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ABSTRACT 

In this note, we shall propose a new measurement-axiom in nonrelativistic quantum 
theory, which can be considered a kind of generalized Copenhagen interpretation. This 
interpretation can assert rather radical statements, which may irritate our minds familiar 
with Copenhagen interpretation. We shall, under this interpretation, assert the following 
two statements: 

( i) the uncertainties (i.e. Llq and Llp) in Heisenberg's uncertainty relation "Llq·ilP?:.h/2" 
can be characterized as (average) errors in the approximates simultaneous measure
ment, and so, Heisenberg's uncertainty relation can be clarified as the statement 
in physics for the first time, 

( ii) the (discrete) trajectory of a particle is enough significant (though this, of course, 
includes errors). 

Furthermore, concerning (ii) we shall show the numerical results of the trajectory of a 
particle in two slit experiment. 
(Though almost all parts of this note are composed of summaries of references [11], [12], 
[13] and [14], we add some discussions from other angles.) 

1. Introduction 

There are two kinds of uncertainty relations for a position and a momentum 
(see, for example, [19]). One is statistical uncertainty relation. That is, let Q 
and P be a position observable and a momentum observable respectively (i.e. Q 
and Pare self-adjoint operators on a Hilbert space H satisfying that QP-PQ=ih), 
and let u be a state (i.e. u E H, llull=1). By repeating the exact (i.e. the uncer
tainty Ll(q)=O) measurements of the position q of particles with same states u, 
we can obtain its average value q and its variance var(q). Also, by repeating 

(l) This is the translation of the report of the conference "Quantum mechanical measure
ment theory" at Kyoto university (March 14,......March 16, 1991). This was published in 
"soryusiron kenkyu (kyoto) Vol. 83 (No. 6) F58-F79, September, 1991 (in Japanese)". In 
translation, we add § 9 "Note added in translation". 
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the exact (i.e. the uncertainty LI(P)=O) measurements of the momentum p of the 
particles with same states u, we can similarly get its average value p and its 
variance var(p). Of course we know that q=(u, Qu), P=<u, Pu), var(q)= li(Q
q)ull2 and var(P)= ll(P-p)ull 2

• From this and a simple calculation, we can easily 
obtain the following uncertainty relation 

( 1 ) 

This is called the statistical uncertainty relation. 
Another is the individualistic uncertainty relation, which was discovered by 

Heisenberg in 1927 using the famous thought experiment of r-ray microscope. 
He asserted as follows: 

( i ) The particle Position q and momentum p can be measured "simultaneously", 
if the uncertainties Ll(q) and Ll(p) in determining the particle position and 
momentum are permitted to be non-zero. Moreover, for any s>O, we can 
take the "simultaneous" measurement of the position q and momentum p 
such that Ll(q)<s(or LI(P)<s). 

( ii) However, the following Heisenberg's uncertainty relation holds: 

h 
Ll(q) 0 Ll(p) ~ 2 ' ( 2) 

for all "simultaneous" measurements of the particle position and momentum. 

We shall call it Heisenberg's uncertainty relation in this note. 
Most physicists seem to confuse unconsciously Heisenberg's uncertainty rela

tion with statistical uncertainty relation. However, if they are asked about this 
difference formally, their answer should be as follows: 

(I) and (2) are clearly different statements. And none has yet given the 
theoretical foundation to Heisenberg's uncertainty relation (2). 

The purpose of this note is to propose an interpretation (new measurement
axiom) of quantum theory, which offers the foundation to Heisenberg's uncertainty 
relation (2). This note is constructed as follows< 2

): 

§ 2. Mathematical foundation of Heisenberg's uncertainty relations 
§ 3. Discussions of the results obtained in § 2 and some examples 
§ 4. Proposal of new measurement-axiom of quantum theory 
§ 5. An application of new measurement-axiom (the analysis of the trajectories 

of a particle) 
§ 6. Its numerical result (two slit experiment) 
§ 7. Conclusions 
§ 8. Appendix 
In § 2, we shall give the mathematical (but temporary) foundation to Heisenberg's 
uncertainty relations (2) within Copenhagen interpretation. In § 3, we discuss 
the results obtained in § 2. And we conclude that the mathematical results 

<2) In translation, we add § 9 "Note added in translation". 
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obtained in § 2 are not able to be made completely clear in physics, as far as 
we are staying within Copenhagen interpretation. Section 4 is a main section 
in this note, in which we propose a new measurement-axiom (new interpretation) 
of quantum mechanics. The spirit of this axiom is summarized as follows: 

By measurement, a "true" value is not only produced but also destroyed! 

This can be considered a kind of generalizations of Copenhagen interpretation. 
Furthermore, we give the mathematical foundation to Heisenberg's uncertainty 
relations (2) within the new axiom (not within Copenhagen interpretation). And 
we conclude that the uncertainty Ll(q) (or Ll(p)) in (2) can be characterized as the 
(average) error in measurement. This implies that Heisenberg's uncertainty 
relation (2) can, for the first time, be mentioned as the statement in physics. 
In § 5, we shall analyze the problem of the trajectories of a particle within our 
new axiom. In § 6, we shall exhibit the numerical results of the two slit experi
ment, by using the analysis developed in § 5. In § 7, the conclusions of this note 
will be mentioned. Thinking that physical plainness is prior to mathematical 
strictness, we write this note. So, we add some mathematical complements to 
§ 8 Appendix. Also, § 2 and § 3 (resp. § 4, § 5 and § 8; resp. § 6) are chiefly due 
to [11] and [12] (resp. [13]; resp. [14]). 

2. Mathematical foundations to Heisenberg's uncertainty relations 

In this section, we shall give the mathematical (but temporary) foundation 
to Heisenberg's uncertainty relations (2) within Copenhagen interpretation. Note 
that giving the mathematical foundation to Heisenberg's uncertainty relations (2) 

is simultaneously equal to giving the physical foundation to Heisenberg's uncer
tainty relations (2). That is, giving the mathematical foundation to Heisenberg's 
uncertainty relations (2), we can make clear that his assertions in the previous 
§ 1 is very ambiguous and can be interpretated in various senses, so Heisenberg's 
assertion is hard to be recognized as the statement in physics. 

We begin the following definition. 

Definition 1 (approximate simultaneous measurement in averge sense). Let 
H be a Hilbert space with the inner product < ·, · >n· Let A 0 , Au · · ·, AN-1 be any 
physical quantities (i.e. self-adjoint operators) in a Hilbert space H. A triplet 
M=(K, v, (Ao, A1, ••• , .A.N-1)) is called an approximate simultaneous measurement 
(in average sense) of {Ak}y=-o1 in H, if it satisfies the following conditions (i)rv(iii): 

( i) v is an element in a Hilbert space K such that l!vi!K=1, and A 0 , Au ... , 
AN-1 are commutative self-adjoint operators in a tensor Hilbert space 
H®K, 

( ii) for each k, a set Dv(Ak) ( = {u E H: u®v E D(Ak), the domain of Ak}) is 
a core of Ak, i.e. Ak is essentially telf-adjoint on Dv(Ak), 

(iii) for each k, (u, Aku)n=<u®v, Ak(u®v))n®K(u E Dv(Ak)). 

