EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Further generalization of Stein estimators
Sub Title
Author I3, B (Akai, Toyoaki)
Publisher BRESEBAFEIZE
Publication year |1987
Jtitle Keio Science and Technology Reports Vol.40, No.4 (1987. 12) ,p.41- 54
JaLC DOI
Abstract Let Y=(Y1,...,Yp)' be a p-variate normal random vector with mean p=(p1,...,up)' and the identity
covariance matrix I. Stein estimator of p is known to dominate the maximum likelihood estimator Y
for P=3. Estimators generalizing some of Tze and Wen's estimators, which dominate Stein
estimator, are obtained. Further, estimators dominating some of Baranchik's estimators, which are
better than the estimator Y and contain Stein estimator, are given.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00400004-

0041

BREZBAZZMERVRD MU (KOARA)ICIEEE M TWA IV TUY OEFIER. ThThOEEE, FLELEHRLRTECREL. TOERBEHEEECEL ST
HREENTVET, 5IALCH L TR, EFREEZETFLTIRALEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

KEIO SCIENCE AND TECHNOLOGY REPORTS
VOL. 40, NO. 4, pp. 41-54, 1988, ISSN: 02864215

FURTHER GENERALIZATION OF
STEIN ESTIMATORS

by
Toyoaki AKAI

Department of Mathematics
Faculty of Science and Technology, Keio University
Hiyoshi, Yokohama 223, Japan

(Received 21 August 1987)

ABSTRACT

Let Y=(Y,,..., Y})' be a p-variate normal random vector with mean p=(p, ..., pp)
and the identity covariance matrix /. Stein estimator of g is known to dominate the
maximum likelihood estimator Y for p>3. Estimators generalizing some of Tze and Wen’s
estimators [4], which dominate Stein estimator, are obtained. Further, estimators domi-
nating some of Baranchik’s estimators [2], which are better than the estimator Y and
contain Stein estimator, are given.

1. Introduction

Let Y=(Y,,...,Y,) have a p-dimensional normal distribution with mean
vector p=(p, ..., pp)’ and the identity covariance matrix I. The estimation of
p=(ps, .., pp) by d(Y)=0(Y), ..., 6,(Y)) is evaluated by the risk

R@(Y), p)=Evx|lo(Y)—pll*,

where ||6(Y)— )uuzzﬁ;(ai(Y)—,u)z and Ey denotes the expectation with respect to

Y.
James and Stein [3] showed that if p>3, the estimator

1.1 NY)=(1-(p-2)/9)Y,

where S=||Y]|?, dominates the maximum likelihood estimator Y. Baranchik [1]
showed that the estimator
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1.2) (Y)=(1-2(S)/9Y,

dominates the estimator Y if 0<c(s)<2(p—2) and (s) is nondecreasing. Efron
and Morris [2] strengthened Baranchik’s results: Baranchik’s result holds under
the condition that s®-2¢(s)/(2(p—2)—z(s)) is nondecreasing. Tze and Wen [4]
showed that the estimator

(1.3) 52(Y)=<1—p—_2~+ d>Y,

dominates Stein estimator §%(Y) if 1<r<(p+2)/4 and 0<d<2"* (r—1)I'(p/2—7)/
I'(p/2—(@2r-1)).

In this paper estimators generalizing Tze and Wen’s estimator (1.3) are
obtained. Further estimators, dominating a special form

1.4 5‘*(Y):< —a—f_—s—>Y, 2>0 and  0<b<2p—2),

of Baranchik’s estimator (1.2), are given. These estimators are obtained under
stronger conditions on p than p>3.
In Section 2, the estimator

(1.5) 53(Y)=(1 _%_*_»Q‘(S?) )Y,

where ¢(s) is a real-valued function to be specified later, is discussed. It is shown

that if 7 is an integer such that »>1 and p>2(27—1) the estimator *(Y") dominates
the estimator

b

(1.6) 50*(Y)=<1 —5

)Y and  0<b<2(p—2).

