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ON APPROXIMATE FOURIER SERIES OF A 
SECOND ORDER STOCHASTIC PROCESS 

by 

Tatsuo KAWATA* 

Department of Mathematics 
Faculty of Science and Technology, Keio University 

Hiyoshi, Yokohama 223, Japan 

(Received 14 June 1990) 

1. Introduction 

The auther was informed by H. L. Hurd [1] that he had shown that a second 
order stochastic process (possibly discontinuous) X(t, cv), -oo<t<oo, cv being an 
element of a given probability space fJ, can be represented by the (C, 1) sum of 
the Fourier-like series 

00 

(1.1) I; a1c(t, cv) exp (2irikt/T) , 
k-=-co 

under some conditions on the correlation function EX(t, cv)X(s, cu) and the natural 
condition on X(t, cu) at t, where a1c(t, w) is given by 

with 

(1.3) 

and Tis any positive number. Here 1.i.m. means the limit in L2(Q). We used 
a slightly different notation for W from Hurd's, for later convenience. (1.1) is 
not an ordinary Fourier series, since the coeffident a1c(t, w) depends on the 
variable t. 

Now we take t in a1c(t, cv) to be a fixed constant (independent of t) t 0 and 
write a1c(cu)=a1c(t0 , w) and consider the series 

00 

(1.4) I; ahJ) exp (2irikt/T) . 
k=-00 

* Former Professor. (Department of Mathematics). 
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T. KAWATA 

For simplicity, we take !0 =0 in what follows, so that 

(1.5) ak(m)=lL!!1· ~ [A Wr(u) exp (-277:iku/T)X(u, m)du. 

We then ask what will be said about (1.4). The problem will be treated 
in 4. Roughly speaking, we shall show that there is a T-periodic stochastic 
process Xr(t, m) which approxim~tes X(t, m) for each t when T is large and is 
such that Fourier series of Xr(t, w) is just (1:4) with (1.5). The precise statement 
will be given in 4. 

In this sense (1.4) is called· an approximate Fourier series of X(t, m). Also 
we agree to call Xr(t, w) a T-periodic ~pproximate stochastic process. 

The auther [2], [3] has studied the approximate Fourier series of a weakly 
stationary process and a general linear process. In particular, the auther was 
interested in the almost sure absolute convergence of the approximate Fourier 
series, which enabled him to find sufficient conditions for the sample continuity 
of the given stochastic processes. In this paper, we shall make the similar 
investigation along this line, for a general second order process. 

We throughout this paper suppose that X(t, m) in consideration is a mesurable 
second order Process with bounded second moment: 

(1.6) EIX(t, w)l2~M, -oo<t<oo. 

We here note that (1.6) implies 

(1.7) ~~A IX(t, w)l 2dt<oo, almost surely, 

for every finite A. 

2. An approximate Fourier series 

We now consider 

(2.1) V (!)=[sin (77:!/!]_J~ T>O 
T 77:!/T , 

in place of Wr(t) in 1 and take up the series 

00 

(2.2) 2:: ck(w) exp (277:ikt/T) 
lc=-oo 

instead of (1.4) where 

(2.3) ck(m)=ct(m, T) 

=l.i.m. Tl \B Vr(u) exp (-277:iku/T)X(u, w)du, k=O, ±1, · · · . 
A,B-+oo J-A 

As we will see later, (2.2) is much easier to handle than (1.4). ck(w) is 
actually well defined. First we prove this. 
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Let B'>B>O. Using the Minkowski inequality, we have 

EI~:, VT(u) exp (-2rriku/T)X(u, w)du I 2 ~ H:' VT(u)[EIX(u, w)l 2]112du} 
2 

~MD:' VT(u)du J 
[

\ B' du ]2 MT' 
~M J B (rru/T)2 ~ rr4B2 

which converges to zero as B~oo. For S=1, (O<A<A') we have the similar 
estimate. Hence ck(w)=ck(w, T) exists for every T and Elck(w)l2<oo. 

Now for each t, we define 

A K 
(2.4) XT(t, w)=l.i.m. ~ VT(t+jT)X(t+jT, w) . 

K,L-+oo i=-L 

The right hand side really exists. For a fixed t, taking K:?:l so large that 
KT>21tl, we have, using the Minkowski inequality, for K'>K, 

(2.5) EI JK VT(t+jT)X(t+jT, w) I 2~ {JK[EiVT(t+jT)X(t+jT, w)l 2]11f 
~ {JK[ C(t!jT))'EIX(t+jT, w)l2r2} 2 

[ 

K' 1 ]2 
~CM ;~K (j-1/2)2 

~CM/K2 , 

where C's are absolute constants and may be different on each occurrence. 
-L 

The similar estimate is obtained also for ~ (l~L<L'). Thus the right 
j=-L' 

hand side of (2.4) exists. 
Obviously we see 

(2.6) 

for every t, that is, XT(t, w) is a T-periodic stochastic process. 
Now we shall show, in the following section, 

Theorem 1. Let X(t, w), -oo<t<oo, be a second order stochastic process 
satisfying (1.6). Then we have 

( i) For T:?:21tl, 

(2.7) 

and 

(2.8) 

(ii) The Fourier series of XT(t, w) is given by (2.2), where C is an absolute 
constant, and Mis the constant in (1.6). 

