
Partial Reconfiguration Implementation on
Fluid Dynamics Computation Using an FPGA

Mohamad Sofian bin Abu Talip

A dissertation submitted in partial fulfillment of

the requirements for the degree of

D  P

School of Science for Open and Environmental Systems

Graduate School of Science and Technology

Keio University

September 2013

Preface

The field of high performance scientific computing lies at the crossroads of many disciplines and skill

sets. Scientific computation from an application context makes some acquaintance with physics and

engineering sciences. Then, problems in these application areas are solve using scientific processes,

and the use of computers for numerical analysis to produce quantitative results. An efficient imple-

mentation of the practical formulations of the application problems requires some understanding of

computer architecture, both on the CPU level and on the level of parallel computing.

One of the high performance computing (HPC) applications is computational fluid dynamics

(CFD). In aerospace industry, CFD is used as a common design tool. It presents scientific com-

putation methods to analyze fluid behavior for designing aircraft components such as engines and

wings. Therefore, software packages for CFD are needed for aeronautical engineers and researchers.

However, enormous floating-point calculations cause a long execution time required to simulate com-

plete aeronautics configurations. It remains as a bottleneck in the design flow of new structures for

the aircraft design. Thus, reducing the total execution time for aerodynamics analysis is one of the

important challenges of current research in this field.

Recent advances in Field Programmable Gate Array (FPGA) technology make reconfigurable

computing using FPGAs an attractive platform for accelerating scientific applications. The read-

ily availability and high-power efficiency of high-density FPGAs make them attractive to the HPC

community. Since their invention in the mid-1980s, FPGAs have been used to accelerate high per-

formance applications on custom computing machines. Under such circumstance, a new type of

computational systems is being focused for allocating a part of scientific operations to dedicated

hardware in order to achieve both low-cost and high-performance.

In this thesis, two CFD codes are studied: UPACS (Unified Platform for Aerospace Computa-

tional Simulation) and FaSTAR (Fast Aerodynamics Routines) software packages. The problems of

these codes are hard to be executed in parallel machines because of their irregular and unpredictable

data structure. In addition, a single FPGA is not enough for the software packages because the whole

modules are very large. Exploiting reconfigurable hardware with their advantages to make up for the

inadequacy of the existing high performance computers has gradually become the solutions. Instead

of using a large number of chips, partially reconfigurable hardware available in recent FPGAs is

explored for these applications.

Preface ii

With the above aim, this thesis explores scientific computation of CFD applications and imple-

ments the target subroutines in FPGA by utilizing partial reconfiguration technology. The goal of

this work is to achieve high performance compared to microprocessor execution and to clarify the

relationships among hardware resources utilization, configuration time and performance according

to the evaluation results.

UPACS developed by JAXA (Japan Aerospace Exploration Agency) is one of CFD packages

to simulate compressible flow using multi-block grids. MUSCL (Monotone Upstream-centered

Schemes for Conservation Laws) scheme in UPACS is chosen as a target subroutine, since it is used

twice in core routine of UPACS. Partial reconfiguration is applied to the flux limiter functions (FLF)

in MUSCL. Two types of partially reconfigurable design are implemented that are static and dy-

namic reconfigurations. Four FLFs are implemented for Turbulence MUSCL (TMUSCL) and eight

FLFs are for Convection MUSCL (CMUSCL). In statically reconfigurable design, the implemen-

tation has successfully reduced the resource utilization by 44% to 63%. Total power consumption

was also reduced by 33%. Configuration speed was improved by 34 times faster as compared to full

reconfiguration method. In dynamically reconfigurable design, the implementation has successfully

reduced resources utilization by 60%. Total power consumption was also reduced by 29%. Con-

figuration speed was improved by 15 times faster compared to fully reconfiguration method. Both

implementations also achieved at least 17 times speed-up compared with the software execution.

FaSTAR, another CFD package developed by JAXA, supports several solvers and adopts un-

structured mesh as its grid form. The advection term computation module in FaSTAR is chosen

as a target subroutine, which a time-consuming and large function. Therefore, a partially reconfig-

urable flux calculation scheme that would fit in a single FPGA was proposed. The flux computational

module was developed and five flux calculation schemes were implemented as reconfigurable mod-

ules, these were: Roe, HLLE, HLLEW, AUSM+-up, and SLAU. The implementation of this module

has the advantages of saving up to 62.75% of resource and increasing the configuration speed by a

factor of 6.28. Performance evaluation also shows that 2.65 times more acceleration was achieved

compared to the Intel Core 2 Duo at 2.4 GHz.

Finally, we summarize our proposed implementation method, utilizing the partial reconfigura-

tion technique for saving hardware resources and achieving faster performance in comparison with

software execution. Based on the above, we discuss how the current work could be explored further

in order to develop the scientific applications of FPGAs.

Acknowledgments

In the name of Allah, the Beneficent, the Merciful.

Many great people has helped and assisted me in so many ways during my study. I take this

opportunity to express my gratitude to the people who have been instrumental in the successful

completion of this thesis.

First and foremost, I would like to express my deepest appreciation to my supervisor, Professor

Hideharu Amano, for his continuous support and guidance throughout my study. I have been fortu-

nate to have such a great advisor who has outstanding skills and immense knowledge. He has always

guide me to the right path when I faltered in my research.

Furthermore I would also like to acknowledge with much appreciation the crucial role of my

doctoral committee members. I am grateful to Professor Hideo Saito, Professor Issei Fujishiro, and

Associate Professor Hiroaki Nishi for their careful reviews and valuable comments. Their construc-

tive criticism and excellent advice have significantly improved this thesis.

It has been a wonderful experience to participate in the Aerotech group and collaborate with

researchers from other institutions. My sincere thanks are due to Mr. Naoyuki Fujita (JAXA) for

constant support and encouragement, Asst. Prof. Yasunori Osana (University of the Ryukyus) for

detailed reviews on my manuscript before each submission. I am also grateful to Mr. Kenta Inaka-

gata (Renesas), Mr. Takayuki Akamine (Toshiba) and Mr. Mao Hatto, all of their creative vision and

constructive ideas have been crucial to the success of this research. Special thanks to Ms. Yamada

Naoko (Toshiba) for fruitful discussions and generous support to teach me about partial reconfigura-

tion methodology. I would also like to wish best of luck to Mr. Naru Sugimoto and Mrs. Dipikarani

Mishra to continue the journey of exploration in this research group.

I would also like to thank all Amano lab members, past and present, for providing me daily

inspirations and so much fun while studying abroad. I would like to extend my deep thanks to my

fellow doctoral candidates: Mrs. Amila Akagic, Mr. Zhang Hao and Mr. Takaaki Miyajima for

sharing pleasures and sorrows as research assistant of GCOE program. Thank you for exchanging

ideas and providing me with many insightful technical discussions.

Acknowledgments iv

I appreciate the financial supports from Ministry of Higher Education Malaysia and University

of Malaya, Malaysia for give me a great opportunity to pursue my study in Japan. I would also

like to thank Keio Leading-Edge Laboratory (KLL) of Science & Technology for providing research

grant during three years of my study. This work was also supported in part by a Grant-in-Aid for

the Global Center of Excellence for High-Level Global Cooperation for Leading-Edge Platform on

Access Spaces from the Ministry of Education, Culture, Sport, Science and Technology in Japan.

In addition, I am also very grateful to my friends who have shared enjoyable time at Keio Uni-

versity. Thank you to all my fellow Malaysians and other international students who have shared our

precious experience in Japan. I will always remember and greatly value our friendship forever.

Last, but not least, I wish to express my heartfelt thanks to my parents, parents-in-law, my lovely

wife and my two daughters for all of the love and sacrifice that they have done for me. Their support

has been a great source of encouragement and strength.

Mohamad Sofian bin Abu Talip

Yokohama, Japan

August 2013

Contents

Preface i

Acknowledgments iii

Abbreviations and Acronyms xi

1 Introduction 1
1.1 Background . 1

1.2 Objective . 3

1.3 Contribution . 4

1.4 Thesis Organization . 5

2 Computational Fluid Dynamics 7
2.1 Overview . 7

2.1.1 Analytical Fluid Dynamics . 8

2.1.2 Experimental Fluid Dynamics . 8

2.2 CFD Process . 9

2.2.1 Mesh Structure . 10

2.2.2 Simulation Process . 10

2.3 UPACS . 11

2.4 FaSTAR . 12

2.5 Conventional Systems . 14

2.5.1 Supercomputer . 14

2.5.2 Cluster . 16

2.5.3 ASIC . 17

2.5.4 GPU . 19

2.6 Summary . 20

3 FPGA and Partial Reconfiguration 22
3.1 FPGA . 22

3.1.1 History . 22

Contents vi

3.2 Architecture of an FPGA . 23

3.2.1 Commercially Available FPGAs . 24

3.2.2 Virtex 6 FPGA . 26

3.3 Computing Using FPGAs . 31

3.3.1 Parallelism Offered by FPGA . 32

3.4 Applications in Fluid Dynamics . 32

3.4.1 FLOPS-2D . 33

3.4.2 Falcon . 34

3.4.3 Systolic Architecture . 34

3.4.4 Alpha-Data . 34

3.4.5 XtremeData . 35

3.5 Partial Reconfiguration . 36

3.5.1 Reduce Cost . 37

3.5.2 Increased System Flexibility . 37

3.5.3 Reduce Power Consumption . 38

3.5.4 Additional Advantages . 38

3.6 Design Flow for Partial Reconfiguration . 38

3.7 Summary . 41

4 UPACS Code Implementation 42
4.1 UPACS . 42

4.1.1 Profiling . 42

4.1.2 MUSCL Scheme . 43

4.2 Static Reconfiguration . 46

4.2.1 Design and Implementation . 47

4.2.2 Evaluation . 49

4.3 Dynamic Reconfiguration . 54

4.3.1 Design and Implementation . 55

4.3.2 Evaluation . 56

4.4 Summary . 60

5 FaSTAR Code Implementation 62
5.1 FaSTAR . 62

5.1.1 Profiling . 62

5.1.2 Target Subroutine . 63

5.2 Flux Calculation Scheme . 63

5.2.1 Roe’s Scheme . 64

5.2.2 HLLE Scheme . 65

Contents vii

5.2.3 HLLEW Scheme . 66

5.2.4 AUSM+-up Scheme . 66

5.2.5 SLAU Scheme . 67

5.3 Design and Implementation . 67

5.3.1 Roe Average Module . 71

5.3.2 Roe Scheme Module . 73

5.3.3 HLLE Scheme Module . 74

5.3.4 HLLEW Scheme Module . 74

5.3.5 AUSM+-up Scheme Module . 75

5.3.6 SLAU Scheme Module . 76

5.3.7 Implementation Issues . 77

5.4 Evaluation . 77

5.4.1 Resource Utilization . 78

5.4.2 Configuration Time . 79

5.4.3 Performance . 80

5.5 Summary . 82

6 Conclusions 83
6.1 Summary . 83

6.2 Discussion . 84

6.3 Future Directions . 85

Bibliography 87

Publications 92

A IEEE Standard 754 Floating Point Numbers 94
A.1 What are floating point numbers? . 94

A.2 Storage Layout . 94

A.3 Ranges of Floating Point Numbers . 96

A.4 Special Values . 96

List of Tables

1.1 Typical applications for high performance computing. 2

2.1 Comparison of EFD and CFD for fluid dynamics. 9

2.2 Examples of the calculation parameters used in UPACS. 13

2.3 Examples of the calculation parameters used in FaSTAR. 14

3.1 List of Virtex series FPGAs. 26

3.2 Logic resources of one CLB in Virtex 6 FPGA. 28

4.1 Available flux limiter functions in each MUSCL. 45

4.2 Data of used computing units. 48

4.3 Total clock-cycle in TMUSCL for each respective limiter functions. 53

4.4 Total clock-cycle in CMUSCL for each respective limiter functions. 53

5.1 Implementation environments. 68

5.2 Data of used computing units. 70

5.3 Available and consumed resources. 78

6.1 Max. bandwidth for configuration ports in Virtex 6 architecture. 84

A.1 Layout for single and double precision floating-point values. 95

A.2 Range of floating point numbers. 96

List of Figures

1.1 Thesis organization . 6

2.1 Cell-centered storage on the left and cell-vertex storage on the right. 10

2.2 Example of CFD simulation process of a flow through pipe bend. 11

2.3 K computer system configuration. 15

2.4 Node composition of K computer. 16

2.5 A general view of PRIMEPOWER HPC2500. 17

2.6 Global networking in Sun cluster. 18

2.7 Composition of MDGRAPE-3. 19

3.1 Basic model of FPGAs. 24

3.2 Schematic of an FPGA. 25

3.3 Island-style interconnects in commercial FPGA. 25

3.4 The amount of resources in Virtex FPGAs. 27

3.5 Arrangement of slices within the CLB. 28

3.6 Row and column relationship between CLBs and slices. 29

3.7 DSP slice in Virtex 6 FPGA. 30

3.8 Clock regions on an FPGA span 40 CLBs vertically and half of the FPGA horizontally. 30

3.9 Historical advancement of FPGA technology. 32

3.10 The whole FLOPS-2D composition. 33

3.11 The outline of Falcon architecture. 34

3.12 The outline of systolic architecture. 35

3.13 Block diagram of the FPGA in Alpha-Data architecture. 36

3.14 Hardware process distribution in XtremeData. 36

3.15 Overview of the partial reconfiguration design flow. 39

4.1 UPACS profiling result. 43

4.2 The structure of pipeline for MFGS. 44

4.3 MUSCL scheme. 44

4.4 High level system overview of static reconfiguration design. 47

4.5 MUSCL pipeline with van Albada limiter function. 48

List of Figures x

4.6 Implemented flux limiter functions. 49

4.7 Resource usage in design-1 and design-3. 50

4.8 Resource usage in design-2. 50

4.9 Total on-chip power for design-1 and design-3. 51

4.10 Total on-chip power for design-2. 51

4.11 High level system overview of dynamic reconfiguration design. 54

4.12 Floorplan of FLF reconfigurable partitions for dynamic reconfiguration design. . . . 56

4.13 Resource usage in design-1, design-3 and design-4. 57

4.14 Resource usage in design-2. 57

4.15 Total on-chip power for design-1, design-3 and design-4. 58

4.16 Total on-chip power for design-2. 58

5.1 FaSTAR profiling result. 63

5.2 Flux in definition of cell surface boundary. 64

5.3 System overview. 68

5.4 Implemented flux calculation schemes. 69

5.5 Floorplan of reconfigurable partition with HLLE scheme. 70

5.6 Scheduled data flow graph for Roe average module. 72

5.7 Pipeline datapath for Roe average module. 72

5.8 The structure of MAC organization for Roe scheme. 73

5.9 HLLE flux function circuit. 74

5.10 HLLEW flux function circuit. 75

5.11 AUSM+-up pressure flux circuit. 76

5.12 SLAU pressure flux circuit. 76

5.13 Resources utilization for all possible implementation. 79

5.14 Execution time in software and FPGA. 81

5.15 Visualizing sample computational result of NACA 0012 airfoil pressure flow. 82

Abbreviations and Acronyms

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

AUSM Advection Upstream Splitting Method

BUFG Global Clock Buffer

BUFH Horizontal Clock Buffer

BUFIO Input Output Buffer

BUFR Regional Clock Buffer

CDR Convection Diffusion Reaction

CFD Computational Fluid Dynamics

CLB Configurable Logic Block

CMT Clock Management Tiles

CMUSCL Convection MUSCL

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DCM Device Clock Manager

DRAM Dynamic Random Access Memory

DRC Design Rule Check

DSP Digital Signal Processing

EEPROM Electrically Erasable Programmable Read Only Memory

EPROM Erasable Programmable Read Only Memory

FaSTAR Fast Aerodynamics Routines

FIFO First-in First-out

FLF Flux Limiter Function

FPGA Field Programmable Gate Array

FSB Front Side Bus

GFLOPS Giga Floating-point Operations Per Second

GNU GNU’s Not Unix

GPP General Purpose Processor

GPU Graphics Processing Unit

Abbreviations and Acronyms xii

GUI Graphical User Interface

HDL Hardware Description Language

HLL Harten-Lax-van Leer

HLLE Harten-Lax-van Leer-Einfeldt

HLLEW Harten-Lax-van Leer-Einfeldt-Wada

HLS High Level Synthesis

HPC High Performance Computing

I/O Input Output

IBUF Input Buffer

ICAP Internal Configuration Access Port

ICC Inter Connect Controller

IOB Input Output Block

IP Intellectual Property

JAXA Japan Aerospace Exploration Agency

JTAG Joint Test Action Group

LBM Lattice Boltzmann Method

LSI Large Scale Integration

LUT Look Up Table

MAC Multiplication and Accumulation

MAP Map

MDGRAPE Molecular Dynamics Gravity Pipe

MFGS Matrix Free Gauss Seidel

MMCM Mixed Mode Clock Managers

MPGA Mask Programmable Gate Array

MPI Message Passing Interface

MUSCL Monotone Upstream-centered Schemes for Conservation Laws

NACA National Advisory Committee for Aeronautics

NGD Native Generic Database

OBUF Output Buffer

OTN Optical Transport Network

PAL Programmable Array Logic

PAR Place and Route

PC Personal Computer

PCI-X Peripheral Component Interconnect Extended

PDB Parameter Data Base

PE Processing Element

PLA Programmable Logic Array

PLD Programmable Logic Device

Abbreviations and Acronyms xiii

PLL Phase Locked Loop

PMCD Phase Matched Clock Divider

PR Partial Reconfiguration

PROM Programmable Read Only Memory

RAM Random Access Memory

RM Reconfigurable Module

ROM Read Only Memory

RP Reconfigurable Partition

RTL Register Transfer Level

SDR Software Defined Radio

SDRAM Synchronous Dynamic Random Access Memory

SIMD Single Instruction Multiple Data

SLAU Simple Low-Dissipation Scheme of AUSM-Family

SO-DIMM Small Outline Dual In-line Memory Module

SoC System-on-Chips

SPARC Scalable Processor Architecture

SRAM Synchronous Random Access Memory

TCK Test Clock

TFLOPS Tera Floating-point Operations Per Second

TMUSCL Turbulence MUSCL

UART Universal Asynchronous Receiver Transmitter

UPACS Unified Platform for Aerospace Computational Simulation

VLSI Very Large Scale Integration

XPE Xilinx XPower Estimator

Chapter 1

Introduction

1.1 Background

Until the early 2000s, general purpose single-core CPU-based systems were the processing systems

of choice for high performance computing (HPC) applications. They replaced exotic supercomputing

architectures because they were inexpensive, and performance scaled with frequency in line with

Moore’s Law. Presently, HPC industry is going through another historical step change. General-

purpose CPU vendors changed course in the mid-2000s to rely on multicore architectures to meet

high performance demands. The technique of simply scaling a single-core processor’s frequency for

increased performance has run its course, because as frequency increases, power dissipation escalates

to impractical levels.

The shift to multicore CPUs forced application developers to adopt a parallel programming model

to exploit CPU performance. Even using the newest multicore architectures, it is unclear whether the

performance growth expected by the HPC end user can be delivered, especially when running the

most data-intensive and computing-intensive applications [1]. CPU-based systems augmented with

hardware accelerator as co-processors are emerging as an alternative to CPU-only systems [2].

This has opened up opportunities for accelerators like Graphics Processing Units (GPUs) [3],

Field-Programmable Gate Arrays (FPGAs) [4], and other accelerator technologies [5], to advance

HPC to previously unattainable performance levels. HPC comprises a class of systems typically

used by scientists, engineers, and analysts. This sysmtems simulate, model applications and analyze

large quantities of data. Typical systems range from server farms to big supercomputers. Table 1.1

shows a summary of different industries and HPC applications. These applications are data-intensive

and computing-intensive. There are in constant need of increased computing power and bandwidth

to memory.

Nowadays, CFD (Computational Fluid Dynamics) has growth attention from HPC community.

CFD has been widely utilized in the design and optimization of fluid flow applications. In aerospace

industry, CFD is a cost-effective design tool for aircraft components such as jet engines and wings [6].

It presents methods to solve and analyze problems of the physical phenomena of fluids involving

1. Introduction
1.1. Background 2

Table 1.1: Typical applications for high performance computing.

Industry Sample Applications

Government Labs Climate modeling, Nuclear waste simulation,

Disease modeling and research

Defense Video, audio, data mining and analysis for

threat monitoring, Pattern matching, Image

analysis for target recognition

Financial services Options valuation and risk analysis of assets

Geosciences and engineering Seismic modeling and analysis, and reservoir

simulation

Life sciences Gene encoding and matching, Drug modeling

and discovery

fluid flow on discrete space and time. Thus, software packages for CFD are needed for aeronautical

engineers and researchers.

Ground test facilities do not exist in all flight regimes covered by such hypersonic flight. No

wind tunnels that can simultaneously simulate the higher Mach numbers and high flow-field temper-

atures to be encountered by trans-atmospheric vehicles, and the prospect for such wind tunnels in the

twenty-first century is not encouraging. Hence, CFD has become the major player in the design of

such vehicles [7]. In addition, compressible flow simulations are of vital importance to the aerospace

engineering community, which will always seek higher resolution and more accuracy creating a de-

mand for faster codes and making the use of high performance computing strategies invaluable.

On the other hand, FPGAs continue to be a platform of choice for designing programmable sys-

tems. Due to their inherent flexibility, FPGAs have been used in programmable solutions such as

serving as a prototype vehicle as well as being a highly flexible alternative to application-specific in-

tegrated circuits (ASIC) [8,9]. Advancements in silicon, software, and IP (Intellectual Property) have

proven FPGAs to be the ideal solution for accelerating applications on high-performance embedded

computers and servers [10, 11].

Presently, reconfigurable systems using FPGAs have been utilized for acceleration of specific

applications including bio-informatics, digital image processing, finance and others [12–14]. Even

though the early reconfigurable systems did not focus on large scale numerical scientific application,

the use of FPGAs for such areas has been growing remarkably because of the rapid performance im-

provement of modern FPGAs with a large number of configurable logic blocks, memory blocks and

embedded multipliers. However, although some research works using FPGAs achieved significant

speed-up ratio to the software [15, 16], targets were simple programs rather than practical software

packages.

1. Introduction
1.2. Objective 3

There is a new technology in FPGA design called partial reconfiguration, which is the process of

changing a portion of reconfigurable hardware circuitry while the other part is still running. In FPGA,

partial reconfiguration is the modification of an operating design by loading a partial configuration

file [17]. FPGA technology provides the flexibility of on-site programming and re-programming

without going through re-fabrication with a modified design. Partial reconfiguration takes this flexi-

bility one step further, allowing the modification of an operating FPGA by loading a partial bit file.

After a full bit file configures the FPGA, partial bit files can be downloaded to modify reconfigurable

regions in the FPGA without compromising the integrity of the applications running on those parts

of the device that are not being reconfigured.

They have been few attempt to make use of partial reconfiguration technology in embedded and

aerospace applications. Recently, in computer security applications, partial reconfiguration is applied

in AES (Advanced Encryption Standard) algorithm implementation [18]. It also had been used to

accelerate video processing in driver assistance system [19]. Also, a few researches had been done

on an aerospace applications using partial reconfiguration method. LaMeres et al. [20] designed and

prototyped the computing architecture which dynamically reconfigures the system depending on the

environment. Another work has proposed the SoCWire architecture verification, test and results on

network on chip for safe dynamic partial reconfiguration in spaces applications [21].

In the meantime, a typical simulation platform in the aeronautics industry consists of a CFD

specific software application, normally written in a high-level language. Although it is a convenient

tool for aerodynamics analysis, it sometimes takes several days or weeks when an analytical area

grows larger [22]. This is mainly caused by low parallel processing efficiency accompanied with

pointer links and a complicated memory access patterns. In CFD package, the increasing demands

for accuracy and simulation capabilities produce an exponential growth of the required computational

resources.

Our approach in this work is to make use of partial reconfiguration technology available in re-

cent FPGAs to accelerate and improve performance of CFD software packages in a reconfigurable

hardware.

