慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On the L estimates for certain singular integrals
Sub Title	
Author	Miyamoto，Takashi
Publisher	慶鹰義塾大学理工学部
Publication year	1993
Jtitle	Keio Science and Technology Reports Vol．46，No．1（1993．2），p．1－9
JaLC DOI	
Abstract	In this note，we improve the L¹ estimates for singular integral operators which were studied by A．P． Calderon and A．Zygmund．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00460001－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

ON THE L^{1} ESTIMATES FOR CERTAIN SINGULAR INTEGRALS

Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223 JAPAN

(Received February 3, 1993)

Abstract

In this note, we improve the L^{1} estimates for singular integral operators which were studied by A. P. Calderon and A. Zygmund.

§ 1. Introduction

Let \boldsymbol{R}^{n} be an n-dimensional Euclidean space, and let us denote by Σ a surface of the sphere of radius 1 with center at the origin. The kernel function K has the form

$$
K(x)=\frac{\Omega\left(x^{\prime}\right)}{|x|^{n}} \quad \text { for } \quad x^{\prime}=\frac{x}{|x|},
$$

where $\Omega\left(x^{\prime}\right)$ is an integrable function defined on Σ and satisfies the following two conditions (1.1) and (1.2):

$$
\begin{equation*}
\int_{\Sigma} \Omega\left(x^{\prime}\right) d \sigma=0 \tag{1.1}
\end{equation*}
$$

where $d \sigma$ is the area element on Σ,

$$
\begin{equation*}
\left|\Omega\left(x^{\prime}\right)-\Omega\left(y^{\prime}\right)\right| \leqq \omega\left(\left|x^{\prime}-y^{\prime}\right|\right) \quad \text { for all } \quad x^{\prime}, y^{\prime} \in \Sigma \tag{1.2}
\end{equation*}
$$

and $\omega(t)$ is the increasing function such that $\omega(t) \geqq c t$ (c is some positive constant) and

$$
\int_{0}^{1} \omega(t) \frac{d t}{t}=\int_{1}^{\infty} \omega\left(\frac{1}{t}\right) \frac{d t}{t}<\infty .
$$

Now we define the operators T_{λ}, T by

$$
T_{\lambda} f(x)=\int_{R^{n}} K_{\lambda}(x-y) f(y) d y
$$

T. Miyamoto

where

$$
K_{\lambda}(x)= \begin{cases}K(x) & \text { for } \quad|x| \geqq 1 / \lambda, \\ 0 & \text { otherwise },\end{cases}
$$

and

$$
T f(x)=\text { p.v. } \int_{R^{n}} K(x-y) f(y) d y=\lim _{\lambda \rightarrow \infty} T_{\lambda} f(x) .
$$

In 1952 A. P. Calderon and A. Zygmund [1] have proved the following theorem.
Theorem A. Let $f(x)$ be a function on \boldsymbol{R}^{n} such that

$$
\begin{equation*}
\int_{\boldsymbol{R}^{n}}|f(x)|\left(1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right) d x<\infty \quad\left(x_{0} \in \boldsymbol{R}^{n}\right) \tag{1.3}
\end{equation*}
$$

Then for any $\lambda \geqq 1$ the function

$$
\widetilde{T}_{\lambda} f(x)=T_{\lambda} f(x)-K_{1}\left(x-x_{0}\right) \int_{R^{n}} f(x) d x
$$

is integrable on the whole space \boldsymbol{R}^{n} and

$$
\int_{R^{n}}\left|\widetilde{T}_{\lambda} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left(1+\log ^{+}\left|x-x_{0}\right|+\log ^{+}|f(x)|\right) d x+D
$$

where C and D are constants independent of λ, f and x_{0}.
By using the following inequality

$$
\begin{align*}
\int_{R^{n}}|f(x)|(1 & \left.+\log ^{+}\left|x-x_{0}\right|+\log ^{+}|f(x)|\right) d x \tag{1.4}\\
& \leqq C^{\prime} \int_{R^{n}}|f(x)| \log ^{+}\left[\left(1+\left|x-x_{0}\right|^{n+1}\right)|f(x)|\right] d x+D^{\prime},
\end{align*}
$$