Some examples of this property are given.
In Section 3, the estimators

1.7 5‘(Y)=(1 —;fr—SJré)Y
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and

b (S) ) Y,

(1.8) 55(Y)=<1_a+5+(d1+5‘)2

are discussed. The constants «, ¢ and d, are suitably chosen and /4(s) is a real-
valued function to be specified later. It is shown that ¢*(Y) or ¢°(Y) dominates
oY) if p>6. Further the estimator §'*(Y) with b=p—2 dominates Stein esti-
mator ¢°(Y). Some examples of °(Y) of the property are given.

In Section 4, special forms (4.1), (4.2) and (4.3) of é%Y), o%Y) and &(Y)
respectively, are discussed. The estimator 6*(Y) dominates 6*(Y) if p>8, and
0°(Y') dominates ¢*(Y) if p>6.

Before stating the results, we need the following two lemmas which can be
verified by integration by parts.

Lemma 1.1. Let ¥; be normally distributed with mean p; and variance 1.
Let f: R'— R! be an absolutely continuous function and let f’ denote the
derivative of f. Then

Ey A f(Y)(Yi—p)}=Ev {f(Yi)}.

Lemma 1.2. (Efron and Morris [2]) Let W be a chi-squared random variable
with # degrees of freedom and let f: R!'—> R!' be an absolutely continuous
function.

EAWIW=nEw{f(W)}+2Ew{Wf' (W)},

provided that all expectations exist and are finite.

2. Generalization of Tze and Wen’s estimator

First Tze and Wen’s estimator (1.3), which dominates Stein estimator §°(Y)
of (1.1), is generalized. The following theorem and corollary give estimators which
dominate §°*(Y) of (1.6). Throughout the paper, let W denote a chi-squared
random variable with p+2k degrees of freedom.

Theorem 2.1. Suppose that # is an integer such that »>1 and that p>2(2r
—1)>6in 0%(Y). Then the risk of ¢*(Y) is uniformly smaller than that of §**(Y")
if g(s) satisfies either condition (i) or (ii):

(i) g(s)s7* is nonincreasing for a>0, and ¢(s) is nondecreasing and satisfies
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0<g(s)<27(b—(p—=2r+2/a))(p/2—7)/T'(p/2—(2r—1)) for a>0 and b>p—2r+2/a.
(ii) g¢(s) is nonincreasing and satisfies 0>g(s)>2"(b—(p—2NI'(p/2—7)/[(p/2—
(2r—1)) for b<p—2r.

Proof.
A()=R@°*(Y), p)—RE(Y), w)

2 gS)Ys | bg(S)Y3 g9%(S)
:ZEYiZ:Sl[_(Yl_ﬂi) S + Sr+t ! —Ey St |-
Lemma 1.1 is applied to the first term of the above expression to obtain

49'(S)
51

A@:EY[— +2(0—(p—2r

g(S) g*(S) }
S27‘—-1

+2(b—(p—27))

=gl Z ([lee®/2)% EW( 4y’ (W)

g(W) gz(W)‘
i k! wrt

WZT—I

Therefore it suffices to show that

4g'(W)
W

+2(b—(p—27))

@.1) jEEW{— "(W) ‘;}f@ }zo.

To evaluate J, we consider the following two cases: b>p—2r+2/a and b<p—2r.

(i) b>p—2r+2/a and «>0. Notice that ¢'(w)<gw)/aw by the assumption
that g(w)w="* is nonincreasing. Hence

g(W) g*(W)
Wwer-1

(2.2) ]>EW{2(b (p—27+2/a))

Lemma 1.2 is applied to the first term in (2.2) to obtain

’(W)

]>EW{4(b (p— 21'+2/a))

2~ (p—2r 2/t 2h =27+ D) S~ ST

WT+1 Wf?"—-l
2.3) > Ew | 2b—(p—2r+2/a))(p—2r + 1)L r s V%,WL‘;V(W: )}
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Further generalization of Stein estimators

