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主 論 文 題 目： 

Extensions of Probability Distributions on Torus, Cylinder and Disc 

（トーラス、シリンダー及びディスク上の確率分布の拡張） 

 

（内容の要旨） 

 

角度観測値を含むデータの統計学は方向統計学として知られている。二つの時点

において観測される風向のような二変量角度データのモデル化の際には二変量角度

分布すなわちトーラス上の分布を考えることになる。本論文では、方向統計学の枠

組みの中でトーラス上の分布と共にシリンダー及びディスク上の分布の拡張を提案

している。 

円周上の分布に関する予備的な結果として、円周上のハート型分布に従う確率変

数をMöbius変換して得られる分布の分布関数、三角モーメント、単峰性と対称性

の条件について調べた。トーラス上の分布については、Möbius変換によって潜在

構造が定められるモデル、言い換えれば三変量から二変量の分布を生成する変量減

少法の一つから導かれるトーラス上の二変量ハート型分布を提案し、結合確率密度

関数、結合三角モーメント及び角度変数間相関係数の具体的な式を与えた。また、

二変量ハート型分布を利用して、朝6時と正午に継続的に観測された風向データの

解析例を示した。 

次に、シリンダー上の分布を、von Mises分布と変換されたKumaraswamy分布

の組み合わせから生成し、周辺分布と条件付き分布を与えた。この提案分布は

JohnsonとWehrlyによる分布の拡張である。また、正弦関数によって歪められ

た巻き込みCauchy分布とWeibull 分布の組み合わせから生成した分布も提案し

た。その他、周辺分布が指定されているときにシリンダー上の分布を生成する方法

を用いることによって、ハート型分布と変換されたKumaraswamy分布を周辺に

持ち、von Mises分布をリンクとする分布の提案を行っている。 

最後に、長さを保つ修正メビウス変換を用いてディスク上のMöbius分布の拡張

としての非対称分布を生成し、周辺分布などの諸性質を調べた。 
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Statistics for data which include angular observations is known as directional

statistics. Bivariate circular data such as wind directions measured at two points

in time are modeled by using bivariate circular distributions or distributions on

the torus. Likewise circular-linear data are modeled by using distributions on the

cylinder and disc. In this thesis, we propose some extensions of distributions on

the torus, cylinder and disc in the framework of directional statistics.

In Chapter 1, we introduce some preliminary notions and existing models

for circular data. A new circular distribution (Wang and Shimizu, 2012) is also

introduced, which is obtained by applying the Möbius transformation to a univari-

ate cardioid random variable. The distribution function, trigonometric moments,

and conditions for unimodality and symmetry are studied. Kato and Jones (2010)

study a family of distributions which is obtained by applying the Möbius transfor-

mation to a von Mises random variable, and we discuss the relationship between

our model and the Kato–Jones model. The bivariate circular case (Wang and

Shimizu, 2012) will be treated in Chapter 2. We propose a bivariate cardioid

distribution which is generated from a circular-circular structural model linked

1



with Möbius transformation or a method of trivariate reduction. The joint prob-

ability density function, trigonometric moments and circular-circular correlation

coefficient are explicitly expressed. An illustration is given for wind direction

data at 6 a.m. and noon as an application of the bivariate cardioid distribution.

Chapters 3 and 4 are based on the paper by Wang, Shimizu and Uesu (to

appear). In Chapter 3, we propose distributions on the cylinder. A distribution

generated from a combination of von Mises and transformed Kumaraswamy dis-

tributions is proposed as an extension of the Johnson and Wehrly (1978) model.

The marginal and conditional distributions of the proposed distribution are given.

A distribution using the method of generating a cylindrical distribution with

specified marginals is also proposed. Two illustrative examples are given for the

magnitudes and the angles calculated from the epicenters of earthquakes and the

movements of blue periwinkles. In addition, it is remarked that the circular-

linear regression models by SenGupta and Ugwuowo (2006) are derived from the

conditional distributions of cylindrical distributions. An application of the local

influence method will be treated in Appendix.

In Chapter 4, we generate skew or asymmetric distributions on the disc by

using the Möbius transformation and modified Möbius transformations as exten-

sions of the Möbius distribution proposed by Jones (2004). The new distribu-

tions called the modified Möbius distributions have six parameters. They can

be reduced to the Möbius and uniform distributions as special cases, but many

members of the family are skew distributions for both the linear and the angular

random variables. Some properties such as the joint probability and marginal

density functions of the proposed distributions are obtained. As an illustrative

example, we fit these models to data of Johnson and Wehrly (1977), which consist

of values of ozone concentration and wind direction.
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1.2 Preliminary notions for circular data

1.2.1 Mean direction, mean resultant length and circular

variance

Directions in the plane can be regarded as unit vectors x. Suppose that unit

vectors x1, . . . , xn are given corresponding with angles θj, i.e. xj = (cos θj, sin θj)

for j = 1, . . . , n. The sample mean direction θ̄ of θ1, . . . , θn is the direction of the

resultant vector of x1, . . . , xn. The Cartesian coordinates of the center of mass

are (C̄, S̄), where

C̄ =
1

n

n∑
j=1

cos θj, S̄ =
1

n

n∑
j=1

sin θj.

Thus θ̄ satisfies the equations

C̄ = R̄ cos θ̄, S̄ = R̄ sin θ̄,

where R̄ is the mean resultant length which is given by

R̄ =
(
C̄2 + S̄2

)1/2

and expressible as

R̄ =
1

n

n∑
j=1

cos (θj − θ̄).

The range of the mean resultant length R̄ is [0, 1] and note that θ̄ is not defined

when R̄ = 0, and can be explicitly represented as
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θ̄ =



tan−1(S̄/C̄), C̄ > 0, S̄ ≥ 0,

π/2, C̄ = 0, S̄ > 0,

tan−1(S̄/C̄) + π, C̄ < 0,

3π/2, C̄ = 0, S̄ < 0,

tan−1(S̄/C̄) + 2π, C̄ > 0, S̄ < 0.

The sample mean resultant length R̄ is a statistic which measures the con-

centration of the data. In general, R̄ is more important than other measures of

dispersion in the field of directional statistics. However, similarly to the sample

variance for data in the real line, there is a concept about the sample circular

variance, which is defined as

V = 1 − R̄,

whose range is [0, 1]. Note that Batschelet (1981) and Jammalamadaka and

SenGupta (2001) refer to 2(1−R̄), because it is approximated by
∑n

j=1(θj− θ̄)2/n

when n is large. Here, we give a simple proof for this approximation:

2(1 − R̄) = 2

1 − 1
n

n∑
j=1

cos (θj − θ̄)

 = 4
1
n

n∑
j=1

sin2

(
θj − θ̄

2

)
≈ 1

n

n∑
j=1

(θj − θ̄)2.

1.2.2 Trigonometric moments, circular skewness and kur-

tosis

The sample pth trigonometic moment about zero mean direction for p = 0, 1, 2, . . .

is defined as
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mp = ap + i bp, i =
√
−1

where

ap =
1

n

n∑
j=1

cos pθj, bp =
1

n

n∑
j=1

sin pθj.

Then

mp = R̄p eiθ̄p ,

where θ̄p and R̄p denote the sample mean direction and sample mean resultant

length of pθ1, . . . , pθn. The sample circular skewness and kurtosis are defined by

ŝ =
R̄2 sin (θ̄2 − 2θ̄)

(1 − R̄)3/2

and

k̂ =
R̄2 cos (θ̄2 − 2θ̄) − R̄4

(1 − R̄)3/2

respectively.

1.2.3 Distribution and probability density functions

Suppose that an initial direction and an orientation of the unit circle have been

chosen. Then the distribution function F of a random angle Θ is defined as

F (x) = Pr(−π < Θ ≤ x), −π ≤ x < π,

and it is extended to the function on the whole real line given by
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F (x + 2π) − F (x) = 1, −∞ < x < ∞.

The second equation means that any arc of length 2π on the circle has probability

1. For α − π ≤ β ≤ α + π,

Pr(α < Θ ≤ β) = F (β) − F (α) =

∫ β

α

dF (x).

By definition

F (−π) = 0, F (π) = 1,

If the distribution function F is absolutely continuous then it has a probability

density function f such that

∫ β

α

f(θ)dθ = F (β) − F (α), −∞ < α ≤ β < ∞.

A function f is the probability density function of an absolutely continuous dis-

tribution function if and only if

(i) f(θ) ≥ 0 almost everywhere on [−π, π),

(ii)

∫ π

−π

f(θ)dθ = 1,

(iii) f(θ + 2π) = f(θ) almost everywhere on [−π, π).

1.2.4 Characteristic function

The characteristic function of a linear random variable X is defined as ϕt =

E
(
eitX

)
. For angular case, since Θ and Θ + 2π represent the same direction, it

holds that

E
(
eitΘ

)
= E

{
eit(Θ+2π)

}
= (cos 2πt + i sin 2πt)E

(
eitΘ

)
,
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and it is necessary to restrict t to integer values. The characteristic function of a

random angle Θ is given by

ϕp = E
(
eipΘ

)
=

∫ π

−π

eipθdF (θ), p = 0,±1,±2, . . . .

Thus,

ϕ0 = 1, ϕ̄p = ϕ−p, |ϕp| ≤ 1,

where ϕ̄p denotes the complex conjugate of ϕp. If we write

ϕp = αp + i βp,

where

αp = E(cos pΘ) =

∫ π

−π

cos pθdF (θ)

and

βp = E(sin pΘ) =

∫ π

−π

sin pθdF (θ),

then

α−p = αp, |αp| ≤ 1, β−p = −βp, |βp| ≤ 1,

and ϕp is called the pth trigonometric moment, and αp and βp the pth cosine and

sine moments respectively. Furthermore, if
∑∞

p=1(α
2
p +β2

p) is convergent then the

variable Θ has a density f which is defined almost everywhere by a Fourier series

f(θ) =
1

2π

∞∑
p=−∞

ϕpe
−ipθ =

1

2π

{
1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)

}
.
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1.3 Some existing distributions on the circle

In this section we introduce the most fundamental continuous distributions on the

unit circle. Except the uniform distribution, all of the distributions mentioned in

this section are symmetric and unimodal.

1.3.1 Uniform distribution

The most basic distribution on the circle is the uniform distribution which has

probability density function

f(θ) =
1

2π
, −π ≤ θ < π.

It is often used as the null model. The trigonometric moment of the uniform

distribution is

ϕp =

 1, p = 0,

0, p ̸= 0.

Thus, the mean resultant length ρ is 0. This means that there is no concentration

about any particular direction. Let Θ1, . . . , Θn be independent and identically

distributed as the circular uniform distribution with common characteristic func-

tion ϕp. then the characteristic function of the sum Sn = Θ1 + · · · + Θn is

ϕ(n, p) = ϕn
p =

 1, p = 0,

0, p ̸= 0,

which is the characteristic function of the circular uniform distribution. It follows

from the uniqueness property that Sn is uniformly distributed on the circle. Fur-

thermore, the sum of indenpendent circular uniform and any other distributions

is the circular uniform distribution.
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1.3.2 Cardioid distribution

The cardioid distribution C(µ, ρ) with parameters µ (−π ≤ µ < π) and ρ (0 ≤

ρ ≤ 1/2) has probability density function

f(θ) =
1

2π
{1 + 2ρ cos(θ − µ)}, −π ≤ θ < π.

This form appears in Jeffreys (1961, p. 328), and the name is taken from the

fact that the shape of r = f(θ) in polar coordinates resembles a heart. In the

literature, it is often assumed that |ρ| ≤ 1/2, but we restrict ρ to be non-negative

to avoid problems of non-identifiability. The distribution reduces to a circular

uniform distribution if ρ = 0.

The probability density function is symmetric about µ and unimodal. If a

random variable Θ is distributed as C(µ, ρ), the characteristic function or pth

trigonometric moment is E(eipθ) = 1 if p = 0, ρ eiµ if p = 1 and 0 if p ≥ 2, where

i =
√
−1, so that the mean direction of Θ is µ, the mean resultant length is ρ

and the circular variance is 1 − ρ. The cardioid distribution never degenerates

to a distribution concentrated at only one point whatever the parameters be

chosen. If Θ1 is distributed as a cardioid distribution with mean direction µ1 and

mean resultant length ρ1, and Θ2 (not necessarily distributed as a cardioid) is

independent of Θ1 and has mean direction µ2 and mean resultant length ρ2, then

the sum Θ1 + Θ2 is distributed as a cardioid distribution with mean direction

µ1 + µ2 and mean resultant length ρ1ρ2.