3 



T. KAWATA 

If, for a given second order stochastic process X(t, w), there exists a T­
periodic second order proce~s Xr(t, w), such that EJXr(t, w)J 2 is bounded and 
Xr(t, w) converges in L2(Q) to X(t, w) for each t as T-HXJ, then we agree to call 
Xr(t, w) an aPProximate T-Periodic stochastic process and the Fourier series of 
Xr(t, w) an approximate Fourier series of X(t, w). 

3. Proof of Theorem 1 

We shall give the proof of Theorem 1. In what follows, in this section 
and also even throughout this paper, C's denote absolute constants which may 
differ from each other. Mis the constant in (1.6) all the way. 

We begin with 

Lemma 1. For 2ltl:S:T, 

(3.1) E I K~~~00 i=-~·i*O Vr(t+jT)X(t+jT, w) I 2 :S:CM sin' (nt/T) • 

Proof. The left hand side of (3.1) is not greater than 

(3.2) 

The first term is 

2E 
1
1 . ~ sin2 [n(t+jT)/T] X(t+ 'T ) 12 

.1.m. f.-.i 2(t/T+ ')2 J ' w 
K--->oo J=I 7r } 

. - I K sin 2 nt IT . 1
2 

=21.1.m. E ~ 2(t/T+ .) 2 X(t+JT, w) 
K--->oo J=I 7r J 

- -4 • 4 ( /T) 1. EI~ X(t+jT, w) 12 
-2n sm nt ~_:_.~· #i (t/T +j)2 

which is, as in (2.5) 

:S:CMsin4 (nt/T) . 

The same estimate is obtained also for the second term of (3.2) and hence 
the lemma is proved. 

We are now going to prove Theorem 1. 
( i ) From the definition (2.4) of Xr(T, w), we see 

A K 
(3.3) Xr(T, w)= Vr(t)X(t, w)+l.i.m. L; Vr(t+jT)X(t+jT, w) 

K--->oo j=-K ,j*O 

and hence 

E!Xr(t, w)l2:S:2E!Vr(t)X(t, w)l 2 +2E 11.i~· i=-~.No Vr(t+jT)X(t+jT, w) I 2. 

Noting O:S: Vr(t):S:l (-oo<t<oo), we have from Lemma l, that the last one is 
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~2M+CM=CM. 

This proves (2.7) of Theorem 1, (i). 
From (3.3), we have 

which is, by Lemma 1, 

(3.4) ~CMsin4 (xt/T)~CMt4/T4 • 

Thus, for 2ltl~T 

EJXT(t, w)-X(t, w)J2~2EJXT(t, w)- VT(t)X(t, w)J2+2(1- VT(t))2EJX(t, w)"J2. 

Since 0~1- VT(t)~Ct2/T2, we have, using (3.4), that the last one is 

~CMt4/T4 • 

This proves (2.8) of (i). 
(ii) From (2.3), for k=O, ±1, ·· ·, 

1 K \ JT+T/2 
ck(w)=lJ~· T 

3
fx JJT-T/

2 
exp (-2kxiu/T) VT(u)X(u, w)du 

1 K \ T/2 
=LL_~· T 

3
fx LT

12 
exp (-2kxiu/T) VT(u+jT)X(u+jT, w)du 

1 \ T/2 K 

=r J_T
12 

exp (-2kxiu/T) 11:_.~· i=~K VT(u+jT)X(u+jT, w)du 

1 ~T/2 " =r exp (-2kxiu/T)XT(u, w)du, 
-T/2 

that is, ck(w)=ck(w, T) is the Fourier coefficient of XT(t, w). This proves (ii) of 
Theorem 1. 

4. On the series (1.4) 

We shall in this section consider the series (1.4) with ak(w) given by (1.5), 
k=O, ±1, · · · and show that it is also an approximate Fourier series of X(t, w) 
in the sense similar to Theorem 1. However for the existence of ak(w) and for 
the proof of the theorem corresponding to Theorem 1, we need more conditions 
than in Theorem 1. 

Write the correlation function of X(t, w) by 

(4.1) p(t, s)=EX(t, w)X(s, w) . 

Consider the following 

Condition A. There is a nonnegative bounded function r(t), -oo<t<oo with 
the following properties: 

5 



(4.2) 

and 

(4.3) 

T. KAWATA 

( i ) r(t) and r(-t) are nonincreasing for t>O, 
(ii) 

lp(t, s) I :S:r(t-s) 

~ :
00 

r(t)dt < oo • 

We here remark that Hurd assumed the conditions (ii) in proving his result 
stated in the beginning of 1 that (1.1) represents in (C, 1) sense the given 
stochastic process X(t, w) under some natural condition on X(t, w) at t. 