Remark 1. In the following section, we shall consider the "approximate" 
simultaneous measurement M=(K, v, (Ao, A 1, ••. , AN-1)) that is not satisfying 
the conditions (ii) and (iii). In this case, we shall call it an approximate simul-
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taneous measurement in some sense. 

Remark 2. Now we shall explain the meanings of the definition 1 (also see 
ref. [8], [10]). Assume that we hope to measure simultaneously the exact values 
aa, a11 ••• , aN-1 of observables Aa, A1 , ••• , AN-1 for a particle with the state u. 
It is natural to consider that its expectation ii=(ii0 , iiu ... , iiN-1) becomes to be 
ii= (<u, Aau)H, <u, A1u)H, ... , <u, AN-lu)H). However, it is impossible to obtain 
the exact simultaneous measurement-value a=(a0 , au ... , aN-1) of observables 
(Aa, A 11 ••• , AN-1) for a particle with the state u since we do not assume that 
observables A 0 , A 11 ••• , AN-1 commute. Under Copenhagen interpretation (con
ventional quantum theory), it is nonsense to consider the exact simultaneous 
measurement-value a=(aa, a11 ••• , aN-1). So, we prepare another Hilbert space K 
and its unit vector v as in Definition 1. And we make the simultaneous measure
ment of commutative observables (A a, Au ... , AN-1) for a state u@v in a tensor 
Hilbert space H@K. Of course, it is possible for the commutativity of (Ao, 
A 1, ... , AN_1) (ref. [15, von Neumann]). When we get the simultaneous measure
ment-value x= (xo, Xu ... , XN- 1) of (Ao, A 11 ••• , AN-1) for a state u@v in a tensor 
Hilbert space H@K, we shall regard its simultaneous measurement-value x= 
(xo, X1, ... , XN- 1) as the substitute of a= (ao, aH ... , aN-1). Now we have, from 
(iii) in Definition 1, that the expectation x= (xo, .X1, ... , xN-1>= (<u@v, Ao(u@v))H<8lx, 
... , <u®v, AN-1(u@v))H16lx)=(<u, Aou)H, <u, A1u)H, ... , <u, AN-lu)H)=ii. This im-
plies that the substitute x=(x0 , x11 ••• , xN_1) is good in average sense. This is 
the meaning of Definition 1 (approximate simultaneous measurement in average 
sense). 

Definition 2 (uncertainty). Let H be a Hilbert space with the inner product 
< ·, · >H· Let A 0 , A 11 ••• , AN-1 be any physical quantities (i.e. self-adjoint operators) 
in a Hilbert space H. Let a triplet M= (K, v, (A 0 , Au ... , AN-1)) be an approximate 
simultaneous measurement (in average sense) of {Ak}f=-o1 in H. Then, the uncertainty 
{Licu(Ak, u): k=O, ... , N-1} of an approximate simultaneous measurement (in aver
age sense) M for {Ak}f~o1 on a state u (/lu/IH=1) is defined by 

LIM(Ak, u)= {
00

ii[Ak-Ak@l](u@v)/IHQ9x (if u E Dv(Ak)) ( 3 ) 
(if U E D(Ak)\Dv(Ak)) • 

Note that Dv(Ak)~D(Ak) (see [12]). Though the uncertainty LIM(Ak, u) is not 
defined for u ~ D(Ak), this problem will be naturally solved in § 4. 

Remark 3. The problem "what is the uncertainty?" seems to happen. We 
shall give one answer in Remark 7. And another answer will be proposed in 
§ 4. This will be one of main assertions in this note. In § 3, the uncertainty 
{LIM(Ak, u): k=O, .. . , N-1} of an approximate simultaneous measurement in some 
sense M is also defined as in Definition 1. 

Under these preparations, we have the following theorems. 

Theorem 1 (existence). Let Au ... , An be self-adjoint operators in a Hilbert 
space H. Let a1, ... , an be any positive numbers such that ~f=1 (1 +aD-1 =1. Then, 
there exists an approximate simultaneous measurement (in average sense) M of 
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A 11 ••• , An such that 

(4) 

Remark 4. Theorem 1 without condition (4) was independently proved in 
[1] and [11]. Theorem 1 was proved in [12], which seems to correspond to the 
first part (i) of Heisenberg's assertion. That is, for any fixed k, we can take a~c 

sufficiently small. So, for this k, we can take an approximate simultaneous 
measurement (in average sense) M such that its uncertainty L1M(A~c, u) is sufficiently 
small. 

Theorem 2 (uncertainty relations). Let Ao and A 1 be any self-adjoint oPerators 
in a Hilbert sPace H. Then, for any aPProximate simultaneous measurement (in 
average sense) M=(K, v, (Ao, A 1)) of (Ao, A1) and for any u E D(Ao) n D(AJ (jjulln=1)~ 
the following inequalities hold: 

( i ) (aPProximate simultaneous uncertainty relation) 

[var(A 0 , u)] 112 • [var(A 11 u)]l 12 ~ i(A0u, A 1u)-(Alu, Aou)i 

where var[A~c, u]= li(A~c-<u®v, A~c(u@v))n®K)(u@v)li~®K (k=O, 1), 
(ii) (Heisenberg's uncertainty relation) 

( 5) 

( 6) 

Remark 5. Of course, we have already another uncertainty relation that 
corresponds to the stochastic uncertainty relation mentioned in § 1 as (2): that is, 

Therefore, we have now three uncertainty relations after all. 

Remark 6. Inequality (5) means the uncertainty relation concerning the 
variances of measurement-values for the approximate simultaneous measurement 
(in average sense) M. Also, inequality (6) seems to be the mathematical represen
tation of Heisenberg's uncertainty relation. Of course, it is necessary to examine 
that (6) is just Heisenberg's uncertainty relation from various view-points. This 
is one of main themes of this note. 

Remark 7. We mention the physical meaning of uncertainty L1M(A~c, u), though 
this is temporary and will be investigated deeply in § 4. For the approximate 
simultaneous measurement (in average sense) M=(K, v, (Ao, A1o ... , AN-1)), the 
following equality holds (see [12]): 

( 8) 

(note that this equality does not hold for the approximate simultaneous measure
ment (in some sense)). [var(A~c, u)P (resp. [var(A~c, u))2) can be known by repeating 
the exact measurements of the observable A~c (resp. A~c) for the state u (resp. 
u@v). So, if we regard the above equality (8) as the definition of uncertainty 
L1M(A~c, u), the physical meaning of uncertainty L1M(A~c, u) is significant. This is 
one answer of the physical meaning of uncertainty L1.u(A~c, u). However, this 
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answer is not applied to the approximate simultaneous measurement (in some 
sense). So, this physical meaning seems to be not enough. We shall propose 
another answer in § 4, which is one of main assertions of this note. 

