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Abstract

The study of vertex colorings of graphs is one of the main topics in graph theory.
The chromatic number of a graph is the number of colors to color vertices so that
adjacent vertices receive different colors. Four Color Problem is the one asking
whether the chromatic number of a plane graph is at most 4 or more. This problem
was solved in 1976, and it produced a lot of problems and good streams of studies.
The followings are examples: “Chromatic numbers in the case of the surfaces with

»”

higher genus,” “restrictions of graphs for reducing the chromatic number” and
“coloring problems with special conditions.” In this thesis, we consider these
problems while focusing on even embeddings of graphs.

To draw a graph on a surface without edge crossings is called an embedding of the
graph on the surface. To determine the upper bound of chromatic numbers of
graphs embedded on a surface, we need to show the existence of special
embeddings, such as, a triangulation or a quadrangulation of the complete graph.
One of the methods to construct such an embedding is to use a current graph, which
gives a rotation system corresponding to the embedding.

An even embedding of a graph, which is the main theme of this thesis, is one in
which each face has even length. On the sphere, an even embedding of a graph is
equivalent to an embedding of a bipartite graph. But on general surfaces, there are
essential cycles in graphs, and then an algebraic invariant which is called cycle
parity is defined as the parities of the lengths of them. We study relations between
current graphs and even embeddings of graphs. We construct even embeddings of
empire graphs which achieve the upper bounds of the chromatic number. Here an
empire graph is one which corresponds to a map having detached territories. We
also construct quadrangulations of the complete graphs which have several types of
cycle parities by using current graphs. Especially, we propose an entirely new
method to control cycle parities by using current graphs.

About quadrangulations which are typical even embeddings, we also deal with
polychromatic coloring problems and extension problems to a triangulation which
has a special coloring. In these problems on general surfaces, we show relationships
between algebraic invariants including cycle parities and these problems.
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Preface

In this thesis we study even embeddings of graphs. We focus on current graphs and
the graphs generated from them, in particular, we deal with even embeddings as those
generated graphs. We also investigate extension and coloring problems of graphs even
embedded on closed surfaces.

After an introductory chapter, the reader will find six chapters. First, terminology of
graphs is found in Chapter 2. To represent embedded graphs on closed surfaces, we use
two powerful methods; rotation systems and current graphs. We introduce them and how
to generate another graph from a current graph in Chapter 3. In Chapter 4, we introduce
an invariant of even embeddings of graphs, which is called a cycle parity. The empire
problem is one of vertex-coloring problems of graphs. We discuss the empire problem in
even embeddings of graphs in Chapters 5 and 6. Finally, we mention some related topics

of even embeddings; extension and coloring problems, they are discussed in Chapter 7.
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Chapter 1

Introduction

In the history of graph theory, one of the biggest problems is Four Color Problem. Four
Color Problem is suggested by Francis Guthrie, in 1852. When we consider a map on the
plane, we want to know how many colors we need to color the map so that the neighboring
countries receive different colors. It is easy to see that there exists a map which needs four
colors, but it is quite difficult to find a map which needs five or more colors. Then it was
conjectured that four is the best possible. Many researchers intended to solve Four Color
Problem by several ways, but no one could solve it for a long time. Finally, Appel and

Haken solved the problem in 1976.

Theorem 1.1. (Appel and Haken [1]) Every map M on the sphere can be colored with

four colors.

But their solution uses a computer program to check four colors are enough to color
maps: fundamental 1405 cases. This problem is the origin of many variations of map color
problems.

Map color problems are equivalent to vertex-coloring problems of graphs. When you
take the dual of a map, you can get the graph corresponding to the map, see Figure 1.1.
In this thesis after the introductory chapter, we deal with not map color problems but
vertex-coloring problems of graphs.

First, we consider graphs on a closed surface F2. The following theorem is called Map

Color Theorem.

Theorem 1.2. (Ringel et al. [45]) Let G be a graph on a closed surface F? with the

Euler characteristic e < 2. Then G can be colored with the Heawood number H(e) of



Figure 1.1: A map and its dual

colors, where

H(e) = V + @J .

This value is best possible unless F? is the Klein bottle. A graph on the Klein bottle can

be colored with six colors, and this is best possible.

Showing that the Heawood number is the upper bound for the number of colors is a
little bit easy. But it is quite difficult to show that the Heawood number is the lower
bound. In order to show this, you must find a graph whose chromatic number is equal
to the Heawood number in each closed surface. In particular, you may show that the
complete graph on H(g) vertices can be embedded as a minimum genus embedding. We
define the genus (resp. nonorientable genus) of a graph G as the minimum ¢ such that G
has an embedding into the closed surface Sy (resp. Ni). A minimum genus embedding of
G is such an embedding.

The problem of minimum genus embeddings of the complete graphs are solved sep-
arately by many researchers and gathered in one book by Ringel [45]. This problem is
divided into twelve cases depending on the number of vertices of the complete graph.

Then how is a minimum genus embedding of the complete graph constructed? To
construct it, current graphs are used, which we introduce in Chapter 3. For some cases, a
minimum genus embedding of a complete graph G is a triangulation, that is, every face of
G is triangular. A triangulation has some symmetries. Current graphs play an important
role in making symmetric graphs.

Now we consider even embeddings of graphs. An even embedding of a graph G is an

embedding of G where every face is bounded by an even closed walk. On the sphere, an



even embedding of a graph is equivalent to an embedding of a bipartite one. As bipartite
graphs have the chromatic number at most 2, we expect that the chromatic number of a
graph even embedded on a surface F? is less than that of a graph on F2. The following

theorem is a kind of Map Color Theorem, which is one for even embedded graphs.

Theorem 1.3. (Hartsfield [16], Hutchinson [19]) Let F? be a closed surface with the

Euler characteristic € < 2. Then for every even embedding of a graph G on F?2,

5+ /25 — 16¢
o< [FHVETTE|
This value is best possible for any F? except for the Klein bottle Ny and the double torus
So. Ewvery graph on No can be colored with four colors, one on Sy can be colored with five

colors and these are best possible.

Theorem 1.3 is also proved by using current graphs to show the existence of quadran-
gulations of the complete graphs. A quadrangulation is an embedded graph where every
face is quadrangular.

We can classify even embeddings of graphs on closed surfaces into several types by the
parities of the lengths of essential closed walks. The concept of cycle parities is introduced
in Chapter 4. The following theorem says that there are two types of cycle parities in each

Sy and there are four types in each N.

Theorem 1.4. (Nakamoto, Negami and Ota [36]) Any non-trivial cycle parity p
on Sy is congruent to (1,0,...,0). Any non-trivial cycle parity p on Nopyy with k >
1 is congruent to exactly one of A = (1,0,0,...,0,0), B = (1,1,0,...,0,0) and C =
(0,1,0,...,0,0). Any non-trivial cycle parity p on Nog with k > 2 is congruent to exactly
one of D = (0,0,1,0,...,0,0), E = (0,1,0,0,...,0,0) and F = (1,0,0,0,...,0,0). For
the Klein bottle No, p is congruent to either E = (0,1) or F' = (1,0).

Furthermore, we deal with cycle parities by using current graphs. We show the following
result which is the same as Theorem 4.2 in Section 4.1. This says that each quadrangulation

of the complete graph on Nj can have each non-trivial type of the cycle parity.

Theorem 1.5. For each pair s > 1 and t € {1,4}, there exists a quadrangulation of the
complete graph on 8s +t vertices whose cycle parity is of each type A, B and C. For each
pair s > 1 and t € {0,5}, there exists a quadrangulation of the complete graph on 8s +t
vertices whose cycle parity is of each type D, E and F'.



The next problem is one of the variations of map color problems, called the empire
problem. Let M be a map on a closed surface F? and suppose that each country of the
map has at most r disjoint detached territories. Such a map is called an r-pire map on F2.
For each country, all disjoint detached territories have to be assigned by the same color.

In 1890, Heawood proved that the countries of M can be properly colored as follows.

Theorem 1.6. (Heawood [17]) Let M be an r-pire map on a closed surface F? with the

Euler characteristic e. Then M can be properly colored with he , colors, where

I {67“—% 1+ +/(6r+1)2— 245J
e,r — 2

except possibly in the case e =2 and r = 1.

In addition, he conjectured that this is best possible. Note that the case ¢ = 2 and
r = 1 is Four Color Problem and ha; = 4, consequently, this case is also best possible.

Taylor proved the conjecture for the case where F? is the torus. Note that hg, = 6r + 1.

Theorem 1.7. (Taylor [52]) Every r-pire map on the torus is (6r + 1)-colorable, and for

each r, there is an r-pire map on the torus which is not 6r-colorable.

Jackson and Ringel proved it for the cases where F? is the projective plane and the

sphere. Note that hy, = ho, = 6r.

Theorem 1.8. (Jackson and Ringel [21]) Every r-pire map on the projective plane is
6r-colorable, and for each r, there is an r-pire map on the projective plane which is not

(6r — 1)-colorable.

Theorem 1.9. (Jackson and Ringel [22]) FEvery r-pire map on the sphere is 6r-
colorable, and for each r > 2, there is an r-pire map on the sphere which is not (6r — 1)-

colorable.

For the Klein bottle, Jackson and Ringel proved it when r > 3 and Borodin did it when
r=2.

Theorem 1.10. (Jackson and Ringel [20], Borodin [7]) Every r-pire map on the
Klein bottle is (6r + 1)-colorable, and for each r > 2, there is an r-pire map on the Klein

bottle which is not 6r-colorable.

For r = 1, Franklin proved that 6 colors suffice to color any map on the Klein bottle.



Theorem 1.11. (Franklin [12]) Every map on the Klein bottle is 6-colorable and there

s a map which is not 5-colorable.

This is the only known case where h. ;- is not best possible. On general closed surfaces,
the lower bounds are determined in some cases, see Chapter 5.

The empire problem can be also considered as a graph coloring problem, see Section 2.7.
This is also proved by using current graphs. Thus, we see that vertex-coloring problems
of graphs is very related to current graphs.

In this thesis, we consider the empire problem in even embeddings of graphs. We can
show the upper bound for the number of colors and the lower bounds for some cases in
the same way as the above theorems. The followings are the same as Theorems 6.1, 6.2,
6.3, 6.4, 6.5 and 6.6 in Section 6.1. Empire graphs are that corresponding to empire maps,
defined in Section 2.7.

Theorem 1.12. Let G be an r-pire graph such that G has an even embedding on a closed

surface F? with € < 0. Then, G is Ne r-colorable, where

dr +1+4/(4r +1)% — 16¢
Ner = 5 .

Theorem 1.13. Every r-pire graph which has an even embedding on Sqy is 4r-colorable.
Moreover, for each r > 2, there is an r-pire graph even embedded on Sg which is not

(4r — 1)-colorable.

Theorem 1.14. FEvery r-pire graph which has an even embedding on Ny is 4r-colorable.
Moreover, for each r, there is an r-pire graph even embedded on Ny which is not (4r — 1)-

colorable.

Theorem 1.15. Every r-pire graph which has an even embedding on Sy is (4r + 1)-
colorable. Moreover, for each r, there is an r-pire graph even embedded on S1 which is not

4r-colorable.

Theorem 1.16. FEvery r-pire graph which has an even embedding on Ng is (4r + 1)-
colorable. Moreover, for each r > 2, there is an r-pire graph even embedded on Ny which

is not 4r-colorable.

Theorem 1.17. The bound n., in Theorem 1.12 is best possible if one of the following

conditions is satisfied;



(i) F? is an orientable surface, r is even, and n., is congruent to 1 modulo 8.
(ii) F? is an orientable surface, r is odd, and n., is congruent to 5 modulo 8.

(iii) F? is a nonorientable surface and n., is congruent to 1 modulo 4 except in the case

F?2 isNy and r = 1.

Next, we focus on quadrangulations. An extension problem is to find, from a given
graph G, a graph T with certain properties so that T is obtained from G by adding
some edges. Now we deal with the problem of extending a quadrangulation to Eulerian
triangulations, where a triangulation is Eulerian if all the vertices have even degree. This
problem was first considered by Hoffmann and Kriegel in 1996 for the spherical case. Zhang
and He improved the result for non-spherical orientable closed surfaces. We show that the
result also holds for nonorientable cases. The following is the same as Theorem 7.3 in

Section 7.1.

Theorem 1.18. Let G be a quadrangulation on a closed surface F%2. Then G can be

extended to an Eulerian triangulation.

Finally, we consider the coloring problems again. A quadrangulation on the sphere is
2-colorable and an Eulerian triangulation extended from a quadrangulation on the sphere
is 3-colorable. It is also natural to consider the following 4-colorings for a quadrangulation.
A cyclic coloring of a graph G on a surface F? is a vertex-coloring of G such that any two
vertices x and y receive different colors if z and y are incident with a common face of G.
The problem of cyclic 4-colorings of quadrangulations on the sphere was first considered

by Berman and Shank in 1979.

Theorem 1.19. (Berman and Shank [3]) Let G be a quadrangulation on the sphere.
Then G has a cyclic 4-coloring if and only if the edge set of the straight walk dual G of G
has a proper 3-edge-coloring satisfying condition (C1).

The straight walk dual Gofa quadrangulation G is defined in Section 7.2 and condition
(C1) is defined in the next theorem. We extend the above result in two directions, that is,
considering graphs on a non-spherical surface and graphs called mosaics which may have

some triangular faces. The following is the same as Theorem 7.4 in Section 7.2.

