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1. Introduction 

Let q be an integer greater than 1. Let a(n) be a complex-valued arithmetical 

function. The function a(n) is said to be strongly q-additive if 

a(n) = l)(bi) 
i~O 

for any positive integer n = ~)iqi with bi E {O, 1, ... , q - l}. We define a(O) = 0. 
i~O 

a( n) is said to be strongly q-multiplicative if 

a(n) = IT a(bi) 
i~O 

for any positive integer n. We define a(O) = 1.The notion of q-additive functions and 

q-multiplicative functions were introduced by Gel'fond [2] and Delange [1] respec

tively. Recently, Toshimitsu [5] proved the following theorems on these arithmetical 

functions with distinct basis p and q. 

Theorem 1 (Toshimitsu[5;Theorem 3]). Let p and q be integers greater than 1 

such that logp/ logq is irrational. Let a(n) be strongly p-additive and also strongly 

q-additive function. Then a(n) is identically zero. 

Theorem 2 (Toshimitsu[5;Theorem 4]). Let p and q be integers greater than 1 

such that logp/ logq is irrational. Let a(n) be strongly p-multiplicative and also 
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strongly q-multiplicative function. Then a(n) (n 2: 1) is identically zero or 

a(n) = rn 

for all n 2: 1 and for some r with ,p-l = ,q-l = 1. 

His proofs based on the deep results in the transcendence theory of Mahler func

tions (cf. Nishioka [3], [4]). The purpose of this note is to give direct proofs of these 

theorems, which are rather involved, however completely elementary. 

2. Proof of Theorem 1 

Let p, q, and a(n) be as in Theorem 1. We may assume p < q and write 

q = dp + r, rE {0,1, ... ,p-1}. 

Then we have the following formulas. 

Lemma 1. 

a(d) = a(l) - a(r), 

a(d + 1) = 2a(l) - a(r). 

(1) 

(2) 

(3) 

Proof. (2) is obvious. We prove only (3). Since a(n) is strongly p and q-additive, 

we have by (1) 

a(q + p) = a((d + l)p + r) = a(d + 1) + a(r), 

and so 

a(d + 1) = a(q + p) - a(r) 

= a(q) + a(p) - a(r) = 2a(l) - a(r). 

Lemma 2. Assume that r f; 0. Let k and Z be nonnegative integers such that 

0 ~ kp - Zr < p. Then 

a(kp - Zr)= ka(l) - Za(r). 

Proof. This is true if k + Z = 0. Let k + Z > 0 and suppose that 

a(k'p - l'r) = k'a(l) - l'a(r) (4) 
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for any nonnegative integers k', l' such that k' + l' < k + l and 0 ~ k' p - l' r < p. 

Since 0 ~ kp - lr < p, we have 

r ~ kp-(l- l)r <p+r. 

First we consider the case in which k, l satisfy p ~ kp - (l - l)r < p + r. Then 

0 ~ (k - l)p - (l - l)r < r, and so we get 

a(q + kp - lr) == a((d + l)p + (k - l)p - (l - l)r), 

using (1). Since a(n) is strongly p and q-additive, we have 

a(l) + a(kp - Zr) = a(d + 1) + a((k - l)p - (l - l)r) 

= 2a(l) - a(r) + (k - l)a(l) - (l - l)a(r) 

by (3) and (4). Therefore we obtain 

a(kp - lr) = ka(l) - la(r). 

Next we assumer~ kp - (l - l)r < p. Then we have 

a(q + kp - lr) = a(dp + kp - (l - l)r) 

= a(d) + a(kp - (l - l)r) 

= a(l) + ka(l) - la(r) 

by (2) and ( 4). Hence we get 

a(kp - lr) = ka(l) - la(r), 

since a(q + kp - lr) = a(l) + a(kp - lr). 

Lemma 3. If r-=/:- 0, then a(n) = na(l) (1 ~ n ~ d). 

Proof. Since q > np, we have by strongly p and q-additivity 

a(l) + a(n) = a(q + np) = a((d + n)p + r) = a((d + n)p) + a(r), 

and so 

a(n) = a((d + n)p) - a(l) + a(r). 
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By (1) and Lemma 2, we have 

Hence we get 

a((d + n)p) == a(dp + r + (n - l)p + p - r) 

== a(l) + a((n - l)p) + a(p - r) 

== a(n - 1) + 2a(l) - a(r). 

a(n) = a(n - 1) + a(l) = · · · = na(l). 