they have also the following corollary of Theorem A.
Corollary A. The function $\widetilde{T}_{2} f(x)$ in Theorem A satisfies the following inequality

$$
\int_{R^{n}}\left|\widetilde{T}_{\lambda} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)| \log ^{+}\left[\left(1+\left|x-x_{0}\right|^{n+1}\right)|f(x)|\right] d x+D,
$$

where C and D are constants independent of λ, f and x_{0}.
Furthermore, by using this corollary, they have proved the following theorem.
Theorem B. Let $f(x)$ be a function on \boldsymbol{R}^{n} which satisfies the condition (1.3). Then $\widetilde{T}_{\lambda} f(x)$ converges in the mean of order 1 to a function $\widetilde{T} f(x)$ which is integrable on \boldsymbol{R}^{n}, that is,

$$
\lim _{\lambda \rightarrow \infty}\left\|\widetilde{T}_{2} f-\widetilde{T} f\right\|_{1}=0
$$

Remark 1. It is well known that the $T_{\lambda} f$ or $T f$ themselves can not be integrable on the whole space without the cancellation condition;

$$
\int_{R^{n}} f(x) d x=0
$$

For example, let us put

$$
f(x)=\frac{1}{1+x^{2}} \quad\left(x \in \boldsymbol{R}^{1}\right)
$$

and let us define $T f$ as Hilbert transform;

$$
\begin{aligned}
T f(x) & =\text { p.v. } \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(x)}{x-t} d t \\
& =\frac{x}{1+x^{2}} .
\end{aligned}
$$

Then we have $f \in L^{1}\left(\boldsymbol{R}^{1}\right)$ but $T f \notin L^{1}\left(\boldsymbol{R}^{1}\right)$.
Remark 2. Note that for any $x_{0}, x_{1} \in \boldsymbol{R}^{n}$, the following two conditions (1.5) and (1.6) are equivalent.

$$
\begin{equation*}
\int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right) d x<\infty, \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{1}\right|\right) d x<\infty \tag{1.6}
\end{equation*}
$$

This is easily shown as follows: Let $A_{0}=\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right| \leqq\left|x_{0}-x_{1}\right|\right\}, A_{1}=$ $\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right|>\left|x_{0}-x_{1}\right|\right\}$.

$$
\begin{aligned}
\int_{R^{n}}|f(x)|\left(1+\log ^{+}\left|x-x_{1}\right|\right) d x & \leqq \int_{R^{n}}|f(x)|\left[1+\log ^{+}\left(\left|x-x_{0}\right|+\left|x_{0}-x_{1}\right|\right)\right] d x \\
& =\int_{A_{0}}+\int_{A_{1}} \\
& \leqq\left(1+\log ^{+} 2\left|x_{0}-x_{1}\right|+\log 2\right) \int_{R^{n}}|f(x)|+\left(1+\log ^{+}\left|x-x_{0}\right|\right) d x
\end{aligned}
$$

Therefore (1.5) implies (1.6). The reverse relation is trivial by the symmetricity of x_{0} and x_{1}. So (1.5) and (1.6) are equivalent.

Remark 3. Let $f(x)$ be a function on \boldsymbol{R}^{n} and $x_{0} \in \boldsymbol{R}^{n}$. Then the following (1.7) $\sim(1.9)$ are equivalent conditions of (1.3).

$$
\begin{gather*}
\int_{R^{n}}|f(x)|\left[\log ^{+}\left(1+\left|x-x_{0}\right|^{n+1}\right)|f(x)|\right] d x<\infty, \tag{1.7}\\
\int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\log ^{+} \max \left(\left|x-x_{0}\right|,\|f\|_{1}^{-1}\right)\right] d x<\infty \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{R^{n}}|f(x)|\left[1+\log ^{+}\left\{\max \left(1,\left|x-x_{0}\right|^{(n+1+\delta)},\|f\|_{1}^{-(n+1+\delta)}\right)|f(x)|\right\}\right] d x<\infty \tag{1.9}
\end{equation*}
$$

for some $\delta>0$.
This is shown as follows;

$$
\begin{aligned}
& \int_{R^{n}}|f(x)|\left[\log ^{+}\left(1+\left|x-x_{0}\right|^{n+1}\right)|f(x)| d x\right. \\
& \leqq \int_{R^{n}}|f(x)| \log ^{+}\left(1+\left|x-x_{0}\right|^{n+1}\right) d x+\int_{R^{n}}|f(x)| \log ^{+}|f(x)| d x \\
& \leqq(n+1) \int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right) d x
\end{aligned}
$$