Theorem 1.20. A mosaic G of a surface F? has a cyclic 4-coloring if and only if the
straight walk dual G of G has a 3-edge-coloring c : E(é) — {1, 2,3} satisfying the following

two conditions.



(C1) Any two edges of G that are pairwise crossing on F? receive different colors by c.

(So, no edge intersects with itself.)

(C2) For every closed curve v on F2,

)Nyl = et @) ngl = ' B) Ny (mod 2).



Chapter 2

Definitions

In this chapter, we define some basic terminology of graph theory that are used throughout

this thesis.

2.1 Graphs

A graph G consists of finite sets V(G) and E(G), where V(G) is a nonempty set of elements
called vertices and E(G) is a set of unordered pairs of elements of V(G) called edges. An
edge {u,v} is often represented as uv or vu. If there exists an edge xy where z = y, we
call this edge a loop. If we allow at least two edges joining a pair of vertices, such edges
are called multiple edges. and the graph is called a multi-graph. Graphs with no loops or
multiple edges are called simple graphs. Let G and H be graphs. Note that V(G) is the
vertex set of G and E(G) is the edge set of G. If V(H) C V(G) and E(H) C E(G), then
H is called a subgraph of G. A simple graph is complete if there exists uv € E(G) for every
u,v € V(G) (u # v). The complete graph on n vertices is denoted by K,. The neighbor
N¢g(v) of a vertex v € V(G) is the set of vertices of G : Ng(v) := {u € V(G)|uv € E(G)}.
We define the degree d(v) of a vertex v € V(G) as the number of the incident edges to
v. In particular, we can denote d(v) = |Ng(v)| for a simple graph G. We also define an
average degree d(G) of a graph G as follows; d(G) = > vev(c) A)/IV(G)|.

A walk of length k in a graph G is a sequence vgegvies .. . ex_1v of vertices and edges
in G such that e; = v;u;41 for all ¢ < k. We call a walk closed if v = vg. A path of length
k in a graph G is a walk W of length k of G such that every vertex v; (0 <14 < k) in W are
all distinct. A cycle of length k is a closed walk of length k with the set of distinct vertices
v; (0 <7 <k—1). We say that a closed walk W is even (resp. odd) if the length of W is
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Figure 2.1: A graph

even (resp. odd). A graph G is connected if any two vertices of G are connected by a path
in G. We call a connected graph G Fulerian if every vertex of G has even degree.

Let A be a group. A graph with a weight function w : E(G) — A is called a weighted
graph. In a weighted graph, we say that each edge e has a weight w(e). A digraph G
is a multi-graph whose edges have orientations, and we call edges arcs. The indegree of
v € V(@) is the number of incoming arcs to v, the outdegree of v € V(G) is the number
of outgoing arcs to v and we denote them by deg™ (v) and deg™ (v), respectively. We see

that d(v) = deg™ (v) + deg™ (v) for every vertex v of a digraph G.

2.2 Colorings of graphs

A wertex-coloring of a graph G is a mapping ¢ : V(G) — {1,2,...} such that c¢(x) # c(y)
whenever xy € F(G). We say that a graph G is k-colorable if there exists a vertex-coloring
c: V(G) = {1,2,...,k}. The chromatic number x(G) of a graph G is the smallest integer
k such that G is k-colorable.

An edge-coloring of a graph G is a mapping ¢ : E(G) — {1,2,...} such that c(e;) #
c(e2) whenever edges e; and ey share a vertex of G. A graph with loops has no vertex-

colorings or edge-colorings.

2.3 Closed surfaces

We call a connected compact 2-dimensional manifold without boundaries a closed surface.
There are two classes of closed surfaces, orientable ones and nonorientable ones. Let S,
and Ny denote the orientable closed surface of genus g and the nonorientable closed surface

of genus (or crosscap number) k, respectively. See Figures 2.2 and 2.3.



Theorem 2.1. (The classification theorem of closed surfaces) Any connected closed

surface F? is homeomorphic to one of the following surfaces.

e The sphere Sy.
e The orientable closed surface Sq of genus g.

e The nonorientable closed surface Ny of genus k.

Figure 2.2: An orientable closed surface S, Figure 2.3: A nonorientable closed surface Ny,

Let e(F?) denote the Euler characteristic of a closed surface F2. Note that e(S,) =
2 —2g and e(Ny) =2 — k.

A simple closed curve [ on F? is called essential if | does not bound a 2-cell. We say
that [ is one-sided if the tubular neighborhood of [ is homeomorphic to a Mobius band,

and [ is two-sided otherwise.

2.4 Embeddings of graphs

If a graph G can be drawn on a closed surface F? without edge crossings, we say that G
has an embedding on F?, we also call an embedding of G an embedded graph on F?. An
embedding of a graph G on a closed surface F? is also regarded as an injective continuous
map f : G — F?. Throughout this thesis, we denote a fixed embedding of G on F? by
G — F?. An embedding G — F? is called a 2-cell embedding if any connected component
of F2\@ is homeomorphic to an open disc. We only consider 2-cell embeddings of graphs
and we often write “an embedding” instead of “a 2-cell embedding” in this thesis. Suppose
that a graph G is embedded on a closed surface F'?, we denote the set of faces of G by F(G).
We call a graph G planar if there exists an embedding G — Sy, and the embedding a plane
graph G. We call an embedded graph G a triangulation if every face of the embedding of

G is triangular.

10



2.5 Locally planar graphs

In this section, we consider graphs on surfaces with small chromatic number. Even if the
genus is much higher, the chromatic number of a graph is small if its representativity is
high depending on the genus.

By Theorem 1.2, we see that the upper bound of the chromatic number of a graph on a
closed surface F? depends on the genus of F2. Roughly speaking, x(G) = O(\/g). On the
other hand, there exist infinitely many graphs which have a small chromatic number. It
is known that a graph G with high representativity on a closed surface F? can be colored
by only a few colors even if the genus of F? is high. Representativity is the measure of
the density of embeddings [47]. Let G be a graph embedded on a closed surface F2. The
representativity r(G) of G is defined as

r(G) := min{|G N1|: | is an essential simple closed curve on F?}.

A graph with high representativity is sometimes called a locally planar graph. Chromatic

numbers of locally planar graphs are much less than general graphs, see the following.

Theorem 2.2. (Thomassen [53]) For any closed surface F? except for the sphere, there
is a number N = N(F?) such that every graph G on F? with representativity r(G) > N is

5-colorable.

2.6 Even embeddings of graphs

For a plane graph GG, chromatic number of G is two if and only if G is bipartite. A bipartite
plane graph is also considered as an even embedded graph. An even embedding of a graph G
on a closed surface 2 is a 2-cell embedding such that each face of G is bounded by an even
closed walk. Even if an embedding is not 2-cell, we also call it an even embedding if we can
add some edges to get a 2-cell even embedding. In particular, we call it quadrangulation if
every face is a quadrilateral.

In general surface, an even embedded graph may not be bipartite because essential
closed walks may have odd lengths. It means that we do not know whether chromatic
number is two of more. The followings are the results of chromatic numbers of locally

planar graphs even embedded on a closed surface F2.

Theorem 2.3. (Fisk and Mohar [11]) For any closed surface F? except for the sphere,
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there is a number N = N(F?) such that every even embedded graph G on F? with repre-
sentatiwity r(G) > N is 4-colorable.

Theorem 2.4. (Hutchinson [19]) For any orientable closed surface Sy except for the
sphere, there is a number N = N(F?) such that every even embedded graph G on Sy with
representativity r(G) > N is 3-colorable.

2.7 Empire graphs

We define an empire map to be a map on a closed surface divided into regions, where the
set of regions is partitioned into disjoint subsets which we call empires. We call an empire
with exactly r regions an r-pire. An empire map where each empire has no more than r
regions is called an r-pire map. Each empire map can be associated with a simple graph
G, which is the dual of the map. The vertex set of G is the set of regions of the map and
two vertices are adjacent if the corresponding regions share a common boundary edge. We
call the graph obtained from the empire map an underlying graph.

We define an empire graph (G,P) as follows. Suppose that G is a simple graph and
P ={P1, P,,..., P} is a partition of V(G), that is, |, P, = V(G) and P,NP; =D if i # j
such that each F; is a set of mutually nonadjacent vertices. We call each P; an empire. If
|P;| < r for all 4, we call (G, P) an r-pire graph.

We define a proper vertex-coloring of an empire graph (G, P) to be a mapping c :
V(G) — {1,2,...} such that for x € P; and y € P}, ¢(z) = c(y) if i = j and c(z) # c(y)
if i # j and zy € E(G). We say that (G,P) is k-colorable if there exists a proper
vertex-coloring ¢ : V(G) — {1,2,...,k} of the empire graph (G,P). We simply call
it a coloring instead of a proper vertex-coloring. A coloring of an empire graph (G, P)
is essentially equivalent to a coloring of the graph Gp, which is obtained from G by
identifying all vertices in each P; of P into a vertex p;, that is, V(Gp) = {p1,p2,...,pt}
and E(Gp) = {pipj|there exists an edge zy € E(G) where z € P; and y € P; (i # j)}.
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Chapter 3

Embedding methods and current

graphs

In this chapter, we study how to represent embeddings of graphs. Embedding methods have
been widely studied in the literature. See [14] and [30] for the foundation of topological
graph theory.

In each of Theorems 1.2 and 1.3, the proof of the sharpness is based on the fact that

Ky and K 5. o5-162 | can be embedded on F?2, respectively. These are minimum genus
2

L
embeddings of the complete graphs. To construct them, we use the notion of rotation
systems. In Section 3.1, we introduce rotation systems. In Section 3.2, we introduce

current graphs to get suitable rotation systems.

3.1 Rotation systems

We construct an (empire) graph by using the rotation systems. Let G be a connected
multi-graph with at least one edge. Suppose that we have a cyclic permutation m, of
the edges incident with the vertex v for each v € V(G). We call such m, a rotation. A
rotation system 7 is the collection of m, for all v € V(G). If G is simple, we may assume
that a rotation m, is a cyclic permutation of the neighbors of the vertex v € V(G). In
this thesis, we often represent rotations by cyclic permutations of vertices. A closed walk
vie1vgeavs . .. vkegvy is called a m-polygon, if m,, is ..., vi—1,viy1,... for every i where
indices are taken modulo k. Each edge e in GG is contained twice in m-polygons. We see

that all m-polygons construct a closed orientable surface and rotation systems represent
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embeddings of graphs on closed orientable surfaces.

To apply this method to nonorientable cases, in addition to the rotations, we use a
mapping A : E(G) — {1,—1}, which is called a signature. We call an edge e twisted if
A(e) = —1. We define an embedding of G on a surface F? so that the clockwise orderings at
u and v do not agree in the disk on F'? around the edge uv if and only if A(uv) = —1. By this
fact, we see the following. Let u and v be vertices joined by a twisted (resp. non-twisted)
edge in a graph G, 7, be a rotation ..., w,v,z,...and m, be arotation ..., y,u, z,.... Then
some m-polygon of G is ..., w, wu,u, uv, v, vY,y, ... (TeSp. ..., W, WU, U, UV, V,VZ, Z, . . .).

For more details, see pp.91-94 in [30].

3.2 Current graphs

We explain how to obtain the rotation system. We use a powerful method of current
graphs. A current graph G with a group A is a weighted digraph (it can have loops and
multiple edges) such that each vertex v in G has a rotation o, which is a cyclic permutation
of the neighbors of v. In this thesis, we only consider the case A = Z,; the cyclic group
of order n. We define a weight function 3 : {uv, (wv) |luv € E(G)} — Z,\{0} satisfying
B((uv)™) = —p(uv), which is called a current. Here (uv)~! represents the opposite

direction of the edge uv. Let

1,11 1 1 ,1.,1 .1

Wi = wi,0103,03,. .., Vg, Vg, U1, V1,
.2 .22 9 2 .2 .2 2
W2 = UI?U1U2?U2""7vk,‘27vk2v17vl7
— T r,Tr T T T T T
W, = v1,0103,0y, ...,V , V), V1,01

be all o-polygons of G, where o is the rotation system consisting of the collection of o, for
all v e V(Q).

We construct a new graph G, which is called a generated graph, with a vertex set
Zn x {1,2,...,r} = {is]i € Zn,s € {1,2,...,7}}

and a set of permutations 7 = {mo, 71,...,m,—1} defined by G, o and 3 as follows. Each

value is an element of the cyclic group of order n.
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m = (B(vivy), Blvzvd), ..., Blvp,o])) (B(viv3), ..., Bup,v?))
~ (B(ojus), ., B(op, v7))

m = (B(viv3) +1,B8(v3v3) + 1,..., B(vp,vl) + 1) (B(wiv3) + 1,..., B(vp,vi) + 1)
- (Bvivy) +1,..., B(vy, o) + 1)

T = (/3(1}%1}%) + i,ﬁ(v%v%) +i,... ,B(U,ﬁlv%) + z) (ﬁ(v%v%) +i,... ,,3(1)]%21)%) + z)

o (BTE) + iy, Blup vY) + 1)

MTpo1 = (ﬁ(v%v%) +n— 1,ﬁ(v%v§) +n-—1,.. .,B(vilv%) +n— 1)
-(ﬁ(v%v%) +n—1,.. .,B(v,iv%) +n— 1)

o (Bivy) +n—1,..., B(vy v]) +n —1)

The elements of Z,, correspond to the empires, and r represents the number of vertices
in an empire. Each m; has r cyclic permutations, each of which can be regarded as the
rotation of a vertex of the empire i. The sth cyclic permutation of m; is the rotation
m;, of the vertex i5. (Note that the cyclic permutations in 7; is not a permutation of
Zn x{1,2,...,r}, but of Zy. If i is contained in sth cyclic permutation of 7;, then j € Z,
in 7; is regarded as js € Zp, x {1,2,...,7r}.)

