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KETO SCIENCE AND TECHNOLOGY REPORTS 
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ON DISCRIMINANTS AND CERTAIN MATRICES 

by 

Kenw KOMATSU 

Department of Mathematics, Faculty of Science and Technology 

Keio University, Hiyoshi, Yokohama 223, Japan 

(Received February 28, 1996) 

0. Introduction 

Let K be an algebraic number field of degree n > 1, and let a be an integer of 
K. In this paper we discuss then x n matrix C(a) = (Tr (a(i-l)+(j-l))) and its 
minors. Certain minors of C(a) are closely related to the ramification of primes in 
K / Q. For example: If the greatest common divisor of all the minors of order ( n - 1) 
of the matrix C(a) is equal to 1, then the discriminant of K is square-free, and K 
has a very simple and explicit integral basis (§4). Therefore it seems important to 
study C(a) and its minors in relation to the discriminant and the ring of integers 
of K. In this paper we prove two theorems on the minors of order ( n - 1), together 
with a few elementary results on the minors of order i ::; n - 1. 

1. The matrix C(a) and its minors of order n - 1. 

The main purpose of the present paper is to prove the following theorem. 
Theorem 1. Let K be an algebraic number field of degree n > 1. Let p be a prime 
number, and let k E Z, k > 0. Suppose that the discriminant of K is divisible by 
p2k. Then, for any integer a of K, every minor of order ( n - 1) of the n x n matrix 

( 

Tr(l) 

C(a) = Tr(a) 

Tr(an-l) 

Tr( a) 
Tr(a 2 ) 

Tr(an-l) ) 
Tr( an) 

. . . Tr(a2n-2) 

is divisible by pk, where Tr(~) means the trace of~ in K/Q. 
Proof Let a(l), · · ·, a(n) denote the conjugates of a in K/Q. Then 

(1.1) 

C(a) = ( 

1 1 1 

)(: 
0'.(1) O'.(l)n-1 

0'.(1) 0'.(2) O'.(n) 0'.(2) 0'.(2)n-1 

O'.(l)n-1 0'.(2)n-1 O'.(n)n-1 O'.(n) O'.(n)n-1 

1 

)· 
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Suppose first that KI- Q(a). If n > 2, then 

(1.2) 
n 

< - <n-l. - 2 

By (1.1) we see that rankC(a) < n - 1; every minor of order (n - 1) is equal 
to 0. If n = 2, then a E Z, k = 1 and p = 2; every entry of the matrix C(a) is 
divisible by pk = 2. In any case, every minor of order n - 1 of the matrix C(a) is 
divisible by pk. 

From now on, we assume that K = Q(a). Let 

(1.3) f(x) (x - a(I))(x - a(2)) · · · (x - a(n)) 

xn + aIXn-I +···+an-IX+ an. 

Then the coefficients ai are rational integers, and f(x) is irreducible over Q. 
K = Q(a) is a vector space over Q. We fix its basis:l, a, ... , an-I. An element 

~=co+ cia + · · · + Cn-Ian-I(ci E Q) of K is then represented by a column vector 
(c0, ... , en-I) T, where T denotes transposition. The linear transformation ~ 1----7 a~ 
is determined by the n x n matrix 

(1.4) 

where 
(1.5) 

ei denotes the j-th column of the identity matrix In- We define a 2 , a 3 , ... induc
tively: 
(1.6) ai = Aaj-I, 

where j 2: 2. Clearly, 
(1. 7) 

By induction on j, we see that 

(1.8) 

for j = 1, 2, ... , n - 1. 
Now let 

(1.9) g(x) =Co+ CIX + ... + Cn-IXn-I E Q[x], 

and let gi denote the j-th column of the matrix g(A): 

(1.10) 

(1.11) 

Then 
(1.12) 

for j = 1, 2, ... , n. The matrix g(A) determines a linear transformation~ 1----7 g(a)~. 

