慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Elementary proof of some theorems on strongly q－additive or q－multiplicative functions
Sub Title	
Author	Uchida，Yoshihisa
Publisher	慶應義塾大学理工学部
Publication year	1997
Jtitle	Keio Science and Technology Reports Vol．50，No．1（1997．），p．1－9
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00500001－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Elementary proof of some theorems on strongly q-additive or q-multiplicative functions

by

Yoshihisa Uchida
Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 Japan

(Received March 17,1997)

1. Introduction

Let q be an integer greater than 1 . Let $a(n)$ be a complex-valued arithmetical function. The function $a(n)$ is said to be strongly q-additive if

$$
a(n)=\sum_{i \geq 0} a\left(b_{i}\right)
$$

for any positive integer $n=\sum_{i \geq 0} b_{i} q^{i}$ with $b_{i} \in\{0,1, \ldots, q-1\}$. We define $a(0)=0$. $a(n)$ is said to be strongly q-multiplicative if

$$
a(n)=\prod_{i \geq 0} a\left(b_{i}\right)
$$

for any positive integer n. We define $a(0)=1$.The notion of q-additive functions and q-multiplicative functions were introduced by Gel'fond [2] and Delange [1] respectively. Recently, Toshimitsu [5] proved the following theorems on these arithmetical functions with distinct basis p and q.

Theorem 1 (Toshimitsu[5;Theorem 3]). Let p and q be integers greater than 1 such that $\log p / \log q$ is irrational. Let $a(n)$ be strongly p-additive and also strongly q-additive function. Then $a(n)$ is identically zero.

Theorem 2 (Toshimitsu[5;Theorem 4]). Let p and q be integers greater than 1 such that $\log p / \log q$ is irrational. Let $a(n)$ be strongly p-multiplicative and also
strongly q-multiplicative function. Then $a(n)(n \geq 1)$ is identically zero or

$$
a(n)=\gamma^{n}
$$

for all $n \geq 1$ and for some γ with $\gamma^{p-1}=\gamma^{q-1}=1$.

His proofs based on the deep results in the transcendence theory of Mahler functions (cf. Nishioka [3], [4]). The purpose of this note is to give direct proofs of these theorems, which are rather involved, however completely elementary.

2. Proof of Theorem 1

Let p, q, and $a(n)$ be as in Theorem 1. We may assume $p<q$ and write

$$
\begin{equation*}
q=d p+r, \quad r \in\{0,1, \ldots, p-1\} . \tag{1}
\end{equation*}
$$

Then we have the following formulas.

Lemma 1.

$$
\begin{align*}
a(d) & =a(1)-a(r), \tag{2}\\
a(d+1) & =2 a(1)-a(r) . \tag{3}
\end{align*}
$$

Proof. (2) is obvious. We prove only (3). Since $a(n)$ is strongly p and q-additive, we have by (1)

$$
a(q+p)=a((d+1) p+r)=a(d+1)+a(r)
$$

and so

$$
\begin{aligned}
a(d+1) & =a(q+p)-a(r) \\
& =a(q)+a(p)-a(r)=2 a(1)-a(r)
\end{aligned}
$$

Lemma 2. Assume that $r \neq 0$. Let k and l be nonnegative integers such that $0 \leq k p-l r<p$. Then

$$
a(k p-l r)=k a(1)-l a(r)
$$

Proof. This is true if $k+l=0$. Let $k+l>0$ and suppose that

$$
\begin{equation*}
a\left(k^{\prime} p-l^{\prime} r\right)=k^{\prime} a(1)-l^{\prime} a(r) \tag{4}
\end{equation*}
$$

for any nonnegative integers k^{\prime}, l^{\prime} such that $k^{\prime}+l^{\prime}<k+l$ and $0 \leq k^{\prime} p-l^{\prime} r<p$. Since $0 \leq k p-l r<p$, we have

