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Chapter 1

Preliminaries

1.1 Introduction

In a variety of scientific fields such as atmospheric science, biology, ecology, lin-

guistics, financial science and so on, counting observations often appear and dis-

crete distributions play an important role in studying the fields through analyz-

ing the count data. Various types of discrete distributions have been derived

by taking account of the mechanism of phenomenon. Classical examples include

the binomial, Poisson, negative binomial and hypergeometric distributions. For

improving the fittings and analyzing the phenomenon more accurately, a lot of

extensions and generalizations of classical distributions have been considered in

the literature.

In statistical analysis of count data, the Poisson distribution is one of the most

utilized distributions, since data in multiple research fields often fulfill the Pois-

son postulates. However, an important restriction of this model is that the mean

and variance are equal. For many observed count data, it is common to have the

sample mean to be greater or smaller than the sample variance which are referred

to as under-dispersion and over-dispersion, respectively, relative to the Poisson

distribution. They may arise due to one or more possible causes such as repul-
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sion for under-dispersion and aggregation and hierarchy for over-dispersion. The

negative binomial distribution was derived for allowing aggregation and hierarchy

and is commonly used alternative to Poisson distribution when over-dispersion

is present. Examples of the under-dispersed distribution includes the binomial

distribution. The index of dispersion which is defined as the ratio of variance

to the mean is used as the measure to detect such departures from the Poisson

distribution in this article.

It is meaningful to consider the distribution which can be adapted for both

under- and over-dispersion because it provides a unified approach to handle both

under-dispersion and over-dispersion. The examples of such distributions in-

clude the generalized negative binomial distribution by Jain and Consul (1971),

the generalized Poisson distribution by Consul and Jain (1973), the Conway–

Maxwell–Poisson distribution, which was originally developed by Conway and

Maxwell (1962) and revived by Shmueli et al. (2005), the Hurwitz–Lerch Zeta

distribution, which was studied by various researchers including Panaretos (1989),

Kulasekera and Tonkya (1992), Doray and Luong (1995, 1997) and Zörnig and

Altmann (1995), the weighted Poisson distribution by Castillo and Pérez-Casany

(1998), and its generalization as a family of distributions by Castillo and Pérez-

Casany (2005) and GIT3,1 by Aoyama et al. (2008).

In this article, we introduce the flexible distributions to the dispersion by

considering the distribution which includes the binomial and negative binomial

distributions. In Chapter 2, we give theorems about the general Lagrangian dis-

tributions and their applications. In Chapter 3, we derive a distribution belonging

to general Lagrangian distributions. This includes generalizations of binomial and

negative binomial distributions. Moreover, this includes some well-studied dis-

tributions which belong to Lagrangian distributions and thus, plays the role of a

full model which includes some different sub-models when we fit the distribution

to real data. The theorem introduced in Chapter 2 leads a variety of properties
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for the distribution proposed in Chapter 3. Chapter 4 considers an extension of

GIT3,1, which is generated from a convolution of binomial and negative binomial

variables. The distribution plays the role of a continuous bridge between under-

and over-dispersion. Moreover, various types of stochastic processes lead to the

proposed distribution. In this thesis, we consider a three-dimensional random

walk, a birth, death and immigration process and a thinned stochastic process.

Chapter 5 provides a generalization of Conway–Maxwell–Poisson distribution,

which is also a flexible distribution to the dispersion and has two modes with one

mode at zero under some condition. This distribution is expressed by a simple

form and is thus easy to use for various types of count data. In Chapter 6, we

give the conclusion of this thesis.

The remainder of this chapter provides some basic concepts and convenient

tools for studying discrete distributions and three important classical distribu-

tions; binomial, Poisson and negative binomial distributions.

1.2 Basic concepts

1.2.1 Probability

A σ-field is a collection F of subsets of a set Ω that contains the empty set as a

member and is closed under countable unions and complements. A probability

measure P on a σ-field of subsets of a set Ω is a function from F to the unit

interval [0, 1] such that P(Ω) = 1 and the probability measure of a countable

union of disjoint sets {Ei} is eqaul to
∑
i

P(Ei).

For P(E) to be a probability measure, we require the following probability

axioms to be satisfied:

1. 0 ≤ P(E) ≤ 1.

2. P(Ω) = 1.
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3. If the events Ei are mutually exclusive, then P

(∪
i

Ei

)
=
∑
i

P(Ei).

1.2.2 Discrete distributions

A random variable X is a mapping from a sample space into the real numbers,

with the property that for every outcome there is an associated probability P(X ≤

x) which exists for all real values of x. The cumulative distribution function of

X is defined as P(X ≤ x) and regarded as a function of x. Clearly P(X ≤ x) is

a non-decreasing function of x and 0 ≤ P(X ≤ x) ≤ 1. If lim
x→−∞

P(X ≤ x) = 0

and lim
x→+∞

P(X ≤ x) = 1, the distribution is proper.

For discrete distributions, P(X ≤ x) is a step function with only an enumer-

able number of steps. If the height of the step at xi is p(i), then P(X = xi) = p(i).

We call p(i) a probability mass function (pmf). If the distribution is proper,∑
i

p(i) = 1. The discrete distributions of interest in this thesis is defined over

non-negative integers, or p(i) = P(X = i) for i = 0, 1, . . . .

From the axioms introduced in Section 1.2.1, for p(i) to be a pmf, it must

satisfy the conditions that p(i) ≥ 0 for i = 0, 1, . . . and
∞∑
i=0

p(i) = 1.

1.2.3 Expected values and moments

The expected value of a function g(X) of X is defined as

E[g(X)] =
∞∑
x=0

g(x)P(X = x)

for discrete distributions. If this value is finite, we say E[g(X)] exists.

The expected value of Xr for any real number r is referred to as the r-th

moment about zero:

µ′
r = E[Xr].
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The first moment about zero, µ′
1, is called the mean of X.

The expected value of (X − µ′
1)

r for any real number r is referred to as the

r-th moment about the mean:

µr = E[(X − µ′
1)

r].

The second moment about the mean, µ2, is called the variance of X and it is

written as Var[X].

The descending factorial moments is also useful to study discrete distributions.

The r-th descending factorial moment of X is the expected value of X!/(X − r)!:

µ′
[r] = E

[
X!

(X − r)!

]
.

1.2.4 Probability generating functions

When studying discrete distributions, it is often advantageous to use the proba-

bility generating function (pgf). The pgf of a random variable X, or equivalently,

of the distribution with pmf p(i) is defined as

GX(t) = E[tX ] =
∞∑
i=0

p(i)ti.

Since a proper distribution satisfies
∞∑
i=0

p(i) = 1, the pgf always exists for |t| ≤ 1.

For the function G(t) to be the pgf of proper distribution, it must be satisfied

that G(t) is successively differentiable in −1 < t < 1, n-th derivative of G(t) at

t = 0 is non-negative and G(1) = 1.

Probability generating function has several properties.

1. From the definition, the pmf defines the pgf. Conversely, the pgf defines
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the pmf uniquely as

p(i) =
1

i!

∂iG(t)

∂ti

∣∣∣∣
t=0

.

2. The moment generating function (mgf), if it exists, is defined as G(et) and

its r-th derivative at t = 0 gives the r-th moment about zero, or

µ′
r =

∂rG(et)

∂tr

∣∣∣∣
t=0

.

3. The factorial moment generating function, if it exists, is defined as G(t+1)

and its r-th derivative at t = 0 gives the r-th descending factorial moment,

or

µ′
[r] =

∂rG(t+ 1)

∂tr

∣∣∣∣
t=0

.

4. The cumulant generating function, if it exists, is defined as logG(et). Put

κr =
∂r logG(et)

∂tr
.

Then the cumulants κr are known to be functions of the moments. For

example, first three cumulants have the relations κ1 = µ′
1, κ2 = µ2 and

κ2 = µ3.

5. If X1 and X2 are two independent random variables with pgf’s G1(t) and

G2(t), respectively, then the distribution of their sum X1 +X2 has the pgf

G1(t)G2(t). This is called the convolution of two variables.

1.3 Some discrete distributions

1.3.1 Binomial distribution

The binomial distribution is the probability distribution of the number of the

successes in a sequence of independent trials. When the number of the trials is n
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and the probability of success is p in each trial, the probability of x successes is

given by

P(X = x) =

(
n

x

)
pxqn−x, x = 0, 1, . . . , n, (1.1)

where n is a non-negative integer and 0 < p = 1 − q < 1. If the random

variable X has the pmf (1.1), we say that X follows the binomial distribution

with parameters n and p and write X ∼ Bin(n, p). When n = 1, the distribution

is known as the Bernoulli distribution.

The pgf of the binomial distribution with parameters n and p is

G(t) = (q + pt)n

and the mean and variance are

µ′
1 = np and µ2 = npq,

respectively. The index of dispersion is given by q < 1 and the binomial dis-

tribution is thus always under-dispersed. The binomial distribution has simple

recursive formulas about the moments µr, and cumulants κr, for r ≥ 1,

µr+1 = pq

(
nrµr−1 +

∂µr

∂p

)
and κr+1 = pq

∂κr
∂p

. (1.2)

1.3.2 Poisson distribution

Consider the limit of the binomial distribution with pmf (1.1) as n tends to infinity

and p tends to zero with np = λ, where λ > 0. Then the resultant distribution

has the pmf

P(X = x) =
e−λλx

x!
, x = 0, 1, . . . . (1.3)
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This distribution is called the Poisson distribution with parameter λ. The Poisson

distribution also arises from the counting process {N(τ)}:

• N(0) = 0.

• The numbers of occurrences counted in disjoint intervals are independent

from each other.

• The probability distribution of the number of occurrences counted in any

time interval only depends on the length of the interval.

• No counted occurrences are simultaneous.

In this process, the random variable N(τ) follows the Poisson distribution with

parameter λ(τ), where λ(τ) is the rate of the event occurring in the interval time

[t, t+ τ) for any time t.

The pgf of the Poisson distribution with parameter λ is

G(t) = eλ(t−1)

and the mean and variance are

µ′
1 = µ2 = λ.

The index of dispersion of the Poisson distribution is thus always one.

1.3.3 Negative binomial distribution

Consider the parameter λ of the Poisson distribution (1.3) follows the gamma

distribution whose probability density function is

f(λ) =
βν

Γ(ν)
λν−1e−λβ, λ > 0,
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where ν, β > 0. Then, the resultant distribution has the pmf

P(X = x) =

(
ν + x− 1

x

)
pxqr, x = 0, 1, . . . , (1.4)

where p = 1/(1 + β). If the random variable X has the pmf (1.4), we say that

X follows the negative binomial distribution with parameters ν and p and write

X ∼ NB(ν, p).

The pgf of the negative binomial distribution with parameters ν and p is

G(t) =

(
q

1− pt

)ν

and the mean and variance are

µ′
1 =

νp

q
and µ2 =

νp

q2
,

respectively. The index of dispersion is given by 1/q > 1 and the negative bino-

mial distribution is thus always over-dispersed. The negative binomial distribu-

tion has simple recursive formulas about the moments µr, and cumulants κr, for

r ≥ 1,

µr+1 = q
∂µr

∂q
+
rνq

p2
µr−1 and κr+1 = q

∂κr
∂q

. (1.5)
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Chapter 2

General Lagrangian distributions

and their properties

2.1 Introduction

Lagrange (1736–1813) gave two expansions for inverting an analytic function in

terms of another analytic function. Let f(t) and g(t) be analytic functions around

t = 0 such that g(0) ̸= 0. Under the transformation t = ug(t), Lagrange obtained

the following expansions

f(t) =
∞∑
x=0

ux

x!
[Dx−1(g(t)xDf(t))]t=0 (2.1)

and

f(t)

1− tg′(t)/g(t)
=

∞∑
x=0

ux

x!
[Dx(g(t)xf(t))]t=0, (2.2)

where D = ∂/∂t is a derivative operator and D−1 is an operator such that D−1D =

I with an identity operator I (see Riordan, 1968, p. 146). Using the expansion

(2.1), Consul and Shenton (1972, 1975) defined the class of general Lagrangian

10



distributions of the first kind (GLD1). Similarly, Janardan and Rao (1983) and

Janardan (1997) used the expansion (2.2) to define the class of general Lagrangian

distributions of the second kind (GLD2).

Lagrange expansions had been applied to branching and queueing processes

before general Lagrangian distributions were defined. Good (1949) and Otter

(1949) independently showed the importance of the transformation t = ug(t) in

the branching process and Otter (1949) applied the expansion (2.1) to derive the

distribution of the number of vertices in the rooted tree. Benes (1957), Haight and

Breuer (1960) and Takács (1967) also used the expansion (2.1) for development of

queueing processes. The potential of these techniques for deriving distributions

and their properties have been systematically explored (see Consul and Famoye,

2006). This chapter gives the definitions of general Lagrangian distributions, some

of their properties and applications. Section 2.2 provides the propositions for the

definitions. Sections 2.3 and 2.4 give new theorems about general Lagrangian

distributions and their applications which are considered by Imoto (to appear, b)

2.2 General Lagrangian distributions

First, we prove the following propositions to provide the definitions of GLD1 and

GLD2.

Proposition 2.1

1. Let f(t) and g(t) be analytic functions in the domain |t| < 1 such that

f(1) = g(1) = 1, g(0) > 0, g′(1) < 1, g(t) and g′(t) are non-decreasing

functions in 0 ≤ t ≤ 1 and [Dx−1(g(t)xDf(t))]t=0 ≥ 0 for x = 0, 1, . . . . Then

the function

L(u) = f(t), where u =
t

g(t)
(2.3)

is a pgf.
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2. Let f(t) and g(t) be analytic functions in the domain |t| < 1 such that

f(1) = g(1) = 1, g(0) > 0, g′(1) < 1, g(t) and g′(t) are non-decreasing

functions in 0 ≤ t ≤ 1 and [Dx(g(t)xf(t))]t=0 ≥ 0 for x = 0, 1, 2, . . . . Then

the function

L(u) =
(1− g′(1))f(t)

1− tg′(t)/g(t)
, where u =

t

g(t)
(2.4)

is a pgf.

