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§1. Introduction

Let {a;},>o be a linear recurrence of nonnegative integers defined by
sy =C1ly g1+ =+, k=0,1,2,..., 1

where ay, ..., a,_, are not all zero and ¢4, ..., ¢, are nonnegative integers with ¢, #0.
We put

dX)=X"—c; X" 1—---—¢,. ?2)

In 1929, Mahler [3] proved the following theorem: Let {a},., be a linear
recurrence which satisfies (1). Suppose that &(X) is irreducible over the rational
number field Q and the roots py, ..., p, of ®(X) satisfy p, >max{l, | p,|,...,|pal}
If a is an algebraic number with 0<|a|<1, then Y °  a® is transcendental.

In this paper, we establish the algebraic independence of certain numbers
defined by linear recurrences with conditions on ®(X) weaker than those of Mahler
(see Remark below).

Theorem. Let {a;},>o be a linear recurrence which satisfies (1). Suppose that
&(+1)#0 and the ratio of any pair of distinct roots of ®(X) is not a root of unity.
Let o be an algebraic number with0<|a|<1 and B, ..., B,, nonzero distinct algebraic

numbers. Then
0
Ik ax
2k Bja
k=0 1<j<m,120

Remark. Since we do not assume that @(X) is irreducible over @, our as-
sumption on @(X) is weaker than that of Mahler, because of the following fact:
Suppose that the polynomial @(X) defined by (2) with n>2 is irreducible over Q.
Then the roots py, ..., p, of &(X) satisfy the condition p, >max{1,|p,|,...,|p.l}
if and only if none of p;/p; (i#j) is a root of unity. (For the proof of this state-

are algebraically independent.
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ment see [11].)

Corollary 1. Let {a,};>0 be as in Theorem and let {b{’},.., i=1,...,r, be
linearly independent linear recurrences of algebraic numbers. If « is an algebraic

number with 0<|a| <1, then
a0
(5 e
k=0 1<i<r

Corollary 2. Let {a,},.o be as in Theorem and let m be a positive integer.
Define

are algebraically independent.

file)= Y, zomeri, i=0,...,m—1.
k=0
If o is an algebraic number with 0<|a|<1, then {fP(0)}o<i<m-1.1>0 are algebrai-
cally independent, where f"(z) denotes the I-th derivative of f,(z).

Corollary 2 enables us to treat numbers defined by linear recurrences of the
form (1) with ¢;’s not necessarily nonnegative as the following example shows.

Example. Let {a{’},.,, i=0, 1, be linear recurrences defined by
al, ,=13a¥, ,—36a?, k=0,1,2,... (i=0,1)
with af’ =2, a® =13, a’ =1, a{"’=19. Let
fio=Y 2,  i=0,1.
k=0
If « is an algebraic number with 0<|a|<1, then {fP(®)};=0,1.50 are algebraically
independent. This follows from Corollary 2 with {a,}. o, defined by
ay=2, a;=1, a,,=a,,+6aq,, k=0,1,2,...,
SinCG ak=3k+(_2)k (k=0, 1, 2, .o .), and SO a£0)=(12k, a;‘”=(12k+1 (k=0, 1, 2, . e .).
Some entire functions are known to have the following property: they, as well
as their successive derivatives, take algebraically independent values at any given
nonzero distinct algebraic numbers. Examples of such functions are ) a*'x* and

Yo o a®x* (cf. Nishioka [8, 10]), where « is an algebraic number with 0<|a|<1
and d is an integer greater than 1.

Corollary 3. Let {a,}; 0 be as in Theorem. Let o be an algebraic number with
0<|a|<1 and define

glx)= Y, ax*.
k=0

Then g(x) is an entire function and {g"(B;)}1 <;j<m1>0 are algebraically independent
for any nonzero distinct algebraic numbers f, ..., B

m-
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The author is indebted to Prof. I. Shiokawa and Prof. K. Nishioka for their
many valuable advices.

§2. Preliminaries for the proof of Theorem

In this section, we prepare some notations and exhibit Mahler’s proof of his
theorem stated above as an introduction to our method in Section 4.

Let Q=(w;;) be an nxn matrix with nonnegative integer entries. Then the
maximum p of the absolute values of the eigenvalues of Q is itself an eigenvalue (cf.
Gantmacher [2]). If z=(z,,...,z,) is a point of C" with C the set of complex
numbers, we define a transformation Q: C"—>C” by

szz=(n zou T z) 3
j=1 j=1

We suppose that the matrix Q and an algebraic point a=(ay, ..., a,), where o;
are nonzero algebraic numbers, have the following four properties.
(I) Q is non-singular and none of its eigenvalues is a root of unity, so that in
particular p>1.
(II) Every entry of the matrix Q¥ is O(p*) as k tends to infinity.
(II1)  If we put Q*a=(@P, ..., a¥), then

log|a®|< —cp*, i=1,...,n,

for all sufficiently large k, where c is a positive constant.

