ is

non-bipartite. Then we can find a two-sided odd closed walk C2 in G′. Now C1 ∪ C2 is a

one-sided even closed walk and C2 is a two-sided odd closed walk as desired.

The other cases can be shown similarly.
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Figure 4.6: Type A of K8s+1

Theorem 4.12. Let ⟨G → S, β⟩2l+1 be an Eulerian cascade which generates an even

embedding Gβ → Sβ = Nk. Then the cycle parity ρ of Gβ is of either type A or E when

all arcs in G are traced in the same direction on a σ-polygon and the cycle parity ρ of Gβ

is of type B, C, D or F when there exists an arc in G which is traced in both direction on

a σ-polygon.

Proof. We see that Gβ is a non-trivial even embedding. An arc of Gβ → Sβ is twisted if

and only if the corresponding arc of G is traced same directions on σ-polygons. If there

is a non-twisted arc 0a in Gβ, there exists a two-sided odd cycle 0, a, 2a, . . . ,−a, 0 with

indices taken modulo 2l + 1. By Lemma 4.11, the cycle parity ρ of Gβ is of either type

B, C, D or F . If all arcs of Gβ are twisted, we see that there is no odd two-sided closed

walk. By Lemma 4.11, the cycle parity ρ of Gβ is of either type A or E.

4.4 Constructing cascades

In this section, we prove Theorems 4.2 and 4.2’. We show them by giving some cascades.

Proof. Cases K8s+1 and K8s+5.

We construct cascades ⟨G → S, β⟩n satisfying properties (P1)–(P4) in Lemma 3.2, and

check their cycle parities using Theorems 4.10 and 4.12. First, we consider the cases s ≥ 2.

A cascade in Figure 4.6 generates a quadrangulation of the complete graph on 8s +

1 vertices with type A because the cascade has 3 (odd) broken arcs and all arcs are

traced same direction on the unique σ-polygon of G. A cascade in Figure 4.7 generates a

quadrangulation of the complete graph on 8s+1 vertices with type B because the cascade
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Figure 4.7: Type B of K8s+1

Figure 4.8: Type C of K8s+1
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Figure 4.9: Type D of K8s+5

Figure 4.10: Type E of K8s+5

30



Figure 4.11: Type F of K8s+5

has 3 (odd) broken arcs and arc with current 2s is traced both direction on the σ-polygon

of G. A cascade in Figure 4.8 generates a quadrangulation of the complete graph on 8s+1

vertices with type C because the cascade has 4 (even) broken arcs and arc with current

s+ 1 is traced both direction on the σ-polygon of G.

A cascade in Figure 4.9 generates a quadrangulation of the complete graph on 8s+ 5

vertices with type D because the cascade has 4 (even) broken arcs and arc with current

1 is traced same direction on the σ-polygon of G. A cascade in Figure 4.10 generates a

quadrangulation of the complete graph on 8s+5 vertices with type E because the cascade

has 4 (even) broken arcs and all arcs are traced same direction on the σ-polygon of G.

A cascade in Figure 4.11 generates a quadrangulation of the complete graph on 8s + 5

vertices with type F because the cascade has 3 (odd) broken arcs and arc with current 2

is traced both direction on the σ-polygon of G.

The case s = 1 with each type are generated from cascades in Figures 4.12 and 4.13.

We can easily check that each cascade generates the complete graph with each type. We

can also show that the existence of K9 with type C, that is the case s = 1 and type C, see

Section 4.5. But there is no cascade which generates such a graph.

Cases K8s+4 and K8s+8.

We construct cascades ⟨G → S, β⟩n satisfying properties (P1’), (P2), (P3’) and (P4) in

Lemma 3.4, and check their cycle parities using Theorems 4.10 and 4.12. First, we consider

the cases s ≥ 1.

A cascade in Figure 4.14 generates a quadrangulation of the complete graph on 8s+4
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Figure 4.12: Types A and B of K9

Figure 4.13: Types D, E and F of K9

Figure 4.14: Type A of K8s+4
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Figure 4.15: Type B of K8s+4

Figure 4.16: Type C of K8s+4

Figure 4.17: Type D of K8s+8
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Figure 4.18: Type E of K8s+8

Figure 4.19: Type F of K8s+8
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Figure 4.20: Types E and F of K8

vertices with type A because the cascade has 3 (odd) broken arcs and all arcs are traced

same direction on the σ-polygon of G. A cascade in Figure 4.15 generates a quadrangu-

lation of the complete graph on 8s + 4 vertices with type B because the cascade has 1

(odd) broken arcs and arc with current 2s is traced both direction on the σ-polygon of

G. A cascade in Figure 4.16 generates a quadrangulation of the complete graph on 8s+ 4

vertices with type C because the cascade has 2 (even) broken arcs and arc with current 2s

is traced both direction on the σ-polygon of G.

A cascade in Figure 4.17 generates a quadrangulation of the complete graph on 8s+8

vertices with type D because the cascade has 4 (even) broken arcs and arc with current

1 is traced same direction on the σ-polygon of G. A cascade in Figure 4.18 generates a

quadrangulation of the complete graph on 8s+8 vertices with type E because the cascade

has 4 (even) broken arcs and all arcs are traced same direction on the σ-polygon of G.

A cascade in Figure 4.19 generates a quadrangulation of the complete graph on 8s + 8

vertices with type F because the cascade has 1 (odd) broken arcs and arc with current 1

is traced both direction on the σ-polygon of G.

The case s = 0 with type E or F are generated from cascades in Figure 4.20. We can

easily check that each cascade generates K8 with each type. We can also show that the

existence of K8 with type D, that is the case s = 0 and type D, see Section 4.5. But there

is no cascade which generates such a graph.

This and Corollary 3.5 complete the proof of Theorem 4.2. Theorem 4.2’ also holds by

Theorems 1.3, 1.4, 4.2 and Corollary 4.1.

We show that there are no cascades which generate K9 with type C and K8 with type

D. The former case, by Theorem 4.10, if there exists such a cascade, it must have two
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vertices and four arcs which include two or four broken arcs. But we can easily check that

property (P3) in Lemma 3.2 cannot hold in each case. The latter case, if there exists, it

must have two vertices and three arcs which include two broken arcs. But we can easily

check that such graphs with property (P4) in Lemma 3.2 generate only K8 with type E.

Then we see that there are no such cascades.

4.5 Exceptional cases

We give rotation systems corresponding to K9 with type C and K8 with type D. Each

upper bar means a twisted arc.

K9 with type C.

π0 = (1, 8, 3, 4, 7, 5, 6, 2)

π1 = (2, 5, 3, 8, 4, 7, 0, 6)

π2 = (3, 5, 4, 8, 7, 1, 0, 6)

π3 = (4, 5, 0, 1, 2, 7, 8, 6)

π4 = (5, 0, 1, 2, 6, 8, 3, 7)

π5 = (6, 2, 1, 7, 3, 4, 0, 8)

π6 = (7, 2, 1, 0, 8, 3, 4, 5)

π7 = (8, 1, 0, 4, 5, 2, 3, 6)

π8 = (0, 7, 5, 6, 4, 3, 2, 1)

There are a two-sided odd cycle C1 = 123 and an even cycle C2 = 0163 which cuts

open N11 into an orientable surface.

K8 with type D.

π0 = (1, 5, 6, 7, 4, 3, 2)

π1 = (4, 0, 7, 6, 5, 2, 3)

π2 = (3, 7, 0, 1, 6, 5, 4)

π3 = (6, 2, 1, 0, 7, 4, 5)

π4 = (5, 1, 2, 3, 0, 7, 6)

π5 = (0, 4, 3, 2, 1, 6, 7)

π6 = (7, 3, 4, 5, 2, 1, 0)

π7 = (2, 6, 5, 4, 3, 0, 1)
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There are a two-sided odd cycle C3 = 012 and an even cycle C4 = 025134 which cuts

open N8 into an orientable surface.
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Chapter 5

A brief survey of the empire

problem

In this chapter, we briefly survey the results of the empire problem. On closed surfaces S0,

S1, N1 and N2, the problem is completely solved. On general closed surfaces, the problem

is partially solved.

