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1. Introduction

Let B(t), t>0, be a one-dimensional Brownian motion with B(0)=0 defined on
a certain probability space (2, %, P). Given a real valued Borel funcion a(x), xe R,
satisfying

(1.1) la(x) <K, xeR,
we consider the stochastic differential equaion (SDE)
X(1)
(1.2) dX(t)=a(X(1))dB(t)+ —dt , X(0)y=0,
t
or equivalently
t t
X
(1.3) X(t)=j a(X(s))dB(s)+f © 4. >0,
0 o ¢

where a solution X(z) is assumed to be non-anticipating, so the first term in the right
hand side of (1.3) is the usual Ito integral. We also consider the SDE

(1.4) dX(t)=a(X(1))d+B(t)+@ dr, X(0)=0,
or equivalently
Jeona s [ 27
(1.5) X()=| aX(s)dTB(s)+| ——ds, t>0,
0 0

where a solution is assumed to be backward non-anticipating in the sense as defined
later and the first term in the right hand side of (1.5) is a backward stochastic integral
defined as the limit of ) a(X(#,))(B(t,)— B(t, - )) as | 4| =max(t,— t, ;)—0, 4 being a
partition of [0,7]: 0=t,<t,<t,<---<t,=t. The second term in the right hand
side of (1.3) as well as of (1.5) equals lim, | , | s~ " X(s)ds that is assumed to exist a.s.
When a(x)=1, (1.3) and (1.5) have the same form that makes sense even if X{(r)
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is neither non-anticipating nor backward non-anticipating. In this case Jeulin and
Yor ([3][5]) proved that for any general solution X(z) of (1.3) (=(1.5)) the limit of
X(t)/t as t— o0, denoted by U, exists a.s. and that X(¢) is represented as X(¢)= (1) +
tU, where f(t)= — tjf° s~ 1dB(s), which is again a Brownian motion. In particular if
X(1) is backward non-anticipating, then U is independent of B(¢), 1>0. However
non-anticipating solutions do not exist (e.g. [1]). Domenig-Nagasawa [1] discussed
the uniqueness and non-uniqueness of solutions of (1.2) with Skorohod’s additional
term on the right hand side to make | X(r)| < R(z) where R() is a given strictly in-
creasing continuous function with R(0)=0.

In this paper some generalization of the result by Jeulin and Yor stated in the
above will be given in the case of a variable coefficient a(x). Before stating our results
we introduce the following g-fields on Q.

F(B)=c[B(t):1>0},  F(B)=c{B(s):0<s<1),
F, (dB)=0{B(s+1)— B(1):s>0} .

Here the notation o{(*)} stands for the smallest o-field on Q that makes ()
measurable. For a process {X(¢)} and a random variable U we define #(X), Z(X)
and #(U) in a similar way and % * (X, dB)=0{X(s+1), B(s+1)— B(t): s>0} for each
t>0. We say that X(z) is non-anticipating if Z(X) v Z(B) is independent of %, (dB),
and that X(¢) is backward non-anticipating if % *(X, dB) is independent of %,(B) for
each 1>0. Let W be the space C[0, «) of continuous functions. For an element w
of W we denote by w(r) the value of w at time ¢. On W we consider the o-fields
BW)=0a{w(t), 1=0}, B(W)=0{w(s),0<s<r} and B (W)=a{w(s+1)—w(t):5>0}.
The Brownian motion {B(t), t >0} can be regarded as a random variable taking values
in W. When we take such a view-point we write B={B(t), t >0}. Thus B is a random
variable with values in W whose probability law is the Wiener measure.
Our results are the following.

Theorem 1. Assume that a(x) is Borel measurable in R, continuous at x=0 and
satisfies (1.1). Then there are no non-anticipating solutions of (1.3) provided that a(0) #0.

Theorem 2. Assume that a(x) satisfies (1.1) and is Lipschitz continuous.
(1) If X(1) is a backward non-anticipating solution of (1.5), then the limit

(1.6) U= 1lim XY

t-o0 [

exists almost surely and is independent of {B(1), t >0}. The X(t) satisfies

A

(1.7) X(r):—tfwa(X(s))d*B(s)HU, t>0.