By (1.12) we see that the column vector 9j represents g(a)ai-I in K. Since 
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it follows from (1.9) that 

(1.13) 
( 

Co ) C1 

9j = Ai-1 . : 

Cn-1 

for j = 1, 2, ... , n. Hence 

(1.14) 
( 

Co ) C1 

91 = . : , 9 J = Ag i-1, 

Cn-1 

where 2 ~ j ~ n. 
The eigenvalues of the matrix A are the conjugates of a in K/Q; f(x) is the 

minimum polynomial of the matrix A. For any h(x) E Q[x], the element h(a) of 
the field K is represented by the matrix h(A): 

( 1.15) h(a) ~ h(A). 

The norm N(h(a)) of h(a) in K/Q is equal to the determinant of h(A): 

(1.16) N(h(a)) = deth(A). 

Now let b1 denote the j-th column of the matrix B = J'(A): 

(1.18) B = (b1b2 ... bn)· 

Then it follows from (1.14) that 

(1.19) 

where 2 ~ j ~ n. 

(n- l)a1 
n 

Let D denote the norm of 8 = J'(a) in K/Q: 

(1.20) 

Then (1.16) gives 
(1.21) 

8 = J'(a), D = N(8). 

D = detB. 
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For j = 1, 2, ... , n, let 

( 1.22) J·-1( + n-1 
O'. u = T1j + T2j0'. + · · · TnjO'. , 

where rij E Z. Then it follows from (1.lG), (1.20) and (1.17) that 

(1.23) 

for j = 1, 2, · · ·, n. By (1.19) we see that the first column of Aj-I Bis Aj- 1 b 1 = bj. 

Hence, by (1.14), 
(1.24) bj = (rlj, T2j, ... , Tnjf. 

Now let bij denote the (i, j)-entry of the matrix B: 

( 1.2G) B = ( bn 

bnl 

By (1.22) and (1.24) we see that 

(1.26) j-1 ~ b b b n-1 
O'. U = lj + 2j O'. + · · · + nj O'. 

for j = 1, 2, ... , n. Let bij denote the cofactor of the ( i, j)-entry bij, and let 

(1.27) J·-1D + + n-1 
O'. [j = S1j + S2j0'. · · · SnjO'. , 

where Sij E Z, 1:::; j:::; n. From (1.lG), (1.17), (1.20) and (1.21), we obtain 

(1.28) 

By (1.8) we see that the first column of the matrix Aj-I is ej· From (1.14) we 
obtain 

(<let B)B- 1
ej 

- - T 
(bjli · · ·, bjn) · 

Hence (1.27) becomes 

(1.29) 

for j = 1, 2, ... , n. In particular, 

(1.30) 

It follows from (1.29) and (1.30) that every cofactor bij is divisible by the greatest 
common divisor of bn, ... , bin: 

(1.31) 
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where 1 ::; i ::; n, 1 ::; j ::; n. 
Clearly, the column vector 

(1.32) (1 n-l)T X= ,a, ... ,O'. 

is an eigenvector of the matrix AT corresponding to the eigenvalue a: 

(1.33) AT x =ax, x =/:- o. 

It is easily seen that an eigenvector of the matrix A corresponding to the eigenvalue 
a is given by M x: 
(1.34) A(Mx) = aMx, 

where 
an-1 an-2 al 1 
an-2 an-3 1 

(1.3G) M= 

al 1 0 
1 

Since 1, a, ... , an-l are linearly independent over Q, it follows from (1.33) and 
(1.34) that 
(1.36) AM= MAT. 

Hence 
(1.37) 

for every j E Z. 
Let Cj denote the j-th column of the matrix C(a): 

(1.38) 

By definition, 
(1.39) Cj = (Tr(aj- 1 ), Tr(aj), ... , Tr(a1+n- 2 )f. 