We show an example. A graph in Figure 3.1 is a weighted digraph with the cyclic
group of order 21. Each black vertex v; (1 < i < 4) has the neighbors with a clockwise
order as a rotation o; and the white vertex vs has the neighbors with a counterclockwise

order as a rotation os.

Figure 3.1: An example of a current graph
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Now we take o-polygons, we may start vy first. Trace the arc vivg in the opposite
direction of the arrow, and reach the black vertex vz, turn left. Trace the arc vzvy in the
direction of the arrow, and reach the black vertex vy4, turn left. Trace the arc v4vq in the
opposite direction of the arrow, and reach the black vertex vi, turn left. Then the first
o-polygon is

—1 —1
W1 = v1,v30] 7, 03,0304, V4, V1V, , V1.

Similarly, the other o-polygons are

1
Wa = 01,0104, 04,0402, 02,0105 ,v1 and

-1 -1
W3 = wi,v5v] ,v5,0205 ,...,V301, V1.
Thus, r = 3 and

mo = (B((vsv1)™"), Blusva), B((v1vg) ™))
(Bvrva), Bvava), B((0102) 1)) (B((vsv1) ), B((v205) 1), - ., Blugvn))
= (-1,10,-2)(2,3,-7)(-8,—4,-3,9,5, —6,4, -9, —10,-5,8,7,6,1)
= (20,10,19)(2,3,14)(13,17,18,9,5,15,4,12,11,16,8,7,6,1).

We can get the other permutations 7; (1 <4 < n— 1) using the method mentioned before.

We assume each empire 4 has three vertices 1,42 and i3. Then we get rotations

mo, = (203,103,192),  mo, = (21,33,143), mo, = (133,173,...,11)
T, = ( 0371137202)1 Ty = (317435153)7 Ty = (14371837"'121)

720, — (1937 937 182)1 20, = (11, 23, 133), 205 = (123, 163, ce ,01).

Then we can get the the generated graph Gz induced by the rotation system m, which
is the collection of m;, for all iy € Zg; x {1,2,3}. We see that the current graph in Figure
3.1 generates a 3-pire graph with 21 mutually adjacent 3-pires on an orientable closed
surface.

We also apply this method to nonorientable cases. We refer pp.137-139 in [45]. To
construct a graph embedded on a nonorientable closed surface, we add the new idea which
is called broken arcs to the current graphs. We call the current graph involving some
broken arcs a cascade.

We show an example of a cascade. A graph in Figure 3.2 is a weighted digraph with
the cyclic group of order 17. Each black vertex v;(i € {1,2,4}) has the neighbors with a
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clockwise order as a rotation o; and the white vertex vs has the neighbors with a counter-
clockwise order as a rotation o3. It has three broken arcs viv1, v3vg and vqvy. Broken arcs
work as follows. If we trace the broken arc, then the orientations of all arrows change, and

the black vertex changes to the white vertex and vice versa.

Figure 3.2: An example of a cascade

Now we take o-polygons. Suppose that we may start v;. Trace the arc vivy in the
direction of the arrow, and reach the black vertex vs9, turn left. Trace the arc vovs in the
direction of the arrow, and reach the white vertex vs, turn right. Trace the arc vsvy in the
direction of the arrow, and this arc is broken, then reach the white vertex vy, turn right.
Trace the arc vqvy4 in the direction of the arrow, and this arc is broken, then reach the
black vertex vy, turn left. Trace the arc vsv4 in the opposite direction of the arrow, and

so on. Then we get one o-polygon
W1 = v1, 0109, V2, Vo3, U3, U3V4, Vg, Va4, V4, (v4v4)71, Vg, ..., V1.
Since r = 1, we see that
w0 = (B(vrve), Blvaus), B(vava), B(vava), B((vava) ™), ..., B((v1v1) )

- (37271757_5787_2a67 _3777_17_87_7a _6747 _4)
= (3,2,1,5,12,8,15,6,14,7,16,9,10,11,4,13).
Now we see that the signature A of the generated graph is determined as follows. If an
arc e is traced twice in the same direction on the cascade, then we define A\(e) = 1, and if

an arc e is traced twice in both direction on the cascade, then we define \(e) = —1.

We use the following lemma.

Lemma 3.1. (Ringel [45], p.145) If a cascade with at least one broken arc defines a

graph embedded on an orientable surface, then the following two properties must hold.
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(F1) The order n of the group is even.

(F2) If the current of an arc (broken or not) is odd then the arc is traced twice in the same

direction. If the current is even then the arc is traced in both directions.

By Lemma 3.1, we see that the cascade in Figure 3.2 generates K17 on a nonorientable
closed surface, since the order of the group n = 17 is odd.

Let G be a current graph or a cascade with a rotation system 7, and 3 : {uv, (uv) " tuv €
E(G)} — Z,\{0} be a weight function. If we suppose that broken arcs are twisted arcs, G
has a 2-cell embedding on some closed surface S. Then the current graph or the cascade
is denoted (G — S, ), and the generated embedded graph is denoted Gg — Sg. If we get
the graph G from the current graph G in this way, we say “G generates Gg”. For more
details, see [14, 45].

To get the desired graph, we construct current graphs or cascades with the following

properties.

Lemma 3.2. (Hartsfield [15], Jackson and Ringel [21]) A current graph or a cascade
(G — S, B)n where n is odd which satisfies (P1), (P2), (P3) and (P4) generates a graph G

such that Gg is the complete graph on n vertices and its embedding is a quadrangulation.
(P1) Each vertex has degree 4.

(P2) Each element from 1 to (n — 1)/2 of Z,, appears exactly once among the arcs of G

as a current.
(P3) At each vertex the sum of the currents outgoing from the vertex is zero modulo n.
(P4) The number of o-polygons is one.

Lemma 3.3. A cascade (G — S, 5),, where n is odd which satisfies (P2) in Lemma 3.2
generates the empire graph (G, P) such that Gp is K.

Proof. We assume that broken arcs are twisted edges. Since a cascade G has a rotation
system o, it has a 2-cell embedding on some closed surface F2. If F? is orientable, then we
can take fixed orientations of the all faces of G. Then we trace the arc with the direction
of the orientations, we see that each arc is traveled twice in both direction. If F? is
nonorientable, we cut open F? into an orientable surface S, and we take fixed orientations

of the all faces of G on S. We trace the arc with the direction of the orientations. When we
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trace the broken arc, we trace the following arcs in the opposite direction of the orientations
and the orientations of the arrows change. Then if we take good orientations of the facial
walks of the o-polygons of GG, each arc with current a is traced twice and it is appeared
as a and —a in 7. Since 7y has all elements +1, ..., £(n — 1)/2, we see that empire 0 is
adjacent to any other empire in the generated empire graph Gg. Since the construction of

each m;, Gg has n mutually adjacent r-pires. O

The following lemma is lead by the relation between current graphs and generated

graphs (see [14]).

Lemma 3.4. A current graph or a cascade (G — S, ), where n is odd which satisfies
(P1°), (P2), (P3’) and (P4) generates a graph Gg such that Gg is the complete graph on

n vertices and its embedding has one 2n-gonal face and all other faces quadrangular.
(P1’) One vertex has degree 2, the others has degree 4.
(P2) Each number from 1 to (n — 1)/2 appears exactly once as a current.

(P3’) At each vertex of degree 4 the sum of the currents outgoing from the vertex is zero

modulo n, and at vertex of degree 2, the sum of those is relatively prime to n.
(P4) The number of o-polygons is one.

Corollary 3.5. If there exists a current graph (resp. a cascade) satisfying the properties of

Lemma 3.4, Kn41 can be embedded on a closed surface Sy (resp. Ny ) as a quadrangulation.

Proof. Let G be an embedding of K, with conditions in Lemma 3.4. Add a new vertex
in the 2n-gonal face, and join it to every other vertex of the face boundary. By (P3’),
such all n vertices are distinct. Then we see that we have the desired quadrangulation of

Kn+1~ 0
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Chapter 4
Cycle parity

In this chapter, we study cycle parities. It is an invariant of even embeddings of graphs.

All the new results we prove in this chapter can be found in [43].

4.1 Motivation

Minimum genus embeddings of complete graphs have been studied by many researchers.
It is known that the number of minimum genus embeddings of the complete graphs is at
least exponential in n, see [28, 27, 25, 26].

From Theorem 1.3, the following holds.

Corollary 4.1. K,, has a quadrangular embedding on some closed surface Sy if and only
if n=0,5 (mod 8). K,, has a quadrangular embedding on some closed surface Ny if and

only if n = 0,1 (mod 4) and n # 5.

It is also known that the number of minimum genus even embeddings of Kgsi5 on Sy
is at least exponential in n, see [28].

Now we consider several types of minimum genus even embeddings of complete graphs.
It is known that there is an invariant of even embeddings of graphs, which is called a cycle
parity. It divides non-bipartite even embeddings of graphs into three classes on a fixed
nonorientable closed surface.

Then we expect that for all n, there are minimum genus even embeddings of the
complete graph on n vertices with each type. One of our main results in this section is the

following. The types from A to F' of cycle parities are defined in Section 4.2.
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Theorem 4.2. For each pair s > 1 and t € {1,4}, there exists a minimum genus even
embedding of the complete graph on 8s+t vertices whose cycle parity is of each type A, B
and C. For each pair s > 1 and t € {0,5}, there exists a minimum genus even embedding

of the complete graph on 8s + t vertices whose cycle parity is of each type D, E and F.

Let us consider a transformation of triangulations on surfaces, called an edge contrac-
tion. Let G be a triangulation on a surface and let e = xy be an edge of G. Let zyz and
zyw be two faces in G. Contraction of e in G is to remove e, identify z and y and replace
two pairs of multiple edges (zz and yz, zw and yw) with two single edges respectively. If
the contraction of e transforms G into a simple triangulation on the same surface, then we
say e is contractible. We say that G is contractible to a triangulation 7' if T' is obtained
from G by a sequence of edge contractions. A triangulation G is called irreducible if G
has no contractible edge. It is known that every surface admits finitely many irreducible
triangulations, up to homeomorphism [9, 13, 23, 39], and the complete lists of irreducible
triangulations are known for Sg [49], S; [29], S2 [50], and N; [4], Ny [51], N3, Ny [50].
Irreducible triangulations have many applications, see [9].

Let F?2 be a closed surface which can be triangulated by some K,. By definition,
every triangulation on a fixed surface F? is contractible to an irreducible triangulation.
Moreover, we know that every complete triangulation (i.e., a triangular embedding of K,)
on F? is irreducible. However, every triangulation on F? is not necessarily contractible
to a complete triangulation, since there exists an irreducible triangulation which is not a
complete triangulation. On the other hand, by a consequence of the proof of Negami’s
theorem [40] on diagonal flips in triangulations on surfaces, for any surface F2, there is an

integer N(F?) such that

any triangulation G on F? with at least N (F?) vertices can be transformed into

a complete triangulation by edge contractions and diagonal flips.

Let us consider whether a similar fact holds for quadrangulations on surfaces. To do so,
we begin by introducing an important homological invariant for quadrangulations, called
a cycle parity.

Let G be an even embedding on a closed surface F?. It is easy to see that any two
homotopic closed walks of G have a same length modulo 2. Hence, regarding each closed

walk W of G as a closed curve on F2, we can assign “0” or “1” to each element of 7 (F?)
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of F2. Hence we can define a homomorphism pg : 71 (F?) — Zs. It is easy to see that G is
bipartite if and only if pg is trivial, that is, p(l) = 0 for every simple closed curve [ on F2.

A face contraction of a face f = wxyz in a quadrangulation on a closed surface F? is
to identify an opposite pair w and y and replace the resulting two pairs of multiple edges
(wz and yz, wz and yz) with two simple edges. Then it is easy to see that face contraction
preserves a cycle parity of quadrangulations. We say f is contractible if the resulting graph
obtained from G by a face contraction of f at one of the two diagonal pairs is simple. If G
can be transformed into a quadrangulation H by a sequence of face contractions, then G
is called contractible to H. We say G is irreducible if G has no contractible face, and the
complete lists of irreducible quadrangulations on Sy [35], S; [33] and Ny [35], Ny [32] have
been determined so far. The finiteness of the number of irreducible quadrangulations is
also known [39].

Suppose that K, quadrangulates a closed surface F2, then the corresponding quad-
rangulation must be irreducible, by definition. As in the triangulation case, since there is
a non-complete irreducible quadrangulation, not every quadrangulation is contractible to
a complete quadrangulation. On the other hand, Nakamoto [31] shows that for any F2,
there exists a positive integer M (F?) such that any two quadrangulations G and Gy of 2
with [V (G1)| = |V (G2)| > M(F?) can be transformed each other by a sequence of diagonal
slides and diagonal rotations (see [31] for their definitions) if and only if pg, is congruent

to pa,. Analogous to this result, we try to get a positive answer for the problem:

Can every quadrangulation on F? with sufficiently large order be transformed
mto a complete quadrangulation by face contractions, diagonal slides and diag-

onal rotations?

Then, we need to know that a complete quadrangulation of F? by K,, can have an arbitrary
non-trivial cycle parity. (Note that a complete quadrangulation is not bipartite, and hence
its cycle parity must be non-trivial.)