1.2 Objective

The objective of this thesis is to study CFD applications on FPGAs using partial reconfiguration. The

study is based on the viewpoint that future CFD applications would integrate FPGA as a heteregenous

architecture or as an accelerator. With all of the FPGA advantages compared to CPU, exploring

partial reconfiguration methodology would be an added advantage to CFD researchers. To achieve

this goal, two CFD software packages provided by JAXA (Japan Aerospace Exploration Agency)

are studied: UPACS (Unified Platform for Aerospace Computational Simulation) and FaSTAR (Fast

Aerodynamics Routines) software packages.

1. Introduction
1.3. Contribution 4

In UPACS, the goal is to improve the performance by using FPGAs as a reconfigurable platform.

However, the whole UPACS package is too large to implement in a single FPGA, and often larger

than the size of the target platform. Morishita et al. tried to implement core subroutines in UPACS

which has complicated memory access into FPGAs [23]. Although the performance can be improved,

it is found that the target requires too vast resources to implement on a small number of FPGAs.

Inakagata et al. also have tried multiple FPGAs as an option to resolve this problem [24]. However,

we want to save the number of FPGAs to be used, and also to reduce power by introducing partial

reconfiguration provided in recent FPGAs. Since UPACS consists of various solvers, not all of them

are needed to solve a target application. In this study, we introduce this mechanism into flux limiter

functions (FLF) in MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme

available in UPACS package.

In FaSTAR, total required hardware often becomes large if all functions of the package are im-

plemented on FPGAs. We can avoid it by providing a subset design with only required functions

in advance. However, the number of designs to be prepared in advance becomes large for compli-

cated application package. Previously, Akamine et al. have proposed out-of-order mechanisms to

cope with unstructured mesh for efficient execution of FaSTAR [25]. By introducing the partial re-

configuration, we can quickly prepare the appropriate design for the user. This trial is the first step

of using partial reconfiguration technique, and it has a possibility to extend the application of the

partial reconfiguration to a large scientific application package. In addition, our objective is to im-

prove the performance of target subroutine in FaSTAR by implementing in FPGA. Utilizing partial

reconfiguration is a promising approach to achieve this goal with a small amount of hardware.

1.3 Contribution

In this thesis, we have studied fluid dynamics computation on an FPGA using partial reconfiguration

technique. Our main contributions can be highlighted as follows:

1) In UPACS explorations, we introduce a reconfigurable flux limiter functions in MUSCL

scheme. Core routine in UPACS consumes 70% of the total execution time, and only MUSCL

scheme is used twice. Moreover, MUSCL scheme contribute to 23.6% from that fraction. There-

fore, speed-up of MUSCL scheme has been a priority before the other subroutines. We make an

analysis of 6 flux limiter functions (FLF) which populate the design space of MUSCL scheme, and

data dependencies between them. Besides, we also pipeline the MUSCL datapath to increase the

throughput of the system when processing a stream of data. Two designs are implemented that are

static reconfiguration [26] and dynamic reconfiguration [27]. Quantitative comparison of resource

utilization, power consumption, and configuration speed between partial and full reconfiguration are

performed. We also analyze the performance speed-up over a CPU execution.

1. Introduction
1.4. Thesis Organization 5

2) In FaSTAR explorations, we study an advection term computation core routine. Advection

term subroutine has consumed more than 30% from the total time of FaSTAR execution. Therefore,

we introduce a partially reconfigurable flux calculation schemes in advection term computation to

save the hardware resources. We make an analysis of 5 flux calculation schemes and deploy in

reconfigurable region. In addition, we introduce a single stage pipeline in static module to provide

multistage computations. In each reconfigurable module, data level parallelism is introduced to

reduce total clock cycles per operation. Quantitave comparison of hardware resource utilization and

configuration speed is performed. We also analyze the performance speed-up achieved compared to

software over CPU execution.

1.4 Thesis Organization

The thesis is organized as illustrated in Figure 1.1. This chapter gave a brief overview of high

performance computing, CFD, FPGA as well as partial reconfiguration technology. Thesis objectives

and contributions were also highlighted. The next chapter gives an overview about computational

fluid dynamics. Conventional systems used to executed CFD applications are discussed with several

examples. Then, is followed by explanation regarding UPACS and FaSTAR software packages.

Chapter 3 is about FPGA and partial reconfiguration as well as examples of CFD applications utilized

FPGAs technology. Chapter 4 studies target subroutine in UPACS that is MUSCL scheme and their

implementation in an FPGA using partial reconfiguration. Performance evaluations are performed

and discussed. Chapter 5 studies target subroutine in FaSTAR that is advection term computation

and their implementation in an FPGA using partial reconfiguration. Performance evaluations are also

presented and analyzed. Finally, Chapter 6 summarizes our proposed reconfigurable designs for CFD

applications. Based on the above, we make a discussion on the expanding of partial reconfiguration

technology to scientific computing mainly to CFD applications.

1. Introduction
1.4. Thesis Organization 6

Chapter 1

Introduction

Chapter 2

Computational Fluid Dynamics

Chapter 3

FPGA and Partial Reconfiguration

Chapter 4

UPACS Code Implementation
Chapter 5

FaSTAR Code Implementation

Chapter 6

Conclusion

Background
Thesis Motivation
Thesis Objective and Contribution
Thesis Organization

Fluid Dynamics Computation
UPACS and FaSTAR Introduction
Related Work

Field Programmable Gate Array
Partial Reconfiguration
Related Work

Target Subroutine
Design and Implementation
Performance Evaluation

Target Subroutine
Design and Implementation
Performance Evaluation

Discussion
Conclusion
Future work

Figure 1.1: Thesis organization

Chapter 2

Computational Fluid Dynamics

Modeling, simulation and optimization using computing tools are the core approach nowadays in

the whole discipline of science complementary to experiment and theory. In recent years, numerical

analysis has been used in areas of scientific computations, and the complexity of the algorithm is

increasing.

Computational fluid dynamics (CFD) is one of the key areas of numerical analysis. Today, CFD

codes are becoming a commodity used regularly for engineering analysis and even in the design pro-

cess. Commercial codes have now been steadily employed, not only in industry but also in academia

and government laboratories. Indeed, CFD is further reinforced by the rapid advancement of ever

faster and larger memory computer processors, making computation of complex geometry and flow

physics affordable. Hence, CFD no longer belongs to experts, but in fact is leveraged largely by

practitioners.

This chapter provides an overview of CFD. Then, following the conventional system of CFD

applications, a few example systems are given. After that, we introduce the UPACS and FaSTAR

software package. Finally, this chapter concludes with a summary.

2.1 Overview

CFD is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and

related phenomena by solving the mathematical equations, which govern these processes using nu-

merical methods. Thus it provides a qualitative and quantitative prediction of fluid flows by means

of mathematical modeling, numerical methods and software tools. Fluid flows encountered in ev-

eryday life include heating, ventilation and air conditioning of buildings, combustion in automobile

engines, other propulsion systems and etc. In addition, we had many researchers contributing to fluid

mechanics and its solutions, mathematical models and formulating the models across the centuries.

We are now living in a time wherein the software packages have exploited all this work with the

advancement of computational speed.

2. Computational Fluid Dynamics
2.1. Overview 8

2.1.1 Analytical Fluid Dynamics

Before the high-speed computers of today arrived, the usual processes followed by researchers were

using manual or hand calculations with some approximations. With some assumptions and approxi-

mations, researchers generally made a free body diagram of the target object, simplified the complex

3-D geometry into simple 1-D or 2-D analysis, and ended up doing an integration of these equa-

tions. Researchers also set up the constraints in the form of initial and boundary conditions to find

constants for integration. Finally, values at discrete points are obtained, where could end-up having

results getting plots.

Now for a simple case it might be easy to apply this method but not in cases of complex problem.

However, not just the complex geometry is a problem but also more often there are limited in defining

the exact physical conditions in terms of concerned mathematical equations. To solve the general

equation on a real geometry is a challenge. If we do not want to face this, one can have another

approach, called Experimental Fluid Dynamics (EFD).

2.1.2 Experimental Fluid Dynamics

Here researchers have a scale down model, wherein create a prototype model and perform appropriate

experiments. It will test the model under conditions that would reflect exactly what would happen in

reality. It is often called wind tunnel experiments. Further a lot of probe points are introduced for

data collection thereby introducing disturbances in the flow itself. Also it is not so always easy to

make an exact prototype of the real problem, and there are problems with cost and feasibility too.

So we can see that both methods have some limitations, analytical approach with respect to

complex geometries and physics capturing while experimental approach with issues in time, cost

and feasibility.

Thus, we focus on CFD wherein we have the mathematical model whereas the physics clearly

defined, and these physics equations that are usually the partial differential equations, are solved

through numerical methods. With the assumptions that some higher order terms are neglected we

can use computer to solve them and end-up having a CFD result, a result that is numerical solution

of our physics. This has many advantages. We have a low cost simulation, and we are able to do a

lot of analysis within a short period of time, as we do not have to actually make a physical model

of our study. With approximations in some parameters, we can study the problem using the high-

speed computer, which previously takes about hours or days time to obtain the results. So in brief,

with the CFD approach we can have a low cost solution and reliable information as compared to

any other approach. Also although CFD does not replace the measurements completely, the amount

of experimentation and the overall cost can be significantly reduced. Table 2.1 summarizes the

comparison of EFD and CFD to solve flow problems.

2. Computational Fluid Dynamics
2.2. CFD Process 9

Table 2.1: Comparison of EFD and CFD for fluid dynamics.

EFD CFD

Quantitative acquisition of flow phenom-

ena using measurements

• at a limited number of points and

time instants

• for a laboratory-scale model

• for a limited range of problems and

operating conditions

Error sources: measurement errors, flow

disturbances by the probes

Quantitative prediction of flow phenom-

ena using CFD software

• for all desired quantities

• with high resolution in space and

time

• for the actual flow domain

• for virtually any problem and realis-

tic operating conditions

Error sources: modeling, discretization, it-

eration, implementation

2.2 CFD Process

Overall CFD process is a 3 step procedure:

• pre-processing

• numerical solution

• post-processing

Pre-processing step starts with determining the equations to be solved. Then, geometry is consid-

ered to define the domain of interest, which is then divided into segments, in the mesh generation step

and the problem is set up defining the boundary conditions upon generating a computational mesh.

However, it depends upon the desired output of the simulation and the capabilities of the solver.

Once the problem is set up defining the boundary conditions, we solve it with software on a com-

puter. As mentioned in the previous section, it can also be done by hand calculations, but would take

long time. Nevertheless, user intervention is necessary in this step. Users need to set under-relaxation

factors and input parameters, whilst an understanding of discretization methods and internal data

structures is required in order to supply mesh data in an appropriate format and to analyze output.

The raw output of the solver is a huge set of numbers corresponding to the values of each field

variable at each point of the mesh. In post-processing step, this must be reduced to some meaningful

subset and manipulated further to obtain the desired main outputs. We may analyze them by means

of color plots, contour plots, and appropriate graphical representations and we can generate reports.

Commercial packages routinely provide plotting tools to visualize the flow and analysis tools to

extract and manipulate data.

2. Computational Fluid Dynamics
2.2. CFD Process 10

Figure 2.1: Cell-centered storage on the left and cell-vertex storage on the right.

2.2.1 Mesh Structure

The purpose of the grid generator is to decompose the flow domain into control volumes. The primary

outputs are cell vertices and connectivity information. Precisely the location nodes are relative to the

vertices depending on the solver usage, for example, cell-centered or cell-vertex storage as shown in

Figure 2.1. The unknowns may be located at vertices of the cells, or at the centers of the cells. These

two multigrid methods differ in the location of the nodes in the grids and in the transfer operators.

Structured meshes are those whose control volumes can be indexed by (i, j, k) for i = 1, ..., ni,

j = 1, .., n j, k = 1, ..., nk, or by a group of such blocks, that is multi-block structured grids. Structured

grids can be Cartesian or curvilinear, usually body-fitting. In the former, grid lines are always parallel

to the coordinate axes. In the latter, coordinate surfaces are curved to fit boundaries of a target object.

The grid is described as orthogonal if all grid lines cross at 90◦. Such examples include Cartesian

grids and cylindrical or spherical polar grids.

Unstructured meshes can accommodate completely arbitrary geometries. Unlike structured grids,

the cell at location n in memory may have no physical relation to the cell next to it at location n + 1.

This means that an unstructured grids allows a lot of freedom in constructing a CFD grid. However,

there are significant penalties to be paid for this flexibility, both in terms of data structures and

solution algorithms. Grid generators and plotting routines for such meshes are also very complex.

2.2.2 Simulation Process

To understand the simulation process and the steps involved in it let us consider an example of

a flow through a pipe bend. Figure 2.2 gives a series of the steps that would be involved in its

analysis. For a fluid flow through a pipe bend, we have the geometry built up, separated into smaller

fragments/segments, called a mesh. With this mesh we actually define our probe-points where we

want the analysis to be done. We then define the boundary conditions to get a unique solution with

a computer. The results obtained give us a lot of data along these probe points that are then post-

processed with visualization tools to analyze the results.

2. Computational Fluid Dynamics
2.3. UPACS 11

Figure 2.2: Example of CFD simulation process of a flow through pipe bend.

As shown above, it turns out that selection of model construction and a numeric solution are

needed for the analysis of fluid. In CFD, according to a problem, a new analysis program is created

each time in many cases, and there was usually a problem that construction of simulation environment

also takes time. However, in order to solve this problem, JAXA is developing a general-purpose CFD

packages called UPACS and FaSTAR.

2.3 UPACS

UPACS (Unified Platform for Aerospace Computational Simulation) is a CFD software package

developed by JAXA [28,29]. It is an application with a highly scalable environment. Mainly, UPACS

includes the following features:

• Multi-block structured grid

In order to realize complicated form, flexible analytic space is realizable by preparing two

or more analytic spaces separately rather than using only a single analytic space, along with

connection information.

• Parallel computing by MPI

By specifying the number of processors in advance, it is possible to perform parallel processing

in units of blocks. There is also benefit when the MPI is used, architecture independence is

high.

2. Computational Fluid Dynamics
2.4. FaSTAR 12

• Separate processing of the block and numerical solution

Process of numerical solution performs only one block in UPACS. When performing process-

ing on different blocks, it is performed by passing it to the block processing function. Because

of this structure, a new block is easy to be added in the calculation method.

• Encapsulation of the calculation procedure and data structure

Calculation procedures and variables are encapsulated. The calculation is performed by calling

the process in the form of a function from the outside. In addition, it has a structure that can

be easily modified when it becomes necessary to change the code thereby.

• Developed in Fortran 90

It is possible to incorporate the idea of object-oriented, and is intended to maintain scalability.

As stated above, UPACS can add various numeric solutions, but selection of a solution can be

simply performed simultaneously using a GUI tool called PDB (Parameter Data Base) Editor by

users. Table 2.2 shows examples of parameters which are available and can be chosen using PDB

Editor.

2.4 FaSTAR

FaSTAR (Fast Aerodynamics Routines) is another CFD software package developed by JAXA to

simulate compressible flow using unstructured grid [30]. FaSTAR is an application with high exten-

sibility that can be used in parallel computing environment. FaSTAR has the following features:

• Unstructured grid

Polygons and cubes, such as a triangle and a quadrangle, and the polyhedron can be put in

order freely, and complicated form can be realized. Grid data is automatically generated, and

it can perform a simulation in high accuracy, without accuracy correction.

• Parallel computing by Zoltan and MPI

In the environment of a supercomputer or a cluster computer, it comes out by specifying the

number of processors beforehand to carry out parallel processing per grid area. When MPI is

used, there is also a merit that architecture independence is high. It is necessary to divide the

whole grid into two or more domains in that case, and a division algorithm called Zoltan plays

the role.

• Development by Fortran 90

It is possible to take in an object-oriented idea and, thereby, the extensibility and conservative-

ness of FaSTAR are improved.

2. Computational Fluid Dynamics
2.4. FaSTAR 13

Table 2.2: Examples of the calculation parameters used in UPACS.

Solutions Available Subroutines

Governing Equation

Euler Equation

Navier-Stokes Equation

Reynolds Averaged Navier-Stokes Equation

Turbulent Flow Model
Baldwin-Lomax

Spalart-Allmaras

Convective Term Scheme
Roe Scheme

AUSMDV Scheme

Flux Limiter Function

no limiter

van Leer

van Albada

minmod

superbee

Hemker-Koren

Time Integration

Euler Explicit Method

3rd Runge-Kutta Method

Jameson Method

Matrix-Free Gauss-Seidel Method

Implicit Method Scheme

1st Euler Method

2nd Euler Method

Crank-Nicolson Method

• Separation of the process division of a numeric solution and a grid

In FaSTAR, the scheme, which reads grid data, and the scheme, which performs a numeric

solution, are separated. Therefore, it is easy to change or add a new numeric solution.

• Encapsulation of a data structure and a computational procedure

A variable and a computational procedure are encapsulated and it calculates by calling pro-

cessing in the form of a function from the exterior. In case this needs change, it has the code

structure which can be understood easily.

As stated above, FaSTAR can add various numeric solutions with a user defined parameter file,

and selection of a solution can simply be performed. Table 2.3 shows the solution which is avail-

able in FaSTAR. By combining these solutions, the user can perform the simulation without adding

correction to a code.

2. Computational Fluid Dynamics
2.5. Conventional Systems 14

Table 2.3: Examples of the calculation parameters used in FaSTAR.

Solutions Available Subroutines

Governing Equation

Euler Equation

Navier-Stokes Equation

Reynolds Averaged Navier-Stokes Equation

Turbulent Flow Model

Spalart-Allmaras Model (SA)

Menter k-ω Shear Stress Transport Model (SST)

Automatic Wall Processing Capability

Inviscid Flux Calculation Scheme

Roe Scheme

HLLE Scheme

HLLEW Scheme

AUSM+-up Scheme

SLAU Scheme

Flux Evaluation
Least-Square Law

Green-Gauss Law

Flux Limiter Function

Hishida Limiter

Venkatakrishnan Limiter

Bart-Jespersen Limiter

minmod Limiter

Time Integration LU-SGS(regular/unsteady, local/global time stepping)

Convergence Acceleration
Multigrid (FAS:Full Approximation Storage)

Krylov Law (GMRES)

2.5 Conventional Systems

Improvement in the speed of application has mainly been conventionally performed by a supercom-

puter, a cluster type computer, and ASIC (Application Specific Integrated Circuit). Moreover, in the

past few years, improvement using graphics processing unit (GPU) also gains attention from CFD

research community. In this section, we will explain about these conventional systems as well as ex-

ample systems, which realize improvement in the speed of application. Then, it follows by discussion

on GPU as a platform for CFD applications acceleration.

2.5.1 Supercomputer

One of the high-speed techniques of a numeric simulation is using supercomputer. Since the defini-

tion of supercomputer changes with times, it is difficult to give a definition uniformly. Typically, a

supercomputer is a computer at the frontline of current processing capacity, particularly in terms of

speed of calculation.

2. Computational Fluid Dynamics
2.5. Conventional Systems 15

Computational Nodes

88,128 Nodes
705,024 Cores
1PB Memory System

IO Nodes

Local File System
(11PB~)

Managing
Servers

Controlling
Servers

Managing
Job & User

Controlling
K system

Network for Mangement and Controll

Data Network

Global File System
(30PB~)

Pre/Post
Processing
Server

K computer
Frontend

Global

Gateway

Figure 2.3: K computer system configuration.

One example of a supercomputer is K computer [31]. System configuration of the K computer

is shown in Figure 2.3. The K computer is a distributed memory supercomputer system consisting

of 82,944 compute nodes and 5,184 I/O nodes, two kinds of files systems, control and management

servers, and front end servers. Each compute node is mainly composed of CPU, a set of memory

with 16 gigabytes, and an LSI interconnect between the nodes as shown in Figure 2.4. A CPU is

SPARC64 VIIIfx developed by Fujitsu Ltd. and it has 8 cores and a 6 MB L2 cache shared by

the cores on an LSI, which operates at a clock frequency of 2 GHz. Its peak performance and

performance per electricity unit are 128 GFLOPS and 2.2 GFLOPS/Watt, respectively. Each core

has four floating-point multiply-and-add execution units, two of them are operated concurrently by

a SIMD instruction, and 256 double precision floating point data registers are suitable for scientific

and engineering computations by extending the architecture from the original SPARC architecture

[32]. The new designed interconnection network, named Tofu [33], is a six-dimensional mesh/torus

network and is used as the data communication network among compute nodes. The LSI for Tofu,

named Interconnect Controller (ICC), is directly connected to a single CPU and each ICC has ten

routes connecting ten adjacent nodes [34].

One example of CFD execution using supercomputer has been reported by Matsuo et al. [22].

A parallel supercomputer called Numerical Simulator III (NS-III) is used, and various CFD appli-

cations are performed and evaluated. The system used Fujitsu PRIMEPOWER HPC2500 as main

2. Computational Fluid Dynamics
2.5. Conventional Systems 16

K computer Node

Memory
(DDR3-SRAM)

Memory
(DDR3-SRAM)

Memory
(DDR3-SRAM)

Memory
(DDR3-SRAM)

Memory
(DDR3-SRAM)

Memory
(DDR3-SRAM)

CPU
UltraSPARC VIIIfx

(128GFLOPS)
Core

(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

Core
(16GFLOPS)

64GB/s

ICC

Figure 2.4: Node composition of K computer.

compute engine. Figure 2.5 shows a general view of this system. It has computing capability of

9.3 Tflop/s peak performance and 3.6 TB of user memory, with about 1,800 scalar processors for

computation. Another example is performance analysis of CFD application on Nehalem and West-

mere based supercomputers [35]. The target is Cart3D CFD application aimed at conceptual and

preliminary design of aerospace vehicle with complex geometries. Performance evaluation using

two different analysis tools is performed and reported.

However, operational costs and installation area are needed for a supercomputer. The case of K

computer previously quoted as an example, for the development, requires 1,120 × 100 million yen

expense and for a maintenance cost, every year is about 80 × 100 million yen. An installation area

about 20,000 m2 is needed. Moreover, if the application to operate is not suitable for the architecture

of the supercomputer, the effective performance may become low.

2.5.2 Cluster

Numerical analysis is also usually executed using cluster computing. A computer cluster consists of

loosely connected or tightly connected computers that work together so that in many respects they

can be viewed as a single system. The components of a cluster are usually connected to each other

through a fast network, with each node running its own instance of an operating system. Computer

clusters emerged as a result of convergence of a number of computing trends including the availability

of low cost microprocessors, high speed networks, and software for high performance computing.

2. Computational Fluid Dynamics
2.5. Conventional Systems 17

Crossbar switch

N
od

e

N
od

e

N
od

e

N
od

e

DTU

Crossbar switch

DTUDTUDTU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Basic IO

Main
Memory
16GB

P
C

I B
us

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Basic IO

Main
Memory
16GB

P
C

I B
us

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Basic IO

Main
Memory
16GB

P
C

I B
us

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Basic IO

Main
Memory
16GB

P
C

I B
us

Lo
gi

n
N

od
e

.... IO
N

od
e

Figure 2.5: A general view of PRIMEPOWER HPC2500.

An example of computer cluster architecture is proposed by Sun Microsystems [36]. The Sun

cluster architecture aims to deliver a cost-effective clustering solution that meets all the important user

needs. From a physical perspective, a Sun cluster consists of one or more servers that work together

as a single entity to cooperatively provide highly available access to applications, system resources,

and data of the user community. Each server can itself be a symmetric multiprocessor with multiple

CPUs. This architecture enables a potentially large pool of hardware resources to manage as a single

system, resulting in significantly lower administration costs, dramatically improved management,

and increased flexibility. Global networking of Sun cluster architecture is shown in Figure 2.6.

Xiao et al. has proposed an efficient method to parallelize CFD applications on clusters called

auto-CFD [37]. Auto-CFD is a pre-compiler which transforms Fortran CFD sequential programs to

efficient message passing parallel programs running on clusters. Various types of flow field scale and

up to 6 processors are empirically analyzed.

Despite all the advantages of cluster computing, several issues are remaining in concern. Network

issues are among others, which is easy for saturation and lossy transmission. In addition, it is hard to

distribute workload equally to each node. All these problems might lead to the system which cannot

achieve an optimal performance.

