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ABSTRACT 

Structure of the boundary of the set of values of distribution functions at 
each censored point of interval-censored data is analyzed. The results are 
applied for many kinds of typical families of distributions to find sufficient 
conditions under which a maximum likelihood estimate from interval-censored 
data exists. The families are location parameter family, location-scale para­
meter family and so on. 

1. Introduction. 

Let X be a random variable and let the distribution of X belong to a family 
P={Po: OEB} of probability measures on SR=[ -oo, oo], which are not degenerate 
at infinity. The parameter space fJ is an arbitrary nonempty set. Let (Xi. · · ·, 
Xq) be a random sample from the distribution of X, and assume that we observe 
only the event that each X, l:s;;i:s;;q, lies in an interval Ci of $=(-oo, oo) with 
nonempty interior. The collection C = {C" · · ·, C q} is called an interval-censored 
data of size q. Our problem is to find criteria which assure the existence of a 
maximum likelihood estimate (MLE) from the interval-censored data c. 

To solve this problem, structure of the boundary of the set of values of the 
distribution functions at each censored point of C plays an important role. This 
set is called the probability contents inner boundary (p. c. i. b.) of C (for P), whose 
definition will be given in the next section. The notion of the p. c. i. b. of C was 
introduced in previous papers ([2], [3]), where, by means of this notion, a method 
of finding critria for the existence of an MLE was presented. 

The purpose of this paper is to seek a general method of specifying the 
structure of the p. c. i. b. of C and to find the p. c. i. b. of C for many kinds of 
typical families of distributions. 

2. Probability contents inner boundary 

We begin with the definition of the probability contents inner boundary of C 
for P. Throughout this paper we assume that: 

*) Kawasaki Medical School 
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(2.1) For any Ck, Po(Ck)-=t=O and 1 on 8. 
(2.2) For each k, 1 s ks q, there exist two points ak and bk of IR such that Po(C k) 

=Po([ak, bk)) on 8. 

Let F(x, B)=Po([ -CD, x)), xE!R; 0E8 and write 9!={F(x, B); 0E8} corresponding to 
ff= {Po; 0E8}. Then intervals [ak, bk) generate a covering {[xi, Xi+1); i =0, · · ·, m} 
such that 

( i) -CXl=Xo< · · · <xm+1=CX>, 
(ii) Xi and Xj Ci*i) are not equivalent (with respect to the family P), i.e., there 

exists 0E8 such that F(xi, B)*F(xj, 0), 

(iii) each of ak and bk, lsksq, is equivalent to some xi, Osism+l and each 
xi, lsism, is equivalent to some ak or bk, lsksq. 

Each xi, 1 sis m, is called a censored point of C. Define the mapping F: 8--+ IRm 
(Euclidean m-space) by 

F(fJ)=(F(xi, 0), · · ·, F(xm, fJ)), 

and with the difference between the image F(fJ) and the closure F(8) by 

oF(fJ) =F(fJ)-F(8). 

The set aF(B) is said to be the probability contents inner boundary(p. c. i. b.) of C. 
Let ¢ be a mapping from 8 into some set 8', T be a function from the set 

{xi, · · ·, xm} into IR, and g = {G(x, fJ'); O' EfJ'} be a family of distributions (d. f.'s) on 
IR. We say that g is equivalent to g with respect to the pair (<)1, T) if 

( i) ¢(8)=8', 
( ii ) T is independent of () E 8 and of ()' E f)', 

(iii) G(T(xi), ¢(0))=F(xi, 0) for all OEfJ and for all i=l, · · ·, m. 

To emphasize that the p. c. i. b. oF(B) depends on the set {xi}, we often write 
uF1:ri 1(8) instead of aF(8). 

This equivalence means the following fact. 

Proposition 2.1. Let g={G(x, O'); O'E8'} be a family of d. f.'s on IR which is 
equivalent to P with respect to the pair (¢, T). Then aF,xi1(8) =oGmxi)1(¢(8)). 