5.1 Known results of the empire problem

We introduce classical results of the empire problem. The following is the oldest result.

Theorem 5.1. (Heawood [17]) Let (G,P) be an r-pire graph such that G has an embed-

ding on a closed surface F 2 with the Euler characteristic ε. Then (G,P) is hε,r-colorable,

where

hε,r =

⌊
6r + 1 +

√
(6r + 1)2 − 24ε

2

⌋
.

except possibly in the case ε = 2 and r = 1.

This is the upper bound of chromatic numbers of empire graphs. A lot of studies on

the lower bounds have done by many researchers. For the torus, ε = 0 and h0,r = 6r + 1.

Theorem 5.2. (Taylor [52]) Every r-pire graph (G,P) such that G has an embedding

on S1 is (6r+ 1)-colorable. Moreover, for each r, there is an r-pire graph embedded on S1
which is not 6r-colorable.

For the projective plane, ε = 1 and h1,r = 6r.
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Theorem 5.3. (Jackson and Ringel [21]) Every r-pire graph (G,P) such that G has an

embedding on N1 is 6r-colorable. Moreover, for each r, there is an r-pire graph embedded

on N1 which is not (6r − 1)-colorable.

For the sphere, ε = 2 and h2,r = 6r.

Theorem 5.4. (Jackson and Ringel [22]) Every r-pire graph (G,P) such that G has

an embedding on S0 is 6r-colorable. Moreover, for each r ≥ 2, there is an r-pire graph

embedded on S0 which is not (6r − 1)-colorable.

The Klein bottle case is a special one of Theorem 5.6. But we state it as an independent

theorem.

Theorem 5.5. (Jackson and Ringel [20]) Every r-pire graph (G,P) such that G has

an embedding on N2 is (6r + 1)-colorable. Moreover, for each r ≥ 2, there is an r-pire

graph embedded on N2 which is not 6r-colorable.

In general cases, the following holds.

Theorem 5.6. (Jackson and Ringel [20]) The bound hε,r in Theorem 5.1 is best possible

if one of the following conditions is satisfied;

(i) F 2 is an orientable surface, r is even, and hε,r is congruent to 1 modulo 12.

(ii) F 2 is an orientable surface, r is odd, and hε,r is congruent to 4 or 7 modulo 12.

(iii) F 2 is a nonorientable surface and hε,r is congruent to 1, 4 or 7 modulo 12 except in

the case F 2 is N2 and r = 1.

For the other cases, it is conjectured that hε,r is best possible but it has not been solved

yet. Table 5.1 is a list of above theorems.
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Table 5.1: Lowest upper bounds of chromatic numbers of r-pire graphs (G,P) for r ≥ 2

Surfaces Lowest upper bounds of χ(GP) Theorems

S0 6r Theorem 5.4

N1 6r Theorem 5.3

S1 6r + 1 Theorem 5.2

N2 6r + 1 Theorem 5.5

F 2 with ε ≤
⌊6r+1+

√
(6r+1)2−24ε

2

⌋
Theorems 5.1 and 5.6
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Chapter 6

The empire problem in even

embeddings

In this chapter, we consider the empire problem whose underlying graphs are even em-

beddings. We give complete solutions where a closed surface is S0, S1, N1 and N2, and

give partial solutions in general cases. All the new results we prove in this chapter can be

found in [41, 42].

6.1 Main theorems

In this section, we introduce our results of the empire problem in even embeddings of

graphs. First of all, we can easily obtain the upper bound of chromatic numbers in general

cases.

Theorem 6.1. Let (G,P) be an r-pire graph such that G has an even embedding on a

closed surface F 2 with ε ≤ 0. Then, (G,P) is nε,r-colorable, where

nε,r =

⌊
4r + 1 +

√
(4r + 1)2 − 16ε

2

⌋
. (6.1)

Secondly, we consider about the closed surfaces with nonnegative Euler characteristic.

For the sphere, we get the following statement.

Theorem 6.2. Every r-pire graph (G,P) such that G has an even embedding on S0 is

4r-colorable. Moreover, for each r ≥ 2, there is an r-pire graph even embedded on S0 which

is not (4r − 1)-colorable.
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For the projective plane, we get a similar result.

Theorem 6.3. Every r-pire graph (G,P) such that G has an even embedding on N1 is

4r-colorable. Moreover, for each r, there is an r-pire graph even embedded on N1 which is

not (4r − 1)-colorable.

Thirdly, we consider the sharpness of nε,r in Theorem 6.1. We get n0,r = 4r + 1 by

(6.1). For the torus, 4r + 1 is sharp.

Theorem 6.4. Every r-pire graph (G,P) such that G has an even embedding on S1 is

(4r + 1)-colorable. Moreover, for each r, there is an r-pire graph even embedded on S1
which is not 4r-colorable.

For the Klein bottle, Hutchinson [19] shows that n0,1 = 5 is not sharp. We show that

4r + 1 is sharp when r ≥ 2.

Theorem 6.5. Every r-pire graph (G,P) such that G has an even embedding on N2 is

(4r + 1)-colorable. Moreover, for each r ≥ 2, there is an r-pire graph even embedded on

N2 which is not 4r-colorable.

Furthermore, in general cases we show that nε,r in Theorem 6.1 is sharp for the cases

given in the following theorem.

Theorem 6.6. The bound nε,r in Theorem 6.1 is best possible if one of the following

conditions is satisfied;

(i) F 2 is an orientable surface, r is even, and nε,r is congruent to 1 modulo 8.

(ii) F 2 is an orientable surface, r is odd, and nε,r is congruent to 5 modulo 8.

(iii) F 2 is a nonorientable surface and nε,r is congruent to 1 modulo 4 except in the case

F 2 is N2 and r = 1.

Theorem 6.6 implies Theorem 6.5. Table 6.1 is a list of above theorems.

6.2 Proof of Theorem 6.1

We show two lemmas to prove Theorem 6.1.
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Table 6.1: Lowest upper bounds of chromatic numbers of even embedded r-pire graphs

(G,P) for r ≥ 2

Surfaces
Lowest upper bounds of χ(GP)
where G is an even embedding Theorems

S0 4r Theorem 6.2

N1 4r Theorem 6.3

S1 4r + 1 Theorem 6.4

N2 4r + 1 Theorem 6.5

F 2 with ε ≤
⌊4r+1+

√
(4r+1)2−16ε

2

⌋
Theorem 6.1 and 6.6

Lemma 6.7. Let (G,P) be an empire graph. If there exists an integer λ such that for any

subgraph H ⊂ GP , the average degree d̄(H) is less than λ, then (G,P) can be colored with

λ colors.

Lemma 6.8. Let G be a graph which has an even embedding on F 2 and (G,P) be an

r-pire graph with the number of empires t = |P|. Then,

d̄(GP) ≤ 4r − 4ε(F 2)

t
.

Proof of Lemma 6.7. We use induction on t = |P|. If t ≤ λ, the assertion is trivial. We

assume that all empire graphs with less empires than (G,P) can be colored with λ colors.

Since the average degree of GP is less than λ, there exists an empire P1 such that the vertex

p1 in (GP) has the degree less than λ. By the induction hypothesis, there is a coloring c′

of the empire graph (G− P1,P\{P1}) with colors {1, 2, . . . , λ}. Then we can extend c′ to

a coloring of (G,P) as follows. Let k be one of the colors in {1, 2, . . . , λ} which is not used

in NGP (p1). Such an integer k exists since the degree of p1 in (GP) is less than λ. Let

c : V (G) → {1, 2, . . . , λ} be defined as c(v) = c′(v) if v /∈ P1 and c(v) = k if v ∈ P1.

