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§ 1. Introduction 

Let au a2, ... , an (n > 1) be rational integers such that 

f(x)=xn+a1xn-i+ · · · +an-1X+an 

is irreducible over the rational number field Q. Let a 11 a 2 , ••• , an denote the 
roots of f(x)=O. Then the Galois group G of f(x)=O over Q is a transitive 
permutation group on the set {1, 2, ... , n}. We denote by D(f) the discriminant 
of f(x)=O: 

(1.1) 

11 

11 
D(f)= II.(ai-aj)2=1' 

i<3 

11 
The discriminant D(f) is a rational integer. The following result is well-known: 
The Galois group G contains an odd Permutation if and only if D(f) is not a 
square. 

In the present paper we discuss a certain factorization (§ 2) of the discriminant 
D(f) (cf. [7]): 

(1.2) 

Both D(l) and D<2
) have some interesting properties. For example: If D<2 ) is 

not a square, G contains a transposition (Theorem 2). If D<1) =2t (O::s;t::::;;n-l), 
then G is the symmetric group Sn (Theorem 6). We shall state our theorems in 
§ 2, prove them in § 3, and give some examples in § 4. 

§ 2. Main results 

Let a 1 , a2, •.. , an (n> 1) be rational integers such that 
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is irreducible over Q, and let a1' a 2 , ••• , an be the roots of f(x)=O. Let G denote 
the Galois group of f(x)=O over Q; G is regarded as a transitive permutation 
group on the set {1, 2, ... , n}. For any ~ E Q(a1), let N(~) denote its norm in 
Q(a1). Now let 

o=f'(a1) , D=N(o) , 

(2.1) 
D 
a-=xo+X1a1 + · · · +xn-1af-1 , xi E Z, 

where Z denotes the ring of rational integers ([2], Theorem 1). Let D* denote 
the greatest common divisor of x0 , x1' · · ·, Xn-1: 

(2.2) 

For any prime number p and any A E Z, let AP denote the largest integer M 
such that A is divisible by pM. Define D(l) and DC2) by 

(2.3) 

Then, clearly, 

(2.4) D(l) >O, 

where D(f) denotes the discriminant (§ 1) of f(x) =0. We call D(l) (resp. DC2)) 

the first (resp. second) factor of the discriminant of f(x)=O. Both D(l) and DC2) 

are independent of the choice of a1. Finally, let d denote the discriminant of 
Q(a1). 

Then we have 

Theorem 1. For any Prime factor P of DC2
), 

when (DC2>)p is odd , 
when (DC2) )p is even . 

Theorem 2. If DC2) is not a square, G contains a transposition. 

Theorem 3. If DC2) is a square, then (d, DC2>)=l and dJDCll. 

Theorem 4. If F is a proper subfield of Q(a1), then the discriminant dF of 
F satisfies 

where m=[Q(a1): F]. 

Theorem 5. If DC2) is not a square and if Q is the only Proper subfield of 
Q(a1), then G is the symmetric group Sn. 

Theorem 6. If Dco=zt (O~t~n-1), then G=Sn. 

Theorem 7. Suppose that the following three conditions are satisfied: 
1. n=l is an odd Prime; 
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2. a, n<1))=1; 
3. every Prime factor of D<1

) is either comPletely ramified or unramified in 
Q(a1)/Q. 
Then G=Si if and only if D<2) is not a square. If D<2) is a square, then G is a 
simple group, and every Prime ideal is unramified in Q(a11 ••• , az)/Q(a1). 

§ 3. Proof 

1. Theorem 1 follows from the definition of D<2
) and [2] (Theorem 1). Since 

D<2) >O, D<2) is a square if and only if (D< 2))p is even for every prime number p. 
Hence, if D<2

) is not a square, then dp=l for some p (Theorem 1). Therefore 
Theorem 2 follows from van der Waerden's theorem [8] (cf. [7], Theorem 1). 
Since D(f) is divisible by d, Theorem 3 follows from Theorem 1 and (2.4). 

2. Let F be a proper subfield of Q(a1 ). Then 

(3.1) m=[Q(a1): F]>l. 

