
Title Relative efficiencies of reduction machines
Sub Title
Author 相場, 亮(Aiba, Akira)

Publisher 慶應義塾大学理工学部
Publication year 1986

Jtitle Keio Science and Technology Reports Vol.39, No.1 (1986. 5) ,p.1- 24
JaLC DOI
Abstract Relative efficiency of the reduction of lambda-terms and that of combinatory expressions are

compared when they represent recursive programs belonging to the linear branched recursion
schema in Strong [7]. The terms and the expressions are extended versions by introducing
constants and some primitive operations on them, and all of them are reduced by the left-most
reduction strategy. Reduction costs of the lambda-calculus are obtained theoretically, and those of
the combinatory logic are obtained by experiments. The conclusions: (1) reduction with
subexpression sharing is more efficient than that without sharing, and (2) the reduction in the
lambda-calculus is more efficient than that in the combinatory logic if the number of parameters of
the program is larger, and the converse is true when its recursion depth is larger.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00390001-

0001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

KEIO SCIENCE AND TECHNOLOGY REPORTS
VOL. 39, NO. 1, pp. 1-24, 1986

RELATIVE EFFICIENCIES OF
REDUCTION MACHINES

by

Akira ArnA

Department of Mathematics
Faculty of Science and Technology, KEIO University,

Hiyosi 3-14-1, Kohoku-ku, Yokohama 223, JAPAN

(Received January 28, 1986)

ABSTRACT

Relative efficiency of the reduction of lambda-terms and that of combinatory expres
sions are compared when they represent recursive programs belonging to the linear
branched recursion schema in Strong [7]. The terms and the expressions are extended
versions by introducing constants and some primitive operations on them, and all of them
are reduced by the left-most reduction strategy. Reduction costs of the lambda-calculus
are obtained theoretically, and those of the combinatory logic are obtained by experiments.
The conclusions: (1) reduction with subexpression sharing is more efficient than that
without sharing, and (2) the reduction in the lambda-calculus is more efficient than that
in the combinatory logic if the number of parameters of the program is larger, and the
converse is true when its recursion depth is larger.

1. Introduction.

Since the presentation of Backus [1] in 1978, functional programming languages
have been concerned as a new paradigm. Theoretical base of such languages is
the lambda-calculus or the combinatory-logic. In recent years, some attempts to
construct machines which execute programs written in such languages were made.
Some of these machines are called reduction machines because they execute reduc
tions in the lambda-calculus or those in the combinatory-logic. The relative effi
ciency of those machines should be com pared in various ways before they are
constructed, and it has been discussed somehow. In Burton [3], a new method to
translate applicative programs to combinatory expressions is proposed. By this
method, translated combinatory expressions are small in size. In Jones [5J, some
actual programs such as factorial function are translated into lambda-term and
combinatory expressions, and the efficiencies of reductions are compared. Accord
ing to Ida [4], the efficiency of the reduction of the lambda-terms is comparable

1

A. AIBA

to that of the combinatory expressions in terms of the order of the computational
complexity.

In this paper, the relative efficiency of the reduction of lambda-terms is com
pared strictly with that of combionatory expressions when they represent recursive
programs of the following form :

q~xi, X2, ••• , Xm),

h(xi, X2, ••• , Xm,

This schema is selected because

1) it is relatively simple, and

2) many programs are of this schema, since p, q, h, and ki (i=l, 2, ... , m) may
be complicated functions made by the function composition. Note that the structure
of the combinatory expression depends on the form of the program.

Our comparisons assume the followings.

i) lambda-terms and combinatory expressions are extended by adding con
stants and primitive-operations on constants. These extended reduction systems
satisfy the Church-Rosser property. When the reduction system satisfies this
property, each term has the unique result of the reduction (called the normal form)
if it exists. This property of such kind of reduction systems is studied in Klop
[6].

ii) Lambda-terms and Combinatory-expressions are reduced by the normal
order reduction strategy.

iii) A combinatory expression is obtained from a lambda-term by bracket
abstraction algorithm in Turner [8]. Note that when the efficiency of the reduc
tion of combinatory expressions is concerned, this translation process is not included
in the cost of the reduction.

Reduction costs in lambda-calculus are calculated theoretically as in the Ap
pendix, and those in combinatory logic are given by experiments.

