慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On the Galois group of $\mathrm{x}^{\mathrm{n}}-\mathrm{x}^{\mathrm{n}-1}-\mathrm{x}^{\mathrm{n}-2} \cdots-\mathrm{x}-1=0$
Sub Title	
Author	Komatsu，Kenzo
Publisher	慶鷹義塾大学理工学部
Publication year	1991
Jtitle	Keio Science and Technology Reports Vol．44，No．1（1991．11），p．1－6
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00440001－ 0001

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act

ON THE GALOIS GROUP OF $x^{n}-x^{n-1}-x^{n-2}-\cdots-x-1=0$

by
Kenzo Komatsu
Department of Mathematics
Faculty of Science and Technology, Keio University Hiyoshi, Yokohama 223, Japan

(Received November 5, 1991)

1. In his doctoral thesis [4], Tamura obtained an interesting result on the irreducibility of certain polynomials: Let $k_{1}, k_{2}, \cdots, k_{n-1}(n>1)$ be rational integers such that

$$
k_{n-1} \geq k_{n-2} \geq \cdots \geq k_{2} \geq k_{1} \geq 1
$$

Then the polynomial

$$
F(x)=x^{n}-k_{n-1} x^{n-1}-k_{n-2} x^{n-2}-\cdots-k_{1} x-1
$$

is irreducible over the rational number field \boldsymbol{Q}. See [5], Lemma 10.
Consider now the following question: Is it possible to determine the Galois group of $F(x)=0$ over \boldsymbol{Q} ? It seems very difficult to solve this problem completely. However, for the simplest case

$$
k_{1}=k_{2}=\cdots=k_{n-1}=1,
$$

we obtain
Theorem 1. The Galois group of the equation

$$
x^{n}-x^{n-1}-x^{n-2}-\cdots-x-1=0
$$

over Q is the symmetric group S_{n} for every $n>1$.
The purpose of this paper is to prove Theorem 1. We require a few theorems from algebraic number theory, including Minkowski's inequality on the discriminant of an algebraic number field.
2. Let α be a root of

$$
\begin{equation*}
f(x)=x^{n}-x^{n-1}-\cdots-x-1=0 . \tag{2.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
(x-1) f(x)=x^{n+1}-2 x^{n}+1, \tag{2.2}
\end{equation*}
$$

K. Komatsu

we have

$$
\begin{equation*}
\alpha^{n+1}-2 \alpha^{n}+1=0 . \tag{2.3}
\end{equation*}
$$

Also, by (2.2),

$$
(\alpha-1) f^{\prime}(\alpha)=(n+1) \alpha^{n}-2 n \alpha^{n-1} .
$$

Hence

$$
\begin{equation*}
(1-\alpha) f^{\prime}(\alpha)=\alpha^{n-1}\{2 n-(n+1) \alpha\} . \tag{2.4}
\end{equation*}
$$

3. For any $\xi \in \boldsymbol{Q}(\alpha)$, we denote by $N(\xi)$ its norm in $\boldsymbol{Q}(\alpha)$. For any $a \in \boldsymbol{Q}$, we have

$$
\begin{equation*}
N(a-\alpha)=f(a) . \tag{3.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
N(1-\alpha)=f(1)=1-n . \tag{3.2}
\end{equation*}
$$

Also, for any $a, b \in \boldsymbol{Q}(b \neq 0)$, we have

$$
\begin{equation*}
N(a-b \alpha)=b^{n} N\left(\frac{a}{b}-\alpha\right)=b^{n} f\left(\frac{a}{b}\right) . \tag{3.3}
\end{equation*}
$$

Hence

$$
N(2 n-(n+1) \alpha)=(n+1)^{n} f\left(\frac{2 n}{n+1}\right) .
$$

Now, by (2.2),

$$
\begin{aligned}
& \left(\frac{2 n}{n+1}-1\right) f\left(\frac{2 n}{n+1}\right)=\left(\frac{2 n}{n+1}\right)^{n+1}-2\left(\frac{2 n}{n+1}\right)^{n}+1 \\
& \frac{n-1}{n+1} f\left(\frac{2 n}{n+1}\right)=\left(\frac{1}{n+1}\right)^{n+1}\left((n+1)^{n+1}-2(2 n)^{n}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
N(2 n-(n+1) \alpha)=\frac{(n+1)^{n+1}-2(2 n)^{n}}{n-1} . \tag{3.4}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\delta=f^{\prime}(\alpha), \quad D=N(\delta) . \tag{3.5}
\end{equation*}
$$

