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ON THE GALOIS GROUP OF xn-xn-1-xn-2 - ••• -x-l==O 

by 

Kenzo Komatsu 

Department of Mathematics 
Faculty of Science and Technology, Keio University 

Hiyoshi, Yokohama 223, Japan 

(Received November 5, 1991) 

1. In his doctoral thesis [4], Tamura obtained an interesting result on the 
irreducibility of certain polynomials: Let k11 k2, • • ·, kn-1(n> 1) be rational integers 
such that 

Then the polynomial 

is irreducible over the rational number field Q. See [5], Lemma 10. 
Consider now the following question: Is it possible to determine the Galois 

group of F(x)=O over Q? It seems very difficult to solve this problem completely. 
However, for the simplest case 

we obtain 

Theorem 1. The Galois group of the equation 

over Q is the symmetric group Sn for every n > 1. 

The purpose of this paper is to prove Theorem 1. We require a few theo
rems from algebraic number theory, including Minkowski's inequality on the 
discriminant of an algebraic number field. 

2. Let a be a root of 

(2.1) f(x)=x"-x"- 1
- • • • -x-1=0. 

Since 

(2.2) 

l 
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we have 

(2.3) 

Also, by (2.2), 

(a-1)/'(a)=(n+ l)an-2nan-i . 

Hence 

(2.4) (l-a)f'(a)=an- 1{2n-(n+ l)a} . 

3. For any ~ E Q(a), we denote by N(~) its norm in Q(a). For any a E Q, 
we have 

(3.1) N(a-a)=f(a). 

Hence 

(3.2) N(l-a)=/(1)=1-n. 

Also, for any a, b E Q(b=i=O), we have 

(3.3) 

Hence 

Now, by (2.2), 

Hence 

(3.4) 

Now let 

(3.5) 

N(2n-(n+l)a)=(n+l)nf( n~l ) . 

( 
2n ) ( 2n ) ( 2n )n+i ( 2n )n 

n+l -l I n+l = n+l - 2 n+l +l' 

n-l ( 2n ) ( 1 )n+1 --f -- = -- ((n+l)n+1_2(2n)n). 
n+l n+l n+l 

N(2n-(n+ l)a) 
(n+l)n+1-2(2n)n 

n-l 

o= f'(a) , D=N(o) . 

Then, from (2.4), (3.2) and (3.4), we obtain 

since 

(l-n)D= N(an-1) (n+ l)n+1_2(2n)n 
n-l 

(n+ l)n+1-2(2n)n 
= < -1r-1-----'-----'---

n-1 ' 
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(3.6) 

Hence 

(3.7) 

4. Define the ring M by 

M= [l, a, ... , an-I] 

={ao+a1a+ · · · +an-1a11
-
1lai E Z} . 

Let a 0 =a-1. Then, by (2.3), 

(ao+l)11 +1 -2(ao+l)n+l=O. 

Hence 

where bi E Z. Hence 

By (3.2) we see that 

(4.1) 
N(l-a) M 

1 
E • 

-a 

Let aE Q, a=i=l, and let p=a-a. Then, by (2.3), 

(8+a)11 +1-2(p+a)11+l=O, 

and so 

p11+1+{(n+ l)a-2},811 + · · · +(a11 +1-2a11 + 1)=0 . 

On the other hand, by (2.2), 

Hence 

Now 

a11+1-2a11 + l=(a-1)/(a) . 

(a-1)/(a) 
,811 +{(n+l)a-2)j911- 1+ · · · +--p--=0. 

.B11 =(a-a)11=a11 -naa11- 1 + · · · +(-l)11an 

=(a11-1+ ... +1)-naa11-1+ ... +(-l)11a11 

=(l-na)a11- 1+ · · · +{(-l)11a 11 +l}, 

{(n+ l)a-2},Bn- 1 ={(n+ l)a-2}(a11- 1
- • • • +(-a)11- 1) . 
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Hence 

(4.2) 

where ti E Q. Now let a, b E Q, a-=!=b, b-=i=O. Then 

(4.3) 

where si E Q. From this we obtain 

(4.4) 

where ciE Q. 

