慶應義塾大学学術情報リポジトリ Keio Associated Repository of Academic resouces

Title	On discriminants and Galois groups
Sub Title	
Author	Komatsu, Kenzo
Publisher	慶應義塾大学理工学部
Publication year	1992
Jtitle	Keio Science and Technology Reports Vol.45, No.2 (1992. 3) ,p.23- 27
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00450002- 0023

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

ON DISCRIMINANTS AND GALOIS GROUPS

by

Kenzo Komatsu

Department of Mathematics Faculty of Science and Technology, Keio University Hiyoshi, Yokohama 223, Japan

(Received March 27, 1992)

§1. Introduction

Let a_1, a_2, \ldots, a_n (n>1) be rational integers such that

 $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$

is irreducible over the rational number field Q. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ denote the roots of f(x)=0. Then the Galois group G of f(x)=0 over Q is a transitive permutation group on the set $\{1, 2, \ldots, n\}$. We denote by D(f) the discriminant of f(x)=0:

(1.1)
$$D(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2 = \begin{vmatrix} 1 & \alpha_1 \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 \cdots & \alpha_2^{n-1} \\ & \cdots \\ 1 & \alpha_n \cdots & \alpha_n^{n-1} \end{vmatrix}^2.$$

The discriminant D(f) is a rational integer. The following result is well-known: The Galois group G contains an odd permutation if and only if D(f) is not a square.

In the present paper we discuss a certain factorization (§ 2) of the discriminant D(f) (cf. [7]):

(1.2)
$$D(f) = \pm D^{(1)} D^{(2)}$$
.

Both $D^{(1)}$ and $D^{(2)}$ have some interesting properties. For example: If $D^{(2)}$ is not a square, G contains a transposition (Theorem 2). If $D^{(1)}=2^t$ $(0 \le t \le n-1)$, then G is the symmetric group S_n (Theorem 6). We shall state our theorems in § 2, prove them in § 3, and give some examples in § 4.

§ 2. Main results

Let a_1, a_2, \ldots, a_n (n>1) be rational integers such that

$$f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$$

K. Komatsu

is irreducible over Q, and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of f(x)=0. Let G denote the Galois group of f(x)=0 over Q; G is regarded as a transitive permutation group on the set $\{1, 2, \ldots, n\}$. For any $\xi \in Q(\alpha_1)$, let $N(\xi)$ denote its norm in $Q(\alpha_1)$. Now let

(2.1)
$$\begin{aligned} \delta = f'(\alpha_1) , \quad D = N(\delta) , \\ \frac{D}{\delta} = x_0 + x_1 \alpha_1 + \dots + x_{n-1} \alpha_1^{n-1} , \quad x_i \in \mathbb{Z} , \end{aligned}$$

where Z denotes the ring of rational integers ([2], Theorem 1). Let D^* denote the greatest common divisor of x_0, x_1, \dots, x_{n-1} :

$$(2.2) D^* = (x_0, x_1, \ldots, x_{n-1}).$$

For any prime number p and any $A \in \mathbb{Z}$, let A_p denote the largest integer M such that A is divisible by p^{M} . Define $D^{(1)}$ and $D^{(2)}$ by

(2.3)
$$D^{(1)} = \prod_{p \mid D^*} p^{D_p}, \quad D^{(2)} = \frac{|D|}{D^{(1)}}.$$

Then, clearly,

$$(2.4) \qquad |D(f)| = |D| = D^{(1)} D^{(2)} , \qquad (D^{(1)}, D^{(2)}) = 1 , \qquad D^{(1)} > 0 , \qquad D^{(2)} > 0 ,$$

where D(f) denotes the discriminant (§ 1) of f(x)=0. We call $D^{(1)}$ (resp. $D^{(2)}$) the first (resp. second) factor of the discriminant of f(x)=0. Both $D^{(1)}$ and $D^{(2)}$ are independent of the choice of α_1 . Finally, let d denote the discriminant of $Q(\alpha_1)$.

Then we have

Theorem 1. For any prime factor p of $D^{(2)}$,

$$d_p = \begin{cases} 1 & \text{when } (D^{(2)})_p \text{ is odd }, \\ 0 & \text{when } (D^{(2)})_p \text{ is even }. \end{cases}$$

Theorem 2. If $D^{(2)}$ is not a square, G contains a transposition.