The last inequality of (2.3) is verified by the conditions that 5>p—27+2/a and
¢’(w)>0. Furthermore Lemma 1.2 is applied to the first term in (2.3) r—2(>0)
times in a similar way, then

T2 |20~ (0=2r+2/e) LD SOD) o)

r(p/2—@2r—1) W1 W

which is nonnegative if 0<g(w)<2"(b—(p—2r+2/a))[(p/2—r)/T(p/2—(2r—1)).
(ii) b<p—2r. Since g(w) is nonincreasing, it follows that

W W

Lemma 1.2 is applied to the first term in (2.4) in a similar way as the proof of
(i) to obtain

fZEW{ZT(b-—(p_Z,,)\ I'(p/2—1) (W) gz(W)]’

‘T(p/2—Q2r—1) W¥-1 W

which is nonnegative if 0>g(w)>2"(b—(p—2r)I'(p/2—7)/T'(p/2—2r—1)).

Setting ¢(s) equal to a constant 4 and b=p—2, we obtain Tze and Wen’s esti-
mator (1.3). The value b=p—2 is the midpoint of possible values of b in **(Y),
whose risk is known to be minimum at this value. Actually 7 in Tze and Wen’s
estimator is a real number, but in 6°(Y) of Theorem 2.1 an integer. When g¢(s)=d
and 7 is real, we obtain the same results as Tze and Wen.

Corollary 2.1. Let g(s) in ¢*(Y) be equal to a constant d and let b equal to
?»—2. Then the risk of ¢*(Y) is uniformly smaller than that of &(Y) if 1<r<
(p+2)/4 and 0<d L2 (r—=1)[(p/2—1)/T'(p/2—(2r—1)).

Proof. From (2.1) in the proof of Theorem 2.1, it suffices to show that
Ew{2(r—1)W-"—dW-@"+1}>0, It can be easily seen that the above inequality holds
if the conditions on d and r are satisfied.

From Theorem 2.1, some examples of this property are given.

Example 2.1. For b=p—2, setting g(s)=c,5"*(c,+s)""% we obtain the esti-
mator

+

) Gra-2
0=(1-255+ g )Y

If a>1, ¢,>0 and 0<c,<4(1—1/a)(p—6), then g(s) satisfies condition (i) of Theorem
2.1,
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Example 2.2. For b=p—2, setting ¢(s)=c.s"“(c,+s"*)"!, we get the estimator

N 17-—2 CZSI/“—2>
3B — £ 2.4
oY) <1 S e

If a>1, ¢,>0 and 0<c,<4(1—1/a)(p—6), then g¢(s) satisfies condition (i) of Theorem
2.1.

3. Estimators dominating 8'*(Y)

It is shown that the estimator 64(Y) of (1.7) or §°(Y) of (1.8) dominates 6'*(Y")
of (1.4), a special form of Baranchik’s estimator. The constant @ of §'*(Y") for
b=p—2 is determined so that 9'*(Y) dominates Stein estimator §°(Y).

Theorem 3.1. Assume that p>6. Then the risk of §*(Y’) is uniformly smaller
than that of ¢'*(Y") if the constants @ and ¢ satisfy the following conditions.
(i) For b>p—4,

0<a<@—(p—D)p—-6)/(p—9D),
and

-6

0<e<2{(b—(p—D)(p—6)—a(p—4)} atp

(ii) For b<p—4,

a>0 and 0>022{(5—@—4))(15*6)—a(P*‘i)}z—;g-

Proof. Applying Lemma 1.1 to a term of R(6**(Y), p)—R(*(Y), 1) in a similar
way as the proof of Theorem 2.1, we see the theorem can be proved if

| 2a(p—4) | 20-(p—4) ¢
6.1 K=k ~owmwe ™ armw ., we | =0

To evaluate K, we consider the following two cases: b»>p—4 and b<p—4.
(i) b>p—4. Lemma 1.2 is applied to the second term in (3.1) to obtain

