Extensions of Probability Distributions
on Torus, Cylinder and Disc

August 2013

Minzhen Wang



W X %

wEET | @ 2 @ 2 | K 4 T

F B H
Extensions of Probability Distributions on Torus, Cylinder and Disc
(b=, VU UHF=KOT 4 A7 EORERIIATOYLHRR)

(NBEDHEEF)

AEBINEZ 5107 — & OFGEH AT FGEF L LTHHILTN D, DD
(CRWTBIISN D BRID L 5 72 “EBAET — 2 DFET /MUEDBRIIT 8 A
AT h—TF A LD EEZ D Z LD, AFRSCTIE. FIAR RO
FADHET R —F A EOSAR LT XK OT 4 AT O AROYREE RS
LTW5,

FJE LA BT 2 PR 7afE R & LT, ME LD ~— NUARITHE O MR
#% Mobius ZHL L TR DIVD OB, = AT — A b, BUlEEME & PRt
DFAHTDNTIRTZ, b—T A2 EDFAITHONTIE, Mobius 21U K- T E
REENTED HINDET IV, SV IUL =B B BONAAE T D A8
NED—OIBED b —F A RO IR — MUSREARE L, MO HEESRE
B FEA =MAE— A 2 N RO EEAEIHERE D BRI e XA 52 72, E7-,
TR ~N— MU ERIA LT, 8 6 IR & IEAHSHERII BRI S s AT — 2 D
figr o e~ LTz,

Iz, U X — ED53AR %, von Mises 7347 & Z8#2 X172 Kumaraswamy 554
DFBEENBAER L, JED0 & ST & oma 52 7o, T O1REHAIT
Johnson & Wehrly (2 K 2 50MOILETH D, Fo, IEZEEIZ L > TED B
725% A% Cauchy 4347 & Weibull 7347 DA IOENOAER LTz bizR L
7o ZOM, BRAGHAPEE SN TND & XU ¥ — EOsHa AT 551k
WD Z S & T, ~— MM & B S 7z Kumaraswamy 5747 481
F¥H. von Mises iz U > 7 & DA DREEITH> TN D,

BB R SHRADEIEA B'D R A FWTT 4 A7 1D Mébius 4347 DL
& LTOIBIMom A L, i & O E i~




SUMMARY OF Ph.D. DISSERTATION

School Student Identification Number SURNAME, First name

Fundamental Science and Technology 81047518 WANG, Minzhen

Title

Extensions of Probability Distributions on Torus, Cylinder and Disc

Abstract

Statistics for data which include angular observations is known as directional
statistics. Bivariate circular data such as wind directions measured at two points in
time are modeled by using bivariate circular distributions or distributions on the
torus. In this thesis, we propose some extensions of distributions on the torus and
also the cylinder and the disc in the framework of directional statistics.

For the univariate circular case as a preliminary result, the distribution function,
trigonometric moments, and conditions for unimodality and symmetry are studied
when the Mobius transformation is applied to a univariate cardioid random
variable. For the bivariate circular case, we propose a bivariate cardioid distribution
which is generated from a circular-circular structural model linked with Mobius
transformation or a method of trivariate reduction. The joint probability density
function, trigonometric moments and circular-circular correlation coefficient are
explicitly expressed. An illustration is given for wind direction data at 6 a.m. and
noon as an application of the bivariate cardioid distribution.

Next, we propose new distributions on the cylinder. A distribution generated from
a combination of von Mises and transformed Kumaraswamy distributions is an
extension of the Johnson and Wehrly model. The marginal and conditional
distributions of the proposed distribution are given. Another model is a combination
of sine-skewed wrapped Cauchy and Weibull distributions. A distribution using the
method of generating a cylindrical distribution with specified cardioid and
transformed Kumaraswamy marginals and von Mises link is also proposed.

Finally, we generate skew or asymmetric distributions on the disc by using a
modified Mo6bius transformation as extensions of the Mdobius distribution. Some
properties such as the marginal density functions of the proposed distributions are

obtained.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Statistics for data which include angular observations is known as directional
statistics. Bivariate circular data such as wind directions measured at two points
in time are modeled by using bivariate circular distributions or distributions on
the torus. Likewise circular-linear data are modeled by using distributions on the
cylinder and disc. In this thesis, we propose some extensions of distributions on
the torus, cylinder and disc in the framework of directional statistics.

In Chapter 1, we introduce some preliminary notions and existing models
for circular data. A new circular distribution (Wang and Shimizu, 2012) is also
introduced, which is obtained by applying the Mobius transformation to a univari-
ate cardioid random variable. The distribution function, trigonometric moments,
and conditions for unimodality and symmetry are studied. Kato and Jones (2010)
study a family of distributions which is obtained by applying the Mobius transfor-
mation to a von Mises random variable, and we discuss the relationship between
our model and the Kato-Jones model. The bivariate circular case (Wang and
Shimizu, 2012) will be treated in Chapter 2. We propose a bivariate cardioid

distribution which is generated from a circular-circular structural model linked



with Mobius transformation or a method of trivariate reduction. The joint prob-
ability density function, trigonometric moments and circular-circular correlation
coefficient are explicitly expressed. An illustration is given for wind direction
data at 6 a.m. and noon as an application of the bivariate cardioid distribution.

Chapters 3 and 4 are based on the paper by Wang, Shimizu and Uesu (to
appear). In Chapter 3, we propose distributions on the cylinder. A distribution
generated from a combination of von Mises and transformed Kumaraswamy dis-
tributions is proposed as an extension of the Johnson and Wehrly (1978) model.
The marginal and conditional distributions of the proposed distribution are given.
A distribution using the method of generating a cylindrical distribution with
specified marginals is also proposed. Two illustrative examples are given for the
magnitudes and the angles calculated from the epicenters of earthquakes and the
movements of blue periwinkles. In addition, it is remarked that the circular-
linear regression models by SenGupta and Ugwuowo (2006) are derived from the
conditional distributions of cylindrical distributions. An application of the local
influence method will be treated in Appendix.

In Chapter 4, we generate skew or asymmetric distributions on the disc by
using the Mobius transformation and modified Mobius transformations as exten-
sions of the Mébius distribution proposed by Jones (2004). The new distribu-
tions called the modified Mobius distributions have six parameters. They can
be reduced to the Mdbius and uniform distributions as special cases, but many
members of the family are skew distributions for both the linear and the angular
random variables. Some properties such as the joint probability and marginal
density functions of the proposed distributions are obtained. As an illustrative
example, we fit these models to data of Johnson and Wehrly (1977), which consist

of values of ozone concentration and wind direction.



1.2 Preliminary notions for circular data

1.2.1 Mean direction, mean resultant length and circular

variance

Directions in the plane can be regarded as unit vectors x. Suppose that unit

vectors &1, . .., &, are given corresponding with angles 6;, i.e. ; = (cosf;,sin6;)
for j =1,...,n. The sample mean direction 6 of 6, ..., 60, is the direction of the
resultant vector of @y,...,x,. The Cartesian coordinates of the center of mass

are (C, S), where

lz cos 0}, lz sin 6;.

3
3

Thus @ satisfies the equations

where R is the mean resultant length which is given by
R=(C*+8%)"

and expressible as

The range of the mean resultant length R is [0, 1] and note that 6 is not defined

3I>—‘

when R = 0, and can be explicitly represented as



( tan=1(S/C), C>0, 5>0,
/2, C=0,5>0,

0=< tan'(S/C)+m, C<O0,
3m/2, C=0,S<0,
\ tan~1(S/C) + 27, C >0, S<0.

The sample mean resultant length R is a statistic which measures the con-
centration of the data. In general, R is more important than other measures of
dispersion in the field of directional statistics. However, similarly to the sample
variance for data in the real line, there is a concept about the sample circular

variance, which is defined as
V=1-R,

whose range is [0,1]. Note that Batschelet (1981) and Jammalamadaka and
SenGupta (2001) refer to 2(1— R), because it is approximated by > i1 (0; —0)?/n

when n is large. Here, we give a simple proof for this approximation:
n

2(1 - R) 2{1izn:cos(9j9)} :4izn:sm2 <9j2_9> ~ %Z(ej — )2
j=1 j=1

j=1

1.2.2 Trigonometric moments, circular skewness and kur-

tosis

The sample pth trigonometic moment about zero mean direction for p = 0,1, 2, ...

is defined as



m, =a,+ib,, 1=+vV-1

where

1< 1 <
a, = - chospﬁj, b, = - Zsinpﬁj.
J:

j=1

Then
_ P b
m, = R,e"?,

where 6, and R, denote the sample mean direction and sample mean resultant

length of pfy,...,pb,. The sample circular skewness and kurtosis are defined by

RQ sin (52 — 25)

S -

(1- R
and
P Ry cos (0, _,25) — R
(1- R
respectively.

1.2.3 Distribution and probability density functions

Suppose that an initial direction and an orientation of the unit circle have been

chosen. Then the distribution function F' of a random angle © is defined as

F(z)=Pr(-r<© <2), —nm<z<m,

and it is extended to the function on the whole real line given by



Flz+2n)—F(x)=1, —o00o<zx< 0.

The second equation means that any arc of length 27 on the circle has probability

1. Fora—n<pg<a+m,
B
H@<@S@=FW%J%w:/dﬂ@.

By definition

If the distribution function F' is absolutely continuous then it has a probability

density function f such that
B
/ f(0)do = F(B) — F(a), —oco<a<f<oo.

A function f is the probability density function of an absolutely continuous dis-

tribution function if and only if

(i) f(#) > 0 almost everywhere on [—m, ),

m)/WfWMQ:L

(iii) f(0 + 2m) = f(A) almost everywhere on [—m, 7).

1.2.4 Characteristic function

The characteristic function of a linear random variable X is defined as ¢; =
E (e"¥). For angular case, since © and © + 27 represent the same direction, it
holds that

E (¢'€) = E{e"®*?M] = (cos 27t + isin 27t)E (c*9) ,

6



and it is necessary to restrict ¢ to integer values. The characteristic function of a

random angle © is given by

¢p = E (e79) :/ Pdr(9), p=0,+1,+£2,....

—T

Thus,

QSO = ]-7 QZ_Sp = gb—p? ’¢p| S ]-)

where ggp denotes the complex conjugate of ¢,. If we write

Op = ap +10,
where
ap = E(cos pO) = / " cos pOdF(0)
and
Bp = E(sin pO) = / " sin pOdF(0),
then

A_p = Qp, |ap| < ]-a 6—1) = _ﬁp7 |5p| < 17

and ¢, is called the pth trigonometric moment, and o, and (3, the pth cosine and

sine moments respectively. Furthermore, if Z;il(%% + ﬁg) is convergent then the

variable © has a density f which is defined almost everywhere by a Fourier series

f(o) = % Z ppe P = % {1 —l-QZ(apcospQ—i-ﬁpsinp@)}.

p=—00 p=1



1.3 Some existing distributions on the circle

In this section we introduce the most fundamental continuous distributions on the
unit circle. Except the uniform distribution, all of the distributions mentioned in

this section are symmetric and unimodal.

