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ON THE MORSE FORMULA 

by 

V.Ya. BELov* 

Department of Mathematics 
Faculty of Science and Technology, Keio University 

Hiyoshi, Yokohama 223, Japan 

(Received 1 June 1989) 

Let two systems of numbers {mi}f:l, {ki}f=1 satisfying the relations 

where p and n are integers. 
We define the sequence of numbers {r;i}f=o: 

r;o=O, i=l, · · ·,P, 

and introduce the spaces of functions: 

where Q=(O, 1), D=[O, 1]; and the inner products in M 0 and M 1 are denoted by 
( ·, ·)Mo and ( ·, · )M1, respectively. 

Let M be the space 

Let us call the vector 

{(uim1-l), · · ·, ufc71-l), • • ·, uim2), · · ·, ui-72), · · ·, Ui, · · ·, Un)(O), 

(uim1-l), .. ·, Uk71-l), .. ·, uim2>, .. ·, ufc72), .. ·, Ui, .. ·, Un)(l)} 

trace of function u, which is denoted by u. Notice that some components of 
vector u (uEM) are equal to zero, i.e., uiil(k)=O, if uEM, l+r;e~i~r;e+1, O~j~ 
me+1-l, e=O, · · ·, p-1; k=O, 1. 

Let C be the matrix of the following type : 
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c=(~:), 
where 

r 

ck1,i } k, 

0 } r;1(m,-m2) 

Ci= c~2 .i } k2 (i=l,2). 

ckp.i } kp 

0 } YJp(mp-1) 

The rank of matrix C is equal tor, O~r~2n. The matrices Cke.i (e=l, ... ,p;i= 
1, 2) have dimensions ke x r. 

We can introduce the space 

Let the functional J,(u) on M be 

where uco =(uit>, · · ·, u~;), 0, · · ·, O)T, B be rxr symmetric matrix and nxn matrix 
P{j (l~e~p, me~iJ~me-1-1) have form: 

0 =Pi.i· 

0 0 

We must take in to consideration the construction of the matrices P'fneme ( e = 1, · · ·, p) : 

0 0 0 

where (Pe(x)e, e)~r(e, e), O~x~l, eERke, r=const<O. 
Let the functional ]0 on M 0 be 

where the nxn matrices Q~ (e=l, · · ·,p;me+1~i~me-l) have the form: 
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Q~= 

and the properties that (Q~(x)~, ~)~X(~, ~), O~x~l, X=const>O, ~ER'1ex {0} 1"-"e. We 
shall investigate the functional 

J(u) = fi(u)!fo(u) 

on the space M. 
We calculate Gateau derivative of the functional ](u) in the direction h for 

any u,hECnM, where 

Integrating by parts the integrals in the last sum we get: 

{ [~ I ( p me ( di ( di ) di ( di ) ) ) E= ~ .. ~ (-l)i-d i PlJ-d ju. +(-l)i-d i Pfi-d i u ,h dx 
o e-1 i.J-me+i X X X X 

[~ I ( p me-I di ( di ) ) J } - ~ ._I: (-l)i-d i (Qf*+QD-d i u , h dx fi(u) ] 02(u). 
o e-1 i-me+1 X X 

If E=O hold for all h such that h=O, then the vector-function u must satisfy the 
system of equations 

( 1 ) P me { di ( 1 di ) di ( 1 di ) } L,(u)=.L; I: (-l)i-. -PfJ-. u +(-l)i-. -Pfi-· u 
e=I i.j=me+I dxi 2 dx1 dx1 2 dxi 

p me-I di (( 1 1 ) di ) 
=](u) I: I: (-l)i-d i -Qf*+-Q1 -d tu =.](u)L2(u). 

e=J i=me+i X 2 2 X 

Conversely, let the vector-function u satisfy the system (1). Then E=O holds for 
all hEC n M if and only if the vector-function u satisfy the boundary conditions: 

(2) u=Cv, 

( 3) __!_ f; {C* [(Pe* + pe )u<me) +(Pe* - + pe - )u<me-1)](0) 
2 e=I e,1 meme meme meme 1 me 1me 
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where vERr and 

r 

0 } r;e-1 

Ce,j= cke.j } ke (1;£e;£p ;j=l, 2). 

0 } n-r;e 

The conditions (2) are defined in the functional space M where we study the 
functional J(u). The conditions (3) are the conditions of transversality. 

We shall establish a formula for a number of positive eigenvalues of the 
spectral problem Liu =J..L2u with the boundary conditions (2), (3). If r=O, then 
the conditions (2), (3) imply 

(4) u=O. 

It is well investigated the special case of problem (1)-(3): p=m1 =l. In this case 
we must find a formula for a number of positive eigenvalues of problem 

( 1 )' Lu=.(Pu')' +Gu' -(G*u)' +Qu=J..u 

with conditions 

( 2 )' u(O) =C1v, u(l) =C2v, 

( 3 )' Bv=Cf P(l)u'(l)-CtP(O)u'(O)+CtG*(O)u(O)-CfG*(l)u(l), 

where Bis a symmetric rxr matrix; P, Q, G are nxn matrices, P, Q are sym
metric; (P(x)~,~)?;r(~.~), r=const>O, ~ERn, 0;£x;£1; C1,C2 arenxnmatricessuch 
that the matrix 

has rank r, 0;£r~2n. 
In the noncritical case (i.e., Lu=O, (2)', (3)' or Lu=O, u(O)=u(l)=O does not 

have nontrivial solutions), works on this question have been done by M. G. Krein 
[2], G.D. Birkhoff and M. R. Hestenes [3], W.T. Reid [4, 5], M. Morse [6-8], K. S. 
Hu [9]. 

