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§ 1. Introduction 

Let { akh ~ 0 be a linear recurrence of nonnegative integers defined by 

k=O, 1, 2, ... , (1) 

where a0 , ••• , an_ 1 are not all zero and c 1 , ... , en are nonnegative integers with en =I= 0. 
We put 

(2) 

In 1929, Mahler [3] proved the following theorem: Let {akh~o be a linear 
recurrence which satisfies (1 ). Suppose that <l>(X) is irreducible over the rational 
number field Q and the roots p 1 , ... , Pn of <l>(X) satisfy p 1 >max{l, I P2 I, ... , I Pn I}. 
If a is an algebraic number with 0 <I a I< 1, then I:= 0 a"k is transcendental. 

In this paper, we establish the algebraic independence of certain numbers 
defined by linear recurrences with conditions on <l>(X) weaker than those of Mahler 
(see Remark below). 

Theorem. Let {akh~o be a linear recurrence which satisfies (1). Suppose that 
<1>( ± 1) =I= 0 and the ratio of any pair of distinct roots of <P(X) is not a root of unity. 
Let a be an algebraic number with 0 < I a I < 1 and /31, ••• , Pm nonzero distinct algebraic 
numbers. Then 

are algebraically independent. 

Remark. Since we do not assume that <l>(X) is irreducible over Q, our as­
sumption on <l>(X) is weaker than that of Mahler, because of the following fact: 
Suppose that the polynomial <l>(X) defined by (2) with n ~ 2 is irreducible over Q. 
Then the roots p 1 , ... , Pn of <l>(X) satisfy the condition p 1 >max{l, I p2 I, ... , I Pn I} 
if and only if none of pJpi (i=l=j) is a root of unity. (For the proof of this state-
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ment see [11].) 

Corollary 1. Let {akh~o be as in Theorem and let {bki)h~ 0 , i= 1, ... , r, be 
linearly independent linear recurrences of algebraic numbers. If ex is an algebraic 
number with 0 < I ex I < 1, then 

are algebraically independent. 

Corollary 2. Let {akh~o be as in Theorem and let m be a positive integer. 
Define 

C() 

J;(z)= I zamk+i, 
k=O 

i=O, ... , m-1. 

If ex is an algebraic number with 0 < I ex I < 1, then {!~I)( ex)} 0 5 i 5 m _ 1 , 1 ~ 0 are algebrai­
cally independent, where f~l)(z) denotes the !-th derivative of J;(z). 

Corollary 2 enables us to treat numbers defined by linear recurrences of the 
form (1) with c/s not necessarily nonnegative as the following example shows. 

Example. Let {a~>h~ 0 , i=O, 1, be linear recurrences defined by 

k=O, 1, 2,... (i=O, 1) 

C() 

" (i) J;(z) = L, ~k , i=O, 1. 
k=O 

Ifex is an algebraic number with O<lexl<l, then {f~l)(ex)}i=o, 1 , 1 ~ 0 are algebraically 
independent. This follows from Corollary 2 with {akh~o defined by 

a0 = 2 , a 1 = 1 , ak + 2 = ak + 1 + 6ak , k=O, 1, 2, ... , 

Some entire functions are known to have the following property: they, as well 
as their successive derivatives, take algebraically independent values at any given 
nonzero distinct algebraic numbers. Examples of such functions are I:= 0 exk!xk and 
I:=o exdkxk (cf. Nishioka [8, 10]), where ex is an algebraic number with 0<IexI<1 
and d is an integer greater than 1. 

Corollary 3. Let {akh~o be as in Theorem. Let ex be an algebraic number with 
0< I ex I< 1 and define 

C() 

g(x) = L exakxk . 
k=O 

Then g(x) is an entire function and {g 0>(pi)} l ::;j::;m,z~ 0 are algebraically independent 
for any nonzero distinct algebraic numbers P 1 , ... , Pm· 
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The author is indebted to Prof. I. Shiokawa and Prof. K. Nishioka for their 
many valuable advices. 