In virtue of this and (1.4), we see that (1.3) and (1.7) are equivalent. By a similar argument, (1.8) and (1.9) are also equivalent. Next we see

$$
\begin{aligned}
& \int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\log ^{+} \max \left(\left|x-x_{0}\right|,\|f\|_{1}^{-1}\right)\right] d x \\
& \quad \leqq \int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|\right) d x+\int_{R^{n}}|f(x)|\left(\log ^{+}\left|x-x_{0}\right|+\log ^{+}\|f\|_{1}^{-1}\right) d x \\
& \quad \leqq \int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right) d x+1 / e
\end{aligned}
$$

Conversely, it is clear that (1.8) implies (1.3). Consequently (1.3) and (1.8) are equivalent.

In this note, we shall intend to exclude the constant term D of Theorem A.
Theorem 1. Let $f(x)$ be a function on \boldsymbol{R}^{n} such that (1.3) holds. Then for any $\lambda \geqq 1 \widetilde{T}_{\lambda} f(x)$ is integrable on the whole space \boldsymbol{R}^{n} and the following inequality holds.

$$
\int_{R^{n}}\left|\widetilde{T}_{2} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\log ^{+} \max \left(\left|x-x_{0}\right|,\|f\|_{1}^{-1}\right)\right] d x
$$

where C is a constant independent of λ, f and x_{0}.
Remark 4. Since for any non-negative $a, b \log ^{+} \max (a, b) \leqq \log ^{+} a+\log ^{+} b \leqq$ $2 \log ^{+} \max (a, b)$, we can represent the consequence of Theorem 1 as follows;
$\int_{R^{n}}\left|\widetilde{T}_{2} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} \log ^{+}\|f\|_{1}^{-1},$,
where C is a constant independent of λ, f and x_{0}.
As a corollary of Theorem 1, we have
Corollary 1. The function $\widetilde{T}_{\lambda} f(x)$ of Theorem 1 satisfies the following inequality,

$$
\int_{R^{n}}\left|\widetilde{T}_{2} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}\left\{\max \left(1,\left|x-x_{0}\right|^{(n+1+\delta)},\|f\|_{1}^{-(n+1+\delta)}\right)|f(x)|\right\}\right] d x
$$

where δ is any positive number and C is a constant independent of λ, f and x_{0}.
By Theorem B and Remark 3, we get the following corollaries.
Corollary 2. In Theorem 1 and Corollary 1, we can replace $\widetilde{T}_{2} f$ by $\widetilde{T} f$.
Corollary 3. In Theorem 1 and Corollaries 1 and 2 , if we assume in addition the concellation condition;

$$
\int_{R^{n}} f(x) d x=0
$$

then we can replace $\tilde{T}_{\lambda} f$ and $\tilde{T} f$ by $T_{\lambda} f$ and Tf respectively.
The author wishes to express the acknowledgements to Prof. S. Koizumi of Keio university for his valuable suggestions.

§ 2. Proof of Theorem 1

Before we prove the Theorem 1, we shall need the following theorem due to A. P. Calderon and A. Zygmund [1].

Theorem C. Let $f(x)$ be function on \boldsymbol{R}^{n} such that

$$
\int_{R^{n}}|f(x)|\left(1+\log ^{+}|f(x)|\right) d x<\infty .
$$

Then $T_{\lambda} f(x)$ is integrable over any set S of finite measure and

$$
\int_{S}\left|T_{\lambda} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}\left(|S|^{(n+1) / n}|f(x)|\right)\right] d x+C|S|^{-1 / n}
$$

where C is a constant independent of S, λ, and f.
It should be pointed out that starting the Theorem C they have proved Theorem A and others. The method of proof of the Theorem 1 is essentially the same as them but somewhat different.