We also remark that, in the following discussions, the condition (i) can be 
replaced by the condition that r(lt!) is monotone for large !ti, but just for 
simplicity we assume (i). 

We first give a simple lemma. 

Lemma 2. If r(t) and r(-t) are nonnegative and nonincreasing for t>O and 
(4.2) is satisfied, then 

(4.4) I; r(kT):S:- r(t)dt 
00 

1 ~ 
k=-oo,k#=O T Jtl~T/2 

for every T>O. 

Proof. For k~l 

1 ( (k+l)T 1 
T Jkr r(t)dt~r((k+I)T)~2 r((k+I)T), 

1 \T 1 
T Jri

2 
r(t)dt~2 r(T) • 

Hence 

00 2 \00 
k"'f1 r(kT):S:T Jr;2 r(t)dt. 

Similarly 

-1 2 ,-T/2 

k~oo r(kT):S:T Loo r(t)dt. 

These two inequalities give us (4.4). 

Now assuming Condition A we define as a counterpart of (2.4) 

- K 
(4.5) Xr(t, w)=l.i.m. I; Wr(t+jT)X(t+jT, w) • 

K,L-+oo j=-L 

In fact the right hand side of this exists, if Condition A is satisfied. We 
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prove this. 
Note that 

WT(t+jT)=sin (nt/T) exp (-nit/T) n(tJjT) · 

For l~K~K', we then have 

(4.6) E I i~K WT(t+ jT)X(t+ jT, w) I 2 

in which 

=[T·n-1 sin (nt/T)]2E l 1~ X(tt+.0~ w) 1

2 

<T2n- 2El: ~ X(t+jT,. w)X(t+kT, w) 
- i=K k=K (t+JT)(t+kT) 

<T2rr_ 2 ~ ~ Jp(t+!T, t+kT)I 
- i=K k=K J(t+JT)(t+kT)J 

< T2rr_ 2 I: I: r(~j-k)T) 
- i=K k=K J(t+JT)(t+kT)I 

[

00 00 00 00 J = T2n-2 I; I; + I; I; 
j=K k=j k=K j=k+l 

I; I;= f; 1. f; r(~lT) . 
i=K k=i i=K Jt+JTI l=o Jt+(J+l)TJ 

Taking K so large that t+KT>O, we have the last one to be 

00 1 00 

~.I: (t+ T)2 I; r(-lT) 
3=K } l=O 

which is from (4.4) of Lemma 2 

(4.7) ~ KTc_ ltl [r(O)+ ~ ~ 1ul>Tl2 r(u)du J 
and this converges to zero as K~oo. 

00 00 

Similarly I; I; also converges to zero as K~oo. Hence 
k=K j=k+l 

I 
K' 12 

11:.~· E i~K WT(t+ jT)X(t+ jT, w) =0 . 
K'>K 

In the same way 

I 
-L 12 

IL~· E i=~L' WT(t+jT)X(t+jT, w) =0. 
L'>L 

Thus (4.5) is well defined. 
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T. KAWATA 

From the definition of Xr(t, w), it is obvious that Xr(t, w) is T-periodic as 
Xr(t, w) is. 

We mention the following lemma which corresponds to Lemma 1. 

Lemma 3. For 2ltlsT 

(4.8) EI K~~T_:oo j=-~,j.eo Wr(t+jT)X(t+jT, w) 12 

s C [r(O) +Tl \ r(u)du] sin 2 (nt/ T) . 
Jlul>t/2 

The proof can be carried out just in the similar way to that of Lemma 1, 
if one notes (4.6) and (4.7) with K=l. 

As a counterpart of Theorem 1, the following theorem holds. 

Theorem 2. Let X(t, w), -oo<t<oo be a second order stochastic process 
satisfying Condition A. Then we have 

( i) For T~21tl 

(4.9) EIXr(t, w)j 2sc[r(O)+T
1 

\ r(u)du] 
Jlul>t/2 

and 

(4.10) EIXr(t, w)-X(t, w)l2sc[r(O)+T
1 

\ r(u)du] t 2/T 2
• 

Jlul>t/2 

(ii) The Fourier series of Xr(t, w) is given by (1.4) where ak(w) is defined 
by (1.5). 

Proof. The proof is carried out just in the way similar to that of Theorem 1. 
( i ) We have only to replace Vr(t) by Wr(t) in the proof of Theorem 1 and 

note that 

And use Lemma 3 instead of Lemma 1. 
(ii) The proof is also the same as in Theorem 1 if one replaces VT(t) by 

Wr(t). 
Thus the series in (4.5) is an approximate Fourier series of X(t, w). 