To prove these propositions, we need two lemmas, which are the extensions of

Takács’ theorems (cf. Theorems 3 and 4 in Section 5 of Takács, 1967). Assume

that π(t) is analytic function in the domain |t| < 1 such that π(0) > 0, π(1) = 1,

and π(t) and π′(t) are non-decreasing functions in 0 ≤ t ≤ 1.

Lemma 2.1

Let t = δ be the smallest non-negative real root of the equation π(t) = t. If

π′(1) ≤ 1, then δ = 1. If π′(1) > 1, then 0 ≤ δ < 1. The equation has no other

root in the domain |t| ≤ δ.

Proof

Put H(t) = π(t)−t. Then H(0) > 0, H(1) = 0 and H ′(t) = π′(t)−1. If π′(1) ≤ 1,

then the equation H(t) = 0 has one and only one root t = 1 in 0 ≤ t ≤ 1 because

π(t) and π′(t) are non-decreasing functions in 0 ≤ t ≤ 1. For the same reason, if

π′(1) > 1, then the equation H(t) = 0 has exactly two roots in 0 ≤ t ≤ 1, t = 1

and t = δ, where 0 ≤ δ < 1. This proves the first part of the lemma. To prove

the second part, we note that always π′(δ) ≤ 1 and hence |π′(t)| < π′(δ) ≤ 1 if

|t| < δ. Accordingly, if |t| ≤ δ and t ̸= δ, we have

|π(t)− π(δ)| =
∣∣∣∣∫ t

δ

π′(z)dz

∣∣∣∣ < |t− δ|

which shows that π(t) = t is impossible if |t| ≤ δ and t ̸= δ.
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2

Lemma 2.2

If 0 ≤ u < 1, then t = uπ(t) has exactly one real root t = δ(u) in 0 ≤ t < δ and

lim
u→1−0

δ(u) = δ is the smallest non-negative real root of π(t) = t.

Proof

Since π′(t) ≤ 1 in 0 ≤ t ≤ δ, about the equation u = t/π(t),

∂u

∂t
=
π(t)− tπ′(t)

π(t)2
≥ π(t)− t

π(t)2
> 0

in 0 ≤ t ≤ δ. Hence, from the inverse function theorem, the equation u = t/π(t)

has exactly only one root t = δ(u) in 0 ≤ t ≤ δ and δ(u) is a non-decreasing

function. Since δ(u) < δ for 0 ≤ u < 1 and lim
u→1−0

δ(u) = δ∗ is a root of π(t) = t,

it follows that δ∗ = δ from Lemma 2.1.

2

Proof of Proposition 2.1

From Lemmas 2.1 and 2.2, under the assumption of g(t), we see that u = t/g(t)

has only one solution t = l(u) in 0 ≤ u ≤ 1 and l(1) = 1. Hence, the functions

(2.3) and (2.4) satisfy the conditions to be pgf under the assumption of f(t) and

g(t).

2

The distribution with pgf (2.3) is the general Lagrangian distribution of the

first kind generated through f(t) and g(t) and the pmf is obtained from the

coefficient of ux in (2.1) as

P(X = x) =
1

x!
[Dx−1(g(t)xDf(t))]t=0, x = 0, 1, . . . . (2.5)
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This class of general Lagrangian distributions of the first kind will be denoted by

GLD1(f, g). The mean and variance of GLD1(f, g) can be expressed as

E[X] =
f1

1− g1
and Var[X] =

f2
(1− g1)2

+
f1g2

(1− g1)3
, (2.6)

respectively, where fi = Di log f(et) and gi = Di log g(et). Suppose that there

are some customers (initial customers) waiting for service in a queue at a counter

when the service is initially started. If the number of the initial customers follows

the distribution with pgf f(t) and the number of arrivals during a service follows

the distribution with pgf g(t), then the number of customers served before the

queue become empty for the first time, i.e., during a busy period, follows the

distribution with pmf (2.5) (Consul and Shenton, 1973).

The distribution with pgf (2.4) is the general Lagrangian distribution of the

second kind generated through f(t) and g(t) and the pmf is obtained from the

expansion (2.2) as

P(X = x) =
1− g′(1)

x!
[Dx(g(t)xf(t))]t=0, x = 0, 1, . . . . (2.7)

This class of general Lagrangian distributions of the second kind is denoted by

GLD2(f, g). The mean and variance of GLD2(f, g) can be expressed as

E[X] =
f1 − f1g1 + g2

(1− g1)2
and Var[X] =

f2
(1− g1)2

+
f1g2 + g3
(1− g1)3

+
2g22

(1− g1)4
,

respectively.

A special case of GLD1(f, g) includes the generalized negative binomial dis-

tribution (GNBD) defined by Jain and Consul (1971) which has the pmf

P(X = x) =
ν

ν + βx

(
ν + βx

x

)
pxqν+βx−x, x = 0, 1, . . . , (2.8)
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where ν > 0, 0 < p = 1 − q < 1 and p ≤ βp < 1 or β = 0 and ν is a non-

negative integer. This distribution is generated through different sets of functions.

Examples include the case f(t) = (q + pt)ν and g(t) = (q + pt)β and the case

f(t) = (q/(1 − pt))ν and g(t) = (q/(1 − pt))β−1. Likewise the linear function

negative binomial distribution (LFNBD) defined by Charalambides (1986) which

has the pmf

P(X = x) = (1− βp)

(
ν + βx

x

)
pxqν+βx−x, x = 0, 1, . . . , (2.9)

where ν > 0, 0 < p = 1− q < 1 and p ≤ βp < 1 or β = 0 and ν is a non-negative

integer, is a special case of GLD2(f, g) and generated through different sets of

functions. Examples include the case f(t) = (q + pt)ν and g(t) = (q + pt)β and

the case f(t) = (q/(1 − pt))ν+1 and g(t) = (q/(1 − pt))β−1. In the next section,

we study the extensions of these facts. The theorems show that any Lagrangian

distribution can be generated through different sets of functions. These theorems

have a merit that GLD1(f, g) and GLD2(f, g) with complicated functions f(t)

and g(t) may be expressed by GLD1(f, g) and GLD2(f, g) with simple functions

f(t) and g(t), respectively. This merit enables us to give practical situations for

the processes associated with general Lagrangian distributions.

2.3 Properties of GLD1 and GLD2

2.3.1 Formulations through different sets of functions

As stated in Section 2.2, the GNBD is generated by GLD1(f, g) with f(t) =

(q+pt)ν and g(t) = (1+pt)β or with f(t) = (q/(1−pt))ν and g(t) = (q/(1−pt))β−1.

This is easily seen by calculating the pmf from the definition (2.5). The GNBD

is also generated by GLD1(f, g) with f(t) = ((1−
√
1− 4pqt)/(2pt))ν and g(t) =

((1−
√
1− 4pqt)/(2pt))β−2, where ((1−

√
1− 4pqt)/(2pt))n is the pgf of a special
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case of GNBD with ν = n and β = 2 in (2.8), known as the lost-games distribution

(Kemp and Kemp, 1968) or inverse binomial distribution (Yanagimoto, 1989).

However, it does not look that this fact is easily obtained by calculating the pmf

from (2.5) because of the complexity of the pgf of inverse binomial distribution.

We can get the result as an example below using the following theorem.

Theorem 2.1

Suppose G(t), h1(t) and h2(t) are analytic functions in the domain |t| < 1 such

that G(1) = h1(1) = h2(1) = 1, h1(0) > 0, h2(0) > 0, h′2(1) < 1, h′1(1)+h
′
2(1) < 1,

h1(t), h2(t), h
′
1(t) and h′2(t) are non-decreasing functions in 0 ≤ t ≤ 1 and

[Dx−1((h1(t)h2(t))
xDG(t))]t=0 ≥ 0 for x = 0, 1, . . . . Let f(t) and g(t) be the pgf’s

of GLD1(G, h2) and GLD1(h1, h2), respectively. Then GLD1(f, g) is equal to

GLD1(G, h1h2).

Proof

Since f(t) and g(t) are the pgf’s of GLD1(G, h2) and GLD1(h1, h2), respectively,

f(t) = G(z) and g(t) = h1(z), where t = z/h2(z), and, under the assumption, it

is satisfied that f(t) and g(t) are analytic functions in the domain |t| < 1 such

that f(1) = g(1) = 1, g(0) > 0, g′(1) < 1, and g(t) and g′(t) are non-decreasing

functions in 0 ≤ t ≤ 1. The pgf L(u) of GLD1(f, g) is expressed as L(u) = f(t),

where u = t/g(t). Therefore, it holds that

L(u) = G(z), where u =
t

h1(z)
and t =

z

h2(z)
,

or

L(u) = G(z), where u =
z

h1(z)h2(z)
.

The function L(u) is seen to be the pgf of GLD1(G, h1h2).

2
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We give an example of Theorem 2.1. Put G(t) = (q + pt)ν , h1(t) = (q + pt)β−2

and h2(t) = (q + pt)2. Then f(t) = ((1 −
√
1− 4pqt)/(2pt))ν and g(t) = ((1 −

√
1− 4pqt)/(2pt))β−2. From Theorem 2.1, we can easily see that GLD1(f, g) with

f(t) = ((1 −
√
1− 4pqt)/(2pt))ν and g(t) = ((1 −

√
1− 4pqt)/(2pt))β−2 is equal

to GLD1(f, g) with f(t) = (q + pt)ν and g(t) = (q + pt)β.

The following theorem for GLD2 provides a similar result to Theorem 2.1.

Theorem 2.2

Suppose G(t), h1(t) and h2(t) are analytic functions in the domain |t| < 1 such

that G(1) = h1(1) = h2(1) = 1, h1(0) > 0, h2(0) > 0, h′2(1) < 1, h′1(1)+h
′
2(1) < 1,

h1(t), h2(t), h
′
1(t) and h′2(t) are non-decreasing functions in 0 ≤ t ≤ 1 and

[Dx((h1(t)h2(t))
xf(t))]t=0 ≥ 0 for x = 0, 1, 2, . . . . Let f(t) and g(t) be the pgf’s

of GLD2(G, h2) and GLD1(h1, h2), respectively. Then GLD2(f, g) is equal to

GLD2(G, h1h2).

Proof.

Since f(t) and g(t) are the pgf’s of GLD2(G, h2) and GLD1(h1, h2), respec-

tively, f(u) = (1 − h′2(1))G(t)/(1 − th′2(t)/h2(t)) and g(u) = h1(t), where u =

t/h2(t), and, under the assumption, it is satisfied that f(t) and g(t) are analytic

functions in the domain |t| < 1 such that f(1) = g(1) = 1, g(0) > 0, g′(1) < 1,

and g(t) and g′(t) are non-decreasing functions in 0 ≤ t ≤ 1. From the expres-

sions of pgf’s (2.3) and (2.4), we see that GLD2(f, g) is equal to GLD1(L, g),

where L(t) = (1 − g′(1))f(t)/(1 − tg′(t)/g(t)). It follows from the expression of

g(u) that

∂

∂u
g(u) = h′1(t)

∂t

∂u
=

h′1(t)(h2(t))
2

h2(t)− th′2(t)
, where u =

t

h2(t)
.
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From Lemma 2.1, under the assumption, u = 1 if and only if t = 1 for the

equation u = t/h2(t). Therefore, it holds that

L(u) =
1− g′(1)

1− ug′(u)/g(u)
f(u)

=
1− h′1(1)/(1− h′2(1))

1− th′1(t)h2(t)
2/(h1(t)h2(t)(h2(t)− th′2(t)))

1− h′2(1)

1− th′2(t)/h2(t)
G(t)

=
(1− h′1(1)− h′2(1))G(t)

1− tD(h1(t)h2(t))/(h1(t)h2(t))
, where u =

t

h2(t)
.

The function L(u), where u = t/h2(t), is seen to be the pgf of GLD1(H, h2),

where

H(t) =
(1− h′1(1)− h′2(1))G(t)

1− tD(h1(t)h2(t))/(h1(t)h2(t))
.

From Theorem 2.1, GLD1(L, g) is equal to GLD1(H, h1h2) and this is equal

to GLD2(G, h1h2). Therefore, we get the result that GLD2(f, g) is equal to

GLD2(G, h1h2).

2

2.3.2 Some other results

Suppose that ν and β are non-negative integers and h(t) is analytic function

in the domain |t| < 1 such that h(1) = 1, h(0) > 0, and h(t) and h′(t) are

non-decreasing functions. Put h(t)n =
∞∑
x=0

p(x;n)tx in this section.

Theorem 2.3

Put A(t) = tν and B(t) = h(tβ).

• Let X1 ∼ GLD1(h
ν , hβ) and Y1 ∼ GLD1(A,B). Then the distribution of Y1

is identical with that of ν + βX1.

• Let X2 ∼ GLD2(h
ν , hβ) and Y2 ∼ GLD2(A,B). Then the distribution of Y2

is identical with that of ν + βX2.
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The first statement can be seen in Sibuya et al. (1994), whose result was obtained

through the viewpoint of a queueing process. A proof using general Lagrangian

distributions is given here.

Proof.

From (2.5),

P(Y1 = x) =
1

x!
[Dx−1(νtν−1h(tβ)x)]t=0 =

ν

x
p

(
x− ν

β
;x

)
.

Hence, it can be seen that

P(Y1 = ν + βx) =
ν

ν + βx
p(x; ν + βx) = P(X1 = x).

