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ABSTRACT 

Let Y=(Y1, ••• , Yp)' be a p-variate normal random vector with mean µ=(µ 1, ••• , µp)' 
and the identity covariance matrix I. Stein estimator of µ is known to dominate the 
maximum likelihood estimator Y for P?::.3. Estimators generalizing some of Tze and Wen's 
estimators [4J, which dominate Stein estimator, are obtained. Further, estimators domi­
nating some of Baranchik's estimators [2], which are better than the estimator Y and 
contain Stein estimator, are given. 

1. Introduction 

Let Y =(Y1, ... , Yp)' have a p-dimensional normal distribution with mean 
vector µ=(µi. ... , µp)' and the identity covariance matrix I. The estimation of 
µ=(µi. ... , µp)' by o(Y)=(o1(Y), ... , op(Y))' is evaluated by the risk 

R(o(Y), µ)=Eyllo(Y)-µJl2, 

p 

where llo(Y)-µJl2=L:CMY)-µi) 2 and Ey denotes the expectation with respect to 
i=l 

Y. 
James and Stein [3] showed that if p"?:.3, the estimator 

(1.1) o0(Y)=(l-(p-2)/S)Y, 

where S= llYJ12, dominates the maximum likelihood estimator Y. Baranchik [1] 
showed that the estimator 
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(1.2) a1(Y) =(1-r(S)/S)Y, 

dominates the estimator Y if 0<r(s)<2(p-2) and r(s) is nondecreasing. Efron 
and Morris [2] strengthened Baranchik's results: Baranchik's result holds under 
the condition that scP-2)r:(s)/(2(p-2)-r:(s)) is nondecreasing. Tze and Wen [4] 
showed that the estimator 

(1. 3) ( 
p-2 d) a2cn= 1--s-+sr Y, 

dominates Stein estimator a0(Y) if l<r<(P+2)/4 and O<d~2r+ 1(r-l)I'(p/2-r)/ 

I'(p/2-(2r-1)). 
In this paper estimators generalizing Tze and Wen's estimator (1. 3) are 

obtained. Further estimators, dominating a special form 

(1. 4) a1*(Y)= ( 1 - a!s) Y, a>O and 0<b<2(p-2), 

of Baranchik's estimator (1. 2), are given. These estimators are obtained under 
stronger conditions on p than p ?_ 3. 

In Section 2, the estimator 

(1. 5) 

where g(s) is a real-valued function to be specified later, is discussed. It is shown 
that if r is an integer such that r>l andp>2(2r-1) the estimator a3(Y) dominates 
the estimator 

(1.6) o0*(Y)= ( 1 - ~) Y and 0<b<2(P-2). 

Some examples of this property are given. 
In Section 3, the estimators 

(1. 7) a4(Y)=( 1 __ b_+_£_)y 
a+S S2 
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and 

(1.8) 

are discussed. The constants a, c and d 1 are suitably chosen and h(s) is a real­
valued function to be specified later. It is shown that o4(Y) or o5(Y) dominates 
01*(Y) if P>6. Further the estimator 01*(Y) with b=P-2 dominates Stein esti­
mator o0

( Y). Some examples of o5
( Y) of the property are given. 

In Section 4, special forms ( 4 .1), ( 4. 2) and ( 4. 3) of iP( Y), o4
( Y) and o5

( Y) 
respectively, are discussed. The estimator a4

( Y) dominates o3
( Y) if p > 8, and 

a5(Y) dominates o4(Y) if P>6. 
Before stating the results, we need the following two lemmas which can be 

verified by integration by parts. 

Lemma 1.1. Let Vi be normally distributed with mean µi and variance 1. 
Let f: R 1 ------+ R 1 be an absolutely continuous function and let /' denote the 
derivative of f. Then 

Lemma 1. 2. (Efron and Morris [2]) Let W be a chi-squared random variable 
with n degrees of freedom and let f: R 1 ------+ R 1 be an absolutely continuous 
function. 

