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Hiyoshi, Yokohama 223, Japan 

(Received 18 March 1988) 

ABSTRACT 

The algebraic method of cluster expansion is applied to the limit theorem related to 
the interacting particle system. The random field XL(f, s) is defined with respect to the 
Gibbs state by scaling the number of particles in (0, tL] X (0, sL]. It is proved that XL(f, s) 
converges to the Brownian sheet in law as L-+ ex:> if the density of particles is low. 

§ 1 Introduction 

In statistical mechanics it is one of the most powerful techniques to expand 
observable quantities in power series by means of algebraic methods. Such ex
pansions are called cluster expansion or polymer expansion. Employing these 
expansions we can take an infinite volume limit of the quantities and can define 
the thermodynamic functions. (See [1]""[4] for example). This makes it possible 
to study statistical mechanics mathematically. For instance a theory of phase 
transitions consists in studying the analyticity of the thermodynamic functions. 
In other words the occurrence of phase transitions is characterized as the singu
larity of the thermodynamic functions. Also these expansions have been applied 
to the various problems in statistical mechanics, including the study of phase 
separation and the phase diagram for lattice models [5]""[9], the study of the 
decay of correlations (see Ch. 4 of [1] for detail), and the limit theorem for Gibbs 
states [10]""[12]. 

In this article we shall apply the cluster expansion to the limit theorem for 
the interacting particle system on R 2

• 

Consider the interacting particle system on the square V with side L. The 
configuration of particles is specified by the set of finite number of points (xi. 

... , xn) in V. We associate the interaction energy to each configuration (xi. 

.•• , Xn) 
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where (JJ( · ) is the symmetric function on R 2 which describes the interaction 
between two particles. We assume several conditions on this function (fJ which 
will be stated precisely in Section 2. To describe the equilibrium state of the 
system the Gibbs state is introduced with the interaction (fJ and the activity z. 
Here the activity z is the parameter which controls the density of particles. To 
be specific, the expectation E(Nv) of the number of particles in Vis the increasing 
function of z, so that the regime of small values of z corresponds to the state of 
low density. 

Using this notion of Gibbs state we define a random field XL(t, s), O:=:;:t, s:::;:l, 
by 

XL(t, s)= }L. {NL(t, s)-E(NL(t, s))}, 

where NL(t, s) is the number of particles in (0, tL] x (0, sL] and E( · ) is the ex
pectation with respect to the Gibbs state. 

The purpose of this article is to prove that XL(t, s) converges to the Brownian 
sheet in law as L __,. oo in the space D2 with a suitably chosen function a=a(z) 
when the activity z is sufficiently small. (See [14] and [15] for the definition of 
the Brownian sheet). Here D 2 is the space of all functions from [0, 1]2 to R which 
are continuous from above and have limits from below. We endow this space 
with Bickel-Wichura's S-topology [16]. We will see that a2(z) is a thermodynamic 
limit of the variance of Nv as V __,. R 2• 

In Section 2 we formulate our problem and state our results precisely. In 
Section 3 we summarize the method of cluster expansion and properties of the 
Ursell functions for our system. The Section 4 is devoted to the proof of that 
the finite dimensional distribution of XL(t, s) converges to the corresponding distri
bution of the Brownian sheet as L __,. oo. The tightness of the distributions of 
XL(t, s) on D 2 is proved in Section 5. In Section 6 we restrict our argument to 
the system with a nonnegative interaction in which more detailed result is obtained. 
When an interaction is nonnegative it is proved that the Ursell function satisfies 
the alternating property. (See Ch. 4. 5 of [1]). Using this property we prove that 
the radius of convergence SR of a(z) is finite, and that the limit theorem mentioned 
above holds for all z with O<z<SR. 

§ 2 Statement of Results 

Let V be a bounded subset of R 2 and N be a nonnegative integer. We define 
configuration spaces Dv, N and Qv by 

and Qv= U Qv, N respectively. 
N=O 

The a-field 93v, N on Qv, N and 93v on Qv are defined as the smallest a-field 
generated by the set {~Ef.?v, N; NA(~)=n}, AE.93(R2

), O:::;:n:::;:N, and the sets {~E.Qv; 
NA(~)=n}, AE.93(R2

), n~O respectively, where NA(~) is the number of particles in 
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A for the configuration ~. 