Remark 8. Inequality (5) in Theorem 2 was independently shown in [4] and 
[11]. Also, inequality (6) in Theorem 2 was independently shown in [12] and [16]. 
Examining the statement in the proof of (5) in [ 4] and [11], we can find that (5) 
is derived from (6), (8) and (7). Therefore, it may be said that (6) is shown in 
[4] and [11] though (6) is not mentioned explicitly. However, it seems that in 
[4] and [11] there is not the important recognition that (6) is just Heisenberg's 
uncertainty relation. We think that this recognition can be obtained without 
the observations in the following sectiong 3 and 4. Until now, we think that (6) 
is only the mathematical analogy of Heisenberg's uncertainty relation (2). 

3. Discussions of the results obtained in § 2 and some examples 

In this section, we shall firstly summarize the arguments in the previous 
sections. And next, we shall exhibit some examples for the preparation of the 
following section 4. Our purpose is to obtain simultaneously the exact measure
ment-values a0 , a1 of observables Ao, A 1 for a particle with the state u in a 
Hilbert space H. However, it is impossible in general. So, we prepare another 
Hilbert space K and its unit vector v as in Definition 1. And we proceed the 
simultaneous measurement of commutative observables (A 0 , A1) for a state u®v 
in a tensor Hilbert space H@K. Of course, it is possible from the commutativity 
of A0 and A1- We call it an approximate simultaneous measurement (in average 
sense) M=(K, v, (A 0 , A1)) of {AkH=o· Furthermore, we define the uncertainty 
{.dM(Ak, u): k=O, 1} of an approximate simultaneous measurement (in average 
sense) M for {AkH=o on a state u(JJulln=1) is defined by 

( 3) 

Then we have the Heisenberg's uncertainty relation 

( 6) 

The physical (but temporary) meaning of uncertainty ..d,u(Ak, u) is given as 
the following equality: 

( 8) 

(note that this equality does not hold for the approximate simultaneous measure
ment (in some sense)). This is a summary of lhe previous section. 

Now we shall discuss some examples M=(K, v, (A 0 , A1)) of {AkH=o• which 
are not approximate simultaneous measurements (in average <sense) but approxi
mate simultaneous measurements (in some sense) (see Remark 1 and 3). And we 
shall show that the uncertainty ..dM(Ak, u) is enough significant for even approxi
mate simultaneous measurements (in some sense). And these arguments will be 
the preparations for the following section 4. Throughout this section, we shall 
consider the simple case, that is, K=C (complex field), v=l. Therefore, we use 

6 



Heisenberg's uncertainty relation and a new measurement-axiom in quantum theory 

the following identifications: 

and 
(9} 

Example 1 (EPR and Heisenberg's uncertainty relation). Consider the classical 
two-particle system such that a particle S0 and a particle S1 move on one dimen
sional Euclidean space R. Let q0(t) and Po(t) [resp. q1(t) and P1(t)] be a position 
and a momentum of the particle S0 [resp. particle S1] at time t respectively. 
Assume that 

Po(t)-Pt(t)=b (a and b are constant) . (10) 

In [9], Einstein, Podolsky and Rosen investigated this simple system and pointed 
out that this system (or its extension to quantum system) has very interesting 
properties. Though the relation of this system and Heisenberg's uncertainty 
relation was not mentioned in their paper (Einstein did not believe Heisenberg's 
uncertainty relation?), many books of physics say concerning this relation as. 
follows: 

It is Possible to measure the Position qo(t) of the Particle So and P1(t) of the 
Particle S1 • Then, we can know by (10) that Po(t)=b-Pt(t). So, a Position 
and a momentum of the Particle So at time t is qo(t) and Po(t) exactly. This 
result contradicts Heisenberg's uncertainty relation. This is a Paradox! 

Though this paradox is very simple, it is hard to solve this contradiction. Now 
we shall show that this contradiction arises from the ambiguities of Heisenberg's. 
uncertainty relation (2) (ref. [13]). 

Let us extend this classic system to a quantum system as follows. We can 
put H=L2(R 2

) since EPR system is two-particles system. From the condition 
(10), the state u(q0 , q1)( E H=L2(R 2

)) of this system is represented by 

e2(qo+q1 -Q) 2 aqo-aq1 +bqo+bql] 
4h 2hi 

(11) 

where e is sufficiently small. Our purpose is to measure simultaneously the 
following two observables 

(12) 

for the state u. Of course, it is impossible for the non-commutativity of A 0. 

and A1 • So, we consider the following approximate simultaneous measurement 
(in some sense) M=(C, 1, (Ao, A 1)) under the identification as (9): 

(13) 

(note that this corresponds to the above classical case of EPR). Then, we have, 
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from a simple calculation 

(14) 

Since e( >O) can be taken sufficiently small, the uncertainties ..::h1(A0 , u) and L1M(Ah u) 
can be also taken sufficiently small. 

This conclusion seems to be as same as that of the above classical EPR 
argument. And the Heisenberg's uncertainty relation seems not to hold. How
ever, this result does not confuse us, since we now know the Heisenberg's un
certainty relation (6) (not (2)). That is, the above approximate simultaneous 
measurement (in some sense) M=(C, 1, (A 0 , A1)) is not an approximate simultaneous 
measurement (in average sense), so the above conclusion does not contradicts the 
Heisenberg's uncertainty relation (6). All confusions arises from the ambiguity 
of the statement (2). The reason to say in the first part of § 2, "Heisenberg's 
assertion is hard to be recognized as the statement in physics" is that the state
ment (2) is too ambiguous to be applied to such a simple example. 

Remark 9. Of course, the problem "what is uncertainty?" is still unsolved. 
Saying more, this problem is now getting more important. 

Example 2 (a very simple measurement that seems to break Heisenberg's 
uncertainty relation (2)). Let A 0 , A 1 be non-commutative observables in a Hilbert 
space H. Consider the following approximate simultaneous measurement (in some 
sense) M: 

The measurement of the observable Ao is not made, and we make it a rule 
that the measurement-value of the observable Ao is always 0. And we measure 
exactly the observable A 1 • Therefore, if the exact measurement-value of the 
observable A 1 is ah then the exact measurement-value of this aPProximate 
simultaneous measurement (in some sense) M is Pointed (0, a1). 

That is, this approximate simultaneous measurement (in some sense) M=(C, 1, 
(A 0 , A1)) is, under the identification (9), represented as follows: 

(15) 

Then, we easily see that 

(16) 

which clearly seems to contradicts Heisenberg's uncertainty relation (2). However, 
this is compatible with Heisenberg's uncertainty relation (6). 

Remark 10. This example 2 seems to be interesting, though it is too simple. 
In this example 2, we give up the measurement of the observable Ao (if we take 
the measurement of the obserqable A 0 , we may get ao as the exact measurement
value of the observable A 0), and we always assign it 0. So, the error (concerning 
the observable A 0) of this approximate measurement is considered as [variance 
of /a0 -0/F12 • Clearly this is equal to the uncertainty L1M(Ao, u)= I!AoulJ. This 
seems to show the possibility that the uncertainty L1M(Ao, u) can be characterized 
as the error, though these arguments are prohibited under the Copenhagen 
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interpretation. In the following section, we devote ourselves to give the justifica
tion to these arguments. 