Main results are as follows. (1) Let m denotes the number of parameters of
a program, and n denotes the depth of the recursion to obtain its result. The
beta-reductions are performed m(n + 1) times, and the reductions of combinators
are performed (m2n+9mn)/2+3m+n times. (2) To compare further these expres-

2

Relative Efficiencies of Reduction Machines

sions, assume that terms are represented as binary-trees or graphs the number of
changed pointers and the number of used cells are chosen as the common measures.
By these measures the reduction in the lambda-calculus is more efficient than the
reduction in the combinatory-logic when the number of parameters of the program
is larger, and the converse is true when its recursion depth is larger. The main
result is summarized in the Table 1, and Table 3.

In Section 2, reduction systems, lambda-calculus and combinatory logic of their
extended version, are defined for comparison. In Section 3, recursive programs to
be translated, and the cost of the reduction are defined. In Section 4, the cost of
reduction of each reduction system is presented. In Section 5, these costs are
compared.

2. Reduction Systems

Reduction systems for comparisons are defined in this section. Definitions of
pure lambda-calculus and pure combinatory logic can be referred in Barendregt
[2]. Reduction systems in this section are extended ones by adding constants,
functions for them, and programs.

Definition 2-1 (Lambda Terms):

1) Lambda-terms are either constants, variables, functions denoted by J..x.M,
where M is a lambda-term and x is a variable, or sequences of lambda-terms
((... (M1M2) . ..)Mn). There may be constants true and false in the set of lambda
terms.

2) A lambda-program is an equation f=M, where f is a constant and M is
a lambda-term.

3) In a lambda-term J..x.M, occurrences of x in Mis called free in M if M
does not contain J..x.

Definition 2-2 (Reduction Rules for lambda-terms):

Lambda-terms are reduced successively into lambda-terms, in which no redu
cible expressions called redexes occur, by applying following reduction rules.

1) beta-rule

((J..x.M)N) --+ M[x: =NJ where M[x: =NJ denotes the result of sub
stituting N into every free occurrence of x in M

2) delta-rule

c M 1M2 ••• Mn --+ N where c is a constant called a delta-constant, Mi,
M2 • •• , and Mn are lambda-terms, and N is the result of the reduction of c over

3

A. ArnA

M1, M2 ... , and Mn. The reduction of c is given a priori.

3) /-rule

f ---+ M where f is a constant and M is a lambda-term.

Remark:

When a lambda-term N is reduced by applying (1) beta-rule, (2) delta-rule,
and (3) /-rule f ---+ M then the reduction sequence of N is called 'reduction of N
under a program f =M. If a program '! =M is obvious then 'f =M' is often
omitted.

Notation:

A lambda-term ((... (M1M2) ...) Mn) and AX1. (Ax2 (Axn. M) ...) is often
abbreviated as M1M2 ... Mn and h1. AX2 AXn. M, respectively.

Definition 2-3 (Combinatory Expressions):

1) Combinators are lambda-terms with no occurrences of free variables.

S=Ax. Ay. Az.x z (y z)

K=Ax. Ay.x
l=Ax.x

B=Ax. Ay. AZ.x (y z)
C=h. Ay. AZ. (x z) y

S'=Ax. Ay. AZ. Au.x (y u)(z u)
B'=Ax. Ay. AZ. Au.x y (z u)
C'=h. Ay. AZ. Au.x (y u) z

2) Combinatory expressions are either constants, variables, combinators, or
sequences of combinatory expressions ((... (M1M2) ...) Mn). There can be constants
true and false in the set of combinatory expressions.

3) A combinatory-program is an equation denoted as f = M, where f is a
constant and M is a combinatory expression.

Notation:

A combinatory expression ((... (M1M2) ...) Mn) is often abbreviated as M1M2

... Mn·

Definition 2-4 (Reduction rules for combinatory expressions):

Combinatory expressions are reduced sucessively into combinatory expressions,
in which no reducible expressions called reduction rules.

4

• Relative Efficiencies of Reduction Machines

(1) Combinator-rules

S X Y Z ~ X Z (Y Z)
KXY~X

Ix~ X
BX Y Z ~ X (Y Z)
C X Y Z ~ (X Z) Y
S' X Y Z U ~ X (Y U)(Z U)
B' X Y Z U ~ X Y (Z U)
C' X Y Z U ~ X (Y U) Z

where X, Y, Z, and U are combinatory expressions.