An alternative description of Dv, N is given by 

(1) 

where (VN)'={(xi, x2, · · ·, XN)E VN; Xi-=FXi for i<j} and SN is a symmetric group 
of order N. 

By means of the factorization (1) we introduce a measure µ on Dv such that 

if AcDv, N, N~l, 

where 0 is the configuration of no particle and A is the inverse image of A with 
respect to the factorization (1). 

Let </J be a R-valued measurable function on R 2 satisfying </J(-x)=</J(x) for 
all xER 2

• This function </J is called the interaction function which describes the 
interaction between two particles. Several conditions are assumed on </J to define 
the Gibbs state and to obtain their properties which will be used for the method 
of the cluster expansion. 

First we assume that </J is bounded from below and satisfies the following 
condition (I) called "regularity condition". 

(I) 

(I)' 

C(iB)= r dxle-J9<1l(X)_ll <oo for some .B>O. JRz 

Remark. The condition (I) is equivalent to the following condition (I)' 

C(.B)<oo for all .B>O. 

If the interaction function </J has finite range then the condition (I) is satisfied. 
Next we assume either one of the following conditions (Il-1) and (Il-2). 

(Il-1) </J is nonnegative, i.e. </J(-)~O. 

(Il-2) 
( i) There exists a positive number do>O such that 

</J(x)=oo for all xER 2 with Oslxl<do (Hard core condition) 

and 

(ii) There exists a nonnegative number B~O such that 

l:1:$:i:$:n </J(xi)~ -2B 

for all n and all xh ... , XnER 2 satisfying !xi-xii ~do for i-=F j. 

Let us note that if the condition (Il-1) is satisfied then the condition (ii) of 
(Il-2) is automatically satisfied with B=O. 

To each configuration (xi, x2, · · · , xn) we associate an interaction energy 
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The condition (ii) of (II-2) implies that U(xi, ... , xn) is stable, i.e. 

U(xi, ... , Xn)~ -nB. 

Definition The probability measure Pv( · )=Pv, ~' z( ·) on Dv is called a Gibbs State 
if Pv( ·) is absolutely continuous with respect to µ with the density function 

1 
Pv(~l/3, z)= Zv exp {-,BU(~)+Nv(~) log z}, 

where Nv(~) is the number of particles of ~ in V and Zv is the normalized constant 
called the partition function. 

Put V=(O, L]x(O, L] and V(t, s)=(O, tL]x(O, sL], O::;;t, s::;;l. For any ~EQv 
we define the random field XL(t, s)(~) by 

XL(t, s)(~)= }L {NL(t, s)(~)-Ev(NL(t, s))}, 

where NL(t, s)(~) is the number of particles of ~ in V(t, s) and Ev(·) is the ex
pectation with respect to the Gibbs state. Now we are in a position to state our 
first result. 

Theorem 1. For any {3>0 there exists a positive constant zo(p) and a function 
a(z) which is positive for all O<z<zo(p). If O<z<z0(p), then 

XL(t, s) ->- B(t, s), as L---+ oo, 

in the sense of finite dimensional distribution with a=a(z), where B(t, s) is the 
Brownian sheet. 

Next we shall prove that XL(t, s) converges to the Brownian sheet in law in 
the space D 2

, where D 2 is the space of all functions from [0, 1]2 to R which are 
continuous from above and have limits from below. We endow this space with 
Bickel-Wichura's S-topology [16]. Let A be the set of all functions ..{( ·) which are 
strictly increasing and continuous from [O, 1] to itself such that ..{(0) =0 and ..{(l) = 1. 
Bickel-Wichura's S-topology is given by the following convergence: Wn(t)-----+ w(t) 
in D2 if and only if there exist An and µnEA such that 

( 1 ) An(t) converges to t uniformly as n -----+ oo, 

( 2) µn(t) converges to t uniformly as n-----+ oo, and 
( 3) Wn(An(t), µn(s)) converges to w(t, s) uniformly as n-----+ oo. 