Similarly, from (2.7),

P(Y2 = x) =
1− βh′(1)

x!
[Dx(tν(h(tβ)x)]t=0 = (1− βh′(1))p

(
x− ν

β
;x

)
.

Hence, it can be seen that

P(Y2 = ν + βx) = (1− βh′(1))p(x; ν + βx) = P(X2 = x).

From these results, the statements are proved.

2

Theorem 2.3 also states that a Lagrangian distribution, except for scale and

location, can be generated through different sets of functions. When ν = β = 1,

this theorem reduces to Theorem 2.6 in Consul and Famoye (2006). The following

is an application of Theorem 2.3.

Theorem 2.4

Assume that X1/β,X2/β, . . . are independent and identically distributed (i.i.d.)

with pgf h(t). Put Nn := ν +X1 + · · · +Xn, I := (inf{n : Nn = n} − ν)/β and
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S := (sup{n : Nn = n} − ν)/β. If βh′(1) ≤ 1, then

P(I = x) =
ν

ν + βx
p(x; ν + βx), x = 0, 1, . . .

and

P(S = x) = (1− βh′(1))p(x; ν + βx), x = 0, 1, . . . .

Proof.

Put A(t) = tν and B(t) = h(tβ). The random variable inf{n : Nn = n} is

distributed as GLD1(A,B) from Theorem 4 in Section 8 in Takács (1967). From

Theorem 1 in Section 5 in Takács (1967), the random variable sup{n : Nn = n}

is distributed as GLD2(A,B). Hence, from Theorem 2.3, it can be seen that the

random variables I and S are distributed as GLD1(h
ν , hβ) and GLD2(h

ν , hβ),

respectively.

2

These distributions, GLD1(h
ν , hβ) and GLD2(h

ν , hβ), have several applica-

tions as models in the field of dam, storage and insurance risk processes. Special

cases h(t) = q + pt, h(t) = q/(1 − pt) and h(t) = eλ(t−1) are mentioned in Char-

alambides (1986).

2.4 Tandem queueing system

The two counter tandem queues attended by a single moving server were intro-

duced by Nelson (1968) and Nair (1971). There are several practical applications

of the tandem queues like robotic systems, network systems and telecommuni-

cation systems (cf. Nelson, 1968; Katayama, 1992; Van Oyen and Teneketzis,

1994). In such queues, the server attends to the counters according to some ser-

20



vice policies. In this section, we consider the system where customers at counter

1 have priority over customers at counter 2, defined as follows.

(i) the number of initial customers at counter 1 follows the distribution with pgf

G(t) and that at counter 2 is zero.

(ii) the number of arrivals at counter 1 during a service at counter 1 follows the

distribution with pgf h1(t) and customers served at counter 1 go to counter

2.

(iii) if there is no customer at counter 1, the server goes to counter 2.

(iv) the number of arrivals at counter 1 during a service at counter 2 follows the

distribution with pgf h2(t).

(v) the server comes back to counter 1 after a service at counter 2.

(vi) this process continues until there are no customers at both counters.

When we look at this process from the side of counter 2, the number of initial

customers is distributed as GLD1(G, h1) and that of arrivals during a service as

GLD1(h2, h1). Therefore, the number of customers served during a busy period

is distributed as GLD1(f, g), where f(t) and g(t) are the pgf’s of GLD1(G, h1)

and GLD1(h2, h1), respectively, and from Theorem 2.1, this distribution is equal

to GLD1(G, h1h2).

The GLD1 also has the relation with the M/G/1 queue which is a single

server queue with Poisson arrivals and arbitrary service time distribution. For

such a queue, when the number of initial customers follows the distribution with

pgf L(t), the number of customers served during a busy period is distributed as

GLD1(L,M), where M(t) = m(λ(t − 1)), λ is the mean arrival rate and m(t) is

the mgf of service time distribution. Using this fact, we can consider the following

steps, alternative to (ii) or (iv).
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(ii)’ the mgf of the service time distribution at counter 1 is m1(t) and then the

mean arrival rate at counter 1 is λ1 and customers served at counter 1 go

to counter 2.

(iv)’ the mgf of the service time distribution at counter 2 is m2(t) and then the

mean arrival rate at counter 1 is λ2.

Put M1(t) = m1(λ1(t − 1)) and M2(t) = m2(λ2(t − 1)). In the case with chang-

ing both (ii) to (ii)’ and (iv) to (iv)’, the number of customers served during a

busy period is distributed as GLD1(f, g), where f(t) and g(t) are the pgf’s of

GLD1(G,M1) and GLD1(M2,M1), respectively. From Theorem 2.1, this distri-

bution is equal to GLD1(G,M1M2).

For example, assume that Poisson arrivals with mean arrival rate 1 during the

services and service time at counter 1 is distributed as an exponential distribution

with mean ρ1 and that at counter 2 is distributed as an exponential distribution

with mean ρ2, or G(t) = t, λ1 = λ2 = 1 and mi(t) = 1/(1− ρit) for i = 1, 2. This

assumption is analogous to that given by Nelson (1968). In this case, the number

of customers served during a busy period is distributed as GLD1(f, g) with

f(t) =
1 + ρ1 −

√
(1 + ρ1)2 − 4ρ1t

2ρ1

and

g(t) =
2ρ1

2ρ1 + ρ1ρ2 − ρ2 + ρ2
√
(1 + ρ1)2 − 4ρ1t

.

It is hard to calculate the pmf from the above expression. However, by using

Theorem 2.1, we can see that this distribution is equal to GLD1(f, g) with f(t) = t

and g(t) = 1/((1− ρ1t)(1− ρ2t)). From the formula (4.6) in Kemp (1979):

(1−Q1z)
U1(1−Q2z)

U2

(1−Q1)U1(1−Q2)U2
= (1−Q1)

−U1(1−Q2)
−U2

∑
r≥0

(
U1 + U2

r

)
×2F1[−U1,−U1 − U2 + r;−U1 − U2; (Q1 −Q2)/Q1](Q2/Q1)

r−U1(−Q1)
r,
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the number of customers, X, served during a busy period is seen to have the pmf

P(X = x) =
1

3x− 1

(
3x− 1

x

)
P 2x−1
2

P x
1

(1− P1)
x(1− P2)

x

×2F1[x, 3x− 1; 2x; (P1 − P2)/P1], x = 0, 1, . . . ,

where Pi = ρi/(1− ρi) for i = 1, 2.
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Chapter 3

Lagrangian non-central negative

binomial distribution

3.1 Introduction

In this chapter, the non-central negative binomial distribution (Ong and Lee,

1979) and Charlier series distribution (Ong, 1988) are formulated as general La-

grangian distributions and their generalization is considered through the concept

of general Lagrangian distributions.

The non-central negative binomial distribution (NNBD) arises as a model in

photon and neural counting, birth and death process and a mixture of Poisson

distribution with the parameter distributed as non-central gamma distribution.

It has pgf

G(t) =

(
q

1− pt

)ν

exp

(
λ

(
q

1− pt
− 1

))
,

where ν, λ > 0 and 0 < p = 1− q < 1. The pmf is given by

P(X = x) = e−λppxqνL(ν−1)
x (−λq), x = 0, 1, . . . , (3.1)
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where L(α)
n (z) =

(
n+ α

n

)
1F1[−n;α+1; z] is the generalized Laguerre polynomial.

The pmf (3.1) satisfies the three-terms recursive formula

(x+ 1)Px+1 = (2x+ ν + λq)pPx − p2(x+ ν − 1)Px−1, x ≥ 0, (3.2)

with P−1 = 0 and P0 = e−λqqν , where Px = P(X = x) in (3.1). When the random

variable X has the pmf (3.1), we write X ∼ NNBD(ν, λ, p).

The Charlier series distribution (CSD) has pgf

G(t) = (q + pt)N exp(λ(q + pt− 1)),

where N is a non-negative integer, λ > 0 and 0 < p = 1 − q < 1. The pmf is

given by

P(X = x) = e−λp(λp)xqNCx(N ;−λq)/x!

= e−λppxqN−xL(N−x)
x (−λq), x = 0, 1, . . . , N, (3.3)

where Cr(N ;−λ) =
N !λr

(N − r)!
1F1[−r;N − r + 1;−λ] is the Charier polynomial.

The pmf (3.3) satisfies the three-terms recursive formula

(x+ 1)qPx+1 = p(N + λq − x)Px + λp2Px−1, x ≥ 0, (3.4)

with P−1 = 0 and P0 = e−λqqN , where Px = P(X = x) in (3.3). When the

random variable X has the pmf (3.3), we write X ∼ CSD(N, λ, p).

Put fn(t) = (q + pt)n exp(λ(q + pt − 1)), gn(t) = (q + pt)n, vn(t) = (q/(1 −

pt))n+1 exp(λ(q/(1 − pt) − 1)) and wn(t) = (q/(1 − pt))n) in this chapter. From

(2.3) and (2.4), the pgf of NNBD(ν, λ, p) is correspond with pgf of GLD1(fν , g1)

and that of GLD2(fν−1, g1). The pgf of CSD(N, λ, p) obviously corresponds with

pgf of GLD1(fN , g0) and that of GLD2(fN , g0). It is of interest to consider the La-
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grangian distributions which include the NNBD and CSD. Ong et al. (2012) con-

sidered the Lagrangian distribution of the second kind that includes the NNBD

and CSD, defined as GLD2(fN , gM) for N , λ > 0, 0 < p = 1 − q < 1 and

p ≤ Mp < 1 or M = 0 and a non-negative integer N . Obviously, this distribu-

tion reduces to NNBD(ν, λ, p) when N = ν − 1 and M = 1, CSD(N, λ, p) when

M = 0 and LFNBD with pmf (2.9) when N = ν, M = β and λ→ 0. This distri-

bution is also generated through the pgf’s of GLD2(fN , gα) and GLD1(gM−α, gα).

This is seen by putting G(t) = (q + pt)N exp(λ(q + pt− 1)), h1(t) = (q + pt)M−α

and h2(t) = (q + pt)α in Theorem 2.2. Ong et al. (2012) showed the fact for

a special case when α = 1, i.e., GLD2(fN , gM) is equal to GLD2(vN+1, wM−1).

Other properties like the generations as mixture distributions, some expressions

of pmf, moments and its generalizations are studied in Ong et al. (2012).

In subsequent sections, we consider the Lagrangian distribution of the first

kind that includes the NNBD and CSD, defined as GLD1(fν , gβ) for ν, λ > 0,

0 < p = 1− q < 1 and p ≤ βp < 1 or β = 0 and a non-negative integer ν (Imoto

and Ong, 2013). It is clear that this distribution reduces to NNBD(ν, λ, p) when

β = 1, CSD(N, λ, p) when β = 0 and GNBD with pmf (2.8) when λ → 0.

Properties of the proposed distribution are also shown. Section 3.2 provides four

expressions of the pmf from the direct use of (2.5), three of which is expressed

as the sum of two generalized Laguerre polynomial and the other is expressed by

a generalized hypergeometric function. Section 3.3 shows that insight about the

stopped-sum distributions (Johnson et al., 2005, p. 382) leads to the expressions

of the pmf in terms of non-central negative binomial distributions and those of

Charlier series distributions. The relationships between the NNBD and CSD are

also studied in this section. In Section 3.4, we study about mixture, the index of

dispersion, recursive formulas of the pmf and the relation with queueing systems.

The fitting example to real count data set is given in Section 3.5.
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3.2 Lagrangian non-central negative binomial dis-

tribution

From (2.5), we obtain the pmf of GLD1(fν , gβ) as

P(X = x) =


e−λpqν , x = 0

e−λppxqν+βx−x

x

(
νL

(ν+βx−x)
x−1 (−λq) + λqL

(ν+βx−x+1)
x−1 (−λq)

)
,

x = 1, 2, . . . .

(3.5)

The recursive formulas of the generalized Laguerre polynomials,

L(α)
n (x) = L(α+1)

n (x)− L
(α+1)
n−1 (x) and nL(α)

n (x) = (n+ α)L
(α)
n−1(x)− xL

(α+1)
n−1 (x),

lead to two expressions

P(X = x) = e−λppxqν+βx−x
(
L(ν+βx−x−1)
x (−λq)− (β − 1)L

(ν+βx−x)
x−1 (−λq)

)
x = 0, 1, . . .

(3.6)

and

P(X = x) = e−λppxqν+βx−x
(
L(ν+βx−x)
x (−λq)− βL

(ν+βx−x)
x−1 (−λq)

)
x = 0, 1, . . . .

(3.7)

It is easily seen that (3.6) reduces to the NNBD’s pmf (3.1) when β = 1 and (3.7)

reduces to the CSD’s pmf (3.3) when β = 0 and ν is a non-negative integer.

Since we have

(q + pt)ν exp(λ(q + pt− 1)) = e−λ(q + pt)ν1F1[ν + 1; ν + 1;λ(q + pt)],
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using the formulas

Dn(tc−1
1F1[a; c; t]) = (−1)n(1− c)nt

c−1−n
1F1[a; c− n; t]

(Erdélyi et al., 1953, p. 255) and

Dn(tδ1F1[a; c; t]) = (δ − n+ 1)nt
δ−n

2F2 [a, δ + 1; c, δ + 1− n; t]

(Luke, 1969, p. 117) lead to another expression of the pmf

P(X = x) =
ν

ν + βx

(
ν + βx

x

)
e−λpxqν+βx−x

×2F2[ν + 1, ν + βx; ν, ν + βx− x+ 1;λq], x = 0, 1, . . . .

(3.8)

It is easily seen that (3.8) reduces to GNBD’s pmf (2.8) when λ = 0.

