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ABSTRACT

In this note, we improve the L! estimates for singular integral operators which were
studied by A.P. Calderon and A. Zygmund.

§1. Introduction

Let R" be an #-dimensional Euclidean space, and let us denote by  a surface
of the sphere of radius 1 with center at the origin. The kernel function K has
the form

where Q2(x’) is an integrable function defined on 2 and satisfies the following
two conditions (1.1) and (1.2):

(1.1) gz 2(2)de=0 ,

where dg is the area element on 2,
(1.2) 22— 2| Sw(|2’—y'|) for all o/, y’e’X

and o(f) is the increasing function such that w(f)=ct (¢ is some positive constant)
and

oo =] o(5) <

Now we define the operators 73, T by

Tf=| K@iy,
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where

K}(x)_{K(x) for |z|=1/2,

otherwise ,

and
T =pov. | Ke—y)fwdy=lim /) .

In 1952 A. P. Calderon and A. Zygmund [1] have proved the following theorem.

Theorem A. Let f(x) be a function on R" such that
(1.3) Sm | f(x)|(1+]1og*| f(@)|+log*|x—u,[)dx<co (w,€ R) .
Then for any 221 the function
Tof)=Tf )~ Kia—) | _onda
is integrable on the whole space R™ and
|, ITs@laz=c| | 17@la-+1og'lo—al+log' @iz + D,

where C and D are constants independent of 2, [ and .

By using the following inequality
ao | 1f@ia-+iog lo—ul+log'l f@)dz
sc |, @ og 0+e—al 9| fw)llde+ D7

they have also the following corollary of Theorem A.

Corollary A. The function Tyf(x) in Theorem A satisfies the Jollowing
inequality

gkn | Ty fle) | de<C sz | f(x)|log*[(1 4|z —axo]|"*Y)| f(z)|1dz+ D ,

where C and D are constants independent of 2, f and x,.
Furthermore, by using this corollary, they have proved the following theorem.

Theorem B. Let f(x) be a function on R which satisfies the condition (1.3).
Then T;f(x) converges in the mean of order 1 to a function Tf(x) which is in-
tegrable on R", that is,

lim || 7~ Tf|l,=0
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Remark 1. It is well known that the 7T,f or Tf themselves can not be in-
tegrable on the whole space without the cancellation condition;

Ln fle)dx=0 .

For example, let us put

1

f(x)=1+x”

(re RY),

and let us define 7f as Hilbert transform;

Then we have fe LY(RY) but Tf& L\(RY).

Remark 2. Note that for any =, %, € R", the following two conditions (1.5)
and (1.6) are equivalent.

15) |, 1f@)]1-+log*| /@) +log* lo—a)dz <o

1.6) |, .. /@1a-+log? | fta) +log* lo—a)d<o

This is easily shown as follows: Let A,={xeR*; |[x—ux,|=|2—2,}, A=
{xe R"; |z—mo| >|2o—ux:}.

|, 7@l +1og'la—adz= | 17l +iog* (o~ + o, )lds
-
=(1+log*2|w,—=,{+log 2) SM | f()|+ (1 +1ogt | —a,|)de .

Therefore (1.5) implies (1.6). The reverse relation is trivial by the symmetricity
of #, and z,. So (1.5) and (1.6) are equivalent.

Remark 3. Let f(z) be a function on R* and z,€ R*. Then the following
(1.7)~(1.9) are equivalent conditions of (1.3).

. |, [7@lilog" 1+ ls—anl*3) f@)lida<oo
1.8 [,.. @ Il1-+10g" /@) +1og" max (12—, 1 I ldz<co

3
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and

w9 | @l+og imax 1, lo—nl >0, £ ) Sl lda<oo

for some 6>0.

