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3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, JAPAN 

(Received December 7, 1995) 

1. Introduction 

Let B(t ), t ~ 0, be a one-dimensional Brownian motion with B(O) = 0 defined on 
a certain probability space (Q, ffe, P). Given a real valued Borel funcion a(x), x ER, 

satisfying 

( 1.1) I a(x) I :::;K, XER, 

we consider the stochastic differential equaion (SDE) 

( 1.2) 

or equivalently 

(1.3) 

dX(t) = a(X(t))dB(t) + X(t) dt, 
t 

f
t ft X(s) 

X(t) = a(X(s))dB(s) + -- ds, 
0 0 s 

X(O)=O, 

t>O, 

where a solution X(t) is assumed to be non-anticipating, so the first term in the right 
hand side of (1.3) is the usual Ito integral. We also consider the SDE 

(1.4) dX(t)=a(X(t))d+ B(t)+ X(t) dt, X(O)=O, 
t 

or equivalently 

(1.5) I
t It X(s) 

X(t) = a(X(s))d+ B(s) + -- ds, 
0 0 s 

t>O, 

where a solution is assumed to be backward non-anticipating in the sense as defined 
later and the first term in the right hand side of (1.5) is a backward stochastic integral 
defined as the limit of L a(X(tk))(B(tk)- B(tk _ 1)) as I L1 I= max(tk- tk- i)~O, L1 being a 
partition of [O, t] : 0=t0 <t1 < t2 < · · · < tn = t. The second term in the right hand 
side of ( 1.3) as well as of ( 1.5) equals limE ! 0 J: s- 1 X(s)ds that is assumed to exist a.s. 

When a(x)= 1, (1.3) and (1.5) have the same form that makes sense even if X(t) 
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is neither non-anticipating nor backward non-anticipating. In this case Jeulin and 
Yor ([3][5]) proved that for any general solution X(t) of ( 1.3) ( = ( 1.5)) the limit of 
X(t)/t as t-+oo, denoted by U, exists a.s. and that X(t) is represented as X(t)=f3(t)+ 
tU, where f3(t) = - t J; s- 1dB(s), which is again a Brownian motion. In particular if 
X(t) is backward non-anticipating, then U is independent of B(t), t 2 0. However 
non-anticipating solutions do not exist (e.g. [I]). Domenig-Nagasawa [I] discussed 
the uniqueness and non-uniqueness of solutions of (1.2) with Skorohod's additional 
term on the right hand side to make I X(t) Is R(t) where R(t) is a given strictly in
creasing continuous function with R(O) = 0. 

In this paper some generalization of the result by Jeulin and Y or stated in the 
above will be given in the case of a variable coefficient a(x). Before stating our results 
we introduce the following (j-fields on Q. 

ff ( B) = (j { B( t) : t 2 0} , ffe,( B) = (j { B( s) : 0 s s s t} , 

ffe, + (dB) = (j { B( s + t) - B( t) : s 2 0} . 

Here the notation (j{ ( *)} stands for the smallest (j-field on Q that makes ( *) 
measurable. For a process { X(t)} and a random variable U we define ff(X), ffe,(X) 
and ff(U) in a similar way and g;;+(x, dB)=(j{X(s+t), B(s+t)-B(t):szO} for each 
t 2 0. We say that X(t) is non-anticipating if ffe,(X) v ffe,(B) is independent of ffe, +(dB), 
and that X(t) is backward non-anticipating if g;;+(x, dB) is independent of ffe,(B) for 
each t20. Let W be the space C[O, oo) of continuous functions. For an element w 
of W we denote by w(t) the value of w at time t. On W we consider the (j-fields 
.?J(W)=(j{w(t), t20}, Pfi1(W)=(j{w(s), Ossst} and PJ/(W)=(j{w(s+t)-w(t):s20}. 
The Brownian motion { B(t ), t 2 O} can be regarded as a random variable taking values 
in W. When we take such a view-point we write B={B(t), t20}. Thus Bis a random 
variable with values in W whose probability law is the Wiener measure. 

Our results are the following. 

Theorem 1. Assume that a(x) is Borel measurable in R, continuous at x = 0 and 
satisfies (I. I). Then there are no non-anticipating solutions of( 1.3) provided that a(O) -=fa 0. 