§ 2. Preliminaries for the proof of Theorem 

In this section, we prepare spme notations and exhibit Mahler's proof of his 
theorem stated above as an introduction to our method in Section 4. 

Let Q = (wii) be an n x n matrix with nonnegative integer entries. Then the 
maximum p of the absolute values of the eigenvalues of Q is itself an eigenvalue (cf. 
Gantmacher [2]). If z = (z 1, ... , zn) is a point of C" with C the set of complex 
numbers, we define a transformation Q: Cn--+Cn by 

( 

n n ) _ Wtj Wnj Dz- CT zi , ... , CT zi . 
j= 1 j= 1 

(3) 

We suppose that the matrix Q and an algebraic point oc=(cx 1 , ... , cxn), where cxi 
are nonzero algebraic numbers, have the following four properties. 

(I) Q is non-singular and none of its eigenvalues is a root of unity, so that in 
particular p > I. 

(II) Every entry of the matrix Qk is O(pk) as k tends to infinity. 
(III) If we put Qkoc = (cx\k), ... , cx~k)), then 

i= 1, ... , n, 

for all sufficiently large k, where c is a positive constant. 
(IV) If f(z) is any nonzero power series in n variables with complex coefficients 

which converges in some neighborhood of the origin, then there are infinitly 
many positive integers k such that f(Qkoc) =f. 0. 

We note that the property (II) is satisfied, if every eigenvalue of Q of the abso­
lute value p is a simple root of the minimal polynomial of Q. 

Let K be an algebraic number field and IK the integer ring of K. We denote 
by K[[zi. ... , znJJ the ring of formal power series in variables z1, ... , zn with 
coefficients in K. Suppose that f(z) E K[[z 1 , ••• , znJJ converges in an n-polydisc 
U around the origin and satisfies the functional equation 

m 

I ai(z)f(z)i 
f(Qz)=-i=_o __ _ 

m 
(4) 

I bi(z)f(z)i 
i=O 

where I ~ m < p and ai(z), bi(z) are polynomials of z 1 , ... , zn with coefficients in I K· 

We denote by L1(z) the resultant of polynomials L~=o ai(z)ui and I~=o bi(z)ui in u. 
If one of them is a constant c(z) in u, we set L1(z) = c(z). Then Mahler proved the 
following. 

Theorem A (Mahler [3]). Assume that Q and 0t satisfy the properties (I),..., (IV) 
and f(z) is transcendental over the rational function field K(z 1 , ... , zn). If Qkoc E U and 
L1(Qkoc) =f. 0 for any k ~ 0, then f(oc) is transcendental. 
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Let 

be a monomial in z 1, ... , zn, which will be denoted similarly to (3) by 

P(z)=(an-l• ... , a0 )z. 

Put 

By (3) and (5), we get 

We then define a power series 

0 

1 
en 0 . . . 0 

k=O, 1, 2, .... 

00 

f(z) = L P(Qkz) , 
k=O 

which satisfies the functional equation 

f(z) = f(Qz) + P(z) . 

Let a be an algebraic number with 0 <I a I< 1 and set 

~=(1, ... ,1,a). 
~ 

n-1 

Then we have 

00 

f(~)= I aak. 
k=O 

(5) 

(6) 

(7) 

(8) 

Therefore, to establish the transcendence of the number I:=o aa\ we may apply 
Theorem A to the function f(z) defined by (7). However, it is necessary to verify 
that the matrix Q defined by (6) and ~=(1, ... , 1, a) satisfy the properties (l)""(IV). 
For this, Mahler used the following theorem. 

Theorem B (Mahler [3]). Suppose that the characteristic polynomial of Q is 
irreducible over Q and Q has an eigenvalue p ( > 1) which is greater than the absolute 
values of any other eigenvalues. We denote by Aii the (i, j)-cofactor of the matrix Q- pl, 
where I is the identity matrix, so that Ai1 #0 (1 ~ i ~ n). If 

n 

L IAi1 lloglail<O, (9) 
i= 1 
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then Q and ~ have the properties (I),..., (IV). 