We restate our main result in this paper.
Theorem 4.2°. Suppose that K,, quadrangulates a closed surface F?. Let p be any non-

trivial cycle parity over F2. Then K,, has a quadrangulation whose cycle parity is p.

By Theorem 4.2’, using the result in [31], we have the following:

Corollary 4.3. Suppose that K,, quadrangulates a closed surface F2. Then there exists

a positive integer M(F?) such that any non-bipartite quadrangulation on F? with order
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at least M(F?) can be transformed into a complete quadrangulation by edge contractions,

diagonal slides and diagonal rotations.

Theorem 4.2’ has another application for the minor relation of embedded graphs. Let
G and H be embeddings on the same surface F2. We say that H is a minor of G if
H is obtained from a subgraph of G by contracting edges. By the well-known result of
Robertson and Seymour [46], every locally planar triangulation on F? is contractible to a
complete triangulation if F? admits a complete triangulation.

Let us consider an analogy for even embeddings on F2. Let G and H be connected
graphs. Let n = |V(H)| and V(H) = {v1,v2,...,v,}. We say that H is an odd minor of
G if

(i) H is obtained from a subgraph of G by contracting edges, and

(ii) For every cycle C' of H, the cycles in G corresponding to C' have a same length

modulo 2 as C.

For details, see [24]. Hence, if H is an odd minor of G, then G and H have a same cycle

parity. Using Theorem 4.2’ and the argument in [34], we can prove the following.

Corollary 4.4. For any closed surface F? except for the sphere, there is a number N =
N(F?) such that every non-bipartite even embedded graph G on F? with representativity
r(G) > N has an odd minor that is a complete quadrangulation if and only if F? admits a

complete quadrangulation.

In order to prove Theorem 4.2’ we construct quadrangulations of complete graphs
with particular parities of the lengths of cycles. We deal with the current graphs in the
construction of quadrangulation but we clarify the structures of the current graph and the
cycle parity of the generated quadrangulation. Moreover, we describe how to control cycle

parities of the embeddings by using the current graphs.

4.2 Cycle parities

Let 71 (F?) be the fundamental group of a closed surface F2. We call any homomorphism
p : m(F?) — Zy a cycle parity over F2. A closed curve [ is called even (resp. odd)
under a cycle parity p if p([l]) = 0 (resp. = 1), where [I|] denotes the homotopy class
corresponding to [. We often write p(l) instead of p([l]). Two cycle parities p and p’ are
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called congruent if there is a homeomorphism h : F2 — F? which induces an automorphism
hy : w1 (F?) = 71 (F?) with ph, = p'.

To express cycle parities, we fix a system {a1,b1,...,ag4,by} of simple closed curves on
the orientable closed surface Sy like Figure 4.1, which is a generator of m;(Sy). Note that
a cycle parity can be represented as p = (p(a1), p(b1), ..., p(ag), p(by)). In particular,
p = (0,0,...,0,0) is called trivial. For the nonorientable closed surface Ngyi1, we fix a
system {x,ay,b1,...,ax,b;} of simple closed curves like Figure 4.2, which is a generator
of m1(Nog41). Note that z is the only one-sided closed curve and the others are two-sided.
Note that a cycle parity can be represented as p = (p(x), p(a1), p(b1), ..., plar), p(bg)).
For the nonorientable closed surface Ny, we fix a system {m, [, as, ba, ..., ax, by} of simple
closed curves like Figure 4.3, which is a generator of m(Ngg). Note that [ is the only

one-sided closed curve and the others are two-sided. Note that a cycle parity can be

represented as p = (p(m), p(1), p(az), p(ba), .. plar), p(be)).

S

9 Nogt1
by b by
Figure 4.1: A set of generators for S, Figure 4.2: A set of generators for Noj_1

Noy

Figure 4.3: A set of generators for Nog

Another terminologies are referred to [36]. The following two theorems are shown.

Theorem 4.5. (Nakamoto, Negami and Ota [36]) Any non-trivial cycle parity p on
Nok11 with k > 1 is congruent to exactly one of A = (1,0,0,...,0,0), B=(1,1,0,...,0,0)
and C' = (0,1,0,...,0,0). Any non-trivial cycle parity p on Nog with k > 2 is congruent to
exactly one of D = (0,0,1,0,...,0,0), E=(0,1,0,0,...,0,0) and F = (1,0,0,0,...,0,0).
For the Klein bottle No, p is congruent to either E = (0,1) or F = (1,0).
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Theorem 4.6. (Nakamoto, Negami and Ota [36]) There is a simple closed curve on
the monorientable closed surface Ny which is odd under a cycle parity p and which cuts

open Ny into an orientable surface if and only if p is of either type A, B or F.

4.3 Relations between cascades and cycle parities

In this section, we consider relations between cascades and generated graphs. We use the
technique of Theorem 9 in [2].

Let G be a directed graph 2-cell embedded on Nj. We see that Ny has a closed curve C'
which cuts open Ni into an orientable surface. Let W be a closed walk which is homotopic
to C. Furthermore, let S be the orientable surface obtained from Ny by cutting it open
along W and G’ be the graph on S obtained from G cut by W. The resulting surface S
has one (resp. two) boundary component(s) if W is one-sided (resp. two-sided). Since
S is orientable, we can give an orientation of all faces of G’ in which two faces incident
to an edge e € E(G) are consistent to each other if e does not lie on W. That is, these
orientations induce different directions of e.

Let f € F(G'). We assign +1 (resp. —1) to each edge e on the boundary of f if
its direction is the same as (resp. different from) the orientation of f. We denote this
assignment by o¢(e). Let o4 (f) and o_(f) be the number of edges on the boundary of
f with o¢(e) = 1 and —1, respectively. Define 9(f) = o4 (f) — o_(f) for all faces f and

consider their summation,

WG = D ()= > (op(f) —o-(f)).

FEF(G") fEF(G)

If an edge e does not lie on W in G, then o¢(e) = —o(e) for two faces f and f incident
to e in G. Then e contributes 0 to ¥(G’). If e lies on W, then o¢(e) = o(e) since N, is
nonorientable. Then 1(G’) is the summation of 20¢(e) over all edges e lying on W.

Consequently, we can show the following corollary.

Corollary 4.7. Let G be a directed graph 2-cell embedded on N, C' be a closed curve
on N which cuts open Ny into an orientable surface and W be a closed walk which is
homotopic to C. Furthermore, let S be the orientable surface obtained from Ny by cutting
it open along W and G’ be the graph on S obtained from G cut by W. If the length of W
is odd, then ¢(G') =2 (mod 4). If the length of W is even, then ¢¥(G') =0 (mod 4).
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Now let (G — S, B)214+1 be a cascade and G be the generated graph. Let Zg; 41 be a
vertex set of Gg. We define the orientations of all edges in G. Let mg = (a1, a2, ...,ay) be
a rotation of vertex 0 in Gg. We determine an orientation of an arc Oa; to {0,a;} if a; <1,
{a;,0} if a; > 1+ 1. We also define an orientation of an edge st same as an edge 0(t — s)
with indices taken modulo n.

For a graph G embedded on Nj, we notice that we cannot define the value ¥ (f) but
[¥(f)] of f € F(G). We also define [¢(G)] = 3_ e [¢(S)]-

Lemma 4.8. Let (G — S, 8)a1+1 be an Eulerian cascade and Gg be the generated graph.
Let c¢(v) be the sum of the currents of v € V(G) and r(v) be the order of c(v) in Zoj+1.

Then for the faces f1,..., fiy1)/r(w) of Gp corresponding to the vertex v, it holds that

[W(fi)| = r(v)| deg™ (v) — deg™ (v)]
foralll1 <i<(20+1)/r(v).
Proof. See Theorem 4.4.1 of [14]. We see an example, Figures 4.4 and 4.5. Let v; and v
be neighbors of v such that o,(v1) = v2, f(viv) =i and S(vv2) = j. Since a o-polygon
goes through the arc vvy just after the arc viv, there exist vertices 0,4, € Gg such that
mo(i) = j. From defined orientations, we see that the arcs 0i and 0j outgo from 0. Then

we see that an incoming edge and an outgoing edge from v are of different contribution

for [1(f)| in Gg. Then [¢(f)] is equal to the difference between deg™ (v) and deg™ (v).
Oan®

0220)

Figure 4.4: A part of a cascade Figure 4.5: The generated graph

O]

Lemma 4.9. Let (G — S, )241 be an Eulerian cascade and Gg be a generated graph.

Then the parity of the number of broken arcs in G is equal to the parity of the number of
faces in Gz which satisfy [¢(f)| =2 (mod 4).
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Proof. By Lemma 4.8,

S il = S 2L ) deg™ (v) - deg(v)

r(v)
FEF(Gp) VeV (G)
= Z (20 + 1) deg™ (v) — deg™ (v)]. (4.1)
veV(G)

Now a non-broken arc contributes 1 to both deg™ and deg™ of its end vertices and a
broken arc contributes 2 to either of the deg™ or deg™ of its end vertices. Since 21 + 1
is odd and (4.1), |¢(Gg)| = 2 - #{e € E(G)l|e is a broken arc} (mod 4). This leads the
desired result. O

Theorem 4.10. Let (G — S,B)a+1 be an Eulerian cascade with m > 1 broken arcs.
Then the generated graph Gg is an even embedding on a nonorientable closed surface Ny.
Moreover, if m is odd, then the cycle parity p of Gg is of type A, B or F. If m is even,
then the cycle parity p of Gg is of type C, D or E.

Proof. We easily see that G is an even embedding since G is Eulerian, the embedding is
on Ny by Lemma 3.1 and its cycle parity p is non-trivial since 2141 is odd. Then Theorem
4.10 holds by Theorem 4.6, Corollary 4.7 and Lemma 4.9. 0

We present another way to distinguish cycle parities.

Lemma 4.11. Let G — Ni be a non-trivial 2-cell even embeddings of a graph G. There
exists one-sided even closed walk in G if and only if p of G is of either type B, C, D or
F. There exists two-sided odd closed walk in G if and only if p of G is of either type B,
C, D orkF.

Proof. We easily see that there is no even one-sided closed walk and odd two-sided closed
walk in an even embedding of a graph whose cycle parity p is of either type A or E. Thus
sufficiency is established. To establish necessity, we show the existence of closed walks.
Suppose first that p of G is of type B. Take a closed walk C7 of G which cuts open Ny
into an orientable surface and let G’ be the graph obtained from G cut by C;. Note that
(4 is one-sided. By the definition of cycle parities, the length of C; is odd and G’ is
non-bipartite. Then we can find a two-sided odd closed walk Cs in G'. Now C; U (5 is a
one-sided even closed walk and Cy is a two-sided odd closed walk as desired.

The other cases can be shown similarly. O
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Figure 4.6: Type A of Kgsy1

Theorem 4.12. Let (G — S,B)941 be an Eulerian cascade which generates an even
embedding Gg — Sg = Ny. Then the cycle parity p of Gg is of either type A or E when
all arcs in G are traced in the same direction on a o-polygon and the cycle parity p of G
is of type B, C, D or F when there exists an arc in G which is traced in both direction on

a o-polygon.

Proof. We see that Gg is a non-trivial even embedding. An arc of Gg — Sg is twisted if
and only if the corresponding arc of G is traced same directions on o-polygons. If there
is a non-twisted arc Oa in Gpg, there exists a two-sided odd cycle 0, a, 2a, ..., —a,0 with
indices taken modulo 2! + 1. By Lemma 4.11, the cycle parity p of G is of either type
B, C, D or F. If all arcs of Gg are twisted, we see that there is no odd two-sided closed

walk. By Lemma 4.11, the cycle parity p of G is of either type A or E. O

4.4 Constructing cascades

In this section, we prove Theorems 4.2 and 4.2’. We show them by giving some cascades.

Proof. Cases Kgs+1 and Kgsys.

We construct cascades (G — S, )y, satisfying properties (P1)—(P4) in Lemma 3.2, and

check their cycle parities using Theorems 4.10 and 4.12. First, we consider the cases s > 2.
A cascade in Figure 4.6 generates a quadrangulation of the complete graph on 8s +

1 vertices with type A because the cascade has 3 (odd) broken arcs and all arcs are

traced same direction on the unique o-polygon of G. A cascade in Figure 4.7 generates a

quadrangulation of the complete graph on 8s+ 1 vertices with type B because the cascade
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Figure 4.7: Type B of Kgs11

Figure 4.8: Type C of Kgs+1
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Figure 4.9: Type D of Kgsy5

Figure 4.10: Type F of Kgsy5

30



Figure 4.11: Type F of Kgs15

has 3 (odd) broken arcs and arc with current 2s is traced both direction on the o-polygon
of G. A cascade in Figure 4.8 generates a quadrangulation of the complete graph on 8s+ 1
vertices with type C' because the cascade has 4 (even) broken arcs and arc with current
s+ 1 is traced both direction on the o-polygon of G.

A cascade in Figure 4.9 generates a quadrangulation of the complete graph on 8s + 5
vertices with type D because the cascade has 4 (even) broken arcs and arc with current
1 is traced same direction on the o-polygon of G. A cascade in Figure 4.10 generates a
quadrangulation of the complete graph on 8s -+ 5 vertices with type E because the cascade
has 4 (even) broken arcs and all arcs are traced same direction on the o-polygon of G.
A cascade in Figure 4.11 generates a quadrangulation of the complete graph on 8s + 5
vertices with type F' because the cascade has 3 (odd) broken arcs and arc with current 2
is traced both direction on the o-polygon of G.