Theorem 2. Assume that a(x) satisfies ( 1.1) and is Lipschitz continuous. 
(i) ff X(t) is a backward non-anticipating solution ~[ (1.5), then the limit 

(1.6) U = lim 3(t) 
f-+oo l 

exists almost surely and is independent of {B(t), t20}. The X(t) satisfies 

(I. 7) X(t) ~ - If" a(~(s)) d+ B(s)+ tU, t>O. 

Conversely, if X(t) is a backward non-anticipating solution of (I. 7)for any given random 
variable U that is independent ~f {B(t), t20}, then X(t) satisfies (1.5). 

(ii) There exists a real valued/unction <P defined on (0, oo) x Rx Wand having 
the following properties. 

(I.Sa) For each t>O the restriction ~f <Pon [t, oo) x Rx Wis measurable with respect 
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to ~([t, oo))®~(R)®~/(W). 
( l.8b) For each x ER the set { w E W: <P(t, x, w) is continuous in t} has the Wiener 

measure 1. 
( 1.9) Any backward non-anticipating solution X(t) qf (1.5) can be represented as 

X(t) = <P(t, U, B), a.s., 
where U is given by (1.6). 

Note that ( 1.8a) implies the measurability of <P with respect to ~((O, oo )) ® 
~(R)®~(W). 

2. Proof of Theorem 1 

We begin by proving the following lemma. 

Lemma 1. ff X(t) is a non-anticipating solution of (1.3), then the limit 

(2.1) U= hm - -- ds= hm --. 1 f' X(s) . X(t) 
,--.Cf) t 0 s t-+ Cf) t 

exists almost surely and X(t) satisfies 

X(t)= -tf Cf) a(X(s)) dB(s)+tU, 
t s 

(2.2) t>O. 

Proof. If we put 

(2.3) 1 J' X(s) U(t)=- --ds, 
t 0 s 

M(t)= t a(X(s))dB(s), 

then X(t) = t{ tU(t)}' = tU(t) + t 2 U'(t) and (1.3) implies X(t) = M(t) + tU(t). Therefore 
U'(t) = r 2 M(t) and hence 

(2.4) U(s)- U(t)= J: M(r)r- 2dr, O<t<s. 

Since 

E{r IM(r) 1r- 2dr}= r E{I M(r) IV 2dr.,; r J E{I M(r)l}2 r- 2 dr 

= r [ E{t a(X(u))
2
du} J1'r- 2

dr.,;K r r1
f2r-

2
dr< 00 , 

letting s j oo in (2.4) we see that U = lims t Cf) U(s) exists (a.s.) and 

(2.5) U(t) = - f 00 M(s)s - 2 ds + U, 

or equivalently 
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(2.6) It X(s) Joo 
--ds= -t M(s)s- 2 ds+tV, 

0 s t 

and hence 

(2.7) X(t) =-Joo M(s) ds+ M(t) + U. 
t t s 2 t 

By putting f(t, x)=x/t and applying Ito's formula to df(t, M(t)), we have 

M(s) - M(t) =-Is M~u) du+ Is a(X(u)) dB(u). 
S { I U I U 

Since lims i 00 s- 1M(s)=0 in probability which follows from El M(s) I~ KJS, we 
have 

(2.8) _M(t) =I oo -~¥! ds-J oo a(X(s)) dB(s) . 
{ I S t S 

Comparing this with (2.7), we have (2.2). The second equality in (2.1) follows from 
(2.2). D 

We now proceed to the proof of Theorem 1. Suppose there exists a non
anticipating solution X(t) of (1.3). If we put Xn(t)=/nX(t/n) and an(x)=a(x/)n-) 
for n?_ 1, then X(t)=n- 112 Xn(nt) and an(x)-+a(O) as n-+oo. From (1.3) we have 

I

t/n It/n X(s) 
Xn(t)=F a(X(s))dB(s)+F -ds. 