5. Absolute convergence of an approximate Fourier series 

We are now interested in the almost sure absolute convergence of an ap­
proximate Fourier series. We know [2], [3] that this problem played interesting 
roles particularly in the study of sample continuity of weakly stationary processes, 
general linear processes and periodic processes. This suggests that the similar 
situation may come out also for the general stochastic processes. We will show 
that it actually is. 
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For simplicity, we only consider the approximate Fourier serie,s _ 

00 

(5.1) ~ chJ, T) exp (2krrit/T) 
k=-00 

of a second order stochastic process X(t, w) satisfying (l.6), considered in 2, and 
we shall investigate the almost sure absolute convergence of (5.1). 

Before doing this, we begin with mentioning a certain known result on the 
periodic process. 

Let X(t, w) be a 2rr-periodic process for which ~:n:EJX(t, w)J 2dt<oo. Write 

(5.2) [ 
1 ~ll: ]1/2 M2n:(o, X)= sup -

2 
EJX(t+h, w)-X(t, w)J2dt . 

lkl:S:o 7r -n: 

Then we have the following result which we state as 

Lemma 4. If 

(5.3) ~ n- 112 M2n:(l/n, X) < oo , 
n=l 

then the Fourier series of X(t, w) converges absolutely almost surely. 

In fact this is an analogue of the well known Bernstein theorem on absolute 
convergence of an ordinary Fourier series [6] p. 240 and is a particular case of 
Theorem 3.1 in [4]. 

Now we go back to our main stream. 
For a second order stochastic process X(t, W) satisfying (1.6), we introduce 

a kind of continuity modulus 

(5.4) N (o X)-[sup \°o EJX(t+h, w)-X(t, w)J2 dt]112 (P>O). 
P' - lkl:S:oJ-oo l+JtJl+p 

Obviously this is well defined. 
When X(t, w) is T-periodic, we write 

(5.5) MT(o, X)= sup [r1 
\T

12 
EJX(t+h, w)-X(t, w)J 2dt]

112
. 

lkl:S:o J-T/2 

(5.6) 

Let XT(t, w) be the T-periodic approximate process of X(t, w) as before. 
We first give 

Lemma 5. For O<o<T/3, l~P>O, we have 

M is the constant in (1.6). 

(5.7) 

We first note that for lhl.So, T>21tl, 

1 vT<t+h+ jT)- VT<t+ jT)JsCJhJT-1j-2, 
sCJhJT-1

, 

9 
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Actually for j =FO, 

(5.8) ~ V. (u+ 'T)=!!-__ [sin (11:u/T_) ]
2 

du T J du 11:(u/T+J) 

=~ [sin (11:u/T)J 11:(u/T +j)-tan (11:u/T) • ( /T) . l_ 
71:2 u/T+j (u/T+j)2 cos 11:u T 

and then 

[ _!{_ V. ( + 'T) l < C Iii +C(lul/T)
3 

du Tu 1 -r lu/T+jj 3 • 

Hence for any O<O<l, from llt+Ohl/T+jl~ljl-(ltl+o)T- 1 ~1il-5/6, we see 

which gives us, because of the mean value theorem, that the left hand side of 
(5.7) is, for some (O<O' <1), 

lhl · I [ad VT(u+ jT)J j ::::;;; Clhl T- 1j- 2 
• 

U u=t+O'n 

For j =0, from (5.8), we easily see 

and using this, we obtain the second inequality of (5. 7). 
Now we proceed to prove Lemma 5. 

Proof of Lemma 5. 

First we shall make the estimation of 

S(t)=EIXT(t+h, w)-XT(t, w)j 2 • 

Putting the definition of X in the right hand side, we see 

say. 

S(t)=EI Lt~· 
3
f K [VT(t+h+jT)- VT(t+jT)]X(t+h+jT, w) 

+ VT(t+jT)[X(t+h+JT, w)-X(t+jT, w)] 1
2 

::;;21~:_.~· El 
3
fK [VT(t+h+jT)- VT(t+jT)]X(t+h+jT, w) j 2 

+21L~·, El 
3
fK VT(t+jT)[X(t+h+jT, w)-X(t+jT, w)] 1

2 

=S1(t)+S2(t) , 
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S1(t)~CE[I VT(t+h)- VT(t)l21X(t+h, w)l2] 

+cl~:~· EI i=-f.N
0
[VT(t+h+jT)- VT(t+jT)]X(t+h+jT, cu) j 2 

which is, by (5.7) and the Minkowski inequality 

~CMh2T-2 

+ct=-~.r~0[VT(t+h+jT)- VT(t+jT)][EIX(t+h+jT, w)l2]112} 
2 

~CMh2r-2+CMlhl2T-{=-~.Noj-2)2 
(5.9) ~CMh2T-2 . 