Proof of Theorem 1. For the sake of notation we shall denote any constant by C. First we consider the case of $\|f\|_{1}>1$. For some positive integer N such that $2^{N-1}<\|f\|_{1} \leqq 2^{N}$, let

$$
\begin{aligned}
f_{0}(x) & \equiv \begin{cases}f(x) & \text { for }\left|x-x_{0}\right| \leqq 2^{N}\|f\|_{1}^{-1}, \\
0 & \text { otherwise },\end{cases} \\
f_{k}(x) & \equiv \begin{cases}f(x) & \text { for } 2^{N}\|f\|_{1}^{-1} 2^{k-1}<\left|x-x_{0}\right| \leqq 2^{N}\|f\|_{1}^{-1} 2^{k}, \\
0 & \text { otherwise }, \quad k=1,2, \ldots\end{cases} \\
S_{k} & \equiv\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right| \leqq 2^{N}\|f\|_{1}^{-1} 2^{k+1}\right\}, \quad k=-1,0,1,2, \ldots .
\end{aligned}
$$

Then,

$$
\left|S_{k}\right|=C\left(2^{N}\|f\|_{1}^{-1} 2^{k+1}\right)^{n} .
$$

First we shall estimate the integral of $\left|\widetilde{T}_{2} f(x)\right|$ on the set S_{k}. Theorem C gives that for $k \geqq 1$

$$
\begin{align*}
\int_{S_{k}}\left|T_{\lambda} f_{k}(x)\right| d x & \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{+} C\left(2^{N}\|f\|_{1}^{-1} 2^{k+1}\right)^{n+1}\left|f_{k}(x)\right|\right] d x+C 2^{-N}\|f\|_{1} 2^{-k-1} \tag{2.1}\\
& \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{+}\left|f_{k}(x)\right|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} 2^{-k-1}
\end{align*}
$$

and for $k=0$

$$
\begin{align*}
\int_{s_{0}}\left|T_{\lambda} f_{0}(x)\right| d x & \leqq C \int_{R^{n}}\left|f_{0}(x)\right|\left[1+\log ^{+} C\left(2^{N}\|f\|_{1}^{-1} 2\right)^{n+1}\left|f_{0}(x)\right|\right] d x+C 2^{-N}\|f\|_{1} 2^{-1} \tag{2.2}\\
& \leqq C \int_{R^{n}}\left|f_{0}(x)\right|\left[1+\log ^{+}\left|f_{0}(x)\right|\right] d x+C\|f\|_{1} 2^{-1}
\end{align*}
$$

On the other hand,

$$
\int_{s_{k}}\left|K_{1}\left(x-x_{0}\right)\right| d x \leqq C \log \left(2^{N}\|f\|_{1}^{-1} 2^{k+1}\right),
$$

so that for $k \geqq 1$

$$
\begin{aligned}
\left|\int_{S_{k}} K_{1}\left(x-x_{0}\right) d x \int_{R^{n}} f_{k}(y) d y\right| & \leqq C \log \left(2^{N}\|f\|_{1}^{-1} 2^{k+1}\right) \int_{R^{n}}\left|f_{k}(y)\right| d y \\
& \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left(1+\log ^{+}\left|x-x_{0}\right|\right) d x
\end{aligned}
$$

and for $k=0$

$$
\begin{aligned}
\left|\int_{\Sigma_{0}} K_{1}\left(x-x_{0}\right) d x \int_{R^{n}} f_{0}(y) d y\right| & \leqq C \log \left(2^{N}\|f\|_{1}^{-1}\right) \int_{R^{n}}\left|f_{0}(y)\right| d y \\
& \leqq C \int_{R^{n}}\left|f_{0}(x)\right| d x .
\end{aligned}
$$

This, together with the estimate for the integral of $\left|T_{\lambda} f_{k}(x)\right|$, gives

$$
\int_{S_{k}}\left|\widetilde{T}_{2} f_{k}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{+}\left|f_{k}(x)\right|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} 2^{-k-1}
$$

Next, we shall estimate the integral of $\left|\widetilde{T}_{\lambda} f(x)\right|$ on the complement of the set S_{k}. Since for $\lambda \geqq 1$ and $\left|x-x_{0}\right| \geqq 1$ we have $K_{\lambda}\left(x-x_{0}\right)=K\left(x-x_{0}\right)$, and since $f_{k}(x)$ vanishes outside S_{k-1}, we have for x outside S_{k}

$$
\widetilde{T}_{\lambda} f_{k}(x)=\int_{S_{k-1}}\left[K(x-y)-K\left(x-x_{0}\right)\right] f_{k}(y) d y
$$