Ew{ W f ( W)} = nEw{f ( W)} + 2Ew{ W f' ( W)}, 

provided that all expectations exist and are finite. 

2. Generalization of Tze and Wen's estimator 

First Tze and Wen's estimator (1. 3), which dominates Stein estimator a0
( Y) 

of (1.1), is generalized. The following theorem and corollary give estimators which 
dominate o0*(Y) of (1. 6). Throughout the paper, let W denote a chi-squared 
random variable with p+2k degrees of freedom. 

Theorem 2.1. Suppose that r is an integer such that r> 1 and that P> 2(2r 
-1)~6 in o3(Y). Then the risk of a3(Y) is uniformly smaller than that of o0*(Y) 
if g(s) satisfies either condition (i) or (ii): 
( i) g(s)s- 11

" is nonincreasing for a>O, and g(s) is nondecreasing and satisfies 
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0<g(s)~2r(b-(P-2r+2/a))I'(P/2-r)/I'(P/2-(2r-l)) for a>O and b>P-2r+2/a. 
(ii) g(s) is nonincreasing and satisfies 0>g(s)>2r(b-(P-2r))I'(P/2-r)/I'(p/2-
(2r-l)) for b<P-2r. 

Proof. 

L1(µ)=:R(o0*(Y), µ)-R(03(Y), µ) 

=2E ~ {- (Y·- ·) g(S)Vi + bg(S)n }-E { g
2
(S)} 

YiL;!l i µi 5r 5r+1 y 52r-1 • 

Lemma 1.1 is applied to the first term of the above expression to obtain 

L1( )=E {- 4g'(S) +2(b-(p-2r)) g(S) - g2(S)} 
µ y sr-1 sr 52r-1 

=e-11µ11212 ~ (/lµ!l2/2)k E {- 4g'(W) +2(b-(p-2r)) g(W) - g2(W) } 
kL::o k ! w wr-1 wr w2r-1 . 

Therefore it suffices to show that 

(2.1) 

To evaluate ], we consider the following two cases: b>p-2r+2/a and b<P-2r. 
( i) b>P-2r+2/a and a>O. Notice that g'(w)~g(w)/aw by the assumption 

that g(w)w- 11
a is nonincreasing. Hence 

(2.2) 

Lemma 1. 2 is applied to the first term in (2. 2) to obtain 

{ 
g'(W) 

]~Ew 4(b-(p-2r+2/a))---wr-

g(W) g2(W) } 
+2(b-(p-2r+2/a))(p+2k-2(r+l)) wr+1 - w~ .. -1 

(2.3) { 
g(W) g2(W) } 

~Ew 2(b-(p-2r+2/a))(p-2(r+l)) wr+ 1 - w2r-1 · 
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The last inequality of (2.3) is verified by the conditions that b>P-2r+2/a and 
g'(w)>O. Furthermore Lemma 1.2 is applied to the first term in (2.3) r-2(>0) 
times in a similar way, then 

which is nonnegative if 0<g(w)~2r(b-(p-2r+2/a))I'(p/2-r)/I'(P/2-(2r-l)). 
(ii) b<P-2r. Since g(w) is nonincreasing, it follows that 

(2.4) { 
g(W) g2(W) } 

]?:.Ew 2(b-(p-2r))·wr- W 2r_ 1 . 

Lemma 1. 2 is applied to the first term in (2. 4) in a similar way as the proof of 
(i) to obtain 

{ 
r I'(p/2-r) g(W) g2(W)} 

f?:.Ew 2 (b-(p-2r)) I'(P/2-(2r-l)) w2r-1 -w2r-1 • 

which is nonnegative if 0>g(w)?:.2r(b-(p-2r))I'(p/2-r)/I'(p/2-(2r-l)). 

Setting g(s) equal to a constant d and b=P-2, we obtain Tze and Wen's esti­
mator (1.3). The value b=P-2 is the midpoint of possible values of b in o0*(Y), 
whose risk is known to be minimum at this value. Actually r in Tze and Wen's 
estimator is a real number, but in o3(Y) of Theorem 2.1 an integer. When g(s)=d 
and r is real, we obtain the same results as Tze and Wen. 

