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1. Introduction

The purpose of this note is to show that the fundamental solution of the
difference-partial differential equations of the type

Unz) — thn—1(x) 0°
h i1 0xi®

Un(z) (n=1,2, -+, N, h=1/N) for xeR?* (d: odd) (1)

has the singularity of type |z|~¢ at most, where N is a positive integer and 2=
1/N. Assuming that u,(z) (n=1,2, ---, N) are rapidly decreasing smooth functions,
we take the Fourier transform A of the both sides of above equation (1) to obtain

M:—\sm(s) (n=1,2, -+, N) for écR’ (d: 0dd) (2)

and hence

(&) =L+ RIS "2u(E) for ¢eRY (3)

where ft(E)=S e Pu(z)de and & ad=Féw, 167=(6 & for E=(&, -+, &), o=
Rd z=1

(z), -+ -, za)e R By taking the Fourier inverse transform of (3), we have

1 17
wn(2)= By Sxd[(1+h\6|2)"] (—v)uo(y)dy .

Now the following theorem holds:
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Theorem. Let d be a positive odd integer. Let N be a positive integer and put
h=1/N. Then there exists a positive number C depending only on d such that

1 A
Loy | @|=cier
holds for any zeR?® (x+#0) and n (n=1,2,---,N).

Note that the above Fourier transform ”should be interpreted in the distribu-

. . . . d+1
tional sense, since is not integrable for 1<n< +

1
Ry —1. For the proof
A+ hETR P
of this theorem, we use the following well-known results :

[ ] @=@orter e { s alosas (7))

(see E.M. Stein and G. Weiss [10, page 155)),

- s _ Ja" K- ol 2]) ( d_+1)
So (1+Sz)nf(d—z)/z(|$|s)d5— 2% —1)! "= 2

(5)
(see [12, page 686])

and

172 n !
Enam(lah=Karamlleh=(55r) e E it

n=0,1,2,---) (6)
(see [12, page 967)),

where J denotes Bessel function of the first kind and K denotes modified Bessel
function.
For any fixed » (n=1,2, ---, N), putting

fl@)=1+]z*)",

we have [f (Vsﬁﬂh(x)=NM #(VNz), by the change of variables 7=¢/V'N. Hence

for the proof of Theorem it is sufficient to prove that there exists a positive
number C such that

| e | @] <crel-* (7)

holds for any xeR? (x+0) and any positive integer #. Therefore we have only
to prove the following two Lemmas.

Lemma 1. Let d be a positive odd integer. Then

[ ariemr] @=c e
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holds for any xeR® and any positive integer n>

Proof. By using (4) and (5), we have
1 _ 2ol —ca-2y szl 1
[ 2 "} (x)—(27f)d |ap| =@~ So -(‘1—_}_‘;277]

(I+lg5"
—(oyar2| o —aszr1 1 E|" T Kamamy o(|2)
=(2m)?* ||~ i n—1)]

(a-2y2(| | 8) 5% %ds

|22 K ams2my o(|2])
—(Or)d/2
@) 2 1(n—1)!

Since d is an odd positive integer, we obtain from (6) that

(n— d-2|-1 +7’)!

[y ] @= G () e A(n— T —r)i@laly

_ d"zi'l +r>!|xln_¢/z_1/2—r

izl n—(d+1)/2 (
= (=1 (n—
@Cn—d—1—k)!|z|*

=(2r) @172

d+1 yomir
5 —r>.2

n—(d+1)/2
’

:(2”)(d+1)/2e_m
- (%—1)!<n— d—2+-1 —k)!k!zZn—d/z—x/z_k
&—r. Also, we see,

where we have used the change of variables: k=n— 5

‘[(1_+11W] kx)\ <, L st L e <o

Hence, in order to prove

holds for any zeR? and any positive integer »n> 5
Lemma, it is sufficient to show

n-gron (2n—d—1-Fk)!|z[**? <(2r)-@HD2Celal (8)

= (n—]_)!<n— d_zl_l _k)!klzzﬂ—d/2—1/2—k

for any zeR? and » sufficiently large, since the left side of (8) is a polynomial of

degree n+%—%. Hence, by putting n=m+%+—;—, it is sufficient to show

’xllﬁ-d

m (2m—k)!|x|**e —f} @m—E(+1)E+2)- - - (k+d)2* .
- (k+d)!

