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Let two systems of numbers {m;}}, {k:}7., satisfying the relations
m1>-~~>mp>mp+1=0, k1+k2+~--+kp=n,

where p and » are integers.
We define the sequence of numbers {n:},:

770=0, nizezz:lke, i:l’.-.,p,

and introduce the spaces of functions:

o kl O O k
M =H™(Q)x -« X H™ Q)X -« X B ()X -+ - X H™5 Q)
k

Ky
L= HM()X - X H™(Q)X -+ - X H™(Q) X - - X H"5(2)

where 2=(0,1), 2=[0,1]; and the inner products in M° and M" are denoted by
(v, duo and (-, - ), respectively.
Let M be the space

M={u|lueM'n M.
Let us call the vector

{(uiml—l)y Tty ul(crlnl—l)> Y uYnz)’ Tty ul(rTz)’ trry ULy u%)(o)’

(ugml_l)’ ceey uglnl“l)’ ceey u§m2>’ ceey, u’(:l"z)’ Cee Uy v, un)<1)}

trace of function #, which is denoted by #. Notice that some components of
vector # (ueDMl) are equal to zero, i.e., u(k)=0, if ueM, 1+9=i=Zype.;, 0=5=
Me1—1, e=0, -+, p—1; k=0, 1.

Let C be the matrix of the following type:
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— Cl
c=(¢).
where
7
Ciyi )} ou
0 } vl(ml—mz)
Ci= Cepii |} Rs (i=1,2).
Ch.z,,i } k‘p
0 } p(mp—1)
The rank of matrix C is equal to 7, 0=r=2n. The matrices Cy,.: (e=1, -+, p;i=

1,2) have dimensions k. Xx7.
We can introduce the space

M ={u|lueM, i=Co,veR"}.
Let the functional Ji(z) on M be

1=\ & B (P, undetBo0),

0€=14, j=M¢g,

where u©=(u{®, ---,u?,0,---,0)7, B be rXr symmetric matrix and nX#» matrix

P (1=e=p, me=i, j=m..,) have form:

e
el « 0 |=Pi.
0|0
We must take into consideration the construction of the matrices Pg, o, (=1, -, p):

* | kk

} Ne—1

0
Prm,=| #%x| Pe | O }ke y
0

00

where (Poz)¢, &)=7(§, &), 0=x=1, £eR%, y=const<0.
Let the functional J, on M° be

=085 o, worie,

€=1i=Meg .y
where the »x#n matrices Q¢ (e=1, -+, p;me 1 <i<m,—1) have the form:
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i
o e
0 . 0

and the properties that (Q4x)¢, £)=(¢, &), 0=x=1, X=const>0, £cR%Xx{0}» We
shall investigate the functional

J@)=T(u)|]o(u)

on the space M.
We calculate Gateau derivative of the functional f(») in the direction % for
any u, heCn M, where

kp

Zsz‘(.Q)X X CM(Q)X - XCP(2)X o - - X C™p( D),
U =Cv , h =Cl)1 .

E=lti££16](u+ht)/at { S 2 Z [(Qfu®, hD)+(QF*u®, h®))dx J\(u)

€=1i=met,

+[Sz 5 (P, hP)+ (PFuh, hYdz+2(Bo, v)]h(u)}k ).

0€=114,j=mey,

Integrating by parts the integrals in the last sum we get:

sl [§(8 . (P 0 (o) e

+2(Bv, v)+ <>§ (it Pl JU ™0 + (P, 1+ Py i J ), k""rn)

o

(V2.8 codo(@mranfou) i)z || 7w,

0 \é=1¢=me;;

If E=0 hold for all 4 such that %=0, then the vector-function # must satisfy the
system of equations

a (15,

dz’ ( P”d i )}

((%Qf* +i02)%u) =J(w)Lw) .

(1) Lw=§ ¥ {(—Dij;.(;ij,u)H—lw

e=114,j=mey

=Jw 3§ 5 (-1

€=114=mey,

2

Conversely, let the vector-function # satisfy the system (1). Then E=0 holds for
all 2eCnNM if and only if the vector-function # satisfy the boundary conditions:

(2) a=Co,
(3) - EICHP i+ Pon U™+ (P, 1 Py Ju™e=X0)
— CEL(Pgin, - Pign 4™ + (P, 1+ Py anJu ™ 1)} = Bo,
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where veR™ and

T
0 }77@_1

Coy=| Cr, }ke (1=e=p;j=1,2).
0 }n—m

The conditions (2) are defined in the functional space M where we study the
functional (). The conditions (3) are the conditions of transversality.

We shall establish a formula for a number of positive eigenvalues of the
spectral problem L,#=AiL.u« with the boundary conditions (2), (3). If =0, then
the conditions (2), (3) imply

(4) - u=0.

It is well investigated the special case of problem (1)-(3): p=m,=1. In this case
we must find a formula for a number of positive eigenvalues of problem

(1y Lu=(Pu') +Gu' —(G*u) + Qu=iu

with conditions

2y #(0)=Cw, u(1)=Cw,

(3)Y By=C¥P(1)u’(1)—C¥P(0)u’(0)+ C¥G*(0)u(0) — C¥G*(1)u(1) ,

where B is a symmetric X7 matrix; P, Q, G are nX» matrices, P, Q are sym-
metric; (P(x)é, &§)=7(§ &), y=const>0, éeR", 0=x=1; C,, C, are nX# matrices such

that the matrix
c=(¢)
has rank 7, 0=7=2n.

