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In this report, the dynamics of the Hula-Hoop whose rotational motion is kept 
stabilized by reciprocating motion of the waist in horizontal direction are treated. 
Considering a three dimensional dynamic system with a mathematical pendulum 
whose supported point was caused to move periodically along the fixed axis and 
not to move vertically, the horizontal and vertical motions of the pendulum were 
analyzed in detail. Coupled set of nonlinear ordinary differential equations of the 
second order which were led by applying Lagrange's equations to the system were 
solved approximately. The basic mechanism of the stable motion of the pendulum 
due to an oscillatory motion of the supported point is made clear on account of 
the consideration for the approximate solution of the equations. The influence of 
the motion of the supported point on these motions was clarified, while these 
motions depended closely on the movement of the supported point. In addition, 
the consideration for the stability of the system led analytically such conclusion 
as the stable motions were preserved on account of the vertical motion of the 
Hula-Hoop. To examine the validity of the theory, the experimental model was 
provided. The experimental results were shown to be in qualitative good agree­
ment with the theoretical ones. 

1. Introduction 

In the past year an interesting toy such as the Hula-Hoop has been in fashion. 
Considering the motions of the Hula-Hoop, it is found that the Hula-Hoop is 

kept on rotating by reciprocating motion of the waist. 
The motion, in a horizontal plane, which are regarded as the parametric ex­

citation of a mathematical pendulum whose supported point is caused to move 
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periodically along a fixed axis, has been analyzed by Caughey T. K. in reference 
[l]. 

Suppose the motions of the pendulum, its vertical motion also can be accepted 
the parametric excitation on account of the periodical motion of the supported 
point. 

Considering a three dimensional dynamic system with a two degrees of freedom 
mathematical pendulum whose supported point is caused to move periodically along 
a fixed axis and not to move vertically, the horizontal and vertical motions of the 
pendulum are analyzed in detail by using Struble method in reference [2]. The 
system is shown by the equations of two types of the parametric excitation. These 
equations have the coupled nonlinear terms which are yielded due to the con­
sideration for the three dimensional system. The consideration for the influence 
of these terms on these motions lead analytically the conclusion how the stability 
of the system is preserved. 

In addition, the influence of the motion of the supported point on the system 
is made clear. 

Moreover, to examine the validity of the theory, the experimental model is 
provided. 

2. Equations of Motion of the Pendulum 

Figure 1 shows a three dimensional dynamic system with a mathematical 
pendulum of length l and mass m whose supported point P is caused to move 
periodically along a fixed axis X and not to move vertically. The pendulum cor­
responds to the Hula-Hoop and the motion of the supported point, to the motion 
of the waist. Then the motion of the supported point X(t) is shown by 

X(t) =Xo COS (wt), (1) 

where Xo is its amplitude and w is its frequency. 
Suppose the position of the pendulum is defined by the angles of {} and ¢ 

z 
Figure 2 L~ Pendulum !used in theoretical study 
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respectively with X-Z and with X-Y planes. Applying Lagrange's equations to 
the system, and neglecting terms of order higher than the square of ¢(t), the 
equations of motion of the system are derived as 

·· · · Xow 2 

() + (2~1 -2¢¢)() +-
1
-. cos (wt) sin (0) = O , (2) 

( 3) 

where 2 ~1 = ~;2 , 2 ~z = ~;2 , then Ci, and C2 represent viscous damping coefficients 

respectively in ()- and ¢-directions, and g is a gravitational acceleration. 
In equations (2) and (3), dots denote differentiation with respect to time t. 

Equations (2) and (3) represent the balances of moment respectively with respect 
to the supported point and X-Y plane, and have coupled nonlinearities. 

In equation (2), the second term exhibits a damping force, in (}-direction, which 
is yielded by the movement of the pendulum in {}- and ¢-directions, and the third 
term exhibits a restoring force which is the component, in (}-direction, of the force 
which the supported point exerts on the pendulum. Equation (2) can be regarded 
as the equation with a periodic coefficient whose sign changes between positive 
and negative. Then O(t) shows the motion of the pendulum in horizontal direction, 
so O(t) can be considered that it increases or decreases monotonically if the pendulum 
is kept rotating stably. Moreover, in above condition, the analysis of reference 
[l] has brought us that O(t) increases or decreases in proportion nearly to time t 
and the proportional constant is the frequency of the supported point, w. There­
fore, the third term can be considered to cause O(t) to do as the above owing to 
the change of the sign of its spring constant between positive and negative. 