Moreover, it is easily seen that this distribution reduces to the binomial-

Poisson distribution (Consul and Shenton, 1972), generated by GLD1(f, g) with

f(t) = eλ(t−1) and g(t) = (q+pt)β, when ν = 0 and reduces to generalized Poisson

distribution (Consul and Jain, 1973), generated by GLD1(f, g) with f(t) = eλ(t−1)

and g(t) = eµ(t−1), when ν = 0 and p→ 0 with βp = µ.

This distribution also arises from the following way. Letting f(z) = (1+z)νeλqz

and g(z) = (1+z)β in (2.1), dividing the equation by (1+z)β and putting z = p/q

lead to

e−λpqν +
∞∑
x=1

e−λppxqν+βx−x

x
(νL

(ν+βx−x)
x−1 (−λq) + λqL

(ν+βx−x+1)
x−1 (−λq)) = 1.

Each term on the left hand side of the above equation coincides with pmf (3.5).

We call this distribution the Lagrangian non-central negative binomial distribu-

tion of the first kind and denote it by LNNBD1(β, ν, λ, p) or LNNBD1 for short.

LNNBD1(β, ν, λ, p) is also generated through the pgf’s of LNNBD1(α, ν, λ, p)
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and GNBD(α, β − α, p), where GNBD(β, ν, p) means the GNBD with pmf (2.8).

This is seen by putting G(t) = (q + pt)ν exp(λ(q + pt − 1)), h1(t) = (q + pt)β−α

and h2(t) = (q + pt)α in Theorem 2.1. From a special case when α = 1, we see

that LNNBD1(β, ν, λ, p) is generated by GLD1(vν , wβ−1).

3.3 Stopped-sum distributions

Suppose that Z1, Z2, . . .
i.i.d.∼ FZ , X ∼ FX , and these random variables are

independent, and let S = Z1 + · · · + ZX if X = 1, 2, . . . and S = 0 otherwise.

Then S ∼ FS is called the stopped-sum distribution or FX generalized by the

generalizing FZ (see Johnson et al., 2005, Chapter 9). Let GZ(t), GX(t) and

GS(t) be the pgf’s of FZ , FX and FS, respectively. Then it is satisfied GS(t) =

GX(GZ(t)).

Since the LNNBD1 is generated by GLD1(fν , gβ), LNNBD1 is a CSD gen-

eralized by the generalizing Consul distribution, where the Consul distribution

(Consul and Shenton, 1975) is generated by GLD1(d1, gβ), where dn(t) = tn.

Therefore, letting X ∼ LNNBD1(β,N, λ, p), YCS ∼ CSD(N, λ, p) and Ck be a

random variable distributed as GLD1(dk, gβ), i.e.,

P(Ck = x) =
k

x

(
βx

x− k

)
px−kqβx−x+k, x = k, k + 1, . . . (3.9)

with P(C0 = 0) = 1, then we get the expression

P(X = x) =
x∑

k=0

P(Ck = x)P(YCS = k), x = 0, 1, . . . . (3.10)

Here N is not necessarily a non-negative integer, and we may put N = ν. This

expression is useful for computing the pmf of LNNBD1 by using the recursive
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formulas (3.4) and
P(C1 = x) =

1

x

(
βx

x− 1

)
px−1qβx−x+1,

P(Ck = x) =
k

k − 1

x− k + 1

βx− x+ k

q

p
P(Ck−1 = x), k = 2, 3, . . . .

Similarly, since the LNNBD1 is generated by GLD1(vν , wβ−1), LNNBD1 is a

NNBD generalized by the generalizing Geeta distribution, where the Geeta distri-

bution (Consul, 1990) is generated by GLD1(d1, wβ). Therefore, letting YNNB ∼

NNBD(ν, λ, p) and Gk be a random variable distributed as GLD1(dk, wβ), i.e.,

P(Gk = x) =
k

x

(
βx− k − 1

x− k

)
px−kqβx−x, x = k, k + 1, . . . (3.11)

with P(G0 = 0) = 1, then we get the expression

P(X = x) =
x∑

k=0

P(Gk = x)P(YNNB = k), x = 0, 1, . . . . (3.12)

This expression is also useful for computing the pmf of LNNBD1 by using the

recursive formulas (3.2) and
P(G1 = x) =

1

βx− 1

(
βx− 1

x

)
px−1qβx−x,

P(Gk = x) =
k

k − 1

x− k + 1

βx− k

1

p
P(Gk−1 = x), k = 2, 3 . . . .

In particular, it holds that

P(YNNB = x) =
x∑

k=0

(
x− 1

k − 1

)
px−kqkP(YCS = k) (3.13)
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when β = 1 in (3.10) and

P(YCS = x) =
x∑

k=0

(
x− 1

k − 1

)
(−p)x−kq−xP(YNNB = k) (3.14)

when β = 0 in (3.12). From (3.13), we see that NNBD is a CSD generalized by

the generalizing shifted geometric distribution. About (3.14), the term multiplied

by P(YNNB = k) is the pmf of an invalid distribution. This is a shifted pseudo-

binomial distribution by Kemp (1979). Thus, CSD is a NNBD generalized by the

generalizing shifted pseudo-binomial distribution.

3.4 Properties and characteristics

3.4.1 Generalized negative binomial mixture

Let X|N ∼ GNBD(β, ν + N, p) and N be a random variable distributed as a

Poisson distribution with mean λ. Then the unconditional distribution of X is

P(X = x)

=
∞∑
n=0

ν + n

ν + n+ βx

(
ν + n+ βx

x

)
pxqν+n+βx−x e

−λλn

n!

=
e−λpxqν+βx−x

x!

∞∑
n=0

ν(ν + βx− 1)!

(ν + βx− x)!

(ν + 1)n(ν + βx)n
(ν)n(ν + βx− x+ 1)n

(λq)n

n!

=
ν

ν + βx

(
ν + βx

x

)
e−λpxqν+βx−x

2F2 [ν + 1, ν + βx; ν, ν + βx− x+ 1;λq] .

This coincides with pmf (3.8).
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3.4.2 Index of dispersion

From (2.6), the mean and variance of LNNBD1(β, ν, λ, p) are obtained as

µ′
1 =

(ν + λ)p

1− βp
and µ2 =

(νq + λ− βλp2)p

(1− βp)3
,

respectively. For β ≥ 1, LNNBD1(β, ν, λ, p) is over-dispersed, i.e., the variance is

greater than the mean. This fact can be proved as follows.

Let X ∼ LNNBD1(β, ν, λ, p), K ∼ NNBD(ν, λ, p) and Z ∼ Gee(β, p), where

Gee(β, p) means the Geeta distribution with pmf (3.11) for k = 1. Since LNNBD1

is a NNBD generalized by the generalizing Geeta distribution, the mean and

variance of X are obtained as

E[X] = E[Z]E[K] and Var[X] = E[K]Var[Z] + Var[K]E[Z]2.

Since the NNBD is known to be over-dispersed, Var[K] > E[K], and the random

variable of Geeta distribution takes values greater than one, it is seen that

Var[X] > Var[K]E[Z]2 > E[K]E[Z] = E[X].

However, when β = 0 and ν is a non-negative integer, LNNBD1 reduces to CSD

and LNNBD1 is thus under-dispersed.

3.4.3 Recursive formulas

The three-terms recursive formulas (3.2) and (3.4) belong to a special case of

Sundt’s (1992) recursion known in actuarial science,

P(X = x) =
k∑

i=1

(
ai +

bi
x

)
P(X = x− i). (3.15)
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Sundt (1992) showed that the pmf of S = Z1 + Z2 + · · ·+ ZX , where Z1, Z2, . . .

are independent and identically distributed random variables and independent of

X, can be recursively evaluated by

fS(s) =
1

1−
k∑

i=1

aifZ(0)
i

s∑
z=1

fS(s− z)
k∑

i=1

(
ai +

bi
i

z

s

)
f i∗
Z (z),

with fS(0) =
∞∑
n=0

P(X = n)fZ(0)
n, where fS(s), f

i∗
Z (z) are the pmf’s of S and

Z1 + Z2 + · · ·+ Zi, respectively.

As described in Section 3.3, if X ∼CSD(ν, λ, p) and Z1, Z2, . . .
i.i.d.∼ Con(β, p),

where Con(β, p) means the Consul distribution with pmf (3.9) for k = 1 or

if X ∼NNBD(ν, λ, p) and Z1, Z2, . . .
i.i.d.∼ Gee(β, p), then S = Z1 + Z2 + · · · +

ZX ∼LNNBD1(β, ν, λ, p) . Therefore, we can get the two recursive formulas

P(S = s) =
s∑

z=1

P(S = s− z)

×
((

−p
q
+

(ν + λq + 1)pz

qs

)
P(C1 = z) +

λp2z

2qs
P(C2 = z)

)
and

P(S = s) =
s∑

z=1

P(S = s− z)

×
((

2p+
(ν + λq − 2)pz

s

)
P(G1 = z)−

(
p2 +

(ν − 2)p2z

s

)
P(G2 = z)

)

with P(S = 0) = e−λpqν , where Ck and Gk for k = 1, 2 are defined by (3.9) and

(3.11), respectively.
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3.4.4 Queueing systems

From the relation of GLD1 with queueing system, we see that the LNNBD1

arises as the number of customers served during a busy period when the initial

customers follows the CSD and the number of arrivals during a service follows

binomial distribution or when the initial customers follows the NNBD and the

number of arrivals during a service follows negative binomial distribution.

From the relation of GLD1 with tandem queueing system in which customers

at counter 1 have priority over customers at counter 2, introduced in Section 2.4,

we see that LNNBD1 arises as the number of customers served during a busy

period when initial customers follows the CSD and the number of customers

during a service in each counter follows the binomial distribution or when initial

customers follows the NNBD and the number of customers during a service in

each counter follows the negative binomial distribution.

3.5 Numerical examples

In this section, LNNBD1 is fitted to the data of the number of Corbet’s Malayan

Butterfly with zeros (Blumer, 1974) in Table 3.1 by employing maximum like-

lihood method. Here the log-likelihood function is
n∑

r=0

fr log P(X = r), where

X ∼LNNBD1(β, ν, λ, p), fr is the observed frequency of the value r and n is the

highest value in observed data. The numerical optimization of the log-likelihood

function is used since solving likelihood equations is difficult because of the com-

plicated form of the pmf. We also demonstrate comparative fittings with GNBD

and NNBD. The performances of the model fittings are compared by chi-squared

goodness-of-fit statistic (χ2) and maximized log-likelihood statistic (Log L). The

cells whose expected number is less than 5 are grouped such as the expected

number of grouped cell is not less than 5.

In this data set, the LNNBD1 provides a best fit in the sense of log-likelihood
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value and the GNBD provides a best fit in the sense of p-value. However, a

comparison of the expected frequencies of LNNBD1 and GNBD shows a closer

fit by the LNNBD1. The performance in the fit to the frequency count data

exemplifies the viability of the LNNBD1 as a model for count data.
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Table 3.1: The number of Corbet’s Malayan Butterfly with zeros (Blumer, 1974)
Count Observed GNBD NNBD LNNBD1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25+

304
118
74
44
24
29
22
20
19
20
15
12
14
6
12
6
9
9
6
10
10
11
5
3
3

119

307.17
106.99
66.70
48.26
37.50
30.42
25.39
21.65
18.75
16.45
14.58
13.04
11.74
10.64
9.70
8.88
8.16
7.54
6.98
6.48
6.04
5.64
5.28
4.96
4.66

120.39

315.36
94.23
59.75
44.57
35.73
29.85
25.60
22.36
19.81
17.72
15.99
14.53
13.27
12.18
11.23
10.38
9.63
8.96
8.35
7.80
7.30
6.84
6.42
6.04
5.69

114.41

306.91
107.96
66.66
47.99
37.22
30.17
25.20
21.51
18.66
16.39
14.55
13.03
11.75
10.67
9.73
8.92
8.21
7.59
7.04
6.54
6.10
5.71
5.35
5.02
4.72

120.40
Total 924 924.00 924.00 924.00
Log L −2253.12 −2256.12 −2252.80
χ2 24.13 28.50 23.40
df 21 21 20

p-value 0.286 0.127 0.270

GNBD: β̂ = 1.0441, ν̂ = 0.4218, p̂ = 0.9265.
NNBD: ν̂ = 0.3082, λ̂ = 0.0012, p̂ = 0.9693.
LNNBD1: β̂ = 1.1630, ν̂ = 0.5106, λ̂ = 0.3092, p̂ = 0.8112.
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Chapter 4

Extension of generalized inverse

trinomial distribution

4.1 Introduction

Kemp and Kemp (1968) considered the distribution of the total number of games

lost by the ruined gambler starting with some monetary units against an infinitely

rich adversary, called the lost-games distribution and Yanagimoto (1989) indepen-

dently considered the same distribution, called the inverse binomial distribution.

The distribution is generated from a random walk on y = . . . ,−1, 0, 1, . . . with an

absorbing barrier at y = n. On the random walk, a particle starting from y = 0

moves with steps +1 and −1 according to the transitional probabilities. When

the random variable X represents the first passage time of reaching the absorbing

barrier on the random walk, (X−n)/2 is the random variable of inverse binomial

distribution. Shimizu and Yanagimoto (1991) generalized the inverse binomial

distribution by adding a stay probability to the random walk, which is called the

inverse trinomial distribution. The inverse trinomial and shifted inverse trinomial

distributions are generated as general Lagrangian distributions, GLD1(f, g) with

f(t) = tn and g(t) = p + qt + rt2 and GLD1(f, g) with f(t) = (p + qt + rt2)n
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and g(t) = p+ qt+ rt2, respectively, under the assumption that a particle on the

random walk moves with steps −1, 0 and +1 according to the probabilities p, q

and r = 1− p− q, respectively. Aoyama et al. (2008) proposed a generalization

of the shifted inverse trinomial distribution, denoted by GIT, which is generated

from a two-dimensional random walk. On the random walk, a particle starting

from (0, 0) moves from (x, y) to (x, y + 1), (x+ 1.y + 1), (x+ 1, y), (x+ 1, y − 1)

and (x, y− 1) with probabilities p1, p2, p3, p4 and p5 = 1− p1 − p2 − p3 − p4 − p5,

respectively.

