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0. Introduction

Let K be an algebraic number field of degree n > 1, and let a be an integer of
K. In this paper we discuss the n x n matrix C(a) = ( Tr (at=D+0-1) ) and its
minors. Certain minors of C(a) are closely related to the ramification of primes in
K/Q. For example: If the greatest common divisor of all the minors of order (n—1)
of the matrix C(«a) is equal to 1, then the discriminant of K is square-free, and K
has a very simple and explicit integral basis (§4). Therefore it seems important to
study C(a) and its minors in relation to the discriminant and the ring of integers
of K. In this paper we prove two theorems on the minors of order (n — 1), together
with a few elementary results on the minors of order i < n — 1.

1. The matrix C(«) and its minors of order n — 1.

The main purpose of the present paper is to prove the following theorem.
Theorem 1. Let K be an algebraic number field of degree n > 1. Let p be a prime
number, and let k € Z, k > 0. Suppose that the discriminant of K is divisible by
p?*. Then, for any integer o of K, every minor of order (n—1) of the n X n matriz

Tr(1) Tr(az) .. Tr(a™1)
Cla) = Tr(a) Tr(a. ) oo Tr(a™)
Tr(a™ Y Tr(a™) ... Tr(a®?)

is divisible by p*, where Tr(£) means the trace of £ in K/Q.
Proof. Let aV,... o™ denote the conjugates of o in K/Q. Then

(1.1)

1 1 . 1 1 oM .. an-t
(1) (2) (n) (2) (2)n—1

Cla) = « « a 1l o L.«
a(l)n—l a(2)n—l L a(n)n—l 1 a(n) o a(n)«n_l



K. KOMATSU

Suppose first that K # Q(«). If n > 2, then

1 o .. aWn-l

(1.2) rank < Ten-1.
1 o™ . a1 2

By (1.1) we see that rankC'(a) < n — 1; every minor of order (n — 1) is equal
to 0. If n =2, then @« € Z, k = 1 and p = 2; every entry of the matrix C(a) is
divisible by p* = 2. In any case, every minor of order n — 1 of the matrix C(a) is
divisible by p*.

From now on, we assume that K = Q(«). Let

(1.3) f(z) (33—a(l))(ac-—au))...(a;_a(n))

2"+ a1z o+ ap_1z + an.

Then the coefficients a; are rational integers, and f(x) is irreducible over @.

K = Q(a) is a vector space over Q. We fix its basis:1,a,...,a" 1. An element
E=co+crat -+ 10" e € Q) of K is then represented by a column vector
(coy. .. ¢n_1)T, where T denotes transposition. The linear transformation £ —s af
is determined by the n x n matrix

(1.4) A= (ese3...ena1),

where

(15) a; = (_an’_an-—lv"'a_a21—a1)T;

e; denotes the j-th column of the identity matrix f,,. We define a3, as,... induc-
tively:

(16) G,j = Aaj_l,

where j > 2. Clearly,

(1.7) a, = Ae,.

By induction on j, we see that
(1.8) A = (ej11€j12- - enar - a;)

forj=1,2,...,n—1.

Now let
(1.9) 9(x) = otz + -+ cnrz™ ! € Qlal,
and let g; denote the j-th column of the matrix g(A):
(1.10) g(A) = colyy + 1A+ -+ e AMTH,
(1.11) 9(A) = (9192 - - 9n)-
Then
(1.12) g; = 9(Ae;
for j =1,2,...,n. The matrix g(A) determines a linear transformation £ — g(a)¢.

By (1.12) we see that the column vector g; represents g(@)a?~!in K. Since
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gla)ad =t = ai™g(a),

it follows from (1.9) that

Co
. €1
(1.13) g;j=A"" :
Cn—1
for j=1,2,...,n. Hence
€o
C1
(1.14) g = : y 95 =Ag; 1,
Cn—1

where 2 < j < n.