Theorem 3. If $D^{(2)}$ is a square, then $(d, D^{(2)})=1$ and $d|D^{(1)}$.

Theorem 4. If F is a proper subfield of $Q(\alpha_1)$, then the discriminant d_F of F satisfies

$$(d_F, D^{(2)}) = 1$$
 , $d_F^m | D^{(1)}$,

where $m = [\mathbf{Q}(\alpha_1): F]$.

Theorem 5. If $D^{(2)}$ is not a square and if Q is the only proper subfield of $Q(\alpha_1)$, then G is the symmetric group S_n .

Theorem 6. If $D^{(1)}=2^t$ $(0 \le t \le n-1)$, then $G=S_n$.

Theorem 7. Suppose that the following three conditions are satisfied: 1. n=l is an odd prime; 2. $(l, D^{(1)})=1;$

3. every prime factor of $D^{(1)}$ is either completely ramified or unramified in $Q(\alpha_1)/Q$.

Then $G=S_i$ if and only if $D^{(2)}$ is not a square. If $D^{(2)}$ is a square, then G is a simple group, and every prime ideal is unramified in $Q(\alpha_1, \ldots, \alpha_l)/Q(\alpha_1)$.

§3. Proof

1. Theorem 1 follows from the definition of $D^{(2)}$ and [2] (Theorem 1). Since $D^{(2)} > 0$, $D^{(2)}$ is a square if and only if $(D^{(2)})_p$ is even for every prime number p. Hence, if $D^{(2)}$ is not a square, then $d_p=1$ for some p (Theorem 1). Therefore Theorem 2 follows from van der Waerden's theorem [8] (cf. [7], Theorem 1). Since D(f) is divisible by d, Theorem 3 follows from Theorem 1 and (2.4).

2. Let F be a proper subfield of $Q(\alpha_1)$. Then

(3.1)
$$m = [Q(\alpha_1): F] > 1$$
.

It is well-known ([1], Satz 39) that d is divisible by d_F^m . Hence, Theorem 4 follows from Theorem 1, (3.1) and (2.4). Theorem 5 follows from Theorem 2, since the Galois group G is primitive if and only if Q is the only proper subfield of $Q(\alpha_1)$ ([9], Theorem 7.4 and Theorem 13.3).

3. Now we prove Theorem 6. Suppose that $D^{(1)}=2^t$, where $0 \le t \le n-1$. Then $D^{(2)}$ is not a square. In fact, if $D^{(2)}$ is a square, then from Theorem 3 we obtain

$$|d| \le D^{(1)} \le 2^{n-1}$$

On the other hand, we have $|d| > 2^{n-1}$ ([6], Lemma 1). A contradiction proves that $D^{(2)}$ is not a square. Hence G contains a transposition (Theorem 2). Now we prove that G is primitive. Suppose that $Q(\alpha_1)$ has a subfield F such that

$$\boldsymbol{Q} \subset F \subset \boldsymbol{Q}(\alpha_1)$$
, $F \neq \boldsymbol{Q}$, $F \neq \boldsymbol{Q}(\alpha_1)$.

Let d_F denote the discriminant of F, and let

$$m = [\boldsymbol{Q}(\alpha_1): F], \quad k = [F: \boldsymbol{Q}].$$

Since $D^{(1)}$ is a power of 2, it follows from Theorem 4 that $|d_F|$ is also a power of 2: $|d_F|=2^s$. Since k>1, we obtain $s\geq k$ ([6], Lemma 1). Theorem 4 implies that $D^{(1)}$ is divisible by $2^{km}=2^n$. A contradiction shows that G is primitive ([9], Theorem 7.4). Hence $G=S_n$ ([9], Theorem 13.3).

4. Now we prove Theorem 7. Suppose that the conditions of Theorem 7 are satisfied. Since l is a prime, $G=S_l$ if $D^{(2)}$ is not a square (Theorem 5). Suppose that $D^{(2)}$ is a square. Then, by Theorem 3, $(d, D^{(2)})=1$ and $d|D^{(1)}$. Hence (l, d)=1, and every prime factor of d is completely ramified in $Q(\alpha_1)/Q$. It follows from Theorem 4 of [3] that every prime ideal is unramified in $Q(\alpha_1, \ldots, \alpha_l)/Q(\alpha_1)$, and G is a simple group. Since l>2, $G\neq S_l$. This completes the proof.