(2) delta-rule

c MiM2 ... Mn ~ Nwhere c is a constant called adelta-constant,M1,M2, ... ,
and Mn are combinatory expressions. N is the result of the reduction of c over
M1, M2, . .. , and Mn. The reduction of c is given a priori.

(3) /-rule

f ~ M where f is a constant and Mis a combinatory expression.

Remark:

When a combinatory expression N is reduced by applying (1) combinator-rules,
(2) delta-rule, and (3) /-rule f ~ M, then the reduction sequence of N is called
'reduction of N under a program f=M'. If a program 'f =M' is obvious then
'f =M' is often omitted.

A combinatory expression is obtained from a lambda-term by bracket abstrac
tion algorithm in Turner [8]. Let J..x. M be a lambda-term to be translated. By
the following algorithm, occurrences of x in Mare eliminated.

If Mis a constant, a variable, or a combinator, then

I if Mis x, and

K x otherwise.

If M is an expression (Ml M2), then

S Ml' M2'

where Ml' and M2' are combinatory expressions which are obtained from Ml and
M2 by eliminating x according to this algorithm.

Then, obtained combinatory expressions are optimized by the following rules.

Definition 2-5 (Optimization rules):

(1) Optimization rules 1

(i) S (K X)(K Y) ::> K (X Y)

5

A.AIBA

(ii) S (K X) I ::> X

(2) Optimization rules 2

(i) S (K X) Y ::> B X Y

(ii) S X (K Y) ::> C X Y

(3) Optimization rules 3

(i) S (B X Y) Z ::> S' X Y Z

(ii) B (X Y) Z ::> B' X Y Z

(iii) C (B X Y) Z ::> C' X Y Z

In the above rules (1), (2) and (3) X, Y, and Z denote arbitrary combinatory
expressions. Optimization rules 2 can be applied if no rules in (1) can be applied,
and optimization rules 3 can be applied if no rules is (2) can be applied.

To satisfy the Church-Rosser property, delta-rules for the lambda-calculus and
combinatory-logic should be restricted as in Klop [6]. That is, they should be
left-linear and non-ambiguous. For instance, cond is introduced into the reduction
systems to represent the conditional branching schema if. It should always have
three arguments to satisfy that property. When a reduction system satisfies this
property, each term in that system has its unique result of reductions if exists.

3. Recursive programs and the cost of the reduction

In this section, recursive program schema and recursive programs considered
in this paper are defined first, then assumptions of our study are set up. In the
last part of this section, the cost of reduction is defined. The recursive program
schema which is defined in this section is linear in the sense of Strong [7]. But
we define the desired program schema in a different way, because ours is more
restricted than its linear recursion schema.

Definition 3-1 (Term):

Let Bs = {bi, bz, . .. , bn} be a set of base-operation symbols, each element bi is
associated with non-negative integer called the arity of bi· Elements of Bs with
arity 0 are called constants. Let P= {P1 ,P2, . .. ,Pm} be a set of predicate symbols,
each element Pi is associated with its arity. Let A={a1,a2, ... ,ai} be a set of
argument symbols, and F={/1,/2, ... ,/k} be a set of function symbols, each ele
ment fi is associated with its arity. The set of terms over Bs, P, A, and F is
defined inductively as follows.

(1) An argument symbol is a term,

(2) If t 1 , t 2, ••• , t n are terms and b is a base operation symbol with ari ty n,

6

Relative Efficiencies of Reduction Machines

then b(t1,t2,. .. ,tn) is a term.

(3) If t1, t2, ... , tm are terms and p is a base operation symbol with arity m,
then p(t1,t2, ... ,tm) is a term.

(4) If t1,t2, ... ,tk are terms and f is a base operation symbol with arity k,
then f(t1,t2, ... ,tk) is a term.

Definition 3-2 (Recursive program schema):

A recursive program schema Sr is a set of equations

where X1, X2, .•• , Xn are elements of A, and ti is a term over Bs, P, A, and F.

Definition 3-3 (Interpretation):

The interpretation It for a recursive program schema Sr is defined as follows.

Let D be a non-empty set.