The case s = 1 with each type are generated from cascades in Figures 4.12 and 4.13.
We can easily check that each cascade generates the complete graph with each type. We
can also show that the existence of Kg with type C, that is the case s = 1 and type C, see
Section 4.5. But there is no cascade which generates such a graph.

Cases Kgs14 and Kggysg.

We construct cascades (G — S, ), satisfying properties (P1’), (P2), (P3’) and (P4) in
Lemma 3.4, and check their cycle parities using Theorems 4.10 and 4.12. First, we consider
the cases s > 1.

A cascade in Figure 4.14 generates a quadrangulation of the complete graph on 8s+ 4
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Figure 4.13: Types D, E and F of Ky

Figure 4.14: Type A of Kgsi+4
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Figure 4.15: Type B of Kgsy4

Figure 4.17: Type D of Kgsis
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Figure 4.18: Type F of Kgsys

Figure 4.19: Type F of Kgsys
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Vg

Figure 4.20: Types F and F of Kg

vertices with type A because the cascade has 3 (odd) broken arcs and all arcs are traced
same direction on the o-polygon of G. A cascade in Figure 4.15 generates a quadrangu-
lation of the complete graph on 8s + 4 vertices with type B because the cascade has 1
(odd) broken arcs and arc with current 2s is traced both direction on the o-polygon of
G. A cascade in Figure 4.16 generates a quadrangulation of the complete graph on 8s + 4
vertices with type C because the cascade has 2 (even) broken arcs and arc with current 2s
is traced both direction on the o-polygon of G.

A cascade in Figure 4.17 generates a quadrangulation of the complete graph on 8s+ 8
vertices with type D because the cascade has 4 (even) broken arcs and arc with current
1 is traced same direction on the o-polygon of G. A cascade in Figure 4.18 generates a
quadrangulation of the complete graph on 8s+ 8 vertices with type E because the cascade
has 4 (even) broken arcs and all arcs are traced same direction on the o-polygon of G.
A cascade in Figure 4.19 generates a quadrangulation of the complete graph on 8s + 8
vertices with type F' because the cascade has 1 (odd) broken arcs and arc with current 1
is traced both direction on the o-polygon of G.

The case s = 0 with type F or F' are generated from cascades in Figure 4.20. We can
easily check that each cascade generates Kg with each type. We can also show that the
existence of Kg with type D, that is the case s = 0 and type D, see Section 4.5. But there
is no cascade which generates such a graph.

This and Corollary 3.5 complete the proof of Theorem 4.2. Theorem 4.2’ also holds by
Theorems 1.3, 1.4, 4.2 and Corollary 4.1.

O

We show that there are no cascades which generate Ky with type C and Kg with type

D. The former case, by Theorem 4.10, if there exists such a cascade, it must have two
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vertices and four arcs which include two or four broken arcs. But we can easily check that
property (P3) in Lemma 3.2 cannot hold in each case. The latter case, if there exists, it
must have two vertices and three arcs which include two broken arcs. But we can easily
check that such graphs with property (P4) in Lemma 3.2 generate only Kg with type E.

Then we see that there are no such cascades.

4.5 Exceptional cases

We give rotation systems corresponding to Kg with type C and Kg with type D. Each

upper bar means a twisted arc.

Kg with type C.

T =(1,8,3,4,7,5,6,2)
=(2,5,3,8,4,7,0,6)
=(3,5,4,8,7,1,0,6)
=(4,5,0,1,2,7,8,6)

:(5 0,1,2,6,8,3,7)
=(6,2,1,7,3,4,0,8)

wﬁ_(m, 1,0,8,3,4,5)

m = (8,1,0,4,5,2,3,6)

=(0,7,5,6,4,3,2,1)

There are a two-sided odd cycle C; = 123 and an even cycle Cy = 0163 which cuts

open Ny into an orientable surface.

Kg with type D.

70 =(1,5,6,7,1,3,2)
= (4,0,7,6,5,2,3)
= (3,7,0,1,6,5,4)

7r3—(6 2,1,0,7,4,5)
=(5,1,2,3,0,7,6)
=(0,4,3,2,1,6,7)

7r6—(734521,0)

T =(2,6,5,4,3,0,1)
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There are a two-sided odd cycle C3 = 012 and an even cycle Cy = 025134 which cuts

open Ng into an orientable surface.
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Chapter 5

A brief survey of the empire

problem

In this chapter, we briefly survey the results of the empire problem. On closed surfaces Sy,
S1, Ni and N, the problem is completely solved. On general closed surfaces, the problem

is partially solved.

5.1 Known results of the empire problem

We introduce classical results of the empire problem. The following is the oldest result.

Theorem 5.1. (Heawood [17]) Let (G, P) be an r-pire graph such that G has an embed-
ding on a closed surface F? with the Euler characteristic . Then (G, P) is he ,-colorable,

where

T {61”—1— 14+ /(6r+1)2 - 245J
e,r — 2 .

except possibly in the case e =2 and r = 1.

This is the upper bound of chromatic numbers of empire graphs. A lot of studies on

the lower bounds have done by many researchers. For the torus, ¢ = 0 and hg, = 6r + 1.

Theorem 5.2. (Taylor [52]) Every r-pire graph (G, P) such that G has an embedding
on Sy is (6r + 1)-colorable. Moreover, for each r, there is an r-pire graph embedded on S;

which is not 6r-colorable.

For the projective plane, ¢ = 1 and hy, = 67.
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Theorem 5.3. (Jackson and Ringel [21]) Every r-pire graph (G, P) such that G has an
embedding on Ny is 6r-colorable. Moreover, for each r, there is an r-pire graph embedded

on N1 which is not (6r — 1)-colorable.
For the sphere, ¢ = 2 and ho, = 67.

Theorem 5.4. (Jackson and Ringel [22]) Every r-pire graph (G, P) such that G has
an embedding on Sy is 6r-colorable. Moreover, for each r > 2, there is an r-pire graph

embedded on Sy which is not (6r — 1)-colorable.

The Klein bottle case is a special one of Theorem 5.6. But we state it as an independent

theorem.

Theorem 5.5. (Jackson and Ringel [20]) FEvery r-pire graph (G,P) such that G has
an embedding on Ng is (6r + 1)-colorable. Moreover, for each r > 2, there is an r-pire

graph embedded on No which is not 6r-colorable.
In general cases, the following holds.

Theorem 5.6. (Jackson and Ringel [20]) The bound h. , in Theorem 5.1 is best possible

if one of the following conditions is satisfied;
(i) F? is an orientable surface, r is even, and h., is congruent to 1 modulo 12.
(ii) F? is an orientable surface, r is odd, and he, is congruent to 4 or 7 modulo 12.

(iii) F? is a nonorientable surface and her is congruent to 1, 4 or 7 modulo 12 except in

the case F? is Ny and r = 1.

For the other cases, it is conjectured that h. , is best possible but it has not been solved

yet. Table 5.1 is a list of above theorems.
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Table 5.1: Lowest upper bounds of chromatic numbers of r-pire graphs (G, P) for r > 2

Surfaces | Lowest upper bounds of x(Gp) Theorems
So 67 Theorem 5.4
Ny 6r Theorem 5.3
S1 6r + 1 Theorem 5.2
Ny 6r + 1 Theorem 5.5
F? with ¢ < L6T+1+\/(62T+1)2_246J Theorems 5.1 and 5.6
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Chapter 6

The empire problem in even

embeddings

In this chapter, we consider the empire problem whose underlying graphs are even em-
beddings. We give complete solutions where a closed surface is Sg, S;, N; and Ns, and
give partial solutions in general cases. All the new results we prove in this chapter can be

found in [41, 42].

6.1 Main theorems

In this section, we introduce our results of the empire problem in even embeddings of
graphs. First of all, we can easily obtain the upper bound of chromatic numbers in general

cases.

Theorem 6.1. Let (G,P) be an r-pire graph such that G has an even embedding on a

closed surface F? with e < 0. Then, (G, P) is ne.-colorable, where

h = {47« +14+/(@dr+1)2 - 165J' 6.1)

2
Secondly, we consider about the closed surfaces with nonnegative Euler characteristic.

For the sphere, we get the following statement.

Theorem 6.2. Fvery r-pire graph (G,P) such that G has an even embedding on Sy is
4r-colorable. Moreover, for each r > 2, there is an r-pire graph even embedded on Sg which

is not (4r — 1)-colorable.
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For the projective plane, we get a similar result.

Theorem 6.3. FEvery r-pire graph (G,P) such that G has an even embedding on Ny is
4r-colorable. Moreover, for each r, there is an r-pire graph even embedded on N1 which is

not (4r — 1)-colorable.

Thirdly, we consider the sharpness of n., in Theorem 6.1. We get ng, = 4r + 1 by
(6.1). For the torus, 4r + 1 is sharp.

Theorem 6.4. Fvery r-pire graph (G,P) such that G has an even embedding on Sy is
(4r 4 1)-colorable. Moreover, for each r, there is an r-pire graph even embedded on Sy

which is not 4r-colorable.

For the Klein bottle, Hutchinson [19] shows that ng; = 5 is not sharp. We show that
4r 4+ 1 is sharp when r > 2.

Theorem 6.5. Every r-pire graph (G, P) such that G has an even embedding on Ny is
(4r + 1)-colorable. Moreover, for each r > 2, there is an r-pire graph even embedded on

Ny which is not 4r-colorable.

Furthermore, in general cases we show that n., in Theorem 6.1 is sharp for the cases

given in the following theorem.

Theorem 6.6. The bound n., in Theorem 6.1 is best possible if one of the following

conditions is satisfied;
(i) F? is an orientable surface, r is even, and n., is congruent to 1 modulo 8.
(ii) F? is an orientable surface, r is odd, and n., is congruent to 5 modulo 8.

(iii) F? is a nonorientable surface and n., is congruent to 1 modulo 4 except in the case

F? s Ny and r = 1.

Theorem 6.6 implies Theorem 6.5. Table 6.1 is a list of above theorems.

6.2 Proof of Theorem 6.1

We show two lemmas to prove Theorem 6.1.
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Table 6.1: Lowest upper bounds of chromatic numbers of even embedded r-pire graphs

(G,P) for r > 2

Lowest upper bounds of x(Gp)
Surfaces | where G is an even embedding Theorems
So 4r Theorem 6.2
Ny 4r Theorem 6.3
S1 4r +1 Theorem 6.4
Ny 4r +1 Theorem 6.5
F? with ¢ < L4T+1+\/(42T+1)2_168J Theorem 6.1 and 6.6

Lemma 6.7. Let (G, P) be an empire graph. If there exists an integer \ such that for any

subgraph H C G'p, the average degree d(H) is less than X, then (G, P) can be colored with

A colors.

Lemma 6.8. Let G be a graph which has an even embedding on F? and (G,P) be an
r-pire graph with the number of empires t = |P|. Then,

d(Gp) < 4r — 4e(F?).

Proof of Lemma 6.7. We use induction on t = |P|. If ¢ < A, the assertion is trivial. We
assume that all empire graphs with less empires than (G, P) can be colored with A colors.
Since the average degree of Gp is less than A, there exists an empire P; such that the vertex
p1 in (Gp) has the degree less than A. By the induction hypothesis, there is a coloring ¢/
of the empire graph (G — P, P\{P1}) with colors {1,2,...,A}. Then we can extend ¢ to
a coloring of (G, P) as follows. Let k be one of the colors in {1,2,..., A} which is not used
in Ng,(p1). Such an integer k exists since the degree of p; in (Gp) is less than A. Let
c:V(G) = {1,2,...,\} be defined as ¢(v) = ¢(v) if v ¢ P, and ¢(v) =k if v € P;. O

Proof of Lemma 6.8. Note that |V(G)| < rt. Since G has an even embedding, we have
4|F(G)| < 2|E(G)|. Together with Euler’s formula |V(G)| — |E(G)| + |F(G)| > e(F?), we
obtain that |E(G)| < 2rt — 2¢(F?). Since (G, P) consists of ¢ empires and |E(G)| edges,
the average degree d = d(Gp) is no more than 2|E(G)|/t. So

2|E(G)] de(F?)
t

O
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Proof of Theorem 6.1. Let t be the number of empires. We estimate the average degree
d = d(Gp). Note that
d<t—1. (6.3)

Since € < 0, by (6.2) and (6.3), we have d < 4r —4¢/(d+1), and hence d? — (4r — 1)d —
4r 4+ 4¢ < 0. Thus,

dr — 14 /(4r +1)2 — 16
5 :

The same is true for all subgraphs H of Gp. Therefore we obtain the formula (6.1) by
Lemma 6.7. O

d<

6.3 The spherical case

In this section, we consider empire graphs on Sy.

Proof of Theorem 6.2. Let G be a graph which has an even embedding on Sy and (G, P)
be an r-pire graph. Note that £(Sg) = 2. By Lemma 6.8, for all H C Gp, d(H) <
4r — 8/t < 4r. By Lemma 6.7, we see that 4r colors are sufficient. We construct an r-pire
graph (G,P) such that G has an even embedding on Sy and the graph Gp is Ky4.. The
graph in Figure 6.1 is an example for the case r = 2. In the graph, the number in the
circles represents each empire. Then it has eight empires 1,2,...,8 and any two empires
are adjacent to each other. Next, we show the case r = 3. First, we put together the graph
in Figure 6.1 and the graph in Figure 6.2. Let u; and ug be the vertices of the empires 7
and 8, respectively, which lie on the outer face of the graph in Figure 6.1, and let v1g and
v12 be the vertices of the empires 10 and 12, respectively, which lie on the outer face of
the graph in Figure 6.2. We add the edges uyvig, urvio, ugvig and ugvia. Then we obtain
the desired 3-pire graph.