4. Proposal of a new measurement-axiom of quantum mechanics 

Heisenberg's uncertainty relation (2) has been connected with Copenhagen 
interpretation. We think that Bohr (and his school) was constructing Copenhagen 
interpretation based on Heisenberg's uncertainty relation (2). So, we think that 
the ambiguities of Heisenberg's uncertainty relation (2) is inherited to Copenhagen 
interpretation. The philosophical difficulties of Copenhagen interpretation seems 
to be caused by this process. If we set up the start point Heisenberg's uncertainty 
relation (6), all arguments become clear. For example, so called "complementary 
principle" is nothing but Heisenberg's uncertainty relation (6). Of course, we 
have still the problem: "what is uncertainty?". 

In this section, we shall propose a new measurement axiom of quantum 
mechanics, which give the answer to the problem "what is uncertainty?". All 
arguments in this section are due to [13]. 

Now we shall prepare some definitions. 
Let V be a Hilbert space. A projection valued probability space (X, ff, F) 

in a Hilbert space V is defined such as it satisfies that 
( i ) (X, ff) is a measurable space, 
( ii) for every 8 E ff, F(8) is a projection in V such that F( 0) = 0 and 

F(X)=l, where 0 is a 0-operator and I is an identity operator in V, 
(iii) for any countable decomposition {8j}J=l of 8, (8h 8 E ff), F(8)= .L;j= 1 F(Sj) 

holds where the series is weakly convergent 
and 

(iv) ff can be generated by a countable family {B~IB~~X, i=l, 2, ... }. 

Remark 11. In this note, we use the proiection valued probability spaces 
as the mathematical model of observables. Note that any self-adjoint operator 
A in V has the unique spectral representation A= ~R J.EA(dJ.), then we sometimes 
consider the identification that A=(R, !?#, EA) (where !?# is a Borel field on R). 

Remark 12. Projection valued probability spaces (or more generally, positive 
operator valued probability spaces) are investigated in [7], in which Davies called 
a positive operator valued probability space an observable. We do not use a 
positive operator valued probability space in this note since we are interested in 
fundamental properties of quantum mechanics. However, it is easy to generalize 
our arguments to this direction. 

As the preparation to mention our new measurement-axiom, we shall now 
study the conventional measurement-axiom. 

Axiom 0 (Born's probabilistic interpretation and Copenhagen interpretation) .. 
Let ¢ be a state of a system S in a Hilbert sPace V (i.e. ¢ E V, II<PIIv=l and let 
(X, ff, F) be an observable in V. Consider the measurement of the observable 
(X, ff, F) for this system S. Then, 

( i ) the Probability that Xo( EX), the measurement-value obtained by the meas
urement of the observable (X, ff, F) for this system S, belongs to a set 

9 
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B( E ff) is given by <¢, F(B)¢)v. 
(ii) When we get a measurement-value X 0 ( EX), for the observable (Y' '9', G) 

such that (X, ff, F) and ( Y, '9', G) are ¢-commutative (i.e. G(F)F(B)¢= 
F(B)G(F)¢, (VB E ff, vr E '#),the Probability f.l.p(Xo, r, (X, ff, F), (Y, '#,G)) 
that the "true" value y0 ( E Y) of the observable ( Y, '9', G) for this system 
S belongs to F( E '#) is given by 

. <¢, F(B)G(F)¢)v 
p.p(x0 , r, (X, ff, F), (Y, ':!7, G))= _hm <¢ F('::i')¢) . (17) 

l:l-+lxo} , '-' v sr asaxo 

Moreover, we can not say anything, if (X, ff, F) and (Y, '9', G) are not ¢
commutative. 

Remark 13. We shall mention the mathematical definition of the conditional 
probability f.1.p(x 0 , r, (X, ff, F), (Y, ':!7, G)) in § 8 "Appendix". Since (17) is a 
symbolical representation, we will add some comments. If X is a finite set and 
<¢, F(E)¢)v=I=O (VB( E ff), E=!= 0 ), (17) is equal to 

( r (X ff. F) (Y ~ G)) <¢, F( n xoesesrB)G(F)¢)v 
!1¢ Xo, ' ' ' ' ' ' <"· F( n ;:;;)"·> • 't'' xoeEeY'-' 't' v 

All arguments after this can be understood, if the readers think so. 

Remark 14. In this note, (i) and (ii) in Axiom 0 is called Born's probabilistic 
interpretation and Copenhagen interpretation respectively (though there may exist 
various "Copenhagen interpretations"). It should be noted that Copenhagen 
interpretation must be read as 

By measurement, a "true" value is Produced! 

And it is prohibited to consider that a "true" value exists before measurement. 
This is a Copenhagen spirit. Therefore, a "true" value is not a true value in a 
classical mechanics. Also, it should be noted that Axiom 0 (ii) can be assured 
by experiment, that is, if we repeat the measurement of the observable ( Y, ~' G) 
after the measurement of the observable (X, ff, F), we can examine Axiom 0 
(ii). Saying contrarily, this is the physical meaning of "true" value. 

Our purpose is to propose the new measurement-axiom (Axiom 1 (ii)), which 
is a natural extension of Axiom 0 (ii). For this, we shall consider the following 
example (EPR for spin). 

Example 3 (EPR for spin). We consider a system of two particles (Particle 
1 and particle 2) with singlet state (concerning z-axis). That is, V=C 2®C2

, 

¢(E V) is a singlet state, i.e.¢= ~}2 (/ilz)®/l2z>-JL.)®/i2z)), where /i1z)=/i2z>= 

[~]< E C2) and /L.)= /1 2.)=[~]< E C2). 
Let ( Y, ~' G) be the observable concerning the z-axis spin of the particle 2. 

That is, Y={j2., l2.}, ~=2Y and 

E({L.})=[~ ~]0[~ ~] . 
10 
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We shall consider the following (I) and (II) cases. (I) is an easy exercise within 
Copenhagen interpretation (Axiom 0 (ii)), and (II) is an investigation without 
Axiom 0 (ii). 

(I) Let (X, .r, F) be the observable concerning the z-axis spin of the 
particle 1. That is, X={j 1u 11.}, ff=2x and 

E({L.})=[~ ~J®[~ ~J . 
We shall consider the following problem: 

when we take a measurement of the observable (X, .r, F) for the state¢, how 
is the "true" value of ( Y, ~, G) Produced? 

Since (X, .r, F) and ( Y, ~, G) are commutative, we can apply Axiom 0 {ii) to 
this problem and we obtain, by a simple calculation, 

P¢(jlz' {j2z})=p¢{L., {l2z})=0 

P¢(L., {j2.})=p¢(jlz, {L.})=1 . (18) 

This simple example will be a preparation to consider the following problem. 
(II) Let (X', ff', F') be the observable concerning the x-axis spin of the 

particle 2. That is, X'= {j 2.x, l 2.x}, ff =2x' and 

1 -[1 OJ x [1/2 l/2J F ({j1.})- 0 1 ® 1/2 1/2 ' [
1 OJ [ 1/2 -1/2J 

E({L.})= o 1 ® -1/2 1/2 . 