(1) Each base-operation symbol bi with arity n is associated with a mapping
nn ---+ D. Remark that each constant c is associated with an element d of D.

(2) Each predicate symbol Pi with arity m is associated with a mapping
nm ---+ {t, f}, where t and f are elements of D.

Definition 3-4 (Recursive program) :

A recursive program is a tuple (Sr, It) where Sr is a recursive program
schema and lt is its interpretation.

A recursive program which belongs to the following form is analyzed in this
paper.

h(x, ... ,Xm,

(1)

where p is a predicate symbol, q, h, k1 . .. and km are base-operation symbols.
This schema is linear in the sense of Strong [7]. The interpretation of the program

7

A. AmA

(1) is as follows. The set D is arbitrary. Let ai, a2, ... , am be values of argument
symbols X1,X2, ... ,Xm of (1), and p(k1n(a1), k2n(a), ... ,kmn(am)) is simplified to t,
where kt(ai) denotes the result of the simplification of a term which is obtained
by n times applications of ki to ai (i=l,2, .. . ,m).

There are following alternatives of the reduction machine on which recursive
programs of the form of (1) are reduced.

i) Machine language : There are two kinds of machine languages. One
consists of lambda-terms, and the other consists of combinatory expressions. Both
reduction systems are extended by introducing constants and primitive operation
symbols.

ii) Sub-expression sharing: On both lambda-terms and combinatory expres
sions there is a choice. By one method, sub-expressions are shared by their ap
propriate occurrences, and by the other they are not shared. In the lambda
calculus, sub-expressions which are obtained by the substitution to occurrences
of the bound variable can be shared among the occurrences of such sub-expressions.
In the combinatory logic, the plural occurrences of sub-expressions in the con
tractum of reduction rules, such as the third argument of the combinator S, can
be shared by their occurrences as in the reduction machine in Turner [9].

As for reduction machines for combinators, there is a choice on combinators
which are used to represent the program. One machine uses combinators S, K,
I, B, and C, and the other machine uses combinators S, K, I, B, C, S', B', and
C'. It is clear that the reduction using the latter set is more efficient than that
using the former set as in Turner [8].

The relative efficiency is compared among the following three types of reduc
tion machines.

1) Type I: Reduction machine for the lambda-calculus in which sub-expres
sions are not shared.

2) Type II: One for lambda-terms in which sub-expressions are shared by
their appropriate occurrences.

3) Type III: One for combinators S, K, I, B, C, S', B', and C' in which
sub-expressions are shared on reducing combinators S and S'.

Consider the program of the form of (1) with two parameters as an example.

(2)

The program (2) is translated into the following lambda-program.

8

Relative Efficiencies of Reduction Machines

(3)

By translating a lambda-term of the right-hand side of the lambda-program (2) to
a combinatory expression, the following combinatory-program is obtained by the
algorithm in Turner [8].

f=S' S

(S' S (B' B cond p) q)

(4)

The cost of the reduction is given on the following items.

i) The number of (-reduction: The total number of reduction of variables
which represent function symbols.

ii) The number of primitive-operations: The total number of reduction of
primitive-operation symbols p, q, h, ki (i=l,2, ... ,m) to obtain the normal form.

iii The number of conditionals: The total number of reduction of the primi
tive-operation symbol cond to obtain the normal form.

iv) The number of proper reductions: In the reduction machine for lambda
terms, this means the number of applications of the beta-rule to obtain the normal
form, and in the reduction machine for combinators, the total number of com
binator reductions to obtain the normal form.

The reduction cost is obtained when a lambda-term or a combinatory expres
sion (f a1 a2 ... am) is reduced into a normal form in each type of machin.e under
a program (3) and (4).

4. Costs for reductions

In this section, reduction costs are presented. In Table 1, the number of
reductions are shown for each rule, where n denotes the number of applications
of k1, k2, ... and km to arguments a1, a2, ... , am of the program before the eva
luation of p turns true where true is a constant in each reduction system. Note
that n is also called 'the recursion depth', and m denotes the number of parameters
of the recursive program.