In order to determine the structure of oF(B), put 

F;, 1([u, u'J)={{}EfJ; usF(x, O)su'} 

for each xEIR and for each pair (u,u') with Osusu'sl. Let p be an integer 
with 1 sPs m, let 3(P) denote the set of all p-tuples Ci1i · · ·, ip) of integers with 
lsi 1 <···<ipsm and put fD(P)={(di. ···,dp)Ec!J(p); dp=m}. Each (di. ···,dp)E 
fD(P) can be regarded as the division of the set {1, · · ·, m} into p parts {1, ···,di}, 
···, {dp-i+l, ···,dp}. To emphasize this fact we write d=<d1i ···,dp) instead 
of d = (d1i · · ·, dp). For each integer p, 1 sp s m, and for each d = <d1i · · ·, dp) E fD(P ), 
define the sets 
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P=l, 
P?::.2, 
P=l, 
P?::.2. 

For convenience, we put g](p)=Jl(d)=Jlo(d)=Jl1(d)=O for P=O or P?::.m+l. 
For each integer p ( 21) put 

Jlp= ( LJ dE{])(p-1) Jl(d )) LJ ( LJ dE{])CPl Jlo(d) LJ Jl1(d)) LJ ( LJ dE{])CP+l) Jlo(d) n Jl1(d)) • 

We use the convention that the union over a null index set is the empty set 0. 
The following result gives a method of specifying the structure of the p.c.i.b. 

of c. 

Proposition 2.2 (cf. [2; Theorem 3.3]). The relation oF(G)cJlv holds if the follow­
ing condition is satisfied for a positive integer p (sm): 

(F. 1) For every set of pairs (uj, uj), lsjsp, with O<ur"::;,uj<uj, 1 <1 and (ii,···, ip) 

E!](p), F( n 1i=1 Fx-/([Uj, uj]))cF(G). 

For each integer p (21), define 

[f)*(P)={(di, · · ·, dp)Egj(p); dp-1Sd1 +p-1}, 

[f)**(P)= {o, 
{(di, · · "dp) Egj(p); dp-1 =d1 + p-2}, 

(2.1) Jl:=c u dE{])CP-1) Jl(d)) u Jlo(d') u Jl1(d") 

P=l, 
p22, 

u ( u dEfl)*(p) Jlo(d) n Jl1(d)) u ( u dEfl}**(Po 1) cAo(d) n Jl1(d))' 

where d'=d"=<m> for P=l, and d'=<m-p+l, · ·., m) and d"=(l, · · ·,P-1, m) 
for P22. It should be noted that Jlt=Jl1 and JltcJl 11 for P22. 

Proposition 2.3. The relation aF(G)cJlt holds if condition (F.1) and the follow­
ing condition are satisfied : 

(F.2) For every set of a p-tuple (i,i+l, ···,i+p-l)E!J(P) and a set {Vo, ··.,Vp-i} 
with O<vk<l for each k, there exist a pair (u, u') with O<u<u'<l and a 
set {ao, · ·., Op-1} such that O<ok<min (vk, 1-vk) for each k and nf:~ F~~k 
([vk -ok, vk +ok]) cF~ 1 ([u, u'J) n F;:~([u, u'J). 

Proof. In case p = 1, the relation aF( fJ) c Jlt follows from the definition of Jlt 
and Theorem 2.1. Consider the case P22. We show the following fact: 

(2.2) For every z=(zi, · ·., Zm)EF(G) with Z1 =0 or Zm= 1, there is no p-tuple 
(i, i+l, · ·., i+p-l)E!J(P) such that O<ziSZi+p-1 <1. 

In fact, assume the contrary. Then there exist z=(zi. · · ·, Zm)EF(G) with z 1 =0 or 
Zrn=l and a P-tuple (i, i+l, · ·., i+P-l)E!J(P) such that O<ziSZi-p-1 <1. Since zE 
F(fJ), there is a sequence {On} in fJ such that limn F(On) =z. Because of (F. 2), 
there exists a pair (u, u') with 0< u< u' < 1 such that OnEF~1 ([u, u']) n Fx~([u, u']) 
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for infinitely many n. This yields that u::::;; z1 =limn F(xi. On)::::;; Zm =limn F(:Em, On)::::;; u', 
which is a contradiction. We prove 