1.3.3 von Mises distribution

The von Mises distribution VM(µ, κ) with parameters µ (−π ≤ µ < π) and

κ (κ ≥ 0) has probability density function

f(θ; µ, κ) =
1

2πI0(κ)
eκ cos (θ−µ), −π ≤ θ < π,
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where Ip denotes the modified Bessel function of the first kind and order p, which

can be defined by

Ip(κ) =
1

2π

∫ 2π

0

cos (pθ) eκ cos θdθ.

The modified Bessel function Ip(κ) has an infinite power series

Ip(κ) =
∞∑

r=0

1

Γ(p + r + 1)r!

(κ

2

)2r+p

.

The parameter µ is the mean direction and the parameter κ is the concentration

parameter. The von Mises distribution reduces to a circular uniform distribution

if κ = 0 and concentrates into a point when κ → ∞. Since VM(µ, κ) is symmetric

about θ = µ, the pth sine moment about µ and the pth cosine moment about µ

are respectively

β̄p = E[sin p(Θ − µ)] = 0,

ᾱp = E[cos p(Θ − µ)] =
1

2πI0(κ)

∫ 2π

0

cos p(θ − µ)eκ cos (θ−µ)dθ =
Ip(κ)

I0(κ)
,

and the mean resultant length ρ is A(κ) = I1(κ)/I0(κ). The von Mises distribu-

tion VM(µ, κ) has mode and antimode at µ and µ+π respectively. In particular,

the maximum entropy distribution on the circle with given mean direction µ

and given mean resultant length ρ is the von Mises distribution VM(µ, κ), with

κ = A−1(ρ).

1.3.4 Wrapped Cauchy distribution

Wrapping a distribution on the real line makes the corresponding distribution on

the circle. More precisely, if X is a random variable on the line, the corresponding

random variable Xw of the wrapped distribution is given by
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Xw = X (mod 2π).

If X has distribution function F , then the distribution function Fw of Xw is

Fw(θ) =
∞∑

k=−∞

{F [θ + (2k − 1)π] − F [(2k − 1)π]}, −π ≤ θ < π.

In particular, if X has a probability density function f , then the corresponding

probability density function fw of Xw is

fw(θ) =
∞∑

k=−∞

f [θ + (2k − 1)π].

Some properties of the wrapped distribution are:

(a) (X + Y )w = Xw + Yw.

(b) If the characteristic function of X is ϕ = ϕ(p), then the characteristic

function ϕp, p = 0,±1,±2, . . . , of Xw is given by ϕp = ϕ(p).

(c) If ϕ is integrable, then X has a density expressible as

fw(θ) =
∞∑

k=−∞

f(θ + (2k − 1)π) =
1

2π

{
1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)

}

with ϕp = αp + iβp.

If a random variable X is distributed as a Cauchy distribution with location

µ and scale γ > 0, then the wrapped Cauchy random variable Θ = X (mod 2π)

has probability density function

f(θ) =
1

2π

1 − ρ2

1 + ρ2 − 2ρ cos (θ − µ)
, −π ≤ θ < π,
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where −π ≤ µ < π, ρ = e−γ, 0 ≤ ρ < 1. The characteristic function

is ϕp = ρ|p|eipµ. In particular, the wrapped Cauchy distribution, denoted by

WC(µ, ρ), is symmetric about µ, which is the mean direction of this distribu-

tion, and the mean resultant length is ρ. As ρ → 0 it tends to the circular

uniform distribution, and as ρ → 1, it is concentrated at point µ. The convolu-

tion of wrapped Cauchy distributions WC(µ1, ρ1) and WC(µ2, ρ2) is the wrapped

Cauchy distribution WC(µ1 + µ2, ρ1ρ2).

1.3.5 Generalized cardioid distribution of Jones & Pewsey

Jones and Pewsey (2005) proposed a general family of symmetric unimodal dis-

tributions on the circle that incorporates all of the aforementioned distributions.

The probability density function is

fψ(θ) =
{cosh(κψ) + sinh(κψ) cos(θ − µ)}1/ψ

2πP1/ψ (cosh(κψ))
, −π ≤ θ < π,

where −π ≤ µ < π, κ ≥ 0, −∞ < ψ < ∞, and P1/ψ is the associated Legendre

function of the first kind of degree 1/ψ and order 0 which is defined by

P1/ψ(z) =
1

π

∫ π

0

(
z +

√
z2 − 1 cos x

)1/ψ

dx.

As special cases, the generalized cardioid distribution reduces to

(1) circular uniform distribution (κ = 0; ψ → ±∞) ,

(2) von Mises distribution (ψ → 0),

(3) wrapped Cauchy distribution (ψ = −1),

(4) cardioid distribution (ψ = 1),

(5) Cartwright’s (1963) power-of-cosine distribution (ψ = 1/n, κ → ∞),

12



(6) Shimizu and Iida’s (2002) circular t-distribution (−1 < ψ < 0).

1.4 A new family of distributions on the circle

Kato and Jones (2010) study a family of distributions which is derived from

the Möbius, or linear fractional, transformation of a von Mises random variable.

Likewise, Wang and Shimizu (2012) propose a new family of distributions which

is derived from the Möbius transformation of a cardioid random variable. We

give the results by Wang and Shimizu (2012) in this section.

1.4.1 Möbius transformation

The Möbius transformation from the unit circle onto itself is defined by

M(ξ) = arg

{
β

eiξ + α

1 + αeiξ

}
= 2 arctan

{(
1 − ρα

1 + ρα

)
tan

1

2
(ξ − µα)

}
+ (µα + µβ),

(1.1)

where α = ραeiµα (ρα ≥ 0, ρα ̸= 1, −π ≤ µα < π), β = eiµβ (−π ≤ µβ < π)

and α denotes the complex conjugate of α. In (1.1), µβ is a rotation parameter

and, under the assumption that β = 1, α (̸= 0) is the parameter that attracts

the points on the unit circle toward a point α/|α| on the unit circle, except the

point ξ = −α/|α|, which is invariant under the transformation. Some properties

of the Möbius transformation are discussed in Kato, Shimizu and Shieh (2008)

in the context of circular-circular regression.
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1.4.2 Möbius transformation of a cardioid random vari-

able

Probability density function

When a random variable ξ is distributed as C(µ, ρ), we consider the distribution

of a random variable η = M(ξ) transformed by the Möbius transformation (1.1).

Since η = M(ξ) is a one-to-one mapping and

d

dη
M−1(η) =

1 − ρ2
α

1 + ρ2
α − 2ρα cos(η − µα − µβ)

,

the probability density function of η is

g(η) =
|1 − ρ2

α|h(η)

2π{1 + ρ2
α − 2ρα cos(η − γ2)}

, (1.2)

where

h(η) = 1 + 2ρ

{
cos (η − γ1 − γ2) − 2ρα cos γ1 + ρ2

α cos (η + γ1 − γ2)

1 + ρ2
α − 2ρα cos (η − γ2)

}
,

with four parameters γ1 (= µ − µα), γ2 (= µα + µβ), ρ and ρα. The distribution

is denoted by MC1(γ1, γ2, ρ, ρα) or MC1 for short. Note that γ2 is a location

parameter. Figure 1 gives density plots for γ2 = 0 and various combinations of

the other three parameters γ1, ρ and ρα. It illustrates the flexibility of this family.

The distribution with density (1.2) reduces to a wrapped Cauchy distribution if

ρ = 0.

Kato and Jones (2010) generated a family of distributions by applying the

Möbius transformation to a von Mises distribution with mean direction µ and

concentration parameter κ. The cardioid distribution is approximated by the von

Mises distribution with small κ; an approximation ex ≈ 1 + x leads to equation

(1.2) from the density (2) of Kato and Jones (2010). The above distribution by
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Kato and Jones (2010) and MC1 are special cases of the five-parameter family

introduced in Section 8 of Kato and Jones (2010), an asymmetric extension of

the family of Jones and Pewsey (2005). For MC1, the distribution function is

obtainable in an explicit form as can be seen in the following. The distribution

function, cosine and sine moments, conditions for unimodality and symmetry of

the resulting distribution are studied.

(a) (b)

(c)

Figure 1.1: Density plots of (1.2) for γ2 = 0, and (a) ρ = 1/2, γ1 = π/2, and ρα = 0
(solid), 1/5 (dotted), 2/5 (dashed), 3/5 (dot-dashed); (b) ρ = 1/2, ρα = 2/5, and γ1 = 0
(solid), π/2 (dotted), π (dashed), 3π/2 (dot-dashed); and (c) ρα = 1/2, γ1 = 2π/3, and
ρ = 0 (solid), 1/6 (dotted), 1/3 (dashed), 1/2 (dot-dashed). Unimodal/bimodal and
symmetry/asymmetry depend upon the parameters chosen.
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Distribution function

For −π ≤ γ2 < 0, the distribution function is

G(η) =


1
2

+ 1
π

arctan
{∣∣∣1+ρα

1−ρα

∣∣∣ tan η−γ2

2

}
+ G1, −π ≤ η < 0,

1 + 1
π

arctan
{∣∣∣1−ρα

1+ρα

∣∣∣ cot −η+γ2

2

}
+ G1, 0 ≤ η < π,

and for 0 ≤ γ2 < π, it is

G(η) =


1
π

arctan
{∣∣∣1−ρα

1+ρα

∣∣∣ cot −η+γ2

2

}
+ G1, −π ≤ η < 0,

1
2

+ 1
π

arctan
{∣∣∣1+ρα

1−ρα

∣∣∣ tan η−γ2

2

}
+ G1, 0 ≤ η < π,

where

G1 =
1

π
arctan

{∣∣∣∣1 − ρα

1 + ρα

∣∣∣∣ tan (γ2/2)

}
+

2ρ |1 − ρ2
α| cos (η/2)

π

{
ρα sin

(η

2
+ γ1

)
+ ρα sin

(η

2
− γ1

)
+ρ2

α sin
(η

2
+ γ1 − γ2

)
+ sin

(η

2
− γ1 − γ2

)}
/
[{

1 + ρ2
α − 2ρα cos (η − γ2)

}{
1 + ρ2

α + 2ρα cos γ2

}]
.

If ρ = 0 and γ2 = 0, then

G(η) = 1/2 + (1/π) arctan {|(1 + ρα)/(1 − ρα)| tan(η/2)}

for −π ≤ η < π, which is the distribution function of the wrapped Cauchy

distribution with zero mean direction.

Moments and other characteristics

When 0 ≤ ρα < 1, the cosine and sine moments of MC1 are given by
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E(cos pη) = pρρp−1
α (1 − ρ2

α) cos (pγ2 + γ1) + ρp
α cos pγ2 (1.3)

and

E(sin pη) = pρρp−1
α (1 − ρ2

α) sin (pγ2 + γ1) + ρp
α sin pγ2 (1.4)

for p = 0,±1, . . . . Thus, the mean direction of MC1 is

µMC = γ2 + arctan

{
ρ (1 − ρ2

α) sin γ1

ρα + ρ |1 − ρ2
α| cos γ1

}
, (1.5)

and the mean resultant length is

ρMC =
√

ρ2(1 − ρ2
α)2 + ρ2

α + 2ρρα(1 − ρ2
α) cos γ1. (1.6)

It holds that ρMC ≤ ρ(1 − ρ2
α) + ρα < 1.

For the case ρα > 1, we only need to convert the ρα to 1/ρα and convert the

γ1 to −γ1 in the formulas (1.3), (1.4), (1.5) and (1.6). The cardioid distribution

is closed under convolution, but generally MC1 does not have this property.

Conditions for unimodality

We discuss conditions for unimodality of the probability density function of MC1.

The procedure for proof is similar to that of Kato and Jones (2010).

