慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On discriminants and certain matrices
Sub Title	
Author	Komatsu，Kenzo
Publisher	慶鷹義塾大学理工学部
Publication year	1996
Jtitle	Keio Science and Technology Reports Vol．49，No．1（1996．）），p．1－11
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00490001－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

ON DISCRIMINANTS AND CERTAIN MATRICES

by
Kenzo Komatsu
Department of Mathematics, Faculty of Science and Technology
Keio University, Hiyoshi, Yokohama 223, Japan

(Received February 28, 1996)

0. Introduction

Let K be an algebraic number field of degree $n>1$, and let α be an integer of K. In this paper we discuss the $n \times n$ matrix $C(\alpha)=\left(\operatorname{Tr}\left(\alpha^{(i-1)+(j-1)}\right)\right)$ and its minors. Certain minors of $C(\alpha)$ are closely related to the ramification of primes in K / \boldsymbol{Q}. For example: If the greatest common divisor of all the minors of order $(n-1)$ of the matrix $C(\alpha)$ is equal to 1 , then the discriminant of K is square-free, and K has a very simple and explicit integral basis (§4). Therefore it seems important to study $C(\alpha)$ and its minors in relation to the discriminant and the ring of integers of K. In this paper we prove two theorems on the minors of order $(n-1)$, together with a few elementary results on the minors of order $i \leq n-1$.

1. The matrix $C(\alpha)$ and its minors of order $n-1$.

The main purpose of the present paper is to prove the following theorem.
Theorem 1. Let K be an algebraic number field of degree $n>1$. Let p be a prime number, and let $k \in \boldsymbol{Z}, k>0$. Suppose that the discriminant of K is divisible by $p^{2 k}$. Then, for any integer α of K, every minor of order $(n-1)$ of the $n \times n$ matrix

$$
C(\alpha)=\left(\begin{array}{cccc}
\operatorname{Tr}(1) & \operatorname{Tr}(\alpha) & \ldots & \operatorname{Tr}\left(\alpha^{n-1}\right) \\
\operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) & \ldots & \operatorname{Tr}\left(\alpha^{n}\right) \\
& \ldots & & \\
\operatorname{Tr}\left(\alpha^{n-1}\right) & \operatorname{Tr}\left(\alpha^{n}\right) & \ldots & \operatorname{Tr}\left(\alpha^{2 n-2}\right)
\end{array}\right)
$$

is divisible by p^{k}, where $\operatorname{Tr}(\xi)$ means the trace of ξ in K / Q.
Proof. Let $\alpha^{(1)}, \cdots, \alpha^{(n)}$ denote the conjugates of α in K / Q. Then

$$
C(\alpha)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{1.1}\\
\alpha^{(1)} & \alpha^{(2)} & \ldots & \alpha^{(n)} \\
& \ldots & & \\
\alpha^{(1) n-1} & \alpha^{(2) n-1} & \ldots & \alpha^{(n) n-1}
\end{array}\right)\left(\begin{array}{cccc}
1 & \alpha^{(1)} & \ldots & \alpha^{(1) n-1} \\
1 & \alpha^{(2)} & \ldots & \alpha^{(2) n-1} \\
& & \ldots & \\
1 & \alpha^{(n)} & \ldots & \alpha^{(n) n-1}
\end{array}\right)
$$

Suppose first that $K \neq \boldsymbol{Q}(\alpha)$. If $n>2$, then

$$
\operatorname{rank}\left(\begin{array}{cccc}
1 & \alpha^{(1)} & \ldots & \alpha^{(1) n-1} \tag{1.2}\\
& & \ldots & \\
1 & \alpha^{(n)} & \ldots & \alpha^{(n) n-1}
\end{array}\right) \leq \frac{n}{2}<n-1
$$

By (1.1) we see that rank $C(\alpha)<n-1$; every minor of order $(n-1)$ is equal to 0 . If $n=2$, then $\alpha \in Z, k=1$ and $p=2$; every entry of the matrix $C(\alpha)$ is divisible by $p^{k}=2$. In any case, every minor of order $n-1$ of the matrix $C(\alpha)$ is divisible by p^{k}.

From now on, we assume that $K=\boldsymbol{Q}(\alpha)$. Let

$$
\begin{align*}
f(x) & =\left(x-\alpha^{(1)}\right)\left(x-\alpha^{(2)}\right) \cdots\left(x-\alpha^{(n)}\right) \tag{1.3}\\
& =x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
\end{align*}
$$