1.3.1 Uniform distribution

The most basic distribution on the circle is the uniform distribution which has

probability density function
fl0)=—, —nm<6<m.

It is often used as the null model. The trigonometric moment of the uniform

distribution is

L, p=0,
0, p#0.

¢p:

Thus, the mean resultant length p is 0. This means that there is no concentration
about any particular direction. Let ©q,...,0, be independent and identically
distributed as the circular uniform distribution with common characteristic func-

tion ¢,. then the characteristic function of the sum S, = ©; +---+ 0, is

I, p=0,

Y p Y

which is the characteristic function of the circular uniform distribution. It follows
from the uniqueness property that S, is uniformly distributed on the circle. Fur-
thermore, the sum of indenpendent circular uniform and any other distributions

is the circular uniform distribution.



1.3.2 Cardioid distribution

The cardioid distribution C(u, p) with parameters p (—7 < p < 7) and p (0 <
p < 1/2) has probability density function

£(0) = %{1 +2pcos(0— )}, —m <0<

This form appears in Jeffreys (1961, p. 328), and the name is taken from the
fact that the shape of r = f(f) in polar coordinates resembles a heart. In the
literature, it is often assumed that |p| < 1/2, but we restrict p to be non-negative
to avoid problems of non-identifiability. The distribution reduces to a circular
uniform distribution if p = 0.

The probability density function is symmetric about g and unimodal. If a
random variable © is distributed as C(u, p), the characteristic function or pth
trigonometric moment is E(e??) = 1 if p =0, pe'* if p = 1 and 0 if p > 2, where
i = /=1, so that the mean direction of © is u, the mean resultant length is p
and the circular variance is 1 — p. The cardioid distribution never degenerates
to a distribution concentrated at only one point whatever the parameters be
chosen. If ©, is distributed as a cardioid distribution with mean direction j; and
mean resultant length p;, and ©y (not necessarily distributed as a cardioid) is
independent of ©; and has mean direction p, and mean resultant length po, then
the sum ©; + O, is distributed as a cardioid distribution with mean direction

(1 + pe and mean resultant length p;ps.

1.3.3 von Mises distribution

The von Mises distribution VM (u, k) with parameters p (—7 < p < 7) and
k (k > 0) has probability density function

1

— K cos (0—p) <<
2 lo(k) TS

f(0; 1, k)



where [, denotes the modified Bessel function of the first kind and order p, which

can be defined by

™

1 2w
I,(k) = 5 / cos (ph) e"0dp.
0

The modified Bessel function [,(x) has an infinite power series

I(k) = Z m <g>2r+p'

r=0

The parameter p is the mean direction and the parameter x is the concentration
parameter. The von Mises distribution reduces to a circular uniform distribution
if K = 0 and concentrates into a point when x — oco. Since VM(u, k) is symmetric
about 6 = pu, the pth sine moment about p and the pth cosine moment about pu

are respectively

3, = E[sinp(© — p)] = 0,
1

2m
v — _ — o K cos (0—pu) _
a, = E[cos p(© — p)] 27Ty () /0 cosp(f — p)e do

Lp(x)
]O(Ii) ’

and the mean resultant length p is A(k) = I1(k)/Io(k). The von Mises distribu-
tion VM(u, k) has mode and antimode at p and p+ 7 respectively. In particular,
the maximum entropy distribution on the circle with given mean direction u

and given mean resultant length p is the von Mises distribution VM(y, ), with

k= A" (p).

1.3.4 Wrapped Cauchy distribution

Wrapping a distribution on the real line makes the corresponding distribution on
the circle. More precisely, if X is a random variable on the line, the corresponding

random variable X, of the wrapped distribution is given by

10



Xy =X (mod 27).
If X has distribution function F', then the distribution function F,, of X, is
Fu(0) = Y {F[0+ (2k—1)m] — F[(2k — D]}, -w<6<m.
k=—00

In particular, if X has a probability density function f, then the corresponding
probability density function f,, of X, is

Fo0)= > fl0+(2k —1)7].
k=—00
Some properties of the wrapped distribution are:
(a) (X +Y)y =Xy + Yo

(b) If the characteristic function of X is ¢ = ¢(p), then the characteristic
function ¢,, p = 0,1, £2,..., of X, is given by ¢, = ¢(p).

(c) If ¢ is integrable, then X has a density expressible as

k=—o00

fu0) = D 0+ (2k— 1)m) = 2i {1 +2) (apcosph + B, smpe)}

T
p=1
with ¢, = a, + i3,

If a random variable X is distributed as a Cauchy distribution with location
p and scale v > 0, then the wrapped Cauchy random variable © = X (mod 27)
has probability density function

1 1—p?
S 2m 1+ p2—2pcos (0 —p)’

f(0)

—nr<6<m,

11



where —nm < pu < mw, p = €7, 0 < p < 1. The characteristic function
is ¢, = plPleiP#  In particular, the wrapped Cauchy distribution, denoted by
WC(u, p), is symmetric about u, which is the mean direction of this distribu-
tion, and the mean resultant length is p. As p — 0 it tends to the circular
uniform distribution, and as p — 1, it is concentrated at point p. The convolu-
tion of wrapped Cauchy distributions WC( 1, p1) and WC(ps, p2) is the wrapped
Cauchy distribution WC(uy + pa, p1p2)-

1.3.5 Generalized cardioid distribution of Jones & Pewsey

Jones and Pewsey (2005) proposed a general family of symmetric unimodal dis-
tributions on the circle that incorporates all of the aforementioned distributions.

The probability density function is

_ {cosh(kp) + sinh (k1)) cos( — p) }1/¥
21 Py (cosh(k1)) ;

fu(0)

—r<0<m,
where —m < pu <m, k>0, —00 <1 < oo, and Py is the associated Legendre
function of the first kind of degree 1/1 and order 0 which is defined by

1/

1 s
Piy(z) = —/0 (z + V2?2 — 1cosx) dx.

7r
As special cases, the generalized cardioid distribution reduces to
(1) circular uniform distribution (x = 0; ¢y — £00) ,
(2) von Mises distribution (¢» — 0),
(3) wrapped Cauchy distribution (¢ = —1),
(4) cardioid distribution (¢ = 1),

(5) Cartwright’s (1963) power-of-cosine distribution (¢ = 1/n,x — o0),

12



(6) Shimizu and Iida’s (2002) circular ¢-distribution (—1 < ¢ < 0).

1.4 A new family of distributions on the circle

Kato and Jones (2010) study a family of distributions which is derived from
the Mdbius, or linear fractional, transformation of a von Mises random variable.
Likewise, Wang and Shimizu (2012) propose a new family of distributions which
is derived from the Mobius transformation of a cardioid random variable. We

give the results by Wang and Shimizu (2012) in this section.

1.4.1 Mobius transformation

The Mobius transformation from the unit circle onto itself is defined by

i¢ _
M(€) = arg {Ble—l———;cojf} = 2 arctan { (1 - ZZ) tan%(ﬁ — ,ua)} + (o + 1),
(1.1)

where a = pae#e (po >0, po # 1, =7 < po < 7), B =¢e" (—1 < pg < )
and @ denotes the complex conjugate of a. In (1.1), g is a rotation parameter
and, under the assumption that § = 1, a (# 0) is the parameter that attracts
the points on the unit circle toward a point «/|a| on the unit circle, except the
point £ = —a/|a|, which is invariant under the transformation. Some properties
of the Mébius transformation are discussed in Kato, Shimizu and Shieh (2008)

in the context of circular-circular regression.

13



1.4.2 Mobius transformation of a cardioid random vari-

able

Probability density function

When a random variable ¢ is distributed as C(u, p), we consider the distribution
of a random variable n = M () transformed by the M&bius transformation (1.1).

Since n = M () is a one-to-one mapping and

M_1< )_ 1—Pa
VT 02 = 20 cos( — pta — p13)’

the probability density function of 7 is

_ 11— p2|h(n)
2m{1 + p2 — 2p, cos(n — o)}’

9(n) (1.2)

where

W) = 1 +2p{005(77—’71 —72) = 2pacosyi + pa cos (n + M —72)},

1+ pZ — 2pa cos (1 — 72)
with four parameters v; (= p — o), 72 (= fta + 113), p and p,. The distribution
is denoted by MCy (71,72, p, pa) or MC; for short. Note that ~, is a location
parameter. Figure 1 gives density plots for 75 = 0 and various combinations of
the other three parameters ~;, p and p,. It illustrates the flexibility of this family.
The distribution with density (1.2) reduces to a wrapped Cauchy distribution if
p=0.

Kato and Jones (2010) generated a family of distributions by applying the
Mobius transformation to a von Mises distribution with mean direction p and
concentration parameter k. The cardioid distribution is approximated by the von
Mises distribution with small x; an approximation e¢* ~ 1 4+ z leads to equation

(1.2) from the density (2) of Kato and Jones (2010). The above distribution by

14



Kato and Jones (2010) and MC; are special cases of the five-parameter family
introduced in Section 8 of Kato and Jones (2010), an asymmetric extension of
the family of Jones and Pewsey (2005). For MCy, the distribution function is
obtainable in an explicit form as can be seen in the following. The distribution
function, cosine and sine moments, conditions for unimodality and symmetry of

the resulting distribution are studied.

) zn
.0

10r

Figure 1.1: Density plots of (1.2) for 9 =0, and (a) p = 1/2, 1 = 7/2, and p, = 0
(solid), 1/5 (dotted), 2/5 (dashed), 3/5 (dot-dashed); (b) p = 1/2, po = 2/5, and y; =0
(solid), m/2 (dotted), 7w (dashed), 37/2 (dot-dashed); and (c) po = 1/2, v1 = 27/3, and
p = 0 (solid), 1/6 (dotted), 1/3 (dashed), 1/2 (dot-dashed). Unimodal/bimodal and
symmetry /asymmetry depend upon the parameters chosen.

15



Distribution function

For —m < 9 < 0, the distribution function is

% + % arctan{ }—“_L;LZ
G(n) =

1 1=pa
1+ —arctan { oo

tanﬂ_Q—”}—l—Gl, —m <n<0,

cot *”2*72}—1-6’1, 0<n<m,

and for 0 < v, < m, it is

%arctan { ‘ 1=pa

| cot _”;72}—{—6?1, —m <1 <0,

G(n) = X
%+%arctan{ % tanﬂ;—”}+G1, O<n<m,
where
G L arct — P2 | fan (15/2)
= —arctan an
2011 — p2| cos (n/2
X Pl Pl (n/ >{pasin <ﬂ+f}/1> + po Sin (ﬂ—’h)
T 2 2
+p2 sin (g—ir’h—%) + sin (g_VI_VQ)}

/ [{1 + p2 — 2pq cos (n — 72)} {1 + P2 4 2pq cos'yQ}] )
If p =0 and v, = 0, then
G(n) =1/2+ (1/m)arctan {|(1 + pa)/(1 — pa)| tan(n/2)}

for —m < n < m, which is the distribution function of the wrapped Cauchy

distribution with zero mean direction.