$$
r \leq k p-(l-1) r<p+r .
$$

First we consider the case in which k, l satisfy $p \leq k p-(l-1) r<p+r$. Then $0 \leq(k-1) p-(l-1) r<r$, and so we get

$$
a(q+k p-l r)=a((d+1) p+(k-1) p-(l-1) r)
$$

using (1). Since $a(n)$ is strongly p and q-additive, we have

$$
\begin{aligned}
a(1)+a(k p-l r) & =a(d+1)+a((k-1) p-(l-1) r) \\
& =2 a(1)-a(r)+(k-1) a(1)-(l-1) a(r)
\end{aligned}
$$

by (3) and (4). Therefore we obtain

$$
a(k p-l r)=k a(1)-l a(r) .
$$

Next we assume $r \leq k p-(l-1) r<p$. Then we have

$$
\begin{aligned}
a(q+k p-l r) & =a(d p+k p-(l-1) r) \\
& =a(d)+a(k p-(l-1) r) \\
& =a(1)+k a(1)-l a(r)
\end{aligned}
$$

by (2) and (4). Hence we get

$$
a(k p-l r)=k a(1)-l a(r)
$$

since $a(q+k p-l r)=a(1)+a(k p-l r)$.

Lemma 3. If $r \neq 0$, then $a(n)=n a(1)(1 \leq n \leq d)$.

Proof. Since $q>n p$, we have by strongly p and q-additivity

$$
a(1)+a(n)=a(q+n p)=a((d+n) p+r)=a((d+n) p)+a(r)
$$

and so

$$
a(n)=a((d+n) p)-a(1)+a(r)
$$

Y.Uchida

By (1) and Lemma 2, we have

$$
\begin{aligned}
a((d+n) p) & :=a(d p+r+(n-1) p+p-r) \\
& =a(1)+a((n-1) p)+a(p-r) \\
& =a(n-1)+2 a(1)-a(r) .
\end{aligned}
$$

Hence we get

$$
a(n)=a(n-1)+a(1)=\cdots=n a(1) .
$$

Lemma 4. If $r \neq 0$, then $a(n)=0(n \geq 0)$.

Proof. First we show that

$$
\begin{equation*}
a(n)=n a(1) \quad(n \geq 0) \tag{5}
\end{equation*}
$$

by induction on n. This holds for $n \leq d$, by Lemma 3 . Let $n>d$ and assume that $a(k)=k a(1)$ for $0 \leq k<n$. Let k and l be integers such that $0 \leq n p-k q<q$ and $0 \leq n p-k q-l p<p$. Since $0 \leq k, l<n$, we have by strongly p and q-additivity

$$
\begin{aligned}
a(n)=a(n p) & =a(k q+(n p-k q)) \\
& =a(k)+a(l p+(n p-k q-l p)) \\
& =a(k)+a(l)+a((n-l-d k) p-k r) \\
& =(k+l) a(1)+(n-l-d k) a(1)-k a(r)
\end{aligned}
$$

by Lemma 2 and the induction hypothesis, and so

$$
\begin{aligned}
a(n) & =n a(1)+k a(1)-k(d a(1)+a(r)) \\
& =n a(1)+k a(1)-k(a(d)+a(r))=n a(1)
\end{aligned}
$$

by (1), (2) and Lemma 3. Hence (5) is proved.
Putting $n=p$ in (5), we have $a(1)=a(p)=p a(1)$, so that $a(1)=0$. Therefore $a(n)=0(n \geq 0)$ again by (5).