0 0 s 
(2.9) 

Noting that 

Jn r· a(X(s))dB(s) = L a.(X.(s))dB.(s) ' 

where Bn(t) =Jn B(t/n), which is again a Brownian motion, we see that Xn(t) is a 
non-anticipating solution of 

(2.10) 

Therefore by Lemma 1 we have 

Xn(t)= -tf 00 _an(Xh)) dBh)+tVn, 
I S 

(2.11) 

where 

(2. 12) Un= lim Xn(t) = lim _!_It Xn(s) ds = ·-1 - U. 
t-+oo t t-+oo t o S F 

Let vn be the probability law of {Un,{Bn(t),t?_O}, {Xn(t),t>O}} and put 
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Yn(t) = t- 1 Xn(t). Making use of the representation (2.11), the bound I an Is Kand the 
Burkholder-Davis-Gundy inequalities, we have E{I Yn(t)- Yn(s) 14 } s3(Ks- 1

)
4 1t-s12

, 

0 <s< t. Therefore the sequence of probability laws of { Yn(t), t>O}, n 2 1 is tight, so 
is { vn}· According to Skorohod's realization theorem of almost sure convergence 
(e.g. see [2], [ 4]), there exist 0"' { B"(t), t z O} and { X"(t), t > O} satisfying the following 
conditions. 

(i) {O"' {Bn(t), tzO}, {Xn(t), t>O}} is identical in law to {U"' {Bn(t), tzO}, 
{ Xn(t), t > O}} for each n 2 I. 

(ii) There exist a Brownian motion {B(t), tzO} and a process {X(t), t>O} such 
that Bn(t)~ B(t) uniformly on each compact t-interval in (0, oo) (a.s.), 
x"(t)~X(t) uniformly on each compact t-interval in (O, oo) (a.s.), and O"~o 
a.s. 

The condition (i) implies that §",(Xn) v §",(Bn) is independent of §",+(dBn) and hence 
§",(X) v §",(B) is also independent of §",+(dB) for each tzO; in other words, X(t) is 
non-anticipating. Since the equation (2.11) also holds with Xi·) and Bn( ·) replaced 
by Xn( ·) and BnC • ), respectively, by letting n j oo we have 

- f CX) dB(s) (2.14) X(t)= -a(O)t --- . 
t s 

It then follows that X(t) is measurable with respect to §",+(dB), which clearly 
contradicts the assertion that X(t) is non-anticipating. O 

3. Proof of Theorem 2 

Let X(t) be a backward non-anticipating solution of (1.5) and put Y(t)=X(t)/t, 
ii(t, x) = a(tx)/t, t > 0. 

Lemma 2. (i) The limit 

(3.1) l. l" 1 ft X(s) U= Im Y(t)= Im - --· ds 
t-+OCJ t-+OCJ t 0 s 

exists almost surely and is independent of {B(t), tzO}. 
(ii) The process Y(t) is a backward non-anticipating solution of 

(3.2) Y(t)= - f 00 ti(s, Y(s))d+ B(s)+ U, t>O. 

Moreover, for any backward non-anticipating solution Y(t) of (3.2) with a given U that 
is independent of {B(t), tzO} the process X(t)=tY(t) is a backward non-anticipating 
solution of (l .5). 

Proof. If we put 

(3.3) I f 1 
X(s) U(t)=- --· ds, 

t 0 s 
N(t)= I a(X(s)W B(s), 

then in the same way as we derived (2. 7) we can prove the existence of the limit U 
and the formula 
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(3.4) 

It is also easy to see that (3.4) with N(t) given by (3.3) is equivalent to (1.5) under 
the assumption that X(t) is backward non-anticipating. Fixing T> 0, we put 

M(t)= f _, a(X(s)W B(s), Os ts T. 

Then M(t)+N(T-t)=M(T)=N(T) holds and {M(t), Os ts T} is a r;§r-margingale 
where r;§r=ff/_i(X,dB), OstsT. Moreover, if we put X(t)=X(T-t) and 
B(t)=B(T)-B(T-t) for Os ts T, then {B(t), Os ts T} is a r;§r-Brownian motion and 
M(t) = J~ a(X(s))dB(s) (Ito integral). Putting f(t, x) = x/(T- t) and applying Ito's 
formula to df(t, M(t)), we have 

M(tl_=ft -~M(s) ds+fr d'!!_~=f r -~~s)_ ds+ft ~~~(s)) dB(s) 
T-t 0 (T-s)2 

0 T-s 0 (T-s)2 
0 T-s 

=ft M~!)-N(~-s) ds+IT a(X(s))_ d+ B(s) 
o (T-s) T-1 s 

= A!J!)__~(T) -IT N~) ds+IT a(X(s)) d+ B(s). 
T- t T T-t s T-t s 

Hence 

(3.5) M(T) =~(T- t) -IT N~) ds+ IT a(X(s)) d+ B(s). 
T T- t T-t s T-t s 

Since limTi 
00 

r- 1M(T)=0 in probability which is a consequence of the inequality 
EIM(T)lsK~T, after replacing T-t by t and then by letting Tjoo in (3.5), we 
have 