Let a1 = ρρα(1 + ρ2
α) cos γ1 − ρ2

α, a2 = 2ρρα(1 − ρ2
α) sin γ1, a3 = ρ(1 + ρ4

α −

6ρ2
α) cos γ1 +ρα(1+ρ2

α), a4 = −ρ(1−ρ4
α) sin γ1 and a5 = 2ρρα(1−ρ2

α) sin γ1. Then

the derivative of g(η) with respect to η is

g′(η) = − |1 − ρ2
α|

π{1 + ρ2
α − 2ρα cos (η − γ2)}3

(b0 + b1t + b2t
2 + b3t

3 + b4t
4)

(1 + t2)2
,

where t = tan(η/2) and the coefficients b0, b1, b2, b3 and b4 are given by
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b0 = a5 + a4 cos γ2 − a3 sin γ2 + a2{sin γ2}2 − a1 sin 2γ2,

b1 = 4a1 cos 2γ2 + 2a3 cos γ2 + 2a4 sin γ2 − 2a2 sin 2γ2,

b2 = 2a5 + 4a2 − 6a2{sin γ2}2 + 6a1 sin 2γ2,

b3 = 2a3 cos γ2 − 4a1 cos 2γ2 + 2a4 sin γ2 + 2a2 sin 2γ2,

b4 = a5 − a4 cos γ2 + a3 sin γ2 + a2{sin γ2}2 − a1 sin 2γ2.

Thus, the modality of MC1 to be solved reduces to find the root of the quartic

equation b0 + b1t + b2t
2 + b3t

3 + b4t
4 = 0. It follows from Ferrari’s method that

the equation has two real roots and two complex roots if the discriminant D is

negative and then the probability density function is unimodal, while it has four

real roots or four complex roots if D is positive and then the density is bimodal.

Here D is

D = b2
1 b2

2 b2
3 − 4 b3

1 b3
3 − 4 b2

1 b3
2 b4 + 18 b3

1 b2 b3 b4 − 27 b4
1 b2

4 + 256 b3
0 b3

4

+b0 (−4 b3
2 b2

3 + 18 b1 b2 b3
3 + 16 b4

2 b4 − 80 b1 b2
2 b3 b4 − 6 b2

1 b2
3 b4

+144 b2
1 b2 b2

4) + b2
0 (−27 b4

3 + 144 b2 b2
3 b4 − 128 b2

2 b2
4 − 192 b1 b3 b2

4)

(1.7)

as already given in Kato and Jones (2010). Figure 2 shows areas of positive D

(bimodality for density) and negative D (unimodality for density) for two pairs

of parameters. For example, Figure 2(a) suggests that the density (1.2) with

γ2 = 0 and ρ = 1/2 can be bimodal for any γ1 when ρα is close to 1 and when

approximately ρα > 0.2 for γ1 = π. The case γ2 = 0, ρ = 1/2, ρα = 2/5, γ1 = π

in Figure 1(b) gives an example of bimodal density.

In a special case when γ1 = 0, the density and its derivative are of the forms
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g(η) =
|1 − ρ2

α|
2π {1 + ρ2

α − 2ρα cos (η − γ2)}

{
1 + 2ρ

(1 + ρ2
α) cos (η − γ2) − 2ρα

1 + ρ2
α − 2ρα cos (η − γ2)

}

and

g
′
(η) = −|1 − ρ2

α| {2a1 cos (η − γ2) + a3}
2π {1 + ρ2

α − 2ρα cos (η − γ2)}
sin (η − γ2).

Since 2a1 cos (η − γ2) + a3 > 0 for all η, we find stationary points which satisfy

sin (η − γ2) = 0, i.e. η = γ2 and η = γ2 ± π (mod 2π). Since g′′(γ2) = −{ρα +

ρ(1 + 4ρα + ρ2
α)}|1 − ρ2

α|/{π(1 − ρα)4} ≤ 0 and g′′(γ2 ± π) = {ρα + ρ(1 − 4ρα +

ρ2
α)}|1−ρ2

α|}/{π(1+ρα)4} = {ρα(1−2ρ)+ρ(1−ρα)2)|1−ρ2
α|}/{π(1+ρα)4} ≥ 0,

we know that g(η) gives a maximum value at point γ2 and a minimum value at

point γ2 ± π (mod 2π).

(a) (b)

Figure 1.2: Discriminant (1.7) for density (1.2) when γ2 = 0, as functions of (a)
(γ1, ρα) when ρ = 1/2, and (b) (γ1, ρ) when ρα = 1/4. The region of positive discrimi-
nant/bimodality is shown in black, and negative discriminant/unimodality in white.
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Conditions for symmetry

Different from Kato and Jones (2010), we start with a measure of skewness

(Mardia and Jupp, 1999, Section 3.4) for circular random variable η defined by

s = E{sin 2(η − µMC)}/(1 − ρMC)3/2, where µMC is the mean direction and ρMC

the mean resultant length of η. The skewness of MC1 is calculated as

s(µ, ρ, µα, ρα, µβ) = −2ρ−2
MC(1 − ρMC)−3/2ρ2ρα(1 − ρ2

α)2

×{ρ(1 − ρ2
α) + ρα cos γ1} sin γ1 (1.8)

for 0 ≤ ρα < 1 unless ρMC = 0, and for the case ρα > 1 we only need to convert

the ρα to 1/ρα in equation (1.8).

If the probability density function g(η) is symmetric about µMC, the skewness

is 0. This means that the following equation is necessarily satisfied for symmetry:

ρ2ρα(1 − ρ2
α)2{ρ(1 − ρ2

α) + ρα cos γ1} sin γ1 = 0.

Thus, we consider the four cases below.

(a) ρ = 0.

In this case, MC1 becomes a symmetric wrapped Cauchy distribution with

mean direction γ2 and mean resultant length ρα for 0 ≤ ρα < 1 and 1/ρα

for ρα > 1.

(b) ρα = 0.

In this case, MC1 becomes a symmetric cardioid distribution C(γ1 + γ2, ρ).

(c) sin γ1 = 0.

In this case, it is obtained that γ1 = 0 or γ1 = −π. And the probability

density function becomes
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g(η) =


|1−ρ2

α|
2π{1+ρ2

α−2ρα cos(η−γ2)}

[
1 + 2ρ (1+ρ2

α) cos (η−γ2)−2ρα

1+ρ2
α−2ρα cos (η−γ2)

]
, γ1 = 0,

|1−ρ2
α|

2π{1+ρ2
α−2ρα cos(η−γ2)}

[
1 − 2ρ (1+ρ2

α) cos (η−γ2)−2ρα

1+ρ2
α−2ρα cos (η−γ2)

]
, γ1 = −π.

It is not difficult to find that g(γ2 + η) = g(γ2 − η) for all η. Thus, when

sin γ1 = 0, g(η) is symmetric about γ2.

(d) ρ(1 − ρ2
α) + ρα cos γ1 = 0.

In this case, we have ρ = −{ρα/(1 − ρ2
α)} cos γ1, and the probability density

function is

g(η) =
|1 − ρ2

α|
2π(1 + ρ2

α − 2ρα cos (η − γ2))

[
1 − 2

ρα

1 − ρ2
α

cos γ1

×
{

cos (η − γ1 − γ2) − 2ρα cos γ1 + ρ2
α cos (η + γ1 − γ2)

1 + ρ2
α − 2ρα cos (η − γ2)

}]
.

For each x0 there exists an η0 such that g(x0 − η0) − g(x0 + η0) ̸= 0, and

g(η) is not symmetric in this case. An explicit example of an asymmetric

density which nonetheless has zero circular skewness is seen in Figure 1(c):

ρα = 1/2, γ1 = 2π/3 and ρ = 1/3.

Consequently, the probability density function g(η) is symmetric if and only if

ρ = 0 or ρα = 0 or γ1 = 0 or γ1 = −π.
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Chapter 2

Distributions on the torus

2.1 Introduction

Sometimes it is necessary to consider the joint distribution of two circular random

variables, such as the relationship between a pair of wind directions, measured

at two locations at same time. Such a pair of realization may be identified with

a point on the torus and thus the joint distributions of two circular random

variables are called distributions on the torus or bivariate circular distributions.

There are many bivariate circular distributions discussed in the literature.

Some methods to get bivariate circular distributions and existing parametric

models are introduced in Section 2.2. Bivariate von Mises–Fisher distributions

were introduced by Mardia (1975). A theorem for generating families of bivari-

ate circular distributions with specified marginal distributions was proposed by

Wehrly and Johnson (1979), and a bivariate circular distribution with von Mises

marginals was proposed by Shieh and Johnson (2005).

In Section 2.3, we propose a bivariate cardioid distribution generated from a

circular-circular structural model linked with Möbius transformation, which can

be viewed as a method of trivariate reduction. An explicit form of the joint

probability density function and its trigonometric moments are obtained. An
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illustration is given in Section 2.4 as an application of the bivariate cardioid

distribution to the wind direction data (Johnson and Wehrly, 1977) at 6 a.m. and

12 noon measured each day at a weather station in Milwaukee for 21 consecutive

days.

2.2 Some existing distributions on the torus

A family of bivariate von Mises–Fisher distributions was introduced by Mardia

(1975) (see also Mardia and Jupp, 1999, Section 3.7.1). Consider the joint distri-

bution of two circular random variables Θ1 and Θ2. Then (Θ1, Θ2) takes values

on the unit torus. One useful set of distribution on the torus is the bivariate von

Mises model (Mardia, 1975) with probability density function proportional to

exp
{
κ1 cos (θ1 − µ1) + κ2 cos (θ2 − µ2) + (cos θ1, sin θ1)A(cos θ2, sin θ2)

T
}
,

where A is a 2 × 2 matrix. The marginal distributions of Θ1 and Θ2 are von

Mises if and only if either A = 0 or κ1 = κ2 = 0 and A is a multiple of an

orthogonal matrix (so that Θ1 and Θ2 are uniformly distributed). A submodel

of this class was discussed by Jupp and Mardia (1980), and another submodel

was considered by Rivest (1988), whose subsets were investigated by Singh et al.

(2002) and Mardia et al. (2007). This class of distributions are maximum entropy

distributions (see also Jammalamadaka and SenGupta, 2001, Section 2.3.1).

Wehrly and Johnson (1979) have given a theorem for generating families of

bivariate circular distributions with specified marginal distributions. The theorem

is given below.

Theorem. Let f1(θ) and f2(η) be specified densities on the circle and F1(θ) and

F2(η) be their distribution functions. Also, let g(·) be a density on the circle.

Then
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f(θ, η) = 2πg [2π {F1(θ) − F2(η)}] f1(θ)f2(η)

and

f(θ, η) = 2πg [2π {F1(θ) + F2(η)}] f1(θ)f2(η)

where −π ≤ θ, η < π, are densities on the torus having the specified marginal

densities f1(θ) and f2(η).

Shieh and Johnson (2005) study a bivariate model with von Mises marginals

f(θj) for j = 1, 2, having probability density function:

f12(θ1, θ2) = 2πf1(θ1)f2(θ2)
1

2πI0(κ12)
eκ12 cos [2π{F1(θ1)−F2(θ2)}−µ12], (2.1)

where −π ≤ θ1, θ2 < π, −π ≤ µ12 < π, κ12 ≥ 0, and Fj(θj) =
∫ θj

−π
fj(θ)dθ. Some

properties such as maximum likelihood estimation are investigated.

Furthermore, Kato and Shimizu (2008) provide four-variate continuous distri-

butions on certain manifolds with specified bivariate marginal distributions. The

theorem is applicable to the construction of distributions on two tori, cylinders

or discs.

Bibliographic notes: As other literature, Baba (1981) proposed a wrapped

multivariate normal distribution; SenGupta (2004) investigated bivariate circular

distributions with the properties of maximum entropy and conditional specifica-

tions; Aronld and Strass (1991) characterize the class of bivariate distributions

such that the conditional distributions belong to any specified exponential fami-

lies. Kato (2009) proposed a bivariate circular distribution with circular uniform

marginals and wrapped Cauchy conditional distributions; Shieh et al. (2011)
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gave a family of bivariate generalized von Mises distributions, whose marginals

are generalized von Mises distributions.

2.3 A family of bivariate cardioid distributions

2.3.1 Definition and joint probability density function

Wang and Shimizu (2012) consider a circular-circular structural model, similar

to but different from the linear structural model (cf. Cheng and Van Ness, 1999,

Section 1.1), or a model using a method of trivariate reduction, i.e. Θ = ξ + δ

and Φ = η + ε, where ξ is a random variable which follows a cardioid distribution

C(µ, ρ) and η is linked to ξ with the Möbius transformation (1.1) as η = M(ξ).