Proof of Theorem 1. Since p and q are greater than 1 and $\log p / \log q$ is irrational, we have $p+q \geq 5$. If $p+q=5$, then $p=2, q=3$, and so $r=1$ in (1). Hence the theorem follows from Lemma 4 in this case. Assume that $p+q>5$. We write q as in (1). In view of Lemma 4 we may assume $r=0$, so that $q=d p$ with
$d \geq 2$. Let $n=\sum_{i \geq 0} b_{i} d^{i}$ be d-adic expansion of an integer $n \geq 1$. Then we have

$$
\begin{aligned}
a(n) & =a\left(\sum_{i \geq 0} b_{i} d^{i}\right)=a\left(\sum_{i \geq 0} b_{i} d^{i} p\right)=a\left(\sum_{i \geq 1} b_{i} d^{i-1} q+b_{0} p\right) \\
& =a\left(\sum_{i \geq 1} b_{i} d^{i-1}\right)+a\left(b_{0}\right)=\cdots=\sum_{i \geq 0} a\left(b_{i}\right)
\end{aligned}
$$

Hence $a(n)$ is strongly d-additive function with $\log d / \log p$ irrational, since

$$
\frac{\log q}{\log p}=\frac{\log d}{\log p}+1
$$

Noting $d+p<p+q$, we obtain $a(n)=0(n \geq 1)$, and the proof is completed.

3. Proof of Theorem 2

Let p, q, and $a(n)$ be as in Theorem 2. We may assume $p<q$.

Lemma 5. If $a(n)(n \geq 1)$ is not identically zero, then $a(1) \neq 0$.

Proof. Let N be the smallest positive integer n such that $a(n) \neq 0$. We have to prove that $N=1$. Since $a(n)$ is strongly p-multiplicative, we have $1 \leq N<p$. First we note that there exists an integer $k \geq 1$ such that

$$
\begin{equation*}
N q^{k}=\sum_{i=l_{k}}^{m_{k}} b_{i} p^{i} \quad\left(b_{i} \in\{0,1, \cdots, p-1\}, \quad b_{l_{k}} \neq 0, b_{m_{k}} \neq 0, m_{k}>l_{k}\right) \tag{6}
\end{equation*}
$$

Indeed, if

$$
N q^{k}=b_{m_{k}} p^{m_{k}}
$$

for any $k \geq 1$, there exist two integers $k_{1}, k_{2}\left(1 \leq k_{1}<k_{2}\right)$ and an integer b $(1 \leq b<p)$ such that

$$
N q^{k_{2}}=b p^{m_{k_{i}}} \quad(i=1,2)
$$

so that

$$
q^{k_{2}-k_{1}}=p^{m_{k_{2}}-m_{k_{1}}}
$$

which contradicts the irrationality of $\log p / \log q$.

Y.Uchida

Since $a\left(N q^{k}\right)=a(N) \neq 0$, we have

$$
\begin{equation*}
a\left(b_{i}\right) \neq 0 \quad\left(l_{k} \leq i \leq m_{k}\right) \tag{7}
\end{equation*}
$$

In particular, $b_{m_{k}} \geq N$. Hence

$$
\begin{equation*}
q^{k}>p^{m_{k}} \tag{8}
\end{equation*}
$$

In what follows, we put $l=l_{k}$ in (6) simply. We show that

$$
\begin{equation*}
b_{i} \leq p-N \quad\left(l \leq i \leq m_{k}-1\right) \tag{9}
\end{equation*}
$$

We assume, to the contrary, that there exists $j\left(l \leq j \leq m_{k}-1\right)$ such that $b_{j}>p-N$. We put $n=b_{j}+N-p$, so that $b_{j}+N=n+p$ and $0<n<N$. Then we have by strongly p and q-multiplicativity

$$
\begin{aligned}
a(N)^{2}=a\left(N q^{k}+N p^{j}\right) & =a\left(\sum_{i=l}^{j-1} b_{i} p^{i}+(n+p) p^{j}+\sum_{i=j+1}^{m_{k}} b_{i} p^{i}\right) \\
& =a\left(\sum_{i=l}^{j-1} b_{i} p^{i}\right) a(n) a\left(\sum_{i=j+1}^{m_{k}} b_{i} p^{i}+p^{j+1}\right)=0
\end{aligned}
$$

which contradicts $a(N) \neq 0$.
Now we prove $N=1$. Assume that $N>1$. Let g be an integer such that $(g-1) b_{l}<p \leq g b_{l}$. Then we have

$$
\begin{equation*}
a\left((g-1) b_{l}\right) \neq 0 \tag{10}
\end{equation*}
$$