Corollary 2.1. Let g(s) in o3(Y) be equal to a constant d and let b equal to 
p-2. Then the risk of o3(Y) is uniformly smaller than that of o0(Y) if l<r< 
(p+2)/4 and 0<d~2r+i(r-l)I'(p/2-r)/I'(p/2-(2r-l)). 

Proof. From (2 .1) in the proof of Theorem 2 .1, it suffices to show that 
Ew{2(r-l)W-r -aw-c2r+ 1)}?:.0. It can be easily seen that the above inequality holds 
if the conditions on d and r are satisfied. 

From Theorem 2.1, some examples of this property are given. 

Example 2.1. For b=p-2, setting g(s)=c2s11a(c1 +s)-11«, we obtain the esti­
mator 

a.A -( P-2 c2s11a-2 ) o (Y)- 1 --s~+ (ci +s)ua Y. 

If a>l, c1>0 and O<c2~4(l-l/a)(p-6), then g(s) satisfies condition (i) of Theorem 
2.1. 
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Example 2. 2. For b=P-2, setting g(s)=c2sua(c 1 +s11a)- 1
, we get the estimator 

( 
p-2 C 5ua-z ) 

<)3B(Y)= 1--S-+c:+s11a Y. 

If a>l, c1>0 and O<c2:::;;4(1-l/a)(p-6), then g(s) satisfies condition (i) of Theorem 
2.1. 

3. Estimators dominating <) 1*( Y) 

It is shown that the estimator a4
( Y) of (1. 7) or a5

( Y) of (1. 8) dominates 01*( Y) 
of (1. 4), a special form of Baranchik's estimator. The constant a of a'*( Y) for 
b=P-2 is determined so that iF*(Y) dominates Stein estimator o0(Y). 

Theorem 3.1. Assume that P>6. Then the risk of r'J 4(Y) is uniformly smaller 
than that of o'*(Y) if the constants a and c satisfy the following conditions. 
( i) For b>P-4, 

and 

0 :::;;a <(b-(p-4))(p-6)/(p-4), 

p-6 
0<c:::;;2{(b-(P-4))(p-6)-a(p-4)} a+p. 

(ii) For b<P-4, 

p-6 
a~O and 0>c~2{(b-(p-4))(p-6)-a(p-4)} a+p. 

Proof. Applying Lemma 1.1 to a term of R(a'*(Y), µ)-R(04(Y), µ) in a similar 
way as the proof of Theorem 2 .1, we see the theorem can be proved if 

-

(3 .1) 
K- E { 2a(p-4) 2(b-(p-4)) 

=C w --(t:t+ W)W 2 + (a+ W)W ;_j 

To evaluate K, we consider the following two cases: b>p-4 and b<p-4. 
( i) b>p-4. Lemma 1.2 is applied to the second term in (3.1) to obtain 

(3. 2) 
2a(p-4) 2(b-(p-4))(p+2k-4) 

(a+ W)W 2 + (a+ W)W 2 
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4(b-(P-4)) __ c __ } 
(a+ W) 2 W W 3 • 

The conditions that b> p-4 and 1/w> l/(a+w) show that 

(3.3) K~cEw{ 2{-a(p-4)+(b-(p-4))(p-6)} (a+~) W 2 ~a } • 

Since l/(a+w) and l/w2 are decreasing, it follows that 

(3.4) 

1 { 1 } p + 2k - 6 { 1 } 
~ a+P+2kEw W 2 = a+P+2kEw W 3 • 

The second inequality is due to Jensen's inequality, and the last equality to Lemma 
1. 2. From the condition on the constant a, 

(3 .5) { 
P+2k-6 1 c } K>cEw 2{-a(p-4)+(b-(p-4))(p-6))} - --

- a+P+2k W 3 W 3 • 

The first term in (3. 5) is increasing in k. Hence K is nonnegative if 
0 <c ~2{(b-(P-4))(p-6)-a(p-4)}(p-6)/(a+ p). 