The eigenvalues of the matrix A are the conjugates of a in K/Q; f(z) is the
minimum polynomial of the matrix A. For any h(z) € Q[z], the element h(a) of
the field K is represented by the matrix h(A):

(1.15) h(a) «— h(A).
The norm N(h(a)) of h(a) in K/Q is equal to the determinant of h(A):
(1.16) N(h(@)) = det h(A).
Now let b; denote the j-th column of the matrix B = f/(A):
(1.17) B=fl(A)=nA""1+(n—-1)a; A" 2+ -+ apn_11,,

(1.18) B = (biby...b,).
Then it follows from (1.14) that

2an~2
(1.19) b, = : , b= Abj_y,

where 2 < j < n.
Let D denote the norm of § = f'(a) in K/Q:

(1.20) §=f(a), D= N().

Then (1.16) gives
(1.21) D = det B.
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For j=1,2,...,n, let
(1.22) T =1y 4 rgjat A a T
where 7;; € Z. Then it follows from (1.15), (1.20) and (1.17) that
(1.23) ATIB = ry Ly + o At e AT

for j = 1,2,---,n. By (1.19) we see that the first column of A7™1B is A¥=1b; = b;.
Hence, by (1.14),
(1.24) bj = (r1j,725, - --ﬂ"nj)T~

Now let b;; denote the (i, j)-entry of the matrix B:

bi1 ... bin
{1.25) B=
bni - bpn
By (1.22) and (1.24) we see that
(126) aj‘lézb1j+b2ja+-~~+bnja”_1

for j =1,2,...,n. Let b;; denote the cofactor of the (i, j)-entry b;;, and let
'_1D n—1

(1.27) o’ 5 = 515 + Sgja+ - -+ sy,

where s;; € Z, 1 < j <n. From (1.15), (1.17), (1.20) and (1.21), we obtain

(1.28) (det B)B Y AI™Y = 51,1, + spj A+ - + 5, AV L.

By (1.8) we see that the first column of the matrix A7~! is e;. From (1.14) we
obtain

(Slj, Ceey Sn]‘)T = (det B)B‘lej
= (bjr,-..,bn) T
Hence (1.27) becomes
1D i i on—1
(129) o’ F = bjl + bjga + -+ l)jnOc
for 7 =1,2,...,n. In particular,
D - 7 5 n—1
(1.30) i bii +bipa+ - +bipa” .

It follows from (1.29) and (1.30) that every cofactor (;ij is divisible by the greatest
common divisor of byy,...,01p:

(1.31) (b11,D12, -, b1n) | b
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where 1 <i1<n,1 <7< n.
Clearly, the column vector

(1.32) z=(1,a,...,a" HT
is an eigenvector of the matrix AT corresponding to the eigenvalue o
(1.33) ATz = oz, x#o0.

It is easily seen that an eigenvector of the matrix A corresponding to the eigenvalue
« is given by Mz:

(1.34) A(Mz) = aMx,
where
Apn—-1 Ap-2 ... a1 1
Ap—-2 QAp—-3 ... 1
(1.35) M= : ; -
(5] g 1 0
1
Since 1,a,...,a™ ! are linearly independent over @, it follows from (1.33) and
(1.34) that
(1.36) AM = M AT,
Hence _ A
(1.37) AIM = M(AT)!

for every j € Z.
Let ¢; denote the j-th column of the matrix C(a):

(1.38) Cla) =(c1e3...¢n).

By definition, ' ' '
(1.39) c; = (Tr(e?~1), Tr(ad),..., Tr(ed " 2)T.

From (1.32), (1.33) and (1.39), we obtain
(140) Cj = ATCj_l
for =2,3,...,n. From (1.19),

] —nay,
-—(TL - l)an—l
(1.41) by = '
—2(12
—aq

Newton’s formula gives ‘
(1.42) Mecy = by.

(a4
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From (1.19), (1.37), (1.40) and (1.42), we obtain the following formula (cf. [2], §10):
(1.43) B = MC(a).