Figure 4.1: The random walk for GIT

The GIT is the first passage time distribution of reaching the absorbing barrier

y = n (see Fig 4.1). The subclass of the GIT when p4 = p5 = 0, denoted by

GIT3,1, is interesting distribution. The distribution has the pmf

P(X = x) =

(
n+ x− 1

x

)
pn1p

x
3 2F1

[
−n,−x;−n− x+ 1;− p2

p1p3

]
,

x = 0, 1, . . .

(4.1)
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and pgf

G(t) =

(
p1 + p2t

1− p3t

)n

=

(
p1 + p2t

p1 + p2

)n(
1− p3
1− p3t

)n

. (4.2)

The GIT3,1 includes the important distributions, shifted negative binomial dis-

tribution when p1 = 0, negative binomial distribution when p2 = 0 and binomial

distribution when p3 = 0. This means that the GIT3,1 has the flexibility to model

under- and over-dispersion. Some properties of GIT3,1 like various expressions

of pmf, recursive formulas of pmf and r-th cumulants and normal and Poisson

approximations are studied in Aoyama et al. (2008).

This chapter considers an extension of GIT3,1, which has pgf

G(t) = (1− P + Pt)ν
(

1− p

1− pt

)ν+β

(4.3)

(Imoto, to appear, a). This is seen to be a convolution of binomial and negative

binomial variables and reduces to GIT3,1 with pgf (4.2) when ν = n, β = 0,

P = p2/(p1 + p2) and p = p3. The distribution with pgf (4.3) is denoted by

EGIT3,1(ν, β, P, p) or EGIT3,1 for short. The parameter ν is a non-negative inte-

ger, ν + β > 0, 0 < p < 1 and 0 < P < 1 or ν is a non-negative integer, β > 0,

0 < p < 1 and −p/(1 − p) < P < 0. Kemp (1979) has considered a class of

distributions formed by convolutions of binomial variables and binomial pseudo

variables and quoted a number of physical models for members of the class. The

EGIT3,1 belongs to Kemp’s class and this chapter gives a more detailed study for

this distribution. Section 4.2 gives the pmf, factorial moments and cumulants of

EGIT3,1. These functions, including pgf, lead to the interesting properties and

characteristics about EGIT3,1. In Section 4.3, we consider the stochastic pro-

cesses leading to EGIT3,1, which have not been considered in Kemp (1979); (1)

a three-dimensional random walk; (2) a birth, death and immigration process;

(3) a thinned stochastic process. The profile maximum likelihood estimation and
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fitting examples to real count data sets are considered in Section 4.4. The im-

proved fit and flexibility to the under- and over-dispersed data sets support the

application of EGIT3,1 in empirical modeling.

4.2 Extension of GIT3,1

4.2.1 Probabilities and factorial moments

Consider the expansion of (1 − w/c)x(1 − w)−x−β in powers of w. Following

Chihara (1978, p. 176),

(
1− w

c

)x
(1− w)−x−β =

∞∑
n=0

Mn(x; β, c)
wn

n!
, (4.4)

where Mn(x; β, c) = (−1)xx!
x∑

k=0

(
n

k

)(
−n− β

x− k

)
c−k is a Meixner polynomial of

the first kind. From the formula (4.4), the distribution with pgf (4.3) has the pmf

P(X = x) =
px(1− p)ν+β(1− P )ν

x!
Mx

(
ν; β,−(1− P )p

P

)
, x = 0, 1, . . . . (4.5)

This distribution is obtained from a convolution of binomial and negative binomial

variables when ν is a non-negative integer, ν + β > 0, 0 < p < 1 and 0 <

P < 1, and a convolution of binomial variable and an improper variable when

−p/(1−p) < P < 0, which becomes a proper distribution from the idea of Kemp

(1979).

The Meixner polynomials of the first kind belong to the class of orthogonal

polynomials with respect to the negative binomial distribution and are charac-

terized by a three-terms recursive formula

cMx+1(n; β, c) = ((c− 1)n+ (1 + c)x+ cβ)Mx(n; β, c)

−x(x+ β − 1)Mx−1(n, β, c), x ≥ 0.
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Since the pmf (4.5) is expressed in term of Meixner polynomial of the first kind,

we have the following three-terms recursive formula, which is a special case of

Sundt’s recursion (3.15),

P(X = x) =

(
a+

b

x

)
P(X = x− 1) +

(
c+

d

x

)
P(X = x− 2), x ≥ 1,

with P(X = −1) = 0, P(X = 0) = (1 − P )ν(1 − p)ν+β, where a = (p(1 − P ) −

P )/(1− P ), b = ((ν + 1)P + (ν + β − 1)(1− P )p)/(1− P ), c = Pp/(1− P ) and

d = Pp(β − 2)/(1− P ).

In term of the Gauss hypergeometric function, the pmf of EGIT3,1 is expressed

as

P (X = x) =

(
ν + β + x− 1

x

)
px(1− p)ν+β(1− P )ν

×2F1

[
−ν,−x;−ν − β − x+ 1;− P

(1− P )p

]
, x = 0, 1, . . . .

(4.6)

When ν = n, β = 0, P = p2/(p1 + p2) and p = p3, the pmf (4.6) is seen to reduce

to (4.1).

Returning to (4.3), we see that the factorial moment generating function is

expressed as G(t+1) = (1+Pt)ν(1−pt/(1−p))−ν−β. Therefore, the r-th descend-

ing factorial moment µ[r] is also expressed in term of the Meixner polynomials of

the first kind as

µ[r]

(
p

1− p

)r

Mr

(
ν; β,− p

(1− p)P

)
.

Also, the descending factorial moments have a three-term recursive formula

µ[r+1] =

(
(ν − r)P + (ν + β + r)

p

1− p

)
µ[r] + r(r + β − 1)

Pp

1− p
µ[r−1], r ≥ 0,

with µ[−1] = 0 and µ[0] = 1, leading to easily enumeration of factorial moments.
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4.2.2 Limiting distributions

The EGIT(ν, β, P, p) goes to the following distributions as limits:

1. Charlier series distribution when putting β = m − ν and letting mp → λ

as m→ ∞.

2. Delaporte distribution (Delaporte, 1959), which is formulated as a convolu-

tion of negative binomial and Poisson variables, when letting νP → λ with

α = ν + β fixed as ν → ∞.

3. non-central negative binomial distribution when letting (p+(1−p)P )ν/p→

λ as ν → ∞.

This fact can be proved as follows.

1. G(t) = (1−P +Pt)ν((1− p)/(1− pt))m → (1−P +Pt)νeλ(t−1) as m→ ∞.

This is the pgf of CSD(ν, λ/P, P ).

2. G(t) = (1 − P + Pt)ν((1 − p)/(1 − pt))α → ((1 − p)/(1 − pt))αeλ(t−1) as

ν → ∞. This is the pgf of Delaporte distribution.

3.

G(t) =

(
1− p

1− pt

)β (
1 +

p+ (1− p)P

p

p(t− 1)

1− pt

)ν

→
(

1− p

1− pt

)β

exp

(
λp(t− 1)

1− pt

)
as ν → ∞.

This is the pgf of NNBD(ν, λ, p).

Note. Both the non-central negative binomial and Delaporte distributions are

generalizations of negative binomial distribution and suitable models for count

data with high dispersion which means the index of dispersion is large (see Gupta

and Ong, 2005). The EGIT3,1 includes these generalized distributions as limiting

distributions and therefore, can be adapted for count data with high dispersion.
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4.2.3 Cumulants

The cumulant generating function of EGIT3,1 is expressed by the sum of those of

binomial and negative binomial distributions. This means that κr = κ
(1)
r + κ

(2)
r ,

where κr, κ
(1)
r and κ

(2)
r are the r-cumulants of EGIT3,1(ν, β, P, p), Bin(ν, P ) and

NB(ν + β, p), respectively. Using the recursive formulas about cumulants of

binomial and negative binomial distributions (1.2) and (1.5), we can easily get

the cumulants of EGIT3,1. The first four cumulants of EGIT3,1(ν, β, P, p) are

κ1 = νP + (ν + β)p/(1− p),

κ2 = νP (1− P ) + (ν + β)p/(1− p)2,

κ3 = νP (1− P )(1− 2P ) + (ν + β)p(1 + p)/(1− p)3,

κ4 = νP (1− P )(1− 6P + 6P 2) + (ν + β)p(1− 4p+ p2)/(1− p)4.

(4.7)

These cumulants are usable for the method of moments estimation for estimating

four parameters of EGIT3,1.

From (4.7), we can get three indices measuring dispersion, skewness and kur-

tosis

κ2
κ1

=
νP (1− P )(1− p)2 + (ν + β)p

νP (1− p)2 + (ν + β)p(1− p)
,

κ3

κ
3/2
2

=
νP (1− P )(1− 2P )(1− p)3 + (ν + β)p(1 + p)

(νP (1− P )(1− p)2 + (ν + β)p)3/2
,

κ4
κ22

=
νP (1− P )(1− 6p+ 6P 2)(1− p)4 + (ν + β)p(1− 4p+ p2)

(νP (1− P )(1− p)2 + (ν + β)p)2
,

respectively. The index of dispersion is seen to be greater (smaller) than one for

p/((1 − p)P ) > (<)
√
ν/(ν + β) when ν is a non-negative integer, ν + β > 0,

0 < p < 1 and 0 < P < 1, and always greater than one when ν is a non-negative

integer, β > 0, 0 < p < 1 and −p/(1− p) < P < 0.

43



4.2.4 Mixture distributions

The EGIT3,1 is generated from various types of mixture distributions.

1. Assume that X|Y ∼NB(ν + Y, p) and Y ∼Bin(β, p′) with non-negative

integers ν and β. Then X ∼EGIT3,1(β, ν,−p(1− p′)/(1− p), p).

2. Assume that X|Y ∼NB(ν + Y, p) and Y ∼NB(ν + β, p′) with non-negative

integers ν and β. Then X ∼EGIT3,1(β, ν,−p/(1− p), p/(1− (1− p)p′)).

3. Assume that X|Y ∼Bin(ν + Y, p) and Y ∼NB(ν + β, p′) with non-negative

integers ν and β. Then X ∼EGIT3,1(ν, β, p, pp
′/(1− (1− p)p′)).

4. Assume that X|Y ∼EGIT3,1(Y, β, P, p) and Y ∼EGIT3,1(ν, β, P
′, p′) with

a non-negative integer ν. Then X ∼EGIT3,1(ν, β, PP
′ − p(1 − P ′)/(1 −

p), (p+ p′(1− p)P )/(1− p′(1− p)(1− P ))).

This fact can be proved as follows.

1. The pgf of unconditional distribution of X is given by

∞∑
x=0

P(X = x)tx =
∞∑
x=0

∞∑
y=0

P(X = x|Y = y)P(Y = y)tx

=
∞∑
y=0

(
1− p

1− pt

)ν+y (
β

y

)
p′y(1− p′)β−y

=

(
1− p′ + p

1− p

1− pt

)β (
1− p

1− pt

)ν

=

(
p+

1− p′

1− p
− p(1− p′)

1− p
t

)β (
1− p

1− pt

)ν+β

.

This is the pgf of EGIT3,1(β, ν,−p(1− p′)/(1− p), p).

The proofs of the other parts can be given by a similar way.
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4.2.5 Conditional bivariate negative binomial distribution

Assume that the random vector (X, Y ) has the pgf

GX,Y (t1, t2) =

(
1− p1 − p2 − p3

1− p1t1 − p2t2 − p3t1t2

)β

, (4.8)

defined by Edwards and Gurland (see Kocherlakota and Kocherlakota, 1992, p.

128). Then the pgf of the conditional distribution given Y = ν is given by

G(t) =
∂ν

∂tν2
GX,Y (t1, t2)|t1=t,t2=0

/
∂ν

∂tν2
GX,Y (t1, t2)|t1=1,t2=0

=

(
p2 + p3t

p2 + p3

)ν (
1− p1
1− p1t

)ν+β

.

This is the pgf of EGIT3,1(ν, β, p3/(p2 + p3), p1).

4.2.6 Characterization by conditional distribution

Assume that the random variables X1 and X2 are independent. If these are

distributed as binomial distributions, then the conditional distribution ofX1 given

X1 + X2 = n is distributed as a hypergeometric distribution and if distributed

as negative binomial distributions, then the conditional distribution is a negative

hypergeometric distribution. Here we assume that Xi ∼EGIT3,1(νi, βi, P, p) for

i = 1, 2. Then the conditional distribution of X1 given X1 +X2 = n has the pmf

P(X1 = x|X1 +X2 = n)

=

(
n

x

)
Mx(ν1, β1,−(1− P )p/P )Mn−x(ν2, β2,−(1− P )p/P )

Mx(ν1 + ν2, β1 + β2,−(1− P )p/P )
.

(4.9)

This is a generalized hypergeometric and negative hypergeometric distribution.

Conversely, if the conditional distribution of X1 given X1 +X2 = n has the pmf

(4.9), then Xi ∼EGIT3,1(νi, βi, P
′, p′), where (1 − P ′)p′/P ′ = (1 − P )p/P . This

can be proved by using Menon’s theorem (1966):
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Let X and Y be two independent discrete random variables such that the

conditional distribution of X = x given X+Y = z is of the form α(x)β(z−x)/γ(z)

for some functions α, β and γ. If the probability mass functions of X and Y are

p(x) and q(y) respectively, then

p(x) = λα(x)eθx

q(y) = µβ(y)eθy

for some arbitrary constants λ, µ and θ.