2.5.3 ASIC

An application specific integrated circuit (ASIC) is an integrated circuit (IC) customized for a par-

ticular use, rather than intended for general-purpose use. Since ASIC is a dedicated communication

circuit to specific application, it can realize a high speed, low area, and a low power consumption

system.

2. Computational Fluid Dynamics
2.5. Conventional Systems 18

Node 1 Node 2 Node 3 Node N

Global Networking

Internal Routing Over Interconnect

10.0.0.1 10.0.0.2 10.0.0.3

192.9.49.33

Each Node has
its own IP address
and can be accessed
separately

Outgoing traffic
leaves from any node

Incoming traffic uses
global IP address
and is transparently
routed to nodes

Figure 2.6: Global networking in Sun cluster.

MDGRAPE-3 (Molecular Dynamics Gravity Pipe) is an example of the system using ASIC,

which was built in order to calculate the power committed among all the atoms in a molecular dy-

namics simulation at high speed [38]. The chip currently used by MDGRAPE-3 is an ASIC special-

ized in those simulations. The composition of MDGRAPE-3 is shown in Fig. 2.7. Fig. 2.7 (1) shows

a board of MDGRAPE-3 and (2) a system-wide block diagram.

The MDGRAPE-3 chip functions as the core LSI of the system, and it performs the force calcula-

tions. The chip exhibits a peak performance equivalent to 180 GFLOPS at 250 MHz. By employing

the broadcast memory architecture, this chip can enclose 20 parallel pipelines, and it performs 720

equivalent floating-point number operations per cycle. The dimensions of the chip are 15.4 mm ×
15.4 mm, and it has been fabricated by Hitachi using 130 nm technologies. It employs a single +1.2

V power supply. The power consumed is less than 0.1 W/GFLOPS, which is considerably lower than

that of typical modern general-purpose processors.

In order to communicate with the host computer, an FPGA is installed on the board. It also

controls the chip, thermal sensors, and so on. The board is connected to the host by a 10 Gbps serial

communication link with a 4-lane 2.5 Gbps I/O through an InfiniBand cable. The host computer has

an interface card with an FPGA attached to a PCI-X bus.

However, there are a few problems with ASIC. Once the chip is fabricated, the design cannot

be changed anymore. Moreover, the design cost for ASIC is very expensive mainly for the fabrica-

tion process. From the CFD application point of view, an ASIC produced is just a special-purpose

computer for analysis. Therefore, it has very low chance to enter the market for mass production.

2. Computational Fluid Dynamics
2.5. Conventional Systems 19

Host

(1)MDGRAPE-3 board

Host
Computer
(200 CPUs
328 Cores)

Special-purpose
Computer
(2,304chips)

MDGRAPE-3
board

(2)MDGRAPE-3 System

Interface
Board

Interface
Board

Interface
Board

Interface
Board

Board 2MDGRAPE-3 Board3

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

I
n
f
i
n
i
B
a
n
d

S
w
i
t
c
h

PC1PC1

PC20PC20

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

PC1PC21

PC20PC40

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

PC1PC41

PC20PC60

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

PC1PC61

PC20PC80

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

PC1PC81

PC20PC100

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

MDGRAPE boardMDGRAPE board

Board 1

Control
FPGA

Control
FPGA

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

Control
FPGA

Control
FPGA

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDG3
LSI
MDG3
LSI

MDGRAPE-3 Board2

F
P
G
A

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MDGRAPE-3 Board2

F
P
G
A

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MD3MDG3 MD3MDG3 MD3MDG3

MDGRAPE-3 Board4MDGRAPE-3 Board4

Four IB 4 x
40GBps

Figure 2.7: Composition of MDGRAPE-3.

2.5.4 GPU

A graphics-processing unit (GPU) is a specialized electronic circuit designed to rapidly manipu-

late and alter memory to accelerate the creation of images in a frame buffer intended for output to a

display. Previously, GPUs are used in embedded systems, mobile phones, personal computers, work-

stations and game consoles. Lately, GPU has been used widely for many applications in recent years

including computational finance and climate weather [39, 40]. Eventually, GPUs contain operation

core of hundreds massively parallel processors, and can perform large-scale parallel processing.

Bailey et al. has accelerated Lattice Boltzmann fluid flow simulations using GPUs [41]. Lattice

Boltzmann methods (LBM) are used for the computational simulation of Newtonian fluid dynamics.

They reported improvement upon prior single-precision GPU LBM results by increasing GPU mul-

2. Computational Fluid Dynamics
2.6. Summary 20

tiprocessor occupancy, resulting in an increase in maximum performance. This implementation has

outperformed single-precision quad-core CPU utilizing OpenMP. Another study has tried to solve

parabolic problems using multithread and GPU [42]. They presented an efficient computational

scheme for solving parabolic partial differential equations on multithreading and GPU accelerator.

Convection-diffusion-reaction (CDR) solver was proposed to quickly solve a big problem on the

GPU accelerator. The implementation illustrated 2.5 times faster than those on sequential code with

the problem size of 400 × 400.

Multi-GPU also has become the platform of choice for researchers. Liu et al. presented a multi-

GPU platform which can solve the incompressible 2D Navier-Stokes equations efficiently [43]. They

design a tile structure to distribute the whole computation domain evenly to multi-GPU. Each GPU

only solves the equations in a limited area but maintains the whole computation area within its own

device memory. In the experiments, single, double and triple GTX 260 graphics cards are installed

to construct the platform with CUDA 2.3. With a triple GPU configuration, 270 speed-up is achieved

compared to the CPU version without including the memory copy cost. A similar configuration is

also about 2.1 faster than a single GPU version.

Furthermore, studies also had been reported on using GPU as a cluster. A study had been re-

ported trying to implement automatic resource scheduling for parallel stencil applications on GPU

clusters [44]. This work is to address the problem of time-consuming programming part in stencil

application development. They developed an automatic code generation tool to produce a paral-

lel stencil application with latency hiding. The dataflow compiler determines a data decomposition

policy for each application, and generates source code that overlaps the stencil computations and

communication. They demonstrated two types of overlapping models, a CPU-GPU hybrid execution

model and GPU-only model. CFD benchmark computing 19 point 3D stencil is used to evaluate the

scheduling performance, which results in 1.45 TFLOPS in single precision on a cluster with 64 Tesla

C1060 GPUs.

However, GPU is designed for specific purpose of image processing and graphics. For a reason, it

is specializing in stream processing. In stream processing, when there is no data dependence between

processing data, high performance can be obtained. In contrast, it is not suitable for high dependable

data processing [45].

2.6 Summary

In this chapter, we have discussed about computational fluid dynamics and their applications in high

performance scientific computing. CFD advantages compared to analytical and experimental fluid

dynamics are discussed. CFD procedure is explained as well as how it is executed. Our intention in

this chapter was to emphasize solely on CFD to provide clear explanation on what applications we

try to tackle.

2. Computational Fluid Dynamics
2.6. Summary 21

Then, we introduced UPACS and FaSTAR CFD software packages. Both packages are developed

by JAXA for fluid flow simulations. Both are crucial and important tools in the design of aircraft

components such as jet engines and wings. Features of UPACS and FaSTAR are presented and the

advantages are explained. Simulation flow and subroutine available in both software packages are

also given and discussed. This is mainly to introduce the software packages that we used in this

research as well as mapped onto an FPGA.

Finally, we have presented conventional systems on how CFD are executed for the past decade. It

includes supercomputer, cluster computer, ASIC as an accelerator and even recently massive parallel

processors in GPU. In addition to these entire platforms, example systems as well as their merits and

drawbacks are given and discussed. The intention is also to keep aware about the other systems, and

provides some insight into the direction it may go in the future.

Chapter 3

FPGA and Partial Reconfiguration

This chapter gives an introduction of FPGA. FPGAs have become one of the most popular imple-

mentation media for digital circuits since their invention in 1985. The ability to implement any circuit

simply by being appropriately programmed becomes the key point of their popularity. End users can

directly configure the final logic structure without the use of an integrated circuit fabrication facility.

3.1 FPGA

FPGAs consist of a large array of Configurable Logic Blocks (CLBs); Digital Signal Processing

(DSPs) blocks; Block RAM, and Input/Output Blocks (IOBs). CLBs and DSPs are similar to a pro-

cessor arithmetic logic unit (ALU) but programmable. It can be programmed to perform arithmetic

and logic operations like "add", "multiply", "subtract", and "compare". Unlike processors, which

has fixed ALU designed in a general-purpose manner to execute various operations, the CLBs can

be programmed with the operations needed by an application. This results in increased computing

efficiency.

3.1.1 History

In order to show the history of FPGAs clearly, we need to track back to the evolution of programma-

ble devices. They are general-purpose chips that can be configured for a wide variety of applications.

Programmable devices have played a key role in designing digital hardware.

3.1.1.1 PROM

Programmable Read-Only Memory (PROM) is the first type of programmable device used widely.

A PROM consists of an array of read-only cells. A logic circuit can be implemented by using the

PROM address lines as the circuit inputs, and data lines as outputs.

There are two basic versions of PROMs: mask-programmed and field-programmable. For mask-

programmed devices, only the manufacturer can program them while field-programmable devices

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 23

can be programmed by the end user. The Erasable Programmable Read-Only Memory (EPROM)

and the Electrically Erasable Programmable Read-Only Memory (EEPROM) are two variants of the

PROM.

3.1.1.2 PLD

The structure of PROMs is best suited for the implementation of computer memories. Another type of

programmable device, Programmable Logic Device (PLD) is designed specifically for implementing

logic circuits. The most basic version of a PLD is the Programmable Array Logic (PAL) consisting

of a programmable AND-plane followed by a fixed OR-plane. A more flexible version of the PAL is

the Programmable Logic Array (PLA) which connects both planes with programmable switches.

3.1.1.3 MPGA

Both types of PLDs described above can only implement small logic circuits due to the simple two-

level structure. Their interconnection structure would grow impractically large if the number of

product terms was increased.

The solution to this problem is to design programmable devices consisting of an array of un-

committed elements that can be interconnected according to users specification. They are known

as Mask-Programmable Gate Arrays (MPGAs). MPGAs provide a general structure that allows the

implementation of much larger circuits.

Since MPGAs are mask-programmable, they require significant manufacturing time and incur

high initial costs. In 1985, Xilinx introduced Field-Programmable Gate Arrays (FPGAs). Like an

MPGA, an FPGA consists of an array of uncommitted elements that can be interconnected in a

general way. The interconnections between the elements are also user-programmable. Low cost

hardware prototypes are built using such FPGAs. Since the early 1990s, many different FPGAs have

been developed by a number of companies.

The FPGA is generally distinguished by two features. First, instead implementing gates physi-

cally, the logic is implemented with look up tables. Second, most FPGAs use static RAM cells to

hold the configuration information as opposed to permanent ways of earlier devices. This allows the

FPGA to be configured and reconfigured after the device has been installed in a product.

3.2 Architecture of an FPGA

All FPGAs consist of three fundamental components: Processing Units; Input/Output; and Intercon-

nect. Figure 3.1 shows the basic model of an FPGA. From the high-level view, the FPGA looks like

a network of processors.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 24

Interconnect

Processing Units

Input/Output

Figure 3.1: Basic model of FPGAs.

However, an FPGA differs from a conventional multiprocessor in several ways:

• Granularity

Conventional FPGAs have single bit processing elements, each of which is controlled inde-

pendently.

• Instruction Control

Conventional FPGAs are configurable with a single instruction resident per processing ele-

ment. Changing instructions is slow compared to the instruction processing rate in a general

purpose processor.

• Static Interconnect

In conventional FPGAs, an interconnect is purely static. It connects sources and sinks by

locking down a path through the switching network.

Figure 3.2 shows a generic FPGA architecture. A circuit is implemented in an FPGA by program-

ming each logic block so as to take a role of a small logic portion. Each I/O block is programmed

for either an input pad or an output pad. The programmable routing is configurable to make all the

necessary connections between logic blocks and from logic blocks to I/O block.

3.2.1 Commercially Available FPGAs

Several companies: Xilinx; Altera; and Actel have introduced a number of different types of FPGAs.

In this subsection, we will focus on Xilinx FPGAs, not only because it is the first company that

introduced FPGA but also because it is the biggest vendor of FPGA nowadays, and its FPGAs are

most widely used.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 25

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G

11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G
11100
01110
01100
11101
10100
01101

D G

I/O Cell

Interconnection
ResourcesLogic Block

Figure 3.2: Schematic of an FPGA.

Commercial FPGAs can be classified into three groups based on their routing architecture: an

island-style; row-based; and hierarchical. Xilinx FPGAs adopt an island-style. Figure 3.3 shows the

island-style layout, where blocks are arranged in an array with vertical and horizontal routing.

CLB

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

CLBCLBCLB

CLB CLB CLB

CLBCLB

I/O I/O I/O I/O I/O I/O

I/O I/OI/O I/OI/O I/O

Figure 3.3: Island-style interconnects in commercial FPGA.

Early FPGAs consist of an array of similar programmable logic elements interfaced to inter-

connection elements. Today, modern FPGAs consist of a heterogeneous fabric of programmable

elements connected by a switch-based network. As mentioned above, in many cases, an FPGA was

used for prototyping an ASIC. It was rarely used for high performance applications. However, recent

technology has allowed FPGAs to evolve remarkably by increasing the amount of resources, such as

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 26

slices; DSPs; and Block RAMs. It also improved to work with high clock frequency.

Table 3.1 shows Virtex series FPGAs released from 2002 to 2011. Figure 3.4 shows the amount

of hardware resources of slice; DSP; and Block RAM in each generation of Virtex FPGAs.

Table 3.1: List of Virtex series FPGAs.

Series Process Size Year Release

Virtex-II Pro 130 nm 2002

Virtex-4 90 nm 2004

Virtex-5 65 nm 2006

Virtex-6 40 nm 2009

Virtex-7 28 nm 2011

3.2.2 Virtex 6 FPGA

The Xilinx Virtex 6 FPGA provides advanced features in the FPGA market. Virtex 6 FPGAs are

the programmable silicon foundation that delivers integrated software and hardware components to

enable designers to focus on innovation. The Virtex 6 family contains three distinct sub-families:

• LXT: High performance logic with advanced serial connectivity

• SXT: Highest signal processing capability with advanced serial connectivity

• HXT: Highest bandwidth serial connectivity

Each sub-family contains a different ratio of features to most efficiently address the needs of wide

variety of advanced logic designs. In addition to the high performance logic fabric, Virtex 6 FP-

GAs contain many built-in system level blocks. Built on a 40 nm state-of-the-art copper process

technology, Virtex 6 FPGAs are a programmable alternative to the custom ASIC technology.

3.2.2.1 Look-Up Table

Function generators in Virtex 6 FPGAs are implemented as 6-input Look-Up Tables (LUTs). There

are six independent inputs and two independent outputs for four function generators in a slice. The

LUTs can implement an arbitrarily defined 6-input Boolean function. Each LUT can also implement

two arbitrarily defined 5-input Boolean functions, as long as these two functions share common

inputs.

In practice, a Hardware Description Language (HDL) is used to describe the digital circuit, and

then synthesis tools are used to map the textual description into LUTs. The designer never defines

logics in LUTs directly. The important consideration for a designer is representing a circuit efficiently

to utilize available resources.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 27

 0

 500000

 1e+06

 1.5e+06

 2e+06

Virtex-II Pro Virtex-4 Virtex-5 Virtex-6 Virtex-7

S
lic

e

Virtex-Generation

slice

 0

 1000

 2000

 3000

 4000

 5000

Virtex-II Pro Virtex-4 Virtex-5 Virtex-6 Virtex-7

D
S

P
48

Virtex-Generation

DSP48

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Virtex-II Pro Virtex-4 Virtex-5 Virtex-6 Virtex-7

B
lo

ck
 R

A
M

Virtex-Generation

Block RAM

Figure 3.4: The amount of resources in Virtex FPGAs.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 28

Table 3.2: Logic resources of one CLB in Virtex 6 FPGA.

Slices LUTs Flip-Flops Arithmetic and Carry Chains Distributed RAM Shift Registers

2 8 16 2 256 bits 128 bits

3.2.2.2 Slice

Every slice contains four logic-function generators (or look-up tables); eight storage elements (D

flip-flop); wide-function multiplexers; and carry logic. In addition to Boolean logic, a slice can be

used for arithmetic and storing data. Some slices are connected in such a way that they can be used

for data storage as distributed RAMs. This is accomplished by combining multiple LUTs in the slice.

In addition to logic and memory, slices can be used as shift registers. A shift register is capable

of delaying an input with x clock cycles. Using a single LUT, data can be delayed up to 32 clock

cycles. Cascading all four LUTs in one slice, the delay can increase to 128 clock cycles. This is

useful for small buffers instead of using a large block RAMs.

3.2.2.3 CLB

The Configurable Logic Blocks (CLBs) are the main logic resources for implementing both sequen-

tial and combinatorial circuits. Each CLB element is connected to a switch matrix for accessing the

general routing matrix as shown in Figure 3.5. A CLB element consists of a pair of slices. These two

slices do not have direct connections to each other, and each slice is organized as a column. Each

slice in a column has an independent carry chain. For each CLB, slices in the bottom of the CLB are

labeled as SLICE(0), and slices in the top of the CLB are labeled as SLICE(1). Figure 3.6 shows a

row and column relationship between CLBs and slices. Table 3.2 summarizes the logic resources in

one CLB.

Switch
Matrix

Slice(1)

Slice(0)

CIN CIN

COUT COUT

CLB

Figure 3.5: Arrangement of slices within the CLB.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 29

Slice
X3Y0

Slice
X2Y0

CIN

COUT

Slice
X1Y0

Slice
X0Y0

Slice
X3Y1

Slice
X2Y1

Slice
X1Y1

Slice
X0Y1

CLB CLB

CLB CLB

COUT COUT COUT

COUT COUT COUT COUT

CIN CIN CIN

Figure 3.6: Row and column relationship between CLBs and slices.

3.2.2.4 Block RAM

Block RAM is a dedicated random access memory grouped together in 36 Kbits blocks in Virtex

6 FPGAs. Every Virtex 6 FPGA has 156 to 1064 dual-port block RAMs. Each block RAM has

two completely independent ports that share nothing but the stored data. The clock controls each

memory access, read and write. All inputs; data; address; clock enables; and write enables are

registered. Nothing happens without a clock. The input address is always clocked, retaining data

until the next operation. An optional output data pipeline register allows higher clock rates at the

cost of an extra cycle of latency. During a write operation, the data output can reflect either the

previously stored data, the newly written data, or remain unchanged. One common use of block

RAMs in FPGA design is for FIFOs or data queues.

3.2.2.5 DSP Slices

DSP applications use many binary multipliers and accumulators implemented in dedicated DSP

slices. All Virtex 6 FPGAs have many dedicated, full custom, and low power DSP slices. In Virtex

6, the DSP slices are known as DSP48E1 (48 bit DSP element) slices. Figure 3.7 shows DSP48E1

diagram available in Virtex 6 FPGA.

Each DSP48E1 slice consists largely of dedicated 25 × 18 bit two’s complement multiplier and

a 48 bit accumulator. They can operate at 600 MHz in maximum. The multiplier can be dynamically

bypassed, and two 48 bit inputs can be connected into a single-instructions-multiple-data (SIMD)

arithmetic unit, or a logic unit that can generate any one of 10 different logic functions of the two

operands.

3. FPGA and Partial Reconfiguration
3.2. Architecture of an FPGA 30

0
1

0
1

B B

A A

M

X

Y

Z =

+ -
25x18

P

P

DSP48E1

0

0

0
C

CARRY

OpMode

CorMC

P

ALUMode

A

B

A
C

IN

B
C

IN

P
C

IN
P

C
O

U
T

C

B
C

O
U

T

A
C

O
U

T
MULT

Figure 3.7: DSP slice in Virtex 6 FPGA.

The DSP48E1 slices provide extensive pipelining and extension capabilities that enhance speed

and efficiency of many applications, even beyond digital signal processing, such as wide dynamic

bus shifters, memory address generators, wide bus multiplexers, and memory-mapped I/O register

files. The accumulator can also be used as a synchronous up/down counter.

3.2.2.6 Clocks

In FPGA designs, it is common to operate different cores with different frequency clocks. In tradi-

tional design, any clocks needed would have to be generated off-chip and connected as input to the

system. However, in recent FPGA designs, it is possible to generate a wide range of clocks from

a single to a few clock sources. The FPGA is bisected, and on each half, a clock region spans 40

CLBs. Figure 3.8 is a simple example of the clock regions on the FPGA.

L
O
G
I
C

Clock region
spans 40 CLBs

Clock region
spans half the

FPGA

20 CLBs

Region 0

Region 1

Region 2

Region 3

Region 4

Region 5

Region n

Figure 3.8: Clock regions on an FPGA span 40 CLBs vertically and half of the FPGA horizontally.

Each Virtex 6 FPGA provides five different types of clock lines, global clock buffer, BUFG,

regional clock buffer, BUFR, I/O clock buffer, BUFIO, horizontal clock buffer, BUFH, and the high

performance clock to address the different clocking requirements.

3. FPGA and Partial Reconfiguration
3.3. Computing Using FPGAs 31

In each Virtex 6 FPGA, 32 global clock lines have the highest fanout and can reach the clock

signal of every flip-flop. There are 12 global clock lines in any regions. Global clock lines can be

driven by global clock buffers, which can also perform glitchless clock multiplexing. Global clocks

are often driven from the Clock Management Tiles (CMTs), which can completely eliminate the

basic clock distribution delay.

Regional clocks can drive all clock destinations in their region as well as the region above and

below. A region is defined as any area corresponding to 40 I/Os and 40 CLBs. Virtex 6 FPGAs have

6 to 18 regions. There are 6 regional clock tracks in every region. Each regional clock buffer can be

driven from either four clocks capable input pins, and its frequency can be optionally divided by any

integer from 1 to 8.

In addition, I/O clocks are provided especially for the fast I/O logic and serializer/deserializer

circuits. Virtex 6 devices have a high performance direct connection from the Mixed Mode Clock

Managers (MMCMs) to the I/O directly for low-jitter and high performance interfaces.

To help design, Xilinx uses Digital Clock Managers (DCMs) for clock management. Generally

speaking, a DCM takes an input clock and can generate a customizable output clock. By specifying

the multiply and divider values M and D, the output clock clk f x can be generated as a custom clock.

Given an input clock clkin, the following equation is used to generate the output clock:

clk f x = M/D × (clkin) (3.1)

However, the DCM provides more than just generating different clock rates. It also can shift the

phase of the input clock by 90, 128, and 270 degrees. The DCM provides a 2× input clock rate, and

can shift the phase of the input clock by 180 degrees.

3.3 Computing Using FPGAs

FPGAs have historically not been frequently used for HPC applications since they are relatively small

and slow. Over time, however, advancements in process technology have enabled vendors to manu-

facture chips containing multi-millions of transistors [46]. The architectural enhancements increased

both logic cell count and speed. For instance, with an average 25% improvement in typical clock

frequency for each FPGA generation, the logic computing performance has improved approximately

by 92 times over the past decade while the cost of FPGAs has decreased by 90% in the same time

period. These developments have made it feasible to perform massive computations on a single chip.

Figure 3.9 shows the advancement of density, speed, and reduction in price over time.

3. FPGA and Partial Reconfiguration
3.4. Applications in Fluid Dynamics 32

 0

 20

 40

 60

 80

 100

 1998 2000 2002 2004 2006 2008 2010
-100

-80

-60

-40

-20

 0

 20

 40
B

as
el

in
e(

1X
)

19
99

P
er

ce
nt

ag
e

(%
)

Price Per Logic Cell
Logic Compute

Logic Cell Count

Figure 3.9: Historical advancement of FPGA technology.

3.3.1 Parallelism Offered by FPGA

FPGAs are composed of a large array of logic blocks. Depending on the type of used operators, CLBs

and DSPs can perform bitwise, integer, and floating point operations. The results of the operations

are stored in the registers present in CLBs, DSPs, and Block RAM. These blocks within an FPGA

can be connected via flexible configurable interconnects. The output of an operator can directly

forwarded to the input of the next operator. That is, the FPGA architecture can be used for the design

of data flow engines.