Let m? (m € Z) denote the largest square dividing D. Then

(1.44) —l—)— € Og,
mo

where O denotes the ring of integers of K ([4], Theorem 1). Let ¢ denote the index
of a:

(1.45) t = (Ok : Z|a]).
Then )
(1.46) (—1)™5 D = dgt?,

where dg denotes the discriminant of K. It follows from (1.30), (1.44) and (1.45)
that

(1.47) th1;

m
for j =1,2,...,n. By (1.46) we see that

€Z

Dby’

Z
msz €

(1.48)

for j = 1,2,...,n. By hypothesis dg is divisible by p?*. Since D/m? is a square-free
integer, by; is divisible by p*. From (1.31) we obtain

(1.49) o* | by

forall, j (1<i<mn,1<j<n).
By (1.35) we see that every entry of the inverse matrix of M is a rational integer:

(1.50) MY e M, (2Z).
From (1.43),
(1.51) C(a) = M™'B.

Hence the adjugate of C'(a) satisfies
(1.52) adjC(a) = adjB adj(M™1).

It follows from (1.49), (1.50) and (1.52) that the entries of the matrix adjC(a) are
all divisible by p*. Q.E.D.

Remark. It follows from (1.1) that, for any integer a of K, det C(«) is equal
to the discriminant of @ in K/Q, which is divisible by every prime factor p of the
discriminant dx of K. However, if dg is not divisible by p?, K may have an integer
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a such that at least one minor of order n — 1 of the matrix C(«) is not divisible by
p. A simple example is

(1.53) K=Q(a), a*!-p=0,
where p is an odd prime. The matrix

- (2 0
(1.54) Cla) = ( 0 2p >

has four minors of order one. One of them is not divisible by p, and the other three
are all divisible by p.

2. The corner of order n — 1.

In this section we prove a theorem on the corner of order n —1 (i.e. the cofactor
of the (n,n)-entry) of the matrix C(a).
Theorem 2. Let K be an algebraic number field of degree n > 1, and let a be an
integer of K. Then for a prime number p to divide all the minors of order n — 1 of
the n X n matrix

Tr(1) Tr(a) ... Tr(a™1)
Cla) = Tr(a) Tr(a®) ... Tr(a")
Tr(a™Y) Tra™) ... Tr(a?™?)

it is necessary and sufficient that the determinant of C(a) and its corner of order
n — 1 are both divisible by p.

To prove our theorem we require the following lemma.
Lemma 1. Let F be a field, and let S = (s;5) be a symmetric n X n matriz with
(i,7)-entry sij € F'. Let §;; denote the cofactor of the entry s;j. If det S = 5,, =0,
then 5,; =0 for j=1,2,...,n.
Proof. By hypothesis,
(2.1) Sv = o,

where v = (8,1, 8n2,...,8nn) . Forj=1,2,...,n,let S;j denote the (n—1) x(n—1)
matrix obtained from S by deletion of the j-th row and the n-th column. Since
8nn = 0, it follows from (2.1) that

(22) Sj’v() =0
for j=1,2,...,n, where
(23) Vo = (gnl, gn'ly sy gn(n—l))T'

Suppose that 5,,; # 0 for some j < n. Then vy # 0, and so det .S; = 0. This implies
that §;, = 8,; = 0, a contradiction. Hence §,; =0 for j =1,2,...,n.
Proof of Theorem. We may assume that K = Q(«a) (See the proof of Theorem 1).
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Let ¢;; denote the cofactor of the (z, j)-entry c¢;; of the matrix C(a). Let 6 (resp.
d(a)) denote the different (resp. discriminant) of « in K/Q. Then, from (1.30),
(1.35) and (1.43),

d(()z) — b = n—1
(24) T = Cnl F G2+ -+ Cppa .
Let p denote a prime number such that det C{a) = ¢, = 0 (inod p). Then Lemma
1 implies that ¢,; = 0 (mod p) for j = 1,2,...,n. It follows from (1.31), (1.50) and
(1.52) that é&; = 0 (mod p) for all 4, j.

3. Minors of order «.

In this section we discuss some elementary properties of the matrix C'(a) and
its minors.