In this case, α(x) = Mx(ν1; β1,−(1 − P )p/P )/x!. Set eθ = p′. Then from

(4.4), we have

∞∑
x=0

p(x) = λ

(
1 +

Pp′

(1− P )p

)ν1

(1− p′)−ν1−β1 .

Therefore, we obtain

p(x) =
p′x(1− p′)ν1+β1(1− P ′)ν1

x!
Mx

(
ν1; β1,−

1− P ′

P ′

′

p

)
,

where P ′ = Pp′/((1 − P )p + Pp′), or equivalently, (1 − P ′)p′/P ′ = (1 − P )p/P .

Similarly, we can get

q(y) =
p′y(1− p′)ν2+β2(1− P ′)ν2

y!
My

(
ν2; β2,−

1− P ′

P ′ p′
)
.

4.3 Stochastic processes leading to EGIT3,1

4.3.1 Three-dimensional random walk

Consider a particle moving from (x, y, z) to (x + 1, y, z), (x, y + 1, z), (x +

1, y + 1, z) and (x, y, z + 1) with probabilities p1, p2, p3 and q = 1− p1 − p2 − p3,

respectively. When this particle starts from the origin and reaches the barrier z =
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Figure 4.2: The random walk for bivariate negative binomial distribution

β, then the random vector (X, Y ) representing the (x, y)-coordinate of reaching

point is distributed as a bivariate negative binomial distribution with pgf (4.8).

This fact can be proved as follows.

Assume that the pmf of random vector (X, Y ) is fβ(x, y). This pmf satisfies

the difference equation

fβ(x, y) = p1fβ(x− 1, y) + p2fβ(x, y − 1) + p3fβ(x− 1, y − 1) + qfβ−1(x, y)

with boundary conditions fβ(−1, y) = fβ(x,−1) = 0 and f0(0, 0) = 1. Putting

Hβ(t1, t2) =
∞∑
x=0

∞∑
y=0

fβ(x, y)t
x
1t

y
2, we get the equation about Hβ(t1, t2)

Hβ(t1, t2) = pt1Hβ(t1, t2) + p2t2Hβ(t1, t2) + p3t1t2Hβ(t1, t2) + qHβ−1(t1, t2)

with condition H0(t1, t2) = 1. The solution is the pgf (4.8).

The conditional bivariate negative binomial distribution given Y = ν is shown

to be EGIT3,1. Using this fact, when the given particle starts from the origin and

reaches the line y = ν and z = β, the random variable X representing the x-

coordinate of reaching point is seen to be distributed as EGIT3,1(ν, β, p3/(p2 +
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Figure 4.3: The random walk for EGIT

p3), p1). When β = 0, this random walk reduces to a two-dimensional random

walk leading to the GIT3,1. Therefore, the random walk considered in this section

generalizes that of GIT3,1.

As mentioned in Section 4.1, the lost-games distribution is generated from a

random walk and has applicability for the number of games lost by the ruined

gambler. The three-dimensional random walk considered here also has applica-

bility for gambler problem, in which a player might get two different types of win.

For example, consider the game in which a player loses 1 dollar with probability

p1, wins A with probability p2, wins B with probability q and loses 1 dollar and

wins A with probability p3. Then the money lost by getting ν units of A and β

units of B is distributed as EGIT(ν, β, p3/(p2 + p3), p1).

4.3.2 Birth, death and immigration process

The number of individuals in a non-homogeneous birth and death process and

that in a homogeneous birth, death and immigration process follow the distribu-

tion generated from a convolution of binomial and negative binomial variables.

In this section, we consider a generalization of these two processes.

We consider a non-homogeneous birth, death and immigration process in
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which individuals in a colony are born at time s with birth rate λ(s) and die

at time s with death rate µ(s) and individuals from other colony immigrate at

time s with immigration rate α(s). In this process, we assume that immigra-

tion rate is proportional to birth rate, i.e., α(s) = βλ(s) for a constant β. This

assumption is natural because a high birth rate means that the colony is com-

fortable place to live in and therefore, leads to high immigration rate. Putting

that P (x, s) is a probability of the number of individuals in a colony being x at

time s and P (ν, 0) = 1, then we see that P (x, s) satisfies the difference equation

P (x, s+ h) = (1− λ(s)xh− βλ(s)h− µ(s)xh)P (x, s)

+λ(s)(x− 1)hP (x− 1, s) + βλ(s)hP (x− 1, s) + µ(s)(x+ 1)hP (x+ 1, s).

Putting G(t, s) =
∞∑
x=0

P (x, s)tx and letting h → 0, we can get the partial differ-

ential equation


∂

∂s
G(t, s) + (µ(s)− λ(s)t)(t− 1)

∂

∂t
G(t, s) = βλ(s)(t− 1)G(t, s),

G(t, 0) = tν .

From this partial differential equation, we can get the relations

ds =
dt

(µ(s)− tλ(s))(t− 1)
=

dG

β(t− 1)λ(s)G
. (4.10)

Set t = 1 + 1/y for the first equality in (4.10). Then the equation transforms to

dy/ds = (λ(s)−µ(s))y+λ(s) and solving this differential equation and resetting

y = 1/(t− 1) , we get

eρ(s)

t− 1
−
∫ s

0

λ(u)eρ(u)du = C1, (4.11)

where ρ(s) =

∫ s

0

(µ(u) − λ(u))du and C1 is a constant. From (4.11) and the
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second equality in (4.10), we obtain the differential equation

d logG

ds
=

βλ(s)eρ(s)

C1 +

∫ s

0

λ(u)eρ(u)du

= β
d

ds
log

(
C1 +

∫ s

0

λ(u)eρ(u)du

)

Solving this differential equation, we get

G(t, s)

(
eρ(s)

t− 1

)−β

= C2, (4.12)

where C2 is a constant. Combining (4.11) and (4.12), we see that the function

Ψ(·) satisfying

G(t, s)

(
eρ(s)

t− 1

)−β

= Ψ

(
eρ(s)

t− 1
−
∫ s

0

λ(u)eρ(u)du

)

exists. Substituting t = 0 and setting s = 1 + 1/y, we see Ψ(y) = (1 + 1/y)νy−β

and thus get the solution

G(t, s) =

(
eρ(s)

t− 1

)β (
eρ(s)/(t− 1) + 1− ϕ(s)

eρ(s)/(t− 1)− ϕ(s)

)ν (
1

eρ(s)/(t− 1)− ϕ(s)

)β

= (1− P (s) + P (s)t)ν
(

1− p(s)

1− p(s)t

)ν+β

,

where P (s) = (1−ϕ(s))e−ρ(s), p(s) = ϕ(s)e−ρ(s)/(1+ϕ(s)e−ρ(s)), ρ(s) =

∫ s

0

(µ(u)−

λ(u))du and ϕ(s) =

∫ s

0

λ(u)eρ(u)du. This is the pgf of EGIT3,1(ν, β, P (t), p(t)).

The stochastic process considered in this section reduces to a non-homogeneous

birth and death process giving rise to GIT3,1 when β = 0 and reduces to a ho-

mogeneous birth, death and immigration process giving rise to EGIT3,1 when

λ(t) = λ and µ(t) = µ, i.e., birth rate and death rate are independent from the

time factor.
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4.3.3 Thinned stochastic process

Ong (1995) has given the thinned stochastic process which leads to the distri-

bution generated from a convolution of two binomial variables. This section

introduces the thinned stochastic process which leads to EGIT3,1.

Theorem 4.1

Assume that Y1, Y2, . . .
i.i.d.∼ Bin(1, 1 − (1 − ρ)/(1 − ϕ)), Xn ∼NB(β, ϕ) and

T (Xn) ∼ NB(Xn+β, ϕ(1− ρ)/((1−ϕ)ρ)), where 0 < ρ < 1 and 0 < (1− ρ)/(1−

ϕ) < 1. Then, the linear stochastic model

Xn+1 =

Xn+T (Xn)∑
i=1

Yi (4.13)

has a conditional pgf

GXn+k|Xn=x(t) = (1− P (k) + P (k)t)x (1 + p(k)− p(k)t)−x−β , (4.14)

which corresponds to the pgf of EGIT3,1 and the regression function is given

by E[Xn+k|Xn = x] = (P (k) + p(k))x + βp(k), where P (k) = (ρk − ϕ)/(1 −

ϕ) and p(k) = ϕ(1 − ρk)/(1 − ϕ). The autocorrelation function is given by

Corr[Xn+k, Xn] = ρk.

Proof

The random variable Xn+1 can be written by the sum of independent random

variables as Xn+1 = U + V , where U =
Xn∑
i=1

Yi and V =

T (Xn)∑
i=1

Yi. Since the
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conditional pgf of V given Xn = x is expressed as

E[tV |Xn = x] =
∞∑
k=0

E[tV |T (Xn) = k,Xn = x]P (T (Xn) = k|Xn = x)

=
∞∑
k=0

E[tYi ]kP (T (Xn) = k|Xn = x)

=

(
1 +

ϕ(1− ρ)

1− ϕ
− ϕ(1− ρ)

1− ϕ
t

)−x−β

,

the conditional pgf of Xn+1 given Xn = x is calculated as

GXn+1|Xn=x(t) = E[tXn+1|Xn = x] = E[tU |Xn = x]E[tV |Xn = x]

=

(
1− ρ

1− ϕ
+

(
1− 1− ρ

1− ϕ

)
t

)x(
1 +

ϕ(1− ρ)

1− ϕ
− ϕ(1− ρ)

1− ϕ
t

)−x−β

.

Therefore, (4.14) is satisfied when k = 1. It is easily seen that (Xn, Xn+1) is

distributed as a bivariate negative binomial distribution and Xn+1 is identical

with Xn. Suppose that (4.14) is satisfied for some k ≥ 1. Then we can see

GXn+k+1|Xn=x(t)

=
∑

l0,...,lk+1

tl0P (Xn+k+1 = l0|Xn+k = l1) · · ·P (Xn+1 = lk+1|Xn = x)

=
∑
lk+1

GXn+k+1|Xn+1=lk+1
(t)P (Xn+1 = lk+1|Xn = x)

= (1 + p(k)− p(k)t)β GXn+1|Xn=x ((1− P (k) + P (k)t) (1 + p(k)− p(k)t))

= (1− P (k + 1) + P (k + 1)t)x (1 + p(k + 1)− p(k + 1)t)−x−β .

The regression function and autocorrelation function about (Xn+k, Xn) are easily

obtained.

2
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McKenzie (1986) considered the discrete AR(1) model which satisfy the stochastic

equation

Nn+1 = α ∗Nn−1 +Rn,

where α ∗ N =
N∑
i=0

Yi with Y1, Y2, . . . , YN
i.i.d.∼ Bin(1, α). Although the process

(4.13) is not analogous to the AR(1) models by McKenzie (1986) because Rn =

α ∗ T (Xn) with α = 1 − (1 − ρ)/(1 − ϕ) depends on Xn, this model has the

first-order autoregressive properties, that is, the autocorrelation function has the

form Corr[Xn+k, Xn] = ρk and the regression is linear. It seems that there are not

many models for discrete variate processes although situations abound in which

discrete data occur. Thus, the thinned stochastic process (4.13) should be useful

as a model for discrete situations.

4.4 Numerical examples

To show the usefulness of EGIT3,1, we have fitted the EGIT3,1 to the real count

data sets. Since the parameter ν in EGIT3,1(ν, β, P, p) can take only a non-

negative integer and is complicated to be estimated by the maximum likelihood

method, the profile maximum likelihood estimation is used. The log-likelihood

function of EGIT3,1 is given by

L(ν, β, P, p) = Nx log p+N(ν + β) log(1− p) +Nν log(1− P )

+
n∑

r=0

fr logMr

(
ν; β,−1− P

P
p

)
+

n∑
r=0

fr log(r!),

where fr is the observed frequency of value r, n is the highest value in observed

data, N =
n∑

r=0

fr is the size of the sample and x =
n∑

r=1

rfr/N is the sample mean
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of data set. From the relation

∂

∂x

Γ(x+ k)

Γ(x)
=

Γ(x+ k)

Γ(x)

k∑
j=1

1

x+ j − 1
,

we can get the likelihood equations about β, P and p as



n∑
r=0

r!fr
Mr(ν; β,−(1− P )p/P )

min(r,ν)∑
k=0

(
ν

k

)(
ν + β + r − k − 1

r − k

)(
P

(1− P )p

)k

×
r−k∑
j=1

1

ν + β + j − 1
= −N log(1− P ),

(ν + β)
n∑

r=0

rfrMr−1(ν − 1; β + 1,−(1− P )p/P )

Mr(ν; β,−(1− P )p/P )
= Np(1− p),

νP + (ν + β)p/(1− p) = x.

The last equation has the same meaning as putting the mean of EGIT3,1 into the

sample mean. For getting the profile maximum likelihood estimators, we solve the

likelihood equations about β, P and p for a given value of ν and find the ν̂ such

as L(ν̂, β̂ν̂ , P̂ν̂ , p̂ν̂) ≥ L(ν̂+1, β̂ν̂+1, P̂ν̂+1, p̂ν̂+1), where β̂ν , P̂ν and p̂ν are maximum

likelihood estimates for a given value of ν about β, P and p, respectively.