The FPGA architecture provides the flexibility to create a massive array of application specific

ALUs that enable both instruction and data level parallelism. Because data flows between operators

implemented with CLBs and DSPs, there are no inefficiencies like processor cache misses. These op-

erators can be configured so as to be connected with point-to-point dedicated interconnects, thereby

a pipeline can be formed between multiple operators.

3.4 Applications in Fluid Dynamics

Performance acceleration using FPGAs has been done for various applications. This subsection in-

troduces some examples of HPC systems using FPGAs for fluid dynamics applications. Early work

on methodology for CFD acceleration through reconfigurable hardware is reported by Andres et

al. [47]. It discussed about early development of FPGA-based hardware modules for acceleration of

most time consuming algorithms in aeronautics analysis. Results comparing CPU-based and FPGA-

based solutions are presented, and it shows that speedups around two orders of magnitude can be

3. FPGA and Partial Reconfiguration
3.4. Applications in Fluid Dynamics 33

expected from the FPGA-based implementation. Another work has proposed a heterogeneous archi-

tecture for evaluating real-time one-dimensional CFD on FPGAs [48]. The paper presents a novel

framework to evaluate 1D CFD models in real time on an FPGA. The results demonstrate the resource

savings and scalability of the framework. The feasibility of the approach is confirmed. Acceleration

of fluid dynamics using multi-FPGA platforms was also proposed in [49]. The paper presents an

implementation of the fluid registration algorithm on a multi-FPGA platform called Convey HC-1.

The implementation is achieved using a high-level synthesis (HLS) tool, with additional source code

level optimization approach.

In addition, a few notable examples of deploying FPGA for CFD applications are discussed as

follows.

3.4.1 FLOPS-2D

FLOPS-2D is a scalable multi-FPGA system developed by JAXA [23], as shown in Figure 3.10.

Each FLOPS board provides a Xilinx Virtex 4 XC4VLX100 FPGA, four high-speed serial links

interfaced by PCM’s PM8358 and two SO-DIMM slots each for 2GB SDRAMs. By connecting

boards with serial links, FLOPS-2D can increase its size or change the interconnection topologies

freely. Although the interface chip PM8358 enables to use various type of serial interconnection, 10

Gigabit standard interface is used in the implementation.

FLOPS-2D is connected with a host PC through a general purpose FPGA board. The data is

continuously transferred form the host PC through the interface board, and computed with pipelines

implemented on multiple FPGAs. If required, the data can be stored in the SDRAM in each board.

This structure allows high degree of modularity and flexibility, although the parallel/serial data trans-

form is needed to exchange data between FPGAs.

UPACS
Source Code

.

.

.
PCI-Express

FLOPS
Board

CPU

Host PC

SFP
Xilinx Virtex5
XC5VLX110

FLOPS
 Board

FLOPS
 Board

FLOPS
 Board

FLOPS-2D

TB-5V-VLX110

SFP/High Speed Serial Link

FLOPS
 Board

FLOPS
 Board

FLOPS
 Board

FLOPS
 BoardXilinx Virtex4

XC4VLX100

Serial
Link

DDR2
2GB

DDR2
2GB

Serial
Link

Serial
Link

Serial
Link

Serial
Link

Serial
Link

Serial
Link

Serial
Link

FLOPS Board

Figure 3.10: The whole FLOPS-2D composition.

3. FPGA and Partial Reconfiguration
3.4. Applications in Fluid Dynamics 34

BlockRAM
(User Code)

Memory
Controller

Xilinx
Micro Blaze
Processor

OPB Bus

OPB IF

Falcon Processor
Controller

ZBT
SRAM

Falcon
Processor

Xilinx
Virtex 6000

Falcon Input Interface

Falcon Output Interface

FPE FPE

Memory Unit

Mixer
Unit

Controll
Unit

Arithmetic
Unit

Falcon Processor
Element (FPE)

Falcon
Processor

Figure 3.11: The outline of Falcon architecture.

3.4.2 Falcon

Kocsardi et al. used soft core processors provided by FPGA cooperated with external high-speed

RAM [50]. Figure 3.11 shows the Falcon architecture where part of the CFD processing is mounted.

It provides a floating point processing unit. Compared to the Intel Core 2 Duo processor operating at

2 GHz, improvement in the speed of about 21 times is realized.

3.4.3 Systolic Architecture

Another work is an FPGA-based flow solver based on the systolic architecture [51,52]. It shows that

the fractional-step method with central difference schemes can be executed with a systolic algorithm,

and therefore the systolic architecture is suitable for a dedicated processor.

2D systolic array of cells, each of which has a micro-programmable data-path containing a MAC

(Multiplication and Accumulation) unit and a local memory to store necessary data for CFD, is de-

signed as shown in Figure 3.12. With ALTERA Stratix II FPGA, 96(=12×8) cells are implemented

running at 60 MHz. Total peak performance is 11.5 GFlops, while 7.14 and 6.41 times faster com-

putations are achieved compared to Pentium 4 processor at 3.2 GHz and Itanium 2 at 1.4 GHz,

respectively.

3.4.4 Alpha-Data

Nagy et al.’s approach is implementing an unstructured mesh geometry on an Alpha-Data reconfig-

urable development system equipped with a Xilinx Virtex 6 FPGA with 2 Gbyte on-board DRAM

[53]. The DRAM has four 32 bit wide banks running on 800 MHz. Thus, it provides 12.8 Gbyte/s

peak theoretical bandwidth. The cell-centered state and constant values are stored and loaded from an

off-chip memory, since the number of cells is far exceeding the available on-chip memory as shown

in Figure 3.13. Overlapping of input data sets is adopted to reduce the number of memory accesses

and to save memory bandwidth.

3. FPGA and Partial Reconfiguration
3.4. Applications in Fluid Dynamics 35

Array
Controller

PCI
Controller

PCI Bus

ALTERA
Stratix II FPGA

Local
Memory

MUX

MUX M
U

X
M

U
X

W-FIFO E-FIFO

N-FIFO S-FIFO

N
orm

alize
M

U
X N

orm
alize

Command

MAC Unit

Figure 3.12: The outline of systolic architecture.

Performance of this architecture is determined using the result of the post place and route static

timing analysis. It achieves 325 MHz operating frequency for the double precision computing. 23.08

GFLOPs performance is reported on a Virtex 6 FPGA. Three arithmetic units can be implemented

and connected in a pipeline manner, and it achieves 69.22 GFLOPs cumulative computing perfor-

mance.

3.4.5 XtremeData

Another work has addressed the problem of accelerating CFD applications by studying the hard-

ware implementation of a cell-vertex finite volume algorithm to solve Euler equations, using the

XtremeData in-socket FPGA accelerator [54]. Figure 3.14 shows the hardware process distribution

in XtremeData FPGA.

The target hardware module is the XtremeData in-socket accelerator, which contains three Altera

Stratix III FPGAs. The module plugs directly into the FSB (Front Side Bus) socket of any dual

processor Xeon system. In the three FPGAs within the XtremeData in-socket accelerator, one serves

as a bridge to the FSB, and the others are available to implement the user logic. These two application

FPGAs are connected through two 64-bit dedicated buses. In addition, the XtremeData module

includes two QDRII+ SRAM banks, one for each user FPGA. Each of these banks has 8 MB - 2 MB

× 32 bits with two independent read/write ports whose bandwidth is 2.8 GB/s for each.

3. FPGA and Partial Reconfiguration
3.5. Partial Reconfiguration 36

Processor Processor Processor

FIFO

FIFO FIFO

FIFO

FIFO

DMA

DMA

DMA

Memory
Interface

and
Arbitrer

Off-chip
memory

FPGA

1st iteration2nd iterationnth iteration

Figure 3.13: Block diagram of the FPGA in Alpha-Data architecture.

For taking advantage of high-level language synthesis tools, an Impulse C tool is used with

optimized low level components. The hardware accelerated implementation achieved speedups up to

13.25 times in performance.

inviscid
residuals

preProc

postProc

FPGA 2FPGA 1

g
o
P
r
e

g
o
P
o
s
t

Figure 3.14: Hardware process distribution in XtremeData.

3.5 Partial Reconfiguration

One of the features of the Xilinx Virtex architecture is the ability to reconfigure a portion of the FPGA

while the remainder of the design is still operational. The technique called partial reconfiguration is

useful for applications that require the loading of different designs into the same area of the device or

the flexibility to change portions of a design without reconfiguring the entire device. Using smaller

devices improves system cost and lowers power consumption.

As systems become more complex and designers are asked to do more with less, FPGA adapt-

ability has become a critical asset. While FPGAs have always provided the flexibility to do on-site

device reprogramming, today’s constraint demands even more efficient design strategies. Partial re-

configuration extends the inherent flexibility of the FPGA by allowing specific regions of the FPGA

to be reprogrammed with new functionality while applications continue to run in the remainder of

the device. Partial reconfiguration addresses three fundamental needs by enabling the user to:

3. FPGA and Partial Reconfiguration
3.5. Partial Reconfiguration 37

• reduce cost and/or board space,

• change a design in the field, and

• reduce power consumption.

3.5.1 Reduce Cost

Two most prevalent user problems addressed by partial reconfiguration are:

• fitting more logic into an existing device, and

• fitting a design into a smaller, less expensive device.

Historically, designers have spent days on trying new implementation, reworking code, and re-

engineering solutions to squeeze their design into the smallest possible FPGA. Partial reconfiguration

enables these designers to reduce the size of their designs by dynamically time-multiplexing portions

of the available hardware resources. The ability to load functions as-needed basis also reduces the

amount of idle logic.

An example of this strategy is the use of partial reconfiguration within a Software Defined Radio

(SDR) system [55], where the user uploads a new waveform on demand to establish communication

with a new channel. Any number of waveforms can be supported by a single hardware platform,

requiring only unique partial bitstreams to be available for these waveforms. Established links to

other channels are not disrupted by the update to another channel due to the on the fly characteristics

of partial reconfiguration.

3.5.2 Increased System Flexibility

In the past, changing a design in the field required new placement and routing of the design and the

delivery of a full configuration file. The designer also had to shut the system down while making

the change. In contrast, when using partial reconfiguration, the designer needs only to place and

route the modified function in the context with the already verified remainder of the design, and then

delivers this new partial image to a system in the field.

Moreover, the designer can dynamically insert new functions, while the system is up and running.

It improves system available time. Thus, mutually exclusive functions can be plugged into the same

space without having to redesign the system or move to a bigger device.

Another example of the benefits of partial reconfiguration is its use within Optical Transport

Network (OTN) solutions [56]. Like with SDR, different protocols can be supported to create a more

efficient hardware system. Only the protocol for a particular channel needed at any point in time is

loaded in the FPGA. A deployed system can handle traffic of many different types using minimal

resources. The system also can be updated with the latest protocols without requiring a full redesign.

3. FPGA and Partial Reconfiguration
3.6. Design Flow for Partial Reconfiguration 38

3.5.3 Reduce Power Consumption

Power consumption has become a primary concern for today’s designers. Like size and cost, it is a

metric with strict limits in most systems. However, as FPGA designs grow in size and complexity,

they consume more power. While synthesis and implementation tools coupled with appropriate

design techniques can help to reduce power consumption, partial reconfiguration implementations

can further reduce static and dynamic power [57, 58].

One way to reduce static power is to simply use a smaller device. With partial reconfiguration,

designers can essentially use time slice in the FPGA and run parts of their design independently. The

design then requires a much smaller device, since not every part of the design is needed 100% of the

time.

Partial reconfiguration also has the potential to reduce operating power as well as static power.

For example, many designs must be able to run at a very high speed. However, only small percentage

of the time that maximum performance might be needed. In order to save power, designers can use

partial reconfiguration to swap out a high performance design with a low power version of the same

design. The designer can then switch back to the high performance design when the system requires

it.

3.5.4 Additional Advantages

The ability to time multiplex hardware dynamically on a single FPGA offers a number of additional

advantages.

• provides real-time flexibility in the choice of algorithms or protocols available to an application

at any given moment,

• enables the use of new techniques in design security,

• improves FPGA fault tolerance, and

• reduces bitstream storage requirements.

Partial reconfiguration is a powerful solution that can dramatically extend the capabilities of FP-

GAs. In addition to the potential for reducing size, weight, power, and cost, partial reconfiguration

enables new types of FPGA designs that provide efficiencies unattainable with the conventional de-

sign techniques.

3.6 Design Flow for Partial Reconfiguration

Implementing a partially reconfigurable FPGA design is similar to implementation of multiple non-

partial reconfiguration design that shares common logic. Partitions are used to ensure that the com-

mon logic between the multiple designs is identical. Figure 3.15 illustrates this concept.

3. FPGA and Partial Reconfiguration
3.6. Design Flow for Partial Reconfiguration 39

Top
Module

Static
Module

Reconf
Module

Reconf
Module

HDL Sources

Synthesize

Top SM RM1 RMNNetlists

Constraints
File

RM1

Full
Implement

Design-1

Constraints
File

RMN

Full
Implement

Design-N

Copy
Static

Figure 3.15: Overview of the partial reconfiguration design flow.

The top box in the first row represents HDL sources for top, static and reconfigurable modules.

At this stage, the RTL simulation is also performed. Then, all modules are synthesized to produce

netlist for each module. Before the design, constraints files are inserted for the target design. The

appropriate netlists are implemented in each design to generate the full and partial bit files for that

configuration. The static logic from the first implementation is shared among all subsequent design

implementations.

At the same time, the design specification must be analyzed thoroughly, and limitations associ-

ated with partial reconfigurable designs are considered. Key considerations in partial reconfiguration

design are listed as follows:

1. Design structure

An appropriate design hierarchy must be provided to resolve complexities and difficulties dur-

ing implementation. A clear design instance hierarchy simplifies physical constraints. Group-

ing logic that is packed together in the same hierarchical level is necessary.

2. Elements inside reconfigurable module

Not all resources on FPGA are permitted to be targets of reconfiguration. Although most

modules such as slice, block RAM, and IOB can be reconfigured, global logic and clocking

resources must be placed in the static region. This is because it should remain operational

during reconfiguration.

3. Packing logic

Any logic packed together must be placed in the same group, whether it is static or reconfig-

3. FPGA and Partial Reconfiguration
3.6. Design Flow for Partial Reconfiguration 40

urable. For example, I/O registers must remain with the I/O port. Hierarchical boundaries must

be chosen appropriately, since the insertion of proxy logic may result in suboptimal results or

impossible routing.

4. Clocking

Virtex-6 is the first architecture which has multiple columns of Region Clock Buffer (BUFR)

within the same clock region. Partial reconfiguration requires that all BUFRs used within one

clock region must be contained in the same partition.

5. Decoupling functionality

Since the reconfigurable logic is modified while the FPGA device is operating, the static logic

connected to outputs of reconfigurable module must ignore data during the partial reconfigu-

ration. The reconfigurable modules will not output valid data until partial reconfiguration is

completed and the reconfigured logic is reset.

6. Partition boundaries

Partial reconfiguration is done frame by frame. When partial bit files are generated, they are

built with a discrete number of configuration frames. Partition boundaries do not have to align

to reconfigurable frame boundaries, but the most efficient place and route results are achieved

when this is done.

7. Proxy logic

Partition pins are defined as the interface between static and reconfigurable logic. No special

logic or tags are required to accommodate this definition. In most cases, an LUT is inserted at

this interface point to represent this node.

8. Black boxes

The partial reconfiguration design also allows black boxes to be implemented as reconfigurable

modules. This is an effective way to reduce the size of full configuration bit file, and therefore

it reduces the initial configuration time.

9. Constraints

In order to adequately constrain the entire design, constraints are given for both the static and

reconfigurable portions of the design. Top User Constraints File (UCF) is shared by all the

static and reconfigurable modules.

10. Implementation strategies

There are trade-offs associated with optimizing partial reconfiguration design. Reconfigurable

partition becomes a barrier for optimization, and reconfigurable frames require specific layout

constraints. When configurations for this design is built, the first configuration chosen for

implementation is the most challenging one. It is also important that the selected physical

region has required amount of resources such as DSP48Es.

3. FPGA and Partial Reconfiguration
3.7. Summary 41

3.7 Summary

FPGAs continue to be used in a myriad of programmable systems. Technology and feature advance-

ments make FPGAs ideal for use in HPC applications. Due to massive parallelism offered by FPGA

architectures, many HPC applications can be accelerated in performance when compared to stand

alone CPUs.

On the other hand, enormous performance gains are due to architectural enhancements and in-

creasing of chip density. It is directly correlating to significant applications speedups. Together with

low operating power consumption, extremely high performance to power ratios can be realized on

FPGA-based HPC systems. In addition to their longstanding reputation as the platform of choice for

designing programmable systems, FPGAs are rapidly becoming a valuable and lasting solution to

meet the challenging processing and interface demands of HPC applications.

In the applications of fluid dynamics, FPGAs have attracted attention from many researchers, and

several implementations for CFD applications were proposed. Moreover, recent partial reconfigura-

tion technology has provided extra benefits in deploying FPGAs for various applications. In addition

to the potential for reducing size, power and cost, partial reconfiguration increased system flexibility,

and enables new types of FPGA designs that provide efficiencies. We discussed the design flow of

partial reconfiguration and the design consideration to achieve required performance.

Chapter 4

UPACS Code Implementation

This chapter presents target subroutine implementation in UPACS exploration. Two types of recon-

figuration — static and dynamic, are implemented, followed by performance evaluation for both

designs.

4.1 UPACS

UPACS is a CFD package to simulate compressible flow using multi-block grids. It provides re-

searchers an easy way to run large-scale simulations. It has been developed as a common aerospace

CFD software equipping with flexibility, scalability and portability since year 2000 [28]. The appli-

cation is written in Fortran 90 and it supports the Message Passing Interface (MPI) interface. UPACS

supports Euler, Navier-Stokes and Reynolds Averaged Navier-Stokes equations as governing equa-

tions. By choosing solvers, users can execute simulations on their parallel systems without any code

tuning. Users can also select desired solutions and determine the number of processes by setting

parameters. In order to run a simulation, users just prepare a parameter file and grid data files.

4.1.1 Profiling

As the early stage of this study, we profiled execution time of UPACS on SPARC64V processors at

1.3 GHz with Solaris8 operating system. To this end, we used a 403 grid dataset. Figure 4.1 shows the

simulation flow and profiling result of UPACS and its correspondent percentage of execution time.

The core routine occupies about 70% of the total execution time. It also shows that the execution

time of UPACS is mainly consumed in the main loop distributed into several procedures. Note that,

the percentage of the execution time is only shown from “boundary condition, pressure” to “calculate

residual”, and thus the sum does not reach 100%. Amdahl’s law indicates that subroutine with large

computation time should be selected.

On the other hand, subroutines with complicated data dependency are hard to implement. Con-

sidering these factors, two subroutines are possible for selected: MFGS (Matrix Free Gauss-Seidel)

and MUSCL (Monotone Upstream-centered Schemes for Conservation Law). MFGS has the largest

4. UPACS Code Implementation
4.1. UPACS 43

Start

Initialize

Read Grid Data

Calculate Matrix

Read Physical Data When Restart

Boundary Condition,
Pressure (0.9%)

Finish?

Calculate Residual (0.8%)

Output

EndTurbulence Model

Diffusion Term (9.0%)

MUSCL (10.0%)

RHS

Convection Term

MUSCL (13.6%)

Fluid Speed (11.2%)

Viscosity Term (11.0%)

Matrix-Free
Gauss-Seidel (13.9%)

Target Subroutine

Yes

No

Figure 4.1: UPACS profiling result.

portion in execution time that is 13.9%, while MUSCL in convection term has consumed 13.6% of

the total execution time. In addition to these two subroutines, which consumed 27.5%, MUSCL is

also used in the turbulence model. MUSCL in turbulence model has consumed 10.0% of the total ex-

ecution time resulting in total our coverage being almost 37.5%. However, in the preliminary study,

Fujita et al. had mapped the data flow graphs of the MFGS subroutine directly onto FPGA [59].

Figure 4.2 shows the arithmetic pipeline for MFGS subroutine.

Therefore, in this study, we focus on MUSCL scheme subroutine, since this subroutine is used

twice in core routine of UPACS from the turbulence model to calculate residual. The core routine

occupies a large portion of total execution time and its ratio grows up more than 90% as grid size

increases [24].

4.1.2 MUSCL Scheme

MUSCL (Monotone Upstream-centered Schemes for Conservation Laws), which is a method to

improve the accuracy, was introduced by Bram van Leer in 1979 [60]. It provides highly accu-

rate numerical solutions for a given system. In UPACS, MUSCL is used in the turbulence model

(TMUSCL) and the convection term (CMUSCL) calculation. It extrapolates cell surface values from

cell center values in equations (4.1) to (4.4), as shown in Figure 4.3:

q′i+1/2 = (qi+1 − qi)/(∆i+1 + ∆i) (4.1)

q′i−1/2 = (qi − qi−1)/(∆i + ∆i−1) (4.2)

4. UPACS Code Implementation
4.1. UPACS 44

(9)(9) (9) (9) (9) (9)

(9) (9) (9) (9) (9) (9)

(12) (12) (12)

(12)

(12)(56)

(9)

(12)
Numbers Stand for the
Latency of the Arithmetic Units

Figure 4.2: The structure of pipeline for MFGS.

qi±1/2 � qi ± φ(r)∆iq′i−1/2 (4.3)

r = (q′i+1/2)/(q′i−1/2) (4.4)

where, qi denotes the cell center value, ∆i the distance between cell center and cell surface, q1/2 the

cell surface value, and φ(r) the Flux Limiter Function (FLF). The suffix i in the equations indicates

the direction which can be extended to three dimensions. In addition, qi consists of five physical

values in UPACS, and there are data dependency between them. These physical values can represent

density, velocity, pressure, viscosity or energy. FLFs are used to suppress oscillation of values, which

often arises in the field where values change rapidly with a high order difference scheme. Six FLFs

of MUSCL are shown in equations (4.5) to (4.10). In TMUSCL, four symmetry FLFs of no limiter,

i

qi-1/2L qi-1/2R qi+1/2L qi-1/2R

qi-1 qi qi+1

∆i-1 ∆i ∆i+1

Figure 4.3: MUSCL scheme.

4. UPACS Code Implementation
4.1. UPACS 45

Table 4.1: Available flux limiter functions in each MUSCL.

Subroutine Flux Limiter Functions

Turbulence MUSCL

no limiter

van Leer

van Albada

minmod

2nd Convection MUSCL

no limiter

van Leer

van Albada

minmod

superbee

3rd Convection MUSCL

no limiter

minmod

Hemker-Koren

van Albada, van Leer and minmod limiter functions are included. On the other hand, 2nd order

CMUSCL uses no limiter, van Albada, van Leer, minmod and superbee limiter functions. Finally,

3rd order CMUSCL consists of no limiter, minmod and Hemker-Koren limiter functions. Summary

of available flux limiter functions for each MUSCL is shown in Table 4.1.

no limiter, φ(r) = 0.5(r + 1) (4.5)

van Leer, φ(r) =
(r + |r|)

(1 + r + EPS)
(4.6)

van Albada, φ(r) =
(r2 + r)

(1 + r2 + EPS)
(4.7)

minmod, φ(r) = max[0,min(1, r)] (4.8)

superbee, φ(r) = [0,min(2r, 1),min(r, 2)] (4.9)

Hemker − Koren, φ(r) =
(r + 2r2)

(2 − r + 2r2)
(4.10)

Here, r comes from (4.4), and EPS is a machine epsilon (1 × 10−16).

4. UPACS Code Implementation
4.2. Static Reconfiguration 46

4.2 Static Reconfiguration

The flexibility of FPGA raises the possibility for hardware configurations with software as needed

to improve efficiency, robustness, security and capability to be programmable on the fly. A partially

reconfigurable design of an FPGA consists of three major modules: the top module, static module and

Reconfigurable Modules (RMs). The top module includes the static module and the RMs. The static

module is a set of non-reconfigurable modules, while RMs are the dynamically reconfigurable parts

of the design. The area of the device in which RMs is implemented is called Reconfigurable Partition

(RP). Our first implementation uses static partial reconfiguration. This means the computation is not

active during the reconfiguration process. While the partial data is sent into the FPGA, the rest of the

device is stopped and brought up after the reconfiguration is completed.