In the noncritical case (i.e., Lu=0, (2)’, (3) or Lu=0, #(0)=u(1)=0 does not
have nontrivial solutions), works on this question have been done by M.G. Krein
[2], G.D. Birkhoff and M.R. Hestenes [3], W.T. Reid [4,5), M. Morse [6-8], K.S.
Hu [9].

In the critical case (i.e., Lu=0, (2), (3 or Lu=0, #(0)=#(1)=0 may have
nontrivial solutions) the problem (1)’ with the special conditions :

(4)y (G*u—Pu' + At)| 5-0=0, (G*u—Pu’ + Bort) | 5.1 =0,

where A, B, are symmetric #X#» matrices, was studied by T.I. Zelenyak (for ex-
ample, [17]). By the aid of only » solutions of the system Lxz=0 (i.e., solutions
which satisfy boudary conditions (4)’ at zero) and of functional

]2:8'{_(1%/, W) +2Ge’, w)+(Qu, w)dz+(Bott, 1)|' — (Au, 1),
J=a
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he constructed the quadratic form R(e), ee R™ and showed that the number of
positive eigenvalues of problem (1), (4) is equal to the sum of positive indices
of quadratic form R(e) and the number of non-negative eigenvalues of the problem

Lu=2u, (G*u— P’ + Aut)| 3-0=0, #lp1=0.

In [10,11] the present author established a formula for the number of positive
eigenvalues of the problem (1)’~(3)’ in the critical case.

The problems of this kind (1)-(3) with arbitrary m,, p arise through the in-
vestigation of stability of stationary solutions of hydrodynamical models [12-16],
therefore we want to generalize the results of [10,11] to a more general case (1)
-(3).

We call the vector-function # belonging to M a generalfzed eigenfunction of
the problem (1)-(3) for eigenvalue 1 if the integral equality

m,

(5) -Wl(u,u,)zég TS (P, 6P)+(Pu®, uYdw+ (Bo, v)

oe=1%,j=megy)

1 Mme—1
Z%ASO b3 B Qi ) + Qi =AW, )
holds for all u, u,e M.

By the well known method (see, for example, [1]) we can show that the bi-
linear form W,(u,u,) defines the inner product [-, -], on M° which is equivalent
to (+,+)yo. We can also show that there is a positive number N>0 such that the
form Wi(u, u,)=W(u, u,)+NWa(u, u,) defines the inner product [-,-] on M which
is equivalent to (-, );n. We add the quantity —NW,(«u, #,) to both side of the
identity (5) and write it in the form:

(6) — (o, u]= — W(u, u)=(2— N)Wo(, ur) =(2—N ), uio .

Lemma 1. There is a linear and bounded operator A defined on AM° such
that the equality

[oa, u,Jo=[Au, u,]

holds for all #,eM. The operator A is positive, self-adjoint and absolute continu-
ous if we consider A as an operator on M.

The proof of Lemma 1 is well known (see, for example, [1]). In view of Lemma
1, we can write (6) in the form of operator equation on M :

—u=(A—N))Au, uel.

Thus the number 2 is an eigenvalue of problem (1)-(3) and # is a corresponding
generalized eigenfunction if and only if the number N—2 is a characteristic value
of the self-adjoint and absolutely continuous operator from M to M and # is a
corresponding eigenfunction. Since the operator A is positive and has the inverse
operator A-!, the spectrum of problem (1)-(3) is discrete, semiconfined and does
not have finite limit points and the system of generalized eigenfunctions is com-
plete in M. It means that any element f of M may be approximated by the
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series X agu; in the norm ||-|[,n=(-, )44, where wu,, ---, #n, - -+ are the generalized
=1

eigenfunctions of the problem (1)-(3). We can show (see, for example, [1]) that
the generalized eigenfunctions of the problem (1)-(3) are the classical eigenfunc-
tions. From solutions of the system L,#=0 we can choose the set of maximal
dimension #!, ---, #* such that the traces ', ---, #* of these vector-functions are
linear combinations of the columns of the matrix C. By W we denote the linear
vector space spanned by #', ---, #*. In R’ the quadratic form H(a), aeR’ is in-
troduced by the following way :

u=Yant, Jw)=(Zan)=(Fa,a)=H),

where F is a symmetric sXs matrix.

By #* and »#° we denote the numbers of positive and of zero eigenvalues of
the matrix F, respectively. In case L,x#=0, (2), (3) or L,#=0, #=0 does not have
nontrivial solutions we can repeat the proofs in [10, 11] for the problem (1)-(3).
We have new results.

Theorem 1. If L,#=0, (2), (3) or L,u=0, #=0 does not have nontrivial solu-
tions, then the number of nonnegative eigenvalues of the problem (1)-(3) is equal
to

n+n"+N+P,

wherer P is the number of solutions of the problem L,#=0, #=0; N is the num-
ber of positive eigenvalues of (1), (4).

Theorem 2. If Lu=0, (2), (3) or Liu=0, #=0 does not have nontrivial solu-
tions, then the number of positive eigenvalues of the problem (1)-(3) is equal to

n +N+(r—s).

The author expresses the sincere gratitude to administration of Keio Uni-
versity and personally to Professor A. Tani for the excellent contribution to the
present work.
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