Now we take a measurement of the z-axis spin of the particle 1 and a measure
ment of the x-axis spin of the particle 2. This is, of course, equal to a simul
taneous measurement of the observable (X, ff, F) and the observable (X', ff', F') 
(for the commutativity, this is possible). Also, this is equal to the measurement 
of the observable (X, ff, F), where X=XxX', f=2x and 

sT({(wi, wj)})=F({wi})F'({wj}) (i, j=l, 2) 

(where w1=i1., w2=L., wi=i2.x, w~=l2x) 

We shall consider the following problem: 

when we take a measurement of the observable (X, ff, F) for the state¢, how 
is the "true" value of (Y, ~,G) Produced? 

Since (X, ff, F) and (Y, ~,G) are not ¢-commutative, we can not apply Axiom 
0 (ii) to this problem. That is, this problem is nonsense within Copenhagen 
interpretation. However, we consider this in what follows. Since the measure
ment of the observable (X, ff, F) is equivalent to the measurements of the z
axis spin of the particle 1 and the x-axis spin of the particle 2, we can take the 
measurement of the observable (X, ff, F) as follows: 

SPEP ( i) firstly (at time t 1), we take a measurement of the observable 
(X, .r, F) for the singlet state ¢, 

11 
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STEP ( ii) secondly (at time t 2(tJ\t 2)), we take a measurement of the observ
able (X', ff', F'). 

Like this, we divide the measurement of the observable (X, ff, F) into STEP (i) 
and STEP (ii). Note that STEP (i) is the same as the above Problem I. There
fore, we can say that the "true" value of ( Y, '#, G) for this singlet state ¢ is, 
at time t11 produced as (18). We think that this "true" value of (Y, '#,G) is, at 
time t 2 , destroyed by the measurement in STEP (ii). So, if we take the measure
ment of the observable (Y, '#,G) after STEP (ii) (at time t3 (t2 <t3)), we can not 
know the "true" value of (Y, '#, G) produced in STEP (i). If the above investiga
tion is accepted, the spirit of Copenhagen interpretation is extended as follows: 

By measurement, a "true" value is not only Produced but also destroyed! 

This is all of our idea. 

Remark 15. In the above investigation, we, for convenience' sake, use the 
concept of time. However, axiom 0 does not include the concept of time. There
fore, we do not touch the problem at what time the measurement is taken or 
how long the measurement is taken. Our standing point in this note is that 
these problems are not within quantum theory (at least quantum theory that we 
know at present). 

Now we shall propose the new measurement-axiom in nonrelativistic quan
tum theory, which can be considered to be a kind of generalized Copenhagen 
interpretation. 

Let ¢ be a state of a system S in a Hilbert space V and let (X, ff, F) and 
( Y, '#, G) be observables in V. Put PcF ,efJJ ="the projection on a smallest closed 
subspace that contains {F(E)¢JE E ff}". Put ffct';ff,G) ={E E ffJG(F)F(E)PcF,cfJJ = 
F(E)G(F)PcF,cfJ)cvr E '#)}C3l. It is clear that ffct,'§,a) is a a-subfield of ff and 
(X, ffct,'§,G)• F) and (Y, '#,G) commute with respect to ¢. Also, it is clear that 
0 effct,';ff,a) and XE--f(t,';ff,GJ• so ffct,'§,G)=F0. 

Now we have the following main Axiom. We think that it is sufficient in 
physics, but we will add the mathematical complement in § 8. 

Axiom 1 (Born's probabilistic interpretation and generalized Copenhagen 
interpretation). Let ¢ be a state of a system S in a Hilbert space V and let 
(X, ff, F) and ( Y, '#, G) be observables in V. Consider the measurement of the 
observable (X, ff, F) for this system S. Then, 

( i ) the Probability that x0 ( EX), the measurement-value obtained by the meas
urement of the observable (X, ff, F) for this system S, belongs to a set 
8( E ff) is given by <¢, F(B)¢)v. 

( ii) When we get a measurement-value Xo( EX) by the measurement of the 
observable (X, ff, F) for this system S, the Probability that y 0( E Y), the 
"true" value of the observable ( Y, '#, G) for this system S, belongs to a 
set r( E '#) is given by p.cp(Xo, r, (X, ffct,';ff,G)• F), (Y, '#,G))), where 

caJ In § 9 "Note added in translation", we shall show another version of .srfY ,:ff ,G). 

12 
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flcp(Xo, r, (X, ffct.:§,G)J F), (Y, :9', G))= lim 
E-+{xol 

srty ,:ff,G) aEax 0 

<¢, F(B)G(F)¢)v (
19

) 
<¢, F(B)¢)v . 

Remark 16. We think that the readers can easily understand the meaning 
()f this axiom, if the investigation in Example 3 (EPR for spin) is accepted. 
Repeatedly saying, our fundamental spirit is 

By measurement, a "true" value is not only Produced but also destroyed! 

And the "true" value of ( Y, :9', G) for this singlet state ¢, produced by measure
ment, is represented by (19). Since this "true" value of (Y, :9', G) is also destroyed 
by this measurement of (X, ff, F), we have no device to know it in general. 

Remark 17. We think that Axiom 1 (ii) must satisfy the following two 
·Conditions (Ci) and (Cii), in order that it is widely accepted. 

(Ci) there exists no exPeriment that denies Axiom 1 (ii) 
(Cii) more events are able to be exPlained under Axiom 1 (ii) than under 

Axiom 0 (ii). 

We have the "proof" of (Ci), if Axiom 0 (ii) is accepted. We have no definition 
of "true" value of (Y, :9', G) in the case that (X, ff, F) and (Y, :9', G) are not 
·¢-commutative. So, if we regard Axiom 1 (ii) as the definition of "true" value 
of (Y, :9', G), (Ci) has no contradiction. Of course, we are never satisfied with 
this "proof". And we believe that Axiom 1 (ii) would be assured by experiment. 
However, there may be another possibility that no experiment exists that assures 
Axiom 1 (ii). 

Remark 18. Our purpose from now is to examine how Axiom 1 (ii) satisfies 
the condition (Cii). As mentioned in ABSTRACT, we can assert as follows: 

( i ) the uncertainties (i.e. Llq and LIP) in Heisenberg's uncertainty relation 
"Liq·LIPzh/2" can be characterized as (average) errors in the aPProximate 
simultaneous measurement, so, Heisenberg's uncertainty relation can be 
firstly understood as the statement in Physics, 

( ii) the (discrete) trajectory of a Particle is enough significant (though this, 
of course, includes errors). 

Of course, we should examine the condition (Cii) from various view points. 
However, we, in this note, conclude from the above (i) and (ii) that Axiom 1 (ii) 
satisfies the condition (Cii) enough. 