As shown in previous section, MUSCL scheme is used twice in UPACS execution flow. There-

fore, at the beginning, users must specify which limiter function they want to use at both parts. First,

MUSCL is used in the turbulence model with four FLFs got involved. Then, MUSCL is used again

in the convection term calculations part. 2nd order calculation for convection term involves 5 FLFs,

and 3 FLFs are available for 3rd order calculation. However, in the CMUSCL calculation part, 2nd

order CMUSCL and 3rd order CMUSCL are alternatively used. Here, partial reconfigurability of the

FPGA and intractability of the bitstream is effective to meet the requirements. Figure 4.4 shows the

block diagram of the system. In FPGA, the system consists of top MUSCL module, RP module for

FLFs and on-chip memory using block RAM. The system is connected with the host PC that con-

tains all FLFs bitstream files. The connection is through UART via a JTAG port. JTAG was chosen

for configuration port because of quick testing and debugging. Although ICAP port is a good alter-

native, it requires user-designed partial reconfiguration controller such as custom state machine or

embedded processor. Moreover, when the partial bit files are stored in host PC, JTAG is convenient

compared to self configurations using ICAP.

Since each MUSCL function has similar structure except FLFs, we can design a single MUSCL

module with all FLFs for TMUSCL, 2nd order CMUSCL and 3rd order CMUSCL. However, it be-

comes a large hardware, which is difficult to be implemented on a single FPGA. The straightforward

way is designing three MUSCLs each of which has their own FLFs. Although this approach reduces

the hardware, we must provide three independent designs. Our approach is to provide a single design

whose FLF can be replaced by making the best use of partial reconfiguration. The total required

hardware and power usage can be minimized, since it provides only a single FLF required in the

target application. When the execution of UPACS starts and the functions required for MUSCL is

decided, an appropriate FLF module is loaded by using the partial reconfiguration while the other

part of FPGA is remaining unaffected.

Each FLF module has the same inputs and outputs, thus, it can be specified in the HDL descrip-

tion as the functional modules with the RP attribute in the description of the MUSCL top module.

Multiple instances corresponding to each FLF can be defined for such a single functional module.

4. UPACS Code Implementation
4.2. Static Reconfiguration 47

JTAG

Reconfigurable
Partition
(FLFs)

On-chip Memory
(BlockRAM)

Memory

FPGA

Memory
MemoryReconfigurable

Module (FLF)

Top Module
(MUSCL Scheme)

Host PC

Figure 4.4: High level system overview of static reconfiguration design.

Software tools as NGDBuild, MAP and PAR detect the reconfigurable partition attribute on the in-

stance and process it correctly [17].

4.2.1 Design and Implementation

Here, Xilinx Virtex-6 FPGA (XC6VLX240T-1FF1156), which supports a partial reconfiguration,

was chosen as a target device. MUSCL scheme is implemented as a top, static module with a recon-

figurable partition. Using its reconfigurable partition, FLFs are implemented as partial reconfigurable

modules. The datapath can be obtained from partially simplified data-flow representation of the al-

gorithm shown in Figure 4.5. By inserting shift registers in the datapath, the fundamental structure

of the pipeline is designed. Xilinx CORE Generator is used to provide the core for floating-point

adder, subtractor, multiplier, divider and shift register. Efficient memory system is primary concern

over here. Therefore, memory system implementation is based on proposed work by Morishita et

al. [61]. To solve 3D model of fluid dynamics problem, pipeline datapath is implemented three times

inside an FPGA.

All modules are described using Verilog HDL and simulated with Xilinx ISim Simulator. The

modules are synthesized and used resources are measured using Xilinx ISE 12.4. Floor-planning,

constraint entry and Design Rule Checks (DRCs) are all accessed through the PlanAhead 12.4 soft-

ware environment which supports a partial reconfiguration flow. In order to demonstrate that our

system works on the real FPGA, Xilinx ML605 board is used with 200 MHz operating frequency.

All modules were also implemented using IEEE 754 standard 64-bit double precision floating-point

arithmetic1. Here, the floating-point computational module is based on the Xilinx Floating-Point

Operator v5.0 incorporated into Xilinx ISE 12.4 software. The Floating-Point Operator v5.0 is an IP

1Further specification of IEEE standard 754 floating-point numbers is given in Appendix A.

4. UPACS Code Implementation
4.2. Static Reconfiguration 48

EPS

Flux
Limiter
Function

QL

QR

Q

Q-

Q+

D
D+

D-

van Albada

1

Reconfigurable Module

Shift
Registers

EPS
EPS

Figure 4.5: MUSCL pipeline with van Albada limiter function.

core for handling floating-point operations, and it is configurable by the user specifications. In order

to generate high performance computation unit, the level of DSP48E usage is set to the maximum to

get the desired output.

Inputs given to the pipeline are vectors each of which consists of five physical values mentioned

before. At one time, only one FLF is used and employed in the FPGA. All FLFs are synthesized

separately from the top module. The top MUSCL and reconfigurable FLF modules consist of many

arithmetic functions. The parameters used for each computing unit are shown in Table 4.2. Adder

and Subtractor are set to 14 clock cycles per operation using high-speed mode. In addition, Multiplier

takes 16 clock cycles with 11 DSP48E modules. The latency of Divider is set to be 57. Although it

is possible to decrease the divider pipeline latency, it will severely degrade the clock frequency.

Table 4.2: Data of used computing units.

Units Latency Registers LUTs DSP48E

Adder 14 947 797 3

Subtractor 14 947 798 3

Multiplier 16 483 362 11

Divider 57 5973 3261 0

Comparator 1 0 128 0

4. UPACS Code Implementation
4.2. Static Reconfiguration 49

min
max

min

r

2

1

2

0.5

no limiter

superbee Hemker-Koren

0

minmodvan Albada

EPS

van Leer

r

r

r

r

r

out

out

out

out

out

min
max

2 2

1

1

1

1

EPS

out

Figure 4.6: Implemented flux limiter functions.

The designs for all FLFs are shown in Figure 4.6. The one with the smallest clock cycles is

minmod limiter function, which only requires 2 clock cycles. The largest latency is by Hemker-

Koren limiter function, which requires 117 clock cycles to get the result. Moreover, van Albada and

van Leer limiter functions require 87 and 85 clock cycles, respectively. In these FLF modules, shift

registers are used to synchronize the input value. Shift registers are 64 bit width and can take various

clock cycle depth depending on the situation. Machine epsilon (1 × 10−16) and constant value 1.0

are also used in these FLFs modules. The remaining minmod and superbee limiter functions require

comparator modules, which are used for minimum and maximum value comparison.

4.2.2 Evaluation

In this section, evaluation results are shown in order to demonstrate the concept of the system. The

following three designs are evaluated and compared. Sample of 100 × 100 × 100 grid size is used

for evaluation.

• design-1: One static module of MUSCL scheme with all FLFs.

• design-2: Three static modules with the associate FLFs for TMUSCL, 2nd order CMUSCL

and 3rd order CMUSCL.

• design-3: One top module of MUSCL scheme with partial reconfiguration FLFs. Statically

reconfigurable design.

4. UPACS Code Implementation
4.2. Static Reconfiguration 50

 0

 20

 40

 60

 80

 100

design-1 design-3

U
til

iz
at

io
n

(%
)

Resources Utilization

Slice Registers
Slice LUTs

DSP48E

Figure 4.7: Resource usage in design-1 and design-3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

TMUSCL CMUSCL 2nd CMUSCL 3rd

U
til

iz
at

io
n

(%
)

Resources Utilization

Slice Registers
Slice LUTs

DSP48E

Figure 4.8: Resource usage in design-2.

4.2.2.1 Resources Utilization

The amount of required slice registers, slice LUTs and DSP48E is evaluated when the design is

synthesized. The results for all three designs are shown in Figure 4.7 and Figure 4.8. The results

show that design-3 has the lowest resource utilization compared to design-1 and design-2. The largest

resource is occupied by design-1, which is the slice LUT usage had exceeded 100%, so it cannot be

implemented on a single chip. Design-2 has less resource required for implementation compared to

design-1. However, design-2 will require three different FPGAs or three times full reconfiguration

on an FPGA.

In design-2 TMUSCL has four FLFs: no limiter, van Leer, van Albada and minmod. CMUSCL

2nd has five FLFs: no limiter, van Leer, van Albada, minmod and superbee. CMUSCL 3rd has three

FLFs: no limiter, minmod and Hemker-Koren. In design-3, all FLFs share the same reconfigurable

4. UPACS Code Implementation
4.2. Static Reconfiguration 51

 0

 1

 2

 3

 4

 5

design-1 design-3

P
ow

er
 (

W
)

Power Consumption

4.513

3.020

Figure 4.9: Total on-chip power for design-1 and design-3.

 0

 1

 2

 3

 4

 5

TMUSCL CMUSCL 2nd CMUSCL 3rd

P
ow

er
 (

W
)

Power Consumption

3.168 3.207

3.739

Figure 4.10: Total on-chip power for design-2.

partition in MUSCL. In contrast, the overhead in resource utilization is small. It comes from unused

resource in reconfigurable partition. Since the partition size is fixed, each FLF is not fully used the

resources available. However, in this case, the overhead is very small and can be negligible.

4.2.2.2 Power Consumption

Power consumption becomes one of the biggest concerns in FPGA design as capacity and perfor-

mance of FPGAs have been increased. The results of total power consumption for all three de-

signs are shown in Figure 4.9 and Figure 4.10. In design-1, Xilinx XPower Estimator(XPE) 13.3 is

used since the design cannot be implemented in an FPGA. Resources usage from synthesis result of

design-1 is used as an input to XPE to estimate total power usage. In short, it shows that design-3

has the lowest power consumption compared to the other two designs.

4. UPACS Code Implementation
4.2. Static Reconfiguration 52

On the other hand, the highest power is consumed by design-1. In design-1, the total power is

high because of static power by unused limiter functions module. In design-3, the total power is only

consumed by MUSCL module and the required limiter function. Moreover, the power for design-2

is less than that for design-1, but design-3 is advantageous even when it is compared with design-2.

This is because design-2 also has unused limiter functions in every TMUSCL, CMUSCL 2nd and

CMUSCL 3rd during operation. This increases the static power in design-2.

4.2.2.3 Configuration Time

The configuration time for full reconfiguration and partial reconfiguration are compared. In this case,

only design-2 and design-3 are evaluated, since design-1 cannot be implemented on a single chip. In

the case of JTAG configuration, for Virtex-6 device, configuration time is given by:

configuration time =
(2, 044 + bits in bitstream)

TCK frequency
(4.11)

where bits in bitstream is size of the configuration bitstream in bits and TCK frequency is maximum

configuration TCK (Test Clock) frequency and used for boundary-scan operations. In this case, for

Virtex-6 device with -1 speed grade, TCK frequency is 66 MHz. 2,044 is the total number of clock

cycles needed for pre-processing and post-processing while programming the bitstream to FPGA.

In full reconfiguration, each MUSCL module bitstream size is 9,017 KB. Based on the Eq. (4.11),

the configuration time is equal to 1.119 sec. On the other hand, bitstream size for each partial recon-

figuration bit file for the 2nd order FLFs is 255 KB. This means that the configuration time is equal

to 0.031 sec. In the case of the 3rd order FLFs, partial bitstream size is 266 KB and corresponding

configuration time is 0.033 sec. In short, the partial reconfiguration method accelerated the configu-

ration speed by 34 times. In other words, execution time is not so degraded compared with design-2

when the FLFs are switched dynamically.

In this implementation, the MUSCL will stop working when the FLF is loaded to reconfigurable

partition in the FPGA. However, since the time taken to load the FLF is between 0.031 sec and 0.033

sec, this small overhead is acceptable. Even if low speed JTAG is used through iMPACT tool to

reconfigure the FPGA, the time to change from one FLF to the other is less than one second, and

hard to been recognized by human eyes. Usually, the partial reconfiguration is done once when

TMUSCL is changed into 2nd-order CMUSCL or 3rd-order CMUSCL in a job, which requires large

execution time. Thus, the overhead for partial reconfiguration will be acceptable.

4. UPACS Code Implementation
4.2. Static Reconfiguration 53

Table 4.3: Total clock-cycle in TMUSCL for each respective limiter functions.

Flux Limiter Function # Clock-cycle

no limiter 233

van Albada 290

van Leer 288

minmod 204

Table 4.4: Total clock-cycle in CMUSCL for each respective limiter functions.

Flux Limiter Function # Clock-cycle

no limiter 2nd 233

van Albada 2nd 290

van Leer 2nd 288

minmod 2nd 204

superbee 2nd 222

no limiter 3rd 233

minmod 3rd 204

Hemker-Koren 3rd 320

4.2.2.4 Performance

MUSCL is implemented with pipelined structure and the clock cycles are measured. Total clock

cycles for MUSCL with each FLF are shown in Table 4.3 and Table 4.4. The number of clock cycles

is corresponding to the time for solving iteration. In TMUSCL, van Albada is the largest, and it takes

290 clock cycles. In CMUSCL, Hemker-Koren requires 320 clock cycles to get the result.

The execution time in MUSCL with partial reconfigurable FLFs is compared with the execution

time by software. In software, Core 2 Duo 2.4 GHz executes MUSCL with Linux Kernel 2.6.18

operating system. The compiler used is GNU Fortran 4.1.2. The execution time to solve 100 × 100

× 100 iterative calculation is measured by using call cpu_time in Fortran 90 language and the 3rd

order Hemker-Koren is selected for comparison, since it has the largest clock cycles. In software, the

execution time took 0.08399 sec. while it takes 320 clock cycles to finish one iterative calculation

in the FPGA. Adding the time for I/O sending the data sequentially, it took 1,000,320 clock cycles

to finish the whole simulation. 1,000,000 comes from the grid size corresponding to the total mesh

points. Since the operating frequency in the FPGA is 200 MHz, the total execution time is 5.0016

x 10−3 sec. That is, by execution of CMUSCL in FPGA, about 17 times acceleration is expected.

Since the grid size will grow large and take a lot of iterations, configuration time will not caused a

bottleneck to the system. Furthermore, overhead also did not influence the operating frequency.

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 54

JTAG

Host PC

Reconfigurable
Partition
(TMUSCL)

FPGA

Reconfigurable
Partition
(CMUSCL)

Top Module
(MUSCL Scheme)

On-Chip Memory
(BlockRAM)

MemoryMemoryMemoryRM
(CMUSCL)

MemoryMemoryMemoryRM
(TMUSCL)

Figure 4.11: High level system overview of dynamic reconfiguration design.

4.3 Dynamic Reconfiguration

Our next implementation of the MUSCL scheme uses dynamic reconfiguration for flux limiter func-

tions. Dynamic reconfiguration is an active partial reconfiguration, which permits to change the part

of the device while the rest of an FPGA is still running.

In this design, we created a separate reconfigurable partition for TMUSCL and CMUSCL. As

mentioned before, MUSCL scheme is used twice in UPACS execution flow. Therefore, at the begin-

ning, users must specify which limiter function they want to use at both parts. First, MUSCL is used

in the turbulence model with four Flux Limiter Functions (FLF) got involved. Then, MUSCL is used

again in the convection term calculations part. 2nd order calculation for the convection term involves

5 FLFs, and 3 FLFs are available for 3rd order calculation. However, in CMUSCL calculation part,

2nd order CMUSCL and 3rd order CMUSCL are alternatively used. Figure 4.11 shows the block

diagram of the system. In FPGA, the system consists of top MUSCL module; two reconfigurable

partitions module for FLFs (TMUSCL and CMUSCL); and on-chip memory using Block RAM.

The system is connected with the host PC that contains all FLFs bitstreams for both TMUSCL and

CMUSCL. The connection is through UART via a JTAG port.

In this implementation, design strategy is the same as statically reconfigurable design except

for the reconfigurable partitions. At start up, the top MUSCL module with blank bitstream in

both TMUSCL and CMUSCL is loaded to target FPGA. Then, an appropriate FLF module for the

turbulence model is loaded to the TMUSCL reconfigurable partition and start the computation of

TMUSCL. During calculation of the turbulence model, users can load the partial bitstream of re-

quired FLF for the convection term calculation in CMUSCL reconfigurable partition. After the

turbulence calculation finishes, the calculation for convection term can start immediately. Again,

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 55

in both reconfigurable partitions, each FLF module has the same inputs and outputs, thus it can be

specified in the HDL description as the functional modules with the reconfigurable partition attribute

in the description of the MUSCL top module.

4.3.1 Design and Implementation

This section examines the implementation of dynamic reconfiguration design. We use the same

FPGA, Xilinx Virtex-6 (XC6VLX240T-1FF1156), which supports a partial reconfiguration as a tar-

get device. The top MUSCL and reconfigurable FLF modules consist of many arithmetic functions.

The parameters used for each computing unit is the same as in static reconfiguration design and

shown in Table 4.2.

4.3.1.1 Bottom-Up Synthesis

Bottom-up synthesis is synthesis of the design by modules, from bottom modules to top module.

This synthesis technique requires that a separate netlist is written for each partition ensuring that

each portion of the design is synthesized independently. MUSCL scheme as a top level logic is

synthesized with black box for the reconfigurable partitions. In this case, TMUSCL and CMUSCL

modules are defined as a black box in top module synthesis. TMUSCL and CMUSCL modules

are synthesized beforehand to provide the netlist to top module. The modules are synthesized, and

resources utilization is measured using Xilinx ISE 12.4. All modules are described using Verilog

HDL and simulated with Xilinx ISim Simulator.

4.3.1.2 Floorplanning

In this step, it is required to perform manual floorplanning for reconfigurable partitions, which re-

quires knowledge of the physical architecture of FPGA and understanding of how to floorplan for

optimal performance and area. Therefore, we manually floorplan the TMUSCL and CMUSCL re-

configurable regions through PlanAhead 12.4 software environment. Figure 5.5 shows reconfigurable

partition for TMUSCL and CMUSCL separately. After that, constraint entry and Design Rule Checks

(DRCs) are performed.

In order to demonstrate that our system works on the real FPGA, Xilinx ML605 board is used

with 200 MHz operating frequency. All modules are implemented using IEEE 754 standard 64-bit

double precision floating-point arithmetic. Here, the floating-point computational module is based

on the Xilinx Floating-Point Operator v5.0 incorporated into Xilinx ISE 12.4 software. The Floating-

Point Operator v5.0 is an IP core for handling floating-point operations, and it is configurable by the

user specifications. In order to generate high performance computation unit, the level of DSP48E

usage is set to the maximum to get the desired output.

At the beginning, MUSCL scheme without any limiter functions for TMUSCL and CMUSCL

are loaded to FPGA. This is done by inserting the blank bit file to both reconfigurable partitions.

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 56

Figure 4.12: Floorplan of FLF reconfigurable partitions for dynamic reconfiguration design.

Then, users can decide which limiter functions they want to use for TMUSCL. After limiter function

in TMUSCL is successfully loaded, calculation is started. While MUSCL is operating for TMUSCL

calculation, users can load the desired limiter functions for CMUSCL in CMUSCL reconfigurable

partition. When TMUSCL calculation is finished, it can immediately start the CMUSCL calculation

since CMUSCL limiter function is readily available.

Implemented flux limiter functions are the same as static reconfiguration design as shown in

Figure 4.6. The difference lies in that we separately assign TMUSCL FLFs to TMUSCL reconfig-

urable partition and CMUSCL FLFs to CMUSCL reconfigurable partition, respectively. Therefore,

this design strategy occupies 2 times reconfigurable partition area compared to static reconfiguration

design.

4.3.2 Evaluation

In this section, evaluation results are shown and discussed. The following four designs are evaluated

and compared. Same sample of 100 × 100 × 100 grid size is used for evaluation.

• design-1: One static module MUSCL scheme with all FLFs.

• design-2: Three static modules of MUSCL scheme with the associate FLFs for TMUSCL, 2nd

order CMUSCL and 3rd order CMUSCL.

• design-3: One top module of MUSCL scheme with one reconfigurable partition for TMUSCL

and CMUSCL. Statically reconfigurable design.

• design-4: One top module of MUSCL scheme with two reconfigurable partitions for TMUSCL

and CMUSCL respectively. Dynamically reconfigurable design.

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 57

 0

 20

 40

 60

 80

 100

design-1 design-3 design-4

U
til

iz
at

io
n

(%
)

Resources Utilization

Slice Registers
Slice LUTs

DSP48E

Figure 4.13: Resource usage in design-1, design-3 and design-4.

 0

 20

 40

 60

 80

 100

TMUSCL CMUSCL 2nd CMUSCL 3rd

U
til

iz
at

io
n

(%
)

Resources Utilization

Slice Registers
Slice LUTs

DSP48E

Figure 4.14: Resource usage in design-2.

4.3.2.1 Resources Utilization

The amount of resources usage for slice registers, slice LUTs and DSP48E is determined when the

design is synthesized. The results for all four designs are shown in Figure 4.13 and Figure 4.14.

The results show that design-3 has the lowest resource utilization compared to design-1, design-2

and design-4. This is because design-3 only provides a single reconfigurable partition compared to

two reconfigurable partitions for design-4. The largest resource is occupied by design-1. The slice

LUT usage for design-1 had exceeded 100%, therefore it is not possible to be implemented on a

single FPGA. On the other hand, design-2 has less resource required for implementation compared

to design-1. However, design-2 will require three different FPGAs or three times full reconfiguration

on an FPGA.

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 58

 0

 1

 2

 3

 4

 5

design-1 design-3 design-4

P
ow

er
 (

W
)

Power Consumption

4.513

3.020
3.204

Figure 4.15: Total on-chip power for design-1, design-3 and design-4.

 0

 1

 2

 3

 4

 5

TMUSCL CMUSCL 2nd CMUSCL 3rd

P
ow

er
 (

W
)

Power Consumption

3.168 3.207

3.739

Figure 4.16: Total on-chip power for design-2.

4.3.2.2 Power Consumption

Power consumption is one of the crucial issues among FPGA users. Power usage becomes more im-

portant as FPGAs increase in logic capacity and performance. The results of total power consumption

for all four designs are shown in Figure 4.15 and Figure 4.16. For design-1, Xilinx XPower Estimator

(XPE) 13.3 is used since the design cannot be implemented in a real chip. It shows that design-3 has

the lowest power consumption compared to other three designs. However, the power increased in

design-4 is not significantly higher than design-3.

In design-1, the total power is increased because of static power by unused limiter functions. In

design-3 and design-4, the total power is only consumed by top MUSCL and the required limiter

function. The power for design-2 is less than that for design-1, but design-4 is advantageous even

when it is compared with design-2.

4. UPACS Code Implementation
4.3. Dynamic Reconfiguration 59

4.3.2.3 Configuration Time

The configuration time for full reconfiguration and partial reconfiguration are compared. In this case,

only design-2, design-3 and design-4 are evaluated, since design-1 cannot be implemented. In the

case of JTAG configuration, for Virtex-6 device, configuration time is calculated using Eq. (4.11)

In full reconfiguration, each MUSCL module bitstream size is 9,017 KB. Based on the above

formula, the configuration time to program into an FPGA is equal to 1.119 sec. In design-3, bit-

stream size for each partial reconfiguration bit file for the 2nd order FLFs is 255 KB. This means

that the configuration time for partial bitstreams in design-3 is equal to 0.031 sec. In the case of the

3rd order FLFs, partial bitstream size is 266 KB and corresponding configuration time is 0.033 sec.

In design-4, partial bit stream size for TMUSCL is 554 KB and for CMUSCL is 577 KB. There-

fore the corresponding configuration time for partial bitstreams of TMUSCL is 0.069 sec and partial

bitstreams for CMUSCL is 0.072 sec. In short, the partial reconfiguration method in design-4 accel-

erated the configuration speed by 15 times compared to full reconfiguration design. In other words,

execution time is not so degraded compared with design-2 when the FLFs are switched dynamically.

