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ABSTRACT 

Relative efficiency of the reduction of lambda-terms and that of combinatory expres
sions are compared when they represent recursive programs belonging to the linear 
branched recursion schema in Strong [7]. The terms and the expressions are extended 
versions by introducing constants and some primitive operations on them, and all of them 
are reduced by the left-most reduction strategy. Reduction costs of the lambda-calculus 
are obtained theoretically, and those of the combinatory logic are obtained by experiments. 
The conclusions: (1) reduction with subexpression sharing is more efficient than that 
without sharing, and (2) the reduction in the lambda-calculus is more efficient than that 
in the combinatory logic if the number of parameters of the program is larger, and the 
converse is true when its recursion depth is larger. 

1. Introduction. 

Since the presentation of Backus [1] in 1978, functional programming languages 
have been concerned as a new paradigm. Theoretical base of such languages is 
the lambda-calculus or the combinatory-logic. In recent years, some attempts to 
construct machines which execute programs written in such languages were made. 
Some of these machines are called reduction machines because they execute reduc
tions in the lambda-calculus or those in the combinatory-logic. The relative effi
ciency of those machines should be com pared in various ways before they are 
constructed, and it has been discussed somehow. In Burton [3], a new method to 
translate applicative programs to combinatory expressions is proposed. By this 
method, translated combinatory expressions are small in size. In Jones [5J, some 
actual programs such as factorial function are translated into lambda-term and 
combinatory expressions, and the efficiencies of reductions are compared. Accord
ing to Ida [ 4], the efficiency of the reduction of the lambda-terms is comparable 
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to that of the combinatory expressions in terms of the order of the computational 
complexity. 

In this paper, the relative efficiency of the reduction of lambda-terms is com
pared strictly with that of combionatory expressions when they represent recursive 
programs of the following form : 

q~xi, X2, ••• , Xm), 

h(xi, X2, ••• , Xm, 

This schema is selected because 

1) it is relatively simple, and 

2) many programs are of this schema, since p, q, h, and ki (i=l, 2, ... , m) may 
be complicated functions made by the function composition. Note that the structure 
of the combinatory expression depends on the form of the program. 

Our comparisons assume the followings. 

i) lambda-terms and combinatory expressions are extended by adding con
stants and primitive-operations on constants. These extended reduction systems 
satisfy the Church-Rosser property. When the reduction system satisfies this 
property, each term has the unique result of the reduction (called the normal form) 
if it exists. This property of such kind of reduction systems is studied in Klop 
[6]. 

ii) Lambda-terms and Combinatory-expressions are reduced by the normal 
order reduction strategy. 

iii) A combinatory expression is obtained from a lambda-term by bracket 
abstraction algorithm in Turner [8]. Note that when the efficiency of the reduc
tion of combinatory expressions is concerned, this translation process is not included 
in the cost of the reduction. 

Reduction costs in lambda-calculus are calculated theoretically as in the Ap
pendix, and those in combinatory logic are given by experiments. 

Main results are as follows. (1) Let m denotes the number of parameters of 
a program, and n denotes the depth of the recursion to obtain its result. The 
beta-reductions are performed m(n + 1) times, and the reductions of combinators 
are performed (m2n+9mn)/2+3m+n times. (2) To compare further these expres-
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sions, assume that terms are represented as binary-trees or graphs the number of 
changed pointers and the number of used cells are chosen as the common measures. 
By these measures the reduction in the lambda-calculus is more efficient than the 
reduction in the combinatory-logic when the number of parameters of the program 
is larger, and the converse is true when its recursion depth is larger. The main 
result is summarized in the Table 1, and Table 3. 

In Section 2, reduction systems, lambda-calculus and combinatory logic of their 
extended version, are defined for comparison. In Section 3, recursive programs to 
be translated, and the cost of the reduction are defined. In Section 4, the cost of 
reduction of each reduction system is presented. In Section 5, these costs are 
compared. 