Now, on account of the condition (1.2), for every x outside S_{k} and y inside S_{k-1} the following inequality holds:

$$
\left|K(x-y)-K\left(x-x_{0}\right)\right| \leqq C \omega\left(C 2^{N}\|f\|_{1}^{-1} 2^{k+1}\left|x-x_{0}\right|^{-1}\right)\left|x-x_{0}\right|^{-n} .
$$

Thus, if S_{k}^{c} denotes the complement of S_{k}, we obtain

$$
\begin{align*}
\int_{s_{k}^{c}}\left|\widetilde{T}_{\lambda} f_{k}(x)\right| d x & \leqq \int_{s_{k}^{c}} d x \int_{R^{n}} C \omega\left(C 2^{N}\|f\|_{1}^{-1} 2^{k+1}\left|x-x_{0}\right|^{-1}\right)\left|x-x_{0}\right|^{-n}\left|f_{k}(y)\right| d y \tag{2.3}\\
& \leqq C \int_{R^{n}}\left|f_{k}(y)\right| d y \int_{2}^{\infty} \omega\left(\frac{C}{r}\right) \frac{d r}{r} \\
& \leqq C \int_{R^{n}}\left|f_{k}(y)\right| d y
\end{align*}
$$

and collecting the results we have

$$
\int_{R^{n}}\left|\widetilde{T}_{2} f_{k}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{+}\left|f_{k}(x)\right|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} 2^{-k-1}
$$

Since $\widetilde{T}_{2} f(x)=\sum_{k=0}^{\infty} \widetilde{T}_{2} f_{k}(x)$, by adding the above inequalities we have

$$
\begin{equation*}
\int_{R^{n}}\left|\widetilde{T}_{\lambda} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\log ^{+}\left|x-x_{0}\right|\right] d x . \tag{2.4}
\end{equation*}
$$

Next, we consider the case of $0<\|f\|_{1}<1$. Let,

$$
\begin{aligned}
f_{0}(x) & \equiv \begin{cases}\{f(x) & \text { for }\left|x-x_{0}\right| \leqq\|f\|_{1}^{-1}, \\
0 & \text { otherwise },\end{cases} \\
f_{k}(x) & \equiv \begin{cases}f(x) & \text { for }\|f\|_{1}^{-1} 2^{k-1} \leqq\left|x-x_{0}\right| \leqq\|f\|_{1}^{-1} 2^{k}, \\
0 & \text { otherwise }, \quad k=1,2, \ldots\end{cases} \\
S_{k} & \equiv\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right| \leqq\|f\|_{1}^{-1} 2^{k+1}\right\}, \quad k=-1,0,1,2, \ldots .
\end{aligned}
$$

Then,

$$
\left|S_{k}\right|=C\left(\|f\|_{1}^{-1} 2^{k+1}\right)^{n} .
$$

As before, by Theorem C we have (2.1), (2.2). On the other hand,

$$
\int_{S_{k}}\left|K_{\mathbf{t}}\left(x-x_{0}\right) d x\right| \leqq C \log \left(\|f\|_{1}^{-1} 2^{k+1}\right)
$$

so that for $k \geqq 1$

$$
\left|\int_{S_{k}} K_{1}\left(x-x_{0}\right) d x \int_{R^{n}} f_{k}(y) d y\right| \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left(1+\log ^{+}\left|x-x_{0}\right|\right) d x,
$$

and for $k=0$

$$
\left|\int_{S_{0}} K_{1}\left(x-x_{0}\right) d x \int_{R^{n}} f_{0}(y) d y\right| \leqq C \int_{R^{n}}\left|f_{0}(x)\right|\left(1+\log ^{+}\|f\|_{1}^{-1}\right) d x .
$$

This, together with the estimate for the integral of $\left|T_{\lambda} f_{k}(x)\right|$, gives

$$
\int_{S_{k}}\left|\widetilde{T}_{2} f_{k}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{+}\left|f_{k}(x)\right|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} 2^{-k-1}
$$