Definition 3 (approximate simultaneous measurement in average sense (or in 
some sense)). Let H be a Hilbert sPace with the inner Product < ·, · >H· Let 
Ao, A 1 , ••• , AN-1 be any Physical quantities (i.e. self-adjoint oPerators) in a Hilbert 
sPace H. A quartet M=(K, v, (X, ff, F), f=(fl, ... ,fn)) is called an aPProximate 
simultaneous measurement (in average sense) of {Ak}t':-o1 in H, if it satisfies the 
following conditions (i)""'(iii): 

( i) v is an element in a Hilbert sPace K such that llvllx=1, and (X, ff, F) 

13 



S. ISHIKAWA 

is a Projection valued Probability space in a tensor Hilbert sPace H@K. 
And f: x~RN is measurable. 

( ii) Put Ak= Sx fk(x)F(dx) (k=1, 2, ... , N-1). Then, for each k, a set Dv(Ak) 
(={u E H: u®v E D(Ak), the domain of Ak}) is a core of Ak, i.e. Ak is 
essentially self-adjoint on Dv(Ak), 

(iii) for each k, (u, Aku)n=(u@v, Ak(u@v))n®K(u E Dv(Ak)). 

Also, M=(K, v, (X, ff, F), f=(fH ... ,fn)) is called an aPProximate simultaneous 
measurement (in some sense) of {Ak}f=-o1 in H, if it satisfies the condition (i). 

Remark 19. Of course, this is essentially equivalent to Definition 1. For 
sake to read the following Definition 4, we shall explain the meaning of this 
definition. Our purpose is to measure simultaneously the exact values ao, a11 ••• , 

aN-1 of observables Ao, A1, ... , AN-1 for a particle with the state u. It is natural 
to consider that its expectation ii=(iio, ii1, .•. , iiN-1) becomes to be ii=((u, A 0u)n. 
(u, A 1u)n • ... , (u, AN-1u)n). However, it is impossible to measure the exact 
simultaneous measurement-value a=(ao, a1, ••• , aN-1) of observables (Ao, A 11 ••• , 

AN_ 1) for a particle with the state u since we do not assume that observables 
A 0 , A 11 ••• , AN-1 commute in general, Under the Copenhagen interpretation, it is 
nonsense to consider the exact simultaneous measurement-value a=(ao, a1 , ••• , 

aN_1). So, we prepare another Hilbert space K and its unit vector vas in Defini
tion 3. And we proceed the measurement of (X, ff, F) for a state u®v in a 
tensor Hilbert space H®K. When we get the simultaneous measurement-value 
x( EX) of the observable (X, ff, F) for a state u®v in a tensor Hilbert space 
H®K, we shall regard f(x)=(fo(x), f1(x), ..• ,fN-1(x)) as the substitute of a= 
(a0 , a11 ••• , aN1). Since the probability that x belongs to B( E ff) is <u®v, F(B) 
(u@v)), the expectation /=(/o. /11 ... , /N-1) of f(x)=(fo(x), f1(x), •.. ,fN-1(x)) is 
represented by fk= Sx fk(x)(u@w, F(dx)(u@v))=(u@v, Ak(u@v))n®K· This implies, 
from (iii), that iik=(u, Aku)n=<u®v, Ak(u@v))n@K= fk· By this mean, M=(K, v, 
(X, ff, F), f=(f11 ••• ,fn)) is called an approximate simultaneous measurement 
(in average sense) of {Ak}f=-o1 in H. 

If Axiom 1 is accepted, the following definition seems to be natural. 

Definition 4: ((average) error). Let H be a Hilbert sPace with the inner Product 
< ·, · >n· Let Ao, A1, ... , AN-1 be any Physical quantities (i.e. self-adjoint oPerators) 
in a Hilbert sPace H. Let M=(K, v, (X, ff, F), f=(fu ... ,fn)) be an aPProximate 
simultaneous measurement (in some sense) of {Ak}f=o1 in H. Then, 

( i ) oM(Ak, u; x), the k-th error when we get x by the measurement M (i.e. 
the measurement of the observable (X, ff, F)) with respect to a state 
u( E H), is defined by 

[ r ]1/2 
OM(Ak, u; x)= Jn lfk(x)-~l 2f1u®v(X, d~) (20) 

where flu®Jx, F) E CP(u@v; (X, ffl?®r. F), Ak@l). 
( ii) JM(Ak, u), the k-th average error in the measurement M with resPect to 

a state u( E H), is defined by 

JM(Ak, u)=[~x loM(Ak, u; x)l 2(u@v, F(dx)(u@v)) J12 
. (21) 
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Also, {aM(Ak, u), I k=O, 1, ... , N-1} is called an average error in the 
measurement M with respect to a state u. 

Under these preparations, we have the following theorem. 

Theorem 3 (the relation between uncertainty and average error). Let A 0 , 

A11 ... , AN-1 be any Physical quantities (i.e. self-adjoint oPerators) in a Hilbert 
sPace H. Let M=(K, v, (X,~ F), f=(fo, f1, ... ,fN-l)) be an aPProximate simul
taneous measurement (in some sense) of Ao, A11 ... , AN-l in H. Assume that 
Ak( = Sx fk(x)F(dx)) and Ak®I commute for each k. Then, the following equality 
holds: 

Remark 20. This was proved in [13] for the approximate simultaneous 
measurement in average sense. For the approximate simultaneous measurement 
in some sense (see Remark 3), the proof in [13] can be applied automatically. From 
this Theorem, we can, under Axiom 1, characterize the uncertainty of measure
ment as its average error. If we, from this viewpoint, think Heisenberg's uncer
tainty relation and the examples in the previous section, all arguments (in 
particular, EPR in Example 1) seem to become clear. 

5. An application of the new measurement-axiom 
(analysis of trajectories of a particle) 

It is well-known that the concept of the trajectories of a particle is prohibited 
in conventional quantum theory. This fact is often stressed in contrast to classical 
mechanics. However, it takes time for the meaning of this fact to be registered 
in our mind. For example, the trajectories of "Wilson chamber" seem to be 
natural in our common sense. If the interpretation proposed in the previous 
section is accepted, the (discrete) trajectories of a particle are enough significant 
(though this, of course, includes errors). As a typical example, we shall analyze 
a trajectory of a particle under this interpretation. It will be done by developing 
the nice idea in [4] and [14]. This section is due to [13] and [14]. 

We shall consider a particle S in one dimensional real line R, whose state 
function u(t, · )( E H=L2(R), -oo <t< oo) satisfies the following Schrodinger equa

/1,2 ()2 
tion with a Hamiltonian 7C"= --- · 2m OX2 • 

ih ou(t, X)=_!!!:_ ()2u(t, X) (d??u)(t) (-oo<t<oo)' 
at 2m OX2 

(22) 

u(O, x)=u(x) . 

Put O>O and N?:.2 (integer). Let A be a position observable in H, that is, 
(Au)(x)=xu(x). 

Now we consider the approximate "simultaneous" measurement M of the 
positions of a particle S at time tk=(}k, (k=O, 1, 2, ... , N-1). Note that (22) is 
equivalent to the following Heisenberg's kinetic equation of the time evolution 
of the observable A, (-oo<t<oo) in a Hilbert space H with a Hamiltonian d?? 
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-i/Z dAt=~A -A c-'7C" (-oo<t<oo), dt t t 
(23) 

Ao=A. 