Then the coefficients a_{i} are rational integers, and $f(x)$ is irreducible over \boldsymbol{Q}.
$K=\boldsymbol{Q}(\alpha)$ is a vector space over \boldsymbol{Q}. We fix its basis:1, $\alpha, \ldots, \alpha^{n-1}$. An element $\xi=c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}\left(c_{i} \in \boldsymbol{Q}\right)$ of K is then represented by a column vector $\left(c_{0}, \ldots, c_{n-1}\right)^{T}$, where T denotes transposition. The linear transformation $\xi \longmapsto \alpha \xi$ is determined by the $n \times n$ matrix

$$
\begin{equation*}
A=\left(e_{2} e_{3} \ldots e_{n} a_{1}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{a}_{1}=\left(-a_{n},-a_{n-1}, \ldots,-a_{2},-a_{1}\right)^{T} \tag{1.5}
\end{equation*}
$$

e_{j} denotes the j-th column of the identity matrix I_{n}. We define a_{2}, a_{3}, \ldots inductively:

$$
\begin{equation*}
a_{j}=A a_{j-1} \tag{1.6}
\end{equation*}
$$

where $j \geq 2$. Clearly,

$$
\begin{equation*}
a_{1}=A e_{n} \tag{1.7}
\end{equation*}
$$

By induction on j, we see that

$$
\begin{equation*}
A^{j}=\left(e_{j+1} e_{j+2} \cdots e_{n} a_{1} \cdots a_{j}\right) \tag{1.8}
\end{equation*}
$$

for $j=1,2, \ldots, n-1$.
Now let

$$
\begin{equation*}
g(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in \boldsymbol{Q}[x] \tag{1.9}
\end{equation*}
$$

and let g_{j} denote the j-th column of the matrix $g(A)$:

$$
\begin{gather*}
g(A)=c_{0} I_{n}+c_{1} A+\cdots+c_{n-1} A^{n-1} \tag{1.10}\\
g(A)=\left(\boldsymbol{g}_{1} \boldsymbol{g}_{2} \cdots \boldsymbol{g}_{n}\right) \tag{1.11}
\end{gather*}
$$

Then

$$
\begin{equation*}
g_{j}=g(A) e_{j} \tag{1.12}
\end{equation*}
$$

for $j=1,2, \ldots, n$. The matrix $g(A)$ determines a linear transformation $\xi \longmapsto g(\alpha) \xi$. By (1.12) we see that the column vector \boldsymbol{g}_{j} represents $g(\alpha) \alpha^{j-1}$ in K. Since

On Discriminants and Certain Matrices

$$
g(\alpha) \alpha^{j-1}=\alpha^{j-1} g(\alpha),
$$

it follows from (1.9) that

$$
g_{j}=A^{j-1}\left(\begin{array}{c}
c_{0} \tag{1.13}\\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right)
$$

for $j=1,2, \ldots, n$. Hence

$$
\boldsymbol{g}_{1}=\left(\begin{array}{c}
c_{0} \tag{1.14}\\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right), \quad \boldsymbol{g}_{j}=A \boldsymbol{g}_{j-1}
$$

where $2 \leq j \leq n$.
The eigenvalues of the matrix A are the conjugates of α in $K / Q ; f(x)$ is the minimum polynomial of the matrix A. For any $h(x) \in \boldsymbol{Q}[x]$, the element $h(\alpha)$ of the field K is represented by the matrix $h(A)$:

$$
\begin{equation*}
h(\alpha) \longleftrightarrow h(A) . \tag{1.15}
\end{equation*}
$$

The norm $N(h(\alpha))$ of $h(\alpha)$ in K / Q is equal to the determinant of $h(A)$:

$$
\begin{equation*}
N(h(\alpha))=\operatorname{det} h(A) . \tag{1.16}
\end{equation*}
$$

Now let b_{j} denote the j-th column of the matrix $B=f^{\prime}(A)$:

$$
\begin{gather*}
B=f^{\prime}(A)=n A^{n-1}+(n-1) a_{1} A^{n-2}+\cdots+a_{n-1} I_{n}, \tag{1.17}\\
B=\left(\boldsymbol{b}_{1} \boldsymbol{b}_{2} \ldots \boldsymbol{b}_{n}\right) . \tag{1.18}
\end{gather*}
$$

Then it follows from (1.14) that

$$
\boldsymbol{b}_{1}=\left(\begin{array}{c}
a_{n-1} \tag{1.19}\\
2 a_{n-2} \\
\vdots \\
(n-1) a_{1} \\
n
\end{array}\right), \quad \boldsymbol{b}_{j}=A \boldsymbol{b}_{j-1}
$$

where $2 \leq j \leq n$.
Let D denote the norm of $\delta=f^{\prime}(\alpha)$ in K / Q :

$$
\begin{equation*}
\delta=f^{\prime}(\alpha), \quad D=N(\delta) \tag{1.20}
\end{equation*}
$$