Moments and other characteristics

When 0 < p, < 1, the cosine and sine moments of MC; are given by

16



E(cospn) = ppph (1 — p) cos (pya +m1) + ph cos pys (1.3)

and

E(sinpn) = ppph ' (1 — p2) sin (pya + 71) + b sin pya (1.4)

for p=0,4+1,.... Thus, the mean direction of MC; is

p(1—p;)siny
= t 1.5
phie = 7 ae an{Pa+P|1—P§|COS% ’ (15)
and the mean resultant length is
pyic = VP21 = p2)2 + p2 + 2ppa(l — p2) cos . (1.6)

It holds that pyc < p(1 — p2) + pa < 1.
For the case p, > 1, we only need to convert the p, to 1/p, and convert the
v to —y; in the formulas (1.3), (1.4), (1.5) and (1.6). The cardioid distribution

is closed under convolution, but generally MC; does not have this property.

Conditions for unimodality

We discuss conditions for unimodality of the probability density function of MC;.
The procedure for proof is similar to that of Kato and Jones (2010).

Let a; = ppa(1+ p2)cosy — p2, as = 2ppa(l — p2)siny, az = p(1 + pt —
6p2) cos 1+ pa(l+p3), as = —p(1—p,) sinyi and a5 = 2ppa(1 - pZ) sinyi. Then
the derivative of g(n) with respect to 7 is

|1 — pi| (b[) + blt + b2t2 + bgtg + b4t4)
{1+ pZ = 2pacos (n — 72) }? (1412)? ’

g(n) =

where ¢ = tan(n/2) and the coefficients by, b1, by, b3 and by are given by

17



bo = a5+ ascosys — azsinyy + az{sin 2 }* — a; sin 27s,
by = 4a;cos2vyy + 2a3 cos vy + 2a4 sin ¥y — 2as sin 27,
by = 2as+ 4ay — 6as{sinyy}? + 6a; sin 27,,

bs = 2aszcosys — 4ay cos 2y, + 2a4 Sin Yo + 2as sin 27,

by = as— a4co87y + azsinqyy + az{sin v, }* — ay sin 2.

Thus, the modality of MC; to be solved reduces to find the root of the quartic
equation by 4 byt + bot? + bgt® + byt* = 0. It follows from Ferrari’s method that
the equation has two real roots and two complex roots if the discriminant D is
negative and then the probability density function is unimodal, while it has four

real roots or four complex roots if D is positive and then the density is bimodal.

Here D is

D = b}b3b5—4b2b3 —4b7 b3 by + 18 b3 by by by — 27 b} b3 + 256 b3 b}
+bo (—4 b b3 + 18 by by b + 16 b by — 80 by b3 bz by — 6 b7 b3 by
1144 b2 by b3) + b3 (—27 b3 + 144 by b3 by — 128 b2 b2 — 192 by by b?)

(1.7)

as already given in Kato and Jones (2010). Figure 2 shows areas of positive D
(bimodality for density) and negative D (unimodality for density) for two pairs
of parameters. For example, Figure 2(a) suggests that the density (1.2) with
v, = 0 and p = 1/2 can be bimodal for any ; when p, is close to 1 and when
approximately p, > 0.2 for 74 = m. The case 75 =0, p=1/2, po =2/5, 1 =7
in Figure 1(b) gives an example of bimodal density.

In a special case when v; = 0, the density and its derivative are of the forms
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_ 11— p3 (1+p2)cos (n —72) = 2pa
g(n) = 2 . L+2p 2
2 {1+ p2 — 2p, cos (n — )} L+ p2 — 2pq cos (1 — 72)
and
/ |1 — p| {2a1 cos (n — 72) + as}
(n) = — sin (7 — 72).

21 {1+ p2 — 2pa cos (n — 72)}

Since 2a; cos (n — ¥2) + az > 0 for all n, we find stationary points which satisfy
sin(n —72) =0, i.e. n =7 and n = 9 £ 7 (mod 27). Since ¢"(72) = —{pa +
p(1 4 4po + p2) 1 = p2l/{m(1 = pa)*'} < 0 and ¢"(v2 £ 7) = {pa + p(1 — 4pa +
P L= e} A (L4 pa)'} = {pa(1=2p) + p(1 = pa)?)[1 = P21} /{7 (1 + pa)'} > 0,
we know that g(n) gives a maximum value at point v, and a minimum value at

point 5 + 7 (mod 27).

1.0Fga”

(a) (b)
Figure 1.2: Discriminant (1.7) for density (1.2) when 72 = 0, as functions of (a)
(71, pa) when p =1/2, and (b) (y1,p) when p, = 1/4. The region of positive discrimi-
nant/bimodality is shown in black, and negative discriminant/unimodality in white.
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Conditions for symmetry

Different from Kato and Jones (2010), we start with a measure of skewness
(Mardia and Jupp, 1999, Section 3.4) for circular random variable 1 defined by
s = E{sin2(n — pnc)}/ (1 — puc)®?, where piyc is the mean direction and pyc
the mean resultant length of . The skewness of MC; is calculated as

S(t, s o o t15) = —2phie(1 = paac) % pal(1 — p2)°

x{p(1 = p%) + pa cos 71} sinyy (1.8)

for 0 < p, < 1 unless pyic = 0, and for the case p, > 1 we only need to convert
the p, to 1/p, in equation (1.8).
If the probability density function g(n) is symmetric about pyc, the skewness

is 0. This means that the following equation is necessarily satisfied for symmetry:

P2 pa(l = p2)*{p(1 — p2) + pa cosy1}siny = 0.

Thus, we consider the four cases below.

(a) p=0.
In this case, MC; becomes a symmetric wrapped Cauchy distribution with
mean direction 72 and mean resultant length p, for 0 < p, < 1 and 1/p,

for po, > 1.

(b) po =0.
In this case, MC; becomes a symmetric cardioid distribution C(y; + 72, p).

(c) siny; =0.
In this case, it is obtained that v; = 0 or 74 = —m. And the probability

density function becomes
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[1—p2| (1+p3) cos (n=72)—2pa _
_ 2m{14+p3 —2pa cos(n—v2)} [1 + 2’0 14p2 —2pq cos (n—2) ] v N = 0’
9(77) = ) 2 RN
|1—p2| 1-9 (1+p3 ) cos (n—72)—2pa -
2 {14p2 —2pq cos(n—y2) } P 14p2 —2pq cos (n—y2) |’ gt :

It is not difficult to find that g(v2 + 1) = g(72 —n) for all . Thus, when
siny; =0, g(n) is symmetric about vs.

(d) p(1—p2) + pacosy = 0.
In this case, we have p = — {p,/(1 — p2)} cos 1, and the probability density

function is

g(n) = L —pal 19 P cos Y
27 (1 + p — 2pa cos (n — 72)) 1—p3
{COS (N — 7 —Y2) — 2pa cosy1 + p2 cos (N + 71 — 72) H
1+ p2 —2p, cos(n—72) '

For each xq there exists an 7y such that g(xo — n9) — g(zo + n0) # 0, and
g(n) is not symmetric in this case. An explicit example of an asymmetric

density which nonetheless has zero circular skewness is seen in Figure 1(c):
Po=1/2, v =2m/3 and p =1/3.
Consequently, the probability density function g(n) is symmetric if and only if

p=0orp,=00rvy =0o0rvy =—m.
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Chapter 2

Distributions on the torus

2.1 Introduction

Sometimes it is necessary to consider the joint distribution of two circular random
variables, such as the relationship between a pair of wind directions, measured
at two locations at same time. Such a pair of realization may be identified with
a point on the torus and thus the joint distributions of two circular random
variables are called distributions on the torus or bivariate circular distributions.

There are many bivariate circular distributions discussed in the literature.
Some methods to get bivariate circular distributions and existing parametric
models are introduced in Section 2.2. Bivariate von Mises—Fisher distributions
were introduced by Mardia (1975). A theorem for generating families of bivari-
ate circular distributions with specified marginal distributions was proposed by
Wehrly and Johnson (1979), and a bivariate circular distribution with von Mises
marginals was proposed by Shieh and Johnson (2005).

In Section 2.3, we propose a bivariate cardioid distribution generated from a
circular-circular structural model linked with Mobius transformation, which can
be viewed as a method of trivariate reduction. An explicit form of the joint

probability density function and its trigonometric moments are obtained. An
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illustration is given in Section 2.4 as an application of the bivariate cardioid
distribution to the wind direction data (Johnson and Wehrly, 1977) at 6 a.m. and
12 noon measured each day at a weather station in Milwaukee for 21 consecutive

days.

2.2 Some existing distributions on the torus

A family of bivariate von Mises—Fisher distributions was introduced by Mardia
(1975) (see also Mardia and Jupp, 1999, Section 3.7.1). Consider the joint distri-
bution of two circular random variables ©; and ©,. Then (01, 0,) takes values
on the unit torus. One useful set of distribution on the torus is the bivariate von

Mises model (Mardia, 1975) with probability density function proportional to
exp {/1',1 cos (01 — p1) + ko cos (B — o) + (cos by, sin 0;) A(cos b, sin 92)T},

where A is a 2 x 2 matrix. The marginal distributions of ©; and ©, are von
Mises if and only if either A = 0 or Ky = ko = 0 and A is a multiple of an
orthogonal matrix (so that ©; and O, are uniformly distributed). A submodel
of this class was discussed by Jupp and Mardia (1980), and another submodel
was considered by Rivest (1988), whose subsets were investigated by Singh et al.
(2002) and Mardia et al. (2007). This class of distributions are maximum entropy
distributions (see also Jammalamadaka and SenGupta, 2001, Section 2.3.1).
Wehrly and Johnson (1979) have given a theorem for generating families of
bivariate circular distributions with specified marginal distributions. The theorem
is given below.
Theorem. Let f1(0) and fo(n) be specified densities on the circle and F3(6) and
F5(n) be their distribution functions. Also, let g(-) be a density on the circle.
Then
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f(0,n) = 2mg 2m {F1(0) — F2(n)}] f1(0) f2(n)

and

f(0,n) = 2mg 2m {F1(0) + F2(n)}] f1(0) f2(n)

where —7m < 6,n < m, are densities on the torus having the specified marginal
densities f1(0) and fo(n).
Shieh and Johnson (2005) study a bivariate model with von Mises marginals

f(0;) for j = 1,2, having probability density function:

Fia(01, 02) = 27rf1(91)f2(92)me”12 cos (27 {Fy (01)—F2(02)} o], (2.1)
where —m < 61,6, <7, —m < py9 < 7, K12 > 0, and Fj(0;) = ff; f;(0)df. Some
properties such as maximum likelihood estimation are investigated.