According to the above, in the third term of equation (3) we can consider 
02 -==.w2

, so within the limits of linearity and in the case X 0/l<l, equation (3) can 
be regarded as the equation with a periodic coefficient whose sign is usually posi­
tive. In equation (3), the second term exhibits a damping force, in ¢-direction, 
which is yielded by the movement of the pendulum in ¢-direction, the third term 
exhibits a restoring force which consists of a centrifugal force yielded by the 
rotational motion of the pendulum in ()-direction and the component, in the radial 
direction, of the force which the supported point exerts on the pendulum, and the 
fourth term exhibits a gravitational force. 

Without the vertical motion of the pendulum for equations (2) and (3), the 
system considered here has corresponded to the system, which the pendulum can 
rotate only in a horizontal plane, as shown in reference [1]. 
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3. Transform of Equations of Motion 

Let 

()(t) =wt+ <jJ(t) ( 4) 

as reference [1]. Substituting equation (4) into equations (2) and (3), using a non­
dimensional independent variable r-=wt, and retaining only terms up to the square 
of ¢(-r) and ¢(-r), we obtain 

( 5) 

(6) 

, Xo A g ~ ~ , 
where cl=y• sg= lw2 , c2f= w1

, s2fz= w
2

, and w~=l+cl, then we assume s=O(l/10) 

and f =g=f1=f2=0(s0
). 

In equations (5) and (6), dots denote differentiation with respect to r-. 
Equations (5) and (6) exhibit respectively a phase difference between the hori­

zontal motion of the pendulum and the motion of the supported point, and the 
vertical motion of the pendulum. These equations can be regarded as the equa­
tions with periodic coefficients and quadratic nonlinearities. 

The third term, on the left-hand side of equation (5), which exhibits restoring 
force, has a case to vanish. This shows one of the characteristics of the horizontal 
motion of the pendulum given by equation (2). Then within the limits of linearity, 
¢(-r) given by equation (5) is stable due to sl <l and can be estimated that it is 
damply oscillated due to the second and third terms on left-hand side of equation 
(5), and that it is converged on the steady state given by the right-hand side of 
equation (5). 

Within the limits of linearity, ¢(-r) given by equation (6) is stable. However, 
it is possible to become unstable if the amplitude of the component whose frequency 
is twice as large as that of the supported point is caused to increase, due to the 
term yielded by the second term on the right-hand side of equation (5) entering 

to 2~ in the third term of the left-hand side of equation (6). Then figure 2 shows 
the numerical solutions of equations (5) and (6). These solutions show the stable 
motions of the pendulum. Namely, ¢(-r), given by equation (6), that is, the vertical 
motion of the pendulum, can be estimated that it is damply oscillated due to the 
second and third terms on left-hand side of equation (6) and that it is converged 
on the steady state given by the right-hand side of equation (6). As the above 
the third term on the right-hand side of equation (5), which is called quadratic 
nonlinearity, which is equivalent to a coupled nonlinear term in the second term 

30 



Motion of Hula-Hoop and its stability 

...-
(a) u 0.4 ru 

i..._ 0.2 
'--' 

-8- 0 

-0.2 W1 \/1111'1 1'l11'1111"l.1\l/1l'/11'"/J\"/''''l'\U/1'\'"'"""''/'U''/""'"l"'"'H''''/'/"'"/"1'!'!'""'""!'~'"''''""''"''"~'~"'!""'"''"''/"""'"U"""''''''""""" I{ 
1 

J
1
\ ~ 11 1.~1' 1 1 111 1 1 1 1 1 1111JI•111 l1j1l111111 1u11 1111111 iT111l rm 111111nuu1111111m111i11dm11111mm~111un1ih11111M111m111u1nu1nrnnrr1111n11 

-0.4 

'D o.4 (b) 
rD 

~ 0-~~,~~I~~~~·~· 
-0.2 

-0.4 ~ 

0.4 (c) 

