慶應義塾大学学術情報リポジトリ Keio Associated Repository of Academic resouces

Title	Central functions on SU(2) with nonnegative Fourier coefficients
Sub Title	
Author	Miyazaki, Hiroshi
Publisher	慶應義塾大学理工学部
Publication year	1989
Jtitle	Keio Science and Technology Reports Vol.42, No.1 (1989. 3) ,p.1-5
JaLC DOI	
Abstract	
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00420001- 0001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

CENTRAL FUNCTIONS ON SU(2) WITH NONNEGATIVE FOURIER COEFFICIENTS

by

Hiroshi Miyazaki

Department of Mathematics Engineering Faculty of Science and Technology, Keio University Hiyoshi, Yokohama 223, Japan

(Received 23 January 1989)

§1. Introduction

In the early 1950's N. Wiener proved the following theorem (cf. [2]).

Theorem A. If $\sum c_n e^{\ln t}$ is the Fourier series of a function $f \in L^1(-\pi, \pi)$ with $c_n \ge 0$ for all *n* and the restriction of *f* to a neighborhood $(-\delta, \delta)$ of the origin belongs to $L^2(-\delta, \delta)$, then *f* belongs to $L^2(-\pi, \pi)$.

The question whether we can replace L^2 by L^p with 1 was shownnegatively for <math>1 by S. Wainger [7] and for <math>p > 2 except even integers and ∞ by S. Shapiro [5]. If p is an even integer and ∞ , it is easy to see that the answer is affirmative. Moreover, these results have been extended to compact abelian groups by M. Rains [3].

In 1987 J. M. Ash, M. Rains and S. Vági interpreted the conclusion of Wiener's theorem equivalently as " $\sum c_n^2 < \infty$ " and obtained the following theorem (see [1]).

Theorem B. Let 1 , <math>q = p/(p-1). If $\sum c_n e^{int}$ is the Fourier series of a function $f \in L^1(-\pi, \pi)$ with $c_n \ge 0$ for all n and the restriction of f to a neighborhood $(-\delta, \delta)$ of the origin belongs to $L^p(-\delta, \delta)$, then $\sum c_n^q < \infty$.

In this paper we shall prove that an analogous result holds for central functions on SU(2).

§2. Statement of the result

Let G=SU(2) and $H=\{h(\theta)=\text{diag}(e^{i\theta}, e^{-i\theta}); -\pi \leq \theta \leq \pi\}$ a maximal torus group of G. Then each element g of G is conjugate to an element h of H. Therefore, if f is a central function on G; $f(uvu^{-1})=f(v)$ for all $u, v \in G$, then f is completely determined by the restriction of f to the subgroup H of G. Here we let $f(\theta)=$

Η. Μιγαζακι

 $f(h(\theta))$. Since $h(\theta)$ is conjugate to $h(-\theta)$:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} h(\theta) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} = h(-\theta) ,$$

f can be identified with an even function $f(\theta)$ of $-\pi \leq \theta \leq \pi$.

If f is an integrable central function on G, the normalized Haar integral of f on G is given by the integral of $f(\theta)$ on $[0, \pi]$ as

(1)
$$\int_{G} f(g) dg = \frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin^{2} \theta d\theta$$

(cf. [6], p. 53). Then for $p \ge 1$ we define

$$L^{p}(G, H) = \left\{ f; f \text{ is a central function on } G \text{ and} \\ ||f||_{p} = \left(\frac{2}{\pi} \int_{0}^{\pi} |f(\theta)|^{p} \sin^{2} \theta d\theta \right)^{1/p} < \infty \right\},$$

and for $0 < \delta < \pi$,

 $L^p(G, H_{\delta}) = \left\{ f; f \text{ is a central function on } G \text{ and } \int_0^{\delta} |f(\theta)|^p \sin^2 \theta d\theta < \infty \right\}.$

Let N be the set of nonnegative integers and for each $n \in N \ \chi_n$ the character of a (n+1)-dimensional irreducible unitary representation of G. Actually, χ_n is the central function on G given by

(2)
$$\chi_n(\theta) = \begin{cases} n+1 & (\theta=0), \\ \frac{\sin(n+1)\theta}{\sin\theta} & (\theta\neq0, \pm\pi), \\ (-1)^n(n+1) & (\theta=\pm\pi) \end{cases}$$

and $\{\chi_n; n \in N\}$ forms a complete orthonormal system of $L^2(G, H)$ (cf. [6], p. 49). For $f \in L^1(G, H)$ the Fourier coefficient of f with respect to χ_n is defined by