Now we shall state our main result. 

Theorem 2. If O<z<z0({3), then XL(t, s) converges to the Brownian Sheet in 
law with a=a(z), as L-----+ oo, in the space D 2

, where a(z) is the function given in 
Theorem 1. 

§ 3 Algebraic method of cluster expansion 

In this section we summarize the algebraic formalism of the cluster expansion 
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in power of the activity z. (See [1] for detail). 
Let JI, be the set of sequences <jJ 

where <jJ(xn) is a bounded complex valued Lebesgue measurable function on R 2n 
and the 0th component ¢(0) of <jJ is a complex number. We denote by X the sequ
ence Xn= (xi, x2, · · ·, xn) of finite number of particles in R 2

• We say (X1, X2) is 
a partition of X and write 

if X 1 is a subsequence of X and X2=X\X1. We define a product in JI, by, 

where the sum is taken over all partitions of X. 
With this product JI, is a commutative algebra with unit element 1 defined by 

{
1, if X=0 

l(X)= 
0, otherwise . 

We define the subspaces do and d1 of JI, by 

and 

do={~EJ/,: ~(0)=0}, 

d1={</JEJ/,: </J(0)=1} respectively. 

The power series expansion of the exponential yields a well-defined mapping Exp 
from do to d1 : 

Exp ~(X) = l(X) + f: ~*n(~) , 
n=l n. 

~EJ/,o. 

Any element <jJEJ/,1 can be decomposed into the sum of the unit element 1 
and </JoEdo in a unique way. We define the logarithm mapping Log from d1 to 
do by 

(1) 

(2) 

Log <jJ(X) = f; (- l)n+1 </J~n(X) ' 
n=l n 

We have the following relation between Exp and Log. 

Lemma 3.1 

Log Exp~=~, 

Exp Log¢=¢, 

~EJ/,o. 

Let x be a Lebsgue integrable function on R 2. For any <jJEJ/, we associate 
the formal power series 
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The following result plays an important role for the method of the cluster 
expansion. 

Lemma 3. 2 (1) If (X, ¢1)(z) and (X, ¢2)(z) are absolutely convergent, then 
(X, ¢1 * ¢2)(z) is also absolutely convergent and the following equality holds 

(2) If (X, Log ¢)(z) is absolutely convergent for ¢Edi, then (X, ¢)(z) is also abso
lutely convergent and the following relation holds 

(X, ¢)(z)=exp {(X, Log ¢)(z)}. 

We introduce an operator Dx : JI, -----+ JI, by 

Dx¢(Y1, Y2, · · · , Yn) = <f(x, Y1, · · · , Yn). 

For any X =(xi, x2, · · · , xm), we define the mapping D x : JI, -----+ JI, by 

Dx<jJ=Dx1Dx2 · · · Dxm<P · 

It is clear that Dx and Dx are linear. Furthermore, Dx satisfies the following 
relations. 

(1) 

(2) 

Lemma 3.3 

Dx Exp cp=Dx<p *Exp <p, for <pEdo. 

Now we introduce the function <fpEd1 called the Boltzman's factor, 

<fp(X)=exp {-(3U(X)}. 

In terms of this function the partition function Zv can be rewritten as 

Zv=(Xv, <fp)(z), 

where Xv(X) is given by 

Xv(X)=C 
if XE v for all xEX 

otherwise. 

We define the Ursell function cpp(X) by 

cpp(X) =Log ¢p(X) . 

An alternative description of cpp(x1, x2, · · · , xn) is given by 
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where the sum extends over all connected graphs r with vertices 1, · · · , n and 
the product takes over all bonds (i, j) of the graph 7· To obtain the estimate 
for the radius of convergence of the power series <Xv, <pfJ)(z) the following lemma 
plays an important role. 