Then (1.16) gives

$$
\begin{equation*}
D=\operatorname{det} B \tag{1.21}
\end{equation*}
$$

K. Komatsu

For $j=1,2, \ldots, n$, let

$$
\begin{equation*}
\alpha^{j-1} \delta=r_{1 j}+r_{2 j} \alpha+\cdots+r_{n j} \alpha^{n-1} \tag{1.22}
\end{equation*}
$$

where $r_{i j} \in \boldsymbol{Z}$. Then it follows from (1.15), (1.20) and (1.17) that

$$
\begin{equation*}
A^{j-1} B=r_{1 j} I_{n}+r_{2 j} A+\cdots+r_{n j} A^{n-1} \tag{1.23}
\end{equation*}
$$

for $j=1,2, \cdots, n$. By (1.19) we see that the first column of $A^{j-1} B$ is $A^{j-1} \boldsymbol{b}_{1}=\boldsymbol{b}_{j}$. Hence, by (1.14),

$$
\begin{equation*}
b_{j}=\left(r_{1 j}, r_{2 j}, \ldots, r_{n j}\right)^{T} \tag{1.24}
\end{equation*}
$$

Now let $b_{i j}$ denote the (i, j)-entry of the matrix B :

$$
B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \tag{1.25}\\
& \ldots & \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right)
$$

By (1.22) and (1.24) we see that

$$
\begin{equation*}
\alpha^{j-1} \delta=b_{1 j}+b_{2 j} \alpha+\cdots+b_{n j} \alpha^{n-1} \tag{1.26}
\end{equation*}
$$

for $j=1,2, \ldots, n$. Let $\tilde{b}_{i j}$ denote the cofactor of the (i, j)-entry $b_{i j}$, and let

$$
\begin{equation*}
\alpha^{j-1} \frac{D}{\delta}=s_{1 j}+s_{2 j} \alpha+\cdots+s_{n j} \alpha^{n-1} \tag{1.27}
\end{equation*}
$$

where $s_{i j} \in Z, 1 \leq j \leq n$. From (1.15), (1.17), (1.20) and (1.21), we obtain

$$
\begin{equation*}
(\operatorname{det} B) B^{-1} A^{j-1}=s_{1 j} I_{n}+s_{2 j} A+\cdots+s_{n j} A^{n-1} \tag{1.28}
\end{equation*}
$$

By (1.8) we see that the first column of the matrix A^{j-1} is \boldsymbol{e}_{j}. From (1.14) we obtain

$$
\begin{aligned}
\left(s_{1 j}, \ldots, s_{n j}\right)^{T} & =(\operatorname{det} B) B^{-1} e_{j} \\
& =\left(\tilde{b}_{j 1}, \ldots, \tilde{b}_{j n}\right)^{T}
\end{aligned}
$$

Hence (1.27) becomes

$$
\begin{equation*}
\alpha^{j-1} \frac{D}{\delta}=\tilde{b}_{j 1}+\tilde{b}_{j 2} \alpha+\cdots+\tilde{b}_{j n} \alpha^{n-1} \tag{1.29}
\end{equation*}
$$

for $j=1,2, \ldots, n$. In particular,

$$
\begin{equation*}
\frac{D}{\delta}=\tilde{b}_{11}+\tilde{b}_{12} \alpha+\cdots+\tilde{b}_{1 n} \alpha^{n-1} \tag{1.30}
\end{equation*}
$$

It follows from (1.29) and (1.30) that every cofactor $\tilde{b}_{i j}$ is divisible by the greatest common divisor of $\tilde{b}_{11}, \ldots, \tilde{b}_{1 n}$:

$$
\begin{equation*}
\left(\tilde{b}_{11}, \tilde{b}_{12}, \ldots, \tilde{b}_{1 n}\right) \mid \tilde{b}_{i j} \tag{1.31}
\end{equation*}
$$

On Discriminants and Certain Matrices

where $1 \leq i \leq n, 1 \leq j \leq n$.
Clearly, the column vector

$$
\begin{equation*}
\boldsymbol{x}=\left(1, \alpha, \ldots, \alpha^{n-1}\right)^{T} \tag{1.32}
\end{equation*}
$$

is an eigenvector of the matrix A^{T} corresponding to the eigenvalue α :

$$
\begin{equation*}
A^{T} \boldsymbol{x}=\alpha \boldsymbol{x}, \quad \boldsymbol{x} \neq \mathbf{o} \tag{1.33}
\end{equation*}
$$

It is easily seen that an eigenvector of the matrix A corresponding to the eigenvalue α is given by $M \boldsymbol{x}$:

$$
\begin{equation*}
A(M \boldsymbol{x})=\alpha M \boldsymbol{x} \tag{1.34}
\end{equation*}
$$

where

$$
M=\left(\begin{array}{ccccc}
a_{n-1} & a_{n-2} & \ldots & a_{1} & 1 \tag{1.35}\\
a_{n-2} & a_{n-3} & \ldots & 1 & \\
\vdots & \vdots & \therefore & & \\
a_{1} & 1 & & 0 & \\
1 & & &
\end{array}\right)
$$