Next, we show the case r = 4. We take two copies of the empire graph in Figure 6.1,
say (G1,P1) and (G2, P2). Let (G5, P)) be the empire graph obtained from (Ga,P2) by
replacing the empires 1 +— 9,2 — 10,...,8 — 16. Note that the empires 9, 16, 10, 15 appear
in the outer face boundary of G in this order. Let uj, ug, ug and uy be the vertices of the
empires 1, 8,2 and 7, respectively, which lie on the outer face of G;. Let vg, v1g, v19 and
v15 be the vertices of the empires 9,16, 10 and 15, respectively, which lie on the outer face
of G. We add the edges ujvis, ugvig, usvig and urvg. Then we obtain the empire graph

(G',P"). By the construction, G’ also has an even embedding on Sy. Next, we consider the
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Figure 6.1: A 2-pire graph on Sy Figure 6.2: A 3-pire graph on Sy

empire graph (G”,P”) in Figure 6.3, where the top and the bottom are identified. Let H
be the graph obtained by putting together G’ and G”, and Q = {P{ U P/, ..., Pjg U P{s},
where P’ = {P],...,P/s} and P" ={P/,..., Pjs}. Note that in (H, Q), any two empires
are adjacent to each other, and the number of components is two. We have constructed

the desired 4-pire graph.

Figure 6.3: A part of a 4-pire graph on Sy

To complete the proof of Theorem 6.2, we prove the following lemma by induction on

r.

Lemma 6.9. Let r > 4. Then there exists an r-pire graph (G, P) where G has an even
embedding on Sg such that

(i) G has two components each of which has a quadrangular outer face in which the four

vertices are in different empires, and

(ii) Gp 18 K4r.
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Proof. The case r = 4 is as mentioned before. Suppose r > 5. We assume that a desired
(r — 1)-pire graph (G,_1,P,_1) exists. Let X and Y be the two components of G,_j.
Without loss of generality, we may assume that two nonadjacent vertices of the outer
face belong to the empires 1 and 2 on X, 3 and 4 on Y, respectively. Next, we add four
empires A, B,C, and D. Then we shall add one vertex which belongs to each empire
from 1 to 4(r — 1), and r vertices which belong to each of the empires A, B,C and D.
We construct the graph in Figure 6.4 (the top and the bottom are identified), in which
each empire in {A, B,C, D} has (r — 2) vertices labeled same characters and there are
4(r —3) +2 = 4(r — 1) — 6 other vertices. These 4(r — 1) — 6 vertices correspond to one
vertex of each empire from 7 to 4(r — 1) respectively. We see that each empire from 7 to

4(r — 1) is adjacent to all of the empires A, B, C and D.

2 X
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Figure 6.4: A part of G, Figure 6.5: XY . Z and W

Let f; be a face of the graph in Figure 6.4 that has nonadjacent vertices a and ¢ which
belong to the empires A and C, respectively. For example, the shaded face in the figure.
We construct the graph Z in Figure 6.5, and embed X, Y and Z in f;. Let 21 and x2 be
the vertices of the empires 1 and 2, respectively, which lie on the outer face of X, let y3
and y4 be the vertices of the empires 3 and 4, respectively, which lie on the outer face of
Y, and let z5 and zg be the vertices of the empires 5 and 6, respectively, which lie on the
outer face of Z. We add the edges x1a, x1c, 2a, Toc, y3a, Y3, Yaa, Yyic, 25a, 25¢, zga and
zgc. It is obvious that this operations can be done without creating edge crossing, and
does not create odd faces. Finally, we construct the graph W in Figure 6.5. We obtain the
desired r-pire graph (G, P,) with two components such that one is the graph in Figure
6.4 with the described changes and the other is W. Each component has a quadrangular

outer face in which the four vertices are in different empires. Then (i) holds. Clearly (ii)
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also holds. 0

The proof of Lemma 6.9 completes the proof of Theorem 6.2. O

6.4 The projective planar case

In this section, we consider empire graphs on Nj.

Proof of Theorem 6.3. Let (G,P) be an r-pire graph such that G has an even embedding
on Nj. Note that £(Nj) = 1. By Lemma 6.8, for all H C Gp, d(H) < 4r — 4/t < 4r. By
Lemma 6.7, we see that 4r colors are sufficient. Since every graph which has an embedding
on Sy also has the one on Ny, it is clear that for all r > 2, there exists some r-pire graphs
that can be embedded on N; which is not (4r — 1)-colorable by Theorem 6.2. For the case

r = 1, we see that K4 can be embedded on Ny so that all faces are quadrilaterals. This

completes the proof of Theorem 6.3. O

6.5 The toroidal case

In this section, we consider empire graphs on S;.

Proof of Theorem 6.4. Let (G,P) be an r-pire graph such that G has an even embedding
on S;. Now £(S;) = 0. By Lemma 6.8, for all H C Gp, d(H) < 4r < 4r + 1. By Lemma
6.7, we see that 4r + 1 colors are sufficient. We construct an r-pire graph (G, P) such that
G has an even embedding on S; and the graph Gp is Ky4+1. We also use induction on r.

(i) Cases r = 1,2,3. See the graph in Figure 6.6, one in Figure 6.7 and one in Figure
6.8 (in each graph, the top and the bottom, the left and the right are respectively identified

with appropriate twists).

Figure 6.6: A 1-pire graph on S; Figure 6.7: A 2-pire graph on S;
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Figure 6.8: A 3-pire graph on S

(ii) Case r > 4. Assume that a desired (r — 1)-pire graph (G,_1, P,_1) exists. Then we
shall add one vertex which belongs to each empire from 1 to 4(r — 1) + 1, and r vertices
which belong to each of new empires A, B,C' and D. We prepare the graph in Figure
6.4, in which each empire in {A, B,C, D} has r — 2 vertices and each of other vertices
corresponds to a vertex of each empire from 8 to 4(r — 1) + 1. Then A, B,C and D are
adjacent to all empires from 8 to 4(r — 1) + 1. We redraw it in the plane so that the outer
face has nonadjacent vertices a and ¢ which belong to the empires A and C', respectively.
We name the graph G’. We have not used one vertex which belongs to the empires from
1 to 7 and two vertices which belong to the empires A, B, C and D yet. Take a face fi of
Gr—1 with nonadjacent vertices u; and us. We may assume that u; belongs to the empire
1 and us belongs to 2. Then we embed G’ in f1, and add the edges uia, ujc, usa and usc.
We take a vertex u7 in G,._1 which has neighbors us, u4, us and ug appearing consecutively
in this order around w7, such that wur, us, u4, us and ug belong to pairwise distinct empires
other than 1 or 2. We may assume that u; (i € {3,4,5,6,7}) belongs to the empire i. Then
we embed two vertices from A, B,C and D into G,_1 as the graph in Figure 6.9. In this
graph, all pairs (p, q) of empires are adjacent except for p € {1,2,3,4} and ¢ € {B, D}, or
p € {5,6} and ¢ € {A,B}, or p =7 and ¢ € {A,C}. Then we embed each vertex from 1
to 7 into G’ as the graph in Figure 6.10, we get the desired r-pire graph.

O

6.6 The Klein bottlal case

In this section, we consider empire graphs on Nj.
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Figure 6.9: A part of G,_1 Figure 6.10: A part of G,

Proof of Theorem 6.5. Let (G,P) be an r-pire graph such that G has an even embedding
on Ny. Now £(Ny) = 0. By Lemma 6.8, for all H C Gp, d(H) < 4r < 4r + 1. By Lemma
6.7, we see that 4r 4 1 colors are sufficient. We construct an r-pire graph (G, P) which has
an even embedding on Ny such that the graph Gp is Ky,41. Cases 7 = 2,3 are the graph
in Figure 6.11 and one in Figure 6.12 (the top and the bottom, the left and the right are

respectively identified along with the arrow). For r > 4, we can apply a similar inductive

construction as in the case of Sy.

Figure 6.11: A 2-pire graph on Ny Figure 6.12: A 3-pire graph on N»

6.7 General cases

In this section, we consider general cases.

Lemma 6.10. Let r and n be integers with 0 < 4r < n — 1. If there exists a graph G
which has a quadrangulation on a closed orientable (nonorientable) surface F? with the
Euler characteristic € and an r-pire graph (G, P) with n mutually adjacent r-pires without

extra adjacencies of vertices, then n = n., and hence ne, in Theorem 6.1 is best possible

for F? and r.
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Proof. By Theorems 6.2, 6.3 and the assumption 4r < n — 1, we see that we may only
consider the cases ¢ < 0. Let r and n be given. We assume that there exists an r-pire graph
(G, P) in the assumption of Lemma 6.10 on a closed surface F? with the Euler characteristic
e. Here we have |V(G)| = rn, |E(G)| = n(n —1)/2 and |F(G)| = n(n — 1)/4. By Euler’s
4”1*\/@ = n,. This

completes the proof of Lemma 6.10. O

formula, we obtain 4e = n(4r —n+1). Thus, we have n =

We show Theorem 6.6.

Proof of Theorem 6.6. By Lemmas 3.2, 3.3 and 6.10, for all r, we only have to construct
current graphs and cascades with properties (P1)—(P3) in Lemma 3.2 and n = n.,. We
may assume 4r < n — 1.

We divide the proof of Theorem 6.6 into three cases depending on the conditions.

Figure 6.13: Case (i)

Case (i). F? is orientable, n., is congruent to 1 modulo 8 and r is even. Let
n = 8s+1. We use the current graph in Figure 6.13. The colors of the vertices represented
by squares in the figure will be assigned to black or white depending on r. Label these
vertices from left to right by vi,ve,...,vs_1. For every even integer r with 2 < r < 2s, we
choose the vertices vi, v, ..., v,/5_1 to be black and the vertices v, /9, v, /241, ..., vs—1 to be
white. Each vertex v in the current graph has a rotation o, which is a cyclic permutation
of the neighbors of v depending on its color. Let o be a rotation system consisting of the

collection of g, for all v in the current graph. We consider the o-polygons to take mg.
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If » = 2, then 7 is

(2s—1,...,s+1,s,5s—1,...,1,25+1,-2s,—4s,..., —(2s + 2), —(25 + 1), 25)
(—s,4s,—1,4s = 1,—(s+1),4s —2,-2,...,—(25 — 1),25 + 2).

Since there exists a g-polygon W containing the arcs with the currents 2s and —2s, 2s is
relatively prime to 8s + 1, W meets another o-polygon on some arc, then the generated
r-pire graph is connected.

If r # 2, then mg is

(2s—1,...,s+1,5,—(25 +2), (25 + 1), 2s)
(—2s,—4s,—(4s+1),...,—(2s+r—1),s —r/2+1,1,2s + 1)
-(—3,45,—1,...,—(5—1))

(2s+r—1,—-(2s —7/2+1),2s + 1 — 2)

(25 +3,—(2s —1),25 4+ 2).

Then the number of o-polygons is r. Note that there exist o-polygons W containing the
arcs with the currents 2s, —(2s + 1) and s, W containing the arcs with the currents —2s
and 2s + 1, and W3 containing the arc with the current —s. Since 2s + (2s + 1) = 4s+1
is relatively prime to 8s 4+ 1, we see that each vertex of the empires corresponding to Wi
and Ws is connected. Since Wi meets W3 on the arc with the current s, and every other
o-polygon meets W1 or W3 on some arc, then the generated r-pire graph is connected.
Therefore for each pair of s > 1 and even r < 2s we obtain a connected r-pire graph of
8s + 1 mutually adjacent r-pires with a quadrangulation on an orientable closed surface.
This completes the proof for Case (i).

Case (ii). F? is orientable and n., is congruent to 5 modulo 8. Let n = 8s+5.
We use the current graph in Figure 6.14. Label the square vertices from left to right
by v1,va,...,vs. For every odd integer r with 1 < r < 2s + 1, we choose the vertices
V1,02, ..., V(r—1)/2 t0 be black and the vertices v(,1)/2, V(r43)/2: - - - » Us to be white. As in

the previous case, let ¢ be a rotation system of the current graph.
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Figure 6.14: Case (ii)

If r # 25 4+ 1, then mg is

(—(2s+1),3s4+2,3s+1,...,25+ 3,25 + 2,1, —(3s + 2), =25, — (25 — 1),.. .,

—r,ds —(r—5)/2,...,3s+3,2s+1,—(2s + 2),25,—(3s + 3),2s — 1,
—(2s+3),...,—(4s — (r —5)/2), — (45 + 2))
'(T‘,—(3S —(r—15)/2),r — 1)

(2,—(4s +2),1).

Then the number of o-polygons is r. Since there exists a o-polygon W containing the arcs
with the currents 2s+1 and —(2s+1), 2s+1 is relatively prime to 8s+ 5, then we see that
each vertex of the empire corresponding to W is connected. Since every other o-polygon
meets W on some arc, then the generated r-pire graph is connected.

If r =254 1, then 7 is

(3s+2,35+1,...,25+ 3,25+ 2,1,—-(35s + 2),25 + 1, — (25 + 2), 25)
(= (2s+1),—(3s+3),—(3s +4),...,—(4s + 2))
(—2s,—(2s—1),3s+3)

(2,-(4542),1).
Then the number of o-polygons is . Note that there exist o-polygons W containing the
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Figure 6.16: Case (iii)-1, r: even

arcs with the currents 3s + 2, —(3s 4+ 2) and 2s + 1, and W5 containing the arc with the
current —(2s + 1). Since 3s + 2 is relatively prime to 8s + 5, then we see that each vertex
of the empire corresponding to W7 is connected. Since W7 meets W5 on the arc with the
current 25+ 1, and every other o-polygon meets W; or W5 on some arc, then the generated
r-pire graph is connected. Therefore for each pair of s > 1 and odd r < 2541 we obtain a
connected r-pire graph of 8s 4+ 5 mutually adjacent r-pires with a quadrangulation on an
orientable closed surface. This completes the proof for Case (ii).