This is shown as follows;
[, 7@ltog"(1-+ lo—a*9] flaz
s|, If@liogra+iz—apde+| | tog'l o)l ds

D) | 1)1 +10g" o) +log* lo—s)da

In virtue of this and (1.4), we see that (1.3) and (1.7) are equivalent. By a similar
argument, (1.8) and (1.9) are also equivalent. Next we see

|, [7@l1-+10g" (o) +1og" max (jz—a, I |7 )1de
ésm | /()| (1+1og™ | fl) ) d+ an | f()|(log* [ — o] +log* || £ |7 dw
<|_ 1/@I0-+10g o) +log"la—audz-+ e

Conversely, it is clear that (1.8) implies (1.3). Consequently (1.3) and (1.8) are
equivalent.
In this note, we shall intend to exclude the constant term D of Theorem A.

Theorem 1. Let f(x) be a function on R™ such that (1.3) holds. Then for
any 2=1 T,f(x) is integrable on the whole space R" and the following inequality
holds.

SRH | T3 f(x)|dw<C SM | f(2)|[1+log*| flw)|+1log" max (Je—ux|, | flIT)]de ,

where C is a constant independent of A, f and x,.

Remark 4. Since for any non-negative a, blog* max (a, b)<log* a+log* b=
2 log* max (a, b), we can represent the consequence of Theorem 1 as follows;

Snn szf(w)ldW§CSRn | f(2)[[1-+1og*| flx)| +1log* |z —2o|ldx+Cl £, log* I FIT* .,
where C is a constant independent of 2, f and =,.
As a corollary of Theorem 1, we have

Corollary 1. The function T.f(x) of Theorem 1 satisfies the following
inequality,
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[, | To@ldssC | 1f@il1+1og (max (1, [s—z[ @, |£ ] 9)| fi)ld

where & is any positive number and C is a constant independent of A, f and x,.
By Theorem B and Remark 3, we get the following corollaries.
Corollary 2. In Theorem 1 and Corollary 1, we can replace T, f by Tf.

Corollary 3. In Theorem 1 and Corollaries 1 and 2, if we assume in addi-
tion the concellation condition;

|, fowda=0,

then we can replace T, f and 7~'f by Ti:f and Tf respectively.

The author wishes to express the acknowledgements to Prof. S. Koizumi of
Keio university for his valuable suggestions.

§2. Proof of Theorem 1

Before we prove the Theorem 1, we shall need the following theorem due
to A. P. Calderon and A. Zygmund [1].

Theorem C. Let f(x) be function on R™ such that
[, F@Ia+10g" fmdz<co.

Then T,f(x) is integrable over any set S of finite measure and
S ITxf(W)ldw§CSR | f(2)|[1+1og* (S| 2/ flw))]de+C|S| ",
S n

where C is a constant independent of S, A, and f.

It should be pointed out that starting the Theorem C they have proved
Theorem A and others. The method of proof of the Theorem 1 is essentially
the same as them but somewhat different.

Proof of Theorem 1. For the sake of notation we shall denote any constant
by C. First we consider the case of || f|[,>1. For some positive integer N such
that 2V <[ f,=2%, let

_(flw)  for |z—mx|=27|fIIT,
folz)= {0 otherwise ,

_(flo)  for 2%||fl712 <l —ao| <27 fl712¢,
fw)= {0 otherwise , k=1,2,...

S;={xe R, |[x—x,| 27| f|I712%}, k=-1,0,1,2,....

5
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Then,
[Sel=CC@¥|| FlIv24 ).

First we shall estimate the integral of |7,f(z)| on the set S,. Theorem C
gives that for k=1

2y | |Tfwlde=Cl | @i-+iog CRIFIP2 ) Awlids+Ca vl Sz

éCSM Lf(@)|[1+log* | fu(w)| +1og* | —xo|lde+C|l 1,27+ ,

and for k=0
22 | 1T/@las=C| 1 f@+ior C@TIFI2 Fimllda+C2r1f 27
sc|, 1@in+og A@lidn+Cl 72
On the other hand,
|, 1K @—aldosClog (¥l 172),

so that for k=1

|, Kia—eods | siway|sCrog@isive | inwiay

sc| IA@Ia+oglo—sdde,

and for 2=0

|, Kie—soda|_fwa|scrog@isicn | hwiay

éCSR" | folm)|d .