It is well-known ([1], Satz 39) that d is divisible by d';. Hence, Theorem 4 
follows from Theorem 1, (3.1) and (2.4). Theorem 5 follows from Theorem 2, 
since the Galois group G is primitive if and only if Q is the only proper subfield 
of Q(a1 ) ([9], Theorem 7.4 and Theorem 13.3). 

3. Now we prove Theorem 6. Suppose that D<1)=2i, where O:::;;;t:::;;;n-1. 
Then D<2 ) is not a square. In fact, if D<2

) is a square, then from Theorem 3 
we obtain 

/di :::;;;D<1) :::;;;2n-1 • 

On the other hand, we have Id/ >2n-i ([6], Lemma 1). A contradiction proves 
that D<2

) is not a square. Hence G contains a transposition (Theorem 2). Now 
we prove that G is primitive. Suppose that Q(a1 ) has a subfield F such that 

QcFcQ(a1), F-::J=Q, 

Let dF denote the discriminant of F, and let 

m= [Q(a1): F] , k=[F: Q]. 

Since D<1
) is a power of 2, it follows from Theorem 4 that /dFI is also a power 

of 2: /dF/=28
• Since k>l, we obtain s'2k ([6], Lemma 1). Theorem 4 implies 

that D(l) is divisible by 2km=2n. A contradiction shows that G is primitive ([9], 
Theorem 7.4). Hence G=Sn ([9], Theorem 13.3). 

4. Now we prove Theorem 7. Suppose that the conditions of Theorem 7 
are satisfied. Since l is a prime, G=Sz if D<2l is not a square (Theorem 5). 
Suppose that n<2 l is a square. Then, by Theorem 3, (d, D<2))=l and d/D<1

). 

Hence (l, d)=l, and every prime factor of d is completely ramified in Q(a1)/Q. 
It follows from Theorem 4 of [3] that every prime ideal is unramified in 
Q(a11 ••• , az)/Q(a1), and G is a simple group. Since 1>2, Gi=Sz. This completes 
the proof. 
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§ 4. Examples 

1. Suppose that 

f(x)=xn+Ax+B (A, BEZ, n>2) 

is irreducible. Then ([2], Theorem 2) 

Xo=(-l)n-1(n-1r-1An-1' 

xi=(-l)i(n-l)i-lnn-iAi-lBn-1-i (l~i~n-1). 

For every prime number p, we obtain 

(4.1) PID* <==> Pl((n-l)A, nB) , 

since n>2. Hence the first factor of the discriminant of f(x)=O is given by 

(4.2) DCll = II pnp . 
Pl ((n-1) A,nB) 

In particular, if ((n-l)A, nB)=l, then nc1)=l, and so G=Sn (Theorem 6). See 
[4], Theorem 3. 

Another special case is treated in [5]: 

n=l, A=B=a, 

where l (1>3) is a prime number such that (l, a)=l. We have ([2], Theorem 2) 

From (4.2) we obtain 

Every prime factor of a is either completely ramified or unramified in Q(a1) 

([3], p. 125). Since (l, D(l))=l, it follows from Theorem 7 that G=Si if and only 
if nc2

) is not a square. If nc2) is a square, then G is a simple group, and every 
prime ideal is unramified in Q(a1' •.. , ai)/Q(a1). See [5], Theorem 1 and Theorem 2. 

2. Consider now the case 

which we discussed in [6]. We see that D* is a power of 2 ([6], § 5). If n is 
even, then D is odd, and so D(l) = 1. Suppose that n is odd. Then D is exactly 
divisible by 2n-l ([6], Lemma 2), and so DCll =2n-l or 1. In any case we have 
D(1)=2t, where t=O or t=n-1. Hence G=Sn (Theorem 6). 

3. The converse of Theorem 2 is false. A simple example is 

/(x)=x3-5·34x-52 ·34. 

The discriminant of /(x)=O is 
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D(/)=-4(-5·34)3-27(-52 ·34)2 

=53 ·342=2253172 
• 

D(l)=D(f), DC2)=1. 

Since D(f) is not a square, we have G=S3 • Therefore G contains a transposition, 
but DC2) = 12 is a square. 
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