Then, from (2.4), (3.2) and (3.4), we obtain

$$
\begin{aligned}
(1-n) D & =N\left(\alpha^{n-1}\right) \frac{(n+1)^{n+1}-2(2 n)^{n}}{n-1} \\
& =(-1)^{n-1} \frac{(n+1)^{n+1}-2(2 n)^{n}}{n-1}
\end{aligned}
$$

since

On the Galois group of $x^{n}-x^{n-1}-x^{n-2}-\cdots-x-1=0$

$$
\begin{equation*}
N\left(\alpha^{n-1}\right)=(N(\alpha))^{n-1}=\left((-1)^{n+1}\right)^{n-1}=(-1)^{n-1} \tag{3.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
D=(-1)^{n-1} \frac{2(2 n)^{n}-(n+1)^{n+1}}{(n-1)^{2}} \tag{3.7}
\end{equation*}
$$

4. Define the ring M by

$$
\begin{aligned}
M & =\left[1, \alpha, \cdots, \alpha^{n-1}\right] \\
& =\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \mid a_{i} \in \boldsymbol{Z}\right\} .
\end{aligned}
$$

Let $\alpha_{0}=\alpha-1$. Then, by (2.3),

$$
\left(\alpha_{0}+1\right)^{n+1}-2\left(\alpha_{0}+1\right)^{n}+1=0
$$

Hence

$$
\alpha_{ง}^{n+1}+b_{n} \alpha_{ง}^{n}+\cdots+b_{2} \alpha_{\jmath}^{2}+(1-n) \alpha_{0}=0
$$

where $b_{i} \in \boldsymbol{Z}$. Hence

$$
\frac{n-1}{\alpha_{0}}=\alpha_{0}^{n-1}+b_{n} \alpha_{0}^{n-2}+\cdots+b_{2} \in M
$$

By (3.2) we see that

$$
\begin{equation*}
\frac{N(1-\alpha)}{1-\alpha} \in M . \tag{4.1}
\end{equation*}
$$

Let $a \in \boldsymbol{Q}, a \neq 1$, and let $\beta=\alpha-a$. Then, by (2.3),

$$
(\beta+a)^{n+1}-2(\beta+a)^{n}+1=0
$$

and so

$$
\beta^{n+1}+\{(n+1) a-2\} \beta^{n}+\cdots+\left(a^{n+1}-2 a^{n}+1\right)=0 .
$$

On the other hand, by (2.2),

$$
a^{n+1}-2 a^{n}+1=(a-1) f(a)
$$

Hence

$$
\beta^{n}+\{(n+1) a-2) \beta^{n-1}+\cdots+\frac{(a-1) f(a)}{\beta}=0 .
$$

Now

$$
\begin{aligned}
& \beta^{n}=(\alpha-a)^{n}=\alpha^{n}-n a \alpha^{n-1}+\cdots+(-1)^{n} a^{n} \\
&=\left(\alpha^{n-1}+\cdots+1\right)-n a \alpha^{n-1}+\cdots+(-1)^{n} a^{n} \\
&=(1-n a) \alpha^{n-1}+\cdots+\left\{(-1)^{n} a^{n}+1\right\}, \\
&\{(n+1) a-2\} \beta^{n-1}=\{(n+1) a-2\}\left(\alpha^{n-1}-\cdots+(-a)^{n-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{N(a-\alpha)}{a-\alpha}=\alpha^{n-1}+t_{n-2} \alpha^{n-2}+\cdots+t_{1} \alpha+t_{0} \tag{4.2}
\end{equation*}
$$

where $t_{i} \in \boldsymbol{Q}$. Now let $a, b \in \boldsymbol{Q}, a \neq b, b \neq 0$. Then