Indeed, we can show that $a\left(h b_{l}\right) \neq 0$ for all $h=1, \ldots, g-1$ by induction on h. This holds for $h=1$ by (7). Suppose that $a\left((h-1) b_{l}\right) \neq 0$ for some $h \geq 2$. Then

$$
a\left(N q^{k}+(h-1) b_{l} p^{l}\right)=a\left(h b_{l} p^{l}+\sum_{i=l+1}^{m_{k}} b_{i} p^{i}\right)
$$

and so

$$
0 \neq a(N) a\left((h-1) b_{l}\right)=a\left(h b_{l}\right) \prod_{i=l+1}^{m_{k}} a\left(b_{i}\right)
$$

Hence we get $a\left(h b_{l}\right) \neq 0$ by (7), and (10) follows.
We note that if $l+1<m_{k}$, then $b_{l+1}+1 \leq p-1$ by (9). We put $n=g b_{l}-p$, so that $g b_{l}=n+p$ and $0 \leq n<p$ by definition of g. Then we have

$$
a\left(N q^{k}+(g-1) b_{l} p^{l}\right)=a\left(n p^{l}+\left(b_{l+1}+1\right) p^{l+1}+\sum_{i=l+2}^{m_{k}} b_{i} p^{i}\right)
$$

Some theorems on strongly q-additive or q-multiplicative functions
and so by (8) and (10)

$$
0 \neq a(N) a\left((g-1) b_{l}\right)=a\left(n p^{l}\right) a\left(b_{l+1}+1\right) \prod_{i=l+2}^{m_{k}} a\left(b_{i} p^{i}\right)
$$

Hence we get

$$
a\left(b_{l+1}+1\right) \neq 0
$$

At the same time we have

$$
a\left(N q^{k}+p^{l+1}\right)=a\left(b_{l} p^{l}+\left(b_{l+1}+1\right) p^{l+1}+\sum_{i=l+2}^{m_{k}} b_{i} p^{i}\right)
$$

so that by (8)

$$
a(N) a(1)=a\left(b_{l} p^{l}\right) a\left(b_{l+1}+1\right) \prod_{i=l+2}^{m_{k}} a\left(b_{i} p^{i}\right)
$$

noting (8). The left-hand side above is zero, since we have assumed $N>1$ and so $a(1)=0$. Therefore we get $a\left(b_{l+1}+1\right)=0$ by (7), a contradiction. The proof of Lemma 5 is now completed.

We write

$$
q=d p+r, \quad r \in\{0,1, \ldots, p-1\} .
$$

To prove the theorem, we may assume that $a(n)(n \geq 1)$ is not identically zero. Then $a(1) \neq 0$ by Lemma 5 , and so

$$
a(r) \neq 0 .
$$

We have the following formulas.
Lemma 6. $a(1)=a(d) a(r), \quad a(d+1)=\frac{a(1)^{2}}{a(r)}$.
Lemma 7. Assume that $r \neq 0$. Let k and l be nonnegative integers such that $0 \leq k p-l r<p$. Then

$$
a(k p-l r)=\frac{a(1)^{k}}{a(r)^{l}}
$$

Y.Uchida

Lemma 8. If $r \neq 0$, then $a(n)=a(1)^{n}(1 \leq n \leq d)$.

Lemma 9. If $r \neq 0$, then

$$
a(n)=\gamma^{n} \quad(n \geq 1)
$$

where $\gamma^{p-1}=\gamma^{q-1}=1$.

These lemmas can be proved by transforming the arguments in the preceding section in terms of q-multiplicativity. So we give only the proof of Lemma 9.