In the similar way, 

S2(t)~CY;(t)EIX(t+h, w)-X(t, w)l2 

+C t=-~.r~o VT(t+jT)[EIX(t+h+jT, w)-X(t+jT, w)l21112} 
2

• 

Using the Cauchy inequality to the last term, we see 

S2(t)~CY;(t)EIX(t+h, w)-X(t, w)l2 
00 00 

+c ~ VT(t+jT) ~ VT(t+jT)EIX(t+h+jT, w)-X(t+jT, w)l2. 
j=-oo,j*O j=-oo,j*O 

Since VT(t+jT)~Cj-2 (j=FO) for 21tl~T, we have, replacing Vi(t) in the first 
term of the last expression by the larger VT(t), 

00 

+c ~ VT(t+jT)EiX(t+h+jT, w)-X(t+jT, w)l 2
• 

j=-oo,j*O 

Looking at (5.9), 

T
l (T/

2 
S(t)dt~CMh2 T-2 +Tc (T/2 VT(t)EIX(t+h, w)-X(t, w)l2dt 

.l-T/2 J-T/2 
C oo (T/2 

+ T j=-'f.No .\-T/
2 

VT(t+jT)EIX(t+h+jT, w)-X(t+jT, w)l2dt 

~CMh2T-2+ ~ [
00 

VT(t)EIX(t+h, w)-X(t, w)l 2dt. 

Noting that VT(t)~ l..rt/Tl-<i+p) ~CTi+P(l + ltll+p)-1 for ltl > T/2, and VT(t)~l~ 
CT1+P(l+ltll+p)-1 for ltl~T/2, we finally get 

_!,_ \T/2 S(t)dt~CMh2T-2+cTP \00 EIX(t+h, w>-:>:(t, w)l2 dt 
T LT/2 Loo l+ltl 

from which we have (5.6). 
Now we give 

11 



T. KAWATA 

Theorem 3. If X(t, w) is a second order stochastic process satisfying (1.6) and 

00 

(5.10) .L: n-112Np(n-1, X) < 00 , 
n=l 

for some O<P.:S:l, then, for every fixed T>O, the approximate T-periodic Fourier 
series (2.2) of X(t, w) converges absolutely almost surely. 

This follows from Lemmas 4 and 5. In fact, writing XT(Tt/2n:, w)=U(t, w), 
U(t, w) is 2n:-periodic and hence by Lemma 4, if 

00 

(5.11) .L: n- 112M21r(n-1, U)<oo, 
n=l 

then the Fourier series of U(t, w) is almost surely absolutely convergent. As is 
easily seen the Fourier series of U(t, w) is no more than the Fourier series of 
T-periodic XT(t, w). Also we see that M21'(<3, U)=MT(oT/2n:, XT) and (5.11) turns 
out to be 

(5.12) f; n-112MT(an- 1, XT)<oo, 
n=l 

where a= T/2n:. As far as T is fixed, a is a positive constant and MT(o, XT) is 
nondecreasing with respect to o, and then (5.12) is equivalent to 

(5.13) .f n-112MT(n- 1, XT)<oo. 
n=l 

This is seen in the following way. Letting M(t) be nondecreasing for t>O, 

and then 

a-1/2 £ n-l/2Af(an-l).:S: I: \na-1 y-112Af(y-l)dy 
n=[a]+2 n=[a]+2 J (n-l)a-1 

00 

(5.14) .:::;: .L: n-112M(n-1) . 
n=l 

00 00 

Hence the convergence of .L: n- 112M(n- 1) implies that of .L: n- 112M(an- 1). The 
n=l n=l 

converse is similarly shown. 
Now from (5.6) with o=n-1 and (5.10), (5.13) holds. And then the almost 

sure absolute convergence of the approximate Fourier series of X(t, w) follows. 
For later use, we give the following lemma. 

Lemma 6. We have, for T>4 

12 
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(5.15) I; EJcn(w, T)l:::;;;CT112 I; n- 112MT(n- 1, XT). 
lnl=[4T] n=l 

Proof. Let U(t, w)=XT(Tt/(2rr:), w) as before. Let b be the largest integer 
such that 2b:::;;;4 T. Write the Fourier coefficient of 2rr-periodic U(t, w) by dn(w). 
From the known argument in the proof of Bernstein's theorem [6] p. 240 or the 
argument in the proof of Theorem 3.1 in [4] with a minor trivial change, we 
have 

00 00 00 

L; Eldn(w)I:=:;;; L:: ::::;;; L:: 
n=[4T] n=2b n=2b-l+1 

oo 2n oo 

= L:: L:: Eldi(w)l:::;;;C L:: n- 112M 2:r:(n- 1
, U) 

n=b j=2n-1+1 n=2b-2+1 

:::;;;c I; n- 112MT(an-1, XT) 
n=2b-2+1 

where a= T/(2rr:) as before and the last one, is from (5.14), not larger than 

ca112 i: n-112MT(n-1, XT) • 
n=l 

-[4T] 

For L:: Eldn(w)I, we have the same estimate and noting Cn(w, T)=dn(w), we 
n=-oo 

obtain (5.15). 