We note that the inequality (9) holds if I ai I::::;; 1 (1 s i sn) and if at least one of 
I ai I is less than 1. 

By Theorem B, the matrix Q defined by (6) and ~=(1, ... , 1, a) satisfy the 
properties (I),..., (IV), since the characteristic polynomial of Q is «P(X). If f(z) is 
transcendental over the rational function field C(z 1, ••• , zn), we can apply Theorem 
A and the result of Mahler follows. To the contrary we assume that f(z) is algebraic 
over C(z1 , ... , zn). Then f(l, ... , 1, z)~L:= 0 zak is algebraic over C(z). On the other 
hand, we can write 

ak = bp~ + o(p~), 
where bi= 0andp1 > 1, so that b > 0, since ak ~ 0 for any k ~ 0. Therefore ak + 1 - ak-+ oo 
as k tends to infinity, which implies that I:=o zak is transcendental over C(z) by 
Lemma 1 below, a contradiction. 

§3. Lemmas 

Lemma 1 (Mahler [6, p. 42, (21)]). Let {akh~o be a sequence of nonnegative 
integers such that ak + 1 - ak-+ oo as k tends to infinity and let f(z) =I:= 0 ckzak be a 
power series with nonzero complex coefficients ck' s and regular in a neighborhood of 
the origin. Then f (z) is transcendental over the rational function field C(z). 

Let C be a field of characteristic 0, L the rational function field C(z 1 , ... , zn), 
and M the quotient field of formal power series ring C[[z 1 , ... , znJJ. Let Q be an 
n x n matrix with nonnegative integer entries for which the property (I) holds. We 
define an endomorphism -r : M-+ M by 

r(z) = f(Qz) (f(z) EM) , 

where Qz is defined as in Section 2. 

Lemma 2 (Nishioka [9, 10]). Suppose that hi EM (i = 1, ... , k, j = 1, ... , n(i)) 
satisfy the functional equation 

0 

o l [ fI1 l [ bi1 l . . . . . . 
. 0 : + : ' 

a~/il ~<i.)- 1 ai fI~(i) bi~(i) 

where ai, a~~EC, aii=O, a~i~_ 1 ::/=0, and biiEL. If hi (i=l, ... ,k,j=l, ... ,n(i)) are 
algebraically dependent over L, then there exist a non-empty subset {i1 , ... , ir} of 
{1, ... , k} and nonzero elements c1, ... , cr of C such that 

Lemma 3 (Nishioka [9, 10]). Let K be an algebraic number field. Assume that 
f 1(z), ... Jm(z)EK[[z1 , ... , znJJ converge in an n-polydisc U around the origin and 
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satisfy a functional equation of the form 

(10) 

where A is an m x m matrix with entries in Kand bi(z) are rational functions of z1 , ... , zn 
with coefficients in K. Suppose that the n x n matrix Q and a point a. whose components 
are nonzero algebraic numbers satisfy the properties (I)"' (IV), and for all k ~ 0, Qka. E U 
and bi(z) are defined at Qka.. If f 1 (z), ... , fm(z) are algebraically independent over the 
rationalfunctionfield K(z 1 , ... , zn), then f 1(a.), ... , fm(a.) are algebraically independent. 

Lemma 4 (Tanaka [11]). Let {akh~o be a linear recurrence which satisfies (1). 
Suppose that <P( ± 1) ¥= 0 and the ratio of any pair of distinct roots of <P(X) is not a root 
of unity. If r.x is an algebraic number with 0 <I r.x I < 1, then the matrix Q defined by ( 6) 
and a.= (1, ... , 1, r.x) satisfy the properties (I)"' (IV). Furthermore, we have ak+ 1 -ak-+ oo 
as k tends to infinity. 

We give the proof for completeness. The following Lemma 5 and Lemma 6 will 
be used only in the proof of this lemma. We denote by N 0 the set of nonnegative 
integers. 