Since $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over \boldsymbol{Q}, it follows from (1.33) and (1.34) that

$$
\begin{equation*}
A M=M A^{T} \tag{1.36}
\end{equation*}
$$

Hence

$$
\begin{equation*}
A^{j} M=M\left(A^{T}\right)^{j} \tag{1.37}
\end{equation*}
$$

for every $j \in \boldsymbol{Z}$.
Let c_{j} denote the j-th column of the matrix $C(\alpha)$:

$$
\begin{equation*}
C(\alpha)=\left(c_{1} c_{2} \ldots c_{n}\right) \tag{1.38}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
\boldsymbol{c}_{j}=\left(\operatorname{Tr}\left(\alpha^{j-1}\right), \operatorname{Tr}\left(\alpha^{j}\right), \ldots, \operatorname{Tr}\left(\alpha^{j+n-2}\right)\right)^{T} \tag{1.39}
\end{equation*}
$$

From (1.32), (1.33) and (1.39), we obtain

$$
\begin{equation*}
c_{j}=A^{T} c_{j-1} \tag{1.40}
\end{equation*}
$$

for $j=2,3, \ldots, n$. From (1.19),

$$
\boldsymbol{b}_{2}=\left(\begin{array}{c}
-n a_{n} \tag{1.41}\\
-(n-1) a_{n-1} \\
\vdots \\
-2 a_{2} \\
-a_{1}
\end{array}\right)
$$

Newton's formula gives (1.42)

$$
M c_{2}=b_{2}
$$

K. Komatsu

From (1.19), (1.37), (1.40) and (1.42), we obtain the following formula (cf. [2], §10):

$$
\begin{equation*}
B=M C(\alpha) \tag{1.43}
\end{equation*}
$$

Let $m^{2}(m \in \boldsymbol{Z})$ denote the largest square dividing D. Then

$$
\begin{equation*}
\frac{D}{m \delta} \in O_{K} \tag{1.44}
\end{equation*}
$$

where O_{K} denotes the ring of integers of $K([4]$, Theorem 1$)$. Let t denote the index of α :

$$
\begin{equation*}
t=\left(O_{K}: \boldsymbol{Z}[\alpha]\right) \tag{1.45}
\end{equation*}
$$

Then

$$
\begin{equation*}
(-1)^{\frac{n(n-1)}{2}} D=d_{K} t^{2} \tag{1.46}
\end{equation*}
$$

where d_{K} denotes the discriminant of K. It follows from (1.30), (1.44) and (1.45) that

$$
\begin{equation*}
\frac{t \tilde{b}_{1 j}}{m} \in Z \tag{1.47}
\end{equation*}
$$

for $j=1,2, \ldots, n$. By (1.46) we see that

$$
\begin{equation*}
\frac{D \tilde{b}_{1 j}^{2}}{m^{2} d_{K}} \in Z \tag{1.48}
\end{equation*}
$$

for $j=1,2, \ldots, n$. By hypothesis d_{K} is divisible by $p^{2 k}$. Since D / m^{2} is a square-free integer, $\tilde{b}_{1 j}$ is divisible by p^{k}. From (1.31) we obtain

$$
\begin{equation*}
p^{k} \mid \tilde{b}_{i j} \tag{1.49}
\end{equation*}
$$

for all $i, j(1 \leq i \leq n, 1 \leq j \leq n)$.
By (1.35) we see that every entry of the inverse matrix of M is a rational integer:

$$
\begin{equation*}
M^{-1} \in M_{n}(\boldsymbol{Z}) \tag{1.50}
\end{equation*}
$$

From (1.43),

$$
\begin{equation*}
C(\alpha)=M^{-1} B \tag{1.51}
\end{equation*}
$$

Hence the adjugate of $C(\alpha)$ satisfies

$$
\begin{equation*}
\operatorname{adj} C(\alpha)=\operatorname{adj} B \operatorname{adj}\left(M^{-1}\right) \tag{1.52}
\end{equation*}
$$

It follows from (1.49), (1.50) and (1.52) that the entries of the matrix adjC(α) are all divisible by p^{k}.
Q.E.D.

Remark. It follows from (1.1) that, for any integer α of K, $\operatorname{det} C(\alpha)$ is equal to the discriminant of α in K / Q, which is divisible by every prime factor p of the discriminant d_{K} of K. However, if d_{K} is not divisible by p^{2}, K may have an integer
α such that at least one minor of order $n-1$ of the matrix $C(\alpha)$ is not divisible by p. A simple example is

$$
\begin{equation*}
K=\boldsymbol{Q}(\alpha), \quad \alpha^{2}-p=0 \tag{1.53}
\end{equation*}
$$

where p is an odd prime. The matrix

$$
C(\alpha)=\left(\begin{array}{cc}
2 & 0 \tag{1.54}\\
0 & 2 p
\end{array}\right)
$$

has four minors of order one. One of them is not divisible by p, and the other three are all divisible by p.