Using this method, the EGIT3,1 has been fitted to the under- and over-

dispersed data sets: the number of children born by each 1,170 women who were

45–76 years old and living in Sweden in 1991 (Erikson and Åberg, 1987) in Table

4.1, which is a under-dispersed data and the quarterly sales of a well-known brand

of a particular article of clothing at stores of a large national retailer (Shmueli

et al., 2005) in Table 4.2, which is a over-dispersed data. Here, the GIT3,1 has

also been fitted to these data sets for comparing the fits of EGIT3,1 with those of

GIT3,1. Then, we treated the EGIT3,1(ν, 0, P, p) as the GIT3,1(ν, P, p).

For both of data sets, the EGIT3,1 provides the best fitting in the sense of the

chi-square values and p-values as well as that of the log-likelihood values. The

EGIT3,1 includes generalizations of binomial and negative binomial distributions
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as limiting distributions while the GIT3,1 includes only binomial and negative

binomial distributions. Therefore, the EGIT3,1 gives improved fitting.
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Table 4.1: The number of children (Erikson and Åberg, 1987)
Count Observed GIT3,1 EGIT3,1

0
1
2
3
4
5
6
7
8
9
10
11

12+

114
205
466
242
85
35
16
4
1
0
1
0
1

86.71
288.99
377.50
255.37
108.61
37.23
11.29
3.16
0.84
0.21
0.05
0.01
0.00

76.45
291.90
405.13
252.71
86.78
33.71
13.63
5.62
2.35
0.99
0.42
0.18
0.13

Total 1170 1170.00 1170.00
Log L −1928.98 −1921.77
χ2 63.39 55.16
df 4 3

p-value 0.000 0.000

GIT3,1: ν̂ = 3, P̂ = 0.4779, p̂ = 0.1954.

EGIT3,1: ν̂ = 3, β̂ = −2.3105, P̂ = 0.5394, p̂ = 0.4421.

56



Table 4.2: The quarterly sales of a well-known brand of a particular article of
clothing (Shmueli et al., 2005)

Count Observed GIT3,1 EGIT3,1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22+

514
503
457
423
326
233
195
139
101
77
56
40
37
22
9
7
10
9
3
2
2
2
1

410.25
525.24
504.34
430.46
344.45
264.59
197.61
144.57
104.11
74.05
52.14
36.41
25.25
17.41
11.94
8.15
5.55
3.76
2.54
1.71
1.15
0.77
1.55

512.30
510.22
467.16
395.79
319.67
249.97
190.95
143.31
106.07
77.63
56.30
40.52
28.97
20.60
14.58
10.27
7.21
5.04
3.52
2.45
1.70
1.17
2.60

Total 3168 3168.00 3168.00
Log L −7539.30 −7520.32
χ2 56.87 13.82
df 16 15

p-value 0.000 0.539

GIT3,1: ν̂ = 2, P̂ = 0.000, p̂ = 0.6401.

EGIT3,1: ν̂ = 2, β̂ = 0.063, P̂ = −0.2238, p̂ = 0.6600.
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Chapter 5

A generalization of

Conway–Maxwell–Poisson

distribution

5.1 Introduction

The EGIT3,1 defined in the previous chapter is a flexible distribution to model

under- and over-dispersion and is generated from various types of stochastic pro-

cesses. In this chapter, we define a flexible distribution to model under- and

over-dispersion with simple pmf as a generalization of the Conway–Maxwell–

Poisson (COMP) distribution, which is considered by Imoto (submitted). The

COMP distribution was originally developed by Conway and Maxwell (1962) as

a solution to handling queueing systems with state-dependent arrival or service

rates and revived as a flexible distribution to model to under- and over-dispersion

by Shmueli et al. (2005). The pmf of the COMP distribution is given by

P(X = x) =
θx

(x!)r
1

Z(θ, r)
, x = 0, 1, . . . , where Z(θ, r) =

∞∑
k=0

θk

(k!)r
(5.1)
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for r > 0 and θ > 0. The COMP distribution reduces to the geometric distribu-

tion when r → 0 and 0 < λ < 1 and the Bernoulli distribution when r → ∞.

The negative binomial distribution is a generalized form of geometric dis-

tribution and more useful than the geometric distribution. For example, the

mode of the negative binomial distribution takes on the any non-negative integer

value while the mode of the geometric distribution always take on zero. The

generalized COMP (GCOMP) distribution proposed in this chapter includes the

negative binomial distribution as a special case and has the flexibility for zero-

valued observations. Moreover, the GCOMP distribution can become a bimodal

distribution with one mode at zero and thus, can be adapted to count data with

many zeros. The flexibility for zero-valued observations will make the proposed

distribution more versatile than the COMP distribution.

The definition of the GCOMP distribution and some properties are given in

Section 5.2. We consider the methods of estimation for GCOMP distribution in

Section 5.3 and fitting examples to real count data sets using the methods are

given in Section 5.4.

5.2 Generalized Conway–Maxwell–Poisson dis-

tribution

5.2.1 Definition

A random variable X is said to have the GCOMP distribution with three param-

eters r, ν and θ if

P(X = x) =
Γ(ν + x)rθx

x!C(r, ν, θ)
, x = 0, 1, . . . , (5.2)
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where the normalizing constant C(r.ν, θ) is given by

C(r, ν, θ) =
∞∑
k=0

Γ(ν + k)rθk

k!
. (5.3)

The ratios of consecutive probabilities are formed as

P(X = x)

P(X = x− 1)
=
θ(ν − 1 + x)r

x
(5.4)

and it can be seen from the ratios that C(r, ν, θ) converges for r < 1 or r = 1

and |θ| < 1. Hence, the parameter space of the GCOMP distribution is r <

1, ν > 0 and θ > 0 or r = 1, ν > 0 and 0 < θ < 1. This distribution

reduces to the COMP distribution with parameters 1 − r and θ when ν = 1

and therefore, includes geometric and Bernoulli distributions. Moreover, this

includes the negative binomial distribution for r = 1. Since Γ(ν + x) is a log-

convex function, Corollary 4 in Castillo and Pérez-Casany (2005) confirms that

the GCOMP distribution is over-dispersed for 0 < r < 1 and under-dispersed

for r < 0. The ratio of successive probabilities (5.4) with x = 1 is θνr and this

depends on three parameters in which the parameter θ controls the mean and the

parameter r controls the dispersion. This means that the parameters ν plays a

role in controlling the value on x = 0.

5.2.2 Queueing process

Conway and Maxwell (1962) considered queueing systems with state-dependent

arrival or service rates, which lead to the COMP distribution. The GCOMP

distribution is also generated as a queueing model with the arrival rate λ(ν + x)r

and the service rate µx, where x is the size of the queue. This means that the

service rate is directly proportional to the state and the arrival rate increases as

queue becoming large for r > 0 and decreases as queue becoming large for r < 0.
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Then P (x, t), the probability of the size of the queue being x at time t, satisfies

the difference equation for small h

P (x, t+ h) = (1− λ(ν + x)rh− µxh)P (x, t)

+λ(ν + x− 1)rhP (x− 1, t) + µ(x+ 1)hP (x+ 1, t).

Putting θ = λ/µ and letting h→ 0, we get the difference-differential equation

∂P (x, t)

∂t
= (ν + x− 1)rθP (x− 1, t) + ((ν + x)rθ+ x)P (x, t) + (x+ 1)P (x+ 1, t).

Assuming a steady state and then putting P (x, t) = P (x), we have the difference

equation

P (x+ 1) =
x

x+ 1
P (x) +

(ν + x)rθ

x+ 1
P (x)− (ν + x− 1)rθ

x+ 1
P (x− 1).

The solution of this equation is proved by induction to be

P (x) =
Γ(ν + x)rθx

x!

P (0)

Γ(ν)r
.

Note that Γ(ν)r/P (0) is independent of the size x and is equal to the normalizing

constant C(r, ν, θ) in (5.3). This means P (x) is the pmf of the GCOMP distribu-

tion. The system with ν = 1, i.e., the arrival rate being λ(x+1)r which avoids to

become zero when the size of the queue is zero, was considered by Conway and

Maxwell (1962). Therefore, the system putting the arrival rate λ(ν + x)r instead

of λ(x+ 1)r is a natural generalization.
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5.2.3 Moments

The k-th descending factorial moment of the GCOMP distribution is given by

E[X(X − 1) · · · (X − k + 1)] =
1

C(r, ν, θ)

∞∑
x=0

Γ(ν + x)θx

(x− k)!

=
C(r, ν + k, θ)θk

C(r, ν, θ)
. (5.5)

From the first and second factorial moments, k = 1, 2 in (5.5), the mean and

variance are obtained as

E[X] =
C(r, ν + 1, θ)θ

C(r, ν, θ)

and

Var[X] =
C(r, ν + 2, θ)θ2

C(r, ν, θ)
+
C(r, ν + 1, θ)θ

C(r, ν, θ)
− C(r, ν + 1, θ)2θ2

C(r, ν, θ)2
,

respectively.

From the fact that the GCOMP distribution belongs to the class of power

series distributions, we can get the recursive formulas about the moments as
E[X] = θE[(ν +X)r],

E[Xk+1] = θ
∂

∂θ
E[Xk] + E[X]E[Xk],

E[(X − E[X])k+1] = θ
∂

∂θ
E[(X − E[X])k] + kE[(X − E[X])k−1]Var[X].

(5.6)

The mean, variance and the third moment about the mean can be approximated

by

E[X] ≈ θ1/(1−r) +
(2ν − 1)r

2(1− r)
,

Var[X] ≈ θ1/(1−r)

1− r
,

E[(X − E[X])3] ≈ θ1/(1−r)

(1− r)2
,

(5.7)
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respectively, by using the recursive formulas (5.6) and an approximating formula

C(r, ν, θ) =
θ(2ν−1)r/{2(1−r)}(2π)r/2 exp((1− r)e1/(1−r))√

1− r
(1 +O(θ−1/(1−r))).

This approximating formula can be led by the relation

1

2π

∫ π

−π

exp(eiz − iz(ν − 1))e−izkdz =
1

Γ(ν + k)
,

where i =
√
−1, and a similar argument to the Shmueli et al.’s (2005) for the

normalizing constant Z(λ, r) of the COMP distribution in (5.1).

5.2.4 Mode

In this section, we study the modality of the GCOMP distribution. From the

ratios of consecutive probabilities (5.4), it is easily seen that the GCOMP dis-

tribution (5.2) is a unimodal distribution when r < 0 or r < 1 and ν > 1.

Moreover, in these cases, the GCOMP distribution has strong unimodality, the

property that its convolution with any unimodal distribution is unimodal. This

fact is proved by showing the log-concavity of the function (5.2), or equivalently,

M := P(X = x+ 1)P(X = x− 1)/P(X = x)2 is smaller than one. Since

M =
x

x+ 1

(
ν + x

ν + x− 1

)r

,

it is obvious that M < 1 for r ≤ 0. When 0 < r < 1 and ν ≥ 1, we see that

(
x

x+ 1

)1/r

<
x

x+ 1
≤ x+ ν − 1

x+ ν

and thus, M < 1.

When 0 < r < 1, 0 < ν < 1 and θνr < 1, however, the GCOMP distribution

may become a bimodal distribution with one mode at zero as can be seen in
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Figure 5.1 for r = 0.5, ν = 0.01 and θ = 2.5. From this fact, the GCOMP

distribution is applicable to the count data which has two mode with one mode

at zero.

0 5 10 15 20
x

0.05

0.10

0.15

0.20

PHX＝xL

Figure 5.1: The pmf of the GCOMP distribution for r = 0.5, ν = 0.01, θ = 2.5

5.3 Estimation

In this section, we deal with the methods using first three moments or four con-

secutive probabilities for estimating the parameters of the GCOMP distribution.

The estimated parameters obtained from these methods are crude and therefore,

refined by feeding them as initial values into the maximum likelihood estimation,

which is more accurate and the best way to do inference.

5.3.1 Estimation by moments

Let m1, m2 and m3 be the sample mean, variance and the third sample moment

about the mean, respectively. For estimates (r̃, ν̃, θ̃) of (r, ν, θ) by the method of

moments, put equal to the mean, variance and the third moment about the mean
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into m1, m2 and m3, respectively, or
m1 = E[X] = θ̃

∂

∂θ
C(r, ν, θ)|r=r̃,ν=ν̃,θ=θ̃,

m2 = Var[X] = θ̃
∂

∂θ
E[X]|r=r̃,ν=ν̃,θ=θ̃,

m3 = E[(X − E[X])3] = θ̃
∂

∂θ
Var[X]|r=r̃,ν=ν̃,θ=θ̃.

In these equations, using the approximating moments (5.7), we get the approxi-

mating equations 

m1 ≈ θ̃1/(1−r̃) +
(2ν̃ − 1)r̃

2(1− r̃)
,

m2 ≈
θ̃1/(1−r̃)

1− r̃
,

m3 ≈
θ1/(1−r̃)

(1− r̃)2

and the solutions of these equations are obtained as

r̃ ≈ 1− m2

m3

, ν̃ ≈ m2(m1m3 −m2
2)

m3(m3 −m2)
+

1

2
, θ̃ ≈

(
m2

2

m3

)m2/m3

.

The main advantage of this method is so simple that we can carry it out by

hand. As a disadvantage, however, this is not always applicable. For example,

when m3 ≤ 0, the estimate r̃ becomes greater than one and θ̃ might become a

complex number. Even when m3 > 0, the estimate ν̃ is not always positive. For

such a case, the method in the next subsection is recommended.