Lemma 4. If r -=J:. 0, then a(n) = 0 (n 2:: 0). 

Proof. First we show that 

a(n) = na(l) (n 2:: 0) (5) 

by induction on n. This holds for n ~ d, by Lemma 3. Let n > d and assume that 

a(k) = ka(l) for 0 ~ k < n. Let k and l be integers such that 0 ~ np - kq < q and 

0 ~ np - kq - lp < p. Since 0 ~ k, l < n, we have by strongly p and q-additivity 

a(n) = a(np) = a(kq + (np - kq)) 

= a(k) + a(lp + (np - kq - lp)) 

= a(k) + a(l) + a((n - l - dk)p - kr) 

= (k + l)a(l) + (n - l - dk)a(l) - ka(r) 

by Lemma 2 and the induction hypothesis, and so 

a(n) = na(l) + ka(l) - k(da(l) + a(r)) 

= na(l) + ka(l) - k(a(d) + a(r)) = na(l) 

by (1), (2) and Lemma 3. Hence (5) is proved. 

Putting n =pin (5), we have a(l) = a(p) = pa(l), so that a(l) = 0. Therefore 

a(n) = 0 (n 2:: 0) again by (5). 

Proof of Theorem 1. Since p and q are greater than 1 and log p / log q is 

irrational, we have p + q 2:: 5. If p + q = 5, then p = 2, q = 3, and so r = 1 in (1). 

Hence the theorem follows from Lemma 4 in this case. Assume that p + q > 5. We 

write q as in (1). In view of Lemma 4 we may assumer = 0, so that q = dp with 
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d ~ 2. Let n = L bidi be d-adic expansion of an integer n ~ 1. Then we have 
i20 

Hence a(n) is strongly d-additive function with logd/ logp irrational, since 

logq = logd + 1. 
logp logp 

Noting d + p < p + q, we obtain a(n) = 0 (n ~ 1), and the proof is completed. 

3. Proof of Theorem 2 

Let p, q, and a(n) be as in Theorem 2. We may assume p < q. 

Lemma 5. If a(n) (n ~ 1) is not identically zero, then a(l) =f 0. 

Proof. Let N be the smallest positive integer n such that a( n) =f 0. We have 

to prove that N = 1. Since a(n) is strongly p-multiplicative, we have 1 ~ N < p. 

First we note that there exists an integer k ~ 1 such that 

ffik 

Nl = L bipi (bi E {O~ 1, · · · ,p- 1}, bzk =f 0, bmk =f 0, mk > lk). (6) 
i=lk 

Indeed, if 

for any k ~ 1, there exist two integers k1 : k2 (1 < k1 < k2 ) and an integer b 

(1 ~ b < p) such that 

(i=l,2), 

so that 

which contradicts the irrationality of log p /log q. 
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Since a(N qk) = a(N) i 0, we have 

(7) 

In particular, bmk 2: N. Hence 

(8) 

In what follows, we put l = lk in (6) simply. We show that 

(l ~ i ~ mk - 1). (9) 

We assume, to the contrary, that there exists j ( l ~ j ~ mk -1) such that bi > p- N. 

We put n = bj + N - p, so that bj + N = n + p and 0 < n < N. Then we have by 

strongly p and q-multiplicativity 

j-1 mk 

a(N) 2 = a(Nqk + Npi) = a(L bipi + (n + p)fl + Lbipi) 
i=l 
j-1 mk 

= a(L bipi)a(n)a( L bipi + pi+l) = 0, 
i=l 

which contradicts a(N) i 0. 

Now we prove N = 1. Assume that N > l. Let g be an integer such that 

(g - l)bl < p ~ gbl. Then we have 

a((g - l)bi) i 0. (10) 

Indeed, we can show that a( hbi) i 0 for all h = 1, ... , g - 1 by induction on h. 

This holds for h = 1 by (7). Suppose that a((h - l)bi) i 0 for some h 2: 2. Then 

and so 

mk 

a(Nqk + (h - I)blp1) = a(hb1p1 + L bipi), 
i=l+l 

mk 

0 i a(N)a((h - l)bi) = a(hbi) II a(bi)· 
i=l+l 

Hence we get a(hbi) i 0 by (7), and (10) follows. 