(ii) b <P-4. It can be proved in a similar way as the proof of (i) and the 
proof is omitted. 

Theorem 3.2. Suppose that P>6. Then the risk of o5(Y) is uniformly smaller 
than that of o1*(Y) if h(s), a and d1 satisfy either condition (i) or (ii): 
( i) h(s)(d1+s)-11

a is nonincreasing for a>O and d1>0, and h(s) is nondecreasing 
and satisfies 0<h(s)~2{(b-(P-4+2/a))(p-6)-d1P} for a>O, b>P-4+2/a and 
a~d1 <(b-(p-4+2/a))(p-6)/P. 
(ii) h(s) is nonincreasing and satisfies 0> h(s) ~2{(b-(p-4))(p-6)-d1P} for 
a~d1~0 and b<P-4. 

Proof. 
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Applying Lemma 1.1 to the first term of the above expression in a similar way 
as Theorem 2 .1, we see that this theorem can be proved if we show that 

2ph(W)+4h'(W)W 8h(W)W 2bh(W)W 
(d1 + W)2 + (d1 + W)3 + (a+ W)(d1 + W)2 

To evaluate L, we consider the following two cases: b>P-4+2/a and b<P-4. 
( i) b>P-4+2/a and a>O. The condition that a::;,d1 gives 

L E { 2ph(W)+4h'(W)W 2(b+4)h(W)W 
:2: w - (d1 + W) 2 + (d1 + W)3 

h
2
(W)W } 

(d1 + W) 4 
• 

Notice that h'(w) ::;,h(w)/a(d1 +w) by the assumption that h(w)(d1 +w)-11
a is nonin­

creasing. Therefore 

(3.6) 
2d1Ph(W) 2(b-(P-4+2/a))h(W)W 
(d1 + W)3 + (d1 + W)3 

h
2
(W)W_} 

(d1 + W) 4 
• 

Lemma 1. 2 is applied to the second term in (3. 6) to obtain 

(3.7) E { h(W)W ·}=E {_2h'(W)W+(P+2k-6)h(v£"l _6d1h(W)} 
w (d1 + W)3 w (d1 + W)3 + (d1 + W)4 . 

Hence from the equality (3.7) and the conditions that h'(w):2:0 and h(w)>O, 

{ 
2d1Ph(W) h(W) h2(W)W} 

L:2:Ew (d1 + W)3 -+2(b-(p-4+2/a))(p-6) (d1 +Wt (d1 + W)4 

:2:Ew{ (d~~~)3 {-2d1P+2(b-(p-4+2/a))(p-6)-h(W)}}, 

which is nonnegative if O::;,d1 <(b-(p-4+2/a))(p-6)/P and 
0<h(w)::;,2{(b-(p-4+2/a))(p-6)-d1P}. 

(ii) b> p-4. Since h(w) is nonincreasing and a:2:di. it follows that 

(3.8) 
L>_Ew{ 2d1Ph(W) + 2(b-(p-4))h(W)W 

-(d1 + W) 3 (d1 + W) 3 

h2(W)W } 
(d1+ W)4 

• 
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Applying Lemma 1. 2 to the second term in (3. 8) in a similar way as the proof 
of (i), we get 

{ 
h(W) } L2Ew (di+ W)a {-2d1P+2(b-(p-4))(p-6)-h(W)} , 

which is nonnegative if O>h(w)22{(b-(p-4))(p-6)-d1P}. 

Theorem 3.3. Let P>6 and let b in <Jl*(Y) be equal to P-2. The risk of 
01*(Y) is uniformly smaller than that of o0(Y) if O<a~4(p-6)/(p-2). 