We add a property of XT(t, w) which we state as 

Lemma 7. If (5.10) is satisfied and X(t, w) is stochastically continuous, then 
XT(t, w) is samp!e continuous, namely there is a second order stochastic process 
X<.]!)(t, w) which is a continu~us function oft almost surely, and for each -oo<t< oo, 

(5.16) 

almost surely. 

Note that for each t, (5.16) holds for w E Q 11 P(Q1)=l, where Q1 may depend 
on t. X<,J)(t, w) is a modification of XT(t, w). 

00 

Because of (5.10), the approximate Fourier series L:: cn(w)e2n:r:it!T is almost 
n=-oo 

surely absolutely convergent. Now define 

X<;Jl(t, w) = £ Cn(w)e2n:r:it/T 
n=-oo 

which is continuous for -oo<t<oo almost surely. 
If one notices that XT(t, w) is stochastically continuous, then Lemma 7 is, 

as a matter of fact, substantially known. See the proof of Theorem 6.1 of [4]. 
Stochastic continuity of XT(t, w) is easily shown from the fact that 

A K 
XT.x(t, w)= L:: VT(t+jT)X(t+jT, w) 

j=-K 
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is, for each positive integer K, stochastically continuous and converges to XT(t, w) 
as K-'>co in L2(Q). 

6. Sample continuity of a second order stochastic process 

The problem of sample continuity of a second order process was investigated 
by several authors. For the references, see [4] for instance. The author of 
the present paper has treated the problem for the periodic process by using the 
Fourier series and for the weakly stationally process or the general linear process 
using the approximate Fourier series [2], [3], [4] as he said in 1. 

For a general process, the Fourier series argument is also applicable if one 
considers the truncated process and its suitable periodic extention. In this 
section, however we shall show that the method which made use of the ap­
proximate Fourier series and was used in [2], [3], [4], enables us again to disscus 
the sample continuity. 

We suppose, as before, X(t, w) satisfies (1.6) and (5.10). We take the modifica­
tion of XT(t, w) 

(6.1) X(,J>(t, w)= ,:E Cn(w, XT)e2nirit/T • 
n=-oo 

Here in place of Cn(w)=cn(w, T) we have written as Cn(w, XT) in order to make it 
clearer to be the Fourier coefficient of the T-periodic process XT(t, w), so that if 

" 1 ~T " 
we write Cn(w, X2T) for example, then it means 

2
T) _T X2T exp (-2nTCit/(2T))dt. 

Now we set 

(6.2) 

We have considered the similar quantity with T=21c in [2], [3], [4]. 
Note first that the Fourier series in (6.1) is absolute convergent almost 

surely in view of (5.10), and also that X<.,J>(t, w)=XT(t, w) for almost all t, almost 
surely and then Cn(w, XT)=cn(w, X~>). 

We have 

00 00 

ST(t, w)= L; Cn(w, X 2T) exp (2nTCit/(2T))- L; Cn(w, XT) exp (2nTCit/T) 
n=-oo n=-oo 

= .:E C2m(w, X2T) exp (2mTCit/T) 
m=-oo 

+ .:E C2m+ 1(w, X2T) exp ((2m+ l)Teit/T)- .:E Cm(w, XT) exp (2mTCit/T) 
m=-oo m=-oo 

= .:E [C2m(w, X2T)+c2m+1(w, X2T)-cm(w, XT)] • exp (2mTCit/T) 
m=-oo 

+[exp (TCit/T)-1] .:E C2m+ 1(w, X 2T) exp (2mTCit/T) 
m=-oo 

say. 

14 
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Here 

[ST.2(t, w)l.s:;Cltl. r-l I: lc2m+1(w, X2T)i 
m=-co 

(6.3) .s:;Cltl. T-l f: lcm(w, X2T)i . 
m=-co 

The inside of [ ] in the series ST, 1(t, w) is 

(6.4) 2~ IL~· [x exp (-2(2m)n:iu/(2T)) V2T(u)X(u,w)du 

+ 2~ 1~:~· ~ :x exp (-2(2m+ l)n:iu/(2T)) V2T(u)X(u, w)du 

_Tl 1.i.m. (x exp (-2mn:iu/T)VT(u)X(u, w)du. 
K-+co )_K 

Since 

and 

1 +exp (n:iu/T)-2 cos2 (n:u/(2T))=i sin (n:u/T) , 

(6.4) is equal to 

2~ IL~· rK exp (-2(2m)n:iu/(2T)) V2T(u) sin (n:u/T)X(u, w)du ' 

the existence of which is easily shown as the case of cn(w) in (2.3). 
Writing 

(6.5) Y(t, w)= Y(t, T, w)=iX(t, w) sin (n:t/T) 
,... K 

Y2T(t, w)=l.i.m. L: V2T(t+2jT)iX(t+2jT) sin (n:t/T) • 
K-.co j=-K 

The 2T-periodic Fourier series of Y2T(t, w) is thought of as a 2T-periodic 
approximate Fourier series of Y(t, w). Y(t, w) depends also on T, but this gives 
no trouble at all. (6.4) is just c2m(w, Y2T). Needless to say, Y2T(t, w) is 2T-periodic, 
and we can prove that L: lc2m(w, Y2T)I <oo almost surely. (see the proof of 
Theorem 4 below, in particular (6.9) with Y for Z) 