Proof of Lemma 6.8. Note that |V (G)| ≤ rt. Since G has an even embedding, we have

4|F (G)| ≤ 2|E(G)|. Together with Euler’s formula |V (G)| − |E(G)|+ |F (G)| ≥ ε(F 2), we

obtain that |E(G)| ≤ 2rt − 2ε(F 2). Since (G,P) consists of t empires and |E(G)| edges,

the average degree d̄ = d̄(GP) is no more than 2|E(G)|/t. So

d̄ ≤ 2|E(G)|
t

≤ 4r − 4ε(F 2)

t
. (6.2)
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Proof of Theorem 6.1. Let t be the number of empires. We estimate the average degree

d̄ = d̄(GP). Note that

d̄ ≤ t− 1. (6.3)

Since ε ≤ 0, by (6.2) and (6.3), we have d̄ ≤ 4r−4ε/(d̄+1), and hence d̄2− (4r−1)d̄−

4r + 4ε ≤ 0. Thus,

d̄ ≤
4r − 1 +

√
(4r + 1)2 − 16ε

2
.

The same is true for all subgraphs H of GP . Therefore we obtain the formula (6.1) by

Lemma 6.7.

6.3 The spherical case

In this section, we consider empire graphs on S0.

Proof of Theorem 6.2. Let G be a graph which has an even embedding on S0 and (G,P)

be an r-pire graph. Note that ε(S0) = 2. By Lemma 6.8, for all H ⊂ GP , d̄(H) ≤

4r− 8/t < 4r. By Lemma 6.7, we see that 4r colors are sufficient. We construct an r-pire

graph (G,P) such that G has an even embedding on S0 and the graph GP is K4r. The

graph in Figure 6.1 is an example for the case r = 2. In the graph, the number in the

circles represents each empire. Then it has eight empires 1, 2, . . . , 8 and any two empires

are adjacent to each other. Next, we show the case r = 3. First, we put together the graph

in Figure 6.1 and the graph in Figure 6.2. Let u7 and u8 be the vertices of the empires 7

and 8, respectively, which lie on the outer face of the graph in Figure 6.1, and let v10 and

v12 be the vertices of the empires 10 and 12, respectively, which lie on the outer face of

the graph in Figure 6.2. We add the edges u7v10, u7v12, u8v10 and u8v12. Then we obtain

the desired 3-pire graph.

Next, we show the case r = 4. We take two copies of the empire graph in Figure 6.1,

say (G1,P1) and (G2,P2). Let (G′
2,P ′

2) be the empire graph obtained from (G2,P2) by

replacing the empires 1 7→ 9, 2 7→ 10, . . . , 8 7→ 16. Note that the empires 9, 16, 10, 15 appear

in the outer face boundary of G′
2 in this order. Let u1, u8, u2 and u7 be the vertices of the

empires 1, 8, 2 and 7, respectively, which lie on the outer face of G1. Let v9, v16, v10 and

v15 be the vertices of the empires 9, 16, 10 and 15, respectively, which lie on the outer face

of G′
2. We add the edges u1v15, u8v10, u2v16 and u7v9. Then we obtain the empire graph

(G′,P ′). By the construction, G′ also has an even embedding on S0. Next, we consider the
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Figure 6.1: A 2-pire graph on S0 Figure 6.2: A 3-pire graph on S0

empire graph (G′′,P ′′) in Figure 6.3, where the top and the bottom are identified. Let H

be the graph obtained by putting together G′ and G′′, and Q = {P ′
1 ∪ P ′′

1 , . . . , P
′
16 ∪ P ′′

16},

where P ′ = {P ′
1, . . . , P

′
16} and P ′′ = {P ′′

1 , . . . , P
′′
16}. Note that in (H,Q), any two empires

are adjacent to each other, and the number of components is two. We have constructed

the desired 4-pire graph.

Figure 6.3: A part of a 4-pire graph on S0

To complete the proof of Theorem 6.2, we prove the following lemma by induction on

r.

Lemma 6.9. Let r ≥ 4. Then there exists an r-pire graph (G,P) where G has an even

embedding on S0 such that

(i) G has two components each of which has a quadrangular outer face in which the four

vertices are in different empires, and

(ii) GP is K4r.
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Proof. The case r = 4 is as mentioned before. Suppose r ≥ 5. We assume that a desired

(r − 1)-pire graph (Gr−1,Pr−1) exists. Let X and Y be the two components of Gr−1.

Without loss of generality, we may assume that two nonadjacent vertices of the outer

face belong to the empires 1 and 2 on X, 3 and 4 on Y , respectively. Next, we add four

empires A,B,C, and D. Then we shall add one vertex which belongs to each empire

from 1 to 4(r − 1), and r vertices which belong to each of the empires A,B,C and D.

We construct the graph in Figure 6.4 (the top and the bottom are identified), in which

each empire in {A,B,C,D} has (r − 2) vertices labeled same characters and there are

4(r − 3) + 2 = 4(r − 1) − 6 other vertices. These 4(r − 1) − 6 vertices correspond to one

vertex of each empire from 7 to 4(r − 1) respectively. We see that each empire from 7 to

4(r − 1) is adjacent to all of the empires A,B,C and D.

Figure 6.4: A part of Gr Figure 6.5: X,Y ,Z and W

Let f1 be a face of the graph in Figure 6.4 that has nonadjacent vertices a and c which

belong to the empires A and C, respectively. For example, the shaded face in the figure.

We construct the graph Z in Figure 6.5, and embed X, Y and Z in f1. Let x1 and x2 be

the vertices of the empires 1 and 2, respectively, which lie on the outer face of X, let y3

and y4 be the vertices of the empires 3 and 4, respectively, which lie on the outer face of

Y , and let z5 and z6 be the vertices of the empires 5 and 6, respectively, which lie on the

outer face of Z. We add the edges x1a, x1c, x2a, x2c, y3a, y3c, y4a, y4c, z5a, z5c, z6a and

z6c. It is obvious that this operations can be done without creating edge crossing, and

does not create odd faces. Finally, we construct the graph W in Figure 6.5. We obtain the

desired r-pire graph (Gr,Pr) with two components such that one is the graph in Figure

6.4 with the described changes and the other is W . Each component has a quadrangular

outer face in which the four vertices are in different empires. Then (i) holds. Clearly (ii)
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also holds.

The proof of Lemma 6.9 completes the proof of Theorem 6.2.

6.4 The projective planar case

In this section, we consider empire graphs on N1.

Proof of Theorem 6.3. Let (G,P) be an r-pire graph such that G has an even embedding

on N1. Note that ε(N1) = 1. By Lemma 6.8, for all H ⊂ GP , d̄(H) ≤ 4r − 4/t < 4r. By

Lemma 6.7, we see that 4r colors are sufficient. Since every graph which has an embedding

on S0 also has the one on N1, it is clear that for all r ≥ 2, there exists some r-pire graphs

that can be embedded on N1 which is not (4r− 1)-colorable by Theorem 6.2. For the case

r = 1, we see that K4 can be embedded on N1 so that all faces are quadrilaterals. This

completes the proof of Theorem 6.3.

6.5 The toroidal case

In this section, we consider empire graphs on S1.

Proof of Theorem 6.4. Let (G,P) be an r-pire graph such that G has an even embedding

on S1. Now ε(S1) = 0. By Lemma 6.8, for all H ⊂ GP , d̄(H) ≤ 4r < 4r + 1. By Lemma

6.7, we see that 4r+1 colors are sufficient. We construct an r-pire graph (G,P) such that

G has an even embedding on S1 and the graph GP is K4r+1. We also use induction on r.

(i) Cases r = 1, 2, 3. See the graph in Figure 6.6, one in Figure 6.7 and one in Figure

6.8 (in each graph, the top and the bottom, the left and the right are respectively identified

with appropriate twists).

