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§1. Introduction
In the early 1950’s N. Wiener proved the following theorem (cf. [2]).

Theorem A. If Y cn.e™ is the Fourier series of a function fel'(—rx,z) with
ca=0 for all # and the restriction of f to a neighborhood (—4d,4) of the origin be-
longs to L*—d, ), then f belongs to L*—=, ).

The question whether we can replace L* by L? with 1<p=co was shown
negatively for 1<p<2 by S. Wainger [7] and for p>2 except even integers and
oo by S. Shapiro [5]. If p is an even integer and oo, it is easy to see that the
answer is affirmative. Moreover, these results have been extended to compact
abelian groups by M. Rains [3].

In 1987 J.M. Ash, M. Rains and S. Viagi interpreted the conclusion of Wiener’s
theorem equivalently as “ 3 c¢3<oo” and obtained the following theorem (see [1]).

Theorem B. Let 1<p<2, g=p/(p—1). If Ycne'™ is the Fourier series of a
function feL'(—n, z) with ¢,=0 for all » and the restriction of f to a neighborhood
(=3, 8) of the origin belongs to L?(—4,4), then Xci<co.

In this paper we shall prove that an analogous result holds for central func-
tions on SU(2).

§2. Statement of the result

Let G=SUQ2) and H={h(¢)=diag (¢", e ¥); —x=<f==z} a maximal torus group
of G. Then each element g of G is conjugate to an element ~ of H. Therefore,
if f is a central function on G; f(uvu=)=f(v) for all %, veG, then f is completely
determined by the restriction of f to the subgroup H of G. Here we let f(0)=
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f(h(#)). Since A(4) is conjugate to A(—8):

(} “o)rar(] o) =m0,

f can be identified with an even function f(f) of —zr=60=r.
If f is an integrable central function on G, the normalized Haar integral of f
on G is given by the integral of f(#) on [0, x] as

(1) Saf(g)dg =ES:f(0) sin® 6df

T

(cf. [6], p. 53). Then for p=1 we define

LG, H )=l f; fis a central function on G and

171o=(2 7@ sint odo)"p<oo} ,

T

and for 0<é<m,
é
L*(G, Hd)z‘f; f is a central function on G and S | ()| sin? 8df < oo} .
0

Let N be the set of nonnegative integers and for each neN X, the character
of a (n+1)-dimensional irreducible unitary representation of G. Actually, X, is
the central function on G given by

n+1 0=0),
(2) 1nll)= {W (00, +7),

(=D"n+1)  (0==%n)

and {X,;necN} forms a complete orthonormal system of LG, H) (cf. [6], p. 49).
For feLYG, H) the Fourier coefficient of f with respect to X, is defined by

(3) fn) =%—So F(0)74(0) sin? 0d6

2

i

S”f (@) sin (n+1)6 sin 646 .

Then the Fourier series of f is denoted as Y f(#)X,. Here we let
neN

IIfIl’,q=(”§v (n+1)>9 f(m)| 9

for 2=¢<co.
Our theorem can be stated as follows.

Theorem. Let 1<p=2, g=p/(p—1). If feL' (G, H) has nonnegative Fourier
coefficients f(xn) for all » and f belongs to L?(G, H;), then ||fll;q<co.
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§3. Some lemmas

In order to prove Theorem we shall prepare some lemmas. The proof of the
theorem will be given in §4.

Lemma 1. Let feL!YG,H) and let g be a bounded central function on G. If
f and ¢ have nonnegative Fourier coefficients f(n) and §(x) for all neN, then

(4) (fo'm=za0)f(n)  (neN).

Proof. Since the Fourier series of f and ¢ are given by X f(n)X, and 3] §(n)X.
respectively, fg has an expansion like 3 F(&)d()XiXs. Th":rvl by using nézl\::bsch-
Goldan’s law : e

YXi=ZXir1+Lksr—ot -« +Xjg—ry »

we can deduce that the Fourier coefficient of fg is given by

(fo) ()= ZI FR)al)+ Z gD+ - - + k;ZN FR)(d) .
k+L n K+Z 2 n lk~ll=n

Therefore, since f(k) and §(/) are nonnegative by the assumption, if we drop all
nonnegative terms except k=# and /=0, we can obtain the desired inequality.
Q.E.D.

Lemma 2. (the Hausdorff-Young theorem) Let 1<p=2, q=p/(p—1). Then
there exists a positive constant C, such that

(5) I e =Collf Il
for all fel?(G, H).

Proof. Let f~(n)=f(n)/(n+1). We define
1f~1lg=( eZIJV(ﬂ-5-1)2|f~(n)1")”q

for 2=g<oco and ||f~|l.=sup|f~(#)|. Then, since |X./(n+1)| is bounded above by
neN

1, it is easy to see that ||f~|l.=||fl for feLYG,H). Moreover, since {X.} is a
complete orthonormal system of L¥G, H), it follows that for feL%G, H)

Hf~|I§="‘l:QN(VH1)2|f~(ﬂ)l2
= LI/ m)iE=IIf1k.
neN

Therefore, applying the Riesz-Thorin interpolation theorem (cf. [4], p. 27), we see
that there exists a positive constant C, such that |[f~|,=Cpl|fll, for feL?(G,H)
(1<p<2). Then the desired result follows from the definition of f~. Q.E.D.
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Lemma 3. Let 0<6<=z. Then there exists a central function ¢ on G satis-
fying the following conditions.

(i) ¢ is bounded,

(ii) supp gcl;, where supp ¢ is the support of the restriction of ¢ to A and I;
=[—ad,0).

(iii) §(»)=0 for all ne N and §(0)>0.

Proof. Let ¢(f) be an even function of —7z=6=r defined by

26 (#=0)
200=30%)  (gcp=p/2)
0)= sin ¢
! 6=0F (8/2=0=4)
sin ¢ -
0 (0=0=x).

Then this function ¢ on H can be uniquely extended to a central function on G,
which we denote by the same letter. Obviously, ¢ satisfies (i) and (ii). Moreover,
a tedious calculation of the Fourier coefficient of ¢ (see (3)) deduces that

d(n)=4(1 —cos (n+1)8/2))?/(m+1)*.
Therefore, (iii) is also satisfied. Q.E.D.

Remark 4. Let #(0)=¢(®)sing. Then for ¢=0 # is the convolution of the
following two functions:

i 2 (0<0<6/2)
u,(0) = { -2 (—6/2<6<0)
0 otherwise

and

3
s(0) = {3"01 (161<5/2)

0 otherwise .

§4. The proof of Theorem

Let ¢ be the function obtained in Lemma 3 and let F=¢gf. Then F is a cen-

tral function on G. Since feL(G, H,;), it follows from Lemma 3 (i), (ii) and (1)
that

T

1#13=2{ lotoye1 oy sin® oo

g%ngnggz LF(O)|? sin® fdB < oo .
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On the other hand, applying Lemma 3 (i), (iii) and Lemma 1, we see that for
each neN

) =40 Fn).
Then by Lemma 2 we can deduce that
1iflls.q=(n§v(n+1)2‘qlf(n)lq)”“
9O % (a1 F ) 1)

301 Fls.
=G0)Cyl|Fllp<oo.

lIA

This completes the proof of the theorem. Q.E.D.
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