Lemma 5 (Skolem-Lech-Mahler's theorem, cf. Cassels [1] and Nishioka [9]). 
Let C be a field of characteristic zero. Let Pi, ... ,pdECx be distinct and let 
P 1(X), ... , PiX)E C[X] be nonzero. Then 

R={kEN0 I /(k)= ,t, P,(k)pi=O} (II) 

is the union of a finite set and finite number of arithmetic progressions. If R is an infinite 
set, then pd Pi is a root of unity for some distinct pair i and j. 

Lemma 6 (Masser [7]). Let Q be an n x n matrix with nonnegative integer entries 
for which the property (I) holds. Let a. be an n-dimensional vector whose components 
r.x 1 , ... , r.xn are nonzero algebraic numbers such that Qka.-+(0, ... , 0) as k tends to in­
finity. Then the negation of the property (IV) is equivalent to the following: 

There exist integers i 1 , ... , in not all zero and positive integers a, b such that 

(r.x\k))i1 ... (r.x~k))i" = 1 

for all k=a+lb (l=O, 1, 2, ... ). 

Proof of Lemma 4. The property (I) is satisfied, since the characteristic 
polynomial of the matrix Q defined by (6) is <P(X). Let p 1 , ... , Pt be the eigenvalues 
of Q. Since every entry of Q is nonnegative, we may assume p 1 ~max{I p2 I, ... , I Pt I} 
and then p 1 >1. For each i (O~i~n-1), we define the sequence {ar>h~o by 

k=0,1,2, ... 

with 
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Then 

k=O, 1, 2, ... 

holds. Since each aki> can be expressed as an /(k) in (11), the sequence {ar>h~o has 
only finitely many zeros by Lemma 5. Hence the entries of Q;. are positive for 
sufficiently large A.. By Perron's theorem (cf. Gantmacher [2, p. 53, Theorem 1]), it 
follows that p 1 is a simple root of <P(X) and has the property p 1 > max{I p 2 I, ... , I Pr I}. 
Therefore the property (II) is satisfied. We can write 

i=O, ... , n-1, (12) 

where at least one of b<i> is not zero. Since ar>zo (k=O, 1, 2, ... ), all the b<i> are 
nonnegative. Noting 

a<n-1) k+n 

a(O) k+n 

we have 

Thus 

so that 

a (n-1) 
k+l 

a (O) 
k+l 

0 

0 
1 

0 

akn.;/~ 1 

ak0ln-1 

b(i>zb<i- 1>/p 1 (1 ~i~n-1), b<0>zb<n- 1>/P1. 

This implies that b(i) > 0 for any i, since at least one of b<i> is positive. Put 
Qkot=(ac~k~ 1 , ... , ocgc>). Then 

,,,~k) = (a(i) a<i>)nk,., =/Va~> 
""i n - 1' · · · ' 0 ~~ "" "" ' i=O, ... , n-1. 

Hence the property (III) is satisfied. Assume that there exist integers i0 , ••• , in- l 

not all zero and positive integers a, b such that 

(oc~k~ 1 )in-i.. ·(ocgc>)io= 1 

for all k =a+ lb (/ = 0, 1, 2, ... ). Let {a: h ~ 0 be a linear recurrence defined by (1) 
with 

Then 
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namely at=O for all k=a+lb (l=O, 1, 2, ... ). Since {ath~o is nonzero linear 
recurrence, there are distinct i and j such that pJ pi is a root of unity by Lemma 5. 
This contradicts the assumption of the lemma. Therefore the property (IV) is satisfied. 
We can write 

ak=bp~ +o(p~), 

whereb= I~~~ aib<i>>O, since ak= I~~~ aiaii) and a0 , ... , an-l are not all zero. Hence 
ak+ 1 -ak-+oo ask tends to infinity. This completes the proof of the lemma. 