Hence we have, from (6.3) and the above, 

(6.6) IST(t, w)j_s;; f: lcm(w, Y2T)i+CltJT-1 f: lcm(w, X2T)I. 
m=-oo m=-oo 

Now we are going to prove 

Theorem 4. If X(t, w) satisfies (1.6) and (5.10) for some O<P< oo, then 
X(t, w) is sample continuous on (-oo, oo). 

15 
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Proof. In order to prove the theorem, it is sufficient to show that X1(t, w)= 
X(t, w)/(l+]tJ) is sample continuous. 

Obviously 

(6.7) 

First we suppose O<P<l. Write Z2T(t, w) for Y2T(t, w) with X 1(t, w) in place of 
X(t, w). The Fourier series of Z2T(t, w) is a 2T-periodic approximate Fourier 
series of Z(t, w)=iX1(t, w) sin (1d/T). 

And we see 

[ )
co ]1/2 

Np(o, Z)= sup Eisin (7r(t+h)/T)X1(t+h, w)-sin (7rt/T)X1(t, w)] 2/(1+ ltll+P)dt 
!hi s::o -co 

:s:[ sup \ 00 lsin (7r(t+h)/T)-sin (7rt/T)l2EIX1(t+h, w)i2/(1 + ltll+P)dt]
112 

lhlso Leo 

[ ~
co ]1/2 

+ sup sin2 (7rt/T)EIX1(t+h, w)-X1(t, w)i2/(1 + ltll+P)dt 
!his• -co 

The second term of the last expression is 

:S:C sup {\"" EIX(t+h, w)i 2[(l + lt+hl)-1-(l + ltl)- 1]2(t/T)2/(l + ltll+P)dt} 
112 

lhJ:S:o Leo 
+C sup [ \"" EiX(t+h, w)-X(t, w)j 2(l + lti)- 2(t/T)2/(l + jtj 1+P)dt]

112 

JhJ:S:o J-co 
(6.8) :s;CoM112T- 1+cT- 1Np(O, X) • 

Hence we have, from the condition (5.10) 

00 

(6.9) ~ n-112Np(n-i, Z)<oo 
n=l 

which gives us the almost sure absolute convergence of the Fourier series of 
Z2T(t, w) for each T>O. 

Here we give a remark. We have 

(6.10) 

This is shown in just the same way as proving (2.8). Write 

.X<o) (t ,..,) = ~ c (w X )e2nirit!T 
1,T ' ....., L.J n ' 1,T ' 

n=-oo 

Z(O)(t w) = ~ C (w Z )e2nirit/ (2T) 
2T ' L.J n ' 2T ' n=-oo 

where X1,T(t, w) is the T-periodic approximate process of. X 1(t, w). Then from 
(6.6), we have, writing 
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(6.11) S'r(t, w)=Xi%r(t, w)-Xi~lr(t, w) , 

/S'r(t, w)/ ~ ~ /cn(w, Z2r) I +C/t/ r-1 £ /cn(w, X1.2r)/ . 
n=-oo n=-oo 

Let A be any positive number and w shall prove that there is a modification 
Xi0l(t, w) of X 1(t, w), which is independent of A and continuous for /t/ <A. 

Now letting {skt k=l, 2, · · ·} be a sequence of positive numbers and T so 
large that A< T, we have 

(6.12) 

P( sup /S'r(t, w)/ >sk)~P( sup [ ~ /cn(w, Z2r)/ 
ltl:o;;A lt!:o;;A n=-oo 

+C/t/ T-l j;oo /cn(w, X1,2r)l]>sk) 

~P(f00 /cn(w, Z2r)/ >sk/2) 

+ P( CAT-l nEoo /cn(w, X1,2T) / >sk/2) 

=!1+!2' 

say. By the Markov inequality, 

J1 ~2s-;; 1E ~ /cn(w, Z2r)/ 
n=-oo 

~2s-;; 1E I: /cn(w, Z2r)/+2c-;;1E I: /cn(w, Z2~)[ 
lnl:o;;[4T] lnl~[4T]+l 

(6.13) =!11+!12' 

say. By the Cauchy inequality, 

By the Parseval relation, the last one is 

which is because of (6.7) and (6.10) 

(6.14) ~Cs-;; 1 T11{2~ [r {E/sin ('!T:t/T)X1(t, w)/ 2 +CMt4 T- 6 }dtT
2 

~Cs-;; 1 T-11{2~ ~:r /t/ 2 ·E/X1(t, w)/ 2dt+CM T2 
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s.Ce;; 1 T-11{2~ ~:T EIX(t, w)l2dt+CM J2 

sCe;1M112r-112 . 