Furthermore, Kato and Shimizu (2008) provide four-variate continuous distri-
butions on certain manifolds with specified bivariate marginal distributions. The
theorem is applicable to the construction of distributions on two tori, cylinders

or discs.

Bibliographic notes: As other literature, Baba (1981) proposed a wrapped
multivariate normal distribution; SenGupta (2004) investigated bivariate circular
distributions with the properties of maximum entropy and conditional specifica-
tions; Aronld and Strass (1991) characterize the class of bivariate distributions
such that the conditional distributions belong to any specified exponential fami-
lies. Kato (2009) proposed a bivariate circular distribution with circular uniform

marginals and wrapped Cauchy conditional distributions; Shieh et al. (2011)
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gave a family of bivariate generalized von Mises distributions, whose marginals

are generalized von Mises distributions.

2.3 A family of bivariate cardioid distributions

2.3.1 Definition and joint probability density function

Wang and Shimizu (2012) consider a circular-circular structural model, similar
to but different from the linear structural model (cf. Cheng and Van Ness, 1999,
Section 1.1), or a model using a method of trivariate reduction, i.e. ©® = £+ ¢
and ® = n+¢, where € is a random variable which follows a cardioid distribution
C(p, p) and 7 is linked to & with the M&bius transformation (1.1) as n = M (§).
Here § and ¢ are independently distributed as cardioid distributions C(0, p;) and
C(0, pg) respectively and are independent of £. The distribution of 1 and its
properties have been given in Section 1.4 of this thesis.

The joint probability density function of © and ®, whose distribution is de-
noted by MCs(i, p, fas Pa, f8, p1, p2) or MCsy for short, is calculated as

1 2

fi1(0.¢) = (g) [1+ 2p2pa{l + 2pp1 cos (0 — p) } cos(pa + pg — @)
+2pp1 cos (0 — 1) + 2ppa(1 — p2) cos (¢ — = pug)
+2p1p2(1 = p3) cos (¢ — 0 — pip)

—2pp1p2pall = pi) cos (0 — ¢ + pu — pia + p15)], (2.2)

for 0 < p, < 1, and for p, > 1,
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2
R0.0) = (52) |14 20000 2001 co 0 = )} cos i + = 0

2

[0}

+2pp1 cos (6 — ) + 2pps” T cos (¢ + 1 — 2pa — pip)

2

1
+2p1p2 p“pQ cos (0 4+ ¢ — 2pa — pig)
2

Pa
—2pp1p2 5 cos (0 + ¢+ p—3pa — p1p)] -

Contour plots for p = 1/4, p; = ps = 1/2, pu, = pg = 0 and various combinations
of the other two parameters p and p, are displayed in Figure 2.1.

The marginal probability density functions of © and ® are C(u,pp;) and
C(pgs py) from the reproductive property of cardioid distributions, where p4 =
pvc and py = papmc. The conditional probability density functions are easily
obtainable. If p; = 0 or p; = 0 in MC,, then O is independent of ®. If y = pu, or
pa = 0, the joint probability density function has a mode at (u, pt + pg), but we

do not know whether the distribution is unimodal or not.

2.3.2 Trigonometric moments

The joint trigonometric moments ®(p, q) = E{e!®®+1®)} p ¢ =0,41,42, ..., of
MG, are listed below for the cases ®(p,q) # 0:

1, p=0,
®(p,0) = § pme*, p=1,
ppre ¥, p=-—1,
P2€i(““+uﬁ) {pa +p(1 - pi)ei(u—ua)} , 0=pa<l,

®(0,1) = _ .
p261(ua+uﬁ) {pla + p’%—gle‘(“a*“)} s Pa > 1,
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-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

() (d)

Figure 2.1: Contour plots of (2.2) for p = 1/4, p1 = p2 = 1/2, po = pg =0 and (a)
w=0, po, =0, (b) u=0, po =0.6, (¢) po = 0.6, p=m/4 and (d) po = 0.6, u = 27/3.
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pp1papactetieti) 0 < po < 1,

o(1,1) = | | | |
plpzel(ﬂa-huﬁ) {pg’;_a_lelﬂa + pL;el,u — ppipglel(@ta—u)} . pa > 1’
prpae” et {(1 = p2)eie + ppaet — ppo(1 — p2 )i},
@(17 _1) = O S pa < 1,
ppp:pz emilatus—)  po5

For the case ®(0,—1), ®(—1,—1), ¢(—1,1), we only need to convert the i to —i
in the formulas ®(0,1), ®(1,1) and ®(1, —1) respectively.

2.3.3 Correlation coefficient

A circular-circular correlation coefficient for bivariate data (cf. Mardia and Jupp,

1999, Section 11.2) is

1
2 2 2 2 2
r9,¢ = (1 IR T%)(l _ 7“%) {(rcc + Tes + Tse + 7“ss) + 2(chrss + Tcsrsc)rlr2

_Q(chrcs + TscTss)T2 - 2(chrsc + Tcsrss)rl} )

where r.. = corr(cos©,cos ®), r.; = corr(cos O,sin ), ry. = corr(sin O, cos P),
rss = corr(sin ©,sin @), r = corr(cos ©,sin ©), ro = corr(cos ®,sin ®) are Pear-

son’s correlation coefficients. The correlation coefficient for MC, is

oo =2005(t+20°02), 0 < pa <1,
where t = (1 — p2)[(1 — p2) (1 + p*pZ) + 2pp3, cos (i — p1a) — 207 p2, €08 2(pt — fta)]-
For the case p, > 1, we only need to convert the p, to 1/p,. Figure 2.2 gives a

plot of ¢ + 2p%*p? for 0 < p < 1/2 and 0 < p, < 1 when p — p, = 0. The values
of t + 2p*p? approach 1 for any p as p, goes to 0.
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Figure 2.2: Plot of ¢ 4+ 2p?p2 for 0 < p < 1/2 and 0 < p, < 1 when p — pio = 0.
2.4 Illustrative example

The wind direction at 6 a.m. and 12 noon measured each day at a weather station
in Milwaukee for 21 consecutive days (Johnson and Wehrly, 1977) is used for an
example.

First, we investigate about testing the hypothesis that the wind direction
data 0,,0s,...,05 at 6 a.m. and ¢q, ¢, ..., P21 at noon come from cardioid dis-
tributions. Watson’s U? goodness-of-fit test gives U7 = 0.071 and UZ = 0.070,
whose p-values are 0.48 and 0.49 respectively. Thus, we have enough evidence
that the data come from cardioid distributions. Figure 2.3 shows circular plots
of the data as well as circular plots of densities estimated by the maximum
likelihood method under cardioid distributions. The maximum likelihood esti-
mates of parameters are [ig = 4.670 (radians) = 267.608 (degrees), pp = 0.244,
fis = 0.214 (radians) = 12.273 (degrees) and p, = 0.0853.

Second, we use a test for serial dependence (Wehrly and Johnson, 1979) for
each of the wind direction data at 6 a.m. and noon under a model with cardioid

marginal distributions. The test statistic for serial dependence,
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Figure 2.3: (a) Circular plot of the wind data at 6 a.m. and the curve of fitted
density of C(ug,pg). The estimated mean direction and mean resultant length are
fp = 4.670 (radians) = 267.608 (degrees) and pyp = 0.244. (b) Circular plot of the
wind data at noon and the curve of fitted density of C(ug, pgy). The estimated mean
direction and mean resultant length are fi, = 0.214 (radians) = 12.273 (degrees) and
Py = 0.0853.
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n—1

V2/(n=1) Y coslfj1 — 0; + 2p{sin(0;1 — p) — sin(6; — p)}]

j=1
for #,,...,60,_1, has standard normal as an asymptotic distribution under inde-
pendence. We replace p and p with their maximum likelihood estimates p and
{t under the model of cardioid distribution. The values of the test statistic for
the wind direction data at 6.a.m. and noon are 0.181 (p-value 0.428) and 0.864
(p-value 0.194) respectively and there is no strong indication of serial correlation
in the sequence of wind direction. As far as we know, testing serial dependence
of bivariate circular datapoints is unknown, and this should be a future study.

Third, independence of © and ® is investigated. It is known (cf. Mardia and
Jupp (1999, p. 249)) that independence of © and ® is rejected for large values
of 1 4, since nrg , = xi as n — oo under independence. Numerical estimation
of 7’3@ gives 7“3,¢> = 0.439, and its p-value is 0.0558, which is marginal to 5% and
there is no clear evidence for rejection or acceptance of independence.

Finally, we fit MC, to the data set. An interpretation of the MCy model is
as follows. Let & and 7 denote unobservable angular random variables which
represent wind direction at 6 a.m. and noon, and it is assumed that there
exists a structural relationship n = M (&), where £ follows a cardioid distribu-
tion and M is the Mobius transformation. Angular variables § and ¢ are inde-
pendent measurement errors which are assumed to follow cardioid distributions
with zero mean direction, independent of £, and © (= £ 4+ J) and ¢ (= 7 + ¢)
are observed. The maximum likelihood (ML) estimates of parameters for the
model MCy, the values of maximum log-likelihood (MLL) and the values of
Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)
are summarized in Table 2.1 for (a) the identity transformation M (&) = &, i.e.
MCy(p, p, —, 0,0, p1, p2), with common mean resultant length p; = ps, (b) angular
rotation M (&) = £+ ug, i.e. MCq(p, p, —, 0, g, p1, p2), with p; = ps, independent
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models (c) MCa (4, p, ftas Pas i, 0, p2) = MColp & 7, p, fio = T, pa, g £ m,0, p2)
and (d) MCq(p, p, —, —, —, p1,0), (e) a model MCs(p, p, fta, Pa, I8, P1, p2) With
p1 = p2, and (f) the full model MCsy(p, p, fta, pa, i3, p1, p2). The potential struc-
ture is estimated as 7 = M (€) using the ML estimates fio, jo and fig. For this
data set, a simple distribution MCsy(u, p, —, 0, g, p1, p2) with p; = po linked to
angular rotation M (£) = £ + pg is selected as an optimal model between these
six in the sense of minimum AIC. Approximate 90% confidence intervals for u,
p, g and p; of the model based on the Fisher information are (4.921,6.105),
(0.119,0.425), (0.417,1.164) and (0.411,0.5). Figure 2.4(a) shows a contour
plot of the optimal model with a plot of the data and the Mobius curve, line
for this data set, as a function ¢ = M() = 6 + fi5 with the ML estimate
fig = 0.790 (radians) = 45.264 (degrees) of ug under the model. Figure 2.4(b)
shows a 3-D plot of the fitted joint density.