In comparison to statically reconfigurable design, design-3, MUSCL will stop working when the

FLF is loaded to reconfigurable partition in the FPGA. Therefore, there is small overhead while con-

figuring the reconfigurable partition to change FLF. However, in design-4 this overhead is eliminated

by introducing two reconfigurable partition for both TMUSCL and CMUSCL.

4.3.2.4 Performance

Dynamically reconfigurable MUSCL scheme is implemented in a single FPGA and the clock cycles

are measured. In the same way as static reconfiguration design, grid size to solve 100 × 100 ×
100 iterative calculation is used. Again, 3rd order Hemker-Koren limiter functions is selected for

comparison, since it has the largest clock cycles. In software, MUSCL is executed by Core 2 Duo

2.4 GHz with Linux Kernel 2.6.18 operating system. In hardware, MUSCL is executed using ML605

board with 200 MHz operating frequency. As a result, total clock cycles for MUSCL with each FLF

is the same as static reconfiguration design as shown in Table 4.3 and Table 4.4. The number of

clock cycles is corresponding to the time for solving an iteration. In short, by execution of MUSCL

in FPGA, about 17 times more acceleration is expected.

In addition, total execution time for static reconfiguration design, design-3 and dynamic recon-

figuration design, design-4 are compared. Considering the configuration time into account, the total

execution time is given by:

TEX = TFR + TPR + TT MUS CL + TPR + TCMUS CL (4.12)

4. UPACS Code Implementation
4.4. Summary 60

where

• TEX - total execution time

• TFR - time taken for full reconfiguration

• TPR - time taken for partial reconfiguration

• TT MUS CL - processing time in turbulence MUSCL

• TCMUS CL - processing time in convection MUSCL

In design-3, to change from TMUSCL limiter function to CMUSCL limiter function takes TPR

to do the reconfiguration. This is because TMUSCL and CMUSCL limiter functions are occupied by

the same reconfigurable partition on an FPGA. Meanwhile, in design-4, while FPGA is processing

TMUSCL, users can load the CMUSCL limiter function. Therefore, in design-4, TPR to download

CMUSCL limiter function is eliminated resulting in shorter total execution time, TEX .

To conclude, clearly design-3 and design-4 outperformed design-1 and design-2 in overall perfor-

mance. However, there is a small trade off between design-3 and design-4. Even though design-3 is

superior in terms of resource utilization and power consumption, design-4 has an advantage from the

viewpoint of performance. This is because, in design-3 MUSCL operation must be stopped during

configuration for TMUSCL and CMUSCL, which is not needed in design-4.

4.4 Summary

In this chapter, we have discussed the implementation of target subroutine in UPACS software pack-

age. UPACS is a convenient CFD package that allows users to select various sets of solutions.

UPACS solver together with support utilities has proven its effectiveness in a simulating flow around

complex configurations using multi-block structured grid scheme. However, it is hard to be imple-

mented even on a high capacity FPGAs because of a large hardware amount. To address this problem,

exploitation of partial reconfigurability in recent FPGAs was considered. Partially reconfigurable flux

limiter functions in MUSCL scheme were implemented. Two types of partial reconfiguration were

explored that are static and dynamic partial reconfiguration.

In the static reconfiguration design, MUSCL scheme using partial reconfiguration platform has

been implemented to reduce the required hardware resource, power consumption, and configuration

time. It also aims to improve the performance. This implementation successfully reduced the re-

source utilization by 44% to 63%. Also, power consumption was reduced by 33%. Configuration

speed was accelerated 34 times faster. Overall speed-up at least 17 times in performance compared

to software execution was achieved.

4. UPACS Code Implementation
4.4. Summary 61

In the dynamic reconfiguration design, cost effective implementation of MUSCL scheme using

partial reconfiguration strategy has been explored. Two reconfigurable partitions were implemented,

which are for TMUSCL and CMUSCL respectively. This design dynamically allows users to load

CMUSCL limiter functions during the TMUSCL computation. This implementation successfully

reduced the resource utilization by 60%. Also, power consumption was reduced by 29%. Configu-

ration speed was accelerated 15 times faster compared to full reconfiguration design. Performance

evaluation also shows that 17 times more acceleration was achieved compared to the Intel Core 2

Duo at 2.4 GHz.

Chapter 5

FaSTAR Code Implementation

In the previous chapter, we have studied a single MUSCL scheme used in UPACS and implemented

on an FPGA. Partial reconfiguration is applied to flux limiter functions available in MUSCL scheme.

We had successfully took both statically and dynamically reconfigurable strategies. Although the

total hardware is reduced, the effect is limited since it only occupies a small portion of the target

FPGA.

In this chapter, we will study the FaSTAR code implementation using partial reconfiguration on

an FPGA. We try to extend the applications field of partial reconfiguration to large flux calculation

scheme in advection term computation used in FaSTAR. Five flux calculation schemes are analyzed

and studied. Section 5.3 discusses the design and implementation, followed by Section 5.4 for per-

formance evaluation.

5.1 FaSTAR

FaSTAR is a CFD software package developed by JAXA to simulate compressible flow using un-

structured grids. FaSTAR consists of many solvers with multiple solutions. Its source code is written

in Fortran 90 with MPI. By choosing certain solvers, users can select various solutions supported by

the application and run simulation in parallel with their systems without specific software tunings.

Users just are requested to prepare parameter file and grid data file before the simulation. By select-

ing a combination of solvers, a user can simulate the target object with desired solutions. When the

partial reconfiguration is applied to selectable solutions, the profiling is required at first. Then, the

part in which multiple schemes are available is picked up from the subroutines which take a long

computation time.

5.1.1 Profiling

As the first step in our study, we profiled the execution time of FaSTAR to find out which routines

consume the highest percentage. Compiler used is Intel Fortran Compiler 10.1 on Intel Core2Duo

processor at 2.66 GHz with Linux Kernel 2.6. The profiling results are shown in Figure 5.1.

5. FaSTAR Code Implementation
5.2. Flux Calculation Scheme 63

limiter
31.8%

etc.
17.8%

advection term
30.5%

time
integration

19.8%

Target Subroutine

Figure 5.1: FaSTAR profiling result.

Code for single core without MPI was compiled. The result indicates that more than 60% of the

total execution time is occupied by two calculations part: limiter and advection term. FaSTAR

limiter part is difficult for implementation in reconfigurable hardware because of its complicated

iteration. Here, we selected the advection term, since it occupies a large part of the total computation

time, and has a selectable function whose hardware requirement is relatively large.

5.1.2 Target Subroutine

Advection term consists of three subroutines:

• pre-processing,

• flux calculation, and

• surface integral of flux.

In pre-processing, data such as cell-A number are prepared. Using these data, flux is obtained

by applying to scheme equations in flux calculation part. Here, we try to apply partial recon-

figuration to make reconfigurable scheme selection as a focus in this study. Then, the finite volume

method for discretization of the space is processed in surface integral of flux. Akamine et

al. have reported the study for this part in [62].

5.2 Flux Calculation Scheme

In flux calculation subroutines, there are five schemes available for selection: Roe’s scheme, HLLE

scheme, HLLEW scheme, AUSM+-up scheme and SLAU scheme [63–67]. We describe how to

compute the inviscid flux using Riemann solver approximation. As shown in Figure 5.2, conserved

quantities, Qna and Qnb in cell A and cell B were used to determine flux, Fn. In this case, with the

respective to cell A, the normal vector, ds has the same right direction with flux. On the other hand,

5. FaSTAR Code Implementation
5.2. Flux Calculation Scheme 64

Fn=Fn(Qna,Qnb)

Cell A Cell B

Qna Qnb

ds

Figure 5.2: Flux in definition of cell surface boundary.

with respect to cell B, the opposite direction is positive. In all schemes, Fn is evaluated when it is

viewed from the cell A which means right direction is positive. If it is viewed from cell B, it will

become -Fn.

5.2.1 Roe’s Scheme

The method proposed by Roe [63] is based on Euler’s equation into windward of the linearization.

The numerical flux function can be written as:

Fn =
1
2

[f (Qna) + f (Qnb) − |A|ave(Qnb − Qna)] (5.1)

where

f (Qna) =



ρauna

ρau2
na + pa

ρaunaut1a

ρaunaut2a

ρaunaHa



= ρauna



1

una

ut1a

ut2a

Ha



+



0

pa

0

0

0



(5.2)

Qna =



ρa

ρauna

ρaut1a

ρaut2a

ea



(5.3)

Note that f (Qnb) and Qnb are calculated in the same way for f (Qna) and Qna. In addition, A is the

Jacobian matrix for flux,

|A|ave = Rave|Λ|aveR−1
ave (5.4)

5. FaSTAR Code Implementation
5.2. Flux Calculation Scheme 65

where R is the matrix with right eigenvector, Λ is matrix with eigenvalue and R−1 is matrix with

left eigenvector. The matrix with subscript ave, is composed by variables which obtained by Roe

average. The Roe average can be expressed as follows:

ρave =
√
ρaρb

uave =

√
ρaua +

√
ρbub√

ρa +
√
ρb

Have =

√
ρaHa +

√
ρbHb√

ρa +
√
ρb

cave =

√
(γ − 1)(Have − 1

2
u2

ave)

(5.5)

where, c denotes the speed of sound, H the total enthalpy per unit mass, and γ specific weight

representing the force exerted by gravity on a unit volume. Therefore, γ = ρ× g. Then, we can write

the matrices in details as follows:

R =



1 0 0 ρ
2c

ρ
2c

u 0 0 ρ(u+c)
2c

ρ(u−c)
2c

v 0 −ρ ρv
2c

ρv
2c

w ρ 0 ρw
2c

ρw
2c

u2+v2+w2

2 ρw−ρvρH+ρuc
2c

ρH+ρuc
2c



(5.6)

|Λ| =



|u| 0 0 0 0

0 |u| 0 0 0

0 0 |u| 0 0

0 0 0 |u + c| 0

0 0 0 0 |u − c|



(5.7)

Note here that if ave subscript can be omitted, u = un, v = ut1 and w = ut2.

5.2.2 HLLE Scheme

Einfeldt [64] discussed an adapted version of the HLL scheme [68], called HLLE (Harten-Lax-van

Leer-Einfeldt) scheme, which can be considered as a modification of Roe’s scheme. This scheme is a

stable procedure that is solved by approximation of two characterized waves, which are valid for the

flow with a strong expansion. However, there is a disadvantage that the numerical viscosity is large.

Total flux can be calculated using the following equations:

5. FaSTAR Code Implementation
5.2. Flux Calculation Scheme 66

Fn =
b+ f (Qna) − b− f (Qnb)

b+ − b−
+

b+b−

b+ − b−
(Qnb − Qna) (5.8)

where

b+ =max(uave + cave, unb + cb, 0)

b− =min(uave − cave, una − ca, 0)
(5.9)

The average value b, is calculated using Roe average in Eq. (5.5)

5.2.3 HLLEW Scheme

Obayashi and Wada proposed a new, modified HLLE scheme that satisfies the positively conservative

condition called HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme [65]. The numerical flux

can be calculated using the following equations:

Fn =
1
2



f (Qna)



1

una

ut1a

ut2a

Ha



+ f (Qnb)



1

unb

ut1b

ut2b

Hb



+



0

pa + pb + δ2

δ3

0

0





(5.10)

where

δ2 = − (λ+ρave∆u + λ−
∆p
cave

)

δ3 = − (λ1∆p + uaveδ2)

λ+ =
λ2 + λ3

2
− λ1

λ− =
λ2 − λ3

2

(5.11)

Coefficients, δ2 and δ3 are obtained using the Roe average in Eq. (5.5)

5.2.4 AUSM+-up Scheme

AUSM+-up is an improved version of AUSM (Advection Upstream Splitting Method) scheme, dis-

cussed by Liou [66]. Inviscid flux function is explicitly split into two parts, mass flux and pressure

flux, written as follows:

Fn = ṁψ + pave (5.12)

5. FaSTAR Code Implementation
5.3. Design and Implementation 67

and discretises them separately as follows:

ṁ =ρV

ψ =(1, u, v,w,H)T

pave =(0, px, py, pz, 0)T

(5.13)

where the first term in Fn is the convective flux, indicating the convection of ψ by the mass flux ṁ

and the second term is the pressure flux, p, containing nothing but the pressure. One advantage of

this scheme is that the Jacobian matrix does not need to be calculated.

5.2.5 SLAU Scheme

Shima and Kitamura has introduced Simple Low-Dissipation Scheme of AUSM-Family (SLAU)

[67]. The numerical flux of SLAU scheme is given by:

Fn =
ṁ + |ṁ|

2
φ +

ṁ − |ṁ|
2

φ + p̃N (5.14)

φ =(1, u, v,w, h)T

N =(0, xn, yn, zn, 0)T

h =(e + p)/ρ

(5.15)

where xn, yn, zn denote Cartesian components of a normal vector from the left to the right, u, v, w

velocities in x, y, z directions, ρ, e, ṁ, and p̃, density, total energy per unit volume, mass flux and

pressure flux, respectively.

5.3 Design and Implementation

As in UPACS implementation, Xilinx Virtex-6 FPGA (XC6VLX240T-1FF1156) was chosen as a

target device, which supports partial reconfiguration. In a large software package, a subroutine itself

is not always appropriate as a target of partial reconfiguration. For example, three schemes treated

here include Roe average calculation and so it must be implemented as a static module. Before the

design, the target is well re-structured so that the static module and partial reconfiguration modules

are appropriately separated.

5. FaSTAR Code Implementation
5.3. Design and Implementation 68

Reconfigurable
flux calculation

scheme

Memory A

Memory B

+

RAM

Read

Write

Flux

Roe Average
Module

ρ

H
u

cell

index

I/O
Module

Figure 5.3: System overview.

Overview of the system is shown in Figure 5.3. At the beginning, the system will initialize and

updates mesh size for each grid data and face index. Then, it will calculate Roe average value in Roe

average module since this value is needed for three schemes: Roe, HLLE and HLLEW. AUSM+-up

and SLAU schemes are not required of Roe average values. Inputs for the Roe average module are

density, ρ, velocity, u and total enthalpy per unit mass, H. The result of Roe average module is

directly input to the flux calculation module.

After that, in the reconfigurable flux calculation module, users can choose which scheme they

want to use. All schemes are defined as reconfigurable modules. Each scheme module has the same

inputs and outputs as shown in Figure 5.4, and thus it can be specified in the HDL description as

the functional modules with the reconfigurable partition attribute in the description of the top mod-

ule. However, since AUSM+-up and SLAU schemes do not require Roe average values, we created a

virtual port for Roe average input indicated by dotted line in these two schemes. This is important be-

cause all reconfigurable modules must have identical input/output port while instantiation as a black

box in top module. Multiple instances corresponding to the schemes are defined for such a single

functional module. RAM is allocated in each scheme to store variable values during calculation. It

is built with block RAMs, in which data is stored temporarily.

Table 5.1: Implementation environments.

Name Tools

HDL Verilog HDL

FPGA Virtex-6 XC6VLX240T FF1156

Synthesis ISE 12.4 XST

Simulation ISim M.81d Simulator

PR Flow PlanAhead 12.4

Programming iMPACT M.81d

Floating-point Unit CORE Generator

5. FaSTAR Code Implementation
5.3. Design and Implementation 69

cell

index

roe_avg

cell

index

roe_avg

Flux

Roe

HLLE

Matrix
R

Module

Matrix
|Λ|

Module

Matrix
R-1

Module

Matrix
Multiplication

Module

Matrix
Multiplication

Module

Roe
Flux

Function

HLLE
Coefficients

Module

HLLE
Flux

Function

Flux

cell

index

roe_avg

FluxHLLEM
Coefficients

Module

HLLEW
Flux

Function

HLLEW

Compute
Pressure
Difference

AUSM+-up
Coefficients

Mass
flux

Pressure
flux

Flux SLAU
Coefficients

Mass
flux

Pressure
flux

Flux

SLAUAUSM+-up

cell

index

roe_avg

cell

index

roe_avg

+ +

Figure 5.4: Implemented flux calculation schemes.

Programmable input/output (I/O) module is designed to control the access to memory. A result

of flux calculation module is stored in memory. We implement a simple dual-port RAM for each

adjacent cells A and B. Here, Block RAM used is 36 Kb block, RAMB36E, which is configured

in a simple dual-port RAM mode. Read/Write data width is set to 64 bit. Read/Write process is

performed in parallel with the flux calculation module. Summation of all cell flux values gives the

total flux.

All modules were described using Verilog HDL and simulated with Xilinx ISim simulator. The

modules were synthesized, and used resources were measured with Xilinx ISE 12.4. Floorplan-

ning, constraint entry and Design Rule Checks (DRCs) are all accessed through the PlanAhead 12.4

software environment, which supports partial reconfiguration flow. All modules were implemented

using IEEE 754 standard 64-bit double precision floating-point arithmetic1. Here, the floating-point

computational module is based on the Xilinx Floating-Point Operator v5.0 incorporated into Xilinx

ISE 12.4 software. The Floating-Point Operator v5.0 is an IP core for handling floating-point oper-

ations, and it is configurable by the user specifications. CORE Generator was used to provide the

core for floating-point arithmetic units. So as to generate high performance computation unit, the

level of DSP48E usage was set to the maximum to get the fastest output. In order to demonstrate

1Further specification of IEEE standard 754 floating-point numbers is given in Appendix A.

5. FaSTAR Code Implementation
5.3. Design and Implementation 70

Figure 5.5: Floorplan of reconfigurable partition with HLLE scheme.

that our system works on a real FPGA, Xilinx ML605 board was used with 200 MHz operating fre-

quency. Finally, for programming the FPGA, Xilinx iMPACT software was used. Summary for the

implementation environments is shown in Table 5.1.

At one time, only one scheme is used and employed in the FPGA. The top, static and reconfig-

urable modules consist of many arithmetic functions. The parameters used for each computing unit

are shown in Table 5.2. We used bottom-up synthesis technique to synthesize the design by mod-

ules. This synthesis technique requires that a separate netlist is written for reconfigurable partition,

ensuring that each portion of the design is synthesized independently. Top and static module are syn-

thesized with black box for the reconfigurable partition. In this case, flux calculation scheme module

is defined as a black box in a top module synthesis. Roe, HLLE, HLLEW, AUSM+-up and SLAU

scheme modules are synthesized beforehand to provide the required netlist.

The next crucial step is to perform manual floorplanning for reconfigurable partition, which re-

quires knowledge of the physical architecture of FPGA and understanding of how to floorplan for

Table 5.2: Data of used computing units.

Units Latency Registers LUTs DSP48E

Adder 14 947 797 3

Subtractor 14 947 798 3

Multiplier 16 483 362 11

Divider 57 5973 3261 0

Square Root 57 3283 1902 0

Comparator 1 0 128 0

5. FaSTAR Code Implementation
5.3. Design and Implementation 71

optimal performance and area. Here, the challenge is how to create and pack large flux calculation

schemes into a single partition. The partition boundary is defined so that the inserted proxy logic

and the extra wiring cost may not degrade the total performance. Although irregular shaped partition

such as T or L shapes is allowed, placement and routing in such regions sometimes degrade the per-

formance because of the shortage of the routing resources and long wires. Therefore, we manually

floorplan the flux schemes reconfigurable partition through PlanAhead 12.4 software environment.

We chose a certain size rectangular shape for flux calculation scheme reconfigurable partition. Fig-

ure 5.5 shows a floorplan of the system while HLLE scheme is deployed. This is important for all

reconfigurable modules to have enough resources to fit in the partition when the bitstream is loaded.

Then, timing constraint entry and DRCs are performed.

5.3.1 Roe Average Module

As shown in Section 5.2, three schemes are needed of Roe average values before the flux computation

is processed. Therefore, Roe average module is decided as a static module since it will be used in

these three cases. In this module, managing parallelism is an important issue. The FaSTAR source

code for Roe average calculation in Fortran 90 is written as follows:

RAT = SQRT(RRHT/RLFT)

RATI = 1.0/(RAT + 1)

RAV = RAT*RLFT

UAV = (RAT*URHT + ULFT) * RATI

VAV = (RAT*VRHT + VLFT) * RATI

WAV = (RAT*WRHT + WLFT) * RATI

HAV = (RAT*HRHT + HLFT) * RATI

QA2 = UAV*UAV + VAV*VAV + WAV*WAV

CA2 = GM1*(HAV - 0.5d0*QA2)

CAV = SQRT(CA2)

The code is executed sequentially from top to bottom. The advantage of sequential operations is

that they efficiently use the resources, whereas parallelism can be used to reduce the time to comple-

tion and get the Roe average values at the expense of additional hardware resources.

The idea behind control parallelism is that the statements used to compute uave (UAV), vave (VAV),

wave (WAV) and Have (HAV) can be performed simultaneously while still producing the correct an-

swer. A scheduled data flow graph as shown in Figure 5.6 represents a data dependencies between

operations. After square root, SQRT output to get the value of RAT, all multiplications operations are

executed in parallel. At this stage, ρave (RAV) are obtained. Then, after RATI value is obtained, all

UAV, VAV, WAV and HAV can be also computed in parallel. However, CAV cannot begin until QA2 and

5. FaSTAR Code Implementation
5.3. Design and Implementation 72

+ *

sqrt

/ +

*

+

*

+

*

+

* * * *

/

RRHT RLFT

1 URHT VLFT WLFT HLFT

RAT

RATI

UAV VAV WAV HAV

*

RAV
ULFT VLFT WLFT HLFT1

Figure 5.6: Scheduled data flow graph for Roe average module.

CA2 finish. At the beginning to compute RAT will take a large number of clock cycles, since square

root and divider computing units require a large number of clock cycles each. Therefore, we imple-

mented pipeline datapath to address this as shown in Figure 5.7. Registers are inserted in dotted line

to created a single stage pipeline.

+
/ √

∗

−

/

ρR

ρL

ρave

+

∗

uave

∗

+
∗

Have

∗
∗

∗ √ cave∗
HR

HL

uR
uL

1

1

0.5

γ

Registers

Figure 5.7: Pipeline datapath for Roe average module.

5. FaSTAR Code Implementation
5.3. Design and Implementation 73

Load C

Store C

A B

Store C

FIFO

x

+

Figure 5.8: The structure of MAC organization for Roe scheme.

5.3.2 Roe Scheme Module

Roe scheme module was implemented in reconfigurable partition as a reconfigurable module. This

module is designed and synthesized separately from the top module. Roe calculation scheme involves

5 steps to get the results:

1. Compute matrix R;

2. Compute matrix R−1;

3. Compute matrix |Λ|;

4. Compute Jacobian matrix |A|; and

5. Compute Roe’s numerical flux.

The main arithmetic operation of this module is a 5 × 5 matrix multiplication as shown in Eq.

(5.4). In general, the standard matrix multiplication C = A × B is defined as follows:

Ci, j =

N−1∑

k=0

Ai,k × Bk, j, (0 ≤ i ≤ M, 0 ≤ j ≤ R) (5.16)

where A, B and C are M×N,N ×R, and M×R matrices, respectively. However, it requires two times

matrix multiplication to obtain the Jacobian matrix, which utilizes a lot of resources.

However, computation of each matrices R, R−1 and |Λ| are done in parallel. Then, matrix R is

multiplied with matrix R−1. Result of this matrix is multiplied with matrix |Λ| to obtain Jacobian

matrix. Finally, Jacobian matrix is used to compute the numerical flux.

We implemented a MAC (Multiplication and Accumulation) unit structure that couples the mul-

tiplication and the accumulation closely as shown in Figure 5.8. The multiplier receives the elements

of A and B in a data driven manner. That means whenever both data are available, they will enter the

pipeline. After the multiplication, the result is stored in FIFO and loaded address is generated. The

5. FaSTAR Code Implementation
5.3. Design and Implementation 74

/

∗

−

∆Q

f(Qna)

+ Fn

b+

f(Qnb)

b-

∗

∗

−

/
∗

Figure 5.9: HLLE flux function circuit.

next multiplication result will be added with the prefetch data from the FIFO, and accumulated results

are stored in temporary memory. This operation strategy is repeated continuously until calculation

finishes.