(IV) If f(z) is any nonzero power series in n variables with complex coefficients
which converges in some neighborhood of the origin, then there are infinitly
many positive integers k such that f(Q*x)#0.

We note that the property (II) is satisfied, if every eigenvalue of Q of the abso-
lute value p is a simple root of the minimal polynomial of Q.

Let K be an algebraic number field and I, the integer ring of K. We denote
by K[[zy,...,z,]] the ring of formal power series in variables z,,...,z, with
coefficients in K. Suppose that f(z)eK[[z,,...,z,]] converges in an n-polydisc
U around the origin and satisfies the functional equation

a(2)f(z)!
) 4)
bi(2)/(2)!

1

Jiagt

S(Qz)=

NG

where 1 <m<p and a,(2z), b;(z) are polynomials of z,, ..., z, with coefficients in /.
We denote by 4(z) the resultant of polynomials Y [ a;(z)u’ and .7 bi(z)u’ in u.
If one of them is a constant ¢(2) in u, we set A(z)=c(z). Then Mahler proved the
following.

Theorem A (Mabhler [3]). Assume that Q and a satisfy the properties (1)~ (V)
and f(2) is transcendental over the rational function field K(z,, ..., z,). If Q*aec U and
A(Q¥*a)#0 for any k>0, then f(@) is transcendental.

13
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Let
P(z)=zlin—l <. .zb0

n

be a monomial in z,, ..., z,, which will be denoted similarly to (3) by

Pz)=(a,_y,...,a0)z - &)
Put
g 10 0
Cy 0 . 1 P
Q= 1 1 e o0 (6)
¢, 0 0

By (3) and (5), we get

P(Qrz)=2z% -1 g% k=0,1,2,....

We then define a power series
fz)= RZO P(Q*z), (M

which satisfies the functional equation
f(2)=f(Q2)+ P(z).. ®
Let a be an algebraic number with 0 <|a|<1 and set

a=(1,...,1,a).

n—1

Then we have
flay=73 a*.
k=0

Therefore, to establish the transcendence of the number ) [ a%, we may apply
Theorem A to the function f(z) defined by (7). However, it is necessary to verify
that the matrix @ defined by (6) and a=(1, ..., 1, a) satisfy the properties (I) ~ (IV).
For this, Mahler used the following theorem.

Theorem B (Mabhler [3]). Suppose that the characteristic polynomial of Q is
irreducible over Q and Q has an eigenvalue p (> 1) which is greater than the absolute
values of any other eigenvalues. We denote by A;; the (i, j)-cofactor of the matrix Q—pl,
where I is the identity matrix, so that A;; #0 (1<i<n). If

2. | Ay |loglay| <0, €)
i=1
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then Q and a have the properties (I)~(IV).

We note that the inequality (9) holds if |a;| <1 (1 <i<n) and if at least one of
la;]| is less than 1.

By Theorem B, the matrix Q defined by (6) and a=(l,..., 1, @) satisfy the
properties (I)~(IV), since the characteristic polynomial of Q is ®(X). If f(2) is
transcendental over the rational function field C(z,, . .., z,), we can apply Theorem
A and the result of Mahler follows. To the contrary we assume that f(2) is algebraic
over C(zy, ...,z,). Then f(1,...,1,2)=) ",z is algebraic over C(z). On the other
hand, we can write

a,=bpk +o(p}),

where b #0 and p, > 1, so that b> 0, since a, >0 for any k> 0. Therefore g, , ; —a;—> ©
as k tends to infinity, which implies that ) *  z is transcendental over C(z) by
Lemma 1 below, a contradiction.

§3. Lemmas

Lemma 1 (Mabhler [6, p. 42, (21)]). Let {a,}y»o be a sequence of nonnegative
integers such that a,,, —a,—o0 as k tends to infinity and let f(z2)=)"_ c,z° be a
power series with nonzero complex coefficients ¢,’s and regular in a neighborhood of
the origin. Then f(z) is transcendental over the rational function field C(z).

Let C be a field of characteristic 0, L the rational function field C(z,, ..., z,),
and M the quotient field of formal power series ring C[[zy, ..., z,]]. Let Q be an
n x n matrix with nonnegative integer entries for which the property (I) holds. We
define an endomorphism 7: M- M by

(@)= f(Q2) (flzleM),
where Qz is defined as in Section 2.