9

Reduction System

Type

Reduction off

Primitive Operation

Conditionals

,8-reductions

Combinators

s
B

S'

B'

C'

A. AIBA

Table-1 : The Cost of the Reduction

..{-calculus

Type-I
(Not-shared) Type-II (Shared)

n+l

m·n2+(m+2)n+2

n+l

m(n+l)

n+l

(m+2)n+2

n+l

m(n+l)

m: The number of parameters of program.
n : The depth of the recursion.

combinatory logic

Type-III (Shared)

n+l

(m+2)n+2

n+l

l/2·m(mn+9n)
+3m+n

3n+2

(m+2)n+l

3(m-l)n+2(m-1)

(m-l)n+(m-1)

1/2·m(m-l)n

As an example, the reduction sequence of (3) in Type I and Type II reduction
machines are listed in the following. Suppose that a1 and a2 are arguments for
this term, and (p k1(a1) k2(a2)) is reduced into true, where k1(a1) and k2(a2) denote
normal forms of (k1 a1) and (k2 a2), respectively. Thus, n=2 and m=l in this
example.

(1) Reduction sequence in Type I.

by /-reduction

by beta-reduction

10

Relative Efficiencies of Reduction Machines

by beta-reduction

-+ (cond (p a1 a2) (q a1 a2)

(h a1 a2 (f (k1 a1) (k2 a2)))),

by p-reduction

-+ (cond false (q a1 a2)

(h a1 a2 (f (k1 a1) (k2 a2)))),

by cond-reduction

by /-reduction

-+ (h a1 a2

by beta ·reduction

by beta-reduction

((AX1. AX2. (cond (p X1 X2) (q X1 X2)

(h X1 X2 (f (k1 X1) (k2 X2))))

(k1 a1) (k2 a2))),

((Ax2. (cond (p (k1 a1) x2) (q (k1 a1) x2)

(h (k1 a1) X2

(f (k1 (k1 a1)) (k2 X2)))))

(k2 a2))),

11

by k1 -reduction

A. ArnA

(cond (p (k1 a1) (kz az)) (q (k1 a1) (kz az))

(h (k1 a1) (kz az)

Cf (k1 (k1 a1)) (kz (kz az)))))),

(cond (P k1 (a1) (k1 az)) (q (k1 a1) (kz az))

(h (k1 a1) (kz az)

where k1(a1) denotes the normal form of (k1 a1),

by kz-reduction

(cond (p k1(a1) kz(az)) (q (k1 a1) (kz az))

(h (k1 a1) (kz az)

Cf (k1 (k1 a1)) (kz (kz az)))))),

where kz(az) denotes the normal form of (kz az),

by p-reduction

by cond-reduction

(cond true (q (k1 a1) (kz az))

(h (k1 a1) (kz az)

Cf (k1 (k1 a1)) (kz (kz az)))))),

12

Relative Efficiencies of Reduction Machines

by k1 -reduction

where k1(a1) denotes the normal form of (k1 a1),

by k2-reduction

where k2(a2) denotes the normal form of (k2 a2),

by q-reduction

where q(k1(a1), k2(a2)) denotes the normal form of (q k1(a1), k2(a2)),

by h-reduction

which is the normal form of the given term.

In this reduction sequence, the numbers of each reductions are

/-reduction : 2 times

primitive-operations :

cond-reductions:

beta-reduction:

8 times

2 times

4 times

(2) Reduction sequence in Type II.

by /-reduction

13

A. ArnA

by beta-reduction

~ Ox2. (cond (p a1 x2) (q a1 x2)

(h a1 X2 (f (k1 a1) (k2 x2))))) az,

by beta-reduction

~ (cond (P a1 az) (q a1 az)

(h a1 az (f (k1 a1) (k2 az)))),

by ft-reduction

~ (cond false (q a1 az)

by cond-reduction

by /-reduction

by beta-reduction

(h a1 az (f (k1 az) (k2 a2)))),

((lx1. lx2. (cond (p x1 x2) (q X1 x2)

(h X1 X2 (f (k1 X1) (k2 X2))))))

(k1 a1) (k2 a2))),

((Ax2. (cond (p (k1 a1) x2) (q (k1 a1) x2)

14

Relative Efficiencies of Reduction Machines

(Note that 4 occurrences of the expression (k, a,) are shared by their occur
rences).

by beta-reduction

(Note that 4 occurrences of (k2 a2) are shared by their occurrences).

by k1 -reduction

by k2-reduction

by p-reduction

15

A. AIBA

by cond-reduction

by q-reduction

where q(k1(a1), k2(a2)) denotes the normal form of (q k1(a1) k2(a2)),

by h-reduction

which is the normal form of given term.