2a(p—4) | 2Ab—(p—)Np+2k—4)

3.2) K=cEv| = Grwyw® @EWW*
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_Ab-(p—4) ¢
(e+WyRw W@

The conditions that b6>p—4 and 1/w>1/(a+w) show that

6.3)  K2cBw{2-alp—0+O—(0-)-6) o7 |

(a+WYW? W? |

Since 1/(e+w) and 1/w?® are decreasing, it follows that

3.4

e e = a7 |2 e

1

1
= a+p+2k

W2

5

_pH2%—6 (L]
Ta+p+ok VW

The second inequality is due to Jensen’s inequality, and the last equality to Lemma
1.2. From the condition on the constant «,

p+2k—6 1 ¢

3.5) KZCEW{Z{*ll(P‘4)+(b—(P—4))(17—6))}m Vaak

The first term in (3.5) is increasing in 42 Hence K is nonnegative if
0<c<2{0—(p—DNDp—6)—al(p—H}(p—6)/(a+p).

(ii) b<p—4. It can be proved in a similar way as the proof of (i) and the
proof is omitted.

Theorem 3.2. Suppose that p>6. Then the risk of 6°(Y") is uniformly smaller
than that of ¢'%(Y") if A(s), @ and d, satisfy either condition (i) or (ii):
(1) A(s)(di+s)~"" is nonincreasing for «>0 and d,>0, and A(s) is nondecreasing
and satisfies 0<A(s)<2{(b—(p—4+2/a))(p—6)—d,p} for a>0, b>p—4+2/a and
a<di<(b—(p—4+2/a))(p—6)/p.
(ii) A(s) is nonincreasing and satisfies 0>A(s)>2{(b—(p—4))p—6)—dp} for
a>d;>0 and b<p—4.

Proof.
Ap=REXY), )—RGXY), 1)

—2By 3| (Vi

L AS)Y b(S)Y} ;—E { n(S)S ]
K +Sy " (@+S)d:+Sy¢ @+
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Applying Lemma 1.1 to the first term of the above expression in a similar way
as Theorem 2.1, we see that this theorem can be proved if we show that

L=F _ 2pR(W )4 (W)W 8r(W )W 2oRWHYW  R(WO)W -0
- (di+ W) (di+Wy  (a+W)di+W)P (di+W)y |~

To evaluate L, we consider the following two cases: b>p—4+2/a and b<p—A4.
(1) b>p—4+2/a and «>0. The condition that a<d, gives

Lo | _ 2ROV H AR WOW | 26+ DWW W)W
=W (d+ W) (dy+ W) (d+ W)

Notice that #'(w)<h(w)/ald,+w) by the assumption that A(w)d;+w)=*'* is nonin-
creasing. Therefore

24, ph(W)  2b—(p—4+2/a)R(W )W  B(W)W
3.6) LZEW[' @Gy T Wy ‘<d1+W>*,

Lemma 1.2 is applied to the second term in (3.6) to obtain

5 KWW | QW (WYWH(p+2k—6)R(W) . 6d, (W)
8.7 EW{ d+ W>3'}—EW[ (di+ W) T W)‘l'

Hence from the equality (3.7) and the conditions that %'(w)>0 and A(w)>0,

2d,ph(W') (W) RWHYW
LZEW‘_W’+Z(b—(p_4+2/a))(p—6) i+ WY - (d+ W) ]
zEW[W{—2d11>+2<b—<p—4+2/a>><p—6>—h(W)}] ,

which is nonnegative if 0<d,<(b—(p—4+2/a))(p—6)/p and
0<Aw)<2{(b—(p—4+2/a)(p—6)—dip}.
(ii) b>p—4. Since A(w) is nonincreasing and a>d, it follows that

2d,ph(W) | 2b—(p—W)W (W)W
(di+W) (di+W) (di+W)

(3.8) L>Ew{—
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Applying Lemma 1.2 to the second term in (3.8) in a similar way as the proof
of (i), we get

W)

L=Ev Gy

{=2d:p+200—(p—DNp—6) =AW )},

which is nonnegative if 0>Aw)>2{(b—(p—4))(p—6)—d.p}.