Here δ and ε are independently distributed as cardioid distributions C(0, ρ1) and

C(0, ρ2) respectively and are independent of ξ. The distribution of η and its

properties have been given in Section 1.4 of this thesis.

The joint probability density function of Θ and Φ, whose distribution is de-

noted by MC2(µ, ρ, µα, ρα, µβ, ρ1, ρ2) or MC2 for short, is calculated as

f1(θ, ϕ) =

(
1

2π

)2

[1 + 2ρ2ρα{1 + 2ρρ1 cos (θ − µ)} cos(µα + µβ − ϕ)

+2ρρ1 cos (θ − µ) + 2ρρ2(1 − ρ2
α) cos (ϕ − µ − µβ)

+2ρ1ρ2(1 − ρ2
α) cos (ϕ − θ − µβ)

−2ρρ1ρ2ρα(1 − ρ2
α) cos (θ − ϕ + µ − µα + µβ)], (2.2)

for 0 ≤ ρα < 1, and for ρα > 1,
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f2(θ, ϕ) =

(
1

2π

)2 [
1 + 2ρ2{1 + 2ρρ1 cos (θ − µ)} 1

ρα

cos (µα + µβ − ϕ)

+2ρρ1 cos (θ − µ) + 2ρρ2
ρ2

α − 1

ρ2
α

cos (ϕ + µ − 2µα − µβ)

+2ρ1ρ2
ρ2

α − 1

ρ2
α

cos (θ + ϕ − 2µα − µβ)

−2ρρ1ρ2
ρ2

α − 1

ρ3
α

cos (θ + ϕ + µ − 3µα − µβ)

]
.

Contour plots for ρ = 1/4, ρ1 = ρ2 = 1/2, µα = µβ = 0 and various combinations

of the other two parameters µ and ρα are displayed in Figure 2.1.

The marginal probability density functions of Θ and Φ are C(µ, ρρ1) and

C(µϕ, ρϕ) from the reproductive property of cardioid distributions, where µϕ =

µMC and ρϕ = ρ2ρMC. The conditional probability density functions are easily

obtainable. If ρ1 = 0 or ρ2 = 0 in MC2, then Θ is independent of Φ. If µ = µα or

ρα = 0, the joint probability density function has a mode at (µ, µ + µβ), but we

do not know whether the distribution is unimodal or not.

2.3.2 Trigonometric moments

The joint trigonometric moments Φ(p, q) = E{ei(pΘ+qΦ)}, p, q = 0,±1,±2, . . . , of

MC2 are listed below for the cases Φ(p, q) ̸= 0:

Φ(p, 0) =


1, p = 0,

ρρ1e
iµ, p = 1,

ρρ1e
−iµ, p = −1,

Φ(0, 1) =

 ρ2e
i(µα+µβ)

{
ρα + ρ(1 − ρ2

α)ei(µ−µα)
}

, 0 ≤ ρα < 1,

ρ2e
i(µα+µβ)

{
1

ρα
+ ρρ2

α−1
ρ2

α
ei(µα−µ)

}
, ρα > 1,
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(a) (b)

(c) (d)

Figure 2.1: Contour plots of (2.2) for ρ = 1/4, ρ1 = ρ2 = 1/2, µα = µβ = 0 and (a)
µ = 0, ρα = 0, (b) µ = 0, ρα = 0.6, (c) ρα = 0.6, µ = π/4 and (d) ρα = 0.6, µ = 2π/3.
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Φ(1, 1) =

 ρρ1ρ2ραei(µα+µβ+µ), 0 ≤ ρα < 1,

ρ1ρ2e
i(µα+µβ)

{
ρ2

α−1
ρ2

α
eiµα + ρ

ρα
eiµ − ρρ2

α−1
ρ3

α
ei(2µα−µ)

}
, ρα > 1,

Φ(1,−1) =


ρ1ρ2e

−i(µα+µβ)
{
(1 − ρ2

α)eiµα + ρραeiµ − ρρα(1 − ρ2
α)ei(2µα−µ)

}
,

0 ≤ ρα < 1,

ρρ1ρ2

ρα
e−i(µα+µβ−µ), ρα > 1.

For the case Φ(0,−1), Φ(−1,−1), Φ(−1, 1), we only need to convert the i to −i

in the formulas Φ(0, 1), Φ(1, 1) and Φ(1,−1) respectively.

2.3.3 Correlation coefficient

A circular-circular correlation coefficient for bivariate data (cf. Mardia and Jupp,

1999, Section 11.2) is

r2
θ,ϕ =

1

(1 − r2
1)(1 − r2

2)

{
(r2

cc + r2
cs + r2

sc + r2
ss) + 2(rccrss + rcsrsc)r1r2

−2(rccrcs + rscrss)r2 − 2(rccrsc + rcsrss)r1} ,

where rcc = corr(cos Θ, cos Φ), rcs = corr(cos Θ, sin Φ), rsc = corr(sin Θ, cos Φ),

rss = corr(sin Θ, sin Φ), r1 = corr(cos Θ, sin Θ), r2 = corr(cos Φ, sin Φ) are Pear-

son’s correlation coefficients. The correlation coefficient for MC2 is

r2
θ,ϕ = 2ρ2

1ρ
2
2(t + 2ρ2ρ2

α), 0 ≤ ρα < 1,

where t = (1− ρ2
α)[(1 − ρ2

α)(1 + ρ2ρ2
α) + 2ρρ3

α cos (µ − µα) − 2ρ2ρ2
α cos 2(µ − µα)].

For the case ρα > 1, we only need to convert the ρα to 1/ρα. Figure 2.2 gives a

plot of t + 2ρ2ρ2
α for 0 < ρ ≤ 1/2 and 0 ≤ ρα < 1 when µ − µα = 0. The values

of t + 2ρ2ρ2
α approach 1 for any ρ as ρα goes to 0.
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Figure 2.2: Plot of t + 2ρ2ρ2
α for 0 < ρ ≤ 1/2 and 0 ≤ ρα < 1 when µ − µα = 0.

2.4 Illustrative example

The wind direction at 6 a.m. and 12 noon measured each day at a weather station

in Milwaukee for 21 consecutive days (Johnson and Wehrly, 1977) is used for an

example.

First, we investigate about testing the hypothesis that the wind direction

data θ1, θ2, . . . , θ21 at 6 a.m. and ϕ1, ϕ2, . . . , ϕ21 at noon come from cardioid dis-

tributions. Watson’s U2 goodness-of-fit test gives U2
θ = 0.071 and U2

ϕ = 0.070,

whose p-values are 0.48 and 0.49 respectively. Thus, we have enough evidence

that the data come from cardioid distributions. Figure 2.3 shows circular plots

of the data as well as circular plots of densities estimated by the maximum

likelihood method under cardioid distributions. The maximum likelihood esti-

mates of parameters are µ̂θ = 4.670 (radians) = 267.608 (degrees), ρ̂θ = 0.244,

µ̂ϕ = 0.214 (radians) = 12.273 (degrees) and ρ̂ϕ = 0.0853.

Second, we use a test for serial dependence (Wehrly and Johnson, 1979) for

each of the wind direction data at 6 a.m. and noon under a model with cardioid

marginal distributions. The test statistic for serial dependence,
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(a) (b)

Figure 2.3: (a) Circular plot of the wind data at 6 a.m. and the curve of fitted
density of C(µθ, ρθ). The estimated mean direction and mean resultant length are
µ̂θ = 4.670 (radians) = 267.608 (degrees) and ρ̂θ = 0.244. (b) Circular plot of the
wind data at noon and the curve of fitted density of C(µϕ, ρϕ). The estimated mean
direction and mean resultant length are µ̂ϕ = 0.214 (radians) = 12.273 (degrees) and
ρ̂ϕ = 0.0853.
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√
2/(n − 1)

n−1∑
j=1

cos[θj+1 − θj + 2ρ{sin(θj+1 − µ) − sin(θj − µ)}]

for θ1, . . . , θn−1, has standard normal as an asymptotic distribution under inde-

pendence. We replace ρ and µ with their maximum likelihood estimates ρ̂ and

µ̂ under the model of cardioid distribution. The values of the test statistic for

the wind direction data at 6.a.m. and noon are 0.181 (p-value 0.428) and 0.864

(p-value 0.194) respectively and there is no strong indication of serial correlation

in the sequence of wind direction. As far as we know, testing serial dependence

of bivariate circular datapoints is unknown, and this should be a future study.

Third, independence of Θ and Φ is investigated. It is known (cf. Mardia and

Jupp (1999, p. 249)) that independence of Θ and Φ is rejected for large values

of r2
θ,ϕ, since nr2

θ,ϕ ≈ χ2
4 as n → ∞ under independence. Numerical estimation

of r2
θ,ϕ gives r2

θ,ϕ = 0.439, and its p-value is 0.0558, which is marginal to 5% and

there is no clear evidence for rejection or acceptance of independence.

Finally, we fit MC2 to the data set. An interpretation of the MC2 model is

as follows. Let ξ and η denote unobservable angular random variables which

represent wind direction at 6 a.m. and noon, and it is assumed that there

exists a structural relationship η = M(ξ), where ξ follows a cardioid distribu-

tion and M is the Möbius transformation. Angular variables δ and ε are inde-

pendent measurement errors which are assumed to follow cardioid distributions

with zero mean direction, independent of ξ, and Θ (= ξ + δ) and Φ (= η + ε)

are observed. The maximum likelihood (ML) estimates of parameters for the

model MC2, the values of maximum log-likelihood (MLL) and the values of

Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)

are summarized in Table 2.1 for (a) the identity transformation M(ξ) = ξ, i.e.

MC2(µ, ρ,−, 0, 0, ρ1, ρ2), with common mean resultant length ρ1 = ρ2, (b) angular

rotation M(ξ) = ξ +µβ, i.e. MC2(µ, ρ,−, 0, µβ, ρ1, ρ2), with ρ1 = ρ2, independent
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models (c) MC2(µ, ρ, µα, ρα, µβ, 0, ρ2) ≡ MC2(µ ± π, ρ, µα ± π, ρα, µβ ± π, 0, ρ2)

and (d) MC2(µ, ρ,−,−,−, ρ1, 0), (e) a model MC2(µ, ρ, µα, ρα, µβ, ρ1, ρ2) with

ρ1 = ρ2, and (f) the full model MC2(µ, ρ, µα, ρα, µβ, ρ1, ρ2). The potential struc-

ture is estimated as η = M̂(ξ) using the ML estimates µ̂α, ρ̂α and µ̂β. For this

data set, a simple distribution MC2(µ, ρ,−, 0, µβ, ρ1, ρ2) with ρ1 = ρ2 linked to

angular rotation M(ξ) = ξ + µβ is selected as an optimal model between these

six in the sense of minimum AIC. Approximate 90% confidence intervals for µ,

ρ, µβ and ρ1 of the model based on the Fisher information are (4.921, 6.105),

(0.119, 0.425), (0.417, 1.164) and (0.411, 0.5). Figure 2.4(a) shows a contour

plot of the optimal model with a plot of the data and the Möbius curve, line

for this data set, as a function ϕ = M̂(θ) = θ + µ̂β with the ML estimate

µ̂β = 0.790 (radians) = 45.264 (degrees) of µβ under the model. Figure 2.4(b)

shows a 3-D plot of the fitted joint density.

Table 2.1: Maximum likelihood estimates of the parameters, the maximum
log-likelihood (MLL), AIC and BIC values for (a) the identity transformation
M(ξ) = ξ with ρ1 = ρ2, (b) angular rotation M(ξ) = ξ + µβ with ρ1 = ρ2, inde-
pendent models (c) MC2(µ, ρ, µα, ρα, µβ, 0, ρ2) and (d) MC2(µ, ρ,−,−,−, ρ1, 0),
and (e) a model MC2(µ, ρ, µα, ρα, µβ, ρ1, ρ2) with ρ1 = ρ2, and (f) the full model
MC2(µ, ρ, µα, ρα, µβ, ρ1, ρ2).