Table 2.1: Maximum likelihood estimates of the parameters, the maximum
log-likelihood (MLL), AIC and BIC values for (a) the identity transformation
M (&) = £ with p; = po, (b) angular rotation M (§) = £ + ug with p; = ps, inde-
pendent models (¢) MCsy(u, p, fa, pa, i, 0, p2) and (d) MCsy(u, p, —, —, —, p1,0),
and (e) a model MCa (i, p, fa, Pas 3, P15 p2) With p1 = pe, and (f) the full model

MCQ(IJM Ps Has Pay 35 P15 p2>

Model i 5 fro Do fig 1 b2 MLL AIC BIC
(a) 5708  0.196 - - - 0.5 05  -74.588 155.176 158.310
(b) 5513 0.272 - - 0.790 0.5 0.5  -73.183 154.367 158.545
(c) 0.010 0230 0.000 0.803  0.213 - 0.096 -77.076 166.151 172.418

(3.152) (3.142) (3.355)
(d) 4.671  0.496 - - - 0491 -  -75884 157.767  160.901
(e) 5065 0357 1.266 0314 0532 05 0.5  -72.705 157.410 163.677
(f) 5065 0357 1.266 0.314 0532 05 0.5  -72.705 159.410 166.722

As a comment, the fact that the estimate of p; (= p2) is 0.5 which is a
boundary of the parameter space, suggests better fit of more sharply peaked
distributions such as wrapped Cauchy and von Mises distributions. Shieh and
Johnson (2005) study a bivariate distribution whose joint probability density

function is given by function (2.1). For the same data set, maximum likelihood
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estimates of the parameters are given in Table 2.2. The bivariate distribution
with von Mises marginals is selected as a better model than MCsy(b) in the sense
of smaller AIC and BIC values, but MC, Model has benefit of inferring the
structural relationship between two unobservable circular variables. Circular-
circular structural relationship models based on wrapped Cauchy and von Mises

distributions are beyond the scope of the current thesis.

Table 2.2: Maximum likelihood estimates of the parameters, the maximum log-
likelihood (MLL), AIC and BIC values for the Shieh and Johnson (2005) model.

,&1 l%l ,112 /%2 ,1112 /%12 MLL AIC BIC
4.769 0.645 4.952 0.246 5.137 1.239 -70.115 152.229 158.496

Figure 2.4: (a) Contour plot of the fitted distribution with plots of the wind direction
data at 6 a.m. and noon. The Mobbius curve, line for this data set, is drawn as a
function ¢ = M () = 6 + fig with the estimated value of ug. (b) 3-D plot of the fitted
joint density of MCa(u, p, —, 0, g, p1, p2) with p1 = pa.
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Chapter 3

Distributions on the cylinder

3.1 Introduction

Sometimes it is necessary to consider models for bivariate data, such as wind
direction and speed, wind direction and the concentration of a pollutant. The
feature is: one variable is angular and the other one is linear. Such a pair of
realization may be identified with a point on the cylinder. Thus sometimes
angular-linear random variables are called cylindrical random variables and the
joint distributions of the cylindrical variables are called cylindrical distributions
or distributions on the cylinder.

Some existing parametric models are introduced for cylindrical distributions
in Section 3.2. Mardia and Sutton (1978) proposed a suitable model for cylin-
drical data, and obtained the maximum likelihood estimators for the parameters
of the model. Johnson and Wehrly (1978) proposed some angular-linear distri-
butions based on the principle of maximum entropy, and proposed a model with
specified marginal distributions. Recently, Kato and Shimizu (2008) investigated
the Johnson and Wehrly model in detail, proposed an extension of the Mardia
and Sutton model, and provided a theorem which constructs four-dimensional

distributions with specified bivariate marginal distributions on certain manifolds
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such as two tori, cylinders or discs.

In Section 3.3, we propose an angular-linear distribution whose density is a
combination of von Mises and transformed Kumaraswamy distributions. Some
properties such as marginal distribution, conditional distribution and mode are
obtained. Ilustrative examples are given in Section 3.4.

Distributional studies and regression models have played important roles in
statistical analysis of circular data. Symmetric and possibly asymmetric circular-
linear multivariate regression models (SenGupta and Ugwuowo, 2006) are moti-
vated by and applied to predict some environmental characteristics based on both
circular and linear predictors. Noting that the circular-linear regression models
are derived from the conditional distributions of cylindrical distributions, we give,
in Appendix, a likelihood approach (Cook, 1986) to study influence diagnostic
analysis for cosine, cosine-sine and cosine-cosine models (see Liu et al., 2013,

manuscript).

3.2 Existing distributions on the cylinder

There are various situations which involve both circular random variable © and
linear random variable X, such as wind direction and speed, direction and move-
ment distance for animal, wind direction and the concentration of air pullutant.
Then the random vector (©, X) takes values on the cylinder. Mardia and Sutton
(1978) proposed a model with density

where —m < 0 <7, —c0 < x < 00, =1 < g < 7w, k > 0, Iy(k) is the modified

Bessel function of the first kind and order zero and
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fre = p+Vro{pi(cost — cos i) + pa(sind — sin o)},
o = o*(1—p%) and p=(pj+p3)"? 0<p<l.

for —co < pu<o0,0>0,0<p; <1,0 < py <1 The parameters of the model
are (i, (o, K, p1, p2 and o. Maximum likelihood estimates of parameters and a
practical example are given by Mardia and Sutton (1978).

Johnson and Wehrly (1978) proposed some distributions on the cylinder which
maximize the entropy subject to constraints on certain moments. One of the

distributions has density

f(0,x) = L (3 - n2)1/2 exp{—Az + Kz cos (0 — u)}, (3.1)

27

where —m <O <7 x>0, 0<k <\ —71 < pu <m. This distribution is the
maximum entropy distribution subject to constraints on E(X), E(X sin©), and
E(X cos®). The marginal distribution of © is a wrapped Cauchy distribution
WC(p, K{X + (A2 — k2)1/2171) | the conditional distribution of © given X = z is
a von Mises distribution VM(u, k) and the conditional distribution of X given
© = 6 is an exponential distribution with mean {\ — xcos (6 — u)} 1.

Another distribution proposed by Johnson and Wehrly (1978) has density

2 A\r  Kx

f(&,x):cexp{—%—kg—l—gcos(ﬁ—u)}, (3.2)
where ¢ (> 0) is a normalizing constant, —7 < 0 < 7, —00 < & < 00, —00 < A <
00, k > 0, and —m < p < 7, gives the maximum entropy cylindrical distribution
subject to E(X), E(X?), E(X cos©) and E(X sin ©) taking specified values (see
also SenGupta, 2004). The marginal distributions are not of familiar form, but

the conditional distributions are
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fi(0|x) = {271’]0(/%6/02)}_1 exp {(kz/0?) cos (0 — 1)}

and
fo(z]0) = (27r<72)’1/2 exp {—(1/202)[37 —{A+ Kkcos (0 — ,u)}]z},

which are the densities of a von Mises distribution VM(u, kx/0?) and a normal
distribution N(\ + r{cos (§ — )}, o%) respectively.

Furthermore, Johnson and Wehrly (1978) proposed a distribution, whose
marginal densities fi(0), fao(x) are specified, with density

f0,2) = 2mf1(0) fa(x)g 2 { F1(0) — Fa(x)}],

where F(0) and Fy(x) denote the distribution functions of f;(6) and fo(x) re-
spectively, and g(+) is a probability density function on the circle.

Kato and Shimizu (2008) gave a theorem which constructs four-dimensional
distributions with specified bivariate marginals on certain manifolds such as two
tori, cylinders or discs, and also proposed an extention of the Mardia and Sutton
model, which has the joint probability density function:

Az — ()}

_ —1
f(07 x) - C eXp 20_2

+ K1 cos (0 — p1) + Kocos2(0 — ps) |, (3.3)

where 0 < 0 < 27, —c0o <z < 00, 0 > 0,0 < puy; < 21, 0 < py < m,
(@) =p' + Acos (0 —v), —oo < p/ <00, A >0,0<wv<2rand K,k > 0. The

normalizing constant C' is provided by

C = (2m)*0 [[0(/%1)[0(“2) +2)  Ii(k2) I (1) cos {2 (i — Mz)}] -

j=1
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The distribution has the following properties.

(1) f(0,z) is the maximum entropy probability density function on the cylin-
der subject to E(X?), E(X), E(X cos©), E(X sin©), E(cos ©), E(sin©),
E(cos20) and E(sin20) taking specified values consistent with expecta-

tion.

(2) The marginal distribution of © is the generalized von Mises distribution
GVM(k1, Ka, 11, p2) and the conditional distribution of X given © = 0 is a
normal distribution N(u(6),0?).

Note: Kato (2009) proposed a cylindrical distribution with circular uniform and

standard Cauchy marginals.

3.3 New distributions on the cylinder

The angular-linear distribution we propose has density
f(97x) — A—l e{—)\r+nxcos (0—p)} (1 . e—)\z)ﬁ_17 (34)

where —m <O <7m, x>0, — 7 <pu<m >0, A >k >0, and the normalizing

constant 1s
o Ooﬁ—l_jz. 2 2\-1/2
A—Q?TZ j (=1){N(j +1)* — r“} =
§=0

This distribution is a combination of von Mises and transformed Kumaraswamy
distributions, and it is also an extended model of the Johnson-Wehrly model
(3.1). When 3 = 1, the normalizing constant is A = 27(\? — x2)~%/2, and our
model is reduced to Johnson—Wehrly model (3.1). When parameters satisfy the
condition 1 < 8 < 1+ (A — k)/\, the distribution with (3.4) has a mode at (u,
A1 In{(A\8 — k)/(A — k)}) and an antimode at (u+m, A" In {(A\8 + &) /(A + k) }).
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The marginal density of © can be expressed as
N (A1 FIN( s -1
fol) = A (PTG —Reos 0=} (35)
=0

where —m < 6 < 7. The distribution with density (3.5) is symmetric about u
and unimodal. It has mode at pu and antimode at u+ 7. As a special case, when
B =1, the density function (3.5) is reduced to

(A2 — K2)1/2

fo(0) = T{)\ —kecos (0 —p)}t, —m<O<mT.

It is a wrapped Cauchy distribution with mean direction g and mean resultant
length x/{\ + (A2 — £?)1/2}.
The marginal distribution of X is given by

fx(z) = 2mA e (1— e_m)ﬁ_1 Io(kz), x>0. (3.6)

Thus, the conditional distribution of © given X = z is a von Mises distribution
VM(p, k). As a special case, when = 1, the density function (3.6) is reduced

to
fx(@) = A\ =r)HY2e M (kx), x>0.