Theorem 3.3. Let p>6 and let b in ¢'*(Y) be equal to p—2. The risk of
0'*(Y) is uniformly smaller than that of §°(Y) if 0<a<4(p—6)/(p—2).

Proof. Applying Lemma 1.1 to two terms of R(E%(Y), p)—R(@*(Y), ) in a
similar way of Theorem 2.1 or 3.2, we see that it suffices to show that

_ —a(p—2) 4
(3.9) M:EW[(a+W)2W+(a+W)2}>0.

Lemma 1.2 is applied to the second term in (3.9) to obtain

o [—ap—2+d(p+2%k-2) 16
(3.10) M_EW{ @t Wyw (@t Wy ]

(—a(p—2)+4(p—6)W+a(p—2)—a+4)]
ZEWi @+ WyWw |

which is nonnegative if 0<a<4(p—6)/(p—2).
Theorem 3.2 is used to obtain some other estimators.

Example 3.1. Setting %(s) equal to a constant d,, we get the estimator

b ds
54 —_
Y )= ( 1= rstu+sr )Y‘

If the constants «, b, d, and d, satisfy the following conditions, then the risk of
8°4(Y) is uniformly smaller than that of ¢'*%(Y").
(i) For b>p—4,

a<di<(—(p—DXp—-6)/p

and
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0<d. <2{(b—(p—4))Np—6)—d.p}.

(ii) Por b<p—4,

a>d,>0 and 0>d,>2{(b—(p—D)(p—6)—d.p}.

Example 3.2. For b=p—2, setting A(s)=d.(d,+5)""“(ds+s)""%, we obtain the
estimator

p—2  dy(di+S)r
ass(y)=(1—a+s+ ((d;+s;/“ >

If a>1, di<ds, a<di<2(1-1/a)(p—6)/p and 0<d,<2{2(1—1/a)(p—6)—d.p}, then
A(s) satisfies condition (i) of Theorem 3.2.

4. Comparison of 3%(Y), 8*(Y) and 8%(Y)

The following three estimators

4.1) 5°C(Y)=<1 ——p—§—2+%>y,
4.2) 5*A(Y)=(1 —5;2 +Si)

and

4.3) 550(Y)=<1 f%+ ﬁ;)y,

are discussed. The estimator 6°¢(Y’) is defined in Corollary 2.1, §*4(Y) and 8°°(Y)
are defined in Theorem 3.1 and Example 3.1, respectively. Conditions on the
constants @, ¢ and d are given such that R(#*4(Y), p)<R(@*(Y), p). Further the
constants @, ¢, d; and d, are given such that R(6°¢(Y), p)<R(*4(Y), p).

Theorem4.1. Suppose that p>8. Then the risk of §*4(Y’) is uniformly smaller
than that of §°¢(Y) if the constants @, ¢ and d satisfy the following conditions.

(i) For ¢>d,
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0<a<4(p—-6)/(p—2)

and
{dlc—ad)(p—6)—2a(c(p—4)+2d)+d*—c*}(p—8)+a(d®*—c?) >0.
(ii) For c<d,
d/(p—2)<a<2 and A(p—8)—4a*d>0,

where A= —a(a(p—2)*+8d)+4(a(p—2)—d)(p—6)+2c((2—a)(p—4)—4)+d*—c*.

Proof. Applying Lemma 1.1 to two terms of 4(p)=R(°C(Y), p)—R(64(Y), 1)
in a similar way as the proof of Theorem 2.1, we have

Hpy=Ep| - L=D_Ad | & | 2ap(p—2+(p=2)'S _ 2c(p—4)

S stEsE (a+S)? S?
2(p=2) _ ¢
@+S)S s

Therefore it suffices to show that

_ —az(p—2)2+4a(p—2)W_ 2c(p—4)+2d) 2c(p—2) = d*—c*
N=Eyw @+ WyEW e + @t WOW W >0.