Model µ̂ ρ̂ µ̂α ρ̂α µ̂β ρ̂1 ρ̂2 MLL AIC BIC
(a) 5.708 0.196 – – – 0.5 0.5 -74.588 155.176 158.310
(b) 5.513 0.272 – – 0.790 0.5 0.5 -73.183 154.367 158.545
(c) 0.010 0.230 0.000 0.803 0.213 – 0.096 -77.076 166.151 172.418

(3.152) (3.142) (3.355)
(d) 4.671 0.496 – – – 0.491 – -75.884 157.767 160.901
(e) 5.065 0.357 1.266 0.314 0.532 0.5 0.5 -72.705 157.410 163.677
(f) 5.065 0.357 1.266 0.314 0.532 0.5 0.5 -72.705 159.410 166.722

As a comment, the fact that the estimate of ρ1 (= ρ2) is 0.5 which is a

boundary of the parameter space, suggests better fit of more sharply peaked

distributions such as wrapped Cauchy and von Mises distributions. Shieh and

Johnson (2005) study a bivariate distribution whose joint probability density

function is given by function (2.1). For the same data set, maximum likelihood
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estimates of the parameters are given in Table 2.2. The bivariate distribution

with von Mises marginals is selected as a better model than MC2(b) in the sense

of smaller AIC and BIC values, but MC2 Model has benefit of inferring the

structural relationship between two unobservable circular variables. Circular-

circular structural relationship models based on wrapped Cauchy and von Mises

distributions are beyond the scope of the current thesis.

Table 2.2: Maximum likelihood estimates of the parameters, the maximum log-
likelihood (MLL), AIC and BIC values for the Shieh and Johnson (2005) model.

µ̂1 κ̂1 µ̂2 κ̂2 µ̂12 κ̂12 MLL AIC BIC
4.769 0.645 4.952 0.246 5.137 1.239 -70.115 152.229 158.496

(a)

(b)

Figure 2.4: (a) Contour plot of the fitted distribution with plots of the wind direction
data at 6 a.m. and noon. The Möbius curve, line for this data set, is drawn as a
function ϕ = M̂(θ) = θ + µ̂β with the estimated value of µβ . (b) 3-D plot of the fitted
joint density of MC2(µ, ρ,−, 0, µβ, ρ1, ρ2) with ρ1 = ρ2.
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Chapter 3

Distributions on the cylinder

3.1 Introduction

Sometimes it is necessary to consider models for bivariate data, such as wind

direction and speed, wind direction and the concentration of a pollutant. The

feature is: one variable is angular and the other one is linear. Such a pair of

realization may be identified with a point on the cylinder. Thus sometimes

angular-linear random variables are called cylindrical random variables and the

joint distributions of the cylindrical variables are called cylindrical distributions

or distributions on the cylinder.

Some existing parametric models are introduced for cylindrical distributions

in Section 3.2. Mardia and Sutton (1978) proposed a suitable model for cylin-

drical data, and obtained the maximum likelihood estimators for the parameters

of the model. Johnson and Wehrly (1978) proposed some angular-linear distri-

butions based on the principle of maximum entropy, and proposed a model with

specified marginal distributions. Recently, Kato and Shimizu (2008) investigated

the Johnson and Wehrly model in detail, proposed an extension of the Mardia

and Sutton model, and provided a theorem which constructs four-dimensional

distributions with specified bivariate marginal distributions on certain manifolds
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such as two tori, cylinders or discs.

In Section 3.3, we propose an angular-linear distribution whose density is a

combination of von Mises and transformed Kumaraswamy distributions. Some

properties such as marginal distribution, conditional distribution and mode are

obtained. Illustrative examples are given in Section 3.4.

Distributional studies and regression models have played important roles in

statistical analysis of circular data. Symmetric and possibly asymmetric circular-

linear multivariate regression models (SenGupta and Ugwuowo, 2006) are moti-

vated by and applied to predict some environmental characteristics based on both

circular and linear predictors. Noting that the circular-linear regression models

are derived from the conditional distributions of cylindrical distributions, we give,

in Appendix, a likelihood approach (Cook, 1986) to study influence diagnostic

analysis for cosine, cosine-sine and cosine-cosine models (see Liu et al., 2013,

manuscript).

3.2 Existing distributions on the cylinder

There are various situations which involve both circular random variable Θ and

linear random variable X, such as wind direction and speed, direction and move-

ment distance for animal, wind direction and the concentration of air pullutant.

Then the random vector (Θ, X) takes values on the cylinder. Mardia and Sutton

(1978) proposed a model with density

f(θ, x) =
1

2πI0(κ)
exp {κ cos (θ − µ0)}

1√
2πσc

exp

{
−

[
(x − µc)

2

2σ2
c

]}

where −π ≤ θ < π, −∞ < x < ∞, −π ≤ µ0 < π, κ ≥ 0, I0(κ) is the modified

Bessel function of the first kind and order zero and
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µc = µ +
√

κσ{ρ1(cos θ − cos µ0) + ρ2(sin θ − sin µ0)},

σc = σ2(1 − ρ2) and ρ = (ρ2
1 + ρ2

2)
1/2, 0 ≤ ρ < 1.

for −∞ < µ < ∞, σ > 0, 0 ≤ ρ1 < 1, 0 ≤ ρ2 < 1 The parameters of the model

are µ, µ0, κ, ρ1, ρ2 and σ. Maximum likelihood estimates of parameters and a

practical example are given by Mardia and Sutton (1978).

Johnson and Wehrly (1978) proposed some distributions on the cylinder which

maximize the entropy subject to constraints on certain moments. One of the

distributions has density

f(θ, x) =
1

2π

(
λ2 − κ2

)1/2
exp {−λx + κx cos (θ − µ)}, (3.1)

where −π ≤ θ < π, x > 0, 0 < κ < λ, −π ≤ µ < π. This distribution is the

maximum entropy distribution subject to constraints on E(X), E(X sin Θ), and

E(X cos Θ). The marginal distribution of Θ is a wrapped Cauchy distribution

WC(µ, κ{λ + (λ2 − κ2)1/2}−1), the conditional distribution of Θ given X = x is

a von Mises distribution VM(µ, κx) and the conditional distribution of X given

Θ = θ is an exponential distribution with mean {λ − κ cos (θ − µ)}−1.

Another distribution proposed by Johnson and Wehrly (1978) has density

f(θ, x) = c exp

{
−x2

2σ
+

λx

σ2
+

κx

σ2
cos (θ − µ)

}
, (3.2)

where c (> 0) is a normalizing constant, −π ≤ θ < π, −∞ < x < ∞, −∞ < λ <

∞, κ > 0, and −π < µ < π, gives the maximum entropy cylindrical distribution

subject to E(X), E(X2), E(X cos Θ) and E(X sin Θ) taking specified values (see

also SenGupta, 2004). The marginal distributions are not of familiar form, but

the conditional distributions are
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f1(θ|x) =
{
2πI0(κx/σ2)

}−1
exp

{
(κx/σ2) cos (θ − µ)

}
and

f2(x|θ) = (2πσ2)−1/2 exp
{
−(1/2σ2)[x − {λ + κ cos (θ − µ)}]2

}
,

which are the densities of a von Mises distribution VM(µ, κx/σ2) and a normal

distribution N(λ + κ{cos (θ − µ)}, σ2) respectively.

Furthermore, Johnson and Wehrly (1978) proposed a distribution, whose

marginal densities f1(θ), f2(x) are specified, with density

f(θ, x) = 2πf1(θ)f2(x)g [2π {F1(θ) − F2(x)}] ,

where F1(θ) and F2(x) denote the distribution functions of f1(θ) and f2(x) re-

spectively, and g(·) is a probability density function on the circle.

Kato and Shimizu (2008) gave a theorem which constructs four-dimensional

distributions with specified bivariate marginals on certain manifolds such as two

tori, cylinders or discs, and also proposed an extention of the Mardia and Sutton

model, which has the joint probability density function:

f(θ, x) = C−1 exp

[
−{x − µ(θ)}2

2σ2
+ κ1 cos (θ − µ1) + κ2 cos 2(θ − µ2)

]
, (3.3)

where 0 ≤ θ < 2π, −∞ < x < ∞, σ > 0, 0 ≤ µ1 < 2π, 0 ≤ µ2 < π,

µ(θ) = µ′ + λ cos (θ − ν), −∞ < µ′ < ∞, λ ≥ 0, 0 ≤ ν < 2π and κ1, κ2 > 0. The

normalizing constant C is provided by

C = (2π)3/2σ

[
I0(κ1)I0(κ2) + 2

∞∑
j=1

Ij(κ2)I2j(κ1) cos {2j(µ1 − µ2)}

]
.
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The distribution has the following properties.

(1) f(θ, x) is the maximum entropy probability density function on the cylin-

der subject to E(X2), E(X), E(X cos Θ), E(X sin Θ), E(cos Θ), E(sin Θ),

E(cos 2Θ) and E(sin 2Θ) taking specified values consistent with expecta-

tion.

(2) The marginal distribution of Θ is the generalized von Mises distribution

GVM(κ1, κ2, µ1, µ2) and the conditional distribution of X given Θ = θ is a

normal distribution N(µ(θ), σ2).

Note: Kato (2009) proposed a cylindrical distribution with circular uniform and

standard Cauchy marginals.

3.3 New distributions on the cylinder

The angular-linear distribution we propose has density

f(θ, x) = A−1 e{−λx+κx cos (θ−µ)} (
1 − e−λx

)β−1
, (3.4)

where −π ≤ θ < π, x ≥ 0; −π ≤ µ < π, β > 0, λ > κ > 0, and the normalizing

constant is

A = 2π
∞∑

j=0

(
β − 1

j

)
(−1)j{λ2(j + 1)2 − κ2}−1/2.

This distribution is a combination of von Mises and transformed Kumaraswamy

distributions, and it is also an extended model of the Johnson–Wehrly model

(3.1). When β = 1, the normalizing constant is A = 2π(λ2 − κ2)−1/2, and our

model is reduced to Johnson–Wehrly model (3.1). When parameters satisfy the

condition 1 < β < 1 + (λ − κ)/λ, the distribution with (3.4) has a mode at (µ,

λ−1 ln {(λβ − κ)/(λ − κ)}) and an antimode at (µ+π, λ−1 ln {(λβ + κ)/(λ + κ)}).
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The marginal density of Θ can be expressed as

fΘ(θ) = A−1

∞∑
j=0

(
β − 1

j

)
(−1)j{λ(j + 1) − κ cos (θ − µ)}−1, (3.5)

where −π ≤ θ < π. The distribution with density (3.5) is symmetric about µ

and unimodal. It has mode at µ and antimode at µ + π. As a special case, when

β = 1, the density function (3.5) is reduced to

fΘ(θ) =
(λ2 − κ2)1/2

2π
{λ − κ cos (θ − µ)}−1, −π ≤ θ < π.

It is a wrapped Cauchy distribution with mean direction µ and mean resultant

length κ/{λ + (λ2 − κ2)1/2}.

The marginal distribution of X is given by

fX(x) = 2πA−1e−λx
(
1 − e−λx

)β−1
I0(κx), x > 0. (3.6)

Thus, the conditional distribution of Θ given X = x is a von Mises distribution

VM(µ, κx). As a special case, when β = 1, the density function (3.6) is reduced

to

fX(x) = (λ2 − κ2)1/2e−λxI0(κx), x > 0.

Since f
′
X(x) = κ2e−λx[1−(λ/κ)2−(λ/κ){A(κx)}−1] < 0, fX(x) is a monotonically

decreasing function, and takes maximum value (λ2−κ2)1/2 at point x = 0. Figures

3.1 and 3.2 show the plots of model (3.4) with parameters β = 2 and β = 0.8 for

λ = 3, κ = 2, µ = 0 respectively.

We also consider some other cylindrical distributions. McClintock et al.

(2012) proposed a model which has the form of a combination of Weibull and

wrapped Cauchy distributions. Different from the model used in McClintock et
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(a)

(b)

Figure 3.1: (a) 3-D plot and (b) contour plot of model (3.4) with parameters:
λ = 3, β = 2, κ = 2, µ = 0.
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(a)

(b)

Figure 3.2: (a) 3-D plot and (b) contour plot of model (3.4) with parameters:
λ = 3, β = 0.8, κ = 2, µ = 0.
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al. (2012), we let θ and x be dependent, and think of a cylindrical distribution

whose density is given by

f(θ, x) =
b

a

(x

a

)b−1

e−(x
a)

b

×
(

1

2π

)
1 − {tanh (ρx)}2

1 + {tanh (ρx)}2 − 2 tanh (ρx) cos (θ − µ)
, (3.7)

where −π ≤ θ < π, x ≥ 0; −π ≤ µ < π, a > 0, b > 0, ρ > 0. Figure 3.3 shows

3-D and contour plots of the density (3.7).