Figure 6.6: A 1-pire graph on S1 Figure 6.7: A 2-pire graph on S1
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Figure 6.8: A 3-pire graph on S1

(ii) Case r ≥ 4. Assume that a desired (r−1)-pire graph (Gr−1,Pr−1) exists. Then we

shall add one vertex which belongs to each empire from 1 to 4(r − 1) + 1, and r vertices

which belong to each of new empires A,B,C and D. We prepare the graph in Figure

6.4, in which each empire in {A,B,C,D} has r − 2 vertices and each of other vertices

corresponds to a vertex of each empire from 8 to 4(r − 1) + 1. Then A,B,C and D are

adjacent to all empires from 8 to 4(r− 1)+ 1. We redraw it in the plane so that the outer

face has nonadjacent vertices a and c which belong to the empires A and C, respectively.

We name the graph G′. We have not used one vertex which belongs to the empires from

1 to 7 and two vertices which belong to the empires A,B,C and D yet. Take a face f1 of

Gr−1 with nonadjacent vertices u1 and u2. We may assume that u1 belongs to the empire

1 and u2 belongs to 2. Then we embed G′ in f1, and add the edges u1a, u1c, u2a and u2c.

We take a vertex u7 in Gr−1 which has neighbors u3, u4, u5 and u6 appearing consecutively

in this order around u7, such that u7, u3, u4, u5 and u6 belong to pairwise distinct empires

other than 1 or 2. We may assume that ui (i ∈ {3, 4, 5, 6, 7}) belongs to the empire i. Then

we embed two vertices from A,B,C and D into Gr−1 as the graph in Figure 6.9. In this

graph, all pairs (p, q) of empires are adjacent except for p ∈ {1, 2, 3, 4} and q ∈ {B,D}, or

p ∈ {5, 6} and q ∈ {A,B}, or p = 7 and q ∈ {A,C}. Then we embed each vertex from 1

to 7 into G′ as the graph in Figure 6.10, we get the desired r-pire graph.

6.6 The Klein bottlal case

In this section, we consider empire graphs on N2.
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Figure 6.9: A part of Gr−1 Figure 6.10: A part of Gr

Proof of Theorem 6.5. Let (G,P) be an r-pire graph such that G has an even embedding

on N2. Now ε(N2) = 0. By Lemma 6.8, for all H ⊂ GP , d̄(H) ≤ 4r < 4r + 1. By Lemma

6.7, we see that 4r+1 colors are sufficient. We construct an r-pire graph (G,P) which has

an even embedding on N2 such that the graph GP is K4r+1. Cases r = 2, 3 are the graph

in Figure 6.11 and one in Figure 6.12 (the top and the bottom, the left and the right are

respectively identified along with the arrow). For r ≥ 4, we can apply a similar inductive

construction as in the case of S1.

Figure 6.11: A 2-pire graph on N2 Figure 6.12: A 3-pire graph on N2

6.7 General cases

In this section, we consider general cases.

Lemma 6.10. Let r and n be integers with 0 < 4r ≤ n − 1. If there exists a graph G

which has a quadrangulation on a closed orientable (nonorientable) surface F 2 with the

Euler characteristic ε and an r-pire graph (G,P) with n mutually adjacent r-pires without

extra adjacencies of vertices, then n = nε,r and hence nε,r in Theorem 6.1 is best possible

for F 2 and r.
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Proof. By Theorems 6.2, 6.3 and the assumption 4r ≤ n − 1, we see that we may only

consider the cases ε ≤ 0. Let r and n be given. We assume that there exists an r-pire graph

(G,P) in the assumption of Lemma 6.10 on a closed surface F 2 with the Euler characteristic

ε. Here we have |V (G)| = rn, |E(G)| = n(n− 1)/2 and |F (G)| = n(n− 1)/4. By Euler’s

formula, we obtain 4ε = n(4r−n+1). Thus, we have n =
4r+1+

√
(4r+1)2−16ε

2 = nε,r. This

completes the proof of Lemma 6.10.

We show Theorem 6.6.

Proof of Theorem 6.6. By Lemmas 3.2, 3.3 and 6.10, for all r, we only have to construct

current graphs and cascades with properties (P1)–(P3) in Lemma 3.2 and n = nε,r. We

may assume 4r ≤ n− 1.

We divide the proof of Theorem 6.6 into three cases depending on the conditions.

Figure 6.13: Case (i)

Case (i). F 2 is orientable, nε,r is congruent to 1 modulo 8 and r is even. Let

n = 8s+1. We use the current graph in Figure 6.13. The colors of the vertices represented

by squares in the figure will be assigned to black or white depending on r. Label these

vertices from left to right by v1, v2, . . . , vs−1. For every even integer r with 2 ≤ r ≤ 2s, we

choose the vertices v1, v2, . . . , vr/2−1 to be black and the vertices vr/2, vr/2+1, . . . , vs−1 to be

white. Each vertex v in the current graph has a rotation σv which is a cyclic permutation

of the neighbors of v depending on its color. Let σ be a rotation system consisting of the

collection of σv for all v in the current graph. We consider the σ-polygons to take π0.
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If r = 2, then π0 is

(
2s− 1, . . . , s+ 1, s, s− 1, . . . , 1, 2s+ 1,−2s,−4s, . . . ,−(2s+ 2),−(2s+ 1), 2s

)
·
(
− s, 4s,−1, 4s− 1,−(s+ 1), 4s− 2,−2, . . . ,−(2s− 1), 2s+ 2

)
.

Since there exists a σ-polygon W containing the arcs with the currents 2s and −2s, 2s is

relatively prime to 8s + 1, W meets another σ-polygon on some arc, then the generated

r-pire graph is connected.

If r ̸= 2, then π0 is

(
2s− 1, . . . , s+ 1, s,−(2s+ 2),−(2s+ 1), 2s

)
·
(
− 2s,−4s,−(4s+ 1), . . . ,−(2s+ r − 1), s− r/2 + 1, 1, 2s+ 1

)
·
(
− s, 4s,−1, . . . ,−(s− 1)

)
·
(
2s+ r − 1,−(2s− r/2 + 1), 2s+ r − 2

)
· · ·

·
(
2s+ 3,−(2s− 1), 2s+ 2

)
.

Then the number of σ-polygons is r. Note that there exist σ-polygons W1 containing the

arcs with the currents 2s, −(2s+ 1) and s, W2 containing the arcs with the currents −2s

and 2s+ 1, and W3 containing the arc with the current −s. Since 2s+ (2s+ 1) = 4s+ 1

is relatively prime to 8s + 1, we see that each vertex of the empires corresponding to W1

and W2 is connected. Since W1 meets W3 on the arc with the current s, and every other

σ-polygon meets W1 or W3 on some arc, then the generated r-pire graph is connected.

Therefore for each pair of s ≥ 1 and even r ≤ 2s we obtain a connected r-pire graph of

8s + 1 mutually adjacent r-pires with a quadrangulation on an orientable closed surface.

This completes the proof for Case (i).

Case (ii). F 2 is orientable and nε,r is congruent to 5 modulo 8. Let n = 8s+5.

We use the current graph in Figure 6.14. Label the square vertices from left to right

by v1, v2, . . . , vs. For every odd integer r with 1 ≤ r ≤ 2s + 1, we choose the vertices

v1, v2, . . . , v(r−1)/2 to be black and the vertices v(r+1)/2, v(r+3)/2, . . . , vs to be white. As in

the previous case, let σ be a rotation system of the current graph.
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Figure 6.14: Case (ii)

If r ̸= 2s+ 1, then π0 is(
− (2s+ 1), 3s+ 2, 3s+ 1, . . . , 2s+ 3, 2s+ 2, 1,−(3s+ 2),−2s,−(2s− 1), . . . ,

−r, 4s− (r − 5)/2, . . . , 3s+ 3, 2s+ 1,−(2s+ 2), 2s,−(3s+ 3), 2s− 1,

−(2s+ 3), . . . ,−(4s− (r − 5)/2),−(4s+ 2)
)

·
(
r,−(3s− (r − 5)/2), r − 1

)
· · ·

·
(
2,−(4s+ 2), 1

)
.

Then the number of σ-polygons is r. Since there exists a σ-polygon W containing the arcs

with the currents 2s+1 and −(2s+1), 2s+1 is relatively prime to 8s+5, then we see that

each vertex of the empire corresponding to W is connected. Since every other σ-polygon

meets W on some arc, then the generated r-pire graph is connected.