Lemma 2 (Nishioka [9, 10]). Suppose that f;e M (i=1,...,k, j=1,..., n(i))
satisfy the functional equation

Ji q; 0 T 0 fi biy
R T : o
| : o
fin(i) a ::()i)l T aﬁ:()i) niy-1 @i f En(i) bin(i)

where a;, aQ€C, a;#0, a®_;#0, and b e L. If f; (i=1,...,k, j=1,...,n(i) are
algebraically dependent over L, then there exist a non-empty subset {i,...,i,} of
{1, ..., k} and nonzero elements c,, ..., c, of C such that

a,="""=a., e fint+ o +efiael.

31

Lemma 3 (Nishioka [9, 10]). Let K be an algebraic number field. Assume that
fi(2@), ..., f(2)eK[[zy, ..., z,]] converge in an n-polydisc U around the origin and
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satisfy a functional equation of the form

< f1(2)> (f1(92)> < b1(z)>

s =4l 1+ (10)
Snl2) SnlQ2) b,(2)
where A is an m X m matrix with entries in K and b,(z) are rational functions of z,, . . ., z,
with coefficients in K. Suppose that the n x n matrix Q and a point & whose components
are nonzero algebraic numbers satisfy the properties (1)~ (1V), and for all k>0, Q*a e U
and b;(2) are defined at Q*a. If f1(2), ..., f,(z) are algebraically independent over the

rational functionfieldK(z, . .., z,), then fi(®), . . ., f.(®) are algebraically independent.

Lemma 4 (Tanaka [11]). Let {a,},. o be a linear recurrence which satisfies (1).
Suppose that ®(+1)#0 and the ratio of any pair of distinct roots of ®(X) is not a root
of unity. If a is an algebraic number with 0<|a|<1, then the matrix Q defined by (6)
anda=(1, ..., 1, o) satisfy the properties (I) ~ (IV). Furthermore, we have a; ,  — a;— ®©
as k tends to infinity.

We give the proof for completeness. The following Lemma 5 and Lemma 6 will
be used only in the proof of this lemma. We denote by N, the set of nonnegative
integers.

Lemma 5 (Skolem-Lech-Mahler’s theorem, cf. Cassels [1] and Nishioka [9]).
Let C be a field of characteristic zero. Let pq, ..., pse C* be distinct and let
P(X),..., P(X)e C[X] be nonzero. Then

R={kEN0

d
fl= 3 P.-(k)pi-‘=0} (11)
i=1
is the union of a finite set and finite number of arithmetic progressions. If R is an infinite
set, then p;[p; is a root of unity for some distinct pair i and j.

Lemma 6 (Masser [7]). Let Q be an n x n matrix with nonnegative integer entries
Jor which the property (1) holds. Let a be an n-dimensional vector whose components

ay, ..., q, are nonzero algebraic numbers such that Q*a—(0, ..., 0) as k tends to in-
finity. Then the negation of the property (1V) is equivalent to the following:
There exist integers iy, ..., i, not all zero and positive integers a, b such that

@) @0y =1
forall k=a+1b(1=0,1,2,...).

Proof of Lemma 4. The property (I) is satisfied, since the characteristic
polynomial of the matrix € defined by (6) is @(X). Let py, ..., p, be the eigenvalues
of Q. Since every entry of Q is nonnegative, we may assume p, >max{| p,|, ..., |p,|}
and then p, > 1. For each i (0<i<n—1), we define the sequence {a{’};., by

ag!l—n=c1a}¢i2+n-—l+'”+cna§<i)7 k=0’ 192""
with

a®=0,...,a =0, a®=1, a®,=0,...,a® =0.

16



Algebraic independence of certain numbers

Then
-1 -1
afrly oo ey
x . .
Q= . : , k=0,1,2,...
0 0)
ailn—l ai

holds. Since each a’ can be expressed as an f(k) in (11), the sequence {a{’}., has
only finitely many zeros by Lemma 5. Hence the entries of Q% are positive for
sufficiently large A. By Perron’s theorem (cf. Gantmacher [2, p. 53, Theorem 1]), it
follows that p, is a simple root of #(X) and has the property p, >max{| p, |, ..., | o1}
Therefore the property (I) is satisfied. We can write

a®=b9p% £ o(p*),  i=0,...,n—1, (12)

where at least one of ¥ is not zero. Since a’>0 (k=0, 1,2, ...), all the b? are
nonnegative. Noting

apnd e oafn\  fe 10 o O\ fafRb, o a
. . ¢ ) . . .
=1 : 0 s
: : 1 : :
0 0 e e 0 0
al, - a?, ¢ 0 0/ \a{,_, a”
we have

a® =c,_;a" V+al Y(1<ig<n—1), aQ,=cal V.
Thus
b, =c,_;b" V4"V (1<i<n—1), bPp;=cb"" 7V,
so that
b(i)Zb(i—l)/p1 (lSiSn—l) , b(O)Zb(n—l)/p1 .