2. The corner of order $n-1$.

In this section we prove a theorem on the corner of order $n-1$ (i.e. the cofactor of the (n, n)-entry) of the matrix $C(\alpha)$.
Theorem 2. Let K be an algebraic number field of degree $n>1$, and let α be an integer of K. Then for a prime number p to divide all the minors of order $n-1$ of the $n \times n$ matrix

$$
C(\alpha)=\left(\begin{array}{cccc}
\operatorname{Tr}(1) & \operatorname{Tr}(\alpha) & \ldots & \operatorname{Tr}\left(\alpha^{n-1}\right) \\
\operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) & \ldots & \operatorname{Tr}\left(\alpha^{n}\right) \\
& \ldots & & \\
\operatorname{Tr}\left(\alpha^{n-1}\right) & \operatorname{Tr}\left(\alpha^{n}\right) & \ldots & \operatorname{Tr}\left(\alpha^{2 n-2}\right)
\end{array}\right)
$$

it is necessary and sufficient that the determinant of $C(\alpha)$ and its corner of order $n-1$ are both divisible by p.

To prove our theorem we require the following lemma.
Lemma 1. Let F be a field, and let $S=\left(s_{i j}\right)$ be a symmetric $n \times n$ matrix with (i, j)-entry $s_{i j} \in F$. Let $\tilde{s}_{i j}$ denote the cofactor of the entry $s_{i j}$. If $\operatorname{det} S=\tilde{s}_{n n}=0$, then $\tilde{s}_{n j}=0$ for $j=1,2, \ldots, n$.
Proof. By hypothesis,

$$
\begin{equation*}
S v=\mathbf{o} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{v}=\left(\tilde{s}_{n 1}, \tilde{s}_{n 2}, \ldots, \tilde{s}_{n n}\right)^{T}$. For $j=1,2, \ldots, n$, let S_{j} denote the $(n-1) \times(n-1)$ matrix obtained from S by deletion of the j-th row and the n-th column. Since $\tilde{s}_{n n}=0$, it follows from (2.1) that

$$
\begin{equation*}
S_{j} \boldsymbol{v}_{0}=\mathbf{o} \tag{2.2}
\end{equation*}
$$

for $j=1,2, \ldots, n$, where

$$
\begin{equation*}
\boldsymbol{v}_{0}=\left(\tilde{s}_{n 1}, \tilde{s}_{n 2}, \ldots, \tilde{s}_{n(n-1)}\right)^{T} \tag{2.3}
\end{equation*}
$$

Suppose that $\tilde{s}_{n j} \neq 0$ for some $j<n$. Then $\boldsymbol{v}_{0} \neq \mathbf{o}$, and so $\operatorname{det} S_{j}=0$. This implies that $\tilde{s}_{j n}=\tilde{s}_{n j}=0$, a contradiction. Hence $\tilde{s}_{n j}=0$ for $j=1,2, \ldots, n$.
Proof of Theorem. We may assume that $K=\boldsymbol{Q}(\alpha)$ (See the proof of Theorem 1).

K. Komatsu

Let $\tilde{c}_{i j}$ denote the cofactor of the (i, j)-entry $c_{i j}$ of the matrix $C(\alpha)$. Let δ (resp. $d(\alpha))$ denote the different (resp. discriminant) of α in K / Q. Then, from (1.30), (1.35) and (1.43),

$$
\begin{equation*}
\frac{d(\alpha)}{\delta}=\tilde{c}_{n 1}+\tilde{c}_{n 2} \alpha+\cdots+\tilde{c}_{n n} \alpha^{n-1} \tag{2.4}
\end{equation*}
$$

Let p denote a prime number such that $\operatorname{det} C(\alpha) \equiv \tilde{c}_{n n} \equiv 0(\bmod p)$. Then Lemma 1 implies that $\tilde{c}_{n j} \equiv 0(\bmod p)$ for $j=1,2, \ldots, n$. It follows from (1.31), (1.50) and (1.52) that $\tilde{c}_{i j} \equiv 0(\bmod p)$ for all i, j.

3. Minors of order i.

In this section we discuss some elementary properties of the matrix $C(\alpha)$ and its minors.

Let K be an algebraic number field of degree $n>1$, and let α be an integer of K. Let $i \in Z, 1 \leq i \leq n$. We denote by $\tilde{c}_{i}(\alpha)$ the greatest common divisor of all the minors of order i of the matrix $C(\alpha)$. Clearly, $\tilde{c}_{i}(\alpha)$ is divisible by $\tilde{c}_{i-1}(\alpha)$ for every $i>1$.

Theorem 1 becomes
Theorem 1a. Let $s^{2}(s \in \boldsymbol{Z})$ denote the largest square dividing the discriminant of an algebraic number field K of degree $n>1$. Then, for any integer α of K, $\tilde{c}_{n-1}(\alpha)$ is divisible by s.