We note that if l + 1 < mk, then b1+1+1 ~ p-1 by (9). We put n = gbl -p, so 

that gbl = n + p and 0 ~ n < p by definition of g. Then we have 

ffik 

a(N qk + (g - I)bipl) = a(npl + (b1+1 + l)pl+l + L biPt 
i=l+2 
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and so by (8) and (10) 

ffik 

0 f:- a(N)a((g - l)bl) = a(npl)a(bl+l + 1) II a(bipi). 
i=l+2 

Hence we get 

a(bl+l + 1) f:- 0. 

At the same time we have 

ffik 

a(Nqk + pl+l) = a(blpl + (bl+l + l)pl+l + L biPt 
i=l+2 

so that by (8) 

ffik 

a(N)a(l) = a(bzpl)a(bz+i + 1) II a(bipi), 
i=l+2 

noting (8). The left-hand side above is zero, since we have assumed N > 1 and so 

a(l) = 0. Therefore we get a(bz+i + 1) = 0 by (7), a contradiction. The proof of 

Lemma 5 is now completed. 

We write 

q = dp+r, rE {0,1, ... ,p-1}. 

To prove the theorem, we may assume that a(n) (n ~ 1) is not identically zero. 

Then a(l) f:- 0 by Lemma 5, and so 

a(r) f:- 0. 

We have the following formulas. 

a(1) 2 

Lemma 6. a(l) = a(d)a(r), a(d + 1) = a(r) · 

Lemma 7. Assume that r f:- 0. Let k and l be nonnegative integers such that 

0:::; kp- lr < p. Then 

a(l)k 
a(kp - lr) = a(r)l . 
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Lemma 8. If r -::f 0, then a(n) = a(l)n (1 :::; n :::; d). 

Lemma 9. If r "# 0, then 

a(n) = 'Yn (n ~ 1), 

where 'Yp-l = 'Yq-l = 1. 

These lemmas can be proved by transforming the arguments in the preceding 

section in terms of q-multiplicativity. So we give only the proof of Lemma 9. 

Proof of Lemma 9. First we show that 

a(n) = a(lt (n ~ 1) (11) 

by induction on n. This holds for n:::; d, by Lemma 8. Let n > d and assume that 

a(k) = a(l)k for 1 :::; k < n. Let k and l be integers such that 0 :::; np - kq < q and 

0 :::; np-kq-lp < p. Since 0 :::; k, l < n, we have by strongly p and q-multiplicativity 

a(n) = a(np) = a(kq + (np - kq)) 

= a(k)a(lp + (np - kq - lp)) 

= a(k)a(l)a((n - l - dk)p - kr) 

, a(l)n-l-dk 
= a(l)krl ---

a(r)k 

by Lemma 7 and the induction hypothesis, and so 

a(l)na(l)k a(l)na(l)k n 
a(n) = (a(l)da(r))k = (a(d)a(r))k = a(l) 

by Lemma 6 and 8. Hence (11) is proved. 

Putting n = p in (11), we have a(l) = a(p) = a(l)P, so that a(l) = 0 or 

a(l)P- 1 = 1. Similarly, we have a(l) = 0 or a(l)q-l = 1 putting n = q. Since 

a(l) -::f 0, we have by (11) 

(n ~ 1), 

for some 'Y with 'Yp-l = 'Yq-l = 1, and the lemma is proved. 

8 



Some theorems on strongly q-additive or q-multiplicative functions 

Proof of Theorem 2. By induction on p + q. If r ~ 0, then Theorem 2 follows 

by Lemma 5 and 9. We assumer= 0, so that q = dp with d ~ 2 since p < q. Let 

n = L bidi be d-adic expansion of an integer n ~ 1. Then we have 
i2:0 

Hence a(n) is a strongly d-multiplicative function, where log d/ logp is irrational, 

since 

logq logd _ 
-=--+l. 
logp logp 

Noting d + p < p + q, we have, by induction hypothesis, a(n) = 0 (n > 1) or 

a(n) = 'Yn for some 'Y with 'Yd-l = 'Yp-l = 1. We get also 'Yq-l = 1, since 

The proof is completed. 
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