Proof of Lemma 9. First we show that

$$
\begin{equation*}
a(n)=a(1)^{n} \quad(n \geq 1) \tag{11}
\end{equation*}
$$

by induction on n. This holds for $n \leq d$, by Lemma 8 . Let $n>d$ and assume that $a(k)=a(1)^{k}$ for $1 \leq k<n$. Let k and l be integers such that $0 \leq n p-k q<q$ and $0 \leq n p-k q-l p<p$. Since $0 \leq k, l<n$, we have by strongly p and q-multiplicativity

$$
\begin{aligned}
a(n)=a(n p) & =a(k q+(n p-k q)) \\
& =a(k) a(l p+(n p-k q-l p)) \\
& =a(k) a(l) a((n-l-d k) p-k r) \\
& =a(1)^{k+l} \frac{a(1)^{n-l-d k}}{a(r)^{k}}
\end{aligned}
$$

by Lemma 7 and the induction hypothesis, and so

$$
a(n)=\frac{a(1)^{n} a(1)^{k}}{\left(a(1)^{d} a(r)\right)^{k}}=\frac{a(1)^{n} a(1)^{k}}{(a(d) a(r))^{k}}=a(1)^{n}
$$

by Lemma 6 and 8 . Hence (11) is proved.
Putting $n=p$ in (11), we have $a(1)=a(p)=a(1)^{p}$, so that $a(1)=0$ or $a(1)^{p-1}=1$. Similarly, we have $a(1)=0$ or $a(1)^{q-1}=1$ putting $n=q$. Since $a(1) \neq 0$, we have by (11)

$$
a(n)=\gamma^{n} \quad(n \geq 1)
$$

for some γ with $\gamma^{p-1}=\gamma^{q-1}=1$, and the lemma is proved.

Proof of Theorem 2. By induction on $p+q$. If $r \neq 0$, then Theorem 2 follows by Lemma 5 and 9 . We assume $r=0$, so that $q=d p$ with $d \geq 2$ since $p<q$. Let $n=\sum_{i \geq 0} b_{i} d^{i}$ be d-adic expansion of an integer $n \geq 1$. Then we have

$$
\begin{aligned}
a(n) & =a\left(\sum_{i \geq 0} b_{i} d^{i}\right)=a\left(\sum_{i \geq 0} b_{i} d^{i} p\right)=a\left(\sum_{i \geq 1} b_{i} d^{i-1} q+b_{0} p\right) \\
& =a\left(\sum_{i \geq 1} b_{i} d^{i-1}\right) a\left(b_{0}\right)=\cdots=\prod_{i \geq 0} a\left(b_{i}\right)
\end{aligned}
$$

Hence $a(n)$ is a strongly d-multiplicative function, where $\log d / \log p$ is irrational, since

$$
\frac{\log q}{\log p}=\frac{\log d}{\log p}+1
$$

Noting $d+p<p+q$, we have, by induction hypothesis, $a(n)=0(n \geq 1)$ or $a(n)=\gamma^{n}$ for some γ with $\gamma^{d-1}=\gamma^{p-1}=1$. We get also $\gamma^{q-1}=1$, since

$$
\gamma^{q}=\gamma^{d p}=\gamma
$$

The proof is completed.

Acknowledgements. The author is grateful to Professor Iekata Shiokawa for his helpful conversations and advice.

References

[1] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21(1972), 285-298.
[2] A. O. Gelfond, Sur les nombres qui ont des proprietes additives et multiplicatives donnees, Acta Arith. 13(1967/1968), 259-265.
[3] Ku. Nishioka, Algebraic independence by Mahler's method and S-unit equations, Compositio Mathematica, 92(1994), 87-110.
[4] __, Mahler Functions and Transcendence,Lecture Notes in Math., vol.1631,Springer, 1996.
[5] T. Toshimitsu, Strongly q-additive functions and algebraic independence, to appear in Tokyo J. Math..