Since fy(z) = k2 [1—(A/K)2—(N/K){A(k2)}™'] < 0, fx(x) is a monotonically
decreasing function, and takes maximum value (A\?—x?)'/2 at point 2 = 0. Figures
3.1 and 3.2 show the plots of model (3.4) with parameters § = 2 and 5 = 0.8 for
A =3, k =2, u= 0 respectively.

We also consider some other cylindrical distributions. McClintock et al.
(2012) proposed a model which has the form of a combination of Weibull and
wrapped Cauchy distributions. Different from the model used in McClintock et
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Figure 3.1: (a) 3-D plot and (b) contour plot of model (3.4) with parameters:
A=3,03=2, k=2, u=0.
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Figure 3.2: (a) 3-D plot and (b) contour plot of model (3.4) with parameters:
A=3,3=08 r=2, u=0.
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al. (2012), we let 6 and = be dependent, and think of a cylindrical distribution

whose density is given by

o = ()

a

)b

Q8

1 1~ {tanh (pa))?
- (QW) 1 + {tanh (px)}2 — 2 tanh (px) cos (0 — p)’ (3.7)

where — 1 <O <m x>0 —71<pu<m a>0b>0,p>0. Figure 3.3 shows
3-D and contour plots of the density (3.7).

We also propose a joint distribution by using the method of generating a
cylindrical distribution with specified marginal distributions given by Johnson

and Wehrly (1978). The joint density function is given by

f(0,z) = % afe” ™ (1—e ) o {1+2pcos(d — pe)}

5 1 encos [271'(176_‘“3)/87{9+2psin (9*#c)+2psinﬂc}7ﬂ:| 7 (38)
Io(k)

where —m <O <maz>0, < pu<nm, 71< p.<nmr>0a>0 8>0,
0 < p < 1/2. This distribution has a cardioid marginal distribution C(., p)
for circular random variable ©, and the linear random variable X is distributed
as Kumaraswamy’s distribution after the exponential transformation exp(—X).

The circular link function of (3.8) is the von Mises distribution VM (p, k).

3.4 Illustrative examples

Example 1

In this example, we use the latitude, longitude and magnitude data for fore-
shocks during 72 hours before the earthquake off the Pacific coast of Tohoku,
Japan, a magnitude 9.0 My, occurred at 14 : 46 JST (05 : 46 UTC) on 11
March, 2011 with the epicenter 38.30 degrees for latitude and 142.37 degrees for
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(a) 3-D plot and (b) contour plot of model (3.7) with parameters

a=050=13 p=038, u=0.

Figure 3.3:
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longitude approximately 70 km east of the coast. The data were taken from the

U.S. Geological Survey website at
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_global.php

on 8 July 2011. We pick up the first 28 earthquakes off the Pacific coast of
Tohoku whose magnitudes, m, are greater than 4. Figures 3.4 and 3.5 show 3-
D and contour plots for the set of the magnitudes m; —4 (j = 1,...,28) and
corresponding consecutive angles 6; (0 < 6; < 2m; j =1,...,28) calculated from
epicenters. From the AIC values 146.742 for model (3.1) and 117.886 for model

(3.8), we select model (3.8) as an optimal model between the two.

Example 2

The cylindrical dataset on movements of blue periwinkles is considered next.
The observations are directions (#) and distances (z) moved by small blue peri-
winkles after they had been transplanted downshore from the height at which
they normally live. The data are taken from Table B.20 of Fisher (1993). The
planar plot of the cylindrical data (6, x) is shown on Figure 3.6.

For the directions, the sample mean direction and mean resultant length are
1.620 radians (92.819 degrees) and 0.775 respectively. Figure 3.7 shows the cir-
cular plot of the directions. We test symmetry (Pewsey, 2005) for the directions.
The p-value of the test is 0.006, and thus the directions can be seen as coming
from an asymmetric circular distribution.

We use the sine skewed model of (3.4), whose density is given by

fsskl(ev'r) = {1 + ”ySiIl (9 - ’u>}
< A e{—)\x—i-/ia;cos (0—p)} (1 _ e_)‘x)ﬁil , (39)

where —1 < < 1, and the sine skewed model of (3.7) with density
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Figure 3.4: (a) 3-D plot and (b) contour plot of fitted model (3.1) with scatter
plot: A = 1.818, & = 1.180, i = 3.308, MLL= —70.371, AIC= 146.742, BIC=
150.7380
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Figure 3.5: (a) 3-D plot and (b) contour plot of fitted model (3.8) with scatter
plot: & = 2.648, 3 = 6.345, p = 0.500, i, = 3.221, & = 0.259, i = 2.272,
MLL= —52.943, AIC= 117.886, BIC= 125.879.
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Figure 3.6: Plot of observations of directions () and distances (z) moved by
small blue periwinkles.

Figure 3.7: Circular plot of the directions.
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fose2(0,) = {1+ ~ysin(0 —p)} b (S)H o (2)

a

X i 1-— {tanh (pq;)}Q
(27T) 1 + {tanh (px)}? — 2 tanh (px) cos (0 — p)’ (3.10)

where —1 < 4 < 1. This idea of skewing comes from Abe and Pewsey (2011),
who proposed skew circular distributions that are generated by perturbation of
symmetric circular distributions. We fit models (3.9) and (3.10) to the cylindrical
data set of movements of blue periwinkles, and compare the results with those

using the Kato—Shimizu and Mardia—Sutton models.

Table 3.1: Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (3.9).

A fE 2 i 4 MLL AIC
0.095 2.334 0.078 1.227 1. -174.694 359.387

Table 3.2: Maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of model (3.10).

a b 5 i 4 MLL  AIC
52.368 1.536 0.017 1.165 1. -171.119 352.237

The maximum likelihood estimates of the parameters, the maximum log-
likelihood, and AIC of models (3.9) and (3.10) are given in Table 3.1 and Table
3.2 respectively. Figures 3.8 and 3.9 show the contour plots of fitted models as
well as the scatter plots. The AIC value of model (3.10) is 352.2, which is less
than the AIC values 359.387 of model (3.9), 357.5 of Kato—Shimizu model, and
365.8 of Mardia—Sutton model. Thus, model (3.10) is selected as an optimal

model among these four in the sense of minimum AIC.
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Figure 3.8: Contour plot of fitted model (3.9) with scatter plot for the data set

of movements of blue periwinkles.
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Figure 3.9: Contour plot of fitted model (3.10) with scatter plot for the data set
of movements of blue periwinkles.
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3.5 Circular-linear regression models

In this section, we remark that circular-linear regression models are derived from
distributions on the cylinder.

If a random vector (©,Y") is distributed according to the Johnson—-Wehrly dis-
tribution (3.2), the conditional distribution of Y given © = # is normal with mean
A+kcos (0 — p) and variance 0. This provides the usual model for trigonometric

regression. Similarly if we start with a modified joint density

2
y- by | Ky :
f(0,y) o exp —553 + 2 + —2 ©o8 {0 —p+ysin(0—p)}|, |y <1,

then the conditional distribution of ¥V given © = # is normal with mean b +

2

kcos{f — ¢ + ysin(f — ¢)} and variance o°. If we adopt an alternative joint

density

2
b
f(0,y) o< exp —y—2 + J—Z

KY
> _ — ¢ <
5 + 5 COs {9 gb—l—vcos(é’ )} ) |7| <1,

then the conditional distribution of Y given © = 6 is normal with mean b +
Kk cos{f — ¢ +ycos(d — ¢)} and variance 0.
Thus, SenGupta and Ugwuowo (2006) propose the following Cosine, Cosine-

sine and Cosine-cosine (SU) regression models:

yi = i+ acos(0; — @)+ e, (3.11)
yi = xfB+acos{l; — ¢+ ysin(0; — P)} + e, (3.12)
yi = a0+ acos{l; — o+ ycos(0; —d)} + e, (3.13)

where y; (—o0 < y; < 00) is the observed linear response value, x; = (1, x;1, z;)’
(€ R?) is the observed linear covariate value, 6; (—m < 6; < 7) is the observed

angular or circular value, ¢; is independently distributed and ¢; ~ N(0,0?) for

o1



i =1,...,n. The parameter vectors in (3.11), (3.12) and (3.13) are respectively
n=(8,0,6,0%, 1= (#,0,6,7,0%) and 1 = (,,,7,0%), where o? (> 0) is
the variance assumed for the normal distribution, 3 = (39, 81, 52)" (€ R?) is the
regression coefficient vector, & € R, —m < ¢ < m, and particularly v (|y] < 1) in
(3.12) is the parameter of kurtosis (indicating to what extent the shape differs
from a sinusoidal oscillation) and « in (3.13) is the parameter of skewness (for
the oscillation pattern when the peaks and troughs do not follow each other).
An application of the local influence method proposed by Cook (1986) to the

SU regression models will be treated in Appendix.
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Chapter 4

Distributions on the disc

4.1 Introduction

Some distributions with support on the unit disc in two dimensions are introduced
in Section 4.2. As far as we know, only few articles investigate distributions on
the disc. Jones (2002) proposed a beta distribution on the disc. An alternative
distribution on the disc named the Mobius distribution was proposed by Jones
(2004), whose density function is asymmetric or skew for the length from the
center of the disc, but symmetric for a line through the origin. Therefore, in
Section 4.3.2 we propose a family of modified Mobius distributions skew for both
of the length and angle. The modified Mobius distributions have six parameters.
They can be reduced to the Mobius distribution and uniform distribution as
special cases, but in general the family is skew for both of the length and angle.
Some properties such as marginal distribution are obtained. In Section 4.4, an
illustrative example of fitting the models to data which consist of values of ozone

concentration and wind direction (Johnson and Wehrly, 1977) is given.
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4.2 Mobius distribution

The Mobius distribution was proposed by Jones (2004). The density function
is asymmetric for the length from the center of the disc, and it is obtained by
applying the Mobius transformation to the bivariate spherically symmetric beta

(or Pearson type II) distribution with density

3@

gs(z,y) = (1—x2—y2)’671, >0 0<2*+4y*<l.