In the critical case (i.e., Lu=O, (2)', (3)' or Lu=O, u(O)=u(l)=O may have 
nontrivial solutions) the problem (1)' with the special conditions: 

( 4 )' (G*u-Pu' +Au)ix=o=O, (G*u-Pu' +Bou)ix=1 =0, 

where A, Bo are symmetric nxn matrices, was studied by T. I. Zelenyak (for ex
ample, [17]). By the aid of only n solutions of the system Lu=O (i.e., solutions 
which satisfy boudary conditions (4)' at zero) and of functional 

!2= ~:{-(Pu', u')+2(Gu', u)+(Qu, u)}dx+(Bou, u)l1-(Au, u)lo, 
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he constructed the quadratic form R(e), eERr and showed that the number of 
positive eigenvalues of problem (1)', (4)' is equal to the sum of positive indices 
of quadratic form R(e) and the number of non-negative eigenvalues of the problem 

Lu=J.u, (G*u-Pu' +Au)[x=o=O, ufx=1=0. 

In [10, 11] the present author established a formula for the number of positive 
eigenvalues of the problem (1)'-(3)' in the critical case. 

The problems of this kind (1)-(3) with arbitrary m,, p arise through the in
vestigation of stability of stationary solutions of hydrodynamical models [12-16], 
therefore we want to generalize the results of [10, 11] to a more general case (1) 
-(3). 

We call the vector-function u belonging to M a generali'zed eigenfunction of 
the problem (1)-(3) for eigenvalue ). if the integral equality 

( 5) 

holds for all u, u, EM. 
By the well known method (see, for example, [1]) we can show that the bi

linear form W 2(u, u,) defines the inner product [ ·, · ]0 on M 0 which is equivalent 
to (·,·)Mo. We can also show that there is a positive number N>O such that the 
form W(u, u,)= W,(u, u1)+NW2(u, u,) defines the inner product [ ·, ·] on M which 
is equivalent to ( ·, · )M'· We add the quantity -NW2(u, u,) to both side of the 
identity (5) and write it in the form: 

( 6) 

Lemma 1. There is a linear and bounded operator A defined on M 0 such 
that the equality 

holds for all u, EM. The operator A is positive, self-adjoint and absolute continu
ous if we consider A as an operator on M. 

The proof of Lemma 1 is well known (see, for example, [1]). In view of Lemma 
1, we can write (6) in the form of operator equation on M: 

-u=().-N)Au, uEM. 

Thus the number ). is an eigenvalue of problem (1)-(3) and u is a corresponding 
generalized eigenfunction if and only if the number N-J. is a characteristic value 
of the self-adjoint and absolutely continuous operator from M to M and u is a 
corresponding eigenfunction. Since the operator A is positive and has the inverse 
operator A-1

, the spectrum of problem (1)-(3) is discrete, semiconfined and does 
not have finite limit points and the system of generalized eigenfunctions is com
plete in M. It means that any element f of M may be approximated by the 
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series I; aiui in the norm II· llM1 =( ·, · )~~. where U1, .. ·, Un, .. · are the generalized 
i=I 

eigenfunctions of the problem (1)-(3). We can show (see, for example, [l]) that 
the generalized eigenfunctions of the problem (1)-(3) are the classical eigenfunc
tions. From solutions of the system L 1u =0 we can choose the set of maximal 
dimension ui, · · ·, u·~ such that the traces u1, .. ., as of these vector-functions are 
linear combinations of the columns of the matrix C. By W we denote the linear 
vector space spanned by ui, · · ·, us. In Rs the quadratic form H(a), aER8

, is in
troduced by the following way : 

.. 
U= I; aiui, 

i=I 

where F is a symmetric s x s matrix. 
By n+ and n° we denote the numbers of positive and of zero eigenvalues of 

the matrix F, respectively. In case Liu =0, (2), (3) or Liu =0, u =0 does not have 
nontrivial solutions we can repeat the proofs in [10, 11] for the problem (1)-(3). 
We have new results. 

Theorem 1. If Liu=O, (2), (3) or Liu=O, u=O does not have nontrivial solu
tions, then the number of nonnegative eigenvalues of the problem (1)-(3) is equal 
to 

wherer P is the number of solutions of the problem Liu =0, u =0; N is the num
ber of positive eigenvalues of (1), (4). 

Theorem 2. If Liu =0, (2), (3) or Liu =0, u =0 does not have nontrivial solu
tions, then the number of positive eigenvalues of the problem (1)-(3) is equal to 

n +N+(r-s). 

The author expresses the sincere gratitude to administration of Keio Uni
versity and personally to Professor A. Tani for the excellent contribution to the 
present work. 
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