2. Reduction Systems 

Reduction systems for comparisons are defined in this section. Definitions of 
pure lambda-calculus and pure combinatory logic can be referred in Barendregt 
[2]. Reduction systems in this section are extended ones by adding constants, 
functions for them, and programs. 

Definition 2-1 (Lambda Terms): 

1) Lambda-terms are either constants, variables, functions denoted by J..x.M, 
where M is a lambda-term and x is a variable, or sequences of lambda-terms 
(( ... (M1M2) . .. )Mn). There may be constants true and false in the set of lambda
terms. 

2) A lambda-program is an equation f=M, where f is a constant and M is 
a lambda-term. 

3) In a lambda-term J..x.M, occurrences of x in Mis called free in M if M 
does not contain J..x. 

Definition 2-2 (Reduction Rules for lambda-terms): 

Lambda-terms are reduced successively into lambda-terms, in which no redu
cible expressions called redexes occur, by applying following reduction rules. 

1) beta-rule 

((J..x.M)N) --+ M[x: =NJ where M[x: =NJ denotes the result of sub
stituting N into every free occurrence of x in M 

2) delta-rule 

c M 1M2 ••• Mn --+ N where c is a constant called a delta-constant, Mi, 
M2 • •• , and Mn are lambda-terms, and N is the result of the reduction of c over 
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M1, M2 ... , and Mn. The reduction of c is given a priori. 

3) /-rule 

f ---+ M where f is a constant and M is a lambda-term. 

Remark: 

When a lambda-term N is reduced by applying (1) beta-rule, (2) delta-rule, 
and (3) /-rule f ---+ M then the reduction sequence of N is called 'reduction of N 
under a program f =M. If a program '! =M is obvious then 'f =M' is often 
omitted. 

Notation: 

A lambda-term (( ... (M1M2) ... ) Mn) and AX1. (Ax2 . ... (Axn. M) ... ) is often 
abbreviated as M1M2 ... Mn and h1. AX2 . ... AXn. M, respectively. 

Definition 2-3 (Combinatory Expressions): 

1) Combinators are lambda-terms with no occurrences of free variables. 

S=Ax. Ay. Az.x z (y z) 

K=Ax. Ay.x 
l=Ax.x 

B=Ax. Ay. AZ.x (y z) 
C=h. Ay. AZ. (x z) y 

S'=Ax. Ay. AZ. Au.x (y u)(z u) 
B'=Ax. Ay. AZ. Au.x y (z u) 
C'=h. Ay. AZ. Au.x (y u) z 

2) Combinatory expressions are either constants, variables, combinators, or 
sequences of combinatory expressions (( ... (M1M2) ... ) Mn). There can be constants 
true and false in the set of combinatory expressions. 

3) A combinatory-program is an equation denoted as f = M, where f is a 
constant and M is a combinatory expression. 

Notation: 

A combinatory expression (( ... (M1M2) ... ) Mn) is often abbreviated as M1M2 

... Mn· 

Definition 2-4 (Reduction rules for combinatory expressions): 

Combinatory expressions are reduced sucessively into combinatory expressions, 
in which no reducible expressions called reduction rules. 
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(1) Combinator-rules 

S X Y Z ~ X Z (Y Z) 
KXY~X 

Ix~ X 
BX Y Z ~ X (Y Z) 
C X Y Z ~ (X Z) Y 
S' X Y Z U ~ X (Y U)(Z U) 
B' X Y Z U ~ X Y (Z U) 
C' X Y Z U ~ X ( Y U) Z 

where X, Y, Z, and U are combinatory expressions. 

(2) delta-rule 

c MiM2 ... Mn ~ Nwhere c is a constant called adelta-constant,M1,M2, ... , 
and Mn are combinatory expressions. N is the result of the reduction of c over 
M1, M2, . .. , and Mn. The reduction of c is given a priori. 

(3) /-rule 

f ~ M where f is a constant and Mis a combinatory expression. 

Remark: 

When a combinatory expression N is reduced by applying (1) combinator-rules, 
(2) delta-rule, and (3) /-rule f ~ M, then the reduction sequence of N is called 
'reduction of N under a program f=M'. If a program 'f =M' is obvious then 
'f =M' is often omitted. 