This implies that 4?>0 for any i, since at least one of b is positive. Put
Qra=(@® ,, ..., al). Then

n—1>
i i (i) .
a®=@® ..., ad)Q*a=a% , i=0,...,n—1.

Hence the property (III) is satisfied. Assume that there exist integers iy, ..., i,_,
not all zero and positive integers a, b such that

@ )@=

for all k=a+1/b (I=0,1,2,...). Let {af}.»o be a linear recurrence defined by (1)
with

ao=i0, ...,an_1=in_1 .
Then
17
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a%=(i,_y, ..., i) Q%=1

namely af=0 for all k=a+/b (/=0,1,2,...). Since {af};.o is nonzero linear
recurrence, there are distinct i and j such that p;/p; is a root of unity by Lemma 5.
This contradicts the assumption of the lemma. Therefore the property (IV) is satisfied.
We can write

a,=bpk +0(p}),

where b=Y 720 a,b" >0, since g, =Y /g a;a’ and ay, . . ., a,_, are not all zero. Hence
a,+1 —a— o0 as k tends to infinity. This completes the proof of the lemma.

§4. Proofs of Theorem and Corollaries
Proof of Theorem. Let
P(Z)—_—Zf"* 1.. 'Z:O

and set

F(x,z)= i x*P(Q*z),

k=0

where  is the matrix defined by (6). Then F(x, z) satisfies the functional equation

F(x, z)=xF(x, Qz)+ P(z) . 13)
Letting D, =x —a~, we have
Ox
L/l
D'F(x,z)= Y, ( >xD 1F(x, Qz) (14)
a=0\¢q

for I>1, where (I) denote the binomial coefficients. By (13) and (14),
q

{D'F(Bj, 2)}1 < j<m. o<i<y satisfy the functional equation of the form (10). We assert
that {DLF(B;, #)}; <j<m >0 are algebraically independent, where a=(1,...,1,a) as
before. Then the theorem follows, since DLF(B;, ®)=Y ;o k'B*a®. To the contrary
we assume that {DF(B;, @)}, < j<m 0<1<y are algebraically dependent. By Lemma 4,
Q and a satisfy the properties (I) ~ (IV). Hence, by Lemma 3, {D.F(B;, 2)}1 < j<m o<i<L
are algebraically dependent over the rational function field Q(z, . . ., z,) with algebraic
coefficients. Therefore F(;, z)e Oz, ..., z,) for some j by Lemma 2 and so

F(ﬂp . 1 Z)_ Z ﬁk akeé(z)

”_

Since g, ; —a;— 00 as k tends to infinity, F(B;, 1, ..., 1, 2) is transcendental over C(z)
by Lemma 1. This is a contradiction.

Proof of Corollary 1. The linear recurrences {b{};., i=1, ..., r, can be writ-

18
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ten in the form
b= 3 Pyp;, i=1,...r,
i=

where P;;(X) are polynomials of X with algebraic coefficients and ; are nonzero
distinct algebraic numbers. Let

L= max degP;;(X).
5z

Then the numbers

{ Z lek ak}
1<j<sm,0<I<L

are algebraically independent by the theorem. Let V be a vector space of linear
recurrences over Q spanned by {{k'#%},. o}1 <j<m o<i<r- Thendim ¥'=m(L +1). Since
{50, i=1, ..., r, are linearly independent elements in ¥, we can choose

{b}‘r+ 1)}"20, e, {bstm(L+1))}k20€ V

such that {{b{},50}1<icme+1 are linearly independent. Then the numbers
{ZIZO=0 bfci)“ak} 1<ieme+1and {Z?:o klﬁf“ak} 1<j<m 0<1<y re linearly equivalent over
Q. Hence {37 bPa™}, <i<ma +1, are algebraically independent. This completes the
proof of the corollary.

Proof of Corollary 2. Let {b{’}.,, i=0,...,m—1, be linear recurrences de-
fined by

b =b¥, k=0,1,2,... (i=0,...,m—1)
with
bP=0,...,60,=0, bP=1, b¥,=0,...,bY_,=

Then the linear recurrences {{b{X(a@)'}i>0lo<i<m—-1.150 are linearly independent.
Hence, by Corollary 1, the numbers

2 »
{ Z b;cl)(ah)l“ak}
k=0 0<ism—1,1>0

are algebraically independent. We have here
a0 . 0
Y b a)a® =Y (@)™, i=0,...,m—1, [>0.
k=0 k=0
Sll’lCC the numbers {Zk O(Gmk+l) aam"“}og:sm 1,0<I<L and {f( )(a)}051<m 1,0<i<L are

linearly equivalent over @ for any L>0, we have the corollary.

Proof of Corollary 3. Since a,, ; —a,— o0 as k tends to infinity, g(x) is an entire
function; and the corollary follows from Corollary 1.
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