2
k=0 41\ pyprommei &0 < ii__l>| B\ B19em
(m+2 2).(m E)EI2 ot = L) m— )12

< g @HD/2C 17!
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for any xeR¢ and m sufficiently large.
Here we set for any m sufficiently large and for 2 (k=1,2, ---, m)

_ @m—R) e D(k+2) - (b )2
d_1 )!(m—k)!Z”"

m
k

<m+5—5

and successively estimate o for any fixed m. When we regard ¢ as a function
of k, we then have the following calculation :

o g Cm—E+I)R+D+D((E+1)+2): - - ((B+1)+d)2k!
%—%)!(m—(kJrl))!zm
_ Cm—RNE+1)(k+2). - -(k+d)2F

d 1)‘ 192m
& 2 V=02
<m+2 5 (m—Fk)

<m+

_ @Cm—k-Dlk+2)(k+3)- - -(k+d)2*
B a_1 om

(=B —(+2d)k+2dm)} .

Hence, we can take a positive integer k, such that

’ —(A+2)+ VI ¥2d)?+8dm
2

and
ar<ar<--- <a'"k,,,-1£a2"m202"m“2 e am >y
Consequently, it is sufficient to prove the following :

lim sup af, <o

m—oo

to obtain the result of Theorem. We calculate ¢ as follows:

o Cm—En) kA D) +2)- - - (b +d)2m
@y, = d 1 ' y1oem
(=5 o

_ @Cm—kn) (kn+1)kn+2)- - - (Bn+d) 2 —km+1)m—kn+2)- - -(m—En+kn)

(! 2™+ 1) +2) - -(m+%—-%)

_ @Cm—kn)l(lm+1)(km+2) - - (km+d)(2m—2km +2)(2m — 2k +4) - - (2 — 2k + 2km)
(m!)2""(m~+1)(m+2)- - - <m+_‘1_l)

5 2
_ m— e em Dl +2)- (i + )2+ 1)2m—kn2): -2+ en)
a 202m .(i_.l_

(12 (m + 1) (m+-2) (m+2 2)
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@)\ (fm+1)(ln+2): - - (kn+d) < (2m)! (kn+d)?

- Nzozm L d/ -1/
()22 (m +1)(m+2)- - - (m+£~l> (m!)?2 m

2 2
<1+«Kl+d¥+8wm>d
(2m)! 2
- (m1)222'” * md/D—-1/2)

By the well-known Wallis formula, we have

( d)d/z
lim sup af < ot

m-co

which completes the proof of Lemma.

Lemma 2. Let d be a positive odd integer. Then

i 1 1 —lx|
[ e | @] semax | o s e
holds f07’ any rzeR? (xio) and n:l, 2, o-.’dzi—l.

Proof. Since the equality

1 n.(d&l)/Z o
[<1+|s|2><d“>*2 ] (2)= (d 1>“e
2

d+1
2

1 A _ (1+IE|2)(d+l)/2—n /\
[(Hism"] (‘”)‘[ GENEDCISE ] (@)

Tc(d+l)/2
- <d—1 >,
—)!

Therefore, it is sufficient to prove that there exists a positive

holds for any xeR? we have that, for n=1,2, ---, -1,

[(1— gyceror=rg-iar],

i< 8
number C such that

I(l A)m "'”'\<Cmax [ [1‘ P |1d - ]e—lz‘l <m=]_’ 2,0, ﬂ)

for any zeR? (x+0). Using repeatedly the following equality

Q-0 [(d 2= )b ey +d=1- 20 |,m ]e"‘”’ k=1,2,--)  (9)

lz l

for any zeR? (z+0), we obtain that, for any zeR?¢ (z+0),

| |k12
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d—1

el

1
G 1l — o7

(1—dye= =

o]
o [CL e [ (d—10d=3) | (d—1)d—3) |
(L=dye= [H o | el ‘[ EERT ]m

C3 e~
x! Tt |x13] EE

_[ d—1)(d—3)(d—b) +3(d—1)(d—3)(d-—5)_{_3(d 1)(d—3)(d— 5):| e\l
B ||

|]® |]?