Therefore we can consider that the measurement M is equivalent to the ap
proximate simultaneous measurement of self-adjoint operators {Aokhf:;/ for a 
particle S with a state u(x)=u(O, x). An easy calculation shows that 

where one parameter unitary group Ut( =e-ix- 1P?t) is represented by 

( 
m )112 (co [ im J 

(Utu)(x)=u(t, x)= 2n:i/Zt .\-co exp 2/Zt (x-~) 2 u(~)d~. 

Here we see easily that 

Let V=H®K=H®(®f~/ H)=®f~-o1 H=L2(RN) and 0t=®f~-o1 Ut, that is, for all 
¢ E L 2(RN), 

Let akn (k, n=O, 1, ... , N-1) be real numbers such that ~;;~01 akna1n=O (k=Fl) and 
ako=HVk). Define self-adjoint operators A 0k (k=O, 1, ... , N-1) in V(=L2(RN)) by 

N-1 ( /ZOk a ) 
Auk= ~ akn Xn+-.- -a • 

n=O tm Xn 
(25) 

It is clear that Aok (k=O, 1, 2, ... , N-1) commute. Also, for each k (k=O, 1, 2, . 

. . . , N-1), Aok and Aok®I(=xo+ ~Ok _aa ) commute. We see, by (24), that 
tm Xo 

(26)· 

Then, the spectral measure Eok of Aok (i.e. Aok= Sn J..E8k(dJ..)) is represented by 

(27) 

where X(B; y)=l(y E B), =0 (y fl B), i.e. a characteristic function of B. From the 
commutativity of {Eokhv~o 1 (i.e. {Aok}f~-o1 ), we can define an observable (X, ff, F)= 
RN, gJJN, F) in V where 

(28)-
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Put u(xo)=uo(Xo) and v(x1, ••. , xN-1)=v1(x1), ... , VN-1(XN-1) E L 2(RN-1)(=.K) (llv!IK=1) 
such that 

Put fk: X(=.RN)~R (k=O, 1, ... , N-1) such that fk(Xo, .. . , XN-1)=xk. Note that 
Aok= Sx fk(x)F(dx). 

Now we can easily show that M=(K, v, (X, ff, F), f=(fo, ••• ,fN-1)) defined 
above is an approximate simultaneous measurement of {A0k}f=-o1 in H. 

Note that the probability that the measurement-value x=(x0 , ••• , XN-J obtained 
by the measurement M belongs to a set EoxE1x · · · xEN- 1 is given by 

(30) 

Of course, this measurement-value x=(x0 , ••• , XN- 1) is representing just the discrete 
trajectory of a particle S, though it includes errors. 

Also, when we get x by this measurement M with respect to a state u( E H), 
the expectation xk of "true" value xk of Aok®I (k=O, 1, ... , N-1) is given by 

(31) 

Also, its variance a2=(a5, ... , a:v-1) is give by 

(32) 

6. Numerical results (two slit problem) 

In this section, we shall apply the analysis of the previous section to two 
slit problem, and show numerical results. For simplicity, we put lt/m=l. The 
initial condition u(O, x) is set up as follows: 

u(O, x)=l!v'2 (x E ( -3/2, -1/2) U (1/2, 3/2)) , =0 (otherwise) . (33) 

Fix T=O(N-1)=1/4. We consider the case that N=2 (i.e. 0=1/4). Put 

(34) 

Then, we see 

(35) 

(36) 
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We hope to make aM(Ao, u) small under the condition that aM(Ao, u)=aM(Ao, u). 

From (24) and Heisenberg's uncertainty relation (6), this is roughly realized, if 
we put 

and so, 

aM(A0, u)~aM(A0 , u)~0.359 · · · ~1/VS =0.353 · · · . 

For each k (k=O, 1), we put 

Bi=[-3+(i-1)/4, -3+(i/4)], (i=1,2, ... ,24). 

Figure 1 shows the numerical result of (30). In Figure 1, we connect B~ and 8{ 
by [r+(1/2)] lines, where [ ·] is Gauss symbol and 

(39) 

Therefore, Figure 1 represents the joint distribution of the measurement-values 
at t=O and t=1/4. The readers should read this figure 1 under the following 
notices: 

( i ) 

(ii) 

w=16 

the average error between the measurement value and "true" value is 
about 0.359. Therefore, we have sometimes the measurement value outside 
of slit at t=O. 
the "true" value is Produced by measurement M. So, this is not classical 
true value. 

3 SLIT 1 
-2 -2 

1 SLIT 3 
2 2 

Figure 1 

We can not only calculate (30) but also (31) and (32). These results are now in 
preparation. We shall show these results in [14]. 

7. Conclusions 

In this note, we proposed a new measurement-axiom (Axiom 1 in§ 4). The 
fundamental spirit of this axiom is summarized as follows: 

By measurement, a "true" value is not only Produced but also destroyed! 

And a produced "true" value is given by (19). This axiom can be considered a. 
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kind of generalized Copenhagen interpretation. This can assert rather radical 
statements, which may irritate our minds familiar with Copenhagen interpretation. 
In this note, we assert the following two statements by this interpretation: 

( i) the uncertainties (i.e. L1q and L1P) in Heisenberg's uncertainty relation 
"L1q· LlP?:.h/2" can be characterized as (average) errors in the approximate 
simultaneous measurement, so, Heisenberg's uncertainty relation can be 
clarified as the statement in Physics for the first time. 

( ii) the (discrete) trajectory of a Particle is enough significant. Though this, 
of course, includes errors, we can analyze trajectories of a Particle 
numerically. 

Axiom 1 seems to be so powerful that it gives clear solutions to fundamental 
problems of quantum mechanics. And no experiment exists that denies Axiom 1 
(see Remark 17). In contrast with conventional Copenhagen interpretation, we 
think that Axiom 1 is more consistent in theoretical aspect. Of course, to examine 
Axiom 1 by experiment is most important. We believe that it is possible, though 
we have no idea to do it at present. Another possibility is that Axiom 1 may 
be connected with philosophical problems as mentioned in Remark 17. However, 
it is not clever to form a hasty conclusion for these kinds of problems. We 
should be making efforts to examine Axiom 1 by experiment. For this, we must 
build its priority from theoretical aspects. In applied aspects, we should be giving 
actual results (for example, the proposal of measurement instruments that have 
special kinds of properrties under Axiom 1). In all cases discussions from various 
view points are necessary. 