We also propose a joint distribution by using the method of generating a

cylindrical distribution with specified marginal distributions given by Johnson

and Wehrly (1978). The joint density function is given by

f(θ, x) =
1

2π
αβ e−αx

(
1 − e−αx

)β−1 {1 + 2ρ cos(θ − µc)}

× 1

I0(κ)
e
κ cos

h

2π(1−e−αx)
β
−{θ+2ρ sin (θ−µc)+2ρ sin µc}−µ

i

, (3.8)

where −π ≤ θ < π, x ≥ 0; −π ≤ µ < π, −π ≤ µc < π κ > 0, α ≥ 0, β > 0,

0 ≤ ρ < 1/2. This distribution has a cardioid marginal distribution C(µc, ρ)

for circular random variable Θ, and the linear random variable X is distributed

as Kumaraswamy’s distribution after the exponential transformation exp(−X).

The circular link function of (3.8) is the von Mises distribution VM(µ, κ).

3.4 Illustrative examples

Example 1

In this example, we use the latitude, longitude and magnitude data for fore-

shocks during 72 hours before the earthquake off the Pacific coast of Tohoku,

Japan, a magnitude 9.0 MW, occurred at 14 : 46 JST (05 : 46 UTC) on 11

March, 2011 with the epicenter 38.30 degrees for latitude and 142.37 degrees for
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(a)

(b)

Figure 3.3: (a) 3-D plot and (b) contour plot of model (3.7) with parameters
a = 0.5, b = 1.3, ρ = 0.8, µ = 0.
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longitude approximately 70 km east of the coast. The data were taken from the

U.S. Geological Survey website at

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic−global.php

on 8 July 2011. We pick up the first 28 earthquakes off the Pacific coast of

Tohoku whose magnitudes, m, are greater than 4. Figures 3.4 and 3.5 show 3-

D and contour plots for the set of the magnitudes mj − 4 (j = 1, . . . , 28) and

corresponding consecutive angles θj (0 ≤ θj < 2π; j = 1, . . . , 28) calculated from

epicenters. From the AIC values 146.742 for model (3.1) and 117.886 for model

(3.8), we select model (3.8) as an optimal model between the two.

Example 2

The cylindrical dataset on movements of blue periwinkles is considered next.

The observations are directions (θ) and distances (x) moved by small blue peri-

winkles after they had been transplanted downshore from the height at which

they normally live. The data are taken from Table B.20 of Fisher (1993). The

planar plot of the cylindrical data (θ, x) is shown on Figure 3.6.

For the directions, the sample mean direction and mean resultant length are

1.620 radians (92.819 degrees) and 0.775 respectively. Figure 3.7 shows the cir-

cular plot of the directions. We test symmetry (Pewsey, 2005) for the directions.

The p-value of the test is 0.006, and thus the directions can be seen as coming

from an asymmetric circular distribution.

We use the sine skewed model of (3.4), whose density is given by

fssk1(θ, x) = {1 + γ sin (θ − µ)}

×A e{−λx+κx cos (θ−µ)} (
1 − e−λx

)β−1
, (3.9)

where −1 ≤ γ ≤ 1, and the sine skewed model of (3.7) with density
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(a)

(b)

Figure 3.4: (a) 3-D plot and (b) contour plot of fitted model (3.1) with scatter
plot: λ̂ = 1.818, κ̂ = 1.180, µ̂ = 3.308, MLL= −70.371, AIC= 146.742, BIC=
150.738．
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(a)

(b)

Figure 3.5: (a) 3-D plot and (b) contour plot of fitted model (3.8) with scatter
plot: α̂ = 2.648, β̂ = 6.345, ρ̂ = 0.500, µ̂c = 3.221, κ̂ = 0.259, µ̂ = 2.272,
MLL= −52.943, AIC= 117.886, BIC= 125.879.
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Figure 3.6: Plot of observations of directions (θ) and distances (x) moved by
small blue periwinkles.

Figure 3.7: Circular plot of the directions.
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fssk2(θ, x) = {1 + γ sin (θ − µ)} b

a

(x

a

)b−1

e−(x
a)

b

×
(

1

2π

)
1 − {tanh (ρx)}2

1 + {tanh (ρx)}2 − 2 tanh (ρx) cos (θ − µ)
, (3.10)

where −1 ≤ γ ≤ 1. This idea of skewing comes from Abe and Pewsey (2011),

who proposed skew circular distributions that are generated by perturbation of

symmetric circular distributions. We fit models (3.9) and (3.10) to the cylindrical

data set of movements of blue periwinkles, and compare the results with those

using the Kato–Shimizu and Mardia–Sutton models.

Table 3.1: Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (3.9).

λ̂ β̂ κ̂ µ̂ γ̂ MLL AIC
0.095 2.334 0.078 1.227 1. -174.694 359.387

Table 3.2: Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (3.10).

â b̂ ρ̂ µ̂ γ̂ MLL AIC
52.368 1.536 0.017 1.165 1. -171.119 352.237

The maximum likelihood estimates of the parameters, the maximum log-

likelihood, and AIC of models (3.9) and (3.10) are given in Table 3.1 and Table

3.2 respectively. Figures 3.8 and 3.9 show the contour plots of fitted models as

well as the scatter plots. The AIC value of model (3.10) is 352.2, which is less

than the AIC values 359.387 of model (3.9), 357.5 of Kato–Shimizu model, and

365.8 of Mardia–Sutton model. Thus, model (3.10) is selected as an optimal

model among these four in the sense of minimum AIC.
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Figure 3.8: Contour plot of fitted model (3.9) with scatter plot for the data set
of movements of blue periwinkles.
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Figure 3.9: Contour plot of fitted model (3.10) with scatter plot for the data set
of movements of blue periwinkles.
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3.5 Circular-linear regression models

In this section, we remark that circular-linear regression models are derived from

distributions on the cylinder.

If a random vector (Θ, Y ) is distributed according to the Johnson–Wehrly dis-

tribution (3.2), the conditional distribution of Y given Θ = θ is normal with mean

λ+κ cos (θ − µ) and variance σ2. This provides the usual model for trigonometric

regression. Similarly if we start with a modified joint density

f(θ, y) ∝ exp

[
− y2

2σ2
+

by

σ2
+

κy

σ2
cos {θ − ϕ + γ sin(θ − ϕ)}

]
, |γ| ≤ 1,

then the conditional distribution of Y given Θ = θ is normal with mean b +

κ cos{θ − ϕ + γ sin(θ − ϕ)} and variance σ2. If we adopt an alternative joint

density

f(θ, y) ∝ exp

[
− y2

2σ2
+

by

σ2
+

κy

σ2
cos {θ − ϕ + γ cos(θ − ϕ)}

]
, |γ| ≤ 1,

then the conditional distribution of Y given Θ = θ is normal with mean b +

κ cos{θ − ϕ + γ cos(θ − ϕ)} and variance σ2.

Thus, SenGupta and Ugwuowo (2006) propose the following Cosine, Cosine-

sine and Cosine-cosine (SU) regression models:

yi = x′
iβ + α cos (θi − ϕ) + εi, (3.11)

yi = x′
iβ + α cos {θi − ϕ + γ sin (θi − ϕ)} + εi, (3.12)

yi = x′
iβ + α cos {θi − ϕ + γ cos (θi − ϕ)} + εi, (3.13)

where yi (−∞ < yi < ∞) is the observed linear response value, xi = (1, xi1, xi2)
′

(∈ R3) is the observed linear covariate value, θi (−π ≤ θi < π) is the observed

angular or circular value, εi is independently distributed and εi ∼ N(0, σ2) for

51



i = 1, . . . , n. The parameter vectors in (3.11), (3.12) and (3.13) are respectively

η = (β′, α, ϕ, σ2)
′
, η = (β′, α, ϕ, γ, σ2)

′
and η = (β′, α, ϕ, γ, σ2)

′
, where σ2 (> 0) is

the variance assumed for the normal distribution, β = (β0, β1, β2)
′ (∈ R3) is the

regression coefficient vector, α ∈ R, −π ≤ ϕ < π, and particularly γ (|γ| ≤ 1) in

(3.12) is the parameter of kurtosis (indicating to what extent the shape differs

from a sinusoidal oscillation) and γ in (3.13) is the parameter of skewness (for

the oscillation pattern when the peaks and troughs do not follow each other).

An application of the local influence method proposed by Cook (1986) to the

SU regression models will be treated in Appendix.
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Chapter 4

Distributions on the disc

4.1 Introduction

Some distributions with support on the unit disc in two dimensions are introduced

in Section 4.2. As far as we know, only few articles investigate distributions on

the disc. Jones (2002) proposed a beta distribution on the disc. An alternative

distribution on the disc named the Möbius distribution was proposed by Jones

(2004), whose density function is asymmetric or skew for the length from the

center of the disc, but symmetric for a line through the origin. Therefore, in

Section 4.3.2 we propose a family of modified Möbius distributions skew for both

of the length and angle. The modified Möbius distributions have six parameters.

They can be reduced to the Möbius distribution and uniform distribution as

special cases, but in general the family is skew for both of the length and angle.

Some properties such as marginal distribution are obtained. In Section 4.4, an

illustrative example of fitting the models to data which consist of values of ozone

concentration and wind direction (Johnson and Wehrly, 1977) is given.
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4.2 Möbius distribution

The Möbius distribution was proposed by Jones (2004). The density function

is asymmetric for the length from the center of the disc, and it is obtained by

applying the Möbius transformation to the bivariate spherically symmetric beta

(or Pearson type II) distribution with density

gβ(x, y) =
β

π

(
1 − x2 − y2

)β−1
, β > 0, 0 ≤ x2 + y2 < 1.

The distribution includes the uniform distribution on the disc when β = 1 and

is symmetric with mode at zero when β > 1 and antimode at zero when β < 1,

whose density function could be written as

g(ρ, φ) =
β

π
ρ(1 − ρ2)β−1, 0 < ρ < 1, −π ≤ φ < π, β > 0

in polar coordinates. Write z = (x, y) and w = (u, v) as complex numbers with,

in particular, w = reiθ, 0 ≤ r ≤ 1,−π ≤ θ ≤ π. Applying the inverse Möbius

transformation w ≡ r eiθ = MD(z) = (z + c)/(1 + c̄z) (c = a eiµ, 0 ≤ a < 1, 0 ≤

µ < 2π) to z, then we obtain the Möbius distribution. The density function for

(r, θ) can be written as

f(r, θ) =
β(1 − a2)β+1r(1 − r2)β−1

π {1 + a2r2 − 2ar cos (θ − µ)}β+1
, 0 < r < 1, −π ≤ θ < π.

The parameter a controls the off-centeredness of the distribution, and the Möbius

distribution reduces to the bivariate spherically symmetric beta distribution when

a = 0. The parameter β plays the role of concentration parameter. The Möbius

distribution is asymmetric for the length r, but still symmetric for the angle θ.

Figure 4.1 shows (a) a 3-D plot and (b) a contour plot for the Möbius distribution

with parameters a = 0.25, β = 3 and µ = 0. The marginal distribution of R is
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f(r) =
2β(1 − a2)β+1r(1 − r2)β−1

(1 − a2r2)β+1
Pβ

(
1 + a2r2

1 − a2r2

)
0 ≤ r < 1,

where P denotes the associated Legendre function and is defined as

Pβ(z) =
1

π

∫ π

0

dψ(
z +

√
z2 − 1 cos ψ

)β+1
.

The conditional distribution of Θ|(R = r) is

f(θ|r) =

[
2πPβ(z)

{
z −

√
z2 − 1 cos (θ − µ)

}β+1
]−1

,

where z = (1 + a2r2)/(1 − a2r2). It belongs to the family of Jones and Pewsey

(2005), actually a circular t distribution given in Section 1.3.5.

4.3 A modified Möbius distribution

4.3.1 Kumaraswamy’s distribution

Jones (2009) systematically investigated Kumaraswamy’s (1980) distribution. Its

density is

g(ρ) = αβρα−1 (1 − ρα)β−1 , 0 < ρ < 1, (4.1)

where α and β are positive shape parameters.