From (1.32), (1.33) and (1.39), we obtain 

(1.40) 

for j = 2, 3, ... , n. From (1.19), 

(1.41) 

Newton's formula gives 
(1.42) 
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From (1.19), (1.37), (1.40) and (1.42), we obtain the following formula (cf. [2], §10): 

(1.43) B = MC(a). 

Let m 2 ( m E Z) denote the largest square dividing D. Then 

(1.44) 

where OK denotes the ring of integers of K ([4], Theorem 1). Lett denote the index 
of a: 
(1.4G) t =(OK : Z[a]). 

Then 
(1.46) 

n(n-1) 2 (-l)_2_D = dKt , 

where dK denotes the discriminant of K. It follows from (1.30), (1.44) and (1.4G) 
that 

(1.47) tb1j z 
-E 
m 

for j = 1, 2, ... , n. By (1.46) we see that 

(1.48) 

for j = 1, 2, ... , n. By hypothesis dK is divisible by p2k. Since D /m2 is a square-free 
integer, b1j is divisible by pk. From (1.31) we obtain 

(1.49) 

for all i, j (1 :Si :Sn, 1 :S j :Sn). 
By ( 1.3G) we see that every entry of the inverse matrix of M is a rational integer: 

(1.GO) 

From (1.43), 
(l.Gl) 

Hence the adjugate of C(a) satisfies 

(1.G2) adjC(a) = adjB adj(M- 1 ). 

It follows from (1.49), (1.GO) and (1.G2) that the entries of the matrix adjC(a) are 
all divisible by pk. Q.E.D. 

Remark. It follows from (1.1) that, for any integer a of K, det C(a) is equal 
to the discriminant of a in K / Q, which is divisible by every prime factor p of the 
discriminant dK of K. However, if dK is not divisible by p2 , K may have an integer 
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a such that at least one minor of order n - 1 of the matrix C(n) is not divisible by 
p. A simple example is 
(1.G3) K = Q(n), n 2 

- p = 0, 

where pis an odd prime. The matrix 

(1.G4) 

has four minors of order one. One of them is not divisible by p, and the other three 
are all divisible by p. 

2. The corner of order n - 1. 

In this section we prove a theorem on the corner of order n - l (i.e. the cofactor 
of the (n, n)-entry) of the matrix C(n). 
Theorem 2. Let K be an algebraic number field of degree n > 1, and let a be an 
integer of K. Then for a prime number p to divide all the minors of order n - 1 of 
the n x n matrix 

C(n) = 
( 

Tr(l) 
Tr( a) 

Tr(nn-l) 

Tr( a) 
Tr(n2) 

Tr(nn-l) ) 
Tr( an) 

. . . Tr(a2n-2) 

it is necessary and sufficient that the determinant of C(n) and its corner of order 
n - 1 are both divisible by p. 

To prove our theorem we require the following lemma. 
Lemma 1. Let F be a field, and let S = ( Sij) be a symmetric n x n matrix with 
(i,j)-entry Sij E F. Let Sij denote the cofactor of the entry Sij· IfdetS = Snn = 0, 
then Snj = 0 for j = 1, 2, ... , n. 
Proof By hypothesis, 
(2.1) Sv = o, 

where v = (sni, Sn2, ... , Snn)T. For j = 1, 2, ... , n, let Sj denote the (n-1) x (n-1) 
matrix obtained from S by deletion of the j-th row and the n-th column. Since 
Snn = 0, it follows from (2.1) that 

(2.2) 

for j = 1, 2, ... , n, where 

(2.3) ( - - - )T Vo= Sn1, Snz, · · ·, Sn(n-1) · 

Suppose that Snj -=/=- 0 for some j < n. Then Vo -=/=- o, and so det Sj = 0. This implies 
that Sjn = Snj = 0, a contradiction. Hence Snj = 0 for j = 1, 2, ... , n. 
Proof of Theorem. We may assume that K = Q(n) (See the proof of Theorem 1). 
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Let Cij denote the cofactor of the (i,j)-entry c·ij of the matrix C(a). Let 8 (resp. 
d(a)) denote the different (resp. discriminant) of a in K/Q. Then, from (1.30), 
(1.35) and (1.43), 

(2 ) d( a) - - - n-1 .4 -
8

- = Cnl + Cn2a + · · · + CnnO'. . 