If r = 2s+ 1, then π0 is(
3s+ 2, 3s+ 1, . . . , 2s+ 3, 2s+ 2, 1,−(3s+ 2), 2s+ 1,−(2s+ 2), 2s

)
·
(
− (2s+ 1),−(3s+ 3),−(3s+ 4), . . . ,−(4s+ 2)

)
·
(
− 2s,−(2s− 1), 3s+ 3

)
· · ·

·
(
2,−(4s+ 2), 1

)
.

Then the number of σ-polygons is r. Note that there exist σ-polygons W1 containing the
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Figure 6.15: Case (iii)-1, r: odd

Figure 6.16: Case (iii)-1, r: even

arcs with the currents 3s + 2, −(3s + 2) and 2s + 1, and W2 containing the arc with the

current −(2s+ 1). Since 3s+ 2 is relatively prime to 8s+ 5, then we see that each vertex

of the empire corresponding to W1 is connected. Since W1 meets W2 on the arc with the

current 2s+1, and every other σ-polygon meetsW1 orW2 on some arc, then the generated

r-pire graph is connected. Therefore for each pair of s ≥ 1 and odd r ≤ 2s+1 we obtain a

connected r-pire graph of 8s+ 5 mutually adjacent r-pires with a quadrangulation on an

orientable closed surface. This completes the proof for Case (ii).

Case (iii)-1. F 2 is nonorientable and nε,r is congruent to 1 modulo 8. Let

n = 8s + 1. For every s ≥ 1 we use the cascade in Figure 6.15 or one in Figure 6.16

depending on the parity of r. There are three broken arcs with the currents 1, 2s and
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2s + 1 respectively. Label the square vertices from left to right by v1, v2, . . . , vs−1. For

every odd integer r with 1 ≤ r ≤ 2s − 1, we choose the vertices v1, v2, . . . , v(r−1)/2 to be

black and the vertices v(r+1)/2, v(r+3)/2, . . . , vs−1 to be white in the cascade in Figure 6.15.

For every even integer r with 2 ≤ r ≤ 2s, we choose the vertices v1, v2, . . . , vr/2−1 to be

black and the vertices vr/2, vr/2+1, . . . , vs−1 to be white in the cascade in Figure 6.16. As

in the previous cases, let σ be a rotation system of the current graph.

We check the nonorientability and the connectedness. Since the order of the cyclic

group is odd, by Lemma 3.1, we see that the generated r-pire graphs are embedded on

nonorientable closed surfaces. If r = 1, generated graph is the complete graph on 8s + 1

vertices.

If r ̸= 1 and odd, then π0 is

(
2s,−2s, 2s− 1, 2s− 2, . . . , s+ 1, s,−(2s+ 2)

)
·
(
4s,−(2s+ 1), 2s+ 1, 1, 2, . . . , s− (r − 1)/2,−(2s+ r),−(2s+ r + 1), . . . ,

−(4s− 2),−(4s− 1),−4s,−1, 4s− 1,−(s+ 1), 4s− 2,−2, . . . , 2s+ r + 1,

−(s− (r − 1)/2),−(s− (r − 3)/2, . . . ,−(s− 1),−s
)

·
(
2s+ r,−(2s− (r − 1)/2, 2s+ r − 1

)
· · ·

·
(
2s+ 3,−(2s− 1), 2s+ 2

)
.

If r = 2, then π0 is

(
2s,−2s, 2s− 1, 2s− 2, . . . , s+ 1, s, s− 1, . . . , 1,−(2s+ 1),−4s,−(4s− 1), . . . ,

−(2s+ 2)
)

·
(
4s,−(2s+ 1),−1, 4s− 1,−(s+ 1), 4s− 2,−2, 4s− 3,−(s+ 2), . . . , 2s+ 4,

−(s− 1), 2s+ 3,−(2s− 1), 2s+ 2,−s
)
.
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If r ̸= 2 and even, then π0 is(
2s,−2s, 2s− 1, 2s− 2, . . . , s+ 1, s, . . . ,−(2s+ 2)

)
·
(
4s,−(2s+ 1),−1, 4s− 1, s+ 1, 4s− 2,−2, . . . , 2s+ r,−(s− r/2 + 1),

−(s− r/2 + 2), . . . ,−s
)

·
(
− 4s,−(4s− 1), . . . ,−(2s+ r − 1), s− r/2 + 1, s− r/2, . . . , 1, 2s+ 1

)
·
(
2s+ r − 1,−(2s− r/2 + 1), 2s+ r − 2

)
· · ·

·
(
2s+ 3,−(2s− 1), 2s+ 2

)
.

In each case, we see that the number of σ-polygons is r. Note that there exist σ-polygons

W1 containing the arcs with the currents 2s, −2s and s, and W2 containing the arc with

the current −s. Since 2s is relatively prime to 8s+ 1, then we see that each vertex of the

empire corresponding to W1 is connected. Since W1 meets W2 on the arc with the current

s and every other σ-polygon meetsW1 orW2 on some arc, then the generated r-pire graph

is connected. Therefore for each pair of s ≥ 1 and r ≤ 2s we obtain a connected r-pire

graph of 8s+1 mutually adjacent r-pires with a quadrangulation on a nonorientable closed

surface.

Case (iii)-2. F 2 is nonorientable and nε,r is congruent to 1 modulo 8. Let

n = 8s+5. For every s ≥ 1 we use the cascade in Figure 6.17, one in Figure 6.18 or one in

Figure 6.19. There are three broken arcs with the currents s, s+1 and 2s+1 respectively.

If s is odd, we put (1, 2), (3, 4), . . . , (s− 2, s− 1), (s+2, s+3), (s+4, s+5), . . . , (2s− 1, 2s)

as the currents to the pairs of multiple edges in each figure from left to right to satisfy

property (P3). If s is even, we exchange the currents 3s+ 1 and 3s+ 3, put the currents

s − 1 and s + 2 to the rightmost multiple edges in each figure like Figure 6.20 and put

(1, 2), (3, 4), . . . , (s − 3, s − 2), (s + 3, s + 4), (s + 5, s + 6), . . . , (2s − 1, 2s) as the currents

to the pairs of multiple edges in each figure from left to right to satisfy property (P3).

Label the square vertices from left to right by v1, v2, . . . , vs−1. For every odd integer r

with 3 ≤ r ≤ 2s+1, we choose the vertices v1, v2, . . . , v(r−3)/2 to be black and the vertices

v(r−1)/2, v(r+3)/2, . . . , vs−1 to be white in the cascade in Figure 6.17. For r = 1 we use

the cascade in Figure 6.18. For every even integer r with 2 ≤ r ≤ 2s, we choose the

vertices v1, v2, . . . , vr/2−1 to be black and the vertices vr/2, vr/2+1, . . . , vs−1 to be white in

the cascade in Figure 6.19. As in the previous cases, let σ be a rotation system of the

current graph.
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Figure 6.17: Case (iii)-2, r ≥ 3: odd

Figure 6.18: Case (iii)-2, r = 1
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Figure 6.19: Case (iii)-2, r ≥ 2: even

Figure 6.20: A part of Figure 6.19
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We check the nonorientability and the connectedness. Since the order of the cyclic

group is odd, by Lemma 3.1, we see that the generated r-pire graphs are embedded on

nonorientable closed surfaces. If r = 1, generated graph is the complete graph on 8s + 5

vertices.

If r = 3, then π0 is(
− s,−(2s+ 1), 2s+ 1, 3s+ 2, s+ 1

)
·
(
− (4s+ 2),−(4s+ 1), . . . ,−(3s+ 3),−(s+ 1), 2s+ 2, 1, 2, 2s+ 3, . . . , 3s+ 1,

−(3s+ 2), s
)

·
(
− (2s+ 2),−(2s+ 3), . . . ,−(3s+ 1), 3s+ 3,−2s,−(2s− 1), 3s+ 4, . . . , 4s+ 2

)
.