A combinatory expression is obtained from a lambda-term by bracket abstrac
tion algorithm in Turner [8]. Let J..x. M be a lambda-term to be translated. By 
the following algorithm, occurrences of x in Mare eliminated. 

If Mis a constant, a variable, or a combinator, then 

I if Mis x, and 

K x otherwise. 

If M is an expression (Ml M2), then 

S Ml' M2' 

where Ml' and M2' are combinatory expressions which are obtained from Ml and 
M2 by eliminating x according to this algorithm. 

Then, obtained combinatory expressions are optimized by the following rules. 

Definition 2-5 (Optimization rules): 

(1) Optimization rules 1 

( i ) S (K X)(K Y) ::> K (X Y) 
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(ii) S (K X) I ::> X 

(2) Optimization rules 2 

( i ) S (K X) Y ::> B X Y 

(ii) S X (K Y) ::> C X Y 

(3) Optimization rules 3 

( i ) S (B X Y) Z ::> S' X Y Z 

(ii) B (X Y) Z ::> B' X Y Z 

(iii) C (B X Y) Z ::> C' X Y Z 

In the above rules (1), (2) and (3) X, Y, and Z denote arbitrary combinatory 
expressions. Optimization rules 2 can be applied if no rules in (1) can be applied, 
and optimization rules 3 can be applied if no rules is (2) can be applied. 

To satisfy the Church-Rosser property, delta-rules for the lambda-calculus and 
combinatory-logic should be restricted as in Klop [6]. That is, they should be 
left-linear and non-ambiguous. For instance, cond is introduced into the reduction 
systems to represent the conditional branching schema if. It should always have 
three arguments to satisfy that property. When a reduction system satisfies this 
property, each term in that system has its unique result of reductions if exists. 

3. Recursive programs and the cost of the reduction 

In this section, recursive program schema and recursive programs considered 
in this paper are defined first, then assumptions of our study are set up. In the 
last part of this section, the cost of reduction is defined. The recursive program 
schema which is defined in this section is linear in the sense of Strong [7]. But 
we define the desired program schema in a different way, because ours is more 
restricted than its linear recursion schema. 

Definition 3-1 (Term): 

Let Bs = {bi, bz, . .. , bn} be a set of base-operation symbols, each element bi is 
associated with non-negative integer called the arity of bi· Elements of Bs with 
arity 0 are called constants. Let P= {P1 ,P2, . .. ,Pm} be a set of predicate symbols, 
each element Pi is associated with its arity. Let A={a1,a2, ... ,ai} be a set of 
argument symbols, and F={/1,/2, ... ,/k} be a set of function symbols, each ele
ment fi is associated with its arity. The set of terms over Bs, P, A, and F is 
defined inductively as follows. 

(1) An argument symbol is a term, 

(2) If t 1 , t 2, ••• , t n are terms and b is a base operation symbol with ari ty n, 
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then b(t1,t2,. .. ,tn) is a term. 

(3) If t1, t2, ... , tm are terms and p is a base operation symbol with arity m, 
then p(t1,t2, ... ,tm) is a term. 

(4) If t1,t2, ... ,tk are terms and f is a base operation symbol with arity k, 
then f(t1,t2, ... ,tk) is a term. 

Definition 3-2 (Recursive program schema): 

A recursive program schema Sr is a set of equations 

where X1, X2, .•• , Xn are elements of A, and ti is a term over Bs, P, A, and F. 

Definition 3-3 (Interpretation): 

The interpretation It for a recursive program schema Sr is defined as follows. 

Let D be a non-empty set. 

(1) Each base-operation symbol bi with arity n is associated with a mapping 
nn ---+ D. Remark that each constant c is associated with an element d of D. 

(2) Each predicate symbol Pi with arity m is associated with a mapping 
nm ---+ {t, f}, where t and f are elements of D. 

Definition 3-4 (Recursive program) : 

A recursive program is a tuple (Sr, It) where Sr is a recursive program 
schema and lt is its interpretation. 