Now we have
Proposition 1. Let O_{K} denote the ring of integers of an algebraic number field K of degree $n>1$, and let $j \in Z, 1 \leq j \leq n-1$. Let $\alpha \in O_{K}$, and let c_{0}, \ldots, c_{j-1}, $m_{0}\left(m_{0} \neq 0\right)$ be rational integers such that

$$
\begin{equation*}
\frac{c_{0}+c_{1} \alpha+\cdots+c_{j-1} \alpha^{j-1}+\alpha^{j}}{m_{0}} \in O_{K} \tag{3.1}
\end{equation*}
$$

Then $\tilde{c}_{j+1}(\alpha)$ is divisible by m_{0}.
Proof. Let c_{k} denote the k-th column of the matrix $C(\alpha)$:

$$
c_{k}=\left(\begin{array}{c}
\operatorname{Tr}\left(\alpha^{k-1}\right) \tag{3.2}\\
\operatorname{Tr}\left(\alpha^{k}\right) \\
\vdots \\
\operatorname{Tr}\left(\alpha^{k+n-2}\right)
\end{array}\right)
$$

By induction we see that

$$
\begin{equation*}
\alpha^{k-1}=s_{k 0}+s_{k 1} \alpha+\cdots+s_{k(j-1)} \alpha^{j-1}+m_{0} \xi_{k} \tag{3.3}
\end{equation*}
$$

for $k=1,2, \ldots, n$, where $s_{k l} \in \boldsymbol{Z}, \xi_{k} \in O_{K}$. Hence

$$
c_{k}=s_{k 0} c_{1}+s_{k 1} c_{2}+\cdots+s_{k(j-1)} c_{j}+m_{0}\left(\begin{array}{c}
\operatorname{Tr}\left(\xi_{k}\right) \tag{3.4}\\
\vdots \\
\operatorname{Tr}\left(\alpha^{n-1} \xi_{k}\right)
\end{array}\right)
$$

for $k=1,2, \ldots, n$. Let $c_{k_{1}}, c_{k_{2}}, \ldots, c_{k_{j+1}}$ be any $(j+1)$ columns of $C(\alpha)$, and let p be a prime number such that m_{0} is exactly divisible by $p^{t}(t>0)$. Then (3.4) implies that some $c_{k_{i}}$ is a linear combination modulo p^{t} of the other j columns with integer coefficients. Hence every minor of order $(j+1)$ of the matrix $C(\alpha)$ is divisible by p^{t}, and so, by m_{0}. Hence $\tilde{c}_{j+1}(\alpha)$ is divisible by m_{0}.

It is well-known (e.g. [6], p.34) that an algebraic number field $K=\boldsymbol{Q}(\alpha)$ ($\alpha \in O_{K}$) of degree $n>1$ has an integral basis of the form

$$
\begin{equation*}
1, \frac{c_{10}+\alpha}{m_{1}}, \frac{c_{20}+c_{21} \alpha+\alpha^{2}}{m_{2}}, \ldots, \frac{c_{(n-1) 0}+\cdots+c_{(n-1)(n-2)} \alpha^{n-2}+\alpha^{n-1}}{m_{n-1}}, \tag{3.5}
\end{equation*}
$$

where $c_{i j}, m_{j} \in Z ; m_{j}$ is divisible by m_{j-1} for every $j>1$. By Proposition 1 we see that $\tilde{c}_{j+1}(\alpha)$ is divisible by m_{j} for every $j \leq n-1$.

Considering the elementary divisors of $C(\alpha)$, we obtain
Proposition 2. Let K be an algebraic number field of degree $n>1$, and let α be an integer of K such that $K=\boldsymbol{Q}(\alpha)$. Then $\tilde{c}_{i+1}(\alpha) / \tilde{c}_{i}(\alpha)$ is divisible by $\tilde{c}_{i}(\alpha) / \tilde{c}_{i-1}(\alpha)$ for every $i=1,2, \ldots, n-1$, where $\tilde{c}_{0}(\alpha)=1$. Let p be a prime number such that $\tilde{c}_{i}(\alpha)$ is divisible by $p^{t}(t>0)$. Then $\tilde{c}_{i+1}(\alpha)$ is divisible by p^{t+1}. Proof. By hypothesis, $\operatorname{det} C(\alpha) \neq 0$. The integers

$$
e_{1}=\frac{\tilde{c}_{1}(\alpha)}{\tilde{c}_{0}(\alpha)}, e_{2}=\frac{\tilde{c}_{2}(\alpha)}{\tilde{c}_{1}(\alpha)}, \cdots, e_{n}=\frac{\tilde{c}_{n}(\alpha)}{\tilde{c}_{n-1}(\alpha)}
$$

are the elementary divisors of $C(\alpha)$. Since e_{i+1} is divisible by e_{i}, it follows that $\tilde{c}_{i+1}(\alpha) / \tilde{c}_{i}(\alpha)$ is divisible by $\tilde{c}_{i}(\alpha) / \tilde{c}_{i-1}(\alpha)$. To prove the last assertion, suppose that $\tilde{c}_{i+1}(\alpha)$ is not divisible by p^{t+1}. Then $\tilde{c}_{i+1}(\alpha)$ is exactly divisible by $p^{t} ; e_{i+1}=$ $\tilde{c}_{i+1}(\alpha) / \tilde{c}_{i}(\alpha)$ is not divisible by p. On the other hand,

$$
\begin{equation*}
\tilde{c}_{i+1}(\alpha)=e_{1} e_{2} \cdots e_{i+1}, \quad e_{j} \mid e_{j+1} \tag{3.6}
\end{equation*}
$$

This implies that $\tilde{c}_{i+1}(\alpha)$ is not divisible by p, a contradiction.