The distribution includes the uniform distribution on the disc when § = 1 and
is symmetric with mode at zero when 3 > 1 and antimode at zero when 3 < 1,

whose density function could be written as
g _
9(p ) = —p(l=p)"! 0<p<l, —m<p<m f>0

in polar coordinates. Write z = (z,y) and w = (u,v) as complex numbers with,
in particular, w = 7,0 < r < 1,—7 < § < 7. Applying the inverse Mdbius
transformation w = re? = Mp(2) = (z +¢)/(1 +¢z) (c=ae*, 0<a<1, 0<
p < 2m) to z, then we obtain the Mébius distribution. The density function for

(r,0) can be written as

— g2)BH1p(] — p2) -1
fong) PO

= 5T O0<r<l, —7<0<m.
m{l+ a®r? — 2arcos (0 — u)}

The parameter a controls the off-centeredness of the distribution, and the Mébius
distribution reduces to the bivariate spherically symmetric beta distribution when
a = 0. The parameter 3 plays the role of concentration parameter. The Mobius
distribution is asymmetric for the length r, but still symmetric for the angle 6.
Figure 4.1 shows (a) a 3-D plot and (b) a contour plot for the Mébius distribution

with parameters a = 0.25, 5 = 3 and p = 0. The marginal distribution of R is
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fr) =

28(1 — a?)P*1r(1 — r?) A1 1+ a?r?
P | ———
(1— a27’2)6+1 1 — a2r2

) 0<r<l,

where P denotes the associated Legendre function and is defined as

1" dy)
Py(z) = = .
o[ w/o (2 + vV —Tcosy) "

The conditional distribution of ©(R = r) is

1

F(Olr) = [%Pﬂ(z) {z V22— Tcos (0 — u)}ﬁ“} -

where z = (1 + a®r?)/(1 — a®r?). Tt belongs to the family of Jones and Pewsey
(2005), actually a circular ¢ distribution given in Section 1.3.5.

4.3 A modified Mobius distribution

4.3.1 Kumaraswamy'’s distribution

Jones (2009) systematically investigated Kumaraswamy’s (1980) distribution. Its

density is

g(p) = aBp* (1—=p*)"™", 0<p<1, (4.1)

where a and 3 are positive shape parameters.

Kumaraswamy’s densities are unimodal, uniantimodal, increasing, decreasing
or constant depending in the same way as the beta distribution on the values of
its parameters. Some density plots of Kumaraswamy’s distribution are given in

Figure 4.2. The distribution function of Kumaraswamy’s distribution is
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Figure 4.1: (a) 3-D plot and (b) contour plot of the M&bius distribution with
parameters a = 0.25, f =3 and p = 0.
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Glp)=1—(1-p"", 0<p<l,

and it can be shown that Kumaraswamy’s distribution has the shape:
(1) unimodal, if a« > 1, 8 > 1,
(2) uniantimodal, if 0 < a < 1,0 < < 1,
(3) increasing, if a > 1,0 < 5 <1,
(4) decreasing, if 0 < a <1, > 1,
(5) constant, if a = = 1.

In the first two cases, the mode/antimode is at

a—1 1/a
pz(aﬁ—l) '

At the boundaries p — 0 and p — 1, Kumaraswamy’s distribution has density:

(1) g(p) ~ p*', as p— 0,

(2) glp) ~(1—=p)ftasp—1

4.3.2 A modified Mobius distribution

We propose a distribution on the unit disc, which is asymmetric not only for the
length r but also for the direction 6. Similar to Jones (2004), we start with a

bivariate independent circular distribution with joint density function

glp, o) = Z—fp"‘l (1—p)7 T, (4.2)
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Figure 4.2: Density plots of Kumaraswamy’s distribution with parameters a = 2,
8 =2 (dots), a = 0.5, B = 0.5 (dashed), a« = 2, § = 0.5 (dotdashed), a = 1,
B =2 (solid).

where 0 < p <1, -1 < ¢ <m, o > 2 and § > 0. This distribution is an indepen-
dent model for the length p and angle ¢ which are made from Kumaraswamy’s
distribution and a circular uniform distribution. It reduces to the bivariate spher-
ically symmetric beta distribution when o = 2. By applying the inverse Mobius

transformation to the distribution (4.2), we have equations

T—C

1—e¢r’

B a? + 12 — 2ar; cos (0, — )
=1t a?r? — 2ar, cos (6, — p)’
rrsin@,; — a?*r,sin (0, — 2u) —a (1 +r?)sinp
rrcos O + a?r;cos (0, —2u) — a (1 +1r2)cos p }’

p = arctan{

for z = pel? and 7 = r,e!". The Jacobian for this transformation is

rr (1 — a?)?

‘ \/ a?+r2 —2ars cos (6 —p) (14 a?r2 — 2ar, cos (6, — H))z

14+a2?r2—2ar; cos (0 —pu)

= Haa& o

After this transformation, we obtain the joint density function of R, and O,
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ol ) -y T

where

A(ry,0,) = a*+ 12— 2ar, cos(0, — p),

B(r;,0;) = 1+a*?—2ar,cos(0, — p).

The joint distribution with (4.3) is reduced to the Mobius distribution when
a = 2, and it is asymmetric for the length r,, but still symmetric for the angle
0.

Alternatively we propose a Mdébius type transformation given by

/|7 + ¢o

Mo(r) = |r| -0

(4.4)

where ¢ is a complex number in the unit disc. This transformation maps the circle
with radius r onto itself. We apply this transformation to the joint distribution

(4.3) to obtain an asymmetric distribution for both of the length and direction.

Model 1

Let cg = age™, where 0 < ag < 1, —7 < pp < 7, and apply the transformation

(4.4) to the joint distribution (4.3), then

B w/|w| — ¢
T = |w|_—a
1 — cow/|w|
T = T,
6. — arctan sin 6 — 2ag sin g — aé sin (6 — 2p0)
cos  — 2ag cos o + af cos (0 — 2pp)

for 7 = rye' and w = re'’. The Jacobian for this transformation is
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|5

' 1—a?

" 1+ a2 —2agcos (0 — o)
so the joint density function of R and O is

af(1—a®)?(1—a2)r
21 {1+ a2 — 2ag cos (0 — 110)} {By(r,0)}"

(e - e

fl(rv 9) =

where

Ay(r,0) = a*+r*—2arcos (0, — p)

cos (0 — p) — 2aq cos (1 — po) + ag cos (0 + p — 2pu0)
14 a3 — 2ag cos (6 — o)

Bi(r,0) = 1+a*?—2arcos (0, — )

cos (0 — p) — 2ag cos (p — o) + ag cos (0 + p — 2p0)
1 4 a3 — 2ag cos (6 — 1) '

= a’+r*—2ar ,

= 1+ da*?%—2ar

As a special case, if a = 2, the joint density function of R and © reduces to

af (1 — a2)ﬁ+1 (1—a2)r(1—r?)s-1

fi(r,0) = 21 {1 + a2 — 2ag cos (6 — i)} {Bu(r,0) )+

The marginal density function of R is, independently of «,

B(1— &2>B+1 r(l— TQ)IB_IP 1+ a2r2
(1— a2T2)5+1 B\T1 22

fi(r) = / " f(r60) do =2

which is the same marginal density function as that of the Mdbius distribution,
where Ps(x) denotes the associated Legendre function. If ag = 00 the joint
density function of R and © reduces to (4.3) because (4.4) reduces to the identity

mapping. Finally, when a = 0 the inverse Mobius transformation is just the
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identity transformation, and the joint density function of R and © reduces to

aB (1 —a2)re=t(1 — r>)s-t

f(r,0) Qﬂ{l+ag—2aocos(9—,uo)}.

This is an independent model for R and O, and in this case, R is distributied as
Kumaraswamy’s distribution, and © is distributed as a wrapped Cauchy distri-

bution.

4.3.3 Some other models

In the transformation (4.4), let co = agre® instead of ¢y = age®. Then,

B w/|w| — ¢
T = ‘w‘_—a
1 — ¢ow/|w|
re = T,
6. — arctan sin @ — 2ag sin pg — aé sin (0 — 2p0)
cos 0 — 2ag cos jig + ag cos (6 — 2p)

for 7 = r e and w = re!. The distribution (Model II) obtained has joint density

af (1 —a®)? (1 —a2r?)r
21 {1 + a2r2 — 2agr cos (6 — o)} { Bo(r,0)}

faeny (et

Here Ay(r,0) and By(r,0) are given by replacing ag in A;(r,0) and By (r,0) with

fg(T’, 8) =

aor. As a special case, when o = 2, the marginal density function of R is the
same as the marginal density of Model I. If ag = 0, the Model II reduces to the
Mobius distribution. If @ = 0, the distribution does not yield independence of R
and ©. Thus, Model II is completely different from Model I.

In the transformation (4.4), let ¢y = tanh (agr, e, where ag > 0, 0 < o <
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27, to obtain a distribution (Model II). Then,

ro= w/|w| — ¢
— — 9
1 — éow/|w|

re = T,

6. — arctan { sin @ — 2 tanh (aor) sin p — {tanh (aor)}” sin (0 — 240) }

cos 0 — 2 tanh (agr) cos p + {tanh (agr)}> cos (0 — 20)
The Jacobian of the transformation is

o(r,,0,)
a(r, 0)

J— —
‘ ’ cosh (2agr) — cos (6 — po) sinh (2ao7)

‘ B 1

and thus the joint density function of R and © is

r o) = af (1 —a2)’r Ag(r,0) 127
J5(r,9) o7 (cosh (2aqr) — cos (6 — jug) sinh (2agr)) { Bs(r, 6)}? {B?»(Tv 0) }
f-1

A3(7’7 0) %
1- 2307
: [ {Bgme)} ] |
where As(r,0) and Bs(r, 6) are given by replacing ag in A;(r,0) and By (r, 0) with

tanh (agr). As a special case, R has the same marginal distribution as the M6bius

distribution when a = 2.

4.4 Illustrative example

The ozone concentration and wind direction data, collected at a weather station
in Milwaukee, U.S.A., in 1975, are used for an example. The size of the dataset
is 19, given in Table 1 of Johnson and Wehrly (1977). For the purposes of this
example, we divide the ozone concentration data by a maximal value taken to be
120, and wind direction converted from degrees on [0 360) to radians on [—7 7),
and plotted in Figure 4.5.

For the wind directions, the sample mean direction and mean resultant length
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Figure 4.3: (a) 3-D plot and (b) contour plot of Model Il with parameters a =
0.25, a0 =05, =2, =3, p=—7/5 and py = 7/4.
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Figure 4.4: (a) 3-D plot and (b) contour plot of Model Il with parameters a = 0.2,
ap =04, a =4, =5, u=mand py = 7/2.
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are 0.292 radians (16.707 degrees) and 0.517 respectively. We test symmetry
(Pewsey, 2002) for the directions. The p-value of the test is 0.460, and thus we do
not reject the hypothesis that the wind directions are coming from a symmetric
circular distribution. Then we fit the Mobius distribution and model III to this

paired dataset. The maximum likelihood estimates of the parameters, the maxi-
mum log-likelihood (MLL), AIC and BIC values for the M&bius distribution and
model IIT are given in Table 4.1. Figures 4.6 and 4.7 show the 3-D and contour
plots of the fitted models as well as the scatter plots. For this data set, the
Mobius distribution is selected as an optimal model in the sense of minimum

AIC, although model III has greater MLL value.