Case (iii)-1. F? is nonorientable and n., is congruent to 1 modulo 8. Let
n = 8 + 1. For every s > 1 we use the cascade in Figure 6.15 or one in Figure 6.16

depending on the parity of r. There are three broken arcs with the currents 1, 2s and
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2s + 1 respectively. Label the square vertices from left to right by vi,vs,...,v5_1. For
every odd integer 7 with 1 < r < 2s — 1, we choose the vertices vi, vz, ..., v_1)/2 to be
black and the vertices v(,41)/2,V(r43)/2; - - - s Us—1 t0 be white in the cascade in Figure 6.15.
For every even integer 7 with 2 < r < 2s, we choose the vertices v1,v2,...,v,/2_1 to be
black and the vertices v, /2, v, /241, ..,Vs—1 to be white in the cascade in Figure 6.16. As
in the previous cases, let o be a rotation system of the current graph.

We check the nonorientability and the connectedness. Since the order of the cyclic
group is odd, by Lemma 3.1, we see that the generated r-pire graphs are embedded on
nonorientable closed surfaces. If r = 1, generated graph is the complete graph on 8s + 1

vertices.

If » # 1 and odd, then mq is

(2s,—2s5,25 — 1,25 = 2,...,s+ 1,8, —(2s + 2))

(4s,—(2s+1),25+1,1,2,...,s = (r—=1)/2, =25+ 1), —(2s + 7+ 1),...,
—(4s—2),—(4s—1),—4s,—1,4s — 1, —(s + 1),4s — 2, —2,...,2s + 1 + 1,
—(s=(r—=1)/2),—(s—=(r—3)/2,...,—(s — 1),—8)

-(28+T,—(28 —(r—1)/2,2s +r — 1)

(25 +3,—(2s —1),25 4+ 2).
If r = 2, then ng is

(2s,—2s,2s — 1,25 —2,...,s+1,8,s = 1,...,1,—(2s + 1), —4s, —(4s — 1),.. .,
—(2s+2))

(4s,—(2s+1),-1,4s — 1,—(s+ 1),4s — 2, —2,4s — 3, —(s + 2),...,2s + 4,
—(s—1),2543,—(2s —1),25 + 2, —s).
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If r # 2 and even, then g is

(2s,-25,2s — 1,25 = 2,..., s+ 1,5,...,—(2s + 2))
(4s,—(2s+1),—1,4s — 1, s + 1,45 —2,-2,... 25 + 1, —(s — /2 + 1),

—(s=r/2+42),...,—5)
(—4s,—(4s—1),...,—(2s+r—1),s—r/2+1,s—71/2,...,1,2s + 1)
(2s+r—1,—(2s —7/2+1),2s + 71— 2)

(25 +3,—(2s — 1),2s + 2).

In each case, we see that the number of g-polygons is r. Note that there exist o-polygons
W1 containing the arcs with the currents 2s, —2s and s, and W, containing the arc with
the current —s. Since 2s is relatively prime to 8s + 1, then we see that each vertex of the
empire corresponding to Wi is connected. Since Wi meets Ws on the arc with the current
s and every other o-polygon meets W; or W5 on some arc, then the generated r-pire graph
is connected. Therefore for each pair of s > 1 and r < 2s we obtain a connected r-pire
graph of 8s+ 1 mutually adjacent r-pires with a quadrangulation on a nonorientable closed
surface.

Case (iii)-2. F? is nonorientable and n., is congruent to 1 modulo 8. Let
n = 8s+ 5. For every s > 1 we use the cascade in Figure 6.17, one in Figure 6.18 or one in
Figure 6.19. There are three broken arcs with the currents s, s+ 1 and 2s+ 1 respectively.
If s is odd, we put (1,2),(3,4),...,(s—=2,s—1),(s+2,5+3),(s+4,s+5),...,(2s —1,2s)
as the currents to the pairs of multiple edges in each figure from left to right to satisfy
property (P3). If s is even, we exchange the currents 3s + 1 and 3s + 3, put the currents
s — 1 and s + 2 to the rightmost multiple edges in each figure like Figure 6.20 and put
(1,2),(3,4),...,(s —3,s —2),(s+3,s+4),(s+5,s+6),...,(2s — 1,2s) as the currents
to the pairs of multiple edges in each figure from left to right to satisfy property (P3).
Label the square vertices from left to right by vy, vs,...,vs_1. For every odd integer r
with 3 <r <2s+ 1, we choose the vertices vy, vs,...,v(_3)/ to be black and the vertices
V(r—1)/25 V(r+3)/2, - - - » Us—1 t0 be white in the cascade in Figure 6.17. For r = 1 we use
the cascade in Figure 6.18. For every even integer r with 2 < r < 2s, we choose the
vertices v1,v2, . ..,v,./2—1 to be black and the vertices v, /9, v, /241, ..., vs—1 to be white in
the cascade in Figure 6.19. As in the previous cases, let o be a rotation system of the

current graph.
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Figure 6.17: Case (iii)-2, r > 3: odd

Figure 6.18: Case (iii)-2, r =1
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Figure 6.19: Case (iii)-2, r > 2: even

Figure 6.20: A part of Figure 6.19

o7



We check the nonorientability and the connectedness. Since the order of the cyclic
group is odd, by Lemma 3.1, we see that the generated r-pire graphs are embedded on
nonorientable closed surfaces. If r = 1, generated graph is the complete graph on 8s + 5
vertices.

If » = 3, then ng is

(—s,—(2s+1),2s+ 1,35+ 2,5+ 1)

'(—(4S+2),—(48+1),...,—(38+3),—(5+1),25+2,1,2,28+3,...,38+1,
—(3s+2),s)
(= (25+2),-(25+3),...,—(3s+1),3s +3,-25,—(2s — 1),35 +4,...,4s + 2).

If r # 1,3 and odd, then 7 is

(=5 —(25+1),25+ 1,35 + 2,5 + 1)
(—(4s+2),-(4s+1),...,—(3s+3),—(s+1),2s +2,...,35+ 1,—(3s + 2), )

(1:2)

(4s+2,—(2s +2), -1).

If r = 2, then g is

(—s,—(2s+1),2s+1,35+2,—(3s+1),...,—(25+2),45 + 2,—1,-2,4s + 1,...,
38+3,s+1)

(—(4s+2),—(4s+1),...,—(35s+3),35+1,25,25 — 1,3s,...,2s + 2, —(s + 1),
—(3s+2),s).

If » # 2 and even, then 7 is

(—s,—(2541),2s+1,3s+2,—-(3s+1),...,—(25+2),4s +2,...,35+ 3,5 + 1)
(—(4s+2),-(4s+1),...,—(3s+3),3s+1,...,25+2,—(s + 1), —(3s + 2), )
(1,2)

(4s+2,—(25 +2),-1).

In each case, we see that the number of g-polygons is r. Note that there exist o-polygons

W1 containing the arcs with the current 2s 4+ 1, —(2s+ 1) and —s, and W5 containing the
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arc with the current s. Since 2s + 1 is relatively prime to 8s + 5, then we see that each
vertex of the empire corresponding to Wi is connected. Since W7 meets W5 on the arc
with the current s and every other o-polygon can trace to W5 via some o-polygons, then
the generated r-pire graph is connected. Therefore for each pair of s > 1 and r < 2s+1 we
obtain a connected r-pire graph of 8s+5 mutually adjacent r-pires with a quadrangulation
on a nonorientable closed surface.

Then this completes the proof for Case (iii). O
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Chapter 7

Topics of quadrangulations

In this chapter, we deal with topics related to quadrangulations. In this chapter, we always
allow multiple edges and loops. All the new results we prove in this chapter can be found

in [38, 37].

7.1 Extension to Eulerian triangulations

We can extend to a triangulation from a quadrangulation G by adding a diagonal edge in
every face of G. We expect that there is an Eulerian triangulation in such triangulations.
In 1996, Hoffmann and Kriegel showed that it is true for plane quadrangulations. In 2005,

Zhang and He showed the orientable case.

Theorem 7.1. (Hoffmann and Kriegel [18]) Let G be a quadrangulation on the sphere

So. Then G can be extended to an Eulerian triangulation.

Theorem 7.2. (Zhang and He [55]) Let G be a quadrangulation on an orientable closed

surface Sy. Then G can be extended to an Eulerian triangulation.

Unfortunately, the proof in [55] does not work for the nonorientable case. Then we

show the following theorem. Theorem 7.3 implies Theorems 7.1 and 7.2.

Theorem 7.3. Let G be a quadrangulation on a closed surface F?. Then G can be extended

to an Fulerian triangulation.

To prove Theorem 7.3, we need some definitions. For a graph G embedded on a closed
surface, the dual of G is denoted by G*. The dual edge e* of an edge e of G is the one in

G* that corresponds to e in a natural way. We simply write G and e for (G*)* and (e*)*,
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respectively, which are well-defined. Note that when G is a quadrangulation, every vertex
of G* has degree 4. For a vertex v with four incident edges e1, es, €3, e4 in this cyclic order
around v, we say that e is the opposite of es at v. In the same manner, es is the opposite
of eq at v. A walk W of G* is a straight walk, or shortly an S-walk, of G* if at each vertex,
W passes through v from one edge to the opposite edge, and W does not use an edge twice
or more. See Figure 7.1 for an example of S-walks. Note that possibly W might intersect
with itself and the edge set of G* is uniquely partitioned into S-walks. A set of S-walks of
G* is denoted by S(G*) = {S1,...,S;}.

Q o)
-- ->
v
Figure 7.1: Three S-walks S1, S2 and S3 of Figure 7.2: A primary diagonal

the dual G* of a quadrangulation G

st
ST 3 & \\‘
|‘\ /' . { ,l,
A
Figure 7.3: A triangulation T induced by the Figure 7.4: A degq(v)-gon f,

orientation O
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Proof of Theorem 7.3. Now we take an arbitrary direction of each S-walk of G*, and we
call the set of the direction an orientation of S(G*). (In [55], they call it an S-orientation.)
Let O be an orientation of the S-walks of G*. Let f be a face of G. Note that f corresponds
to a vertex of G*, say vy. Now we add a diagonal to f so that the two directed edges
incoming to vy are separated from the two directed edges outgoing from vy, see Figure 7.2.
Such diagonal is the O-primary diagonal at f. (The other diagonal is called the secondly
diagonal in [55], but we do not use it in this thesis). Adding the O-primary diagonal to
all faces of GG, we obtain a triangulation T. We say that T is induced by the orientation
O, see Figure 7.3.

We show that T is an Eulerian triangulation. Let v be a vertex of G and f, =
V1V2 "+ Udeg, (v) D€ the face of G* corresponding to v. There are some vertices x of f, such
that both orientated S-walks incident to « go out from x, or come in « in f,. For example,
see Figure 7.4. Let N(v) be the number of z’s. It is obvious that N(v) is even. Note that
the number of primary diagonals which is incident to v is degg(v) — N(v). Then we see

that

degr(v) = 2degg(v) — N(v) =0 (mod 2)

for every v € V(G), and T is an Eulerian triangulation.

7.2 Cyclic 4-colorings

Let G be a graph embedded on a surface F2. A cyclic coloring of G is a vertex-coloring of
G such that any two vertices  and y receive different colors if x and y are incident with
a common face of G. Note that any cyclic coloring is a proper vertex-coloring, since any
two adjacent vertices are incident with a common face. Ore and Plummer [44] defined the
cyclic colorings of plane graphs and gave a conjecture on it, and many researchers have
studied about cyclic colorings, for example, see [6, 10, 48].

It is clear that for a cyclic coloring of a graph G embedded on a surface, we need at least
A* colors, where A* is the maximum size of faces of G. Now we deal with quadrangulations,
we consider cyclic 4-colorings. For a cyclic 4-coloring, it is natural to consider not only
quadrangulations but also mosaics G embedded on a surface F2, where a mosaic is an

embedded graph such that every face of G is triangular or quadrangular. Borodin [8, 5]
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proved that every plane mosaic has a cyclic 6-coloring.
To deal with mosaics, we modify the definition of S-walks. Let G be a mosaic on a
surface F2. A walk W of G* is a straight walk, or shortly an S-walk, if W satisfies one of

the followings;

(i) W connects vertices of degree 3 in G*, and for every internal vertex v of W, v has

degree 4 in G* and W passes through v from one edge to the opposite edge at v.

(ii) W is a closed walk, and for every vertex v of W, v has degree 4 and W passes through

v from one edge to the opposite edge at v.

In the same manner as the previous definition, note that possibly W might intersect
with itself and the edge set of G* is uniquely partitioned into S-walks.
Using the concept of straight walks, we define the straight walk dual G of a mosaic G

as follows;

V(G) = {F:Fisa triangular face of G}, and
E(G) = {W :W is a straight walk of G*},

where each straight walk W corresponds to an edge of G connecting two end vertices of W
(if W satisfies (i)), or an edge having no vertex (if W satisfies (ii)). See Figure 7.5. (Black
squares in the right side represent vertices of é) Note that G is 3-regular and might have
multiple edges or loops. When G is a triangulation of a surface, then G = G*, and when
G is a quadrangulation of a surface, then G has no vertices and consists of only edges. We
can assume that G is drawn on the surface in the natural way as G does. Hence G might
have crossing edges, and moreover, an edge of G might intersect with itself.