A recursive program which belongs to the following form is analyzed in this 
paper. 

h(x, ... ,Xm, 

(1) 

where p is a predicate symbol, q, h, k1 . .. and km are base-operation symbols. 
This schema is linear in the sense of Strong [7]. The interpretation of the program 
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(1) is as follows. The set D is arbitrary. Let ai, a2, ... , am be values of argument 
symbols X1,X2, ... ,Xm of (1), and p(k1n(a1), k2n(a), ... ,kmn(am)) is simplified to t, 
where kt(ai) denotes the result of the simplification of a term which is obtained 
by n times applications of ki to ai (i=l,2, .. . ,m). 

There are following alternatives of the reduction machine on which recursive 
programs of the form of (1) are reduced. 

i) Machine language : There are two kinds of machine languages. One 
consists of lambda-terms, and the other consists of combinatory expressions. Both 
reduction systems are extended by introducing constants and primitive operation 
symbols. 

ii) Sub-expression sharing: On both lambda-terms and combinatory expres
sions there is a choice. By one method, sub-expressions are shared by their ap
propriate occurrences, and by the other they are not shared. In the lambda
calculus, sub-expressions which are obtained by the substitution to occurrences 
of the bound variable can be shared among the occurrences of such sub-expressions. 
In the combinatory logic, the plural occurrences of sub-expressions in the con
tractum of reduction rules, such as the third argument of the combinator S, can 
be shared by their occurrences as in the reduction machine in Turner [9]. 

As for reduction machines for combinators, there is a choice on combinators 
which are used to represent the program. One machine uses combinators S, K, 
I, B, and C, and the other machine uses combinators S, K, I, B, C, S', B', and 
C'. It is clear that the reduction using the latter set is more efficient than that 
using the former set as in Turner [8]. 

The relative efficiency is compared among the following three types of reduc
tion machines. 

1) Type I: Reduction machine for the lambda-calculus in which sub-expres
sions are not shared. 

2) Type II: One for lambda-terms in which sub-expressions are shared by 
their appropriate occurrences. 

3) Type III: One for combinators S, K, I, B, C, S', B', and C' in which 
sub-expressions are shared on reducing combinators S and S'. 

Consider the program of the form of (1) with two parameters as an example. 

(2) 

The program (2) is translated into the following lambda-program. 
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(3) 

By translating a lambda-term of the right-hand side of the lambda-program (2) to 
a combinatory expression, the following combinatory-program is obtained by the 
algorithm in Turner [8]. 

f=S' S 

(S' S (B' B cond p) q) 

(4) 

The cost of the reduction is given on the following items. 

i) The number of (-reduction: The total number of reduction of variables 
which represent function symbols. 

ii) The number of primitive-operations: The total number of reduction of 
primitive-operation symbols p, q, h, ki (i=l,2, ... ,m) to obtain the normal form. 

iii The number of conditionals: The total number of reduction of the primi
tive-operation symbol cond to obtain the normal form. 

iv) The number of proper reductions: In the reduction machine for lambda
terms, this means the number of applications of the beta-rule to obtain the normal 
form, and in the reduction machine for combinators, the total number of com
binator reductions to obtain the normal form. 

The reduction cost is obtained when a lambda-term or a combinatory expres
sion (f a1 a2 ... am) is reduced into a normal form in each type of machin.e under 
a program (3) and ( 4). 

4. Costs for reductions 

In this section, reduction costs are presented. In Table 1, the number of 
reductions are shown for each rule, where n denotes the number of applications 
of k1, k2, ... and km to arguments a1, a2, ... , am of the program before the eva
luation of p turns true where true is a constant in each reduction system. Note 
that n is also called 'the recursion depth', and m denotes the number of parameters 
of the recursive program. 
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Reduction System 

Type 

Reduction off 

Primitive Operation 

Conditionals 

,8-reductions 

Combinators 

s 
B 

S' 

B' 

C' 

