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1. In his doctoral thesis [4], Tamura obtained an interesting result on the
irreducibility of certain polynomials: Let k,, ks, +++, kai(n>1) be rational integers
such that

k,._l._>_k,,_22 e 2k22k121 .
Then the polynomial
F@)=x"—k,_j2" '\—Fk, ;2" 2—-..—kax—1

is irreducible over the rational number field Q. See [5], Lemma 10.

Consider now the following question: Is it possible to determine the Galois
group of F(x)=0 over @? It seems very difficult to solve this problem completely.
However, for the simplest case

ki=ky=": =k, =1,
we obtain
Theorem 1. The Galois group of the equation
g —gn gt — e —g—1=0
over Q is the symmetric group S, for every n>1.

The purpose of this paper is to prove Theorem 1. We require a few theo-
rems from algebraic number theory, including Minkowski’s inequality on the
discriminant of an algebraic number field.

2. Let « be a root of

2.1) fle)=2"—2" 11— .. —x—1=0,
Since
2.2) (x—1)f(x)=2*"1—22"+1,

1



K. Komatsu

we have
2.3) a”*t—2a"+1=0.
Also, by (2.2),
(a—1)f (a)=(n+1)a"—2na"""* .
Hence
(2.4) (1—a)f (@)=a*{2n—(n+1)a} .

3. For any £€ Q(a), we denote by N(¢) its norm in Q(a). For any ac@,
we have

(3.1) Na—a)=fla) .
Hence
3.2) Nl—a)=fQ1)=1—n.

Also, for any a, b€ Q(b+0), we have

(3.3) N(a—ba)zb"N(%—a)=b"f(%> .

Hence

N(2n—(n+1)a)=(n+1)"f< 2n >

n+1
Now, by (2.2),
2n 2n \_( 2n \*""' _/ 2n \*
< n+1 —1>f< n+1 >_( n+1 ) 2( n+1 > 1
n—1 2n \__ 1 ntl b1 "
n+l f( ntl )”( ntl > (nt1)yi—-20@m)) .
Hence
(3.4) Nen—(n-t D)= 2220
Now let
(3.5 o=f"a), D=N().

Then, from (2.4), (3.2) and (3.4), we obtain

(n+1)r+t—22n)"
n—1
n+1)**1—2(2n)"
n—1

(1—n)D=N(a"?)

=(=D

’

since
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(3.6) Na™ ) =(N(@)™ = ((— 1))t =(—1) .
Hence
3.7 D (1 22— D

(n—1)*
4. Define the ring M by

M:[l, a, .-, a"‘l]
={a,;+a,a+ - +a,-,a" o, e Z} .

Let ay=a—1. Then, by (2.3),
(aot+1)**"* —2(ao+1)"+1=0.
Hence
att +bual 4 - b+ (1—m)a =0,
where b,€ Z. Hence

n—1

ay

=ai ' +b.ai it +b e M.

By (3.2) we see that
N1—a) c

l—a

4.1) M.

Let a€Q, a#1, and let f=a—a. Then, by (2.3),
(8+a)"*'~2(8+a)"+1=0,
and so
i +H{(m+1)a—2}p"+ - - - +(a"*' —2a*+1)=0 .
On the other hand, by (2.2),
a*'—2a"+1=(a—1)f(a) .
Hence

a—V)f@ _

3 0.

Br+{(n+1)a—2)p~ 1+ -+

Now
ﬁ"z(a~a)"=a”—naa"-l+ co o (=D
:(an—1+ ess —|—1)_naan—1+ - +(_1)”a”
:(1—na)aﬂ—l+ ces +{(_1)nan+l} ,

{(n+1a—2}p ' ={(n+1)a—2Ha"" ' —- - - +(—a)*"}) .

3



K. Komatsu

Hence

Nia—
(4.2) _M_:an-l+tn_2an—2+...+tla+t0 )

a—a

where £,€Q. Now let ¢,b€@Q, a+b, b+0. Then

a
Na—ba) _,, , ™ (5 g
a

(4.3) a—ba

"t Sppa T s Esia S,
B
where s;€Q. From this we obtain

N2n—(n+1)a)

(4.4) 2n—(n+1)a

=n+1)"ta" @ i - Ciatcy

where ¢, € Q.
5. By Theorem 1 of [2] we see fhat D/ise M. Let
(5.1) Dis=xy+2a+++Za”t, x,€Z.

