EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title On discriminants and Galois groups
Sub Title
Author Komatsu, Kenzo
Publisher BREZZAFEIES
Publication year |1992
Jtitle Keio Science and Technology Reports Vol.45, No.2 (1992. 3) ,p.23- 27
JaLC DOI
Abstract
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K0O50001004-00450002-

0023

BREZBAEZMERRD NJ(KOARA)ICEBREATVA IV TV OEFIER., ThThOEEE, FRFTLRERLRTECREL. TOEMNGEHEEECLST
REENTVET, 5|ALCHLE> TR, BEELZEETLTIRALEEL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

“KEIO SCIENCE AND TECHNOLOGY REPORTS
. TVOL 45, NO. 2, pp. 23-27, 1992, ISSN: 02864215

ON DISCRIMINANTS AND GALOIS GROUPS

by
Kenzo KOMATSU
Department of Mathematics

Faculty of Science and Technology, Keio University
Hiyoshi, Yokohama 223, Japan

(Received March 27, 1992)

§1. Introduction
Let ay, a;, ..., @, (n>1) be rational integers such that
fw)=a tax~ 4 tazta,

is irreducible over the rational number field Q. Let aj, s, ..., @, denote the
roots of f(x)=0. Then the Galois group G of f(x)=0 over @ is a transitive
permutation group on the set {1,2, ...,#}. We denote by D(f) the discriminant
of f(x)=0:
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(1.1) D(f)=TII (ar—a)="
|

The discriminant D(f) is a rational integer. The following result is well-known:
The Galois group G contains an odd permutation if and only if D(f) is not a
square.

In the present paper we discuss a certain factorization (§ 2) of the discriminant

D(f) (ct. [7]):
(1.2) D(f)=+D®D® ,

Both D® and D® have some interesting properties. For example: If D® is
not a square, G contains a transposition (Theorem 2). If DW=2¢ (0<t<n—1),
then G is the symmetric group S, (Theorem 6). We shall state our theorems in
§ 2, prove them in §3, and give some examples in §4.

§2. Main results
Let a, a;, ..., @, (>1) be rational integers such that

flw)y=a"+ax* +- - +a,x+a,
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is irreducible over @, and let ay, @, ..., @, be the roots of flx)=0. Let G denote
the Galois group of f(x)=0 over @; G is regarded as a transitive permutation
group on the set {1,2,...,#}. For any £€@Q(a,), let N(§) denote its norm in
Q(a;). Now let

0=f"(a), D=N(),

D
(2.1) SR Bt Baeia T, @€ z,

where Z denotes the ring of rational integers ([2], Theorem 1). Let D* denote
the greatest common divisor of %y, %, **+, %n—s:

(2-2) D*:(xm L1y ovey xn—l) .

For any prime number p and any AeZ, let A, denote the largest integer M
such that A is divisible by p*. Define D0 and D® by

(2.3) DO=T([p?, D®= |D|

piD¥ — pDw’”

Then, clearly,
(2.4) |D(f)|=|D|=D®D® , (D, D®)=1, DwW>0, D®>0,

where D(f) denotes the discriminant (§1) of f(x)=0. We call D® (resp. D®)
the first (resp. second) factor of the discriminant of f(x)=0. Both D® and D®
are independent of the choice of «,. Finally, let d denote the discriminant of
Q(al)'

Then we have
Theorem 1. For any prime factor p of D,

d _{1 when (D®), is odd ,
P70 when (D®), is even .

Theorem 2. If D® is not a square, G contains a transposition.
Theorem 3. If D® is a square, then (d, D®)=1 and d|D™.

Theorem 4. If F is a proper subfield of Q(a,), then the discriminant dp of
F satisfies

(de, D?®)=1, dp|D?,
where m=[Q(ay): F1I.

Theorem 5. If D® is not a square and if Q is the only proper subfield of
Q(a,), then G is the symmetric group S,.

Theorem 6. If DV =2 (0<t<n—1), then G=S.,.

Theorem 7. Suppose that the following three conditions are satisfied:
1. n=l is an odd prime;
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2. (I,D¥V)=1;

3. every prime factor of DV is either completely ramified or unramified in
Q(a,)/Q.
Then G=S, if and only if D® is not a square. If D® is a square, then G is a
stmple group, and every prime ideal is unvamified in Qlay, ..., a))/Q(a;).