A. AIBA 

Table-1 : The Cost of the Reduction 

..{-calculus 

Type-I 
(Not-shared) Type-II (Shared) 

n+l 

m·n2+(m+2)n+2 

n+l 

m(n+l) 

n+l 

(m+2)n+2 

n+l 

m(n+l) 

m: The number of parameters of program. 
n : The depth of the recursion. 

combinatory logic 

Type-III (Shared) 

n+l 

(m+2)n+2 

n+l 

l/2·m(mn+9n) 
+3m+n 

3n+2 

(m+2)n+l 

3(m-l)n+2(m-1) 

(m-l)n+(m-1) 

1/2·m(m-l)n 

As an example, the reduction sequence of (3) in Type I and Type II reduction 
machines are listed in the following. Suppose that a1 and a2 are arguments for 
this term, and (p k1(a1) k2(a2)) is reduced into true, where k1(a1) and k2(a2) denote 
normal forms of (k1 a1) and (k2 a2), respectively. Thus, n=2 and m=l in this 
example. 

(1) Reduction sequence in Type I. 

by /-reduction 

by beta-reduction 
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by beta-reduction 

-+ ( cond (p a1 a2) (q a1 a2) 

(h a1 a2 (f (k1 a1) (k2 a2)))), 

by p-reduction 

-+ (cond false (q a1 a2) 

(h a1 a2 (f (k1 a1) (k2 a2)))), 

by cond-reduction 

by /-reduction 

-+ (h a1 a2 

by beta ·reduction 

by beta-reduction 

((AX1. AX2. (cond (p X1 X2) (q X1 X2) 

(h X1 X2 (f (k1 X1) (k2 X2)))) 

(k1 a1) (k2 a2))), 

((Ax2. (cond (p (k1 a1) x2) (q (k1 a1) x2) 

(h (k1 a1) X2 

(f (k1 (k1 a1)) (k2 X2))))) 

(k2 a2))), 
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(cond (p (k1 a1) (kz az)) (q (k1 a1) (kz az)) 

(h (k1 a1) (kz az) 

Cf (k1 (k1 a1)) (kz (kz az)))))), 

(cond (P k1 (a1) (k1 az)) (q (k1 a1) (kz az)) 

(h (k1 a1) (kz az) 

where k1(a1) denotes the normal form of (k1 a1), 

by kz-reduction 

(cond (p k1(a1) kz(az)) (q (k1 a1) (kz az)) 

(h (k1 a1) (kz az) 

Cf (k1 (k1 a1)) (kz (kz az)))))), 

where kz(az) denotes the normal form of (kz az), 

by p-reduction 

by cond-reduction 

(cond true (q (k1 a1) (kz az)) 

(h (k1 a1) (kz az) 

Cf (k1 (k1 a1)) (kz (kz az)))))), 
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by k1 -reduction 

where k1(a1) denotes the normal form of (k1 a1), 

by k2-reduction 

where k2(a2) denotes the normal form of (k2 a2), 

by q-reduction 

where q(k1(a1), k2(a2)) denotes the normal form of (q k1(a1), k2(a2)), 

by h-reduction 

which is the normal form of the given term. 

In this reduction sequence, the numbers of each reductions are 

/-reduction : 2 times 

primitive-operations : 

cond-reductions: 

beta-reduction: 

8 times 

2 times 

4 times 

(2) Reduction sequence in Type II. 

by /-reduction 
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by beta-reduction 

~ Ox2. (cond (p a1 x2) (q a1 x2) 

(h a1 X2 (f (k1 a1) (k2 x2))))) az, 

by beta-reduction 

~ (cond (P a1 az) (q a1 az) 

(h a1 az (f (k1 a1) (k2 az)))), 

by ft-reduction 

~ (cond false (q a1 az) 

by cond-reduction 

by /-reduction 

by beta-reduction 

(h a1 az (f (k1 az) (k2 a2)))), 

((lx1. lx2. ( cond (p x1 x2) (q X1 x2) 

(h X1 X2 (f (k1 X1) (k2 X2)))))) 

(k1 a1) (k2 a2))), 

((Ax2. (cond (p (k1 a1) x2) (q (k1 a1) x2) 
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(Note that 4 occurrences of the expression (k, a,) are shared by their occur
rences). 

by beta-reduction 

(Note that 4 occurrences of (k2 a2) are shared by their occurrences). 

by k1 -reduction 

by k2-reduction 

by p-reduction 
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by cond-reduction 

by q-reduction 

where q(k1(a1), k2(a2)) denotes the normal form of (q k1(a1) k2(a2)), 

by h-reduction 

which is the normal form of given term. 