Let p denote a prime number such that -

(502) p]wa plxl) ""p|xn—1 .
Then

D
(5.3) 5 eM.

From (2.4) and (3.5) we obtain

N1—a) _‘D__ N ] N2n—(n+1)a)
l1—a s am! 2n—n+1)a

Hence, by (3.6),

N(2n—(n+1)a) :(_l)n—laﬂ—l ,M_. 2 .

p@2n—(n+1)a) l—a pé
Since M is a ring, it follows from (4.1) and (5.3) that

64) PCn—n+1)a) )

Since 1, a, « -+, a*! are linearly independent over @, by (4.4) and (5.4) we see
that »-41 is divisible by p. On the other hand D is divisible by p ((5.1) and
(5.2)). Hence, by (3.7), p=2. From Theorem 1 of [2] we obtain:

(5.5)  For every odd prime p, the discriminant d of Q(e) is not divisible by p* .

6. Suppose that » is even. Then, by (3.7), D is odd. Since d|D, it follows
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from (5.5) that d is square-free. Hence the Galois group of f(x)=0 is the symmetric
group S, ([3], Theorem 1).

7. Suppose that # is odd. We require two lemmas.

Lemma 1. Let dix denote the discriminant of an algebraic number field K of
degree n>1. Then |dg|>2"1.

Proof. From Minkowski’s inequality ([1], §18) and Stirling’s formula, we

obtain
T n nn 2
ax>(5) ()
n.ez ne-—llﬂ'n
>< 4 ) 2rn

It is easily seen that

e \" e l/on 1
log{( 4 ) 20 }_n(log”+2_21°g2)_ﬁ*10g(27m)

>(n—1)log 2=log 2! .
Hence we obtain
|dg|>2m1
Lemma 2. For any odd integer n>1,

_2@n) —(n41)"
D.= (n—1)

is exactly divisible by 2 1,
Proof. Let n=2m+4-1, me Z, m>1. Then
(m):D,=2""'2m~+1)"—2"  (m+1)"** ,
and so
(7.1) m:D,=2""Y(2m+1)"—(m4-1)"*} .

If m is odd, then both m? and (2m-+1)"—(m+1)*** are odd, and D, is exactly
divisible by 2*~!. Suppose that m is even. Now, by (7.1),

m:D, =21 {:Z:}: CCm)* *+n(2m)+1— ;Z): a1 Cem™ 17— (- l)m—IE
=2ﬂ”‘lm2<ﬂ22 anZn—kmﬂ—z—k__ ’il ”+1Ckmn—1—k+2> .
k=0 k=0
Hence D, is divisible by 271, Since m is even,
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n(n-+1)
on-1 =001 Co= Y

=n(m+1)=1 (mod2) .
Hence D, is exactly divisible by 2!,

Now we prove our theorem for odd n(n>1). It follows from Lemma 2 that
D is exactly divisible by 2*'. Since D is divisible by the discriminant d of
Q(a), it follows from (5.5) that

(7.2) |[dj=2%, t<n—1,

where b is a square-free odd integer. Lemma 1 implies that #>1; the discrimi-
nant d is exactly divisible by a prime number ¢. Hence the Galois group G of
f(®)=0 over Q, which is a transitive permutation group on the set {1,2, ---, n},
contains a transposition ([6]). Suppose that Q(a) has a subfield F such that

QCcFcQ), F+Q, F+#Q().
Let d; denote the discriminant of F, and let
m=[Qa): F], k=[F:Q].

Then d is divisible by dz ([1], Satz 39). Since m>1, it follows from (7.2) that
|ds| is a power of 2:

|dp| =2*,

Since £>1, it follows from Lemma 1 that s>k. Hence d, is divisible by 2%, and
d is divisible by 2*»=2", However, it follows from (7.2) that d is not divisible
by 2. A contradiction proves that G is primitive ([7], Theorem 7.4). Hence
we obtain G=S, ([7], Theorem 13.3).
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