Conversely, if X(t) is a backward non-anticipating solution of (1.7) for any given random
variable U that is independent of {B(t), 1 >0}, then X(t) satisfies (1.5).

(i)  There exists a real valued function ® defined on (0, co) x R x W and having
the following properties.

(1.8a) For each t>0 the restriction of @ on [t, a0) X R X W is measurable with respect
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10 B([t, 0) ® BR)® B, (W).

(1.8b) For each xeR the set {we W:®(t, x, w) is continuous in t} has the Wiener
measure 1.

(1.9)  Any backward non-anticipating solution X(t) of (1.5) can be represented as

X@n)=ot, U, B), a.s.,
where U is given by (1.6).

Note that (1.8a) implies the measurability of @ with respect to #((0, ©0))®
B(R) R B(W).

2. Proof of Theorem 1

We begin by proving the following lemma.

Lemma 1. If X(t) is a non-anticipating solution of (1.3), then the limit

Q.1 U=tim L | X9 4 pim X

t»wo [ 0 N t— o0 t

exists almost surely and X(t) satisfies
© alX

2.2) X(1)= —zf AXG) ypg+iU. 10,
. s

Proof. If we put

2.3) U(t)=% j YO o M= f X ($)dBLS) |
§ 0

0

then X(¢)=t{tU(t)} =tU(t)+t*U’(¢) and (1.3) implies X(¢)= M(t)+tU(t). Therefore
U'(t)=1"2M(r) and hence

2.4) Uls)— U(t)=JsM(r)r“2dr, 0<i<s.

Since

E{va|M(r)|r~2dr}=J‘w E{| M(r)|}r_2dr5J‘OO E{|M(r)|}?r 2dr

e} r 1/2 0
=J [E{J a(X(u))zdu}] r‘zdrsKJ rt2r 2dr< o,
t 4] t

letting s 7 c0 in (2.4) we see that U=Ilim,, ,, U(s) exists (a.s.) and
(2.5) Uir)= —J M(s)s 2ds+ U,

or equivalently
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(2.6) jt ) ds= —tjw M(s)s 2ds+1tU ,
0] N t
and hence
@.7) Xf”:—r M) ds+ﬁt”_)+u.
! S

By putting f(z, x)=x/t and applying 1t6’s formula to df(t, M (t)), we have
M) M@) _ J M j a(X(u)

S !

dB(u) .

u u

Eince limstws*‘M(s):O in probability which follows from E[ M(s)lsKﬁ, we
ave

2.8) M _ r Mg”, ds— F AXO) ps) .

t s N

Comparing this with (2.7), we have (2.2). The second equality in (2.1) follows from
(2.2). O

We now proceed to the proof of Theorem 1. Suppose there exists a non-
anticipating solution X(¢) of (1.3). If we put X,(t)=./n X(¢/n) and a,(x)=a(x/\/n )
for n>1, then X(1)=n""2X,(nt) and a,(x)—a(0) as n—oo. From (I. 3) we have

(2.9) Xn=yn J SNAB(s)++/ n j‘/n X 4

Noting that

t

a(X (s))dB(s) = j a,(X,(s)dB,(s) .

0

t/n

!

0

where B, (¢ \/n B(t/n), which is again a Brownian motion, we see that X () is a
non-anticipating solution of