$$
\begin{equation*}
\frac{N(a-b \alpha)}{a-b \alpha}=b^{n-1} \cdot \frac{N\left(\frac{a}{b}-\alpha\right)}{\frac{a}{b}-\alpha}=b^{n-1} \alpha^{n-1}+s_{n-2} \alpha^{n-2}+\cdots+s_{1} \alpha+s_{0}, \tag{4.3}
\end{equation*}
$$

where $s_{i} \in \boldsymbol{Q}$. From this we obtain

$$
\begin{equation*}
\frac{N(2 n-(n+1) \alpha)}{2 n-(n+1) \alpha}=(n+1)^{n-1} \alpha^{n-1}+c_{n-\Omega} \alpha^{n-2}+\cdots+c_{1} \alpha+c_{0} \tag{4.4}
\end{equation*}
$$

where $c_{i} \in \boldsymbol{Q}$.
5. By Theorem 1 of [2] we see that $D / \delta \in M$. Let

$$
\begin{equation*}
D / \delta=x_{0}+x_{1} \alpha+\cdots+x_{n-1} \alpha^{n-1}, \quad x_{i} \in Z \tag{5.1}
\end{equation*}
$$

Let p denote a prime number such that

$$
\begin{equation*}
p\left|x_{0}, p\right| x_{1}, \cdots, p \mid x_{n-1} \tag{5.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{D}{p \delta} \in M \tag{5.3}
\end{equation*}
$$

From (2.4) and (3.5) we obtain

$$
\frac{N(1-\alpha)}{1-\alpha} \cdot \frac{D}{\delta}=\frac{N\left(\alpha^{n-1}\right)}{\alpha^{n-1}} \cdot \frac{N(2 n-(n+1) \alpha)}{2 n-(n+1) \alpha} .
$$

Hence, by (3.6),

$$
\frac{N(2 n-(n+1) \alpha)}{p(2 n-(n+1) \alpha)}=(-1)^{n-1} \alpha^{n-1} \cdot \frac{N(1-\alpha)}{1-\alpha} \cdot \frac{D}{p \delta} .
$$

Since M is a ring, it follows from (4.1) and (5.3) that

$$
\begin{equation*}
\frac{N(2 n-(n+1) \alpha)}{p(2 n-(n+1) \alpha)} \in M \tag{5.4}
\end{equation*}
$$

Since $1, \alpha, \cdots, \alpha^{n-1}$ are linearly independent over Q, by (4.4) and (5.4) we see that $n+1$ is divisible by p. On the other hand D is divisible by p ((5.1) and (5.2)). Hence, by (3.7), $p=2$. From Theorem 1 of [2] we obtain:
(5.5) For every odd prime p, the discriminant d of $\boldsymbol{Q}(\alpha)$ is not divisible by p^{2}.
6. Suppose that n is even. Then, by (3.7), D is odd. Since $d \mid D$, it follows
from (5.5) that d is square-free. Hence the Galois group of $f(x)=0$ is the symmetric group S_{n} ([3], Theorem 1).
7. Suppose that n is odd. We require two lemmas.

Lemma 1. Let d_{K} denote the discriminant of an algebraic number field K of degree $n>1$. Then $\left|d_{K}\right|>2^{n-1}$.

Proof. From Minkowski's inequality ([1], §18) and Stirling's formula, we obtain

$$
\begin{aligned}
\left|d_{\bar{K}}\right| & >\left(\frac{\pi}{4}\right)^{n}\left(\frac{n^{n}}{n!}\right)^{2} \\
& >\left(\frac{\pi e^{2}}{4}\right)^{n} \frac{e^{-1 / 8 n}}{2 \pi n} .
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
\log \left\{\left(\frac{\pi e^{2}}{4}\right)^{n} \frac{e^{-1 / \theta n}}{2 \pi n}\right\} & =n(\log \pi+2-2 \log 2)-\frac{1}{6 n}-\log (2 \pi n) \\
& >(n-1) \log 2=\log 2^{n-1}
\end{aligned}
$$

