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ABSTRACTS

We shall reconstruct the spectral analysis of the generalized Hilbert transforms in R2,
which was given in K. Matsuoka [6], under some weaker conditions.

1. Introduction

In [1], K. Anzai, S. Koizumi and K. Matsuoka extended the Wiener formula
to the R? case. On the basis of this Wiener formula, K. Matsuoka [5] constructed
the generalized harmonic analysis (GHA) on R?. And, in [6], we showed the
extension of Koizumi’s theory ([2, 3]) of the spectral analysis of the generalized
Hilbert transform (GHT)

f@=tim ””S S0 dt
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T
(as for the notation “L%R)”, see Section 2) to the R* case by using the GHA on
R:. In order to do this, we assumed several conditions ((M,)-(M;) in [6]).

The purpose of this paper is to show the same results as in .[6] under some
weaker conditions (M,)s2, Mp)»2; (M,)s, (My)s; (My)s, (M,)s in Section 3).

2. Preliminaries

Throughout this paper, all functions we consider will be complex valued
and measurable on R or R:.

In this section, we list the notation, which will be used in what follows
(see S. Koizumi [2, 3], P. Masani [4], K. Matsuoka [5, 6] and N. Wiener [7, 8]):
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[Wiener’s generalized Fourier transform (GFT)]
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where the notation “l.i.m.” means the limit in L*(R) or L*(R?;

4,5w; g9)=s(u+e; g)—su—e; g),
Ao s, v; f)=s(u+te, v+ f)—su—e, v+7; f)
—s(ute, v—7; f)+su—e, v—7; f) ;
The notations “#,-limg,;....”" and “Z,-lim,,;..,” mean that in each of them
a limit exists and has the same limit for every positive constant C

whenever S and 7 tend to infinity or ¢ and 7 tend to zero in such a
way that S=CT or 5n=Ce¢ respectively;
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S(R)={g € L%.(R): ¢(x; g) exists for all z€ R},
S(R)={fe WRY: ¢(x,, z,; f) exists for all (z,, x,) € R?},
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and

1 T S
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which are called the covariance functions of ge S(R) and fe S(R?

respectively;

(h)y S'(R)={gec S(R): ¢(x; g) is continuous on R} ;
S(R)={fe S(R?: ¢(x,, xz,f) is continuous on R?} !

(i) [The generalized Hilbert transform (GHT)]
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on R or R? (see Theorem 1 of K. Matsuoka [5]).

3. The spectral analysis of the generalized Hiibert transforin (GHT)

In K. Matsuoka [6], under several conditions (M,)-(M;), we determined the
spectral relation between a given function on R? and its GHT’s, and saw that

the properties of the given function are reflected on those of its GHT’s.

this section, we shall show the same results as in the above under some weaker

conditions.
First, we state the theorems concerning the mean total power of the GHT.

Theorem 1. Suppose fe #*(R?), and it satisfies that

(M,) R lim -
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Theorem 1/, Suppose f€ # *(R*), and it satisfies that
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Theorem 2, Suppose fe W *R?), and it satisfies that (M), (M,) 2, (M,),
(M) » 2 and, in addition, that
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On the generalized Hilbert transforms of functions of two variables II

+ lim % S Ik (®):dt + lim ~21§ S | (s)|2ds+ B2 .

By Theorem 22 of N. Wiener [8] and Theorem 3 of K. Matsuoka [5], in order

to prove Theorems 1, 1’ and 2, it suffices to verify the following three lemmas,
respectively.

Lemma 3. Under the hypotheses of Theorem 1,
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Proof. Using Theorem 9 and Lemma 4 of K. Matsuoka [6], and the condi-
tions (M,), Ma)»2, (My), (My)»2, (Ms)-(M;), we have
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Thus, (3.8) is proved. M

Similarly, we prove Lemmas 3 and 3’ by Theorem 8 and Lemma 4 of K.
Matsuoka [6].

Next, we show the theorems concerning the covariance function of the
GHT.

Theorem 5. Suppose fc S(R?), and it satisfies (M,) and that
(M,)s there exists a function k{(x,) € S(R) such that (3.1) holds.
Then H®fe S(R?) and

(3.9) 3y, To; HOL)=0(w,, %5 f)-+P(as; k) .

Theorem 5’. Suppose f € S(R?), and it satisfies (M,) and that
(M,)s there exists a function k’ (x,) € S(R) such that (3.3) holds.
Then H®fe S(R?) and

(3.10) oy, o5 HPf)=d(x,, ®,; f)+(x,; k) .

Theorems 5 and 5’ follow by the same argument that will be used in the
proof of the following theorem.

Theorem 6. Suppose fcS(R?, and it satisfies (M,), (M,)s, (M,), (M,)s and
(M,)-(M;). Then Hf € S(R?) and

(3.11) Ay, oy H )=, @55 )+ b(a; B +P(x,; B +R{|® .

Proof. By Theorem 9 and Lemma 4 of K. Matsuoka [6], the conditions (M,),
(Mo)s, (M,), (M,)s, M;)—(M;), Theorem 27 of N. Wiener [8], and Theorem 6 of
K. Matsuoka [5], we have immediately

o2y, oy Hf )=, lim 1 S S el =t 4, s(u, v; )| dudy

ev~+ul6neﬂ o J =
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+ lim —S e™*1|ds(u; k{)|*du
e->+0 4 —o0

41k |
=¢(%,, Lo [)+b(@s; k) +dl; R)+HIR{E. W

Finally, by Theorems 5, 5’ and 6, we obtain the results concerning the
GHT of functions in the class S/(R?).

Theorem 7. Suppose fc S'(R?), and it satisfies (M,) and that
(M,)s - there exists a function ki(x,) € S’(R) such that (3.1) holds.
Then HVfe S'(R?) and (3.9) holds.

Theorem 7’. Suppose f€ S'(R?), and it satisfies (M,) and that

(M,)s' there exists a function k{(x,) € S'(R) such that (3.3) holds.
Then H®fe S'(R?) and (3.10) holds.
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On the generalized Hilbert transforms of functions of two variables II

Theorem 8. Suppose fe S'(R?), and it satisfies (M,), (M,)s, (My), (M,)s and
(M;)~(M;). Then Hfc S'(R* and (3.11) holds.

Remark. Throughout this paper, the limit processes depend on the restricted
limit processes #,-lims,,-.. and Z,-lim,,, .,, involved in the GHA on R? On the
other hand, the GHA on R:?® is also established under the independent limit
processes limg ;... and lim,,,..,. Thus, the results in this paper also hold under
the independent limit processes limg,,... and lim,,,.., instead of the restricted
limit processes %, -limg,,_.. and “%;-lim,,,-+,, respectively.
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