This, together with the estimate for the integral of |7, f.(x)|, gives
S If‘sz(w)ldwécgk | (@) [1+1og*| fi(x)| +1og* |x—ao|lde+C| £, 27%* .
Sg n

Next, we shall estimate the integral of |7;f(x)| on the complement of the
set S,. Since for =1 and |z—=x,|=1 we have K,(x—2x,)=K(x—x,), and since f,(x)
vanishes outside S;_,, we have for = outside S,

Tsz(mzss [K(w—y)— Kw—a)]fw)dy -

Now, on account of the condition (1.2), for every « outside S, and ¥ inside S,_,
the following inequality holds:
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| K(z—y)— K(z—x,)| S Ca(C27|| f[| 7125 | @ — 0| ~1) |2 —| ™ .

Thus, if S; denotes the complement of S;, we obtain

ey | 1Tnwiaes| s cocoisiieia—slla—si iy
C

sc|_1nwiar| o(£) %

sc| inwiay

and collecting the results we have
|, I Ts@naasc| 17@in+og /o) +iog le—aullda+ClA2
Since T f(ac)=k}§ T:f(x), by adding the above inequalities we have
=0

.49 |, 1 Tft@dasC] 17wl -+log" fta) +log*la—adllda

Next, we consider the case of 0<|f|l,<1. Let,

_(fley  for |z—wzl=IfIT,
folw)= {0 otherwise ,

_(flw  for |flT2F=le—ml = flT2t,
/ "(”)“{o otherwise, k=1,2,...

Sc=lwe B la—a|SIFI720),  k=—1,0,1,2, ... .
Then,
[Sil=C fliT*241)" .
As before, by Theorem C we have (2.1), (2.2). On the other hand,
‘ ]Kx(w*xo)dx|§C]og (”f”l—xzkﬂ) ,
Jsg

so that for k=1

[, Ka—aidz| rway|sc| in@ia+iogo—aiaz,

and for k=0

|, Ka—soda|_fiway|sc| 1nwia+iogisima.

This, together with the estimate for the integral of |7, f.(z)|, gives

|, ITa@idesc|  In@I+og /i) +logla—s,llda-+Clrl2+

7
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for k=z1. And for k=0
|, | Te@larsC] 1f@ililog! fiw)|+log Il Mz ClAl.2
As before, (2.3) holds. So collecting the results we have
|, [ Tfida=Cl |A@I0+10g")fite)|+log* lo—anlldz+Cl 27+

for £=1. And for £=0

|, [ Tflazsc|  17@in+iog /i@ +iog I/l Idn+ClAY 2™

By adding the above inequalities we have
SR” | T2 f(x)|dz<C SM | fl@)|[1+1og*| fla)| +Xee(e) log* |x—axo| +Xx(x) log*[ £l ')de ,

where E=E(f)={xe€ R"; |x—x,|=||f|l7*}. This and (2.4) complete the proof of
theorem.

§3. Proof of Corollary 1
Since the functions

D(s)=slog* as
and

ta™! for 0=¢<1,
e lat for 1=¢,

v()=

are conjugate in the sence of Young (cf. [1]). For any positive constant § to
be fixed, setting s=|f(x)|, a=max (Jx—x,[****?, [|f||~"***®), =6 log* max (| —=,|,
I£1ITY, for =1, Young’s inequality gives

6| f(z)] log* max (Jx—,l, [|fIIT")
< |f@)] log*[max (Ja—z,|****2, || fllT **+®)| flx)]]
+Imax (& —,|, | fI7)P[max (|o—xo[****, || fllf "*1+2)]
=F\(x)+ Fy(®) .

Then for Fy(x) the following inequality holds.
S Fy(x)da< \ IF 2+ da+ ‘ |z —2,| ="V de
R™ . E JEC
=Clfl.,

where E=E(f)={xe R"; |[x—x,|=||f]i*}. Therefore this and Theorem 1 complete
the proof of corollary.
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