(3)
$$\hat{f}(n) = \frac{2}{\pi} \int_{0}^{\pi} f(\theta) \bar{\chi}_{n}(\theta) \sin^{2} \theta d\theta$$
$$= \frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin(n+1)\theta \sin\theta d\theta$$

Then the Fourier series of f is denoted as $\sum_{n \in N} \hat{f}(n) \chi_n$. Here we let

$$||\hat{f}||_{s,q} = (\sum_{n \in N} (n+1)^{2-q} |\hat{f}(n)|^q)^{1/q}$$

for $2 \leq q < \infty$.

Our theorem can be stated as follows.

Theorem. Let 1 , <math>q = p/(p-1). If $f \in L^1(G, H)$ has nonnegative Fourier coefficients $\hat{f}(n)$ for all n and f belongs to $L^p(G, H_\delta)$, then $||\hat{f}||_{\mathfrak{s},q} < \infty$.

Central functions on SU(2) with nonnegative Fourier coefficients

§ 3. Some lemmas

In order to prove Theorem we shall prepare some lemmas. The proof of the theorem will be given in 4.

Lemma 1. Let $f \in L^1(G, H)$ and let g be a bounded central function on G. If f and g have nonnegative Fourier coefficients $\hat{f}(n)$ and $\hat{g}(n)$ for all $n \in N$, then

$$(4) \qquad (fg)^{\wedge}(n) \geq \hat{g}(0)\hat{f}(n) \qquad (n \in \mathbb{N}).$$

Proof. Since the Fourier series of f and g are given by $\sum_{n \in N} \hat{f}(n)\chi_n$ and $\sum_{n \in N} \hat{g}(n)\chi_n$ respectively, fg has an expansion like $\sum_{k,l \in N} \hat{f}(k)\hat{g}(l)\chi_k\chi_l$. Then by using Clebsch-Goldan's law:

$$\chi_k \chi_l = \chi_{k+l} + \chi_{k+l-2} + \cdots + \chi_{|k-l|},$$

we can deduce that the Fourier coefficient of fg is given by

$$(fg)^{\wedge}(n) = \sum_{\substack{k,l \in \mathbf{N} \\ k+l=n}} \widehat{f}(k)\widehat{g}(l) + \sum_{\substack{k,l \in \mathbf{N} \\ K+l=2=n}} \widehat{f}(k)\widehat{g}(l) + \cdots + \sum_{\substack{k,l \in \mathbf{N} \\ |k-l|=n}} \widehat{f}(k)\widehat{g}(l) .$$

Therefore, since $\hat{f}(k)$ and $\hat{g}(l)$ are nonnegative by the assumption, if we drop all nonnegative terms except k=n and l=0, we can obtain the desired inequality. Q.E.D.

Lemma 2. (the Hausdorff-Young theorem) Let 1 , <math>q = p/(p-1). Then there exists a positive constant C_p such that

(5)
$$\|\hat{f}\|_{s,q} \leq C_p \|f\|_p$$

for all $f \in L^p(G, H)$.

Proof. Let
$$f^{\sim}(n) = \hat{f}(n)/(n+1)$$
. We define
$$||f^{\sim}||_q = (\sum_{n \in \mathbb{N}} (n+1)^2 |f^{\sim}(n)|^q)^{1/q}$$

for $2 \leq q < \infty$ and $||f^{\sim}||_{\infty} = \sup_{n \in \mathbb{N}} |f^{\sim}(n)|$. Then, since $|\chi_n/(n+1)|$ is bounded above by 1, it is easy to see that $||f^{\sim}||_{\infty} \leq ||f||_1$ for $f \in L^1(G, H)$. Moreover, since $\{\chi_n\}$ is a complete orthonormal system of $L^2(G, H)$, it follows that for $f \in L^2(G, H)$

$$\begin{split} ||f^{\sim}||_{2}^{2} &= \sum_{n \in N} (n+1)^{2} |f^{\sim}(n)|^{2} \\ &= \sum_{n \in N} |\hat{f}(n)\rangle|^{2} = ||f||_{2}^{2} \,. \end{split}$$

Therefore, applying the Riesz-Thorin interpolation theorem (cf. [4], p. 27), we see that there exists a positive constant C_p such that $||f^{\sim}||_q \leq C_p ||f||_p$ for $f \in L^p(G, H)$ $(1 . Then the desired result follows from the definition of <math>f^{\sim}$. Q. E. D.