5.3.3 HLLE Scheme Module

HLLE scheme module is rather straightforward compared to Roe scheme module. This module is

also defined as a reconfigurable module in the same as Roe scheme module. Therefore, it is designed

and synthesized separately from the top module to produce the required netlist. HLLE calculation

scheme requires 2 steps to get the final result:

1. Compute HLLE coefficients and eigenvalues; and

2. Compute HLLE numerical flux.

After received the Roe average values, HLLE coefficients, b+ and b− are computed using adder,

subtractor and comparator computing units. Then, HLLE flux function circuit shown in Figure 5.9

is used to compute the HLLE numerical flux. This hardware implementation divides the fraction of

Eq. (5.8) into two parts. Therefore, calculation of left fraction and right fraction are done in parallel.

Summation of these two values makes the total flux.

5.3.4 HLLEW Scheme Module

Apparently, HLLEW scheme is a modification of HLLE scheme. This scheme is also based on

Roe scheme as well as HLLE scheme. However, to compute the HLLEW flux, there is no need

to do a matrix computation as suggested for Roe scheme. HLLEW scheme is also implemented

as a reconfigurable module in reconfigurable partition. Therefore, it is synthesized beforehand and

separately to provide the required netlist to the top module. Computation of HLLEW flux requires

the following steps:

5. FaSTAR Code Implementation
5.3. Design and Implementation 75

∗

f(Qna)

+

Fn

f(Qnb)

ua

Ha

ub

Hb

∗

+

+

+

∗

∗

p

δ

0.5

∗

Figure 5.10: HLLEW flux function circuit.

1. Compute coefficients and eigenvalues;

2. Compute pressure difference; and

3. Compute HLLEW numerical flux.

Again, Roe average values are used here to compute the coefficients and eigenvalues. After that,

pressure difference, ∆p is calculated. When all values are obtained, inputs are sent to the HLLEW

flux function circuit as shown in Figure 5.10 to compute the numerical flux. This circuit is explicitly

designed to calculate the Qna and Qnb data values in parallel. Total flux is obtained after summation

of result divided by two.

5.3.5 AUSM+-up Scheme Module

In this module, AUSM-based flux calculation is divided to two, mass flux and pressure flux. Sum of

these fluxes will give the final numerical flux. Steps involved in this module are as follows:

1. Compute AUSM+-up coefficients;

2. Compute mass flux and pressure flux in parallel; and

3. Summation of mass and pressure flux.

After coefficients values are obtained, the data are sent to mass flux circuit and pressure flux

circuit. Mass flux circuit is straightforward as density, ρ times velocity, V for all dimensions. Pressure

flux circuit is shown in Figure 5.11.

5. FaSTAR Code Implementation
5.3. Design and Implementation 76

∗

+
Fp

−

∗

∗

∗

∗

∗

∗

∗

−

β+

pL

β-

pR

uR

uL

cave
fa

ρave

2

β+

β-

Figure 5.11: AUSM+-up pressure flux circuit.

5.3.6 SLAU Scheme Module

Same as AUSM+-up scheme, SLAU scheme is a AUSM-based family. Therefore, calculation of

numerical flux is also split to two. Three steps of computation held in this module as follows:

1. Compute SLAU coefficients;

2. Compute mass flux and pressure flux in parallel; and

3. Summation of mass and pressure flux.

Again, implementation in FPGA allows users to compute mass flux and pressure flux in parallel.

Pressure flux circuit for SLAU scheme is shown in Figure 5.12.

∗

+

Fp

−

−

+

β+

β-

pL

pR

β+

β-
−

1
pave

∗

∗

+

0.5

Figure 5.12: SLAU pressure flux circuit.

5. FaSTAR Code Implementation
5.4. Evaluation 77

5.3.7 Implementation Issues

Crucial challenge in this design is to implement large-scale scientific computation using partial re-

configuration. Careful design requirements and considerations should be carried out. At the same

time, the design specification must be analyzed thoroughly, and the limitations associated with partial

reconfigurable designs are considered. The challenges and solutions are listed as follows:

1. I/O in each scheme module

Flux calculation schemes must include the I/O circuitry, Input Buffer (IBUF) and Output Buffer

(OBUF) that are required to connect internal logic to package pins. In other words, the I/O

features must be completely contained within the scheme module, but the port list for the

complete design remains at the top-level design description. Besides, the limitation of the I/O

pins of FPGA must be considered, since flux calculation module requires many I/O.

2. DSP blocks in each scheme module

It is also important that the physical region selected has adequate resources especially DSP48E

for all schemes. Flux calculation scheme requires a lot of DSP blocks to perform the computa-

tion. Therefore, we properly set the last blocks occupied in both end columns of reconfigurable

partition are DSP blocks, instead of slice or block RAM. Using this strategy, we can maximize

DSP blocks in the partition.

3. Interaction with CORE Generator

Since we used CORE Generator to generate all computing units, netlist-based cores were cre-

ated to be instantiated in the design. To make sure these cores can be instantiated easily, the

boundaries of flux calculation scheme partition are not modified. We also made considera-

tions for the definition of the flux calculation scheme region to ensure the proper elements are

contained within.

4. Optimization

In order to optimize the design time for bit file generation, the most complicated and highly

resource consuming design should be selected first. This is because full bit file is generated

only once in the first configuration. In subsequent configuration, full bit file is just promoted

from the first configuration.

5.4 Evaluation

In order to demonstrate the effectiveness of our design, we used a sample data of NACA 0012 airfoil.

The National Advisory Committee for Aeronautics (NACA) develops the NACA airfoils shapes for

aircraft wings. The grid dataset consisting of 11,564 grids with 22,883 faces was used in our study.

We evaluated the used resources, configuration speed for full and partial reconfiguration designs, and

system performance.

5. FaSTAR Code Implementation
5.4. Evaluation 78

5.4.1 Resource Utilization

The amount of required slice registers, slice LUTs, DSP48E and BlockRAM was evaluated when the

design is synthesized. The design is synthesized module by module. Consumed resources for each

module is shown in Table 5.3. Result of the resource utilization is shown in Figure 5.13.

There are 3 design options for implementation consideration. Obviously, the first option is to

fit in all modules in a single FPGA, shown in first column noted by “Full”. It means all modules

shown in Table 5.3 are implemented in one design. The main advantage of this method is that it

only requires one time configuration and no reconfiguration is needed. However, it requires a large

amount of hardware that is not enough in a single FPGA. Total resource utilization for registers,

LUTs and DSP48E usage all are exceeds 100%.

Second strategy is implementing only a scheme in one design. It implies that for five schemes,

there is five difference designs. This is shown in second, third, forth, fifth and sixth column denoted

by “Roe”, “HLLEW”, “HLLE”, “AUSM+-up” and “SLAU”. In this strategy, AUSM+-up and SLAU

are do not require Roe average module. Therefore, their resources usages are less than the other

three schemes. Although there are enough resources to do this, two disadvantages arise. First, it

will require two times full reconfiguration if a user wants to change from one scheme to another.

Second, resource is overused since the same I/O and Roe average module are used again except the

flux scheme module.

The third option, which is our proposed method, is to utilize partial reconfiguration. This is

shown in most right column noted by “Partial”. Top, static and reconfigurable modules are fixed in

a single FPGA. Flux calculation scheme bitstreams are stored in the host PC. When users want to

use any particular scheme, it is loaded to an FPGA. Resource utilization when no scheme loaded is

small. In addition, consumed resources when system is in use and one scheme loaded is the same as

the second option. However, another advantage of this technique is the configuration time. If users

want to change from one scheme to another, it can be faster compared to the full reconfiguration.

Table 5.3: Available and consumed resources.

Module Registers(%) LUTs(%) DSP48E(%) BRAM(%)

I/O Module 0.3 1 0.4 0

Roe average 10 14 11 2

Roe 57 62 52 17

AUSM+-up 33 45 19 11

SLAU 31 43 16 10

HLLEW 30 43 16 10

HLLE 27 37 11 4

5. FaSTAR Code Implementation
5.4. Evaluation 79

 0

 50

 100

 150

 200

 250

Full Roe HLLEW HLLE AUSM+-up SLAU Partial

U
til

iz
at

io
n

(%
)

Resources Utilization

Slice Registers
Slice LUTs

DSP48E
BRAM

Figure 5.13: Resources utilization for all possible implementation.

We examined the amount of resources utilization for each design option. We found out that all

modules cannot be implemented in single Virtex-6 XC6VLX240T-1FF1156 FPGA since resources

available are not enough to accommodate all modules. For the second option design, all schemes are

implemented separately. Although there are enough resources to implement this, all designs require

full reconfiguration to load in an FPGA independently. In partially reconfigurable design, bitstreams

of all schemes are stored in host PC. Therefore, maximum resources reduction is measured when

Roe scheme is deployed since it requires the highest resources. On average, consumed resources

for “Full” design is 153% while for partially reconfigurable design when Roe scheme is deployed is

57%. By normalizing “Full” design to 100%, we divided 57/1.53. As a result, resource utilization is

successfully reduced by 62.75% on average.

Even though the resources are not enough to implement all modules in a single FPGA, there

are resources overhead in partially reconfigurable design. This is because all schemes modules are

implemented in reconfigurable partition. The partition is manually floorplaned and resources allo-

cated are fixed to fit in all modules. Since Roe scheme occupied higher resources than any other

schemes, the reconfigurable partition wasted resources when other schemes are loaded. However,

unused resources in these schemes are used again when Roe scheme is selected.

5.4.2 Configuration Time

The configuration time for the full reconfiguration and partial reconfiguration was compared. The

speed of configuration is directly related to the size of the partial bit file and the bandwidth of the

configuration port. Since we use JTAG configuration port, for Virtex-6 device [69], configuration

time is given by:

configuration time =
(2, 044 + bits in bitstream)

TCK frequency
(5.17)

5. FaSTAR Code Implementation
5.4. Evaluation 80

where bits in bitstream is the size of the configuration bitstream in bits and TCK frequency is maxi-

mum configuration TCK (Test Clock) frequency and used for boundary-scan operations. 2,044 is the

total number of clocks needed for pre-processing and post-processing for single device configuration

sequence while programming the bitstream to FPGA. Although the maximum bandwidth available

is 66 Mbps, we found out that while configuring the FPGA using iMPACT, used bandwidth is 16.7

Mbps and data width is 1 bit.

In a full reconfiguration, the total bitstream size is 9,017 KB. Based on the Eq. (5.17), the

configuration time is equal to 4.423 sec. On the other hand, bitstream size for all schemes are 1,422

KB. This means configuration time for partial reconfiguration is 0.704 sec. In short, the partial

reconfiguration method accelerated the configuration speed by 6.28 times.

There is no overhead for partial reconfiguration since the users must decide which scheme they

want to use before the calculation starts. Therefore, the configuration time will not affect the compu-

tation time in FPGA. In addition, configuration time will not cause a bottleneck to the system when

the grid size grows large and takes a lot of iterations. This is because all flux scheme bitstream is

fixed and not affected by large input size.

5.4.3 Performance

Total clock cycles of flux computational module were measured. The total clock cycles for each Roe,

AUSM+-up, SLAU, HLLEW and HLLE scheme were 205600 × 103, 202200 × 103, 200800 × 103,

197400 × 103 and 191200 × 103, respectively. The execution time for flux calculation scheme in

software was compared with the execution time by hardware as shown in Figure 5.14.

In software, all schemes were executed by Core 2 Duo 2.4GHz with Linux Kernel 2.6.18 oper-

ating system. All schemes are compiled by using Intel Fortran Compiler 10.1. Execution time is

measured by using call system_clock prepared in Fortran 90 language. We found out the execu-

tion time took 5.400 sec. for Roe scheme, 4.723 sec. for AUSM+-up scheme, 4.616 sec. for SLAU

scheme, 4.533 sec. for HLLEW scheme and 4.399 sec. for HLLE scheme. This is shown in the first

column of Figure 5.14, denoted by “Software”.

In hardware, since we know the total clock cycles required from the beginning to the end, and

operating frequency for the FPGA is 200 MHz. Therefore, computation time by FPGA for Roe

scheme was 1.028 sec., 1.011 sec. for AUSM+-up scheme, 1.004 sec. for SLAU scheme, 0.987

sec. for HLLEW scheme and 0.956 sec. for HLLE scheme. Adding the configuration time and

computation time gives an execution time in hardware. Therefore, the second column of Figure 5.14

shows an execution time in FPGA if second option design of full reconfiguration (FR) is deployed,

noted by “FPGA FR”. Adding 4.423 sec configuration time to each scheme computation time of Roe,

AUSM+-up, SLAU, HLLEW and HLLE scheme gives an execution time become 5.451 sec., 5.434

sec., 5.427 sec., 5.410 sec. and 5.379 sec., respectively.

5. FaSTAR Code Implementation
5.4. Evaluation 81

 0

 1

 2

 3

 4

 5

 6

 7

Software FPGA FR FPGA PR

E
xe

cu
tio

n
T

im
e

(s
ec

)

Execution Time

Roe
AUSM+-up

SLAU
HLLEW

HLLE

Figure 5.14: Execution time in software and FPGA.

Third column of Figure 5.14 shows an execution time in FPGA if Partial Reconfiguration (PR)

is used, denoted by “FPGA PR”. Adding 0.704 sec. configuration time to each scheme computation

time gives an execution time of Roe, AUSM+-up, SLAU, HLLEW and HLLE scheme are 1.732 sec.,

1.715 sec., 1.708 sec., 1.691 sec. and 1.660 sec., respectively. Accelerated speed between hardware

and software is compared when HLLE scheme in partially reconfigurable design is deployed since

it is executed fastest in software. Therefore, the execution time of FPGA was 2.65 times faster

compared to the software execution.

Full reconfiguration design strategy for each scheme gives almost the same performance pro-

duced by software. In fact, software execution timings for AUSM+-up, SLAU, HLLE and HLLEW

schemes are faster than FPGA. However, partial reconfigurable design approach at least gives a 2.65

fold speed-up compared to software execution. Therefore, taking configuration time into account,

performance improvement using partial reconfiguration method is justified.

In real simulation, the computational model for acceleration consists of a host processing node,

usually a high-end multicore processor supplemented with our accelerator. The advection term com-

putation is assigned to the accelerator, while the remaining part of FaSTAR stays on the host. The

host application manages the interaction with the FPGA and controls data flow between them through

external interfaces such as PCI Express. For applications of interest, the advection term computation

is a small fraction of the FaSTAR code and represents well over 30% of the computational time.

The kind of optimization used for FPGA depends on the resource that limits the computational

speed. In a well-designed FPGA accelerator card, the on-board memory is designed to provide

multiple channels of streamed data into the FPGA pins to fully support its available bandwidth. It

can also buffer any intermediate results, so that the host memory provides only initial source data

and stores the final results. Figure 5.15 shows a sample computational result of NACA 0012 airfoil

pressure flow using FaSTAR packages.

5. FaSTAR Code Implementation
5.5. Summary 82

Figure 5.15: Visualizing sample computational result of NACA 0012 airfoil pressure flow.

5.5 Summary

In this chapter, we presented FaSTAR, a convenient CFD software package that allows users to select

various set of solutions. However, it is hard to implement even on high-capacity FPGAs because of its

large module. The efficient use of partial reconfigurability in recent FPGAs was explored. Advection

term computation was chosen as a target subroutine, and flux calculation scheme was deployed as

a reconfigurable module. Five flux calculation schemes were implemented: Roe, HLLE, HLLEW,

AUSM+-up and SLAU schemes.

The implementation using partial reconfiguration platform has successfully reduced required

hardware resources, improved configuration time and its performance. Resources utilization was

saved up to 60% on average. The proposed design also improved the configuration time by 6.28

times faster and accelerated the system at least 2.65 times in performance.

Chapter 6

Conclusions

6.1 Summary

In order to expand a design space for CFD applications on reconfigurable hardware, we proposed a

reconfigurable fluid dynamics computation using partial reconfiguration on an FPGA. CFD applica-

tions receive benefit from this technique, since not all available solutions are used in one particular

CFD simulation. Instead of configuring all solvers in an FPGA, only required stuff should be imple-

mented to reduce the resource usage and power consumption by using the partial reconfiguration.

In this thesis, we first introduced the CFD and FPGA. The CFD procedure and their simulation

process were briefly explained and discussed. Conventional systems where CFD applications are

executed were also presented. Two CFD software packages, UPACS and FaSTAR were introduced

and their features were discussed. Then, we discussed about FPGA and their advantages compared

to ASIC and CPU. System applications using FPGA for fluid dynamics were also presented. Some

performance improvement was achieved and reported by related researchers.

In Chapter 4, we implemented MUSCL scheme in UPACS with reconfigurable flux limiter func-

tions. UPACS is a convenient CFD package that allows users to select various sets of solutions.

UPACS solver together with support utilities has proven its effectiveness in simulating flows around

complex configurations using multi-block structured grid scheme. However, it is hard to be imple-

mented even on large FPGAs because of the required hardware amount. We proposed reconfigurable

flux limiter functions, which are used in TMUSCL and CMUSCL. Six limiter functions were imple-

mented: no limiter, van Leer, van Albada, minmod, superbee and Hemker-Koren.

In Chapter 5, we implemented reconfigurable flux calculation scheme in advection term com-

putation in FaSTAR. FaSTAR is another convenient CFD software package with various solvers

and automatic generation of grid data. However, implementation even on large FPGAs is difficult

because of its large modules and complicated structure. Therefore, exploitation of partial reconfig-

urability in recent FPGAs was considered. Advection term computation was chosen as a target and

flux calculation scheme was deployed as a reconfigurable module. Five flux calculation schemes

were implemented: Roe, HLLE, HLLEW, AUSM+-up, and SLAU schemes.

6. Conclusions
6.2. Discussion 84

Table 6.1: Max. bandwidth for configuration ports in Virtex 6 architecture.

Configuration Mode Max Clock Rate Data Width Max Bandwidth

ICAP 100 MHz 32 bit 3.2 Gbps

SelectMAP 100 MHz 32 bit 3.2 Gbps

Serial Mode 100 MHz 1 bit 100 Mbps

JTAG 66 MHz 1 bit 66 Mbps

Overall, both implementations have successfully reduced the resource utilization by 44% to 63%.

Total power consumption for UPACS exploration was also reduced by 29% to 33%. Configuration

speed was improved by 6 to 34 times faster compared to full reconfiguration. Approximately 2 to 17

times speed up was achieved compared to execution on Core 2 Duo at 2.4 GHz.

We make a discussion on important issues for both implementations in the next section. Finally,

future directions are indicated in Section 6.3.

6.2 Discussion

In Chapter 4, we proposed a reconfigurable flux limiter functions in MUSCL scheme for TMUSCL

and CMUSCL. The proposed reconfigurable module strategy successfully reduced the total resources

usage. In Chapter 5, we have proposed flux calculation scheme in advection term computation.

However, to take full advantage of the partial reconfiguration capability, we must analyze the design

specification thoroughly, and consider the limitations associated with partial reconfiguration designs.

An appropriate hierarchical design would resolve many complexities and difficulties when im-

plementing a partially reconfigurable design. A clear design instance hierarchy simplifies physical

constraints. Grouping logic that is packed together in the same hierarchical level is necessary. They

are well known design practice in FPGA designs but are hardly followed by designers. Following

the design rules is not strictly required in partially reconfigurable design, but the potential negative

effects of not following them are pronounced.

Although satisfactory performance was achieved for both designs, configuration time to upload

the partial bit file remains as a key issue. In our observation, the speed of configuration is directly

related to the size of partial bit file and the bandwidth of the configuration port. The different configu-

ration ports in Virtex 6 architectures have the maximum bandwidth as shown in Table 6.1. Any of the

following configuration ports can be used to load the partial bitstream: ICAP (Internal Configuration

Access Port), SelectMAP, Serial Mode, or JTAG (Joint Test Action Group).

We used JTAG as a configuration mode because it is advantageous for quick testing and debug-

ging. It also can be easily driven by iMPACT tools using configuration cable that supports JTAG.

However, as shown in Table 6.1, JTAG has the lowest maximum clock rate and lowest maximum

bandwidth with only 1 bit data width. Although stated JTAG maximum clock rate is 66 MHz, we

6. Conclusions
6.3. Future Directions 85

found that clock rate available practically was 16.7 MHz. It further degrades the configuration speed.

If ICAP port can be utilized, faster configuration speed could be achieved. This port is a good choice

for user configuration solutions. However, it requires the instantiation of an ICAP controller as well

as logic to drive the ICAP interface. Users need to design internal partial reconfiguration controller

to load partial bitstreams through the ICAP interface. Internal configuration can consist of either a

custom state machine, or an embedded processor such as MicroBlaze soft processor.

Moreover, not all logic is allowed to be actively reconfigured. Although most types of logical

components may be reconfigured, global logic and clocking resources must be placed in the static

region to remain operational during reconfiguration. Logic that must remain in static logic includes:

• clock modifying blocks (PLL, PMCD, DCM),

• clock buffers (BUFG), and

• device features blocks (ICAP, USR_ACCESS).

Since clock buffer region exists across the entire FPGA, it is hard to design reconfigurable parti-

tion with more than 50% of available resources.

Other issue to consider for CFD implementation is the capacity of target FPGA. In this thesis, we

have targeted Virtex 6 device, which was the high-end FPGAs when the study was started. Recently

a high capacity Virtex 7 FPGA has been introduced. Therefore, if our target can be replaced with

such newly developed FPGA, we can implement more modules and expand our design.

6.3 Future Directions

Computing systems using FPGAs will expand the future to achieve high performance for many appli-

cations at lower operating cost. The price of an FPGA chip will degrade by volume efficiency. This

is because FPGAs are now embedded in large scale computing systems in some research institute,

such as BEE2 [70] and commercial products like high-vision recorders and video capture cards. This

means that the advantage of introducing FPGA devices is becoming much higher than producing

ASIC. Moreover, the operating cost is much lower than personal computers and other hardware like

Cell/BE (Broadband Engine) and GPU.

This study shows that middle-range FPGA can achieve several fold performance compared to

a recent microprocessor. Although it is difficult for FPGAs to outperform the personal comput-

ers, performance improvement by parallel processing on a chip can be expand linearly according to

the capacity of the FPGA. Moreover, recent FPGAs are being developed to operate with operating

frequency higher than 500 MHz. In contrast, recent microprocessors will not be able to improve

performance simply by increasing their number of cores, since each core shares a cache with other

cores.

6. Conclusions
6.3. Future Directions 86

In fluid dynamics application, FPGA growth rates are exceeding commodity CPUs and future

implementations will ultimately provide some interesting platforms for exploration. The use of high

level language to target this platform will be necessary for making them usable in the scientific

community. However, a single FPGA is not sufficient for large CFD software. Integration with a

host processor and many FPGAs are very useful to accommodate the whole CFD code. Therefore,

further study on effective communication medium such as ethernet is unavoidable. The ability to

identify problems of the implementation issues might lead to realization of full CFD code execution

using FPGAs.

While the limitations of a single FPGA are noticed, multi-FPGA platform with multiple recon-

figurations can be a target of another area of research. They offer the potential to mega-boost the

capacity of resource in FPGA as well as more modules can be reconfigured. However, the intercon-

nection between an FPGA and how they are communicating are another issue to solve for successful

implementation.

Another prospective area for CFD implementation is to deploy heterogeneous architecture be-

tween FPGA and CPU. Successful example of this kind of architecture for high performance com-

puting is reported by Lindtjorn et al. [71]. Heterogeneous computing systems refer to electronic

systems that use a variety of different types of computational units. A computational unit could be a

General-Purpose Processor (GPP) and custom acceleration logic of an FPGA. In general, a heteroge-

neous computing platform consists of processors with different Instruction Set Architectures (ISAs).

Again, the same issue with multi-FPGA is to be solved interconnection between those architectures.

The CFD on cluster computing using FPGA is another possible area for future research. This

approach is very hopeful because the most computationally intensive part in the CFD must be per-

formed iteratively, and that can be parallelized by using many FPGAs.

Bibliography

[1] A. Chandramowlishwaran, K. Knobe, and R. Vuduc. Performance evaluation of concurrent collections

on high-performance multicore computing systems. In Parallel Distributed Processing (IPDPS), 2010

IEEE International Symposium on, pages 1–12, 2010.