E 0.2 

X 0 .W~WHWWM'""'''."'"".'"Wl''\"'''''.".'.'Y..WH'NlfflNWN-N-1-NNNAWN 

-0.2 

-0.4 
o~~~~-4,__~~~-s-'----~~~-1~2~~~---'1s 

t (sec) 
Figure 2. Response of the system for X 0 =0.023[m], l=0.076[m], 2~1 =1.0[1/s], 

2~2 =0.5[1/s], w=50 [rad/s], and g=9.8[m/s2]. (a), <f;(t); (b), ¢(t); (c), 

X(t). Initial conditions: ¢(0)=cfa(0)=¢(0)=<}(0)=0. 

on the left-hand side of equation (2) can be considered to have a very important 
effect upon the system. Moreover, figure 2 shows that ¢(t) closely synchronizes 
with the motion of the supported point before it sets in steady state, and that 
<jJ(t) is converged on the steady state. Therefore the Hula-Hoop can be considered 
analytically to rotate as nearly to synchronize with the motion of the waist in 
horizontal direction. 

4. Method of Solution 

We express the asymptotic solutions of equations (5) and (6) for small s in 
the form 

( 7) 

(8) 
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where a, b, Pi. and P2 are slowly varying function of time r. Substituting equa­
tions (7) and (8) into equations (5) and (6), expanding, equating coefficients of same 
powers of c:, solving the resulting equations, and neglecting except the governable 
terms, we obtain the approximate solutions, 

c:b2 . [ J 0( 3/2) + 4_ 3 c:l sm 2 w2r+p2 + c: , ( 9) 

(10) 

where 

(11) 

(12) 

(13) 

(14) 

then ao, bo, Pio, and p20 are constants of integration. 
Equation (9) shows that the phase difference between the motion of the pen­

dulum in 0-direction and the motion of the supported point is damply oscillated 
round the constant phase lag against the motion of the supported point due to the 
first and second terms, and that its motion is converged on steady state given by 
the first and third terms. In other words, it can be confirmed that the Hula-Hoop 
rotates as nearly to synchronize with the periodical motion of the waist in hori­
zontal direction. The phase lag, which is yielded by a resistance against the 
rotational motion of the pendulum in 0-direction, which is led by the first term 
on the right-hand side of equation (5), becomes small on account of the increase 
of the inertia force of the pendulum in 0-direction if the amplitude of the supported 
point, X 0 or the frequency of one, w is caused to increase. According to the third 
term of equation (9), in steady state the amplitude of ef>(r) is independent of the 
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frequency of the supported point and depends only on the amplitude of one, and 
its frequency is twice as large as the supported point. These can be understood 
on account of the consideration for the change of the force which the supported 
point exerts on the pendulum over one cycle of the movement of the supported 
point. 

Equation (10) shows that in ¢-direction the pendulum has a constant angle to 
X-Y plane, that is, a horizontal plane due to the first term and is damply oscillated 
with the frequency which is equal to that of the supported point due to the second 
and third terms, and that its motion is converged on steady state given by the 
first and fourth terms. The constant angle to a horizontal plane which is yielded 
by a gravitational force, which is led by the right-hand side of equation (6), be­
comes small on account of the increase of the centrifugal force yielded by the 
rotational motion of the pendulum in 8-direction if the frequency of the supported 
point, w is caused to increase. And the change of, the amplitude of the supported 
point, Xo, has little influence on that of the constant angle to a horizontal plane 
in order that the force which the supported point exerts on the pendulum is much 
smaller than the centrifugal force yielded by the rotational motion of the pendulum 
in 8-direction. In steady state the frequency of ¢('r) is also twice as large as the 
supported point due to the fourth term of equation (10). The consideration for 
the change of the force, which the supported point exerts on the pendulum over 
one cycle of the movement of the supported point, gives a clear explanation of 
the above. 

Moreover, neglecting the fourth term of equation (10) in order that its ampli­
tude is O(s2

), in steady state the system is considered to balance with the left-hand 
side of equation (5), the first and second terms on right-hand side of equation (5), 
the third term on the left-hand side of equation (6), and the right-hand side of 
equation (6). Therefore, neglecting terms of order higher than O(s), in steady 
state the Hula-Hoop can be considered analytically to have a constant angle to a 
horizontal plane, and to rotate as nearly to synchronize with the motion of the 
waist in horizontal direction. 