If r ̸= 1, 3 and odd, then π0 is(
− s,−(2s+ 1), 2s+ 1, 3s+ 2, s+ 1

)
·
(
− (4s+ 2),−(4s+ 1), . . . ,−(3s+ 3),−(s+ 1), 2s+ 2, . . . , 3s+ 1,−(3s+ 2), s

)
· · ·

·
(
1, 2

)
·
(
4s+ 2,−(2s+ 2),−1

)
.

If r = 2, then π0 is(
− s,−(2s+ 1), 2s+ 1, 3s+ 2,−(3s+ 1), . . . ,−(2s+ 2), 4s+ 2,−1,−2, 4s+ 1, . . . ,

3s+ 3, s+ 1
)

·
(
− (4s+ 2),−(4s+ 1), . . . ,−(3s+ 3), 3s+ 1, 2s, 2s− 1, 3s, . . . , 2s+ 2,−(s+ 1),

−(3s+ 2), s
)
.

If r ̸= 2 and even, then π0 is(
− s,−(2s+ 1), 2s+ 1, 3s+ 2,−(3s+ 1), . . . ,−(2s+ 2), 4s+ 2, . . . , 3s+ 3, s+ 1

)
·
(
− (4s+ 2),−(4s+ 1), . . . ,−(3s+ 3), 3s+ 1, . . . , 2s+ 2,−(s+ 1),−(3s+ 2), s

)
· · ·

·
(
1, 2

)
(
4s+ 2,−(2s+ 2),−1

)
.

In each case, we see that the number of σ-polygons is r. Note that there exist σ-polygons

W1 containing the arcs with the current 2s+ 1, −(2s+ 1) and −s, and W2 containing the
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arc with the current s. Since 2s + 1 is relatively prime to 8s + 5, then we see that each

vertex of the empire corresponding to W1 is connected. Since W1 meets W2 on the arc

with the current s and every other σ-polygon can trace to W2 via some σ-polygons, then

the generated r-pire graph is connected. Therefore for each pair of s ≥ 1 and r ≤ 2s+1 we

obtain a connected r-pire graph of 8s+5 mutually adjacent r-pires with a quadrangulation

on a nonorientable closed surface.

Then this completes the proof for Case (iii).
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Chapter 7

Topics of quadrangulations

In this chapter, we deal with topics related to quadrangulations. In this chapter, we always

allow multiple edges and loops. All the new results we prove in this chapter can be found

in [38, 37].

7.1 Extension to Eulerian triangulations

We can extend to a triangulation from a quadrangulation G by adding a diagonal edge in

every face of G. We expect that there is an Eulerian triangulation in such triangulations.

In 1996, Hoffmann and Kriegel showed that it is true for plane quadrangulations. In 2005,

Zhang and He showed the orientable case.

Theorem 7.1. (Hoffmann and Kriegel [18]) Let G be a quadrangulation on the sphere

S0. Then G can be extended to an Eulerian triangulation.

Theorem 7.2. (Zhang and He [55]) Let G be a quadrangulation on an orientable closed

surface Sg. Then G can be extended to an Eulerian triangulation.

Unfortunately, the proof in [55] does not work for the nonorientable case. Then we

show the following theorem. Theorem 7.3 implies Theorems 7.1 and 7.2.

Theorem 7.3. Let G be a quadrangulation on a closed surface F 2. Then G can be extended

to an Eulerian triangulation.

To prove Theorem 7.3, we need some definitions. For a graph G embedded on a closed

surface, the dual of G is denoted by G∗. The dual edge e∗ of an edge e of G is the one in

G∗ that corresponds to e in a natural way. We simply write G and e for (G∗)∗ and (e∗)∗,
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respectively, which are well-defined. Note that when G is a quadrangulation, every vertex

of G∗ has degree 4. For a vertex v with four incident edges e1, e2, e3, e4 in this cyclic order

around v, we say that e1 is the opposite of e3 at v. In the same manner, e2 is the opposite

of e4 at v. A walk W of G∗ is a straight walk, or shortly an S-walk, of G∗ if at each vertex,

W passes through v from one edge to the opposite edge, andW does not use an edge twice

or more. See Figure 7.1 for an example of S-walks. Note that possibly W might intersect

with itself and the edge set of G∗ is uniquely partitioned into S-walks. A set of S-walks of

G∗ is denoted by S(G∗) = {S1, . . . , Sl}.

Figure 7.1: Three S-walks S1, S2 and S3 of

the dual G∗ of a quadrangulation G

Figure 7.2: A primary diagonal

Figure 7.3: A triangulation T induced by the

orientation O

Figure 7.4: A degG(v)-gon fv
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Proof of Theorem 7.3. Now we take an arbitrary direction of each S-walk of G∗, and we

call the set of the direction an orientation of S(G∗). (In [55], they call it an S-orientation.)

Let O be an orientation of the S-walks of G∗. Let f be a face of G. Note that f corresponds

to a vertex of G∗, say vf . Now we add a diagonal to f so that the two directed edges

incoming to vf are separated from the two directed edges outgoing from vf , see Figure 7.2.

Such diagonal is the O-primary diagonal at f . (The other diagonal is called the secondly

diagonal in [55], but we do not use it in this thesis). Adding the O-primary diagonal to

all faces of G, we obtain a triangulation T . We say that T is induced by the orientation

O, see Figure 7.3.

We show that T is an Eulerian triangulation. Let v be a vertex of G and fv =

v1v2 · · · vdegG(v) be the face of G
∗ corresponding to v. There are some vertices x of fv such

that both orientated S-walks incident to x go out from x, or come in x in fv. For example,

see Figure 7.4. Let N(v) be the number of x’s. It is obvious that N(v) is even. Note that

the number of primary diagonals which is incident to v is degG(v) − N(v). Then we see

that

degT (v) = 2 degG(v)−N(v) ≡ 0 (mod 2)

for every v ∈ V (G), and T is an Eulerian triangulation.

7.2 Cyclic 4-colorings

Let G be a graph embedded on a surface F 2. A cyclic coloring of G is a vertex-coloring of

G such that any two vertices x and y receive different colors if x and y are incident with

a common face of G. Note that any cyclic coloring is a proper vertex-coloring, since any

two adjacent vertices are incident with a common face. Ore and Plummer [44] defined the

cyclic colorings of plane graphs and gave a conjecture on it, and many researchers have

studied about cyclic colorings, for example, see [6, 10, 48].

It is clear that for a cyclic coloring of a graph G embedded on a surface, we need at least

∆∗ colors, where ∆∗ is the maximum size of faces ofG. Now we deal with quadrangulations,

we consider cyclic 4-colorings. For a cyclic 4-coloring, it is natural to consider not only

quadrangulations but also mosaics G embedded on a surface F 2, where a mosaic is an

embedded graph such that every face of G is triangular or quadrangular. Borodin [8, 5]
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proved that every plane mosaic has a cyclic 6-coloring.

To deal with mosaics, we modify the definition of S-walks. Let G be a mosaic on a

surface F 2. A walk W of G∗ is a straight walk, or shortly an S-walk, if W satisfies one of

the followings;

(i) W connects vertices of degree 3 in G∗, and for every internal vertex v of W , v has

degree 4 in G∗ and W passes through v from one edge to the opposite edge at v.

(ii) W is a closed walk, and for every vertex v ofW , v has degree 4 andW passes through

v from one edge to the opposite edge at v.

In the same manner as the previous definition, note that possibly W might intersect

with itself and the edge set of G∗ is uniquely partitioned into S-walks.

Using the concept of straight walks, we define the straight walk dual G̃ of a mosaic G

as follows;

V (G̃) = {F : F is a triangular face of G}, and

E(G̃) = {W :W is a straight walk of G∗},

where each straight walk W corresponds to an edge of G̃ connecting two end vertices of W

(if W satisfies (i)), or an edge having no vertex (if W satisfies (ii)). See Figure 7.5. (Black

squares in the right side represent vertices of G̃.) Note that G̃ is 3-regular and might have

multiple edges or loops. When G is a triangulation of a surface, then G̃ = G∗, and when

G is a quadrangulation of a surface, then G̃ has no vertices and consists of only edges. We

can assume that G̃ is drawn on the surface in the natural way as G does. Hence G̃ might

have crossing edges, and moreover, an edge of G̃ might intersect with itself.