Lemma 3.4 

r dx2 ... dxn\<p,a(O, X2, Xa, ... 'Xn)\ :::;;(n-1) ! C(/3){e2.an+1C(p)}n-l 
JR2Cn-1) 

This lemma implies that the power series <Xv, <pfJ)(z) converges for 

\z\ < {C(p)e2.an+1}-1, 

and that the partition function Zv can be rewritten as 

Zv=exp {<Xv, <p,a)(z)}. 

Put zo(/3)={C(/3)e2.an+1}-1. Applying Lemma 3.2(2), we get the convergence of 
the following thermodynamic function 

f,a(z)= lim \Vl 
1

-logZv, 
V-->R' 

for any \z\ <zo(/3). Using the Ursell function <pf!, we have the explicit form for 
f,a(z) as follows 

oo zn ~ f,a(z)= I; --1 dx2 · · · dxn<p,a(O, X2, · · · , Xn). 
11=1 n. RZCn-1) 

It follows from Lemma 3.4 that the radius of convergence !R of fiz) is equal 
or greater than zo(/3). 

Let Nv(~) be a number of particles of the configuration ~ in V. From Lemma 
3. 2 and 3 .4 it follows that 

if lz\ <zo(p). Using this relation we can express the expectation and the variance 
of Nv as follows 

(3.1) 

(3.2) 

Using the method which will be stated in the next section we can prove the 
convergence of the following thermodynamic functions 
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(3.3) lim I lVI Ev(Nv)=p(z), 
V->R 2 

(3.4) lim I vl I {Ev(Nv 2)-Ev(Nv)2}=zp'(z)' 
V->R 2 

uniformly on every compact set contained in {z; lzl <zo(p)}, where p(z)=zf~(z). 

This function is called the density function and has the following explicit form: 

(3. 5) oo zn ~ 
p(z) = L: -(--l) 1 ~fJ(O, X2, · · · , Xn)dx2 ... dxn . 

11=1 n- . RZ(n-1) 

We use this function in the next section for the proof of theorems. 

§ 4 Proof of Theorem 1 

Throughout this section, V will be a square with side L. Let us consider 
the characteristic function fh(Yi, · · · , Ym) of the random vector (XL(t1, s1), · · · , 
XL(tm, sm)) with respect to the probability measure Pv( ·) 

To prove Theorem 1 it is sufficient to find some function a=a(z) and prove, 

(4.1) 

where the right hand side is the corresponding characteristic function of the 
Brownian sheet. 

Applying the method of cluster expansion developed in Section 3 the chara
cteristic function fh(Yi, · · · , Ym) can be rewritten as follows if O<z<zo(/3): 

(4.2) 

In the same way as above we get the alternative description of Ev[NL(tk, sk)] 
as follows 

(4.3) 

Using the Taylar expansion and (4.3) we get 
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(4.4) fh(Y1, · · · , Ym) 

where IE(·)! :::;;1. 

Put 

and 

Setting a=(zp'(z)) 112, we shall prove that 

(4.5) as 

and 

(4.6) as 

To prove the convergence of I1 and I2 we prepare some technical lemmas. 
Let us consider the paths connecting all points x1, · · · , xnER 2

• We define a 
minimal path s(xi, · · · , xn) in a certain natural way and denote by Js(xi, · · · , xn)I 
its length. The following lemma plays an important role for the proof of the 
convergence. 

Lemma 4. 1 If 0 < z < zo(/3), then the following properties hold for all nonne
gative integers p : 

(1) 
oo Zn 
L:--

n=P (n-p) ! ~ dxnl9?iXn)I =o(L2), as L ~ oo, 
X1EV 
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( 2) fl~~ Ln dxn{NL(t, s)(Xn)}2+P<pp(xn)=O(L2), as L-----+ oo, 'eft, SE[0,1]. 