(3.6) N_~tj_ -J oc' N(sL ds + J w a(X(s))_ d + B(s) = 0 . 
t r s2 t s 

Comparing this with (3.4), we have 

X(t) Jw a(X(s)) t+ ) 
--=- c B(s+U, 

t t s 

which proves (3.2). Note that U is indpendent of { B(t)} since U is measurable with 
respect to a{X(s): sz t}, which is independent of g;;(B), for any fixed t. To prove the 
latter half of (ii) of Lemma 2 we note that (3.6) with N(t) given by (3.3) holds only 
under the assumption that X(t) is backward non-anticipating. Therefore, if Y(t) is a 
backward non-anticipating solution of (3.2), then X(t) = t Y(t) satisfies (3.4) and hence 
( 1.5). D 

Lemma 3. For each x let { YHt), t > O} be the unique backward non-anticipating 
solution of 
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(3.7) { 

Y~{I)= - IT ll(s, YHs))d+ B(s)+x, 

Y r(t)=x, t'2 T. 

O<tsT, 

Then for any fixed t0 and t 1 with 0<t0 <t 1 and for any f, > 0 

(3.sJ PL:i~;,, 1 n(1)- Y~.(1J 1 > "}-4 o 

uniformly with respect to x as T, T' ~ oo. 

Proof. Assume Ts T'. A comparison theorem (e.g. see Theorem 1.1, p. 437 of 
[2]) implies that y~-b(t)s YHt)s y~H(t) holds for ts Twhenever x-bs YHT)s 
x + b, b being an arbitrary but fixed constant. Therefore for any f, > 0 and for 0 < t0 < 
t 1 s T we have 

Pt:i~:,, I Y~(t)- YHI) I >r.} 
,u{ C:i~;,, I YHf)- YHI) I >r.) n (x-D,;; YH71'.£ x +'5)} 

+P{I Y~.(T)-xl>c5} 

'.£ PL:i~;,, ( Y~"(t)- y~-'(t))>r. }+ P{I YHT)-xl >b} 

'.£ :- E { Y~"(l0)- n-'(10)} +-'5
1
2 £{ r· a(s, Y~.(s))2ds} 

s;2&- I+ K2T- Ib-2' 

from which the assertion of the lemma follows. D 

Lemma 4. There exists a real valuedfunction 'P de.fined on (0, oo) x R x W and 
having the .following properties. 
(3.9a) For each t > 0 the restriction of 'Pon [t, oo) x Rx Wis measurable with respect 

to .?J([t, oo )) ® .?J(R) ® .?41+( W). 
(3.9b) For each x ER the set { w E W: IJ'(t, x, w) is continuous in t} has the Wiener 

measure 1. 
(3.10) For any U independent of {B(t), t'20}, lJ'(t, U, B) is the unique backward 

non-anticipating solution of (3.2). 

Proof. From Lemma 3 there exists an increasing sequence {Tn} with Tn~oo 
such that 

P{ max I YHf)- Y~.(t) I >n- 2
} <n- 2

, 

1/nstsn 

holds for any T, T' '2 Tn and for any x (n = 1, 2, · · · }. If we take T= Tn and T' = Tn + 1 , 

we have 
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P{max IY~)t)-YL+,(t)I> 1 }< 1
, 

1/nStSn n 2 n 2 
XER. 

From the Borel-Cantelli lemma, 

P{ max I Y~jt)- YL+
1
(t)I ~-12- for all sufficiently large n}= 1, 

l/nStSn n 

which implies that Y}n(t) is uniformly convergent on each t-interval [c, 1/£] almost 
surely for each fixed x, F. being an arbitrary constant in (0, 1). We now put 

(3.11) r(t, w)= lim Y~Jt, w). 
n-+ oo 

Then, for each x, r(t, w) is continuous in t (a.s.), -~ + (dB)-measurable for each 
t>O and satisfies the SOE 

(3.12) yx(t)= - r· ii(s, r(s))d+ B(s)+x. 

We construct a function 'I' with the properties in Lemma 4 by considering a suitable 
modification of Y}(t). Making use of a routine construction of YHf) by iteration 
we can prove that there exists a function 'I' T defined on (0, oo) x Rx Wand having 
the following properties (3.13a), (3.13b), (3.13c) and (3.14). 