5. Vertical Motion of the Pendulum 

In this section we shall investigate the vertical motion of the pendulum, that 
is, the reason why it synchronizes closely with the motion of the supported point 
before it sets in steady state. 

Figure 3 shows Fi(r) =cos ( r) and F2( r) =cos (2r ). In this figure sc cos (2r) and 

~J&S3~1 
0 2TT 4rr 

"T (rad) 
Figure 3. F 1(r)=cos (r) and F 2(r)=cos (2r). 
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2¢, and the motion of the supported point, are regarded respectively as F2(r) and 
F1(r). When the absolute value of the amplitude of the supported point has a 
maximum, that is, at the position of F1(r)=l and F1(r)= -1, we can find F2(r)=l, 
that is, the spring constant in ¢-direction has a maximum. And when the ampli­
tude ot the supported point becomes zero, that is, at the position of F1(r)=O, we 
can also find F 2(r)= -1, that is, the spring canstant in ¢-direction is minumum. 
In other words, these mean that the force which the supported point exerts on 
the pendulum is maximum at the position of X(t)=Xo and that it is minimum at 
the position of X(t)=O. For example, if the pendulum is caused to move in ¢­
direction at the position of X(t)=Xo, it will not change the direction to move until 
at the position X(t) = -Xo where the restoring force in ¢-direction is the largest 
next, and at the position X(t) = -Xo it will stop to move in that direction, then it 
will start to move in opposite direction at that position. In the result it repeats 
a series of these movements until its motion sets in steady state in which the 
gravitational force, the centrifugal force yielded by the rotational motion of the 
pendulum in 0-direction, and the force which the supported point exerts on the 
pendulum, are nearly balanced in ¢-direction. 

6. Stability of the System 

Considering the stability of the system, that is, that of the motion of the 
pendulum, the influence of the quadratic nonlinearities on the stability of the 
system are very important as previously stated. 

If 2¢¢ which is the third term on the right-hand side of equation (5) has been 
neglected, we can find that ¢(r) expressed by equation (6) has become unstable, 
that is, the system has become unstable. The mechanism which causes the system 
to become unstable can be explained as follows. 

The term, whose frequency is twice as large as that of the supported point, 
which is yielded by the second term on right-hand side of equation (5), that is, 
the third term of equation (9), 

c.l . ( ) 
4-c.l sm 2r , 

enters 2~ which is in the third term on the left-hand side of equation (6), where 
2¢ is expressed as 

4c.i 
4 -c.i cos(2r). 

The above expression causes the amplitude of the term, whose frequency is twice 
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as large as that of the supported point, to increase, and consequently the system 
has been caused to become unstable. 

Namely, the stability of the system is kept in order that 2¢¢ which is the 
third term on the right-hand side of equation (5) causes the amplitude of the term, 
whose frequency is twice as large as that of the supported point, that is, that of 
the second term on the right-hand side of equation (5), to decrease. The above 
can be explained to see the previous section and confirmed due to the fourth term 

of equation (9). In other words, 2¢¢ can be considered to act to prevent the 
amplitude of the pendulum in ¢-direction from increasing due to the function of 
the decrease of the centrifugal force, in 0-direction, which is yielded by the force 
that the supported point exerts on the pendulum. 

In the result, the Hula-Hoop can be considered analytically to keep its stability 
due to its movement in vertical direction. 

Moreover, we shall investigate the stability of the system which depends on 
the physical parameters. 

Let 

(15) 

<jJ(t) =</Jo+ r;2(t), (16) 

where <Po and ¢0 are constants, r;1(t) and r;2(t) are small perturbations. Substituting 
equatins (15) and (16) into equations (2) and (3), neglecting terms of order higher 
than the square of <fao, ¢0, r;1i and r;2, using a non-dimensional independent variable 
r=wt, applying the equations which are caused <fa(r) and ¢(-:) to become constants 
for equations (5) and (6), and letting 

(17) 

we obtain 

In equations (18) and (19), dots denote differentiation with respect to z. These 
equations can be regarded as Mathieu equations. Let 

2q=cl, (22) 
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3 r----i,------r-----~~ 

2 

stable 0 ~~~---L_ __ ___:,~~ 

-1 0 

61.fo 
Figure 4. Stability chart of the system for w=50[rad/s], 2~ 1 =1.0[1/s], and 

2~2 =0.5[1/s]. 

we obtain figure 4 which shows the stability chart of the system. In the case of 
2.s2f1 ~1 and 2.s2f2 ~1, the stability of the system which depends on the physical 
parameters has been nearly equal to one as shown in reference [l]. 