Let p denote a prime number such that det C(a) = Cnn = 0 (mod p). Then Lemma 
1 implies that Cnj = 0 (mod p) for j = 1, 2, ... , n. It follows from (1.31), (1.50) and 
(1.52) that Cij = 0 (mod p) for all i,j. 

3. Minors of order i. 

In this section we discuss some elementary properties of the matrix C (a) and 
its minors. 

Let K be an algebraic number field of degree n > 1, and let a be an integer of 
K. Let i E Z, 1 ~ i ~ n. We denote by ci (a) the greatest common divisor of all 
the minors of order i of the matrix C(a). Cle8,rly, ci(a) is divisible by ci_ 1(a) for 
every i > 1. 

Theorem 1 becomes 
Theorem la. Let s2 ( s E Z) denote the largest square dividing the discriminant 
of an algebraic number field K of degree n > 1. , Then, for any integer a of K, 
Cn-1(a) is divisible bys. 

Now we have 
Proposition 1. Let 0 K denote the ring of integers of an algebraic number field 
K of degree n > 1, and let j E Z, 1 ~ j ~ n-1. Let a E OK, and let c 0 , ... ,cj-l, 

m 0 ( m 0 -::/- 0) be rational integers such that 

(3.1) 

Then Cj+ 1 (a) is divisible by m0 . 

Proof Let Ck denote the k-th column of the matrix C(a): 

(3.2) 

By induction we see that 

(3.3) ak-l = Sko + sk1a + · · · + sk(j-l)aj-l + mo~k 

fork= 1, 2, ... , n, where Skz E Z, ~k E OK. Hence 

(3.4) ck= skoc1 + sk1C2 + ... + sk(j-1)Cj +mo ( Tr(~k) ) 

Tr(an-l~k) 

8 
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fork= 1, 2, ... , n. Let Ck 1 , Ck2 , ••. , Ck1+1 be any (j + 1) columns of C(a), and let 
p be a prime number such that m 0 is exactly divisible by pt (t > 0). Then (3.4) 
implies that some Cki is a linear combination modulo pt of the other j columns 
with integer coefficients. Hence every minor of order (j + 1) of the matrix C(a) is 
divisible by pt, and so, by m 0. Hence CJ+1(a) is divisible by m 0. 

It is well-known (e.g. [6], p.34) that an algebraic number field K = Q(a) 
(a E 0 K) of degree n > 1 has an integral basis of the form 

2 + + n-2 + n-1 C10 + Q C2Q + C21CY + Q C(n-1)0 . . . C(n-l)(n-2)<'.X Q 
(3.G) 1, ,------, ... , 

ml m2 mn-1 

where Cij, mi E Z; mi is divisible by mj-l for every j > 1. By Proposition 1 we 
see that CJ+ 1 (a) is divisible by mi for every j ::; n - 1. 

Considering the elementary divisors of C(a), we obtain 
Proposition 2. Let K be an algebraic number field of degree n > 1, and let 
a be an integer of K such that K = Q(a). Then ci+1(a)/ci(a) is divisible by 
ci(a)/ci-l (a) for every i = 1, 2, ... , n - 1, where c0(a) = 1. Let p be a prime 
number such that Ci (a) is divisible by pt (t > 0). Then Ci+ 1 (a) is divisible by pt+ 1. 
Proof By hypothesis, det C(a) # 0. The integers 

c1 (a) c2 (a) cn (a) 
el=-_--, e2 = -_--, ... ' en=-_---

co(a) c1(n) Cn-1(a) 

are the elementary divisors of C(a). Since ei+l is divisible by ei, it follows that 
ci+1(a)/ci(a) is divisible by ci(a)/ci_1(a). To prove the last assertion, suppose 
that Ci+l (a) is not divisible by pt+1. Then Ci+l (a) is exactly divisible by pt; ei+I = 
ci+l (a)/ci(a) is not divisible by p. On the other hand, 

(3.6) 

This implies that Ci+1(a) is not divisible by p, a contradiction. 