Throughout this chapter, we assume that a closed curve γ on a surface F 2 transversely

intersects with a graph G drawn on F 2. For simplifying the arguments, we also assume

that every closed curve γ on a surface F 2 passes through neither a vertex of G nor a

crossing point of G, that is, γ intersects with G only at a point where exactly one edge of

G is drawn. For a closed curve γ on F 2 and an edge set T of a graph G drawn on F 2, we

denote by T ∩ γ the set of points on F 2 that are contained in both an edge in T and γ.

Then we are ready to state our main theorem.
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Figure 7.5: A mosaic G (the left side) and the straight walk dual G̃ of G.

Theorem 7.4. A mosaic G of a surface F 2 has a cyclic 4-coloring if and only if the straight

walk dual G̃ of G has a 3-edge-coloring c : E(G̃) → {1, 2, 3} satisfying the following two

conditions.

(C1) Any two edges of G̃ that are pairwise crossing on F 2 receive different colors by c.

(So, no edge intersects with itself.)

(C2) For every closed curve γ on F 2,

|c−1(1) ∩ γ| ≡ |c−1(2) ∩ γ| ≡ |c−1(3) ∩ γ| (mod 2). (7.1)

Recall that for i = 1, 2, 3, c−1(i) denotes the set of edges ẽ of G̃ such that c(ẽ) = i, and

c−1(i)∩γ denotes the set of points on F 2 that are contained in both an edge in c−1(i) and

γ.

7.3 Properness of a 3-edge-coloring c

In Theorem 7.4, we do not require an edge-coloring c of G̃ to be proper, but indeed, we

need it. To be precisely, condition (C2) implies the properness of the 3-edge-coloring c.

Lemma 7.5. Let G̃ be a 3-regular graph drawn on a surface F 2. Suppose that G̃ has a

3-edge-coloring c : E(G̃) → {1, 2, 3}. If c satisfies condition (C2),

then c is a proper 3-edge-coloring of G̃.

Proof. Let v be any vertex of G̃, and let ẽ1, ẽ2, and ẽ3 be three edges that are incident

with v. Let c be a 3-edge-coloring of G̃, and suppose that c satisfies condition (C2). Let

γ be a non-essential closed curve on F 2 that intersects with each of ẽ1, ẽ2 and ẽ3 exactly
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once. It follows from equality (7.1) for γ that

|c−1(1) ∩ γ| ≡ |c−1(2) ∩ γ| ≡ |c−1(3) ∩ γ| (mod 2),

which directly implies that ẽ1, ẽ2, and ẽ3 are colored by three distinct colors. Hence c is a

proper 3-edge-coloring.

We point out that equality (7.1) for separating closed curves corresponds to a well-

known lemma, called Parity Lemma on a proper 3-edge-coloring, see for example, P. 253

in [54]. Recall that an edge-cut of a graph G is an inclusionwise minimal set of edges whose

removal makes G disconnected.

Lemma 7.6 (Parity Lemma). Let H be a 3-regular graph with a proper 3-edge-coloring

c by the colors 1, 2 and 3. Then each edge-cut T of H satisfies |c−1(1)∩T | ≡ |c−1(2)∩T | ≡

|c−1(3) ∩ T | (mod 2).

We will briefly mention how equality (7.1) for separating closed curves is related to

Lemma 7.6. For a closed curve γ on a surface F 2, let Tγ be the set of edges ẽ of a graph

G̃ drawn on F 2 such that ẽ intersects with γ odd number of times. It is easy to see that

γ is separating if and only if Tγ is a disjoint union of edge-cuts of G̃ or Tγ = ∅. In this

sense, separating closed curves on F 2 correspond to edge-cuts of a graph G̃, and we see

the correspondence between equality (7.1) and the equality in Lemma 7.6. Indeed, if c is a

proper 3-edge-coloring, then every separating closed curve γ on F 2 satisfies equality (7.1),

that is, the converse of Proposition 7.5 also holds for separating closed curves on F 2.

7.4 Checking condition (C2) and the fundamental group of

F 2

In this section, we consider how to check condition (C2). In order to check condition (C2) in

Theorem 7.4, we have to consider all closed curves on a surface F 2. But it is not necessary

to do that, and we will mention that it is enough to check only (2 − ε(F 2)) appropriate

non-separating closed curves on F 2, if we assume the properness of the 3-edge-coloring c

of G̃.

To see this, we first look at two situations (A) and (B) in Figure 7.6. Both situation

represents a part of two closed curves γ and γ′ on F 2, and assume that the remaining

parts of γ and γ′ are exactly same. Let c be a proper 3-edge-coloring of G̃. In situation
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γγ′

ẽ1
ẽ2

ẽ3

γ′
γ

(A) (B)

v

Figure 7.6: Two closed curves γ and γ′ that are homotopic.

(A), there is a vertex v of degree 3 in G̃, and let ẽ1, ẽ2, and ẽ3 be three edges of G̃ incident

with v. Since c is a proper 3-edge-coloring, we may assume that by symmetry, c(ẽi) = i

for i = 1, 2, 3. Note that |c−1(1)∩γ′| = |c−1(1)∩γ|−1, |c−1(2)∩γ′| = |c−1(2)∩γ|+1, and

|c−1(3)∩ γ′| = |c−1(3)∩ γ|+1, which directly implies that if γ satisfies equality (7.1) then

γ′ also does. Similarly, in situation (B) in Figure 7.6, we can easily see that if γ satisfies

equality (7.1) then γ′ also does. These two facts imply that for any two closed curves γ

and γ′ with the same homotopy type on F 2, if γ satisfies equality (7.1), then γ′ also does,

since γ′ can be obtained from γ by a sequence of homotopic shifts as in situation (A) or

(B) in Figure 7.6.

On the other hand, let [γ1] and [γ2] be two generators of the fundamental group of F 2.

(Note that [γ1] and [γ2] are two homotopy classes of the set of closed curves on F 2, and

γ1 and γ2 are representatives of them, respectively.) It is easy to see that if both γ1 and

γ2 satisfies equality (7.1), (and hence if every closed curve on F 2 homotopic to γ1 or γ2

satisfies equality (7.1),) then any closed curve γ contained in the homotopy class [γ1] ∗ [γ2]

or [γ1]
−1 also satisfies equality (7.1), where [γ1] ∗ [γ2] is the product of [γ1] and [γ2] on the

fundamental group of F 2 and [γ1]
−1 is the homotopy class containing γ−1

1 .

Since any homotopy class of the set of closed curves on F 2 is obtained by the products

of generators of the fundamental group of F 2, these arguments, together with Proposition

7.5, imply that the following theorem is equivalent to Theorem 7.4. Indeed, since there

are exactly (2 − ε(F 2)) generators in the fundamental group of F 2, it is enough to check

only (2− ε(F 2)) appropriate non-separating closed curves on F 2.

Theorem 7.7. A mosaic G of a surface F 2 has a cyclic 4-coloring if and only if the

straight walk dual G̃ has a proper 3-edge-coloring c : E(G̃) → {1, 2, 3} satisfying condition

(C1) and the following condition;
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(0, 0) (1, 0)

(0, 1)(1, 1)

v (1, 1)(1, 1)

(1, 0)

(1, 0) x2

x3x4

x1

e∗1

e∗3

e∗2e∗4

Figure 7.7: An example of the situation

around v and the edge-coloring ∂f∗ of G∗.

(0, 0) (1, 0)

(0, 1)(1, 1)

v 33
1

x2

x3x4

x1

e∗1

e∗3

e∗2e∗4
1

Figure 7.8: An example of the situation

around v and the coloring f of G.