[2] Xingjun Zhang, Yanfei Ding, Yiyuan Huang, and Xiaoshe Dong. Design and implementation of a het-

erogeneous high-performance computing framework using dynamic and partial reconfigurable FPGAs.

In Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on, pages

2329–2334, 2010.

[3] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An efficient, model-based CPU-GPU heterogeneous

FFT library. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium

on, pages 1–10, 2008.

[4] D. Gohringer and J. Becker. FPGA-based runtime adaptive multiprocessor approach for embedded high

performance computing applications. In VLSI (ISVLSI), 2010 IEEE Computer Society Annual Sympo-

sium on, pages 477–478, 2010.

[5] M. de Kruijf and K. Sankaralingam. MapReduce for the cell broadband engine architecture. IBM Journal

of Research and Development, 53(5):10:1–10:12, 2009.

[6] L. Pate, J. Duboue, and Ph. Picot. CFD-a tool to design jet engine internal cooling system. 34th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.

[7] B.H. Blessing, J. Pham, and D.D. Marshall. Using CFD as a design tool on new innovative airliner con-

figurations. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace

Exposition, 2009.

[8] K.J. Page and P.M. Chau. A FPGA ASIC communication channel systems emulator. In ASIC Conference

and Exhibit, 1993. Proceedings., Sixth Annual IEEE International, pages 345–348, 1993.

[9] C.R.W. Reinbrecht, J.L. Da Silva, and E.E. Fabris. Applying in education an FPGA-based methodology

to prototype ASIC soft cores and test ICs. In Programmable Logic (SPL), 2012 VIII Southern Conference

on, pages 1–5, 2012.

[10] B. Sukhwani and M.C. Herbordt. FPGA acceleration of rigid-molecule docking codes. Computers

Digital Techniques, IET, 4(3):184–195, 2010.

[11] J.D. Bakos. FPGA acceleration of gene rearrangement analysis. In Field-Programmable Custom Com-

puting Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on, pages 85–94, 2007.

[12] N. Alachiotis and A. Stamatakis. FPGA acceleration of the phylogenetic parsimony kernel? In Field

Programmable Logic and Applications (FPL), 2011 International Conference on, pages 417 –422, Sept.

2011.

Bibliography 88

[13] K. Nakano and E. Takamichi. An image retrieval system using FPGAs. In Design Automation Confer-

ence, 2003. Proceedings of the ASP-DAC 2003. Asia and South Pacific, pages 370 – 373, Jan. 2003.

[14] A. Kaganov, P. Chow, and A. Lakhany. FPGA acceleration of monte-carlo based credit derivative pricing.

In Field Programmable Logic and Applications, 2008. FPL 2008. International Conference on, pages

329 –334, Sept. 2008.

[15] William D. Smith and Austars R. Schnore. Towards an RCC-based accelerator for computational fluid

dynamics applications. J. Supercomput., 30:239–261, December 2004.

[16] E. Andres, M. Molina, G. Botella, A. del Barrio, and J. Mendias. Aerodynamics analysis acceleration

through reconfigurable hardware. In Programmable Logic, 2008 4th Southern Conference on, pages 105

–110, March 2008.

[17] Xilinx Inc. Partial Reconfiguration User Guide 13.1 UG702, March 2011.

[18] Y. Hori, A. Satoh, H. Sakane, and K. Toda. Bitstream encryption and authentication with AES-GCM in

dynamically reconfigurable systems. In Field Programmable Logic and Applications, 2008. FPL 2008.

International Conference on, pages 23 –28, Sept. 2008.

[19] Christopher Claus, Johannes Zeppenfeld, Florian Müller, and Walter Stechele. Using partial-run-time

reconfigurable hardware to accelerate video processing in driver assistance system. In Proceedings of

the conference on Design, automation and test in Europe, DATE ’07, pages 498–503, San Jose, CA,

USA, 2007. EDA Consortium.

[20] B.J. LaMeres and C. Gauer. Dynamic reconfigurable computing architecture for aerospace applications.

In Aerospace conference, 2009 IEEE, pages 1 –6, March 2009.

[21] B. Osterloh, H. Michalik, S.A. Habinc, and B. Fiethe. Dynamic partial reconfiguration in space applica-

tions. In Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on, pages 336 –343,

29 2009-Aug. 1 2009.

[22] Y. Matsuo, M. Tsuchiya, M. Aoki, N. Sueyasu, T. Inari, and K. Yazawa. Early experience with aerospace

CFD at JAXA on the fujitsu PRIMEPOWER HPC2500. In Supercomputing, 2004. Proceedings of the

ACM/IEEE SC2004 Conference, page 11, Nov. 2004.

[23] Hirokazu Morisita, Kenta Inakagata, Yasunori Osana, Naoyuki Fujita, and Hideharu Amano. Implemen-

tation and evaluation of an arithmetic pipeline on FLOPS-2D: multi-FPGA system. SIGARCH Comput.

Archit. News, 38:8–13, January 2011.

[24] K. Inakagata, H. Morishita, Y. Osana, N. Fujita, and H. Amano. Modularizing flux limiter functions for

a computational fluid dynamics accelerator on FPGAs. In Field Programmable Logic and Applications,

2009. FPL 2009. International Conference on, pages 654 –657, Sept 2009.

[25] Takayuki Akamine, Kenta Inakagata, Yasunori Osana, Naoyuki Fujita, and Hideharu Amano. An imple-

mentation of out-of-order execution system for acceleration of computational fluid dynamics on FPGAs.

SIGARCH Comput. Archit. News, 39(4):50–55, December 2011.

[26] Mohamad Sofian Abu Talip, Takayuki Akamine, Yasunori Osana, Naoyuki Fujita, and Hideharu Amano.

Cost effective implementation of flux limiter functions using partial reconfiguration. In Proceedings of

the 8th international conference on Reconfigurable Computing: architectures, tools and applications,

ARC’12, pages 215–226, Berlin, Heidelberg, 2012. Springer-Verlag.

[27] Mohamad Sofian Abu Talip, Takayuki Akamine, Yasunori Osana, Naoyuki Fujita, and Hideharu

Amano. Dynamically reconfigurable flux limiter functions in MUSCL scheme. In Reconfigurable

Bibliography 89

Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, pages 1 –

7, July 2012.

[28] Hiroyuki Yamazaki, Shunji Enomoto, and Kazuomi Yamamoto. A common CFD platform UPACS. In

Proceedings of the Third International Symposium on High Performance Computing, ISHPC ’00, pages

182–190, London, UK, 2000. Springer-Verlag.

[29] Ryoji Takaki, Kazuomi Yamamoto, Takashi Yamane, Shunji Enomoto, and Junichi Mukai. The develop-

ment of the UPACS CFD environment. In High Performance Computing, volume 2858 of Lecture Notes

in Computer Science, pages 307–319. Springer Berlin Heidelberg, 2003.

[30] Atsushi Hashimoto, Keiichi Murakami, Takeshi Aoyama, Manabu Hishida, Lahur Paulus R., Masahide

Sakashita, and Yukio Sato. Development of fast flow solver FaSTAR. In Proc. 42nd Fluid Dynamics

Conference/Aerospace Numerical Simulation Symposium, 2010.

[31] M. Yokokawa. The K computer and its application. In Networking and Computing (ICNC), 2012 Third

International Conference on, pages 21–22, 2012.

[32] T. Maruyama, T. Yoshida, R. Kan, I. Yamazaki, S. Yamamura, N. Takahashi, M. Hondou, and H. Okano.

SPARC64 VIIIfx: A new-generation octocore processor for petascale computing. Micro, IEEE,

30(2):30–40, 2010.

[33] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D mesh/torus interconnect for exascale computers.

Computer, 42(11):36–40, 2009.

[34] T. Toyoshima. ICC: An interconnect controller for the tofu interconnect architecture. Hot Chips 22,

2010.

[35] S. Saini, P. Mehrotra, K. Taylor, M. Aftosmis, and R. Biswas. Performance analysis of CFD application

Cart3D using MPInside and performance monitor unit data on Nehalem and Westmere based supercom-

puters. In High Performance Computing and Communications (HPCC), 2011 IEEE 13th International

Conference on, pages 331–338, 2011.

[36] Sun cluster architecture: a white paper. In Cluster Computing, 1999. Proceedings. 1st IEEE Computer

Society International Workshop on, pages 331–338, 1999.

[37] Li Xiao, Xiaodong Zhang, Zhengqian Kuang, Baiming Feng, and Jichang Kang. Auto-CFD: efficiently

parallelizing CFD applications on clusters. In Cluster Computing, 2003. Proceedings. 2003 IEEE Inter-

national Conference on, pages 46–53, 2003.

[38] Tetsu Narumi, Yousuke Ohno, Noriaki Okimoto, Takahiro Koishi, Atsushi Suenaga, Noriyuki Futatsugi,

Ryoko Yanai, Ryutaro Himeno, Shigenori Fujikawa, Makoto Taiji, and Mitsuru Ikei. A 55 TFLOPS

simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer sys-

tem MDGRAPE-3. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC ’06, New

York, NY, USA, 2006. ACM.

[39] Michael Creel and Mohammad Zubair. High performance implementation of an econometrics and finan-

cial application on GPUs. In High Performance Computing, Networking, Storage and Analysis (SCC),

2012 SC Companion:, pages 1147–1153, 2012.

[40] J. Michalakes and M. Vachharajani. GPU acceleration of numerical weather prediction. In Parallel and

Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–7, 2008.

Bibliography 90

[41] P. Bailey, J. Myre, S.D.C. Walsh, D.J. Lilja, and M.O. Saar. Accelerating Lattice Boltzmann fluid flow

simulations using graphics processors. In Parallel Processing, 2009. ICPP ’09. International Conference

on, pages 550–557, 2009.

[42] Chih-Wei Hsieh, Sheng-Hsiu Kuo, Fang-An Kuo, and Chau-Yi Chou. Solving parabolic problems using

multithread and GPU. In Parallel and Distributed Processing with Applications (ISPA), 2010 Interna-

tional Symposium on, pages 75–80, 2010.

[43] Youquan Liu, Kai Shi, Heng Deng, and Enhua Wu. A multi-GPU based semi-Lagrangian fluid solver. In

Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in

Industry, VRCAI ’11, pages 321–326, New York, NY, USA, 2011. ACM.

[44] K. Maeda, M. Murase, M. Doi, H. Komatsu, S. Noda, and R. Himeno. Automatic resource scheduling

with latency hiding for parallel stencil applications on GPGPU clusters. In Parallel Distributed Process-

ing Symposium (IPDPS), 2012 IEEE 26th International, pages 544–556, 2012.

[45] Ben Cope, Peter Y. K. Cheung, Wayne Luk, and Lee Howes. Performance comparison of graphics

processors to reconfigurable logic: A case study. IEEE Trans. Comput., 59(4):433–448, April 2010.

[46] Xilinx Inc. Virtex-6 Family Overview v2.4 DS150, Jan 2012.

[47] E. Andres, C. Carreras, G. Caffarena, M.d.C. Molina, O. Nieto-Taladriz, and F. Palacios. A methodology

for CFD acceleration through reconfigurable hardware. In 46th AIAA Aerospace Sciences Meeting and

Exhibit, pages 1–20, 2008.

[48] I. Liu, E.A. Lee, M. Viele, Guoqiang Wang, and H. Andrade. A heterogeneous architecture for evaluating

real-time one-dimensional computational fluid dynamics on FPGAs. In Field-Programmable Custom

Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on, pages 125–132,

2012.

[49] J. Cong, Muhuan Huang, and Yi Zou. Accelerating fluid registration algorithm on multi-FPGA platforms.

In Field Programmable Logic and Applications (FPL), 2011 International Conference on, pages 50–57,

2011.

[50] S. Kocsardi, Z. Nagy, A. Csik, and P. Szolgay. Two-dimensional compressible flow simulation on em-

ulated digital CNN-UM. In Cellular Neural Networks and Their Applications, 2008. CNNA 2008. 11th

International Workshop on, pages 169–174, 2008.

[51] K. Sano, T. Iizuka, and S. Yamamoto. Systolic architecture for computational fluid dynamics on FP-

GAs. In Field-Programmable Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE

Symposium on, pages 107 –116, April 2007.

[52] K. Sano, Takanori Iizuka, and S. Yamamoto. Systolic computational-memory architecture for an FPGA-

based flow solver. In Circuits and Systems, 2006. MWSCAS ’06. 49th IEEE International Midwest

Symposium on, volume 1, pages 423–427, 2006.

[53] Z. Nagy, C. Nemes, A. Hiba, A. Kiss, A. Csik, and P. Szolgay. FPGA based acceleration of computational

fluid flow simulation on unstructured mesh geometry. In Field Programmable Logic and Applications

(FPL), 2012 22nd International Conference on, pages 128–135, 2012.

[54] D. Sanchez-Roman, G. Sutter, S. Lopez-Buedo, I. Gonzalez, F.J. Gomez-Arribas, and J. Aracil. An

Euler solver accelerator in FPGA for computational fluid dynamics applications. In Programmable

Logic (SPL), 2011 VII Southern Conference on, pages 149–154, 2011.

Bibliography 91

[55] K.G. Nezami, P.W. Stephens, and S.D. Walker. Handel-C implementation of early-access partial-

reconfiguration for software defined radio. In Wireless Communications and Networking Conference,

2008. WCNC 2008. IEEE, pages 1103–1108, 2008.

[56] J.-F.P. Labourdette. Performance impact of partial reconfiguration on multihop lightwave networks.

Networking, IEEE/ACM Transactions on, 5(3):351–358, 1997.

[57] J. Noguera and I.O. Kennedy. Power reduction in network equipment through adaptive partial reconfig-

uration. In Field Programmable Logic and Applications, 2007. FPL 2007. International Conference on,

pages 240–245, 2007.

[58] S.U. Bhandari, S. Subbaraman, and S. Pujari. Power reduction in embedded system on FPGA using on

the fly partial reconfiguration. In Electronic System Design (ISED), 2010 International Symposium on,

pages 77–80, 2010.

[59] Naoyuki Fujita, Takashi Nakamura, Yuichi Matsuo, Katsumi Yazawa, Yasuyuki Shiromizu, Hiroshi

Okubo. Feasibility Study of CFD Code Acceleration using FPGA. In Supercomputing, 2007.

[60] Bram van Leer. Towards the ultimate conservative difference scheme. V. A second-order sequel to

Godunov’s method. Journal of Computational Physics, 32(1):101 – 136, 1979.

[61] H. Morishita, Y. Osana, N. Fujita, and H. Amano. Exploiting memory hierarchy for a computational fluid

dynamics accelerator on FPGAs. In Field Programmable Technology, 2008. FPT 2008. International

Conference on, pages 193 –200, Dec. 2008.

[62] Takayuki Akamine, Kenta Inakagata, Yasunori Osana, Naoyuki Fujita, and Hideharu Amano. Recon-

figurable out-of-order mechanism generator for unstructured grid computation in computational fluid

dynamics. In Field Programmable Logic and Applications (FPL), 2012 22nd International Conference

on, pages 136 –142, Aug. 2012.

[63] P.L Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Compu-

tational Physics, 43(2):357 – 372, 1981.

[64] Bernd Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal., 25(2):294–318,

April 1988.

[65] Shigeru Obayashi and Yasuhiro Wada. Practical formulation of a positively conservative scheme. AIAA

Journal, 32(5):1093–1095, 1994.

[66] Meng-Sing Liou. A sequel to AUSM, part II: AUSM+-up for all speeds. Journal of Computational

Physics, 214(1):137 – 170, 2006.

[67] Eiji Shima and Keiichi Kitamura. On new simple low-dissipation scheme of AUSM-family for all

speeds. AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Expo-

sition, 47(136):1–15, 2009.

[68] Amiram Harten, Peter D. Lax, and Bram Van Leer. On upstream differencing and Godunov-type schemes

for hyperbolic conservation laws. SIAM Review, 25(1):pp. 35–61, 1983.

[69] Xilinx Inc. Virtex-6 FPGA Configuration User Guide v3.2 UG360, Nov 2010.

[70] C. Chang, J. Wawrzynek, and R.W. Brodersen. BEE2: A high-end reconfigurable computing system.

Design Test of Computers, IEEE, 22(2):114–125, 2005.

[71] O. Lindtjorn, R. Clapp, O. Pell, O. Mencer, M. Flynn, and Haohuan Fu. Beyond traditional micropro-

cessors for geoscience high-performance computing applications. Micro, IEEE, 31(2):41–49, 2011.

Publications

Related Papers

Journal Papers

[1] Mohamad Sofian Abu Talip, Takayuki Akamine, Mao Hatto, Yasunori Osana, Naoyuki Fujita

and Hideharu Amano, “Adaptive Flux Calculation Scheme in Advection Term Computation

Using Partial Reconfiguration”, International Journal of Networking and Computing (IJNC),

Vol. 3, No. 2, pp. 289–306, Jul 2013.

[2] Mohamad Sofian Abu Talip, Takayuki Akamine, Yasunori Osana, Naoyuki Fujita and Hide-

haru Amano, “Partial Reconfiguration of Flux Limiter Functions in MUSCL Scheme Using

FPGA”, IEICE Transactions on Information and Systems, Vol. 95-D, No. 10, pp. 2369–2376,

Oct 2012.

International Conference Papers

[3] Mohamad Sofian Abu Talip, Takayuki Akamine, Yasunori Osana, Naoyuki Fujita and Hide-

haru Amano, “Dynamically Reconfigurable Flux Limiter Functions in MUSCL Scheme”,

Proc. of IEEE 7th International Workshop on Reconfigurable Communication-centric Systems-

on-Chip (ReCoSoC), pp. 1–7, Jul 2012.

[4] Mohamad Sofian Abu Talip, Takayuki Akamine, Yasunori Osana, Naoyuki Fujita and Hide-

haru Amano, “Cost Effective Implementation of Flux Limiter Functions Using Partial Recon-

figuration”, Proc. of the 8th International Symposium on Applied Reconfigurable Computing

(ARC 2012), pp. 215–226, Mar 2012.

[5] Mohamad Sofian Abu Talip and Hideharu Amano, “A Design of One-Dimensional Euler Equa-

tions for Fluid Dynamics on FPGA”, Proc. of IEEE 1st International Symposium on Access

Spaces (IEEE-ISAS’11), pp. 170–173, Jun 2011.

Publications 93

Other Papers

International Conference Papers

[6] Mohamad Sofian Abu Talip, Aisha Hassan Abdalla, Abdurazzag Ali Aburas, A.H.M. Zahirul

Alam and Ahmed Asif, “Knowledge-based Disk Scheduling Policy Using Fuzzy Logic”, In

Proc. of International Conference on Computer and Communication Engineering (ICCCE

2010), pp. 1–6, May 2010.

[7] Mohamad Sofian Abu Talip, Aisha Hasan Abdalla, Ahmed Asif and Abdurazzag Ali Aburas,

“Fuzzy Logic Based Algorithm for Disk Scheduling Policy”, In Proc. of International Con-

ference of Soft Computing and Pattern Recognition (SOCPAR’2009), pp. 746–749, Dec 2009.

[8] Mohamad Sofian Abu Talip, Abdurazzag Ali Aburas, Aisha Hasan Abdalla, and Ahmed Asif,

“Information Quality Measurement for Disk Scheduling Algorithm”, In Proc. of International

Conference on Software Engineering and Computer Systems (ICSECS’09), pp. 159–164, Oct

2009.

Appendix A

IEEE Standard 754 Floating Point Numbers

IEEE Standard 754 floating point is the most common representation today for real numbers on com-

puters, including Intel-based PC’s, Macintoshes, and most Unix platforms. This is a brief overview

of IEEE floating point and its representation.

A.1 What are floating point numbers?

There are several ways to represent real numbers on computers. Fixed point places a radix point

somewhere in the middle of the digits, and is equivalent to using integers that represent portions of

some unit. For example, one might represent 1/100ths of a unit; if you have four decimal digits, you

could represent 10.82, or 00.01. Another approach is to use rationals, and represent every number as

the ratio of two integers.

Floating-point representation - the most common solution - basically represents reals in scientific

notation. Scientific notation represents numbers as a base number and an exponent. For example,

123.456 could be represented as 1.23456 × 102. In hexadecimal, the number 123.abc might be

represented as 1.23abc × 162.

Floating-point solves a number of representation problems. Fixed-point has a fixed window of

representation, which limits it from representing very large or very small numbers. Also, fixed-point

is prone to a loss of precision when two large numbers are divided.

Floating-point, on the other hand, employs a sort of "sliding window" of precision appropri-

ate to the scale of the number. This allows it to represent numbers from 1,000,000,000,000 to

0.0000000000000001 with ease.

A.2 Storage Layout

IEEE floating point numbers have three basic components: the sign, the exponent, and the mantissa.

The mantissa is composed of the fraction and an implicit leading digit. The exponent base (2) is

implicit and need not be stored.

A. IEEE Standard 754 Floating Point Numbers
A.2. Storage Layout 95

Table A.1 shows the layout for single (32-bit) and double (64-bit) precision floating-point values.

The number of bits for each field are shown (bit ranges are in square brackets):

Table A.1: Layout for single and double precision floating-point values.

Sign Exponent Fraction Bias

Single Precision 1[31] 8[30-23] 23[22-00] 127

Double Precision 1[63] 11[62-52] 52[51-00] 1023

A.2.1 The Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative number.

Flipping the value of this bit flips the sign of the number.

A.2.2 The Exponent

The exponent field needs to represent both positive and negative exponents. To do this, a bias is

added to the actual exponent in order to get the stored exponent. For IEEE single-precision floats,

this value is 127. Thus, an exponent of zero means that 127 is stored in the exponent field. A stored

value of 200 indicates an exponent of (200-127), or 73. For double precision, the exponent field is

11 bits, and has a bias of 1023.

A.2.3 The Mantissa

The mantissa, also known as the significand, represents the precision bits of the number. It is com-

posed of an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider that any number can be expressed in

scientific notation in many different ways. For example, the number five can be represented as any

of these:

• 5.00 × 100

• 0.05 × 102

• 5000 × 10−3

In order to maximize the quantity of representable numbers, floating-point numbers are typically

stored in normalized form. This basically puts the radix point after the first non-zero digit. In

normalized form, five is represented as 5.0 × 100.

A nice little optimization is available to us in base two, since the only possible non-zero digit is

1. Thus, we can just assume a leading digit of 1, and don’t need to represent it explicitly. As a result,

the mantissa has effectively 24 bits of resolution, by way of 23 fraction bits.

A. IEEE Standard 754 Floating Point Numbers
A.3. Ranges of Floating Point Numbers 96

A.3 Ranges of Floating Point Numbers

The range of positive floating point numbers can be split into normalized numbers (which preserve

the full precision of the mantissa), and denormalized numbers, which use only a portion of the

fractions’s precision. Table A.2 shows range of floating point numbers.

Table A.2: Range of floating point numbers.

Denormalized Normalized

Single Precision ±2−149 to (1 − 223) × 2−126 ±2−126 to (2 − 223) × 2127

Double Precision ±2−1074 to (1 − 252) × 2−1022 ±2−1022 to (2 − 2−52) × 21023

A.4 Special Values

IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-point

scheme.

A.4.1 Zero

Zero is not directly representable in the straight format, due to the assumption of a leading 1. Zero is

a special value denoted with an exponent field of zero and a fraction field of zero. Note that -0 and

+0 are distinct values, though they both compare as equal.

A.4.2 Denormalized

If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then the

value is a denormalized number, which does not have an assumed leading 1 before the binary point.

Thus, this represents a number (−1)s × 0. f × 2−126, where s is the sign bit and f is the fraction. For

double precision, denormalized numbers are of the form (−1)s × 0. f × 2−1022.

A.4.3 Infinity

The values + infinity and - infinity are denoted with an exponent of all 1s and a fraction of all 0s. The

sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a

specific value is useful because it allows operations to continue past overflow situations. Operations

with infinite values are well defined in IEEE floating point.

A.4.4 Not a Number

The value NaN (Not a Number) is used to represent a value that does not represent a real number.

NaN’s are represented by a bit pattern with an exponent of all 1s and a non-zero fraction.