I am grateful to Professor H. Ito in Metrological Research Institute for many 
fruitful discussions and suggestions and Professor M. Ozawa in Nagoya university 
who informed me his preprint [16] at this conference. Also, I wish to thank 
Professor T. Kawai (in Keio university) and Professor H. Ezawa (Gakushuuin 
university), who recommend me to speak at this conference. 
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8. Appendix 

In mathematics, we must prepare the following definition for conditional 
probability: 

Definition 5. Let ¢ be a state in a Hilbert sPace V. Let (X, ff, F) and 
( Y, ':!7, G) be observables in V. Let (X, ffct .~,G), F) be the observable as defined 
in § 4. A set CP(¢; (X, ffct.~,G)• F), (Y, ':!7, G)) of all conditional Probability 
fl<P' s (p<j~(X, r), or Precisely fl<P(x, r: (X, ffct .~,G)' F), ( Y, ':!7, G))) is defined that 
satisfies the following conditions (i), (ii) and (iii): 

( i) for each F( E 57), fl<P(x, F) is ffct.~,G)-measurable as a function of x and 
O~p<P(x, F)~l, 

(ii) for each x( EX), fl<P(x, ·) is a Probability measure on ( Y, ':!7) 
and 

(iii) for each ffct.~,G)-measurable function f: x~R and each r E ':!7, 

~x f(x)(¢, F(dx)G(F)¢)v= ~ x f(x)pcp(X, F)(¢, F(dx)¢)v . (40) 

Remark 21. This fl<P(x, r: (X, ffct.~.G)• F), (Y, ':!7, G)) defined in Definition 5 
was symbolically written as 

fl<P(x, r, (X, ffct.~,o), F), (Y, ':!7, G))= lim 
E-+Jx} 

JTtY,~,G) aEax 

(¢, F(B)G(F)¢)v 
(¢, F(B))¢)v 

(41) 

Remark 22. Notice that the existence of fl<P (i.e. CP(¢; (X, ffct.~.o), F), 
( Y, ':!7, G)) =I= 0) is a well-known fact in probability theory under some conditions 
(for example, Y is a complete separable metric space and ':!7 is its Borel field 
(see, for example, Ash [6])). 

Remark 23. Also, the uniqueness in the following sense is assu.Ied: 
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(24) if f-!11 f-!2 E CP(¢; (X, ffct.:if.a), F), (Y, ~'G)), then there exists a null set NE 
ffct.:if,G) (i.e. <¢, F(N)¢)v=O) such that f-l1(x, F)=p2(x, F) for all x E X-N 
and FE~. 

For the proof, see [13]. Roughly speaking, the set CP(¢; (X, ffct.:if,a), F), (Y, 
~'G)) can be considered to be composed of "one" element. Note that Axiom 1 
in § 4 has been mentioned on this premise. 

Now we can mention Axiom 1 (in § 4) in mathematics as follows: 

Axiom 1 (the mathematical representation of Axiom 1 in § 4). Let ¢ be a 
state of a system S in a Hilbert space V. Let (X, Y, F) and ( Y, ~' G) be observ
ables in V such that CP(¢; (X,ffcf,,:if,m,F), (F, ~,G))=F0. Then, 

( i ) the Probability that x0( EX), the measurement-value obtained by the 
measurement of the observable (X, Y, F) for this system S, belongs to 
a set 8( E ff) is given by <¢, F(B)¢)v. 

(ii) there exists f-l<PE CP(¢; (X, ffct.:if,G), (Y, ~'G)) satisfying that, if we know 
that the "true" value of the observable (X, ff, F) for this system S is 
x0 ( EX), then the Probability that Yo( E Y), the "true" value of an observable 
( Y, 'j?, G) for this system S, belongs to a set F( E 59') is given by f-lcfJ(X 0 , F). 

From this and Remark 23, we have the following Corollary. 

Corollary. Let ¢ be a state of a system S in a Hilbert space V and let (X, 
Y, F) and ( Y, ~'G) be observables in V. Let f-l<P be any element in CP(¢; (X, 
ffct ,:if,a), F), ( Y, ~' G)). Then, 

( i ) the Probability that X 0( EX), the measurement-value obtained by the meas
urement of the observable (X, ff, F) for this system S, belongs to a set 
E( E ff) is given by <¢, F(B)¢)v, 

( ii) the following statement is true almost surely in Probability <¢, F( · )¢)v: 
if we get x0( EX) by the measurement of the observable (X, ff, F) for 
this system S, then the Probability that y 0( E Y), the "true" value of the 
observable ( Y, ~' G) for this system s, belongs to a set r( E ~) is given 

by f-lcp(Xo, F). 

9. Note added in translation 

Concerning how to choose ffct.:if.G) in Axiom 1, we have also another proposal 
except those mentioned in § 4. In this section, we shall consider this. 

Let ¢ be a state of a system S in a Hilbert space V (i.e. ¢ E V, ll¢llv=1) and 
let (X, ff, F) and ( Y, ~' G) be observables in V. 

Let ~={ff0 Jff0 is a a-subfield of ff such that F(B)G(F)¢=G(F)F(B)¢(VB E 
ff 0

, V r E ~}. Clearly ..W is a semi-ordered set concerning inclusion relation. 
Let (/1, ~) be a linear ordered set and let {ff-lJ,:t E A}(<;::;;~) be a family in~ with 
the index set A such that l1 ~l2 <==>ff.ll <;::;;ff-1 2 • Put ffA={B( E ff)JB E ff.l for some 
A E A}. Clearly, ffA is a subfield (not necessarily a-subfield) of ff. Moreover, 
we can easily show that (X, ffA, F) is the observable such that 

F(B)G(r)¢= G(r)F(B)¢ (V s E ff A, v r E ~) • (42) 
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Now we shall show it. Let {Ei}J'=1 be disjoint family in ffA. And let ¢ E V. 
Then we see that, for any r E 5;;?, 

(¢, F( U ~=1 Ei)G(F)¢)v=lim (¢, F( U f=1 Ei)G(F)¢)v 
n-oo 

=lim(¢, G(F)F( U f=1 Ei)¢)v 
n-oo 

=lim (G(F)¢, F( U f=1 Ei)¢)v 
n-oo 

=(¢, G(F)F( U ~=1 Ei)¢)v 

which implies that U ~= 1 Ei E ffA and (X, ffA, F) is the observable satisfying (42). 
So, {ff.liA. E A} has upper-bound (X, ffA, F) in ....W. Hence, by Zorn's lemma, we 
see that ..!¥has a maximal element. Put ~max={ffmax(~ff)lffmax is a maximal 
a-subfield of ff in ..!¥}. Then, we define that 

.ffct.~.G) ={E( E ff)IB E ._5Tmax(vsrmax E ..;¥max)}= n ._5Tmax (43) 
srmax e ..wmax 

which is clearly a-subfield of ff. Also, it is clear that (X, .ffct.~.G),'F) is the 
observable satisfying (42). 

Using ffct.~.G) instead of ffct.~.G) (in§ 4), Pcp(Xo, r, (X, ffct.~.G)' F), (Y, 5;;?, G)) 
can be similarly defined by 

pcp(Xo, r, (X, ffct.~.G)' F), (Y, ~'G))= lim 
8--+{xo} 

Y::fY.~,G) 383xo 

(¢, F(E)G(F)¢)v 

(¢, F(E))¢)v 
(19') 

And our Axiom 1 can be also mentioned similarly in this case. And all arguments 

in this paper are effective. 
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