(1—dyre=

crooCr Cr 1l e ™
N1zl = 2 e m ]—
(=are=| St e+ |
- cl(d——l)/z C(d—-l)/Z (d:})/; e—ll‘l
(1_4)(d—1)/2e—1 l:[ !x‘ zlxlz oo |xl((dd_;/)/2 :I ‘xl(d—l)/Z—l ,
where C7 <2<m< d; 1< jgm) is defined inductively as follows :

Cr=(d—2m+1)Cp",
Cp=(d—2m—2j+3)C}" +(d—m—j+1)m+j—3)Cp3 (j=2,3, -+, m~1)

and
=(d—-2m+1)2m—3)Cn-1.

Since C7 depends only on d, we can take positive numbers C such that

1 ]e_u:j (m:]., 2, e d-l)

L .
2] |2]* 2

holds for any zeR? (x+0), which completes the proof of Lemma.

Thus we have finished the proof of Theorem.

Now it is very attractive to the authors to construct a regular solution (Morse
flow) for non-linear parabolic partial differential equations corresponding to the
following problems in the calculus of variations: For mappings #e H“*Q, R%)
(H“*¥Q, R¥) is the usual Sovolev space and Q is an open and bounded domain with
smooth boundary in R¢), we consider the following functional

[(1—4)"e~""| <C max

)= Sg Az, (@) Dt () Dt )z .

Here in the summation over repeated indices, the Greek indices run from 1 to d
and the Latin ones from 1 to d’. We assume that the coefficients A% are bounded
functions suitably smooth in £ X R* and satisfy the condition

Az, u)E.Ls>2]E|* for £eR? and (x, #)e2 X R¥

with a uniform positive constant 2.
It has been successfully treated by Douglas and Morrey ((7]) to find a regular
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minimum point in the case d=2. In general case d>3, an excellent result was
proposed by Giaquinta and Giusti ([2]) in 1980. This result says that minima of
the functional I (with the coefficients A*® whose smoothness is only required to
be continuous) are Holder-continuous in £ under the so-called one sided condition
proposed by Hildebrandt and Widman ([5]). It should be remarked that the one-
sided condition does not impose the solutions any “smallness”.

Since the result appeared, it has been conjectured that the parabolic flow for
equations

2 = DAz, WD)~ L7, A%z, ) De Dy

in the “weak” sense conserves the regularity of the initial data under the one-
sided condition. Here we mention interesting papers [4] and [11], which treat
non-linear parabolic differential equations. One* of the authors in this note has
taken up this problem for these years and approached it by considering the follow-
ing functionals:

L) = Sg(A“ﬂ(x, u(x))Daui(x)Dﬁui(x)—l—%lu—un—l\Z)dx =12, -+ N),

where N is a positive integer and 2=1/N (for example) and #, is an initial datum
for the problem. By taking #, as a minimum of the functional I,(z) inductively,
we obtain the following Euler-Lagrange equations of I,:

Un—Un—1

0 DA, ) Dattn) — %VMA"‘;(JU, #n) Dot Dstd (%)

where we notice that any #,(x) is known to be smooth in £ by virtue of the
result [2]. By constructing a suitable function comparative to the minimum #,,
we are trying to obtain the so-called reverse Holder inequality due to Gehring-
Giaquinta-Modica ((1] and [3]), about which we expect to be able to write in
another paper. To obtain the conjectured result stated above, we think that such
properties for solutions of equations (*) as the estimates in this note and Harnack
property of Moser’s type ([8] and [9]) will play an essential role.
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