Hence we obtain

$$
\left|d_{K}\right|>2^{n-1}
$$

Lemma 2. For any odd integer $n>1$,

$$
D_{n}=\frac{2(2 n)^{n}-(n+1)^{n+1}}{(n-1)^{2}}
$$

is exactly divisible by 2^{n-1}.
Proof. Let $n=2 m+1, m \in \boldsymbol{Z}, m \geq 1$. Then

$$
(2 m)^{2} D_{n}=2^{n+1}(2 m+1)^{n}-2^{n+1}(m+1)^{n+1},
$$

and so

$$
\begin{equation*}
m^{2} D_{n}=2^{n-1}\left\{(2 m+1)^{n}-(m+1)^{n+1}\right\} \tag{7.1}
\end{equation*}
$$

If m is odd, then both m^{2} and $(2 m+1)^{n}-(m+1)^{n+1}$ are odd, and D_{n} is exactly divisible by 2^{n-1}. Suppose that m is even. Now, by (7.1),

$$
\begin{aligned}
m^{2} D_{n} & =2^{n-1}\left\{\sum_{k=0}^{n-2} C_{k}(2 m)^{n-k}+n(2 m)+1-\sum_{k=0}^{n-1}{ }_{n+1} C_{k} m^{n+1-k}-(n+1) m-1\right\} \\
& =2^{n-1} m^{2}\left(\sum_{k=0}^{n-2} C_{k} 2^{n-k} m^{n-2-k}-\sum_{k=0}^{n-1} n^{n+1} C_{k} m^{n-1-k}+2\right) .
\end{aligned}
$$

Hence D_{n} is divisible by 2^{n-1}. Since m is even,

$$
\begin{aligned}
\frac{D_{n}}{2^{n-1}} & \equiv{ }_{n+1} C_{n-1}=\frac{n(n+1)}{2} \\
& =n(m+1) \equiv 1(\bmod 2) .
\end{aligned}
$$

Hence D_{n} is exactly divisible by 2^{n-1}.
Now we prove our theorem for odd $n(n>1)$. It follows from Lemma 2 that D is exactly divisible by 2^{n-1}. Since D is divisible by the discriminant d of $\boldsymbol{Q}(\alpha)$, it follows from (5.5) that

$$
\begin{equation*}
|d|=2^{\imath} b, \quad t \leq n-1 \tag{7.2}
\end{equation*}
$$

where b is a square-free odd integer. Lemma 1 implies that $b>1$; the discriminant d is exactly divisible by a prime number q. Hence the Galois group G of $f(x)=0$ over \boldsymbol{Q}, which is a transitive permutation group on the set $\{1,2, \cdots, n\}$, contains a transposition ([6]). Suppose that $\boldsymbol{Q}(\alpha)$ has a subfield F such that

$$
\boldsymbol{Q} \subset F \subset \boldsymbol{Q}(\alpha), \quad F \neq \boldsymbol{Q}, \quad F \neq \boldsymbol{Q}(\alpha) .
$$

Let d_{F} denote the discriminant of F, and let

$$
m=[\boldsymbol{Q}(\alpha): F], \quad k=[F: \boldsymbol{Q}] .
$$

Then d is divisible by d_{F}^{m} ([1], Satz 39). Since $m>1$, it follows from (7.2) that $\left|d_{F}\right|$ is a power of 2 :

$$
\left|d_{F}\right|=2^{z} .
$$

Since $k>1$, it follows from Lemma 1 that $s \geq k$. Hence d_{F} is divisible by 2^{k}, and d is divisible by $2^{k m}=2^{n}$. However, it follows from (7.2) that d is not divisible by 2^{n}. A contradiction proves that G is primitive ([7], Theorem 7.4). Hence we obtain $G=S_{n}$ ([7], Theorem 13.3).

References

[1] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresber. Deutsch. Math.-Verein., 4 (1897), 175-546.
[2] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
[3] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14 (1991), 57-60.
[4] J. Tamura, A class of transcendental numbers with explicit g-adic expansion and Jacobi-Perron algorithm, Keio University, 1990.
[5] J. Tamura, A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension, to appear.
[6] B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
[7] H. Wielandt, Finite permutation groups, Academic Press, 1964.