As to ] 12' we have, from Lemma 6 with Zin place of X 

I <Ce-1r112.; n-112M. (n-1 z ) 12- k L..J 2T ' 2T 
n=l 

which is, by Lemma 5 and (6.8), 

00 

sCe;1r112 L: n-112[cM112r-1n-1+cTp12Np(n-1, Z)] 
n=l 

sCe;1r-<1-p>12M112+ce;1Tci+p>12 f: r-1n-112Np(n-1, X) 
n=l 

Putting the estimates of ] 11 and ] 12 just obtained into (6.11), we have 

(6.15) l1sCe;1r-<1-p>12[ Mi12+ .E1 n-112Np(n-1, X)J. 
] 2 is similarly handled. In fact ] 2 is no more than ] 1 with c-1A-1ekT in 

place of ek and X1 •2T in place of Zm and using, in the course of getting (6.14), 
the estimate similar to (6.10), 

which is obtained from (2.8) and (6.7), we have after some manipulation, 

Putting this estimate and (6.15) into (6.12), we have 

(6.16) P( sup IS~(t, ro)I >ek)-::;,_n.e;1T-c1-p>12 , 
ltl::s;A 

where D is a constant CA[M112+ f: n-112Np(n- 1, X)] which is independent of e" 
n=l 

and T. 
We are now in the final stage of the proof of Theorem 4, for O<P<l. 
Take T=2k, e"=2-ak where a=(l-P)/4. Then from (6.16) 

for k?.2. Since L: 2-ak<oo, by the Borel-Cantelli lemma 
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uniformly for ltl:s;;A, almost surely and hence as k~oo. Xi%k(t, w) converges 
uniformly for ltl:s;;A, almost surely. Thus its limit Xi0)(t, w) is continuous for 
ltl:s;;A since Xi% 1r(t, w) is continuous for ltl:s;;A almost surely. 

On the other hand, from Theorem 1, (2.8) with X1 .r in place of Xr, and X 1 

in place of X, X1 , 2 • (t, w) converges for ltl:s;;A to X 1(t, w) in L2(Q). Therefore 
for each t(ltl:s;;A), X 1(t, w)=Xi0 )(t, w) almost surely. Namely X1(t, w) is sample 
continuous. Hence the theorem is proved. 

Finally we show that the restriction O<P<l can be removed and the theorem 
is true for O<P<oo. Let P~l. We consider Xp-q(t, w)=X(t, w)/(l+IW-q) where 
q is any positive number less than: 1. Then we can prove 

(6.17) 

Cp,q being a constant depending only on ·p and q and O<o<l. In fact 

\

00 

( 1 1 )
2 

dt 
N:(o, xp-q):s;;2 Fh~ra L .. EIX(t+h, w)I! 1 + lt-f-hlp-q 1+1w-q, 1 + ltll+q 

\~ 1 dt 
+21~Yfa Loo EIX(t+h, w)-X(t, w)l2 (l+IW-q)2 l+ltli+" 

=2K1+2K2, 

say. Noting that (1+1w-q) 2(l + ltli+q)~l + ltll+p for all t, we have 

(6.18) 

Writing 

P(t h)- l 1 
• 1+11+h1p-q 1+1w-" • 

we have 

K :s;;Msup P 2(t h) -----------~
00 dt 

1 lhl:s;J -oo • 1+111 1+ 9 

=Msup (f +f ) 
lhl:s;J Jltl<21hl J,,,~2Jhl 

(6.19) 

Now as we easily see, for both cases, p-q~l. and p-q< l, 

for ltl~2lhl, and thus 
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K1. 2 ~Cp,q sup h2 
[' + \ J 

lkl$o Jltl>2 J2~1tl~W1.I 

~Cp,qo2 [cp,q+ sup \ ltl 2 <p-q- 1>dt] 
I k I s;a J 2~ltl~2lhl 

~cp.qo2(Cp,q+c+a2 <.11-q>- 1 > 

~Cp,q(o2+Q2<.p-11>+1) • 

From this and (6.19), we have 

Noting (6.18), we have 

N~(o, xp-q)~Cp,q[M(o2 +02 <p-q)+l)+N!(o, X)] 

from which we get (6.17). Hence 

So the series on the left hand side is convergent from (5.10). Thus from what 
we have shown above, Xp-q(t, w) is sample continuous which implies the sample 
continuity of X(t, w). Theorem is then shown. 

The au th er would like to express his appreciation to Prof. S. Nishigaki of 
Numazu colledge of Tech. and the refree who pointed out some erroneous points 
involved in the original manuscript and helped the auther to complete the 
manuscript of this paper. 
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