Kumaraswamy’s densities are unimodal, uniantimodal, increasing, decreasing

or constant depending in the same way as the beta distribution on the values of

its parameters. Some density plots of Kumaraswamy’s distribution are given in

Figure 4.2. The distribution function of Kumaraswamy’s distribution is
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(a)

(b)

Figure 4.1: (a) 3-D plot and (b) contour plot of the Möbius distribution with
parameters a = 0.25, β = 3 and µ = 0.
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G(ρ) = 1 − (1 − ρα)β , 0 < ρ < 1,

and it can be shown that Kumaraswamy’s distribution has the shape:

(1) unimodal, if α > 1, β > 1,

(2) uniantimodal, if 0 < α < 1, 0 < β < 1,

(3) increasing, if α > 1, 0 < β ≤ 1,

(4) decreasing, if 0 < α ≤ 1, β > 1,

(5) constant, if α = β = 1.

In the first two cases, the mode/antimode is at

ρ =

(
α − 1

αβ − 1

)1/α

.

At the boundaries ρ → 0 and ρ → 1, Kumaraswamy’s distribution has density:

(1) g(ρ) ∼ ρα−1, as ρ → 0,

(2) g(ρ) ∼ (1 − ρ)β−1, as ρ → 1.

4.3.2 A modified Möbius distribution

We propose a distribution on the unit disc, which is asymmetric not only for the

length r but also for the direction θ. Similar to Jones (2004), we start with a

bivariate independent circular distribution with joint density function

g(ρ, φ) =
αβ

2π
ρα−1 (1 − ρα)β−1 , (4.2)
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Figure 4.2: Density plots of Kumaraswamy’s distribution with parameters α = 2,
β = 2 (dots), α = 0.5, β = 0.5 (dashed), α = 2, β = 0.5 (dotdashed), α = 1,
β = 2 (solid).

where 0 < ρ < 1, −π ≤ φ < π, α ≥ 2 and β > 0. This distribution is an indepen-

dent model for the length ρ and angle φ which are made from Kumaraswamy’s

distribution and a circular uniform distribution. It reduces to the bivariate spher-

ically symmetric beta distribution when α = 2. By applying the inverse Möbius

transformation to the distribution (4.2), we have equations

z =
τ − c

1 − c̄τ
,

ρ =

√
a2 + r2

τ − 2arτ cos (θτ − µ)

1 + a2r2
τ − 2arτ cos (θτ − µ)

,

φ = arctan

{
rτ sin θτ − a2rτ sin (θτ − 2µ) − a (1 + r2

τ ) sin µ

rτ cos θτ + a2rτ cos (θτ − 2µ) − a (1 + r2
τ ) cos µ

}
,

for z = ρeiφ and τ = rτe
iθτ . The Jacobian for this transformation is

J1 =

∣∣∣∣∣∣∣∣ ∂(ρ, φ)

∂(rτ , θτ )

∣∣∣∣∣∣∣∣ =
rτ (1 − a2)

2√
a2+r2

τ−2arτ cos (θτ−µ)
1+a2r2

τ−2arτ cos (θτ−µ)
(1 + a2r2

τ − 2arτ cos (θτ − µ))2
.

After this transformation, we obtain the joint density function of Rτ and Θτ
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f(rτ , θτ ) =
αβ(1 − a2)2rτ

2π{B(rτ , θτ )}2

{
A(rτ , θτ )

B(rτ , θτ )

}α/2−1
[
1 −

{
A(rτ , θτ )

B(rτ , θτ )

}α/2
]β−1

, (4.3)

where

A(rτ , θτ ) = a2 + r2
τ − 2arτ cos(θτ − µ),

B(rτ , θτ ) = 1 + a2r2
τ − 2arτ cos(θτ − µ).

The joint distribution with (4.3) is reduced to the Möbius distribution when

α = 2, and it is asymmetric for the length rτ , but still symmetric for the angle

θτ .

Alternatively we propose a Möbius type transformation given by

MC(τ) = |τ | τ/|τ | + c0

1 + c0τ/|τ |
, (4.4)

where c0 is a complex number in the unit disc. This transformation maps the circle

with radius r onto itself. We apply this transformation to the joint distribution

(4.3) to obtain an asymmetric distribution for both of the length and direction.

Model I

Let c0 = a0e
iµ0 , where 0 ≤ a0 < 1, −π ≤ µ0 < π, and apply the transformation

(4.4) to the joint distribution (4.3), then

τ = |w| w/|w| − c0

1 − c̄0w/|w|
,

rτ = r,

θτ = arctan

{
sin θ − 2a0 sin µ0 − a2

0 sin (θ − 2µ0)

cos θ − 2a0 cos µ0 + a2
0 cos (θ − 2µ0)

}

for τ = rτe
iθτ and w = reiθ. The Jacobian for this transformation is
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J =

∣∣∣∣∣∣∣∣∂(rτ , θτ )

∂(r, θ)

∣∣∣∣∣∣∣∣ =
1 − a2

0

1 + a2
0 − 2a0 cos (θ − µ0)

,

so the joint density function of R and Θ is

f1(r, θ) =
αβ (1 − a2)

2
(1 − a2

0) r

2π {1 + a2
0 − 2a0 cos (θ − µ0)} {B1(r, θ)}2

×
{

A1(r, θ)

B1(r, θ)

}α
2
−1

[
1 −

{
A1(r, θ)

B1(r, θ)

}α
2

]β−1

,

where

A1(r, θ) = a2 + r2 − 2ar cos (θτ − µ)

= a2 + r2 − 2ar
cos (θ − µ) − 2a0 cos (µ − µ0) + a2

0 cos (θ + µ − 2µ0)

1 + a2
0 − 2a0 cos (θ − µ0)

,

B1(r, θ) = 1 + a2r2 − 2ar cos (θτ − µ)

= 1 + a2r2 − 2ar
cos (θ − µ) − 2a0 cos (µ − µ0) + a2

0 cos (θ + µ − 2µ0)

1 + a2
0 − 2a0 cos (θ − µ0)

.

As a special case, if α = 2, the joint density function of R and Θ reduces to

f1(r, θ) =
αβ (1 − a2)

β+1
(1 − a2

0) r(1 − r2)β−1

2π {1 + a2
0 − 2a0 cos (θ − µ0)} {B1(r, θ)}β+1

.

The marginal density function of R is, independently of α,

fr(r) =

∫ 2π

0

f(r, θ) dθ =
2β (1 − a2)

β+1
r(1 − r2)β−1

(1 − a2r2)β+1
Pβ

(
1 + a2r2

1 − a2r2

)
,

which is the same marginal density function as that of the Möbius distribution,

where Ps(x) denotes the associated Legendre function. If a0 = 0，the joint

density function of R and Θ reduces to (4.3) because (4.4) reduces to the identity

mapping. Finally, when a = 0 the inverse Möbius transformation is just the
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identity transformation, and the joint density function of R and Θ reduces to

f(r, θ) =
αβ (1 − a2

0) rα−1(1 − rα)β−1

2π {1 + a2
0 − 2a0 cos (θ − µ0)}

.

This is an independent model for R and Θ, and in this case, R is distributied as

Kumaraswamy’s distribution, and Θ is distributed as a wrapped Cauchy distri-

bution.

4.3.3 Some other models

In the transformation (4.4), let c0 = a0re
iµ0 instead of c0 = a0e

iµ0 . Then,

τ = |w| w/|w| − c0

1 − c̄0w/|w|
,

rτ = r,

θτ = arctan

{
sin θ − 2a0 sin µ0 − a2

0 sin (θ − 2µ0)

cos θ − 2a0 cos µ0 + a2
0 cos (θ − 2µ0)

}

for τ = rτe
iθτ and w = reiθ. The distribution (Model II) obtained has joint density

f2(r, θ) =
αβ (1 − a2)

2
(1 − a2

0r
2) r

2π {1 + a2
0r

2 − 2a0r cos (θ − µ0)} {B2(r, θ)}2

×
{

A2(r, θ)

B2(r, θ)

}α
2
−1

[
1 −

{
A2(r, θ)

B2(r, θ)

}α
2

]β−1

.

Here A2(r, θ) and B2(r, θ) are given by replacing a0 in A1(r, θ) and B1(r, θ) with

a0r. As a special case, when α = 2, the marginal density function of R is the

same as the marginal density of Model I. If a0 = 0, the Model II reduces to the

Möbius distribution. If a = 0, the distribution does not yield independence of R

and Θ. Thus, Model II is completely different from Model I.

In the transformation (4.4), let c0 = tanh (a0rτ )e
iµ0 , where a0 ≥ 0, 0 ≤ µ0 <
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2π, to obtain a distribution (Model III). Then,

τ = |w| w/|w| − c0

1 − c̄0w/|w|
,

rτ = r,

θτ = arctan

{
sin θ − 2 tanh (a0r) sin µ − {tanh (a0r)}2 sin (θ − 2µ0)

cos θ − 2 tanh (a0r) cos µ + {tanh (a0r)}2 cos (θ − 2µ0)

}
.

The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣∂(rτ , θτ )

∂(r, θ)

∣∣∣∣∣∣∣∣ =
1

cosh (2a0r) − cos (θ − µ0) sinh (2a0r)

and thus the joint density function of R and Θ is

f3(r, θ) =
αβ (1 − a2)

2
r

2π (cosh (2a0r) − cos (θ − µ0) sinh (2a0r)) {B3(r, θ)}2

{
A3(r, θ)

B3(r, θ)

}α
2
−1

×

[
1 −

{
A3(r, θ)

B3(r, θ)

}α
2

]β−1

,

where A3(r, θ) and B3(r, θ) are given by replacing a0 in A1(r, θ) and B1(r, θ) with

tanh (a0r). As a special case, R has the same marginal distribution as the Möbius

distribution when α = 2.

4.4 Illustrative example

The ozone concentration and wind direction data, collected at a weather station

in Milwaukee, U.S.A., in 1975, are used for an example. The size of the dataset

is 19, given in Table 1 of Johnson and Wehrly (1977). For the purposes of this

example, we divide the ozone concentration data by a maximal value taken to be

120, and wind direction converted from degrees on [0 360) to radians on [−π π),

and plotted in Figure 4.5.

For the wind directions, the sample mean direction and mean resultant length
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(a)

(b)

Figure 4.3: (a) 3-D plot and (b) contour plot of Model III with parameters a =
0.25, a0 = 0.5, α = 2, β = 3, µ = −π/5 and µ0 = π/4.
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(a)

(b)

Figure 4.4: (a) 3-D plot and (b) contour plot of Model III with parameters a = 0.2,
a0 = 0.4, α = 4, β = 5, µ = π and µ0 = π/2.
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are 0.292 radians (16.707 degrees) and 0.517 respectively. We test symmetry

(Pewsey, 2002) for the directions. The p-value of the test is 0.460, and thus we do

not reject the hypothesis that the wind directions are coming from a symmetric

circular distribution. Then we fit the Möbius distribution and model III to this

paired dataset. The maximum likelihood estimates of the parameters, the maxi-

mum log-likelihood (MLL), AIC and BIC values for the Möbius distribution and

model III are given in Table 4.1. Figures 4.6 and 4.7 show the 3-D and contour

plots of the fitted models as well as the scatter plots. For this data set, the

Möbius distribution is selected as an optimal model in the sense of minimum

AIC, although model III has greater MLL value.

Table 4.1: Maximum likelihood estimates of the parameters, the maximum log-
likelihood (MLL), AIC and BIC values for the Möbius distribution and model
III.

Model â â0 α̂ β̂ µ̂ µ̂0 MLL AIC BIC
Möbius 0.284 – – 3.783 0.648 – -27.655 61.309 64.142
model III 0.263 0.233 2.000 3.610 0.875 -0.327 -27.639 67.279 72.945

Figure 4.5: A scatterplot of the ozone concentration/wind direction data from
Johnson and Wehrly (1977).
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(a)

(b)

Figure 4.6: (a) 3-D plot and (b) contour plot of fitted Möbius distribution with scatter
plot for the data set of Johnson and Wehrly (1977): â = 0.284, β̂ = 3.783, µ̂ = 0.648.