Proof. Dividing the sum into two parts we get 

oo Zn 

n~P-(n ___ p_)_! ~ dxnlsah;n)I 
X1EV 

oo Zn l 
;::;,n~p (n-p) ! J dxnlsa~(Xn)I 

X1EV 

ls(x1,··.,x11 ) I" L 

+ u~P (n~p) ! ~ dxnl<p~(Xn)I 
s<x1,···,x11 ) n av*0 

ls(X1,···,Xn) l<L 

Introduce the function o(k) 

When k-1;:;,!s(O, Y2, • · ·, Yn)l<k we have 

I dy1;::;,8kL. 
Js<Y1• Y1+Y2.···, Y1+Y11 Jnav*0 

Putting these estimates together we have 

(4. 7) 
oo Zn 

n~-(n ___ p_)_! i 
X1EV 

s<x1,. ... x 11inav*0 

oo L 

;::;,v I: o(k)+8L'L:iko(k). 
k=L k=l 

Since D~'=1 o(k) < oo we have 

1 L 
¥~ L ~1 ko(k)=O. 
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Hence the first assertion of this lemma has proved. 
Using the estimate for J9(xn)I we have, 

oo zn ~ 
~I; - 1- • n 2+P l9,a(Xn)ldXn 

n=O n. Vn 

00 

=UzC({3) r; nt+P{ze2/3R+1C(p)}n-1. 
n=t 

Since ze2 /JB+ 1CCB) < 1, we have the convergence of the above sum 

I; nt+P{ze2.aB+1cca)}n-1 < oo. 
n=l 

This completes the proof of (2). 
From the second assertion of this lemma the convergence (4. 6) is easily ob

tained. 
To prove the convergence (4.5) it suffices to prove the following lemma. 

Lemma 4.2 If O~z<zo(/3), then 

for O~ti, t2, Si, s2~1. 

Proof. Put V(ti, si)=(O, tiL]x(O, siL], (i=l,2). Using the indicator functions 
of V(ti, si), (i = 1, 2) we have 

(4.8) 

dx1 l m.a(X1 X2 • • • Xn)dx2 • ' • dxn 
Jvn-1 r ' ' ' 
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=l~(L)+ 1:(L)-l:(L)-l:(L). 

From Lemma 4 .1 (1) we have 

(4.9) lim L\I~(L)=O and 
L->oo 

lim L\ 1:(L)=O. 
L->oo 

Since <piXn) is shift invariant and is integrable with respect to x2, · · · , Xn we 
have 

(4.10) 

where 

oo Zn r 
p(z) = f 

1 
(n- l) ! JR2Cn-i) <p~(O, X2, Xa, · · · , Xn)dx2 · · · dxn . 

Introduce a measurable function g(y) on R 2 

oo zn ~ 
g(y)= I: ( 2) 1 <piO, Y, Xa, · · · , Xn)dxa · · · dxn. 

n=2 n- . R 2Cn- 2) 

Let us note that 

(4.11) r g(y)dy=zp'(z)-p(z). 
JR• 

Finally we shall discuss the convergence of I~(L)/£2 as follows 

(4.12) i2 l~(L) 
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· \ mo(O X2 - X1 Xa · · · Xn)dxa · · · dxn 
JRZ(n-2) TP ' ' ' ' 

~ dx1 ~R' dyXvct2 ,s2 )(Lx1 +y)g(y) 
[O,t1)X[O,S1) 

---+ ~ dx1 x[O,tz)X[O,Sz) (xi) IR' dy g(y) as L---+ 00 

[O,t1)X[O,S1) 

=(ti/'d2) · (Si/\S2 )(zp'(z)-p(z)). 

Putting (4.9), (4.10) and (4.12) together we complete the proof. 

In the remaining of this section we shall prove the positivity of the function 
a(z)=zp'(z) for all z with O<z<zo(m. We introduce the sequence {Qn} as follows 

In terms of Qn the probability of Nv=n is given as Qn/n ! . Also the expectation 
of Nv and Nv2 are expressed as follows, 

Ev(Nv2) = f; Qn+2 · + f; 
n=O n ! n=O 

Qn+1 
I . n. 

When the interaction </J satisfies (I) and either (II-1) or (II-2), then the follow
ing inequality is proved by Ginibre [17]. (See also Proposition 3.4.9 in [1]). 