In this reductionce, the numbers of reductions are

/-reduction: 2 times

primitive-operations: 6 times

cond-reductions : 2 times

beta-reduction: 4 times

Numbers of reductions of Type I and Type II in Table I are investigated in
the appendix.

5. Comparisons

By observing Table 1, the followings are dear.

1) The reduction machines which share sub-expressions by their occurrences
require the same number of steps of the reduction of f as the reduction machine

16

Relative Efficiencies of Reduction Machines

without sharing.

2) The number of primitive operations. and that of cond are independent of the
reduction systems.

Thus. the difference between the reduction machine for the lambda-calculus
and that for the combinatory-logic is in the number of their proper reductions,
beta-reductions and reductions of combinators. However, these number can not
be compared directly, because one beta-reduction may be different, in the amount
of time or space, from one combinator reduction.

Suppose that lambda-terms and combinatory expressions are represented as
binary trees in each reduction machine as in Fig. 1, the cost of each reduction
can be compared by the following two criteria.

1) The total number of changed pointers in the tree representing a term to
perform proper reductions.

2) The total number of used cells to perform proper reductions.

(a) v

(b) Av. E

(c) (E F)

v

(\
AV E*

(\
E* F*

(where v is a variable, a constant, or a

base operation symbol)

(where E * is the tree representation

of E)

(where E *and F *are tree

representations of E and F,

respectively)

Fig.-1 : Tree representation

By introducing the above two criteria, the beta-reduction can be compared to
the combinator reduction. Note that shared sub-expressions are represented by
pointers to common nodes.

In Type I reduction machine, there are (6 m+5) terminal nodes and (6 m+4)
non-terminal nodes when the tree represents a lambda-term with m parameters.
In the body of the tree, there are (5 m+5) terminal nodes and (5 m+4) non
terminal nodes. When a beta-reduction is performed on the tree, a sub-tree
representing a corresponding argument is substituted to terminal nodes representing

17

A. AIBA

4 occurrences of a bound variable in the body of the tree. Thus, 3 times of cells
which construct a sub-tree representing a corresponding argument are used by one
beta-reduction. The relation between this number of cells and n is as follows.

n

0

1

2

3

the number of cells

1

3

5

7

Thus, the total number of used cells to perform m(n + 1) times beta-reductions
are: 3(n+1)2m=3 mn2 +6 mn+3 m

On the other hand, 4 pointers are changed to perform substitutions for one
beta-reduction, and 2n pointers are changed to construct an argument. The rela
tion between this number of changed pointers and n is as follows.

n

0

1

2

3

the number of pointers

0

2

4

6

Note that there are 4 occurrences of each argument. Thus, the total number of
changed pointers to perform m(n+l) times beta-reductions are: 3 n(n+l)m+
4 m(n+1)=3 mn2 +7 mn+4 m

In Type II reduction machine, 4 occurrences of each bound variable are shared
by their occurrences, and sub-expression which is substituted to a bound variable
are also shared by their occurrences. However, a sub-tree which represent an
argument is copied once when a beta-reduction is performed. Thus, the total
number of used cells to perform m(n+l) beta-reductions are: (n+l) 2m=mn2 +
2mn+m

The total number of changed pointers to perform m(n+l) beta-reductions are:
n(n+l)m+4 m(n+l)=mn2 +5 mn+4 m

In Type III reduction machine, the number of cells and the number of changed
pointers to perform a reduction are dependent on the combinator which are used
in that reduction. In Table 2, the number of used cells and the number of changed
pointers are listed.

18

Relative Efficiencies of Reduction Machines

By these arguments, the total number of used cells and the total number of
changed pointers to obtain the normal form of the term representing a program
which is belong to the linear branched recursion schema in each reduction machine
can be summarized as in the Table 3. Note that n and m in these tables are same
as those for Table 1.

Table-2: Number of used cells and changed pointers of Combinators

Number of cells Number of pointers

s 2 6

B 1 4

s' 3 8

B' 2 6

C' 2 5

Table-3: Number of used cells and changed pointers

Reduction System A-calculus

Type

Number of cells

Number of pointers

Type-I
(Not-shared)

3 mn2+6 mn+3 m

3 mn2 +7 mn+4 m

m: The number of parameters of program.
n : The depth of the recursion.