Let K be an algebraic number field of degree n > 1, and let o be an integer of
K. Letie Z,1<i<n. We denote by é&(a) the greatest common divisor of all
the minors of order ¢ of the matrix C(a). Clearly, ¢;(«) is divisible by &_;(a) for
every ¢ > 1.

Theorem 1 becomes
Theorem la. Let s?(s € Z) denote the largest square dividing the discriminant
of an algebraic number field K of degree n > 1. Then, for any integer o of K,
én_1(@) 1s divisible by s.

Now we have
Proposition 1. Let Ok denote the ring of integers of an algebraic number field
K of degreen > 1, andlet je Z,1 < j<n—1. Let o € Ok, and let cy,...,cj-1,
mg {mg # 0) be rational integers such that

o+ttt +ad
mg

(3.1) € Ok

Then ¢j1(a) is divisible by mg.
Proof. Let ¢ denote the k-th column of the matrix C'(a):

Tr(ak=1)
Tr(ak)
(3.2) . L = .
Tr(akbm=2)
By induction we see that
(3.3) oF T = s+ s+ spgoned T+ moée

for k= 1,2,...,n, where sy € Z, { € Og. Hence

T'r(&k)
(3.4) Ck = Sk0C1 + Sk1C2 + + -+ + Sp(j—1)Cj + Mo :
Tr(a"‘lgk)
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for k = 1,2,...,n. Let ¢k, Ck,,--.,Ck;,, be any (j+ 1) columns of C(a), and let
p be a prime number such that mg is exactly divisible by p* (¢ > 0). Then (3.4)
implies that some c, is a linear combination modulo p* of the other j columns
with integer coeflicients. Hence every minor of order (j + 1) of the matrix C'(«a) is
divisible by p', and so, by mg. Hence ¢;41(a) is divisible by my.

It is well-known (e.g. [6], p.34) that an algebraic number field K = Q(a)
(a € Og) of degree n > 1 has an integral basis of the form

c19+a ¢+ Co10x + a? Cn—1)0+ -+ c(n_l)(,,,z)a"_z +on!

(35) 1) ) sy )

my ma Mp—-1

where ¢;j,m; € Z; m; is divisible by m;_; for every j > 1. By Proposition 1 we
see that ¢;11(a) is divisible by m; for every j <n — 1.

Considering the elementary divisors of C(«a), we obtain
Proposition 2. Let K be an algebraic number field of degree n > 1, and let
o be an integer of K such that K = Q(a). Then ¢;11(a)/é(a) is divisible by
Gila)/éi—1(a) for every i = 1,2,...,n — 1, where éo(a) = 1. Let p be a prime
number such that ¢;(«) is divisible by p* (t > 0). Then ¢;y1(a) is divisible by p**!.
Proof. By hypothesis, det C(a) # 0. The integers

é(a) () Cn(a)

e = = € = = “ e €. = —
1 Co(a)’ 2 ) s En Cn—l(a)

¢i(a)

are the elementary divisors of C(«). Since e;+1 is divisible by e;, it follows that
Giv1(@)/é () is divisible by &(a)/é_1(a). To prove the last assertion, suppose
that ¢;41() is not divisible by p**!. Then ¢; () is exactly divisible by pt; ;41 =
¢iv1(a)/é(a) is not divisible by p. On the other hand,

(3.6) Civ1(a) = erea- - eiq1, €jlejra-
This implies that &41(a) is not divisible by p, a contradiction.
4. Examples.
1) Consider now a cubic field:
(4.1) K=Q(a); a®+aa®+aa+a3=0, a;€Z,

where f(x) = 2% + a;2? + asx + a3 is irreducible. We obtain:

0 0 —-Qa3
(4.2) A= 1 0 —as N
01 —a]
ay —3as aiaz
(43) B = fl(A) = 20,1 —202 aijap — 3(13 N
3 —Q (L12 - 2a2
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(4.4)
Tr(1) Tr(a) Tr(a?)
Cla) = Tr(a) Tr(a?) Tr(a®)
Tr(a?) Tr(a3) Tr(a%)
3 —ai (llz - 2(1,2
= —a1 a12 — 2ay —a13 + 3aiay — 3asz