(2.10) X,(1)= j la,,(X,,(s))dB,,(s)-th AdS) g
0

0 S

Therefore by Lemma 1 we have

Q2.11) X,,(t):tf LD g 41U,
f S
where
2.12) U,=lim Xll) _jim J RO
o 1 s &y S n

Let v, be the probability law of {U, {B,),t>0}, {X,(),t>0}} and put
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Y, (1)=1t"'X,(¢). Making use of the representation (2.11), the bound |a,| <K and the
Burkholder-Davis-Gundy inequalities, we have E{| Y,(1)— Y,(s)|*} <3(Ks™')*|t—s |2,
0 <s<t. Therefore the sequence of probability laws of { Y,(¢), >0}, n>1 is tight, so
is {v,}. According to Skorohod’s realization theorem of almost sure convergence
(e.g. see [2], [4]), there exist U,, {B,(t), t>0} and { X,(t), t >0} satisfying the following
conditions.
(i) {0, {B,1), t=0}, {X(t),t>0}} is identical in law to {U,, {B,(t), t>0},
{X,(1), t>0}} for each n>1.
(i) There exist a Brownian motion {B(¢), t>0} and a process {X(¢), 1>0} such
that B,(t)— B(r) uniformly on each compact t-interval in (0, ) (a.s.),
X ,,(t)—»)? (2) uniformly on each compact -interval in (0, o) (a.s.), and (7,,—»0
a.s.
The condition (i) implies that #(X,) v %(B,) is independent of %, *(dB,) and hence
F(X)v Z(B) is also independent of % *(dB) for each 1>0; in other words, X () is
non-anticipating. Since the equation (2.11) also holds with X,(+) and B,(-) replaced
by X,(-) and B,(-), respectively, by letting n1 o0 we have

(2.14) R(t)= —a(O) j “ dBGs) |

P N

It then follows that X(r) is measurable with respect to % *(dB), which clearly
contradicts the assertion that X(z) is non-anticipating. O

3. Proof of Theorem 2
Let X(r) be a backward non-anticipating solution of (1.5) and put Y(¢)=X(t)/t,
at, x)=a(tx)/t, t>0.
Lemma 2. (i) The limit
. N . ¢
3.1) U=lim y(=tim = | X 4
t—= 0 too [ Jo S

exists almost surely and is independent of {B(1), t>0}.
(ii) The process Y(t) is a backward non-anticipating solution of

(3.2) Y(t)= —r a(s, Y(s))d* B(s)+ U,  1>0.

Moreover, for any backward non-anticipating solution Y(t) of (3.2) with a given U that
is independent of {B(t), t=0} the process X(t)=tY(t) is a backward non-anticipating
solution of (1.5).

Proof. If we put

t

(3.3) Uity= " { RGN N(t)=f aX(s)d* Bls) ,

0

then in the same way as we derived (2.7) we can prove the existence of the limit U
and the formula
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(3.4) X(’)z_r N g MO Ly
t ¢ N t

It is also easy to see that (3.4) with N(z) given by (3.3) is equivalent to (1.5) under
the assumption that X(¢) is backward non-anticipating. Fixing 7> 0, we put

T
M(t)=J a(X(s))d * B(s), 0<t<T.
T—1t

Then M(t)+N(T—t) M(T)=N(T) holds and {M(r),0<¢<T} is a %-margingale

where %,=%;"(X,dB), 0<t<T. Moreover, if we put X(t)=X(T—t) and
B(t)y=B(T)— B(T~ t)for0<t<T, then {E(t), 0<t<T} is a %-Brownian motion and

M(1) fo X(s))dB(s) (Itd integral). Putting f(t, x)=x/(T—1) and applying Itd’s

formula to df(t, M(t)), we have

M(t) :J’ M(s) d3+j dM(s) _ th()d J' aX(s) dB(s)
T—1t o (T—s)? o I'—s r

(T S)2 0 —38
[ MO [ g
0 (T S)Z T-1 A
::M““,A“ﬂvjv A%>m+JT adXO) g
T—1 T T—t 52 Tt s ’
Hence
(3.5) Mm:N(T_’)—jT N ds+JT XD 4+ s
T T—1: T—t § T—t S

Since limy, ,, T~ 'M(T)=0 in probability which is a consequence of the inequality
E| M(T)lsK\/T, after replacing T—1 by ¢ and then by letting 71 oo in (3.5), we
have