5.3.2 Estimation by four consecutive probabilities

Denote the pmf of the GCOMP distribution (5.2) by Px for simplicity. We see

the following equations

log

(
x+ 2

x+ 1

Px+2Px

P 2
x+1

)
= r log

(
ν + x+ 1

ν + x

)
(5.8)
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and

log

(
x+ 3

x+ 2

Px+3Px+1

P 2
x+2

)
log

(
x+ 2

x+ 1

Px+2Px

P 2
x+1

) =

log

(
ν + x+ 2

ν + x+ 1

)
log

(
ν + x+ 1

ν + x

) . (5.9)

Putting the observed frequency of x events instead of Px in (5.4), (5.8) and (5.9)

and solving the equations, we can get the estimates (r, ν, θ) of the GCOMP

distribution. Although this estimation is rather rough due to the use of only four

frequencies of the data, an advantage of this method is that we can choose the x

so that the estimates are in the parameter space of the GCOMP distribution.

5.3.3 Maximum likelihood estimation

Let a random variable X be distributed as the GCOMP distribution (5.2) with

parameters r, ν and θ. When ν is known, the GCOMP distribution belongs

to the exponential family with natural parameters (ν, log θ) and therefore, the

ML estimates about ν and log θ are uniquely determined by using the minimal

sufficient statistics (log Γ(ν +X), X).

We consider the MLE in the case when ν is unknown. The log-likelihood

function is

L(r, ν, θ) = log

(
n∏

i=0

P (X = i)fi

)
= r

n∑
i=0

fi log Γ(ν + i) +N log θ
n∑

i=0

ifi −N logC(r, ν, θ)−
n∑

i=0

fi log(i!),

where fi is the observed frequency of i events, n is the highest observed value

and N =
n∑

i=0

fi is the size of the sample. Using the digamma function ψ(y) =
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∂

∂y
log Γ(y), we get the likelihood equations as



E[log Γ(ν +X)] =
n∑

i=0

log Γ(ν + i)
fi
N
,

E[ψ(ν +X)] =
n∑

i=0

ψ(ν + i)
fi
N
,

E[X] =
n∑

i=1

i
fi
N
.

(5.10)

The solutions of these equations are not always unique and might not give

a local maximum point for L(r, ν, θ). However, it is easy to give a sufficient

condition for the solution giving a local maximum point. We see that

∂2

∂r2
L(r, ν, θ) = −NVar[log Γ(ν +X)],

∂2

∂r∂ν
L(r, ν, θ) =

n∑
i=0

ψ(ν +X)fi −NE[ψ(ν +X)]

−NCov[rψ(ν +X), log Γ(ν +X)],

∂2

∂r∂ log θ
L(r, ν, θ) = −NCov[log Γ(ν +X), X],

∂2

∂ν2
L(r, ν, θ) =

n∑
i=0

rψ′(ν + i)fi −NE[rψ′(ν +X)]−NVar[rψ(ν +X)],

∂2

∂ν∂ log θ
L(r, ν, θ) = −NCov[rψ(ν +X), X],

∂

∂(log θ)2
L(r, ν, θ) = −NVar[X],

and the Hesse matrix of the function L(r, ν, θ) evaluated at the solution of the

equations (5.10) is given by

−NVar[log Γ(ν +X), rψ(ν +X), X]

−N


0 0 0

0 E[rψ′(ν +X)]−
∑n

i=0 rψ
′(ν + i)fi/N 0

0 0 0

 ,
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where Var[log Γ(ν +X), rψ(ν +X), X] is the variance-covariance matrix of the

random vector (log Γ(ν+X), rψ(ν+X), X). Since the variance-covariance matrix

is non-negative definite, the Hesse matrix is always negative definite if E[rψ′(ν +

X)] >
n∑

i=0

rψ′(ν + i)fi/N . This is the assuring method for L(r, ν, θ) becomes, at

least, a local maximum at the solutions of the equations (5.10).

An alternative way to find a maximum point of L(r, ν, θ) is to use the profile

maximum likelihood estimation. For a given ν, consider the MLE for (r, log θ),

or solve the likelihood equations E[log Γ(ν + X)] =
n∑

i=0

log Γ(ν + i)fi/N and

E[X] =
n∑

i=0

ifi/N . Then it is sufficient to study the profile log-likelihood function

L(r̂ν , ν, θ̂ν) with ν varying, where (r̂ν , θ̂ν) is the solution of the likelihood equations

for a given ν. Although this method will take more time than the usual MLE,

we can find the maximum point of L(r, ν, θ) around the values ν̃ or ν considered

in Section 5.3.1 or 5.3.2.

The Fisher information matrix I(r, ν, θ) is seen as Var[log Γ(ν +X), rψ(ν +

X), X]. Using the scoring method for solving equations (5.10), given trial values

(rk, νk, θk), we can update to (rk+1, νk+1, θk+1) as
rk+1

νk+1

θk+1

 =


rk

νk

θk

+

I(rk, νk, θk)
−1


∑n

i=0 log Γ(ν + i)fi/N − E[log Γ(ν +X)]∑n
i=0 ψ(ν + i)fi/N − E[ψ(ν +X)]∑n

i=1 ifi/N − E[X]


∣∣∣∣∣∣∣∣∣
r=rk,ν=νk,θ=θk

.

As the starting point (r0, ν0, θ0), we can choose the estimated parameters intro-

duced in Sections 5.3.1 or 5.3.2.

68



5.4 Numerical examples

In this section, we give three examples of fittings to real count data sets by the

GCOMP distribution and compare them with those by the COMP distribution

to illustrate its utility.

The first data set is the length of words in a Hungarian dictionary (Wimmer

et al., 1994), which is a under-dispersed data. This data set was used by Shmueli

et al. (2005) for illustrating the utility of the COMP distribution. The second

data set is the number of spots in southern pine beetle, Dendroctonus frontalis

Zimmermann (Coleopetra: Scolytidae), in Southeast Texas (Lin, 1985), which

is a over-dispersed data. The fitted results and comparisons with the COMP

distribution (5.1) are in Tables 5.1 and 5.2. The third data set is the number of

roots produced by 270 shoots of the apple cultivar Trajan (Ridout et al., 1998),

in which there are two modes. The COMP distribution is not suitable for such a

data set and the GCOMP distribution is compared with the zero-inflated COMP

(ZICOMP) distribution whose pmf is P(Xw = 0) = w + (1 − w)P(X = 0), and

P(Xw = x) = (1 − w)P(X = x), x = 1, 2, . . . for 0 < w < 1, where X is the

random variable of the COMP distribution with pmf (5.1). The fitted result is

in Table 5.3.

In the first example, the count in the data starts from one and, following

Wimmer et al. (1994), the counts in x are treated as in x − 1, as if the data

were generated from the shifted COMP or GCOMP distributions whose random

variable takes positive values. In this case, the sample mean, variance and the

third moment about the mean are obtained as m1 = 2.3045, m2 = 1.2219 and

m3 = 0.6522, respectively and the estimates by approximating moments intro-

duced in Section 5.3.1 are given by (r̃, ν̃, θ̂) = (−0.8735, 0.4673, 4.7195). These

values are valid as the parameters of the GCOMP distribution, but very rough

estimation and therefore, refined by feeding them as initial values into the maxi-

mum likelihood estimation.
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In the second example, the sample mean, variance and the third moment

about the mean are m1 = 0.6800, m2 = 2.8117 and m3 = 18.2349, respec-

tively and we can get the estimates by approximating moments as (r̃, ν̃, θ̃) =

(0.8458, 0.5449, 0.8791). These are also valid and used for computing the ML

estimates.

In the third example, the approximating moment estimates led by the sample

mean, variance and the third moment about the mean, m1 = 5.0593, m2 =

15.7065 andm3 = 13.5495, are obtained as (r̃, ν̃, θ̃) = (−0.1592, 96.2370, 28.8972).

Although this data set is over-dispersed, or m1 < m2, the estimated value of r is

negative. These estimates seem to be invalid because the GCOMP distribution

is under-dispersed if r < 0. For this data set, we employed the estimation by

using the four consecutive probabilities introduced in Section 5.3.2. Utilizing fx

with x = 0 instead of Px in the equations (5.4), (5.8) and (5.9) is a good choice

in this case. The estimates are (r, ν, θ) = (0.4132, 0.0011, 2.5988) and these are

valid and used as a starting point for computing ML estimates .

As seen in Tables 5.1, 5.2 and 5.3, the GCOMP distribution gives good fits.

In the first and second examples, the GCOMP distribution gives better fits for

almost parts than the COMP distribution. In the third example, the GCOMP

distribution gives a better fit for each point than the zero-inflated COMP dis-

tribution except x = 7 and 13. From this example, we see that we can use the

GCOMP distribution for the count data with many zeros without utilizing the

special operation like mixture. This is a great advantage of using the GCOMP

distribution. Notice that the expected value for x = 1 in Table 5.1 and the ex-

pected values for x = 0 in Tables 5.2 and 5.3 of the GCOMP distribution are

always very close to the observed counts. This means the GCOMP distribution

is more flexible for zero-valued observations than the COMP distribution.
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Table 5.1: The length of words in a Hungarian dictionary (Wimmer et al., 1994)
Count Observed COMP GCOMP

0
1
2
3
4
5
6
7
8

1421
12333
20711
15590
5544
1510
289
60
1

1553.17
12027.81
20949.95
15243.58
5971.32
1446.93
236.80
27.81
2.63

1416.59
12319.73
20954.05
15023.88
5949.22
1497.33
261.16
33.47
3.56

Total 57459 57459.00 57459.00
Log L −86168.02 −86153.48
χ2 105.09 70.36
df 4 3

p-value 0.000 0.000

COMP: r̂ = 2.1526, θ̂ = 7.7441.
GCOMP: r̂ = −0.9331, ν̂ = 0.5765, θ̂ = 5.2019.
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Table 5.2: The number of spots in southern pine beetle, Dendroctonus frontalis
Zimmermann (Coleopetra: Scolytidae), in Southeast Texas (Lin, 1985)

Count Observed COMP GCOMP
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19+

1169
144
92
54
29
18
10
12
6
9
3
2
0
0
1
0
0
0
0
1

927.60
372.48
149.57
60.06
24.12
9.68
3.89
1.56
0.63
0.25
0.10
0.04
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00

1168.66
152.55
80.48
49.82
32.52
21.68
14.58
9.83
6.63
4.45
2.98
1.99
1.32
0.87
0.57
0.38
0.25
0.16
0.10
0.18

Total 1550 1550.00 1550.00
Log L −1755.49 −1552.49
χ2 939.53 10.48
df 8 7

p-value 0.000 0.163

COMP: r̂ = 0.0000, θ̂ = 0.4015.
GCOMP: r̂ = 0.8750, ν̂ = 0.1011, θ̂ = 0.9699.
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Table 5.3: The number of roots produced by 270 shoots of the apple cultivar
Trajan (Ridout et al., 1998)

Count Observed WCOMP GCOMP
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17+

64
10
13
15
21
18
24
21
23
21
17
12
5
2
3
0
0
1

64.00
6.48
11.93
17.61
22.21
24.79
25.06
23.28
20.10
16.28
12.45
9.03
6.25
4.14
2.63
1.61
0.95
1.18

64.00
7.25
11.99
17.23
21.68
24.37
24.85
23.30
20.28
16.50
12.65
9.18
6.33
4.16
2.62
1.59
0.92
1.10

Total 270 270.00 270.00
Log L −673.19 −672.40
χ2 11.21 9.45
df 10 10

p-value 0.341 0.490

COMP: ŵ = 0.2281, r̂ = 0.5463, θ̂ = 2.6897.
GCOMP: r̂ = 0.3826, ν̂ = 0.0001, θ̂ = 3.3061.
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Chapter 6

Conclusion

The binomial distribution is one of the under-dispersed distributions and the

negative binomial distribution is one of the over-dispersed distributions. These

distributions are classically utilized for analyzing count data and a lot of their

generalizations are considered for extending their applications. This thesis pro-

posed the distributions which admits both under-dispersion and over-dispersion

and showed that each distribution can be adapted to the various types of count

data.

In Chapter 2, some properties of general Lagrangian distributions are con-

sidered and the LNNBD1 introduced in Chapter 3 is generated as a member of

general Lagrangian distributions. The LNNBD1 includes the Charlier series and

non-central negative binomial distributions, which are generalizations of the bi-

nomial and negative binomial distribution, respectively, and has the properties

similar to these particular cases. Moreover, the LNNBD1 includes some impor-

tant distributions which are well studied in Lagrangian distributions and thus,

has an advantage of the use as a general model since this allows a particular case

to be selected. We showed in the theorem of Chapter 2 that any Lagrangian

distribution can be generated through different sets of functions and, from this

theorem, we can get the various expressions of pmf and recursive formulas about
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the LNNBD1. The theorem in Chapter 2 has an application to the tandem

queueing system with a single moving server where customers at the first counter

have priority over customers at the second counter. There are several applica-

tions of the tandem queueing system in robotic systems, network systems and

telecommunication systems and therefore, we can see the potential applicability

of Lagrangian distributions to such systems.

The EGIT3,1 introduced in Chapter 4 is generated from a convolution of bi-

nomial and negative binomial variables. This distribution plays the role of a

continuous bridge between under- and over-dispersion and includes the Charlier

series and non-central negative binomial distributions as limiting distributions.

The EGIT3,1 can be derived from various stochastic processes and, in this thesis,

we consider the three stochastic processes which lead to the EGIT3,1, a three-

dimensional random walk, a birth, death and immigration process and a thinned

stochastic process. The generations from various types of stochastic processes

lead the application of the EGIT3,1 to various phenomena.

The GCOMP distribution introduced in Chapter 5 is a generalization of

Conway–Maxwell–Poisson distribution which includes the negative binomial dis-

tribution. The distribution also plays the role of a continuous bridge between

under- and over-dispersion with simple pmf and has the flexibility for zero-valued

observations. Moreover, the GCOMP distribution can become a bimodal distri-

bution with one mode at zero and this fact leads to the use for the count data

with excess zeros without utilizing the special operation like mixture. From these

facts, the proposed distribution is more flexible distribution than the COMP

distribution.
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