4. Examples. 

1) Consider now a cubic field: 

(4.1) 

where f(x) = x 3 + a1x2 + a2x + a3 is irreducible. We obtain: 

(4.2) 

(4.3) 

9 
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( 4.4) 

Let bij (resp. Cij) denote the cofactor of the ( i, j)-entry of the matrix B (resp. 
C(a)). Then 

(4.S) 

Let d(a) denote the discriminant of a. Then a classical formula 

(4.6) 

follows from 
(4.7) 

Let p (p # 2) be a prime factor of c2(a) (which we defined in §3). Then c33 is 
divisible by p, and so 
(4.8) 2 ai = 3a2 (mod p). 

Since d(a) = detC(a) is divisible by p, it follows from (4.6) and (4.8) that 

(4.9) 

Hence 
(4.10) 

Conversely, if p (p # 3) is a prime number which satisfies (4.8) and (4.10), then c33 

and d(a) are both divisible by p, and c2(a) is also divisible by p (Theorem 2). 
Thus we have proved the following result: For a prime number p (p # 2, 3) to 

divide all the minors of order two of the matrix C(a) it is necessary and sufficient 
that ai 2 = 3a2 (mod p) and ai 3 = 33

a3 (mod p). 
2) Consider now a cubic field (4.1) satisfying a2 = a3 = 0 (mod 3), a 1 ~ 0 

(mod 3). Then by (4.S) and (4.6) we see that both c3 1 and d(a) = det C(a) are 
divisible by 3, but c33 is not divisible by 3 (cf. Theorem 2, Lemma 1). Suppose that 
a 1 = a3 = 1, a2 = -1 (mod 4). Consider the prime p = 2. By (4.S) and (4.6) we 
see that both c33 and det C(a)(= d(a)) are divisible by p2, but C31 is not divisible 
by p2 (cf. Theorem 2). 

3) The converse of Theorem 1 is not true. Let k = 1, p = 2, and let K be a cubic 
field with odd discriminant dK such that, for every integer a of K, the discriminant 
d(a) of a is even (Dedekind[3]). Then, for any integer a of K, det C(a) = d(a) is 
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divisible by p = 2; it follows from Theorem 2 and (4.G) that every minor of order 
two of the matrix C(n) is divisible by p, but dK is not divisible by p2 . 

4) Let 0 K denote the ring of integers of an algebraic number field K of degree 
n > 1, and let O'. E OK such that K = Q(n). Let 8 (resp. d(n)) denote the different 
(resp. discriminant) of n in K/Q, and let m 2 (m E Z) denote the largest square 
dividing d(n). By (1.44) we see that 

(4.11) d~~) E OK. 

From (2.4), 

(4.12) 
d( n) 

m8 m 

where Cij denotes the cofactor of the (i,j)-entry of the matrix C(n). 
Now suppose that Cn-l ( O'.) = 1. Then K has a very simple integral basis (cf. 

[1],[4],[6]). By Theorem 2 we see that mis prime to Cnn· Let a, b E Z such that 

(4.13) 

and define 

(4.14) 

aCnn + bm = 1, 

f3 - ad(n) b n-1 0 
- m8 + O'. E K· 

Then {1,n, ... ,nn-2 ,{3} is an integral basis of K, since 

1 
2 

(4.lG) 
1 

is square-free. The discriminant of K is 

(4.16) 

d(n) 
m2 

Since dK is square-free, it follows from [G] (Theorem 1) that the Galois group of 
K / Q is isomorphic to the symmetric group Sn, where f< denotes the Galois closure 
of K/Q. 
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