Throughout this chapter, we assume that a closed curve vy on a surface F? transversely
intersects with a graph G drawn on F?2. For simplifying the arguments, we also assume
that every closed curve v on a surface F? passes through neither a vertex of G nor a
crossing point of G, that is, v intersects with G only at a point where exactly one edge of
G is drawn. For a closed curve v on F? and an edge set T of a graph G drawn on F?, we
denote by T N~ the set of points on F? that are contained in both an edge in 7" and 7.

Then we are ready to state our main theorem.

63



Figure 7.5: A mosaic G (the left side) and the straight walk dual G of G.

Theorem 7.4. A mosaic G of a surface F? has a cyclic 4-coloring if and only if the straight
walk dual G of G has a 3-edge-coloring c : E(é) — {1,2,3} satisfying the following two

conditions.

(C1) Any two edges of G that are pairwise crossing on F? receive different colors by c.

(So, no edge intersects with itself.)

(C2) For every closed curve v on F2,

Tt )Ny = | 2) Ny = | 3) N (mod 2). (7.1)

Recall that for i = 1,2,3, ¢~1(i) denotes the set of edges € of G such that ¢(¢) = 4, and

c1(i) Ny denotes the set of points on F2 that are contained in both an edge in ¢~!() and

.

7.3 Properness of a 3-edge-coloring c

In Theorem 7.4, we do not require an edge-coloring ¢ of G to be proper, but indeed, we
need it. To be precisely, condition (C2) implies the properness of the 3-edge-coloring c.
Lemma 7.5. Let G be a 3-regular graph drawn on a surface F2. Suppose that G has a

3-edge-coloring ¢ : E(G) — {1,2,3}. If ¢ satisfies condition (C2),
then c is a proper 3-edge-coloring of G.

Proof. Let v be any vertex of C:’, and let €1, e3, and €3 be three edges that are incident
with v. Let ¢ be a 3-edge-coloring of é, and suppose that ¢ satisfies condition (C2). Let

v be a non-essential closed curve on F? that intersects with each of €1, ¢ and €3 exactly
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once. It follows from equality (7.1) for - that
)Nyl = [H@2)nal = [ B3)Ny] (mod 2),

which directly implies that é7, €2, and e3 are colored by three distinct colors. Hence ¢ is a

proper 3-edge-coloring. O

We point out that equality (7.1) for separating closed curves corresponds to a well-
known lemma, called Parity Lemma on a proper 3-edge-coloring, see for example, P. 253
in [54]. Recall that an edge-cut of a graph G is an inclusionwise minimal set of edges whose

removal makes G disconnected.

Lemma 7.6 (Parity Lemma). Let H be a 3-reqular graph with a proper 3-edge-coloring
c by the colors 1,2 and 3. Then each edge-cut T of H satisfies |c"*(1)NT| = |7 1(2)NT| =
lc71(3) N T| (mod 2).

We will briefly mention how equality (7.1) for separating closed curves is related to
Lemma 7.6. For a closed curve v on a surface F2, let T, be the set of edges € of a graph
G drawn on F2 such that € intersects with ~ odd number of times. It is easy to see that
7 is separating if and only if T is a disjoint union of edge-cuts of G or T, = 0. In this
sense, separating closed curves on 2 correspond to edge-cuts of a graph é’, and we see
the correspondence between equality (7.1) and the equality in Lemma 7.6. Indeed, if ¢ is a
proper 3-edge-coloring, then every separating closed curve v on F? satisfies equality (7.1),

that is, the converse of Proposition 7.5 also holds for separating closed curves on F2.

7.4 Checking condition (C2) and the fundamental group of
F2

In this section, we consider how to check condition (C2). In order to check condition (C2) in
Theorem 7.4, we have to consider all closed curves on a surface F2. But it is not necessary
to do that, and we will mention that it is enough to check only (2 — &(F?)) appropriate
non-separating closed curves on F?2, if we assume the properness of the 3-edge-coloring c
of G.

To see this, we first look at two situations (A) and (B) in Figure 7.6. Both situation
represents a part of two closed curves v and 4’ on F?, and assume that the remaining

parts of v and ' are exactly same. Let ¢ be a proper 3-edge-coloring of G. In situation
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Figure 7.6: Two closed curves v and v’ that are homotopic.

(A), there is a vertex v of degree 3 in G, and let é71, 62, and €3 be three edges of G incident
with v. Since ¢ is a proper 3-edge-coloring, we may assume that by symmetry, c(€;) = i
for i = 1,2,3. Note that [c71(1)NY| = [eH (1) Ny =1, |c71(2) N | = |e71(2)Ny| + 1, and
lc71(3) N+/| = |e71(3) N+y| + 1, which directly implies that if « satisfies equality (7.1) then
v also does. Similarly, in situation (B) in Figure 7.6, we can easily see that if v satisfies
equality (7.1) then +' also does. These two facts imply that for any two closed curves ~y
and 7/ with the same homotopy type on F?, if v satisfies equality (7.1), then 4’ also does,
since 7' can be obtained from v by a sequence of homotopic shifts as in situation (A) or
(B) in Figure 7.6.

On the other hand, let [y;] and [y2] be two generators of the fundamental group of F2.
(Note that [y;] and [ye] are two homotopy classes of the set of closed curves on F2, and
~1 and 7y, are representatives of them, respectively.) It is easy to see that if both v, and
72 satisfies equality (7.1), (and hence if every closed curve on F? homotopic to 71 or 72
satisfies equality (7.1),) then any closed curve v contained in the homotopy class [y1] * [y2]
or [y1]7! also satisfies equality (7.1), where [y1] * [y2] is the product of [y1] and [y2] on the
fundamental group of F? and [y1]~! is the homotopy class containing v L

Since any homotopy class of the set of closed curves on F? is obtained by the products
of generators of the fundamental group of F?, these arguments, together with Proposition
7.5, imply that the following theorem is equivalent to Theorem 7.4. Indeed, since there
are exactly (2 — e(F?)) generators in the fundamental group of F2, it is enough to check

only (2 — ¢(F?)) appropriate non-separating closed curves on F2.

Theorem 7.7. A mosaic G of a surface F? has a cyclic 4-coloring if and only if the
straight walk dual G has a proper 3-edge-coloring c : E(é) — {1, 2,3} satisfying condition
(C1) and the following condition;
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Figure 7.7: An example of the situation Figure 7.8: An example of the situation
around v and the edge-coloring df* of G*. around v and the coloring f of G.

(C2°) for every generator [y] of the fundamental group of F?, a representative v of []
satisfies equality (7.1).

7.5 Proof of Theorem 7.4

First, we show the “only if” part of Theorem 7.4. Let G be a mosaic of a surface F? and
suppose that G has a cyclic 4-coloring f. We regard the colors of f as the elements of
Zg X Zsz, then we use the four colors (0,0), (1,0),(0,1) and (1,1). We construct the (not
necessarily proper) edge-coloring df of G as follows; for an edge e = xy of G, define the
color 0f(e) = f(z) + f(y), where + means the sum on Zy X Zs.

Since f is a proper coloring, every edge of G receives the color (0,1),(1,0) or (1,1)
by df. Let 0f* be the edge-coloring of G* that is obtained from df by a natural way;
of*(e*) = 0f(e) for any edge e* of G*. We show the following claim concerning the
edge-coloring 3 f*.

Claim 7.8. Let v be a vertex of degree 4 in G*, and let ], €5, e and e} be the four edges
incident with v in this cyclic order around v. Then Of*(e}) = O0f*(ej) # 0f*(el) =
af*(ez)-

Proof. Let xzi1xox3x4 be the face of G corresponding to v, where x; is a vertex of G for
1 = 1,2,3,4. By symmetry, we may assume that e; = z;x;41 for ¢ = 1,2,3,4, where
x5 = x1. Since f is a cyclic 4-coloring of G, the four vertices x1,x2,x3 and x4 receive
four distinct colors by f. Figure 7.7 shows one example of a coloring of the four vertices

x1, 2,23 and x4 by f and the edge-coloring Of* of e],e3,e; and e}. It is easy to check
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that

Of*(e1) = f(@1) + fla2) = flws) + f(xa) = Of(e3),
and  Of*(e1) = f(x1) + f(w2) # f(x2) + f(w3) = " (e3).

The above (in)equalities show Claim 7.8 O

Now we construct the edge-coloring ¢ of G as ¢(W) = df*(e*) for each edge W of G,
where e€* is an edge of G* contained in the straight walk W. By Claim 7.8, this definition
does not depend on the choice of an edge e*, and hence that is well-defined. Moreover, the
edge-coloring ¢ of G satisfies condition (C1), by Claim 7.8.

To show that ¢ satisfies condition (C2), we first need the fact that the spanning sub-
graph G7 of G* induced by all edges colored by (1,0) or (1,1) by df* has a proper 2-face-
coloring. The definition of G7, together with the construction of the edge-coloring 0 f*,
implies that the dual edge e of an edge e* of GG connects two vertices of G, one of which
has the color (0,0) or (0,1) by f and the other has the color (1,0) or (1,1). This means
that a face of G77 on one side of the edge e* contains faces of G* corresponding to vertices
of G with colors having 0 in the first coordinate by f, and that on the other side contains
faces of G* corresponding to vertices of G with a color having 1 in the first coordinate.
Then depending on the first coordinate of the color by f, we can color each face of G7 by
the two colors, 0 or 1.

Then each closed curve v on F? has to pass through faces of G% with color 0 and ones

with color 1 alternatively. This directly implies that
[@F)H((1,0) Nl +[@f) (L)) Ny =0 (mod 2).
By the definition of the edge-coloring ¢ of é, we have
lcH((1,0) Ny + [e7H((1,1)) Ny =0 (mod 2). (7.2)

Since we can use the same argument as above for the second coordinate of the colors of f,

we also obtain
‘c_l(((), 1) Nyl + ‘c_l((l, D)ny|=0 (mod 2). (7.3)

These equalities (7.2) and (7.3) imply that  satisfies equality (7.1). Hence condition (C2)
also holds, and this completes the proof of the “only if” part of Theorem 7.4.
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Next, we show the “if” part of Theorem 7.4, by the almost inverse process of the proof
of the “only if” part.

Let G be a mosaic of a surface F? and suppose that the straight walk dual G has a
3-edge-coloring ¢ satisfying conditions (C1) and (C2). By Proposition 7.5, ¢ is a proper
3-edge-coloring. Let ¢’ be the edge-coloring of G* such that ¢/(e*) = ¢(W) for each edge
e* of G*, where W is the straight walk of G* containing e*.

First, we focus on the colors 1 and 3, and let G} be the spanning subgraph of G*
induced by all edges in (¢/)71(1) U (¢)71(3). We will show that the dual G; of G¥ is
bipartite. Let S be a cycle of G1, and let v5 be the closed curve on F? corresponding to

S. By Proposition condition (C2), vg satisfies equality (7.1), and hence
ES)] = |7t (1) nas| + [e7'(B)Nasl = 0 (mod 2).

So, S has an even length. This implies that (1 is bipartite. Hence G7 has a proper 2-face-
coloring f1 by the two colors, say (0,0) and (1,0). Let G5 be the spanning subgraph of
G* induced by all edges in (¢/)71(2) U (¢/)~!(3). By the same argument as above, G has
a proper 2-face-coloring fs by the two colors, say (0,0) and (0, 1).

Then we define the coloring f of G as follows; for each vertex x of G, f(x) = fi1(F}) +
f2(F3), where F; be the face of G} that contains the face of G* corresponding to = for
1 = 1,2. Figure 7.8 shows an example of the coloring of f. We show that f is a cyclic
4-coloring of G.

For an edge e = xy of GG, e* is contained in at least one of G} and G%, which implies
that = and y receive the colors by f that are different value in the first and/or second
coordinate. Thus, for any edge xy of G, x and y has distinct colors by f, that is, f is
a proper 4-coloring of G. In particular, each triangular face of GG receives three distinct

colors by f. We show the following claim.

Claim 7.9. For any quadrangular face of G, say r1xex3rexy, we have f(x1) # f(x3) and

fx2) # [f(xa).

Proof. Let e; be the edge of G connecting x; and x;11 for i = 1,2, 3,4, where x5 = x1. By
condition (C1), ¢/(e}) # /(e}), and hence by symmetry, we may assume that ¢/(e}) # 3,
say (e}) = 1. Note that ¢/(ef) = 1, and e} is contained in G} but not in G5. Let Fy
be the face of G containing the face of G* corresponding to x;. Since ¢/(ef) = 1 and

d(e3) # 1, F» contains the face of G5 corresponding to 2, and does not contain the face of
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G35 corresponding to x3. Hence x; and w3 receive distinct values in the second coordinate

by f2, and also by f. This implies that f(x1) # f(z3), and similarly f(z2) # f(x4). O

Then for any quadrangular face of G, say x1zoxszszy, f(z1) # f(x2) and f(x1) # f(x4)
since f is a proper 4-coloring, and f(z1) # f(x3) by Claim 7.9. Hence z; receives a color
different from any of x9,x3 and x4, and by symmetry, the four vertices in a quadrangular
face receive four distinct colors by f. Thus, f is a cyclic 4-coloring of G. This completes

the proof of the “if” part, and the proof of Theorem 7.4.
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