7. Experimental Results 

To examine the validity of the theory, the experimental model was provided. 
Figure 5 shows the experimental model. The ring of radius 0. 0760[m], thick­

ness 0.0035[m], and mass 0.0140[kg], which is made of vinyl chloride, is equi­
valent to the Hula-Hoop. Moreover, an aluminum sheet was attached to the ring 
in order that two noncontacting displacement meters were caused to catch the 
motion of the ring. And the radius of the ring is equal to the length of the 
pendulum. The shaft of diameter 0. 006l[m] and length 0. 0810[m], which is 
made of iron, is equivalent to the waist. The shaft was fixed on the acrylic board 
of 0. 255[m] x 0 .150[m] x 0. OlO[m]. And the shaft was caused to move periodically 
along the fixed axis owing to the periodic motion of the board by using three ball 
slide bearings and the rotational motion given by the electric motor. The shaft 
was taped in order that the frictional force between the ring and the shaft was 
caused to increase. Using the taped shaft, the contact point between the ring 
and the shaft was caused not to move vertically. That is, the ring is made rotate 
by the periodic motion of the shaft, and the motions of the ring and the shaft 
were measured by using three noncontacting displacement meters, so the measured 
values which were transformed into digital ones were analyzed by the digital 
computer. The analysis brought us the phase difference between the ring and 
the shaft and the displacement of the ring in vertical direction at the position 
which the absolute value of the amplitude of the shaft had a maximum, that is, 
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.... __ --

.... - --

Section cut by A-A 

.... _ ------------ ---- ____________ J 

Figure 5. Experimental model. Legend : 1, Ring; 2, shaft; 3, acrylic 
board; 4, 5, 6, ball slide bearings; 7, acrylic stage; 8, founda­
tion; 9, 10, 11, noncontacting displacement meters with sensors; 
12, electric motor ; 13, driving power control unit ; 14, analog­
to-digital converter; 15, data transmitter; 16, digital computer. 
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Figure 6. <P vs.wand cp vs. w in steady state for l=0.0760[m], 2~1 =1.0[1/s], 

g=9.8[m/s2], and several values of X 0• (a) and (d) X 0 =0.0230[m]; 
(b) and (e) X 0 =0.0290[m]; (c) and (f) X 0 =0.0350[m]. o, Experi­
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Figure 7. Ring motion for X 0 =0.0230[mj, l=0.0760[m], and w=49.40[rad/s]. 

X(t)=Xo and X(t)= -X0 • 

Figure 6 shows the phase difference between the ring and the shaft and the 
displacement of the ring in vertical direction with a horizontal plane, that is, 
respectively ¢(t) and ¢(t) in steady state at the position which the absolute value 
of the amplitude of the shaft had a maximum, that is, X(t) =Xo and X(t) = - Xa. 
Figure 7 shows measurements of ¢(t) and ¢(t) in transient state at the same 
position as the above. This was obtained by means that the time of t=O was 
defined as the start time of measurements, then initial conditions could not be 
measured. 

The experimental results were shown to be in qualitative good agreement 
with the theoretical ones. 

8. Conclusions 

The foregoing analysis and experiment have clarified the mechanism of the 
stable motion of the Hula-Hoop as follows. 

The Hula-Hoop can be considered to rotate in horizontal direction as nearly 
to synchronize with the periodical motion of the waist, and to oscillate in vertical 
direction as closely to synchronize with the supported point, before its motion sets 
in steady state in which the gravitational force, the centrifugal force yielded by 
its rotational motion in horizontal direction, and the force which the waist exerts 
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on it, are nearly balanced. Therefore, in steady state the Hula-Hoop has a constant 
angle to a horizontal plane, and rotates in horizontal direction as nearly to synch­
ronize with the periodical motion of the waist. 

In transient state the Hula-Hoop can be considered analytically to keep its 
stability due to its movement in vertical direction. 
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