(3.6) al —F M) ds+r A 4+ pisy=0

t 52

Comparing this with (3.4), we have
mnz_jwdnm
t

d*B(s)+U
t s

which proves (3.2). Note that U is indpendent of {B(¢)} since U is measurable with
respect to o{X(s): s>}, which is independent of %(B), for any fixed ¢. To prove the
latter half of (ii) of Lemma 2 we note that (3.6) with N(¢) given by (3.3) holds only
under the assumption that X(¢) is backward non-anticipating. Therefore, if Y(¢) is a
backward non-anticipating solution of (3.2), then X (¢)=1Y(r) satisfies (3.4) and hence

(1.5). O

Lemma 3. For each x let {Y}(1), t>0} be the unique backward non-anticipating
solution of
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T
Yi(1)= — j as, Yi(s)d " Bls)+x. 0<t<T,

(37 {Y’;(z)zx, 1=>T.

Then for any fixed t, and t; with 0 <ty <t, and for any ¢>0

to<t<t,

(3.8) P{ max | Yi(1)— Y§,(z)|>g} 50

uniformly with respect to x as T, T'— c0.

Proof. Assume T<T'. A comparison theorem (c.g. see Theorem 1.1, p. 437 of
[2]) implies that Y% %(1)< Y%.(¢1) < YE'9(¢) holds for t < T whenever x —5 < Y3(T) <
X+ 0, é being an arbitrary but fixed constant. Therefore for any ¢>0 and for 0 <, <
t; <T we have

P{ max | Yi(¢t)— Y’;vr(t)l>s}

lg<t<tiy

5P{< max | Y(t)— Y’;,(t)|>a) N(x—d< Y’},(T)£x+5)}

1o<t<ty

+P{| Yi(T)—x|>5)

SP{ max (Y3*(t)— Y’}_‘s(t))>8}+P{| Y3(T)—x|>6}

to<t<ty
T

< By - Y’%“’(to)}+—5l—2—r E { J ats, Y’%'(S))zds}
&

T
<206 '+ K2T 1572,
from which the assertion of the lemma follows. O

Lemma 4. There exists a real valued function ¥ defined on (0, c0) x R x W and

having the following properties.

(3.9a) Foreach t>0 the restriction of W on [ t, 0) X R x W is measurable with respect
10 ([, ) ® BR)® B (W).

(3.9b) For each xe R the set {we W:¥(t, x,w) is continuous in t} has the Wiener
measure 1.

(3.10) For any U independent of {B(t), t=0}, ¥(t, U, B) is the unique backward
non-anticipating solution of (3.2).

Proof. From Lemma 3 there exists an increasing sequence {7T,} with 7,— o0
such that
P{ max |Y’}(t)—Y}“,(t)|>n_2}<n_2, 0<i<T,, xeR
I/m<t<n

holds forany 7, 7' > T, and forany x (n=1,2, - - -). f we take T=T,and T'=T,, |,
we have
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1 1
P{ max | Yi ()= Y3, ()] > }< ,. xeR
l/n<t<n n n
From the Borel-Cantelli lemma,
1
P{ max | Y3 ()= Y73, , (/)| < for all sufficiently large n}-—-l ,
1/n<t<n n

which implies that Y3,(¢) is uniformly convergent on each t-interval [¢, 1/¢] almost
surely for each fixed x, ¢ being an arbitrary constant in (0, 1). We now put

(3.11) Y¥(t, w)=lim Y3 (1, 0) .
Then, for each x, Y, w) is continuous in ¢ (a.s.), % *(dB)-measurable for each
t>0 and satisfies the SDE

(3.12) Y¥()= — J ) a(s, Y¥(s))d * B(s)+ x .

We construct a function ¥ with the properties in Lemma 4 by considering a suitable

modification of Y7(r). Making use of a routine construction of Y%(f) by iteration

we can prove that there exists a function ¥, defined on (0, o0) x R x W and having

the following properties (3.13a), (3.13b), (3.13c) and (3.14).

(3.13a) Y.(t, x,w)=x for t>T.

(3.13b) For each t>0 the restriction of ¥, on [#, ) x R x W is measurable with
respect to A([t, ) B(R)® %, (W).