Lemma 3. Let $0 < \delta < \pi$. Then there exists a central function g on G satisfying the following conditions.

- (i) g is bounded,
- (ii) supp $g \subset I_{\delta}$, where supp g is the support of the restriction of g to H and $I_{\delta} = [-\delta, \delta]$.
- (iii) $\hat{g}(n) \ge 0$ for all $n \in N$ and $\hat{g}(0) > 0$.

Proof. Let $g(\theta)$ be an even function of $-\pi \leq \theta \leq \pi$ defined by

$$g(\theta) = \begin{cases} 2\delta & (\theta = 0) \\ \frac{(2\delta\theta - 3\theta^2)}{\sin\theta} & (0 < \theta \le \delta/2) \\ \frac{(\delta - \theta)^2}{\sin\theta} & (\delta/2 \le \theta \le \delta) \\ 0 & (\delta \le \theta \le \pi) \,. \end{cases}$$

Then this function g on H can be uniquely extended to a central function on G, which we denote by the same letter. Obviously, g satisfies (i) and (ii). Moreover, a tedious calculation of the Fourier coefficient of g (see (3)) deduces that

$$\hat{g}(n) = 4(1 - \cos((n+1)\delta/2))^2/(n+1)^3$$

Therefore, (iii) is also satisfied.

Remark 4. Let $u(\theta) = g(\theta) \sin \theta$. Then for $\theta \ge 0$ u is the convolution of the following two functions:

$$u_1(\theta) = \begin{cases} 2 & (0 < \theta < \delta/2) \\ -2 & (-\delta/2 < \theta < 0) \\ 0 & \text{otherwise} \end{cases}$$

and

$$u_2(\theta) = \begin{cases} \frac{\delta}{2} - |\theta| & (|\theta| < \delta/2) \\ 0 & \text{otherwise} \end{cases}$$

§4. The proof of Theorem

Let g be the function obtained in Lemma 3 and let F=gf. Then F is a central function on G. Since $f \in L^p(G, H_\delta)$, it follows from Lemma 3 (i), (ii) and (1) that

$$|F||_p^p = \frac{2}{\pi} \int_0^{\pi} |g(\theta)|^p |f(\theta)|^p \sin^2 \theta d\theta$$
$$\leq \frac{2}{\pi} ||g||_{\infty}^p \int_0^{\delta} |f(\theta)|^p \sin^2 \theta d\theta < \infty.$$

Q. E. D.

On the other hand, applying Lemma 3 (i), (iii) and Lemma 1, we see that for each $n \in N$

$$\hat{f}(n) \leq \hat{g}(0)^{-1} \hat{F}(n) \, .$$

Then by Lemma 2 we can deduce that

$$\begin{split} |\hat{f}||_{\pmb{i},q} &= (\sum_{n \in N} (n+1)^{2-q} |\hat{f}(n)|^q)^{1/q} \\ &\leq \hat{g}(0)^{-1} (\sum_{n \in N} (n+1)^{2-q} |\hat{F}(n)|^q)^{1/q} \\ &= \hat{g}(0)^{-1} ||\hat{F}||_{\pmb{i},q} \\ &\leq \hat{g}(0)^{-1} C_p ||F||_p < \infty . \end{split}$$

This completes the proof of the theorem.

Q. E. D.

REFERENCES

- J. M. Ash, M. Rains and S. Vági: Fourier series with positive coefficients, Proc. Amer. Math. Soc., 101 (1987), 392-393.
- [2] R.P. Boas: Entire Functions, Academic Press, New York, 1964.
- [3] M. Rains: On functions with nonnegative Fourier transforms, Indian J. Math., 27 (1985), 41-48.
- [4] M. Reed and B. Simon: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [5] H.S. Shapiro: Majorant problems for Fourier coefficients, Quart. J. Math. Oxford (2), 26 (1975), 9-18.
- [6] M. Sugiura: Unitary Representations and Harmonic Analysis, Wiley, New York, 1975.
- [7] S. Wainger: A problem of Wiener and the failure of a principle for Fourier series with positive coefficients, Proc. Amer. Math. Soc., 20 (1969), 16-18.