To evaluate N, we consider the following two cases: ¢>d and c<d.
(i) c¢>d.

— @ (p=2f+4a(p—2)W | —2a(c(p—N)+2d)+dc—-W | d*—c’

N=Ew @rWYW @ e e

=N,+N;+Nj,

say. The proof of Theorem 3.3 shows that

—a(p— - —9)(—a+4
W Nzt CHPDK O ptat0]

51



T. AKAI

From (3.2) in the proof of Theorem 3.1 and the condition that ¢>d,

Mc—d)(p—6)—2a(c( p—)+2d)+d—c*  ald—c?)
4.9 N2+N32EW! @rWHwe (a+W)W3}

Furthermore Lemma 1.2 is applied to the first term of (4.5) to obtain

A6 NerNyo 5y | Mo DP=O-2Up 1L —CHp- B +a@ =)

Hence from the inequalities (4.4) and (4.6), N is nonnegative if the constants «,
¢ and d satisfy condition (i).

(i) c<d.
NeF {—az(p—2)2+4a(p—2)W _Ad 2(p—4) | 2:(p—2) | d&—c*
v (a+WyEW we W (a+WHW '~ W?
K { —datd—a(a(p—2)*+8d)W+4(a(p—2)—d)W? " —2ac(p—4)+4cW
v (a+W)yW? ' (a+ W)W
dz__CZ
|
EN11+N’2+N,3,

say. To evaluate N in a similar way as the proof of (i), we decompose N as the
above last equality. Applying Lemma 1.2 to the third term of N’, and the second
term of N’, respectively, and using the condition that d/(p—2)<a<2, we have

,  daed —a(a(p—2)*+8d)+4(a(p—2)—d)(p—6)
4.7 N 12EW{_ (a+W)2Wé (a+W)YRw
and
2— —4)—14
4.8) N'QZEW{ 26(((af>v(f)zw) A

The inequalities (4.7) and (4.8) give

52



Further generalization of Stein estimators

4a*d A

4.9) N>Ey + G|

= C(a+WyEW?

where A is defined in condition (ii). Furthermore Lemma 1.2 is applied to the
second term of (4.9) to obtain

—4ad+ A(p—9)
NzBvl = rwyewe |

which is nonnegative if A(p—8)—4a?d>0.

Theorem 4.2. Let p>6 and let @ be equal to d,. Then the risk of ¢°¢(Y) is
uniformly smaller than that of 6*4(Y) if ¢<d, and 4(d.—c)}p—6)+2a(c(p—6)—
do(p+2))+c*—di>0.

Proof. Applying Lemma 1.1 to a term of A(p)=R(0*4(Y), p)—R(G*°(Y), p) in
a similar way as the proof of Theorem 3.2, we have

_ 2(p—4) 2c(p—2) ¢  2dp 84,S
A)=Ew S* (@a+5)S to (di+S? ' (d,+S)®

2dy(p—2)S 43S

+ (@+S)(d:+S)?*  (d+S)*

Therefore from the comdition that e¢=d,, it suffices to show that

P=E, {E@M ¢ Mdi—c)  dac  2ad(p+2)+d | ads l
S @ W @ W T @R WEW T @t Wy @+ Wy

From (3.10) in the proof of Theorem 3.3 and the condition that ¢>d,,

ok { 2ac(p—4) ¢ +4((d2—c)(p—2)—ac)_2ad1(1>+2)+16(d2—c)+d§}
=Wl @+rwHwe " we (a+WrRWw (a+ W)

1 2 g
ZEw[—(—‘;W—)s {4(d:—c)(p—6)+2a(c(p—6)—d:(p+2))+c -—dz}J )

which is nonnegative if the constants «, ¢ and d, satisfy the conditions.
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