Lemma 4.3 

Using the Schwarz inequality and Lemma 4.3 we have 

Ev(Nv)2=(f: Qn+i )
2 =(f: ~. Qn+i )

2 

n=O n ! n=O n ! Qn 

<I: Qn . f; Qn ( Qn+l )2 
- n=O n ! n=O n ! Qn 
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=f:· Qn+l 
n=O n ! 

s:f: Qn",1 ( Qn+2 +zc(me2f3B) 
n=O n. Qn-' I 

=Ev(Nv2)-(l-zC((3)e2f3B)Ev(Nv) 

Hence we have the following lemma under the conditions on (fJ mentioned 
above. 

Lemma 4.4 

Ev(Nv2)-Ev(Nv )2 :=:::: (l-zC(f3)e2f3B)Ev(Nv). 

From this lemma, (3. 3) and (3. 4), we have 

a(z);:::::(l-zC(f3)e2f3B)p(z)>O, if O<z<z0((3). 

§ 5 Proof of Theorem 2 

In this section we prove Theorem 2 by checking the tightness condition. 
A set A of [0, 1]2 is called a block if it is given in the form A= (s 1, s2] x (ti. 

t2]. In a similar way to the one-dimensional case, we define the increment w(A) 
of WE D 2 for a block A by 

w(A)=w(s2, t2)-w(s1, t2)-w(s2, ti)+w(si, ti). 

We say two blocks A and B are neighboring blocks if A and B are given in 
the following forms 

A=(s, t]X(a, b], B=(t, u]x(a, b] (s<t<u) 

or 

A=(s, t]x(a, b], B=(s, t]x(b, c] (a<b<c). 

In the previous section we proved that the finite dimensional distribution of 
XL(t, s) converges to the corresponding distribution of the Brownian sheet B(t, s) 
as L-+ co. To prove the convergence of the distributions {PxL( · )} of XL to the 
distribution of B(t, s), it suffices to prove the following lemma. (See Theorem 3 
in [16] for detail). 

Lemma 5.1 There exist r ;:::::O and o> 1, such that 

for all neighboring blocks B and C, where µ is the Lebesgue measure. 

Proof of Lemma 5. 1 Using the Chebyshev's inequality we have, 
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From the same argument developed in § 4 Ev(XL(B) 4
) can be rewritten as, 

Using the properties of cpixn) we get easily that, 

This completes the proof of the lemma. 

§ 6 Nonnegative Interaction 

In this section we restrict our argument to the system with a nonnegative 
pair interaction. When a pair interaction (JJ( ·) is nonnegative the following facts 
are known. (See [1] for detail). 
(1) The Ursell function <pp(xi. · · · , xm) satisfies the alternating property 

( -1r-1cp,a(xi. · · · , xm) :2:0. 

(2) The activity expansion of p(z) is an alternating series. 
(3) The radius of cop.vergence IR of the expansion p(z) satisfies 

e-1C(f')- 1 ~IR ~C(p)- 1 • 

(4) z(l+C(f')z)- 1 ~p(z)~z for all z with O<z<IR. 

Using the alternating property of the Ursell function we can apply the method 
of cluster expansion for all z with O<z<IR, and then we get the same formula 
as ( 4. 2) for the characteristic function 0 L(Y i. · · · , Ym). This implies that the asser
tion of Theorem 1 and 2 holds for all z with O<z<IR. 

Theorem 3 If a pair interaction (/J is nonnegative, then the following limit 
theorem holds with a(z)=p'(z)! for all z with O<z<IR 

XL(t, S)--* B(t, s) in D2 as L----* CXJ' 

where B(t, s) is a Brownian sheet and IR is the radius of convergence of p(z). 
From the property of (4) we see that if the density p satisfies 

(6.1) 
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then the corresponding activity z determined by p(z) = p satisfies 

(6.2) 

Hence, if the density p satisfies the condition (6 .1), then the limit theorem 
mentioned above holds. 

In particular, if the interaction rf' has only hard core interaction of diameter 
Yo and no further interaction, then C(p) is the area of disc with radius Yo. There
fore, the limit theorem holds for all p with 

(6.3) 

Here (:1rYD- 1 is the "close-packing" density of the system for particles having 
hard cores with radius Yo. 
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