K. KOMATSU

§4. Examples

1. Suppose that

$$f(x) = x^n + Ax + B \quad (A, B \in \mathbb{Z}, n > 2)$$

is irreducible. Then ([2], Theorem 2)

$$\begin{aligned} & x_0 = (-1)^{n-1} (n-1)^{n-1} A^{n-1} , \\ & x_i = (-1)^i (n-1)^{i-1} n^{n-i} A^{i-1} B^{n-1-i} \quad (1 \le i \le n-1) . \end{aligned}$$

For every prime number p, we obtain

$$(4.1) p|D^* \Leftrightarrow p|((n-1)A, nB),$$

since n > 2. Hence the first factor of the discriminant of f(x) = 0 is given by

(4.2)
$$D^{(1)} = \prod_{p \mid ((n-1)A, nB)} p^{p_p}.$$

In particular, if ((n-1)A, nB)=1, then $D^{(1)}=1$, and so $G=S_n$ (Theorem 6). See [4], Theorem 3.

Another special case is treated in [5]:

$$n=l$$
, $A=B=a$,

where l (l>3) is a prime number such that (l, a)=1. We have ([2], Theorem 2)

$$D = a^{l-1} \{ (l-1)^{l-1} a + l^l \}$$
.

From (4.2) we obtain

$$D^{(1)} = a^{l-1}$$
, $D^{(2)} = |(l-1)^{l-1}a + l^{l}|$

Every prime factor of *a* is either completely ramified or unramified in $Q(\alpha_1)$ ([3], p. 125). Since $(l, D^{(1)})=1$, it follows from Theorem 7 that $G=S_t$ if and only if $D^{(2)}$ is not a square. If $D^{(2)}$ is a square, then *G* is a simple group, and every prime ideal is unramified in $Q(\alpha_1, \ldots, \alpha_t)/Q(\alpha_1)$. See [5], Theorem 1 and Theorem 2.

2. Consider now the case

 $f(x) = x^n - x^{n-1} - \cdots - x - 1$,

which we discussed in [6]. We see that D^* is a power of 2 ([6], § 5). If *n* is even, then *D* is odd, and so $D^{(1)}=1$. Suppose that *n* is odd. Then *D* is exactly divisible by 2^{n-1} ([6], Lemma 2), and so $D^{(1)}=2^{n-1}$ or 1. In any case we have $D^{(1)}=2^t$, where t=0 or t=n-1. Hence $G=S_n$ (Theorem 6).

3. The converse of Theorem 2 is false. A simple example is

$$f(x) = x^3 - 5 \cdot 34x - 5^2 \cdot 34$$
.

The discriminant of f(x)=0 is

On discriminants and Galois groups

$$D(f) = -4(-5\cdot34)^3 - 27(-5^2\cdot34)^2$$

= 5³·34²=2²5³17².

From (4.2) we obtain

$$D^{(1)} = D(f)$$
, $D^{(2)} = 1$.

Since D(f) is not a square, we have $G=S_3$. Therefore G contains a transposition, but $D^{(2)}=1^2$ is a square.

References

- D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresber. Deutsch. Math.-Verein.,
 4 (1897), 175-546.
- [2] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
- [3] K. Komatsu, Discriminants of certain algebraic number fields, J. Reine Angew. Math., 285 (1976), 114-125.
- [4] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14 (1991), 57-60.
- [5] K. Komatsu, On the Galois group of $x^{p}+ax+a=0$, Tokyo J. Math., 14 (1991), 227-229.
- [6] K. Komatsu, On the Galois group of $x^n x^{n-1} x^{n-2} \cdots x 1 = 0$, Keio Science and Technology Reports, 44 (1991), 1-6.
- [7] K. Komatsu, On the Galois group of $x^p + p^i b(x+1) = 0$, to appear.
- [8] B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
- [9] H. Wielandt, Finite permutation groups, Academic Press, 1964.