§ 4. Proofs of Theorem and Corollaries 

Proof of Theorem. Let 

and set 

OCJ 

F(x, z) = I xkP(Qkz), 
k=O 

where Q is the matrix defined by (6). Then F(x, z) satisfies the functional equation 

F(x, z)=xF(x, Qz)+ P(z). (13) 

. a h Lettmg Dx=x-, we ave ax 

D~F(x, z)= I ( l )xD'iF(x, Qz) 
q=O q 

(14) 

for l~ 1, where (;) denote the binomial coefficients. By (13) and (14), 

{ D~F(f3i, z)} 1 :5i:5m,o :5l:5L satisfy the functional equation of the form (10). We assert 
that {D~F(/3i, (X)} 1 :5i:5m,i~o are algebraically independent, where (X=(l, ... , 1, ct) as 
before. Then the theorem follows, since D~F(/3i, (X)= I':=ok 1{3~aak. To the contrary 
we assume that {D~F(/3i, (X)} 1 :5i:5m,0:5l:5L are algebraically dependent. By Lemma 4, 
Q and (X satisfy the properties (I),...., (IV). Hence, by Lemma 3, {D~F(/3i, z)} 1 :5i:5m,0:5l:5L 

are algebraically dependent over the rational function field Q<.z 1 , ... , zn) with algebraic 
coefficients. Therefore F(/3i, z) E Q<.z 1 , ... , zn) for some j by Lemma 2 and so 

OCJ 

F(/3i, 1, ... , 1, z) = L f3~zak E Q<.z) . 
..____,...___, k = 0 

n-1 

Since ak+ 1 -ak-+oo ask tends to infinity, F(/3i, 1, ... , 1, z) is transcendental over C(z) 
by Lemma 1. This is a contradiction. 

Proof of Corollary I. The linear recurrences { b r>h ~ 0 , i = 1, ... , r, can be writ-
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ten in the form 
m 

n " ak b~ = Li Pii(k)11 i , i= 1, ... , r, 
j= 1 

where Pii(X) are polynomials of X with algebraic coefficients and Pi are nonzero 
distinct algebraic numbers. Let 

L = max deg Pii(X) . 
1 <i<r 
l~j~m 

Then the numbers 

{.~o k'/l'a"•} 1 ~;~m.o <1 « 

are algebraically independent by the theorem. Let V be a vector space of linear 
recurrences over Q spanned by { {k 1f3~h~ok5 i:5m,0:5l:5L- Then dim V =m(L+ 1). Since 
{bii>h~ 0 , i= 1,: .. , r, are linearly independent elements in V, we can choose 

{bt+l)h~o' ... ' {bim(L+l))h~oE V 

such that {{biilh~ 0 } 1 :5i:5m(L+l) are linearly independent. Then the numbers 
{L;i=o br>a 0 k} 1 :5i:5m(L+ l) and {L;i=o k 1[j~a 0k} 1 :5i:5m,0:5l:5L are linearly equivalent over 
Q. Hence {I:= 0 biila0k} 1:5i:5m(L+l) are algebraically independent. This completes the 
proof of the corollary. 

Proof of Corollary 2. Let {bii>h~ 0 , i=O, ... , m-1, be linear recurrences de­
fined by 

k=O, 1, 2,... (i=O, ... , m-1) 

with 

bg>=o, ... ,b~i~1=0, b~i)=1, bn1=0, ... ,b~-1=0. 

Then the linear recurrences {{br>(ak)1h~o}o:5i:5m-i, 1 ~ 0 are linearly independent. 
Hence, by Corollary 1, the numbers 

{.~o br'(a.)'ix•• L ~ «m-1, 1~0 
are algebraically independent. We have here 

00 00 

" b(i)(a )laak= " (a .)laamk+i Li k k Li mk+1 ' i=O, ... ,m-1, l?:.0. 
k=O k=O 

Since the numbers {L;i= o(amk+ i)laamk+ ;}o :5 i:5m-1, o :5 l:5L and {/~O(a)}o :5 i:5m-1, o :5 l:5L are 
linearly equivalent over Q for any L?:.0, we have the corollary. 

Proof of Corollary 3. Since ak+ 1 -ak--+ oo ask tends to infinity, g(x) is an entire 
function; and the corollary follows from Corollary 1. 
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