(a)

(b)

Figure 4.7: (a) 3-D plot and (b) contour plot of fitted model III with scatter plot for the
data set of Johnson and Wehrly (1977): â = 0.263, â0 = 0.233, α̂ = 2.000, β̂ = 3.610,
µ̂ = 0.875, µ̂0 = −0.327.
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Appendix

Local influence method

The local influence method was first proposed by Cook (1986) for assessing the

influence of small perturbations in a general statistical model. Let L(η) represent

the log-likelihood for the postulated (i.e. unperturbed) model and observed data,

where η is a vector of unknown parameters with its maximum likelihood estimator

η̂. Let w denote a vector of the (small) perturbations in the model, Ω represent

the open set of relevant perturbations such that w ∈ Ω, and then L(η|w) be the

log-likelihood of the perturbed model and η̂w denote the corresponding maximum

likelihood estimator of η. Let w0 ∈ Ω denote a no-perturbation vector such

that L(η) = L(η|w0). Suppose that L(η|w) is twice continuously differentiable

in a neighborhood of (η̂, w0). We are interested in comparing the parameter

estimates η̂ and η̂w by using the idea of local influence. To implement the idea is

to investigate the extent to which the inference is affected by the corresponding

perturbation.

As in Cook (1986), the likelihood displacement is chosen to be

LD(w) = 2{L(η̂) − L(η̂w)}

which can be used to assess the influence of the perturbation w. It is not difficult

to see that large values of LD(w) indicate that η̂ and η̂w differ considerably rela-
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tive to the contours of the unperturbed log-likelihood L(η). This method is based

on studying the local behaviour of an influence graph a(w) = (w′, LD(w))′ around

w0. Cook (1986) suggests investigating the direction in which this influence mea-

sure changes most rapidly locally, i.e. the maximum curvature of the surface

a(w). Upon LD(w) the maximum curvature Cmax is given by Cmax = max||l||=1 Cl,

where Cl = 2|l′Fl|. To find Cmax and the corresponding direction lmax, we need

to calculate the matrix F , which is defined by

F = −∆′H−1∆,

where ∆ is a matrix for the perturbed model

∆ ≡ ∆(η̂, w0) =
∂2L(η|w)

∂η∂w′

∣∣∣∣
η=η̂,w=w0

evaluated at η̂ and w0, and −H is the observed information matrix for the pos-

tulated model

H ≡ H(η̂) =
∂2L(η)

∂η∂η′

∣∣∣∣
η=η̂

evaluated at η̂; then lmax is a unit-length eigenvector that is associated with the

largest absolute eigenvalue of F , and large values of those elements of lmax indicate

the corresponding observations are likely to be influential.

For each model of (3.11), (3.12) and (3.13), H and ∆ for the five perturbation

schemes are similarly obtainable. In the cosine model (3.11), we have the following

H and ∆:

L(η, w) =
n∑

i=1

li, li = −1

2
ln(2π) − 1

2
ln σ2 − 1

2
(σ2)−1ε2

i ,

g(η, w) =
n∑

i=1

gi, gi =
∂li
∂η

,

where
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∂li
∂β

= (σ2)−1εixi,

∂li
∂α

= (σ2)−1εi cos (θi − ϕ),

∂li
∂ϕ

= (σ2)−1αεi sin (θi − ϕ),

∂li
∂σ2

= −(1/2)(σ2)−1 + (1/2)(σ2)−2ε2
i

and

H(η) =
n∑

i=1

Hi, Hi =


hββ′ hβα hβϕ hβσ2

hαβ′ hαα hαϕ hασ2

hϕβ′ hϕα hϕϕ hϕσ2

hσ2β′ hσ2α hσ2ϕ hσ2σ2

 .

Here

hββ′ =
∂2li

∂β∂β′ = −(σ2)−1xix
′
i,

hβα = h′
αβ′ =

∂2li
∂β∂α

= −(σ2)−1xi cos (θi − ϕ),

hβϕ = h′
ϕβ′ =

∂2li
∂β∂ϕ

= −(σ2)−1xiα sin (θi − ϕ),

hβσ2 = h′
σ2β′ =

∂2li
∂β∂σ2

= −(σ2)−2xiεi,

hαα =
∂2li
∂α2

= −(σ2)−1{cos (θi − ϕ)}2,

hαϕ = hϕα =
∂2li

∂α∂ϕ
= (σ2)−1{εi − α cos (θi − ϕ)} sin (θi − ϕ),

hασ2 = hσ2α =
∂2li

∂α∂σ2
= −(σ2)−2εi cos (θi − ϕ),

hϕϕ =
∂2li
∂ϕ2

= −(σ2)−1α
[
εi cos (θi − ϕ) + α{sin (θi − ϕ)}2

]
,
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hϕσ2 = hσ2ϕ =
∂2li

∂ϕ∂σ2
= −(σ2)−2αεi sin (θi − ϕ),

hσ2σ2 =
∂2li

∂σ22 =
1

2
(σ2)−2 − (σ2)−3ε2

i .

y-scheme with no-perturbation n × 1 vector w0 = (0, . . . , 0)
′
:

yi + wi = x′
iβ + α cos (θi − ϕ) + εi, i = 1, . . . , n,

L(η, w) =
n∑

i=1

li, li = −1

2
ln(2π) − 1

2
ln σ2 − 1

2
(σ2)−1ε2

i ,

∆(η, w) = (∆1(η, w1), . . . , ∆n(η, wn)) ,

∆i(η, wi) =


∂2li

∂β∂wi

∂2li
∂α∂wi

∂2li
∂ϕ∂wi

∂2li
∂σ2∂wi

 = (σ2)−1


xi

cos (θi − ϕ)

α sin (θi − ϕ)

(σ2)−1εi

 .

x-scheme with no-perturbation (2n) × 1 vector w0 = (0, . . . , 0)
′
:

yi = β0 + (x∗
i + w∗

i )
′β∗ + α cos(θi − ϕ) + εi,

x∗
i = (x1i, x2i)

′, β∗ = (β1, β2)
′,

w = (w∗
1
′, . . . , w∗

n
′)′, w∗

i = (w1i, w2i)
′, i = 1, . . . , n,

L(η, w) =
n∑

i=1

li, li = −1

2
ln(2π) − 1

2
ln σ2 − 1

2
(σ2)−1ε2

i ,

∆(η, w) = (∆1(η, w∗
1), . . . , ∆n(η, w∗

n)) ,

∆i(η, w∗
i ) =


∂2li

∂β∂w∗
i
′

∂2li
∂α∂w∗

i
′

∂2li
∂ϕ∂w∗

i
′

∂2li
∂σ2∂w∗

i
′

 = −(σ2)−1



β∗′

(x∗
i + w∗

i )β
∗′ − εiI2

β∗′ cos (θi − ϕ)

β∗′α sin (θi − ϕ)

β∗′(σ2)−1εi


,
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where I2 denotes the 2 × 2 identity matrix.

θ-scheme with no-perturbation n × 1 vector w0 = (0, . . . , 0)
′
:

yi = x′
iβ + α cos (θi + wi − ϕ) + εi, i = 1, . . . , n,

L(η, w) =
n∑

i=1

li, li = −1

2
ln(2π) − 1

2
ln σ2 − 1

2
(σ2)−1ε2

i ,

∆(η, w) = (∆1(η, w1), . . . , ∆n(η, wn)) ,

∆i(η, wi) =

(
∂2li

∂β∂wi

,
∂2li

∂α∂wi

,
∂2li

∂ϕ∂wi

,
∂2li

∂σ2∂wi

)′

= (σ2)−1


xiα sin (θi + wi − ϕ)

−{εi − α cos (θi + wi − ϕ)} sin (θi + wi − ϕ)

αεi cos (θi + wi − ϕ) + α2{sin (θi + wi − ϕ)}2

(σ2)−1αεi sin (θi + wi − ϕ)

 .

σ2-scheme with no-perturbation n × 1 vector w0 = (1, . . . , 1)
′
:

yi = x′
iβ + α cos (θi − ϕ) + εi, i = 1, . . . , n,

L(η, w) =
n∑

i=1

li, li = −1

2
ln(2π) − 1

2
ln σ2 +

1

2
ln wi −

1

2
(σ2/wi)

−1ε2
i ,

∆(η, w) = (∆1(η, w1), . . . , ∆n(η, wn)) ,

∆i(η, wi) =


∂2li

∂β∂wi

∂2li
∂α∂wi

∂2li
∂ϕ∂wi

∂2li
∂σ2∂wi

 = (σ2)−1εi


xi

cos (θi − ϕ)

α sin (θi − ϕ)

(1/2)(σ2)−1εi

 .

li-scheme with no-perturbation n × 1 vector w0 = (1, . . . , 1)
′
:

yi = x′
iβ + α cos (θi − ϕ) + εi, i = 1, . . . , n,

L(η, w) =
n∑

i=1

li, li = wi

{
−1

2
ln(2π) − 1

2
ln σ2 − 1

2
(σ2)−1ε2

i

}
,
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∆(η, w) = (∆1(η, w1), . . . , ∆n(η, wn)) ,

∆i(η, w) =


∂2li

∂β∂wi

∂2li
∂α∂wi

∂2li
∂ϕ∂wi

∂2li
∂σ2∂wi

 = (σ2)−1


εixi

εi cos (θi − ϕ)

αεi sin (θi − ϕ)

−(1/2) + (1/2)(σ2)−1ε2
i

 .

As an illustration, we use the original data studied with the SU models. The

data consist of the measurements of the solar radiation for a period of six days

and half-hourly record starting from 9:00 am to 5:30 pm. This period was chosen

due to the uninterrupted weather condition which provided sunshine throughout.

Same as SenGupta and Ugwuowo (2006) we associate these hours with the angles

0◦, 20◦, 40◦, . . . , 340◦, respectively, which correspond to θi. Thus, the group 340◦ -

360◦ corresponds to 5:30 pm - 6:00 pm, and 6:00 pm and 9:00 am are interpreted

as the same beginning/end point on the circle. The interval [6:00 pm, 9:00 am) is

irrelevant for us and is treated as a vacuous one. The other predictor variables x1i

and x2i are ambient temperature, i.e. the atmospheric temperature observed at

the experimental site, and control temperature to predict the absorber tempera-

ture yi, i.e. the temperature of the water, in a well-constructed Thermosyphon

solar water heater. The list plot of the solar energy data is given in Figure

1, followed by our MLE’s as well as the values of Maximized Log-Likelihood

(MLL), Akaike’s Information Criterion (AIC) and the Bayesian Information Cri-

terion (BIC) in Table 1. The cosine-cosine model is selected as an optimal model

among the three in the sense of minimum AIC, while the simple cosine model is

selected in the sense of minimum BIC. However, it can be observed that there are

not so much differences about the AIC and BIC values between the cosine-cosine

and cosine models.

We only give the results of influential diagnostics from the Cos-cos model. We

do not deal with the θ-scheme in this example because θi indicate angles trans-
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Figure 1: Plot of the solar energy data.

Table 1: MLE’s, the values of Maximized Log-Likelihood (MLL), Akaike’s Infor-
mation Criterion (AIC) and the Bayesian Information Criterion (BIC).

Model β̂0 β̂1 β̂2 α̂ ϕ̂ γ̂ σ̂2 MLL AIC BIC

Cos -156.53 5.20 1.44 -6.18 0.038 – 26.70 -330.6 673.2 689.3
Cos-sin -156.53 5.20 1.44 -6.18 0.038 0.00 26.70 -330.6 675.2 694.0
Cos-cos -153.21 5.23 1.32 -7.03 0.018 -0.37 26.00 -329.2 672.4 691.3

formed from hours. Moreover, note that the perturbation in the x-scheme for the

cosine-cosine model is yi = β0+(x1i+w1i)β1+x2iβ2+α cos {θi − ϕ + γ cos (θi − ϕ)}

+εi because x2i denotes control temperature. From the plots we see that the ele-

ments corresponding to observations 7 and 8 appear to be standing out from the

rest, and so these observations are possibly most influential.
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(a) (b)

(c)

Figure 2: Cosine-cosine model. (a) Index plot of absorber temperatures (yi ◦) and
their prediction (ŷi •), (b) Index plot of |yi− ŷi|, (c) Q-Q plot of the standardized
residuals to the empirical distribution on the horizontal axis.
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(a) (b)

(c) (d)

Figure 3: Cosine-cosine model. Index plots of the elements of lmax for (a) y-
scheme, (b) x-scheme, (c) σ2-scheme, and (d) li-scheme.
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