5. By Theorem 1 of [2] we see that D/o E M. Let 

(5.1) 

Let p denote a prime number· such that 

(5.2) 

Then 

(5.3) 
D 
-EM pa . 

From (2.4) and (3.5) we obtain 

Hence, by (3.6), 

N(l-a) D 
1-a a 

N(2n-(n+l)a) 
P(2n-(n+ l)a) 

N(an- 1) N(2n-(n+l)a) 
an-i . 2n-(n+l)a 

Since Mis a ring, it follows from (4.1) and (5.3) that 

(5.4) 
N(2n-(n+l)a) M 
p(2n-(n+l)a) E • 

Since 1, a,···, an-i are linearly independent over Q, by (4.4) and (5.4) we see 
that n+ 1 is divisible by p. On the other hand D is divisible by p ((5.1) and 
(5.2)). Hence, by (3.7), P=2. From Theorem 1 of [2] we obtain: 

(5.5) For every odd prime p, the discriminant d of Q(a) is not divisible by p2 
• 

6. Suppose that n is even. Then, by (3.7), D is odd. Since dlD, it follows 

4 
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from (5.5) that d is square-free. Hence the Galois group of f(x) =0 is the symmetric 
group S11 ([3], Theorem 1). 

7. Suppose that n is odd. We require two lemmas. 

Lemma 1. Let dx denote the discriminant of an algebraic number field K of 
degree n>l. Then ldxl>211

-
1

• 

Proof. From Minkowski's inequality ([l], § 18) and Stirling's formula, we 
obtain 

( 
rr )11( n" )2 

ldxl> 4 nI 

It is easily seen that 

{( 
rre2 ) 11 e-11011 

} 1 
log -

4
-

2
rrn =n(logrr+2-2log2)-

6
n -log(2rrn) 

>(n-l)log2=log211
-

1 • 

Hence we obtain 

Lemma 2. For any odd integer n>l, 

2(2n) 71 -(n+ l)n+i 
Dn- (n-1)2 

is exactly divisible by 2n-1 • 

Proof. Let n=2m+l, m E Z, m~l. Then 

and so 

(7.1) 

If m is odd, then both m2 and (2m+l)11 -(m+1r+1 are odd, and D11 is exactly 
divisible by 211

-
1 • Suppose that m is even. Now, by (7.1), 

Hence D11 is divisible by 211
-

1 • Since m is even, 

5 



K. Komatsu 

Dn n(n+l) 
2.;;=1=n+1Cn-1=--2-

=n(m+ 1) = 1 (mod 2) . 

Hence Dn is exactly divisible by 2n- 1
• 

Now we prove our theorem for odd n(n> 1). It follows from Lemma 2 that 
D is exactly divisible by 2n- 1 • Since D is divisible by the discriminant d of 
Q(a), it follows from (5.5) that 

(7.2) ldl =21b , t~n-1 , 

where b is a square-free odd integer. Lemma 1 implies that b> 1; the discrimi
nant d is exactly divisible by a prime number q. Hence the Galois group G of 
f(x)=O over Q, which is a transitive permutation group on the set {l, 2, · · ·, n}, 
contains a transposition ([6]). Suppose that Q(a) has a subfield F such that 

QcFcQ(a) , Fo::FQ, Fo::FQ(a) . 

Let dF denote the discriminant of F, and let 

m=[Q(a) : F] , k=[F: Q] . 

Then d is divisible by dr; ([l], Satz 39). Since m>l, it follows from (7.2) that 
ldFI is a power of 2: 

Since k>l, it follows from Lemma 1 that s-::::.k. Hence dF is divisible by 2k, and 
d is divisible by 2km=2"'. However, it follows from (7.2) that d is not divisible 
by 2"'. A contradiction proves that G is primitive ([7], Theorem 7.4). Hence 
we obtain G=Sn ([7], Theorem 13.3). 
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