Proof. Applying Lemma 1.1 to two terms of R(o0(Y), µ)-R(01*(Y), µ) in a 
similar way of Theorem 2 .1 or 3. 2, we see that it suffices to show that 

(3.9) _ { -a(p-2) 4 } 
M=Ew (a+ W)zW +(a+ W)z 20. 

Lemma 1. 2 is applied to the second term in (3. 9) to obtain 

(3 .10) M=E {-a(p-2)+4(p+2k-2) 
w (a+ W)zW 

16 } 
(a+ W)~ 

>E { (-a(p-2)+4(p-6))W +a(P-2)(-a+4) l 
- w (a+W) 3 W J' 

which is nonnegative if 0<a~4(p-6)/(p-2). 

Theorem 3. 2 is used to obtain some other estimators. 

Example 3.1. Setting h(s) equal to a constant dz, we get the estimator 

If the constants a, b, d1 and dz satisfy the following conditions, then the risk of 
o5

A( Y) is uniformly smaller than that of 01*( Y). 
( i) For b>p-4, 

a~d1 <(b-(p-4))(P-6)/p 

and 
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O <d2 ~2{(b-(p-4))(p-6)-d1P}. 

(ii) For b<P-4, 

Example 3.2. For b=P-2, setting h(s)=d2(d1+s)11"(ds+s)-11", we obtain the 
estimator 

(j5B(Y)= ( 1 - P-2 + d2(d1 +S)l/«-
2

) y 
a +s (ds +S)11

a • 

If a>l, di~ds, a~d1<2(1-l/a)(p-6)/P and O<d2 ~2{2(1-l/a)(p-6)-d1PL then 
h(s) satisfies condition (i) of Theorem 3. 2. 

4. Comparison of b3
( Y), tl4

( Y) and b5
( Y) 

The following three estimators 

(4.1) 

(4.2) (j4A(Y)= 1 ---+- Y ( 
P-2 c) 
a+S S2 

and 

(4.3) (j5C(Y)-( p-2 d2 ) y 
- 1 -:--- a+S + (d1+S)2 ' 

are discussed. The estimator o30(Y) is defined in Corollary 2.1, a4A(Y) and o50(Y) 
are defined in Theorem 3 .1 and Example 3 .1, respectively. Conditions on the 
constants a, c and d are given such that R(a 4A(Y), µ)~R(o30(Y), µ). Further the 
constants a, c, di and d2 are given such that R(a50(Y), µ) ~R(a4A(Y), µ). 

Theorem4.1. Suppose that P>8. Then the risk of o4A(Y) is uniformly smaller 
than that of o30(Y) if the constants a, c and d satisfy the following conditions. 
( i) For c>d, 
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O:s;;a:s;;4(p-6)/(P-2) 

and 

{4(c-d)(p-6)-2a(c(P-4) +2d) +d2 -c2}(p-8) +a(d2 -c2
) 20. 

(ii) For c :s;;d, 

d/(p-2)<a<2 and A(p-8)-4a2d20, 

where A= -a(a(p-2)2+8d)+4(a(p-2)-d)(p-6)+2c((2-a)(P-4)-4)+d2 -c2
• 

Proof. Applying Lemma 1.1 to two terms of LI(µ) =R(o3c( Y), µ)- R(f>4
A( Y), µ) 

in a similar way as the proof of Theorem 2.1, we have 

LI( )=E {-i/J-2)2 -~ !!__ 2ap(p-2)+(p-2)25 
µ y 5 52 + 53 + (a+ 5)2 

2c(p-2) c2 
} 

+ (a+5)5 53 • 

Therefore it suffices to show that 

2c(P-4) 
52 

N=E { -a2(p-2)2+4a(p-2)W 
- TV (a+ W)2W 

2(c(p-4)+2d) 2c(P-2) d2 -c2
} 

0 W 2 +(a+ W)W +--wa 2 · 

To evaluate N, we consider the following two cases: c>d and c:s;;d. 
( i) c>d. 