(L12 — 2ay 7&13 + 3a1a — 3ag (114 — 4a12a2 + 4aia3 + 2&22

Let b;; (resp. &;) denote the cofactor of the (4, j)-entry of the matrix B (resp.
C(a)). Then

(45) 631 = —i)u = a12a2 - 4(122 + 3(11(13,
Gsg = —b1g = 2a:® — Tajag + as,
Gz = —big=2(a;* - 3ay).

Let d(«) denote the discriminant of @. Then a classical formula
(46) d(a) = —4(11303 + (112(122 + 18&1(12(13 - 4(123 - 270,32
follows from 5 5 :

(47) d(a) = —detB = -(a2b11 - 3(13[)12 + a1a3b13).

Let p (p # 2) be a prime factor of é(a) (which we defined in §3). Then ¢33 is
divisible by p, and so
(4.8) a1 =3a; (mod p).

Since d(«) = det C(a) is divisible by p, it follows from (4.6) and (4.8) that

(4.9) 27d(a) = —(a;® — 3%a3)2 =0 (mod p).
Hence
(4.10) a1® = 3%3 (mod p).

Conversely, if p (p # 3) is a prime number which satisfies (4.8) and (4.10), then ¢33
and d(a) are both divisible by p, and é;(a) is also divisible by p (Theorem 2).

Thus we have proved the following result: For a prime number p (p # 2,3) to
divide all the minors of order two of the matriz C(a) it is necessary and sufficient
that a1? = 3ay (mod p) and a;® = 33a3 (mod p).

2) Consider now a cubic field (4.1) satisfying as = a3 = 0 (mod 3), a; £ 0
(mod 3). Then by (4.5) and (4.6) we see that both ¢ and d(a) = det C{a) are
divisible by 3, but ¢33 is not divisible by 3 (cf. Theorem 2, Lemma 1). Suppose that
a; = a3z = 1, ay = —1 (mod 4). Consider the prime p = 2. By (4.5) and (4.6) we
see that both és3 and det C(a)(= d(a)) are divisible by p?, but ¢3; is not divisible
by p? (cf. Theorem 2).

3) The converse of Theorem 1 is not true. Let k = 1,p = 2, and let K be a cubic
field with odd discriminant dg such that, for every integer « of K, the discriminant
d(a) of a is even (Dedekind[3]). Then, for any integer a of K, det C(a) = d(«) is

10
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divisible by p = 2; it follows from Theorem 2 and (4.5) that every minor of order
two of the matrix C'(«a) is divisible by p, but df is not divisible by p?.

4) Let Ok denote the ring of integers of an algebraic number field K of degree
n > 1, and let a € Ok such that K = Q(a). Let 6 (resp. d(a)) denote the different
(resp. discriminant) of a in K/Q, and let m?(m € Z) denote the largest square
dividing d(a). By (1.44) we see that

d
(4.11) % € Og.
From (2.4),
= = . = n—1
(4.12) d{a) _ Cm + Cpox + -+ + Cpna ,

mo m
where ¢;; denotes the cofactor of the (3, j)-entry of the matrix C'(a).

Now suppose that ¢,—1(a) = 1. Then K has a very simple integral basis (cf.
[1],[4],[6]). By Theorem 2 we see that m is prime to ¢,,. Let a,b € Z such that

(4.13) Qlpp +bm =1,
and define p
(4.14) g= ) e o
mo
Then {1,q,...,a" 2 g} is an integral basis of K, since
(1) (Wn-2  g(1) |2

1 o e« Jéi d(a)
(4.15) ===

| am  gmme2 g | M

is square-free. The discriminant of K is

)

(4.16) dx = —.
m

Since dg is square-free, it follows from [5] (Theorem 1) that the Galois group of
K /Q is isomorphic to the symmetric group S, where K denotes the Galois closure

of K/Q.
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