Type-II (Shared)

mn2+2:mn+m

combinatory logic

Type-III (Shared)

m2·n+ll mn+9 m
-5n-2

5/2·m2·n+59/2·mn
+26m+8n

By observing Table 3, the followings are concluded. (1) The reduction with
sharing is more efficient than the reduction without sharing. (2) The reduction
in the lambda-calculus is more efficient than that in the combinatory logic when
they reduce terms representing our recursive programs if m is larger, and con
verse is true if n is larger.

REFERENCES

[1] Backus, J., 1978, Can programming be liberated from the von Neumann style?: A
functional style and its algebra of programs, Comm. ACM 21(8). pp. 613-641.

[2] Barendregt, H.P., 1981, The Lambda Calculus: Its Syntax and Semantics, North-Holland,
Amsterdam.

19

A. AmA

[3] Burton, F.W., 1982, A linear space translation of functional programs to Turner
combinators, Inf. Process. Lett. 14(5). pp. 201-204.

[4] Ida, T., and Konagaya, A., 1984, Comparison of closure reduction and combinatory
reduction schemes, private communication.

[5] Jones, S.L.P., 1982, An Investigation of the Relative Efficiencies of Combinators and
Lambda Expressions, Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pp. 150-158.

[6] Klop, J.W., 1981, Combinatory Reduction System, Thesis for the Ph. D., University of
Utrecht.

[7] Strong Jr., H.R., 1971, Translating Recursion Equation into Flow Charts, /. Comput.
Syst. Sci., 5, pp. 254-285.

[8 J Turner, D.A., 1978, Another Algorithm for Brachet Abstraction, /. Symbolic Logic,
44, pp. 267-270.

[9 J Turner, D.A., 1979, A New Implementation Technique for Applicative Languages,
Softw. Pract. Exper., 9, pp. 31-49.

[10] Wadsworth, C.P., 1971, Semantics anl pragmatics of the lambda calculus, Thesis for
Ph. D., University of Ox.ford.

20

Relative Efficiencies of Reduction Machines

Appendix: Investigation of the costs of the reductions in Type I and Type II
reduction machines

Conditions of the investigation are as follows.
1) Consider the lambda-terms which represent programs of the form (lJ in Sec
tion 3,

2) a lambda-term (f a1a2 ... am) is given as the initial term of the reduction
sequence under a program

whose form for m=2 is given in (3) in Section 3.

3) the number of parameters is m, and

4) (p X1 x2 ... xm) turns true after n times applications of k1, k2, ... and km to
arguments a., a2, ... , and am of the term, respectively.

For Type I and Type II reduction machine, each expression in Table 1 is ob
tained by the following statements.

Statement 1

In Type I reduction machine, n + 1 reductions of f are required to obtain the
normal form.

Proof

Obvious from the condition 2) and 4).

Statement 2

In Type I reduction machine, m(n + 1) beta-reductions are required to obtain the
normal form.

Proof

For each reduction of f, m beta-reductions are performed by the condition 2). By
Statement 1, reduction of f is performed n + 1 times. Thus, beta-reduction is

21

A. ArnA

performed m(n + 1) times.

Statement 3

In Type I reduction machine, n + 1 reductions of cond are re~iuired to obtain the
normal form.

Proof

For each reduction of f, the reduction of cond is performed only once to select
one branch of it. By Statement 1, reduction of f is performed n + 1 times. Thus,
reduction of cond is performed n + 1 times. Thus, reduction of cond is performed
n+l times.

Lemma 4

In Type I reduction machine, n + 1 reductions of p is required to obtain the normal
form.

Proof

For each reduction of cond, the reduction of p is performed once. By Statement
3, reduction of cond is performed n + 1 times. Thus, the reduction of p is per
formed n + 1 times.

Lemma 5

In Type I reduction machine, only one reduction of q is required to obtain the
normal form.

Proof

The reduction of q is performed when (P Xi x2 ... xm) turns true. Thus, the
reduction of q is performed only once.

Lemma 6

In Type I reduction machine, n reductions of h is required to obtain the normal
form.