(3.13c) For each xeR, Pt x, B) is continuous in 7 (a.s.).

(3.14)  For each xeR, ¥t x, B), 0<t<T, satisfies the SDE (3.7) and hence
Y, x, B)=Y}(t), t>0, almost surely.

If we put ¥ _(t, x, w)=lim,_ , ¥, (t, x, w), then ¥ inherits the properties (3.13b)

and (3.13c). The property (3.14) together with (3.11) and (3.12) implies that ¥ (t, x, B)

satisfies the SDE (3.12) for each x. We now modify ¥ :

: 1
¥(t, x, w)= lim ‘I’w< [nl] + X, w) .

n— oo n

Then ¥ also inherits the properties (3.13b) and (3.13c) and ¥(¢, x, B) satisfies the SDE
(3.12) for each x. Consider the set

I {( ) ¥(t, x, w) is uniformly continuous in}
={(x, w): ,
tele, 1/e] n Q for any ¢€(0, 1)

where @ is the set of rational numbers. Then I'e Z(R)® A(W) and WY(t, x, w) is
continuous in ¢ if and only if (x, w)e I'. Since ¥(t, x, B) is continuous in 7 (a.s.) for
each fixed x, P{(x, BjeI'} =1 for each x, or equivalently, (3.9b) holds. Therefore,
for any real random variable U that is independent of B we have P{(U, B)eT'} =1
and this implies that P(¢, U, B) is continuous in ¢ almost surely. We now put
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o0

Fl(t, x, B)=j a(s, (s, x, B)d " B(s) .

t

Then
(3.15) Y(t, x, B)= —F(t, x, B)+ x , a.s.

L}

because Y(t, x, B) satisfies (3.12) for each x. Approximating the stochastic integral
F(t, x, B) by a suitable Riemann sum, we can prove that

F(t, U, B)=J‘m a(s, (s, U, B)d* B(s) as.,

t

which combined with (3.15) implies that @(t, U, B) is a backward non-anticipating
solution of (3.2).

To complete the proof of the lemma, we have to show that any solution Y(r)
of (3.2) agrees with ¥(s, U, B). We put YY(r)="¥(t, U, B) and Uy=—{7da(s, Y(s))
d* B(s)+ U. Then Y(¢) is the unique solution of

Y(t)= —ra(s, Y(s)d*B(s)+ Uy, 0<i<T,

and hence by a comparison theorem we have for ¢>0
P{YYU=5)< Y(t)< YV*¥(¢) for all 1e(0, T}
=P{YY {(T)< U< YU™YT)}
=1—P{Us< YU"T)} = P{U;> YU (T)}

1_p{
_P{

Zl—g"zE{

-s’zE{

>1—-8K% 2T '51 as Tow.

Y

J‘ ) (as, Y(s))—a(s, YU"%s))d * B(s)

T

.
.
]

f " (s, Ys)—als, YU Hs)d " Bls)
1

T
YU <Y<YV ) forall >0, as.

J : (a@s, Y(s)—dls, YV*(s)d " B(s)

T

J " s, Y(s) — s, YU (s))d* Bls)

T

Therefore

On the other hand, by a comparison theorem we have ¥ ,(t, U—e, B)< ¥ ({t, U, B)<
Yo(t, U+e, B),0<t<T, as. and hence Y(t, U—e, B)<Y(t, U, B)<¥(t, U+e, B),
t>0, a.s. Consequently E[| YV (t)— YV~ 51)[]=E[ YV *(t)— YY" %(r)]=2¢, which
implies YY(1)= Y(¢), >0, almost surely. This completes the proof of Lemma 4. [J



Y. Naito

Proof of Theorem 2. For any solution {X(z)} of (1.5), {X(z)/t} satisfies the
SDE (3.2) by Lemma 3 and hence X (1)/t=¥(t, U, B) a.s., where U is given by (3.1).
If we put @(t, x, w)=tP(t, x, w), then & has all the properties stated in (ii) of Theorem
2. The proof of Theorem 2 is finished. O
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