In this reductionce, the numbers of reductions are 

/-reduction: 2 times 

primitive-operations: 6 times 

cond-reductions : 2 times 

beta-reduction: 4 times 

Numbers of reductions of Type I and Type II in Table I are investigated in 
the appendix. 

5. Comparisons 

By observing Table 1, the followings are dear. 

1) The reduction machines which share sub-expressions by their occurrences 
require the same number of steps of the reduction of f as the reduction machine 

16 



Relative Efficiencies of Reduction Machines 

without sharing. 

2) The number of primitive operations. and that of cond are independent of the 
reduction systems. 

Thus. the difference between the reduction machine for the lambda-calculus 
and that for the combinatory-logic is in the number of their proper reductions, 
beta-reductions and reductions of combinators. However, these number can not 
be compared directly, because one beta-reduction may be different, in the amount 
of time or space, from one combinator reduction. 

Suppose that lambda-terms and combinatory expressions are represented as 
binary trees in each reduction machine as in Fig. 1, the cost of each reduction 
can be compared by the following two criteria. 

1) The total number of changed pointers in the tree representing a term to 
perform proper reductions. 

2) The total number of used cells to perform proper reductions. 

(a) v 

(b) Av. E 

(c) (E F) 

v 

(\ 
AV E* 

(\ 
E* F* 

(where v is a variable, a constant, or a 

base operation symbol) 

(where E * is the tree representation 

of E) 

(where E *and F *are tree 

representations of E and F, 

respectively) 

Fig.-1 : Tree representation 

By introducing the above two criteria, the beta-reduction can be compared to 
the combinator reduction. Note that shared sub-expressions are represented by 
pointers to common nodes. 

In Type I reduction machine, there are (6 m+5) terminal nodes and (6 m+4) 
non-terminal nodes when the tree represents a lambda-term with m parameters. 
In the body of the tree, there are (5 m+5) terminal nodes and (5 m+4) non
terminal nodes. When a beta-reduction is performed on the tree, a sub-tree 
representing a corresponding argument is substituted to terminal nodes representing 
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4 occurrences of a bound variable in the body of the tree. Thus, 3 times of cells 
which construct a sub-tree representing a corresponding argument are used by one 
beta-reduction. The relation between this number of cells and n is as follows. 

n 

0 

1 

2 

3 

the number of cells 

1 

3 

5 

7 

Thus, the total number of used cells to perform m(n + 1) times beta-reductions 
are: 3(n+1)2m=3 mn2 +6 mn+3 m 

On the other hand, 4 pointers are changed to perform substitutions for one 
beta-reduction, and 2n pointers are changed to construct an argument. The rela
tion between this number of changed pointers and n is as follows. 

n 

0 

1 

2 

3 

the number of pointers 

0 

2 

4 

6 

Note that there are 4 occurrences of each argument. Thus, the total number of 
changed pointers to perform m(n+l) times beta-reductions are: 3 n(n+l)m+ 
4 m(n+1)=3 mn2 +7 mn+4 m 

In Type II reduction machine, 4 occurrences of each bound variable are shared 
by their occurrences, and sub-expression which is substituted to a bound variable 
are also shared by their occurrences. However, a sub-tree which represent an 
argument is copied once when a beta-reduction is performed. Thus, the total 
number of used cells to perform m(n+l) beta-reductions are: (n+l) 2m=mn2 + 
2mn+m 

The total number of changed pointers to perform m(n+l) beta-reductions are: 
n(n+l)m+4 m(n+l)=mn2 +5 mn+4 m 

In Type III reduction machine, the number of cells and the number of changed 
pointers to perform a reduction are dependent on the combinator which are used 
in that reduction. In Table 2, the number of used cells and the number of changed 
pointers are listed. 
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By these arguments, the total number of used cells and the total number of 
changed pointers to obtain the normal form of the term representing a program 
which is belong to the linear branched recursion schema in each reduction machine 
can be summarized as in the Table 3. Note that n and m in these tables are same 
as those for Table 1. 