Table 4.1: Maximum likelihood estimates of the parameters, the maximum log-
likelihood (MLL), AIC and BIC values for the M&bius distribution and model
II.

e

Model a g & 06 i Lo MLL AIC BIC
Mobius  0.284 - - 3.783 0.648 - -27.655 61.309 64.142
model I 0.263 0.233 2.000 3.610 0.875 -0.327 -27.639 67.279 72.945

Figure 4.5: A scatterplot of the ozone concentration/wind direction data from
Johnson and Wehrly (1977).
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(b)

Figure 4.6: (a) 3-D plot and (b) contour plot of fitted Mobius distribution with scatter
plot for the data set of Johnson and Wehrly (1977): a = 0.284, 8 = 3.783, i = 0.648.

(b)

Figure 4.7: (a) 3-D plot and (b) contour plot of fitted model Il with scatter plot for the
data set of Johnson and Wehrly (1977): a = 0.263, dp = 0.233, & = 2.000, 8 = 3.610,
= 0.875, [ig = —0.327.
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Appendix

Local influence method

The local influence method was first proposed by Cook (1986) for assessing the
influence of small perturbations in a general statistical model. Let L(n) represent
the log-likelihood for the postulated (i.e. unperturbed) model and observed data,
where 7 is a vector of unknown parameters with its maximum likelihood estimator
7. Let w denote a vector of the (small) perturbations in the model, Q represent
the open set of relevant perturbations such that w € Q, and then L(n|w) be the
log-likelihood of the perturbed model and 7,, denote the corresponding maximum
likelihood estimator of n. Let wy € 2 denote a no-perturbation vector such
that L(n) = L(n|wy). Suppose that L(njw) is twice continuously differentiable
in a neighborhood of (7, wy). We are interested in comparing the parameter
estimates 7 and 7, by using the idea of local influence. To implement the idea is
to investigate the extent to which the inference is affected by the corresponding
perturbation.

As in Cook (1986), the likelihood displacement is chosen to be

LD(w) = 2{L(1)) = L(1)}

which can be used to assess the influence of the perturbation w. It is not difficult

to see that large values of LD(w) indicate that 7 and 7),, differ considerably rela-
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tive to the contours of the unperturbed log-likelihood L(n). This method is based
on studying the local behaviour of an influence graph a(w) = (w’, LD(w))" around
wp. Cook (1986) suggests investigating the direction in which this influence mea-
sure changes most rapidly locally, i.e. the maximum curvature of the surface
a(w). Upon LD(w) the maximum curvature Cyax is given by Ciax = max; =1 Ci,
where C; = 2|I'Fl|. To find Cy.x and the corresponding direction ly.,, we need

to calculate the matrix F', which is defined by
F=—-ANHTA,

where A is a matrix for the perturbed model

0°L(n|w)

A = A(ﬁ,’lﬂo) = 8778'(1]/

T]:ﬁ7w:w0

evaluated at 7 and wy, and —H is the observed information matrix for the pos-

tulated model
d*L(n)

=H) = 550

n=1
evaluated at 7); then [, is a unit-length eigenvector that is associated with the
largest absolute eigenvalue of F', and large values of those elements of [,,,, indicate
the corresponding observations are likely to be influential.

For each model of (3.11), (3.12) and (3.13), H and A for the five perturbation
schemes are similarly obtainable. In the cosine model (3.11), we have the following

H and A:
- 1
L(n,w) = ;1: Ly = =5 n(2r) = Sn o? — =(0?) 12,

9(77771)) = ;gi, gi:a—n,
where
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dl;

a3 = (0%) e,
all . 2\—1
5 (0%) "g;cos (6; — 9),
g—f; = (0% ag;sin (0; — ¢),
O (1/2)(0?) + (1/2)(0?) 2
Jo?
and
hgg hga  hgs  hpe
- haﬁ’ haa ha¢> hoo?
i=1 hop Do Tgs  Tgo2
hazﬁ/ he2a h02¢ hy2 g2
Here
9%, _ ,
R AR
hgo = N, —ﬂ——( ) cos (0; — @)
ﬂa — 046/ — aﬁaa - g xz (2 )
/ 8211 27N —1 .
hgqg = h¢5/ = m = —(U ) Ty s111 (91 - (b)a
, 9%, 2\—2
h/gUQ = ha.Q/Bl == W — _(0 ) Ti€q,
hea = B = (o) fcos (6 — o)
(8767 - aa2 - 1 b
hap = hga = Gl = (0?)"He; — acos (0; — @)} sin (6; — ¢)
dado ’
h — B — ﬂ = —(0%)7%¢; cos (0; — )
aoc?2  — oc2a — 90do2 = o ; COS (U; 5
9%,

heo = v —(0*) ' [gi cos (6; — ¢) + afsin (6; — ¢)}*],
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0%l;

h¢0-2 = ha'2¢ = W = —<0'2)_206€Z' sin (01 — ¢>,
azli 1 2\—2 2\—3_2
h020'2 80'22 = 5(0- ) - (U ) € -
y-scheme with no-perturbation n x 1 vector wy = (0,...,0)":

vitw;, = z.f+acos(0;—¢)+e, i=1,...,n,

- 1 1 1
L(?],U)) = ;l“ li:—5111(271')—51110'2—5(0'2)718?,
A(’)’], U)) = (A1<77> wl)v s 7An(77a U}n)) )
92l;
0w, Li
2%,
: cos (0; —
Ailgwi) = [ 20 | = ()7 . (6: =9)
oo asin (6; — ¢)
8082252@- (0%) e
z-scheme with no-perturbation (2n) x 1 vector wo = (0,...,0)":

yi = Bo+ (a7 +wi)B" + acos(t; — ¢) + i,
x;k = (x1i7x2i)/a ﬁ* = (51a52)/7

w = (wi,. .., w), w=(wy,wy), i=1,...,n,
& 1 1 1
L(naw) = ;l“ lz = —5111(271') — 51110'2 — 5(02)718?,
A(nv w) = (Al(na U}T), sy An(nv w;kz)) )
22l 6*/
dﬁ;;lu,i (2 +w;)B" —eils
Ai(mwy) = [ P00 =0T B cos (6 — ¢)
00w o
o1, asin (60, — ¢)
020w’
050w B (o) e
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where I, denotes the 2 x 2 identity matrix.

f-scheme with no-perturbation n x 1 vector wy = (0,...,0)":

yi = x.f+acos(O;+w;—¢)+e, i=1,...,n,
L = li, li=—=In(27) - =Ino? — =(c?)'e?
) = 3 n(2r) - Lno? - Lot

A(n7w) = (Al(nawl)v"-vAn(T/awn))v
A ) = 9%l; 9%l; 9%, 9%l;
W)=\ 580w, dadw; 96dw; dodw;
z;asin (0; + w; — @)
—{e; —acos (0; + w; — @)} sin (0; + w; — @)

— (0_2)71
ag; cos (0; +w; — ¢) + a*{sin (0; + w; — ¢)}?
(0?)Laeg; sin (0; + w; — @)
o?-scheme with no-perturbation n x 1 vector wy = (1,...,1)":

yi = x.f+acos(0;—¢)+e, i=1,...,n,

= 1 1 1 1
L(n,w) = ;li, l; = ) In(27) — 5 Ino? + 5 Inw; — 5(02/wi)’15?,
A(n? w) = (Al(n7 wl)’ M) An(,r/’ wn)) b
2l
980w, Li
aaz)ali : 2\—1 cos (0; — ¢)
Ai(n,w;) = gzll,ul = (o) &
FET asin (6; — ¢)
27. _
5% (1/2)(0%) "<,
l;-scheme with no-perturbation n x 1 vector wy = (1,...,1)":

yi = xf+acos(0;—@)+e, i=1,...,n,

. 1 1 1
L(?],U)) = le, ll = W; {—§1H<27T) — §1HO'2 — 5(0’2)1812} s

i=1
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A(n,w) = (Al(n7w1>7"'7An(nvwn))a

S
Ai(n,w) = 82‘:5?“1' — (0?)"! €i Co's (6; — @)

260w, ag;sin (6; — @)

R —(1/2) + (1/2)(0?) e

As an illustration, we use the original data studied with the SU models. The
data consist of the measurements of the solar radiation for a period of six days
and half-hourly record starting from 9:00 am to 5:30 pm. This period was chosen
due to the uninterrupted weather condition which provided sunshine throughout.
Same as SenGupta and Ugwuowo (2006) we associate these hours with the angles
0°,20°,40°, . ..,340°, respectively, which correspond to #;. Thus, the group 340° -
360° corresponds to 5:30 pm - 6:00 pm, and 6:00 pm and 9:00 am are interpreted
as the same beginning/end point on the circle. The interval [6:00 pm, 9:00 am) is
irrelevant for us and is treated as a vacuous one. The other predictor variables x;
and x9; are ambient temperature, i.e. the atmospheric temperature observed at
the experimental site, and control temperature to predict the absorber tempera-
ture y;, i.e. the temperature of the water, in a well-constructed Thermosyphon
solar water heater. The list plot of the solar energy data is given in Figure
1, followed by our MLE’s as well as the values of Maximized Log-Likelihood
(MLL), Akaike’s Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) in Table 1. The cosine-cosine model is selected as an optimal model
among the three in the sense of minimum AIC, while the simple cosine model is
selected in the sense of minimum BIC. However, it can be observed that there are
not so much differences about the AIC and BIC values between the cosine-cosine
and cosine models.

We only give the results of influential diagnostics from the Cos-cos model. We

do not deal with the #-scheme in this example because #; indicate angles trans-
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Figure 1: Plot of the solar energy data.

Table 1: MLE’s, the values of Maximized Log-Likelihood (MLL), Akaike’s Infor-
mation Criterion (AIC) and the Bayesian Information Criterion (BIC).

é ) o 62 MLL AIC BIC
618 0038 2670 -330.6 673.2 689.3

0.00 26.70 -330.6 675.2 694.0
-329.2 6724 691.3

Model Bo B B

Cos -156.53 5.20 1.44
Cos-sin  -156.53 5.20 1.44 -6.18 0.038
Cos-cos -153.21 5.23 1.32 -7.03 0.018 -0.37 26.00

formed from hours. Moreover, note that the perturbation in the z-scheme for the
cosine-cosine model is y; = Bo+(x1;+wy;) f1+x9; fo+acos {6; — ¢ + v cos (6; — @)}
+¢; because xy; denotes control temperature. From the plots we see that the ele-

ments corresponding to observations 7 and 8 appear to be standing out from the

rest, and so these observations are possibly most influential.
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Figure 2: Cosine-cosine model. (a) Index plot of absorber temperatures (y; o) and
their prediction (g; ®), (b) Index plot of |y; — 3], (¢) Q-Q plot of the standardized
residuals to the empirical distribution on the horizontal axis.
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Figure 3: Cosine-cosine model. Index plots of the elements of . for (a) y-
scheme, (b) z-scheme, (c) o?-scheme, and (d) /;-scheme.
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