N=E {- -a2(p-2)2+4a(p-2)W + -2a(c(p-4)+2d)+4(c-d)W + d2 -c2
} 

TV (a+ W)2W (a+ W)W 2 W 3 

say. The proof of Theorem 3.3 shows that 

(4 .4) N ( _
2

)E { (-a(p-2)+4(p-6))W +a(p-2)(-a+4)} 
12a P TV (a+ W)aW · 
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From (3. 2) in the proof of Theorem 3 .1 and the condition that c > d, 

(4.5) N +N >E { 4(c-d)(p-6)-2a(c(p-4)+2d)+d2 -c2 a(d2 -c2
) } 

2 3
- w (a+ W)W 2 +(a+ W)W 3 • 

Furthermore Lemma 1. 2 is applied to the first term of ( 4. 5) to obtain 

(4.6) N +N E { {4(c-d)(p-6)-2a(c(p-4)+2d)+d2 -c2}(p-8)+a(d2 -c2
)} 

2 s2 w (a+ W)Ws · 

Hence from the inequalities (4.4rand (4.6), N is nonnegative if the constants a, 
c and d satisfy condition (i). 

(ii) cS,,d. 

N=E { -a2(p-2)2 +4a(p-2)W 
w (a+ W) 2W 

4d 
w2 

2c(p-4) 2c(p-2) d2 -c2
} 

W 2 +(a+ W)W +-----wa 

-E { -4a2d-a(a(p-2) 2 +8d)W+4(a(p-2)-d)W 2 -2ac(p-4)+4cW 
- w (a+ W)2W 2 + (a+ W)W 2 

a2-c2 } 

+-----wa 

=N'1+N'2+N's, 

say. To evaluate N in a similar way as the proof of (i), we decompose N as the 
above last equality. Applying Lemma 1.2 to the third term of N'1 and the second 
term of N 1

2 respectively, and using the condition that d/(P-2)<a<2, we have 

(4. 7) N'i?.Ew{ 4a2d . -a(a(p-2)2+8d)+4(a(p-2)-d)(p-6)} 
(a+ W)2 W 2 + (a+ W) 2W 

and 

(4.8) N' E { 2c((2-a)(p-4)-4)} 
22 w (a+ W) 2W . 

The inequalities (4. 7) and (4.8) give 
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(4. 9) 

where A is defined in condition (ii). Furthermore Lemma 1. 2 is applied to the 
second term of ( 4. 9) to obtain 

N E {· -4a
2
d+A(p-8)} 

~ w (a+ W)2w2 , 

which is nonnegative if A(p-8)-4a2d~O. 

Theorem 4. 2. Let p > 6 and let a be equal to d1. Then the risk of 050
( Y) is 

uniformly smaller than that of o4A(Y) if c<d2 and 4(d2-c)(p-6)+2a(c(p-6)­
d2(P+2))+c2-d~~O. 

Proof. Applying Lemma 1.1 to a term of L1(µ)=R(a4A(Y), µ)-R(o50(Y), µ)in 
a similar way as the proof of Theorem 3. 2, we have 

L1( ) =E { 2c(p-4) 2c(P-2) c2 2d2P 8d2S 
(a+S)S +53- (d1 +S)2 + (d1 +S)3 µ w 52 

2d2(P-2)S 
+ (a+S)(d1 +S)2 

Therefore from the comdition that a=d1, it suffices to show that 

4ac 2ad2(P+2)+d~ ad~ } 
(a+ W) 3 +(a+ W)4 

• 

From (3 .10) in the proof of Theorem 3. 3 and the condition that c > d2, 

p E { 2ac(P-4) c2 4((d2-c)(P-2)-ac) 
~ w (a+ W)W 2 + W 3 + (a+ W) 2W 

2ad1(P+2)+l6(d2-c)+d~} 
(a+ W) 3 

~Ew[ (a+l W)a {4(d2-c)(p-6)+2a(c(p-6)-d2(P+2))+c2 -dn J, 

which is nonnegative if the constants a, c and d2 satisfy the conditions. 
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