4. Examples.

1) Consider now a cubic field:

$$
\begin{equation*}
K=\boldsymbol{Q}(\alpha) ; \quad \alpha^{3}+a_{1} \alpha^{2}+a_{2} \alpha+a_{3}=0, \quad a_{i} \in \boldsymbol{Z} \tag{4.1}
\end{equation*}
$$

where $f(x)=x^{3}+a_{1} x^{2}+a_{2} x+a_{3}$ is irreducible. We obtain:

$$
\begin{gather*}
A=\left(\begin{array}{ccc}
0 & 0 & -a_{3} \\
1 & 0 & -a_{2} \\
0 & 1 & -a_{1}
\end{array}\right) \tag{4.2}\\
B=f^{\prime}(A)=\left(\begin{array}{ccc}
a_{2} & -3 a_{3} & a_{1} a_{3} \\
2 a_{1} & -2 a_{2} & a_{1} a_{2}-3 a_{3} \\
3 & -a_{1} & a_{1}^{2}-2 a_{2}
\end{array}\right) \tag{4.3}
\end{gather*}
$$

K. Komatsu

$$
\begin{align*}
C(\alpha) & =\left(\begin{array}{ccc}
\operatorname{Tr}(1) & \operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) \\
\operatorname{Tr}(\alpha) & \operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}\left(\alpha^{3}\right) \\
\operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}\left(\alpha^{3}\right) & \operatorname{Tr}\left(\alpha^{4}\right)
\end{array}\right) \tag{4.4}\\
& =\left(\begin{array}{ccc}
3 & -a_{1} & a_{1}{ }^{2}-2 a_{2} \\
-a_{1} & a_{1}{ }^{2}-2 a_{2} & -a_{1}{ }^{3}+3 a_{1} a_{2}-3 a_{3} \\
a_{1}{ }^{2}-2 a_{2} & -a_{1}{ }^{3}+3 a_{1} a_{2}-3 a_{3} & a_{1}^{4}-4 a_{1}{ }^{2} a_{2}+4 a_{1} a_{3}+2 a_{2}{ }^{2}
\end{array}\right) .
\end{align*}
$$

Let $\tilde{b}_{i j}$ (resp. $\tilde{c}_{i j}$) denote the cofactor of the (i, j)-entry of the matrix B (resp. $C(\alpha))$. Then

$$
\begin{align*}
& \tilde{c}_{31}=-\tilde{b}_{11}=a_{1}^{2} a_{2}-4 a_{2}^{2}+3 a_{1} a_{3} \tag{4.5}\\
& \tilde{c}_{32}=-\tilde{b}_{12}=2 a_{1}^{3}-7 a_{1} a_{2}+9 a_{3} \\
& \tilde{c}_{33}=-\tilde{b}_{13}=2\left(a_{1}^{2}-3 a_{2}\right)
\end{align*}
$$

Let $d(\alpha)$ denote the discriminant of α. Then a classical formula

$$
\begin{equation*}
d(\alpha)=-4 a_{1}^{3} a_{3}+a_{1}^{2} a_{2}^{2}+18 a_{1} a_{2} a_{3}-4 a_{2}^{3}-27 a_{3}^{2} \tag{4.6}
\end{equation*}
$$

follows from

$$
\begin{equation*}
d(\alpha)=-\operatorname{det} B=-\left(a_{2} \tilde{b}_{11}-3 a_{3} \tilde{b}_{12}+a_{1} a_{3} \tilde{b}_{13}\right) \tag{4.7}
\end{equation*}
$$

Let $p(p \neq 2)$ be a prime factor of $\tilde{c}_{2}(\alpha)$ (which we defined in $\left.\S 3\right)$. Then \tilde{c}_{33} is divisible by p, and so

$$
\begin{equation*}
a_{1}{ }^{2} \equiv 3 a_{2} \quad(\bmod p) \tag{4.8}
\end{equation*}
$$

Since $d(\alpha)=\operatorname{det} C(\alpha)$ is divisible by p, it follows from (4.6) and (4.8) that

$$
\begin{equation*}
27 d(\alpha) \equiv-\left(a_{1}^{3}-3^{3} a_{3}\right)^{2} \equiv 0 \quad(\bmod p) \tag{4.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{1}{ }^{3} \equiv 3^{3} a_{3} \quad(\bmod p) . \tag{4.10}
\end{equation*}
$$

Conversely, if $p(p \neq 3)$ is a prime number which satisfies (4.8) and (4.10), then \tilde{c}_{33} and $d(\alpha)$ are both divisible by p, and $\tilde{c}_{2}(\alpha)$ is also divisible by p (Theorem 2).