(C2’) for every generator [γ] of the fundamental group of F 2, a representative γ of [γ]

satisfies equality (7.1).

7.5 Proof of Theorem 7.4

First, we show the “only if” part of Theorem 7.4. Let G be a mosaic of a surface F 2 and

suppose that G has a cyclic 4-coloring f . We regard the colors of f as the elements of

Z2 × Z2, then we use the four colors (0, 0), (1, 0), (0, 1) and (1, 1). We construct the (not

necessarily proper) edge-coloring ∂f of G as follows; for an edge e = xy of G, define the

color ∂f(e) = f(x) + f(y), where + means the sum on Z2 × Z2.

Since f is a proper coloring, every edge of G receives the color (0, 1), (1, 0) or (1, 1)

by ∂f . Let ∂f∗ be the edge-coloring of G∗ that is obtained from ∂f by a natural way;

∂f∗(e∗) = ∂f(e) for any edge e∗ of G∗. We show the following claim concerning the

edge-coloring ∂f∗.

Claim 7.8. Let v be a vertex of degree 4 in G∗, and let e∗1, e
∗
2, e

∗
3 and e∗4 be the four edges

incident with v in this cyclic order around v. Then ∂f∗(e∗1) = ∂f∗(e∗3) ̸= ∂f∗(e∗2) =

∂f∗(e∗4).

Proof. Let x1x2x3x4 be the face of G corresponding to v, where xi is a vertex of G for

i = 1, 2, 3, 4. By symmetry, we may assume that ei = xixi+1 for i = 1, 2, 3, 4, where

x5 = x1. Since f is a cyclic 4-coloring of G, the four vertices x1, x2, x3 and x4 receive

four distinct colors by f . Figure 7.7 shows one example of a coloring of the four vertices

x1, x2, x3 and x4 by f and the edge-coloring ∂f∗ of e∗1, e
∗
2, e

∗
3 and e∗4. It is easy to check
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that

∂f∗(e∗1) = f(x1) + f(x2) = f(x3) + f(x4) = ∂f∗(e∗3),

and ∂f∗(e∗1) = f(x1) + f(x2) ̸= f(x2) + f(x3) = ∂f∗(e∗2).

The above (in)equalities show Claim 7.8

Now we construct the edge-coloring c of G̃ as c(W ) = ∂f∗(e∗) for each edge W of G̃,

where e∗ is an edge of G∗ contained in the straight walk W . By Claim 7.8, this definition

does not depend on the choice of an edge e∗, and hence that is well-defined. Moreover, the

edge-coloring c of G̃ satisfies condition (C1), by Claim 7.8.

To show that c satisfies condition (C2), we first need the fact that the spanning sub-

graph G∗
1 of G∗ induced by all edges colored by (1, 0) or (1, 1) by ∂f∗ has a proper 2-face-

coloring. The definition of G∗
1, together with the construction of the edge-coloring ∂f∗,

implies that the dual edge e of an edge e∗ of G∗
1 connects two vertices of G, one of which

has the color (0, 0) or (0, 1) by f and the other has the color (1, 0) or (1, 1). This means

that a face of G∗
1 on one side of the edge e∗ contains faces of G∗ corresponding to vertices

of G with colors having 0 in the first coordinate by f , and that on the other side contains

faces of G∗ corresponding to vertices of G with a color having 1 in the first coordinate.

Then depending on the first coordinate of the color by f , we can color each face of G∗
1 by

the two colors, 0 or 1.

Then each closed curve γ on F 2 has to pass through faces of G∗
1 with color 0 and ones

with color 1 alternatively. This directly implies that∣∣(∂f∗)−1
(
(1, 0)

)
∩ γ

∣∣+ ∣∣(∂f∗)−1
(
(1, 1)

)
∩ γ

∣∣ ≡ 0 (mod 2).

By the definition of the edge-coloring c of G̃, we have∣∣c−1
(
(1, 0)

)
∩ γ

∣∣+ ∣∣c−1
(
(1, 1)

)
∩ γ

∣∣ ≡ 0 (mod 2). (7.2)

Since we can use the same argument as above for the second coordinate of the colors of f ,

we also obtain ∣∣c−1
(
(0, 1)

)
∩ γ

∣∣+ ∣∣c−1
(
(1, 1)

)
∩ γ

∣∣ ≡ 0 (mod 2). (7.3)

These equalities (7.2) and (7.3) imply that γ satisfies equality (7.1). Hence condition (C2)

also holds, and this completes the proof of the “only if” part of Theorem 7.4.
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Next, we show the “if” part of Theorem 7.4, by the almost inverse process of the proof

of the “only if” part.

Let G be a mosaic of a surface F 2 and suppose that the straight walk dual G̃ has a

3-edge-coloring c satisfying conditions (C1) and (C2). By Proposition 7.5, c is a proper

3-edge-coloring. Let c′ be the edge-coloring of G∗ such that c′(e∗) = c(W ) for each edge

e∗ of G∗, where W is the straight walk of G∗ containing e∗.

First, we focus on the colors 1 and 3, and let G∗
1 be the spanning subgraph of G∗

induced by all edges in (c′)−1(1) ∪ (c′)−1(3). We will show that the dual G1 of G∗
1 is

bipartite. Let S be a cycle of G1, and let γS be the closed curve on F 2 corresponding to

S. By Proposition condition (C2), γS satisfies equality (7.1), and hence

|E(S)| ≡ |c−1(1) ∩ γS | + |c−1(3) ∩ γS | ≡ 0 (mod 2).

So, S has an even length. This implies that G1 is bipartite. Hence G∗
1 has a proper 2-face-

coloring f1 by the two colors, say (0, 0) and (1, 0). Let G∗
2 be the spanning subgraph of

G∗ induced by all edges in (c′)−1(2) ∪ (c′)−1(3). By the same argument as above, G∗
2 has

a proper 2-face-coloring f2 by the two colors, say (0, 0) and (0, 1).

Then we define the coloring f of G as follows; for each vertex x of G, f(x) = f1(F1) +

f2(F2), where Fi be the face of G∗
i that contains the face of G∗ corresponding to x for

i = 1, 2. Figure 7.8 shows an example of the coloring of f . We show that f is a cyclic

4-coloring of G.

For an edge e = xy of G, e∗ is contained in at least one of G∗
1 and G∗

2, which implies

that x and y receive the colors by f that are different value in the first and/or second

coordinate. Thus, for any edge xy of G, x and y has distinct colors by f , that is, f is

a proper 4-coloring of G. In particular, each triangular face of G receives three distinct

colors by f . We show the following claim.

Claim 7.9. For any quadrangular face of G, say x1x2x3x4x1, we have f(x1) ̸= f(x3) and

f(x2) ̸= f(x4).

Proof. Let ei be the edge of G connecting xi and xi+1 for i = 1, 2, 3, 4, where x5 = x1. By

condition (C1), c′(e∗1) ̸= c′(e∗2), and hence by symmetry, we may assume that c′(e∗1) ̸= 3,

say c′(e∗1) = 1. Note that c′(e∗3) = 1, and e∗1 is contained in G∗
1 but not in G∗

2. Let F2

be the face of G∗
2 containing the face of G∗ corresponding to x1. Since c′(e∗1) = 1 and

c′(e∗2) ̸= 1, F2 contains the face of G
∗
2 corresponding to x2, and does not contain the face of
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G∗
2 corresponding to x3. Hence x1 and x3 receive distinct values in the second coordinate

by f2, and also by f . This implies that f(x1) ̸= f(x3), and similarly f(x2) ̸= f(x4).

Then for any quadrangular face of G, say x1x2x3x4x1, f(x1) ̸= f(x2) and f(x1) ̸= f(x4)

since f is a proper 4-coloring, and f(x1) ̸= f(x3) by Claim 7.9. Hence x1 receives a color

different from any of x2, x3 and x4, and by symmetry, the four vertices in a quadrangular

face receive four distinct colors by f . Thus, f is a cyclic 4-coloring of G. This completes

the proof of the “if” part, and the proof of Theorem 7.4.
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