Table-2: Number of used cells and changed pointers of Combinators 

Number of cells Number of pointers 

s 2 6 

B 1 4 

s' 3 8 

B' 2 6 

C' 2 5 

Table-3: Number of used cells and changed pointers 

Reduction System A-calculus 

Type 

Number of cells 

Number of pointers 

Type-I 
(Not-shared) 

3 mn2+6 mn+3 m 

3 mn2 +7 mn+4 m 

m: The number of parameters of program. 
n : The depth of the recursion. 

Type-II (Shared) 

mn2+2:mn+m 

combinatory logic 

Type-III (Shared) 

m2·n+ll mn+9 m 
-5n-2 

5/2·m2·n+59/2·mn 
+26m+8n 

By observing Table 3, the followings are concluded. (1) The reduction with 
sharing is more efficient than the reduction without sharing. (2) The reduction 
in the lambda-calculus is more efficient than that in the combinatory logic when 
they reduce terms representing our recursive programs if m is larger, and con
verse is true if n is larger. 
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Appendix: Investigation of the costs of the reductions in Type I and Type II 
reduction machines 

Conditions of the investigation are as follows. 
1) Consider the lambda-terms which represent programs of the form (lJ in Sec
tion 3, 

2) a lambda-term (f a1a2 ... am) is given as the initial term of the reduction 
sequence under a program 

whose form for m=2 is given in (3) in Section 3. 

3) the number of parameters is m, and 

4) (p X1 x2 ... xm) turns true after n times applications of k1, k2, ... and km to 
arguments a., a2, ... , and am of the term, respectively. 

For Type I and Type II reduction machine, each expression in Table 1 is ob
tained by the following statements. 

Statement 1 

In Type I reduction machine, n + 1 reductions of f are required to obtain the 
normal form. 

Proof 

Obvious from the condition 2) and 4). 

Statement 2 

In Type I reduction machine, m(n + 1) beta-reductions are required to obtain the 
normal form. 

Proof 

For each reduction of f, m beta-reductions are performed by the condition 2). By 
Statement 1, reduction of f is performed n + 1 times. Thus, beta-reduction is 
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performed m(n + 1) times. 

Statement 3 

In Type I reduction machine, n + 1 reductions of cond are re~iuired to obtain the 
normal form. 

Proof 

For each reduction of f, the reduction of cond is performed only once to select 
one branch of it. By Statement 1, reduction of f is performed n + 1 times. Thus, 
reduction of cond is performed n + 1 times. Thus, reduction of cond is performed 
n+l times. 

Lemma 4 

In Type I reduction machine, n + 1 reductions of p is required to obtain the normal 
form. 

Proof 

For each reduction of cond, the reduction of p is performed once. By Statement 
3, reduction of cond is performed n + 1 times. Thus, the reduction of p is per
formed n + 1 times. 

Lemma 5 

In Type I reduction machine, only one reduction of q is required to obtain the 
normal form. 

Proof 

The reduction of q is performed when (P Xi x2 ... xm) turns true. Thus, the 
reduction of q is performed only once. 

Lemma 6 

In Type I reduction machine, n reductions of h is required to obtain the normal 
form. 

Proof 

The reduction of h is performed once when f in arguments of his reduced. The 
first reduction of f does not satisfy this condition. Thus, the reduction of h is 
performed n times. 
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Lemma 7 

In Type I reduction machine, (n 2 +n)m reductions of each ki (i=l, 2, ... , m) are 
required to obtain the normal form. 