Thus we have proved the following result: For a prime number $p(p \neq 2,3)$ to divide all the minors of order two of the matrix $C(\alpha)$ it is necessary and sufficient that $a_{1}^{2} \equiv 3 a_{2}(\bmod p)$ and $a_{1}^{3} \equiv 3^{3} a_{3}(\bmod p)$.
2) Consider now a cubic field (4.1) satisfying $a_{2} \equiv a_{3} \equiv 0(\bmod 3), a_{1} \not \equiv 0$ $(\bmod 3)$. Then by (4.5) and (4.6) we see that both \tilde{c}_{31} and $d(\alpha)=\operatorname{det} C(\alpha)$ are divisible by 3 , but \tilde{c}_{33} is not divisible by 3 (cf. Theorem 2, Lemma 1). Suppose that $a_{1} \equiv a_{3} \equiv 1, a_{2} \equiv-1(\bmod 4)$. Consider the prime $p=2$. By (4.5) and (4.6) we see that both \tilde{c}_{33} and $\operatorname{det} C(\alpha)(=d(\alpha))$ are divisible by p^{2}, but \tilde{c}_{31} is not divisible by p^{2} (cf. Theorem 2).
3) The converse of Theorem 1 is not true. Let $k=1, p=2$, and let K be a cubic field with odd discriminant d_{K} such that, for every integer α of K, the discriminant $d(\alpha)$ of α is even (Dedekind[3]). Then, for any integer α of K, $\operatorname{det} C(\alpha)=d(\alpha)$ is
divisible by $p=2$; it follows from Theorem 2 and (4.5) that every minor of order two of the matrix $C(\alpha)$ is divisible by p, but d_{K} is not divisible by p^{2}.
4) Let O_{K} denote the ring of integers of an algebraic number field K of degree $n>1$, and let $\alpha \in O_{K}$ such that $K=\boldsymbol{Q}(\alpha)$. Let δ (resp. $d(\alpha)$) denote the different (resp. discriminant) of α in K / \boldsymbol{Q}, and let $m^{2}(m \in \boldsymbol{Z})$ denote the largest square dividing $d(\alpha)$. By (1.44) we see that

$$
\begin{equation*}
\frac{d(\alpha)}{m \delta} \in O_{K} \tag{4.11}
\end{equation*}
$$

From (2.4),

$$
\begin{equation*}
\frac{d(\alpha)}{m \delta}=\frac{\tilde{c}_{n 1}+\tilde{c}_{n 2} \alpha+\cdots+\tilde{c}_{n n} \alpha^{n-1}}{m} \tag{4.12}
\end{equation*}
$$

where $\tilde{c}_{i j}$ denotes the cofactor of the (i, j)-entry of the matrix $C(\alpha)$.
Now suppose that $\tilde{c}_{n-1}(\alpha)=1$. Then K has a very simple integral basis (cf. $[1],[4],[6])$. By Theorem 2 we see that m is prime to $\tilde{c}_{n n}$. Let $a, b \in \boldsymbol{Z}$ such that

$$
\begin{equation*}
a \tilde{c}_{n n}+b m=1 \tag{4.13}
\end{equation*}
$$

and define

$$
\begin{equation*}
\beta=\frac{a d(\alpha)}{m \delta}+b \alpha^{n-1} \in O_{K} \tag{4.14}
\end{equation*}
$$

Then $\left\{1, \alpha, \ldots, \alpha^{n-2}, \beta\right\}$ is an integral basis of K, since

$$
\left|\begin{array}{ccccc}
1 & \alpha^{(1)} & \ldots & \alpha^{(1) n-2} & \beta^{(1)} \tag{4.15}\\
& & & \ldots & \\
1 & \alpha^{(n)} & \ldots & \alpha^{(n) n-2} & \beta^{(n)}
\end{array}\right|^{2}=\frac{d(\alpha)}{m^{2}}
$$

is square-free. The discriminant of K is

$$
\begin{equation*}
d_{K}=\frac{d(\alpha)}{m^{2}} \tag{4.16}
\end{equation*}
$$

Since d_{K} is square-free, it follows from [5] (Theorem 1) that the Galois group of \bar{K} / \boldsymbol{Q} is isomorphic to the symmetric group S_{n}, where \bar{K} denotes the Galois closure of K / Q.

References

[1] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.
[2] R. Dedekind und H. Weber, Theorie der algebraischen Funktionen einer Veränderlichen, J. Reine Angew. Math., 92(1882), 181-290.
[3] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 23(1878), 1-23.
[4] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279(1975), 137-144.
[5] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14(1991), 57-60.
$[6$] M. Phost, Computational Algebraic Number Theory, Birkhäuser Verlag, 1993.