Proof

The reduction of h is performed once when f in arguments of his reduced. The
first reduction of f does not satisfy this condition. Thus, the reduction of h is
performed n times.

22

Relative Efficiencies of Reduction Machines

Lemma 7

In Type I reduction machine, (n 2 +n)m reductions of each ki (i=l, 2, ... , m) are
required to obtain the normal form.

Proof

Since sub-expressions are not shared in Type I reduction machine, ki (i=l,2, ... , m)
which occur in different places should be reduced separately. Once the reduction
of f in h is performed, redexes of ki (i=l,2, ... , m) are distributed to arguments
for p, q, h, and f. Thus, if such redexes in p are reduced, redexes of ki (i = 1,
2, ... , m) which are distributed in other places are not affected. Suppose that ki
(i=l, 2, ... , m) is reduced j times when f in h is reduced r times. If f in his
reduced (r+l) times, then ki (i=l,2, ... , m) in p in the lambda-term which is
obtained by (r+ 1)-st reduction of f in h should be reduced. Because such ki
redexes (i=l,2, ... , m) have never been touched, there are rm-redexes in such
places. But, (r-l)m ki-reductions (i=l,2, ... , n) are not needed to reduce in
arguments for q in the lambda-term which are obtained by r-th reduction of fin
h because this branch is not selected by the reduction of cond. On the other hand,
ki-redexes (i=l,2, ... , m) in arguments for q in the lambda-term which is ob
tained by (r+ 1)-st reduction of f in h should be reduced. The number of such
ki-redexes (i=l,2, ... , m) are rm. After the reduction of q is terminated, that
normal form is returned in the argument for h in the lambda-term which is ob
tained by r-th reduction of f in h. And other arguments for h in such place has
ki-redexes (i=l,2, ... , m). The number of such ki-redexes (i=l,2, ... , m) is
(r-l)m. Thus, ki (i=l,2, ... , m) is reduced j+2(r+l)m times when f in h is
reduced (r+ 1) times. Note that r may varied from 0 to (n-1), and if n is equal
to 0 then the reduction of ki (i=l,2, ... , m) is not performed. Therefore, in Type
I reduction machine, the reduction of ki (i=l,2, ... , m) is performed (n 2 +n)m
times.

Statement 8

In Type I reduction machine, mn2 +(m+2)n+2 reductions of primitive operations
are required to obtain the normal form.

Proof

The number of reductions of primitive operations is the summation of the total
number of reductions of p, q, h, and ki (i=l,2, ... , m). The number of reduc
tions of base operations is equal to (n+l)+l+n+(n2 +n)m, thus it is equal to
mn2 +(m+2)n+2.

In Type II reduction machine, sub-expressions are shared. First of all, we
investigate that what sub-expressions are shared in the Type II reduction machine
to obtain the number of reductions. In the lambda-terms representing our programs
of the form (1) in Section 3, there are 4 occurrences of each bound variables Xi.

23

A. AIBA

These variables are shared by their 4 occurrences in Type II reduction machine.
Note that only ki-redexes (i=l,2, ... , m) have possibilities of putting them?elves
to such occurrences of bound variables. Thus, the number of reductions of p, q,
and h are the same as in Type I reduction machine.

Lemma 9

In Type II reduction machine, mn reductions of ki (i=l,2, ... , m) are required
to obtain the normal form.

Proof

Suppose that the reduction of ki (i = 1, 2, ... , m) is performed j times if f in h
is reduced r times. In Type II reduction machine, once an argument which is
substituted to one occurrence of bound variable is reduced, then all occurrences of
such an argument in that lambda-term are reduced. Thus, if f in h is reduced
(r+l) times, then the number of reductions of ki (i=l,2, ... , m) is j+m. Note
that r may varied from 0 to (n + 1), and the number of reductions of ki (i = 1, 2,
... , m) is 0 if n is equal to O. Therefore, in Type II reduction machine, the
reduction of ki (i = 1, 2, ... , m) is performed nm times.

Statement 10

In Type II reduction machine, (m+2)n+2 primitive operations are required to ob
tain the normal form.

Proof

The total number of reductions of primitive operation is the summation of the
total number of reductions of p, q, h, and ki (i = 1, 2, ... , m). Thus, the number
of base operations is equal to (n+l)+l+n+mn. This is equal to (m+2)n+2.

24