Proof 

Since sub-expressions are not shared in Type I reduction machine, ki (i=l,2, ... , m) 
which occur in different places should be reduced separately. Once the reduction 
of f in h is performed, redexes of ki (i=l,2, ... , m) are distributed to arguments 
for p, q, h, and f. Thus, if such redexes in p are reduced, redexes of ki (i = 1, 
2, ... , m) which are distributed in other places are not affected. Suppose that ki 
(i=l, 2, ... , m) is reduced j times when f in h is reduced r times. If f in his 
reduced (r+l) times, then ki (i=l,2, ... , m) in p in the lambda-term which is 
obtained by (r+ 1)-st reduction of f in h should be reduced. Because such ki
redexes (i=l,2, ... , m) have never been touched, there are rm-redexes in such 
places. But, (r-l)m ki-reductions (i=l,2, ... , n) are not needed to reduce in 
arguments for q in the lambda-term which are obtained by r-th reduction of fin 
h because this branch is not selected by the reduction of cond. On the other hand, 
ki-redexes (i=l,2, ... , m) in arguments for q in the lambda-term which is ob
tained by (r+ 1)-st reduction of f in h should be reduced. The number of such 
ki-redexes (i=l,2, ... , m) are rm. After the reduction of q is terminated, that 
normal form is returned in the argument for h in the lambda-term which is ob
tained by r-th reduction of f in h. And other arguments for h in such place has 
ki-redexes (i=l,2, ... , m). The number of such ki-redexes (i=l,2, ... , m) is 
(r-l)m. Thus, ki (i=l,2, ... , m) is reduced j+2(r+l)m times when f in h is 
reduced (r+ 1) times. Note that r may varied from 0 to (n-1), and if n is equal 
to 0 then the reduction of ki (i=l,2, ... , m) is not performed. Therefore, in Type 
I reduction machine, the reduction of ki (i=l,2, ... , m) is performed (n 2 +n)m 
times. 

Statement 8 

In Type I reduction machine, mn2 +(m+2)n+2 reductions of primitive operations 
are required to obtain the normal form. 

Proof 

The number of reductions of primitive operations is the summation of the total 
number of reductions of p, q, h, and ki (i=l,2, ... , m). The number of reduc
tions of base operations is equal to (n+l)+l+n+(n2 +n)m, thus it is equal to 
mn2 +(m+2)n+2. 

In Type II reduction machine, sub-expressions are shared. First of all, we 
investigate that what sub-expressions are shared in the Type II reduction machine 
to obtain the number of reductions. In the lambda-terms representing our programs 
of the form (1) in Section 3, there are 4 occurrences of each bound variables Xi. 
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These variables are shared by their 4 occurrences in Type II reduction machine. 
Note that only ki-redexes (i=l,2, ... , m) have possibilities of putting them?elves 
to such occurrences of bound variables. Thus, the number of reductions of p, q, 
and h are the same as in Type I reduction machine. 

Lemma 9 

In Type II reduction machine, mn reductions of ki (i=l,2, ... , m) are required 
to obtain the normal form. 

Proof 

Suppose that the reduction of ki (i = 1, 2, ... , m) is performed j times if f in h 
is reduced r times. In Type II reduction machine, once an argument which is 
substituted to one occurrence of bound variable is reduced, then all occurrences of 
such an argument in that lambda-term are reduced. Thus, if f in h is reduced 
(r+l) times, then the number of reductions of ki (i=l,2, ... , m) is j+m. Note 
that r may varied from 0 to (n + 1), and the number of reductions of ki (i = 1, 2, 
... , m) is 0 if n is equal to O. Therefore, in Type II reduction machine, the 
reduction of ki (i = 1, 2, ... , m) is performed nm times. 

Statement 10 

In Type II reduction machine, (m+2)n+2 primitive operations are required to ob
tain the normal form. 

Proof 

The total number of reductions of primitive operation is the summation of the 
total number of reductions of p, q, h, and ki (i = 1, 2, ... , m). Thus, the number 
of base operations is equal to (n+l)+l+n+mn. This is equal to (m+2)n+2. 
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