T. Miyamoto

for $k \geqq 1$. And for $k=0$

$$
\int_{s_{0}}\left|\widetilde{T}_{\lambda} f_{0}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{0}(x)\right|\left[1+\log ^{+}\left|f_{0}(x)\right|+\log ^{+}\|f\|_{1}^{-1}\right] d x+C\|f\|_{1} 2^{-1}
$$

As before, (2.3) holds. So collecting the results we have

$$
\int_{R^{n}}\left|\tilde{T}_{2} f_{k}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{k}(x)\right|\left[1+\log ^{\dagger}\left|f_{k}(x)\right|+\log ^{+}\left|x-x_{0}\right|\right] d x+C\|f\|_{1} 2^{-k-1}
$$

for $k \geqq 1$. And for $k=0$

$$
\int_{R^{n}}\left|\widetilde{T}_{2} f_{0}(x)\right| d x \leqq C \int_{R^{n}}\left|f_{0}(x)\right|\left[1+\log ^{+}\left|f_{0}(x)\right|+\log ^{+}\|f\|_{1}^{-1}\right] d x+C\|f\|_{1} 2^{-1}
$$

By adding the above inequalities we have

$$
\int_{R^{n}}\left|\widetilde{T}_{2} f(x)\right| d x \leqq C \int_{R^{n}}|f(x)|\left[1+\log ^{+}|f(x)|+\chi_{E^{c}}(x) \log ^{+}\left|x-x_{0}\right|+\chi_{E}(x) \log ^{+}\|f\|_{1}^{-1}\right] d x,
$$

where $E=E(f)=\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right| \leqq\|f\|_{1}^{-1}\right\}$. This and (2.4) complete the proof of theorem.

§ 3. Proof of Corollary 1

Since the functions

$$
\Phi(s)=s \log ^{+} \alpha s
$$

and

$$
\Psi(t)= \begin{cases}t \alpha^{-1} & \text { for } \\ e^{t-1} \alpha^{-1} & \text { for } \\ 1 \leqq t<1\end{cases}
$$

are conjugate in the sence of Young (cf. [1]). For any positive constant δ to be fixed, setting $s=|f(x)|, \alpha=\max \left(\left|x-x_{0}\right|^{n+1+\delta},\|f\|^{-(n+1+\delta)}\right), t=\delta \log ^{+} \max \left(\left|x-x_{0}\right|\right.$, $\|f\|_{1}^{-1}$), for $t \geqq 1$, Young's inequality gives

$$
\begin{aligned}
\delta|f(x)| \log ^{+} & \max \left(\left|x-x_{0}\right|,\|f\|_{1}^{-1}\right) \\
& \leqq|f(x)| \log ^{+}\left[\max \left(\left|x-x_{0}\right|^{n+1+\delta},\|f\|_{1}^{-(n+1+\delta)}\right)|f(x)|\right] \\
& \quad+\left[\max \left(\left|x-x_{0}\right|,\|f\|_{1}^{-1}\right)\right]^{\delta}\left[\max \left(\left|x-x_{0}\right|^{n+1+\delta},\|f\|_{1}^{-(n+1+\delta)}\right)\right]^{-1} \\
\equiv & F_{1}(x)+F_{2}(x) .
\end{aligned}
$$

Then for $F_{2}(x)$ the following inequality holds.

$$
\begin{aligned}
\int_{R^{n}} F_{2}(x) d x & \leqq \int_{E}\|f\|_{1}^{n+1} d x+\int_{E^{c}}\left|x-x_{0}\right|^{-(n+1)} d x \\
& =C\|f\|_{1},
\end{aligned}
$$

where $E=E(f)=\left\{x \in \boldsymbol{R}^{n} ;\left|x-x_{0}\right| \leqq\|f\|_{1}^{-1}\right\}$. Therefore this and Theorem 1 complete the proof of corollary.

On the L^{1} estimates for certain singular integrals

References

[1] A. P. Calderon and A. Zygmund, On tne existence of certain singular integrals, Acta. Math. 88 (1952), 85-139.
[2] E. M. Stein, Singlar Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton N. J., 1970.
[3] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton Univ. Press, Princeton N. J., 1971.