(3.13a) 'I' r(t, x, w) = x for t?. T. 
(3.13b) For each t>O the restriction of 'PT on [t, oo) x Rx Wis measurable with 

respect to ~([t, oo )) ® .?fi(R) ® ~/( W). 

(3.13c) For each x ER, 'I' r(t, x, B) is continuous in t (a.s.). 
(3.14) For each xER, 'Pr(t,x,B), O<t~T, satisfies the SOE (3.7) and hence 

'Pr(t, x, B)= Y[(t), t>O, almost surely. 
If we put 'I' cx,(t, x, w) =limn_, cxi 'I' rJt, x, w), then 'I' cxi inherits the properties (3.13b) 
and (3.13c). The property (3.14) together with (3.11) and (3.12) implies that 'I' w(t, x, B) 
satisfies the SOE (3.12) for each x. We now modify 'I' w: 

'P(t, x, w) = lim 'I' 
00

( [nt] + 1-, x, w) . 
n-+ OCJ n 

Then 'I' also inherits the properties (3.13b) and (3. I 3c) and 'P(t, x, B) satisfies the SOE 
(3.12) for each x. Consider the set 

-{ . 'P(t, x, w) is uniformly continuous in} r - (x, w). ' 
tE[c, l/c]nQforanycE(O, 1) 

where Q is the set of rational numbers. Then r E /~(R) ® ~( W) and 'P(t, x, w) is 
continuous in t if and only if (x, w) Er. Since 'P(t, x, B) is continuous in t (a.s.) for 
each fixed x, P{ (x, B) Er}= I for each x, or equivalently, (3.9b) holds. Therefore, 
for any real random variable U that is independent of B we have P{ ( U, B) Er}= I 
and this implies that 'P(t, U, B) is continuous in t almost surely. We now put 
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F(t, x, B)= J"' ii(s, 'l'(s, x, B))d+ B(s). 

Then 

(3.15) P(t, x, B)= -F(t, x, B)+x, a.s., 

because P(t, x, B) satisfies (3.12) for each x. Approximating the stochastic integral 
F(t, x, B) by a suitable Riemann sum, we can prove that 

F(t, U, B) = J"' ii(s, 'l'(s, U, B))d + B(s) a .s. , 

which combined with (3.15) implies that <P(t, U, B) is a backward non-anticipating 
solution of (3.2). 

To complete the proof of the lemma, we have to show that any solution Y(t) 
of (3.2) agrees with P(t, U, B). We put Yu(t) = P(t, U, B) and UT= - J; a(s, Y(s)) 
d + B(s) + U. Then Y(t) is the unique solution of 

Y(I) = - IT a(s, Y(s))d + B(s) +UT, 0<1,,;, T, 

and hence by a comparison theorem we have for £ > 0 

P{ yu-e(t)s Y(t)s yu+e(t) for all tE(O, TJ} 

Therefore 

= P{ yu-e(T)s UTs yu+e(T)} 

=1-P{UT< yu-e(T)}-P{UT> yu+e(T)} 

:2:1-P{lf (a(s, Y(s))-cl(s, yu-'(s)))d+B(s)l>r.} 

- p{ Ir (cl(s, Y(s))-ii(s, yu+'(s)))d + B(s) I >c} 

:2: 1 - f. -
2 E { I r ( ii(s, Y(s)) - cl(s, yu - '(s)))d + B(s) n 

_ ,-
2 E {Ir (cl(s, Y(s))-a(s, yu+'(s)))d+ B(s) n 

for all t>O, a.s. 

On the other hand, by a comparison theorem we have P T(t, U-£, B) s P T(t, U, B) s 
tp T(t, U + £, B), 0 <ts T, a.s. and hence P(t, U -£, B) s P(t, U, B) s P(t, U + £, B), 
t>O, a.s. Consequently E[I yu+c(t)- yu-c(t)IJ=E[Yu+e(t)- yu-CU)]=2£, which 
implies Yu(t) = Y(t), t > 0, almost surely. This completes the proof of Lemma 4. D 
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Proof of Theorem 2. For any solution {X(t)} of (1.5), {X(t)/t} satisfies the 
SOE (3.2) by Lemma 3 and hence X(t)/t = P(t, U, B) a.s., where U is given by (3.1 ). 
If we put <P(t, x, w) = tlf'(t, x, w), then <P has all the properties stated in (ii) of Theorem 
2. The proof of Theorem 2 is finished. D 
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