§3. Proof

1. Theorem 1 follows from the definition of D® and [2] (Theorem 1). Since
D® >0, D® is a square if and only if (D®), is even for every prime number p.
Hence, if D® is not a square, then d,=1 for some p (Theorem 1). Therefore
Theorem 2 follows from van der Waerden’s theorem [8] (cf. [7], Theorem 1).
Since D(f) is divisible by d, Theorem 3 follows from Theorem 1 and (2.4).

2. Let F be a proper subfield of Q(a;). Then
(3.1) m=[Q(a)): F]>1.

It is well-known ([1], Satz 39) that d is divisible by d%. Hence, Theorem 4
follows from Theorem 1, (3.1) and (2.4). Theorem 5 follows from Theorem 2,
since the Galois group G is primitive if and only if @ is the only proper subfield
of Q(a,) ([9], Theorem 7.4 and Theorem 13.3).

3. Now we prove Theorem 6. Suppose that D®=2!, where 0<i<n—1.
Then D® is not a square. In fact, if D® is a square, then from Theorem 3
we obtain

ld’ SD(l) S2n—1 .

On the other hand, we have |d|>2""' ([6], Lemma 1). A contradiction proves
that D® is not a square. Hence G contains a transposition (Theorem 2). Now
we prove that G is primitive. Suppose that Q(«;) has a subfield F' such that

QCFCQ(al) ’ F‘_/'&Q ’ F#Q(al) .
Let dr denote the discriminant of F, and let
m=[Q(a;): F], k=[F:Q].

Since D@ is a power of 2, it follows from Theorem 4 that |dr| is also a power
of 2: |dy|=2°. Since k>1, we obtain s>k ([6], Lemma 1). Theorem 4 implies
that D is divisible by 2*”=2". A contradiction shows that G is primitive ([9],
Theorem 7.4). Hence G=S, ([9], Theorem 13.3).

4. Now we prove Theorem 7. Suppose that the conditions of Theorem 7
are satisfied. Since [ is a prime, G=S, if D® is not a square (Theorem 5).
Suppose that D® is a square. Then, by Theorem 3, (d, D®)=1 and d[D™.
Hence (/,d)=1, and every prime factor of d is completely ramified in Q(a,)/Q.
It follows from Theorem 4 of [3] that every prime ideal is unramified in
Qai, ..., x)/Q«a;), and G is a simple group. Since I>2, G#S,. This completes
the proof.
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§4. Examples
1. Suppose that
fley=x"+Ax+B (A, BeZ, n>2)

is irreducible. Then ([2], Theorem 2)

xo=(—1)"""(n—1)"rA",

2, =(—1)n—1)""w A" Bt (1<i<n—1) .
For every prime number p, we obtain
(4.1) pID*=pl(n—1)A,nB),
since #>2. Hence the first factor of the discriminant of f(x)=0 is given by

(4.2) D®= II pPr .

pl{((n—1) 4,nB)

In particular, if (n—1)A4, nB)=1, then D® =1, and so G=S, (Theorem 6). See
[4], Theorem 3.

Another special case is treated in [5]:
n=|l, A=B=a,
where [ (I>>3) is a prime number such that (/, ¢)=1. We have ([2], Theorem 2)
D=g"Y(—-1)""a+14 .
From (4.2) we obtain
DW=qg~t,  DO=|(—-1)"ta+l|.

Every prime factor of a is either completely ramified or unramified in Q(a,)
([31, p. 125). Since (I, DW)=1, it follows from Theorem 7 that G=S, if and only
if D® is not a square. If D® is a square, then G is a simple group, and every
prime ideal is unramified in @ay, ..., a;)/@(a;). See [5], Theorem 1 and Theorem 2.

2. Consider now the case
fo)=gr—g"t—.- —g—1,

which we discussed in [6]. We see that D* is a power of 2 ([6], §5). If »n is
even, then D is odd, and so D®@=1. Suppose that » is odd. Then D is exactly
divisible by 2"t ([6], Lemma 2), and so D®=2"! or 1. In any case we have
D=2t where t=0 or t=n—1. Hence G=S, (Theorem 6).

3. The converse of Theorem 2 is false. A simple example is
Sflo)=a3—5-34x—5%-34 ,

The discriminant of f(x)=0 is
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D(f)=—4(—5-34)*—27(—5%-34)*
=5%.34:=225%17" .

From (4.2) we obtain

D®=D(f), D®=1.

Since D(f) is not a square, we have G=S,;. Therefore G contains a transposition,
but D®=1? is a square.
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