(2.3) ( LJ dEIJ)CPl Jlo(d)) n aF(fJ) C_jf_o(d') LJ ( LJ dEili*(Pl n k=o Jlk(d)) · 

Let d=(di. ···,dp)E!JJ(P) and z=(zi. ···,zm)EcAo(d)nJl1(dYnoF(C-1), where cA1(d/ 
denotes the complement of Jl1(d). Then zd1 =0 and 0< Zm < 1. Since dE!J)(p), d1::::;; 
m-p+l. Assume d1<m-p+l. Then we can find (i,i+l, ···,i+p-l)E!f(P) with 
i=d1+l. This contradicts the statement (2.2). Thus d1=m-p+l, i.e., d=d'. 
Namely Jlo(d) n Jl1(dY n oF(fJ)*0 implies d=d'. Next let z=(Zi, ... 'Zm)EJlo(d) n 
Jl1(d) n aF(fJ). Then O=z1 = ... =zd1 <zd1+I = ... =Zdz< ... <zdp-1~ I= ... =Zm=l. By 
(2.2), we see that dp-1::::;; dl + p-1, i.e., dE !JJ*(p). Namely Jlo(d) n Jl1(d) n aF(8)*0 
implies dE!J)*(p). Thus ZEJlo(d) n oF(C-1) implies that ZEcAo(d') or ZE n Lo Jlk(d) with 
dE !D*(p) and hence the relation (2.3) holds. Similarly we can prove that 

(2.4) 
(2.5) 

( LJ dE9JCPl Jl1(d )) n oF(8) C Jl1(d") LJ ( U dE!D*CPl n k=o Jlk(d )) , 
( LJ dE£llCP+1J n k=o Jlk(d) n oF(fJ) C LJ dE!D**CP 1-1) n k=o Jlk(d) · 

Hence we have oF(C.:.J)cJlt by Proposition 2.2 and (2.3)-(2.5). 

We prove 

Theorem 2.1. Let P22, (-) be a Hausdorff space and F(O) be continuous on (-). 
Then oF(fJ)=Jlt if condition (F. 2) and the following conditions are satisfied: 

(F. 3) For every set of pairs (uj, u;), 1 :=::;;j :=::;;p, with 0< ui:=::;; u;< Uj 1<1 and (ii. ···,iv) 
E/i(p), the set n 'J~ 1 F,--j1([uj, u;J) is compact. 

(F. 4) For each OEfJ, there exists (ii' · · ·, iv)E!f(P) such that 0<F(xi1, fJ)< · · · < 
F(xip' 0) < 1. 

(F. 5) For every set of pairs (uj, u;), l:=::;;j:=::;;p, with O<ui:=::;;u;<uj. 1 <1 and (i1, · · ·, ip) 
E !J(p), the set n 'J=1 Fr~~([uj, u;J) is nonempty. 

(F. 6) For every set of pairs (uj, u;), l:=::;;j:=::;;p, with O<ui<u;<ui 1 <1 and (d1, · · ·, 
dp-1)Eff)(p-l), the set n '}:-i ( n {F;~([uh u;J); dj-1 <k:=::;;dj}) is noempty. 

Proof. The relation iJF(8)c_At follows from Proposition 2.3 and Remark 2.1 (see 
below). To show the converse relation, we prove U dEm••cv+o n k=o Jlk(d)caF(fJ). 
Let z=(zi. ···,Zm)Ecll.o(d)nJl1(d) (d=(di. ···,dp'-l)E.fD**(p+l)). Then O=zd1<zd 2 

< · · · <zrIP <zm= 1. Take an integer no so that 2n01 <min (ZrI 2 , Zd 3 -Zd 2 , • • ·, zdv­
Zr1P_1, 1-zdp). Because of (F. 6), the set Sn=F;;/l([(l +n)-1, n-1]) n ( n k=z Fx~1/[zdk -n-1, 
Zrtk+n-1])) is nonempty whenever n2no. Choose an arbitrary 0nESn(n2no). 
Without loss of generality, we may assume that {F(On)} is a convergent sequence 
with limit z'=(z~, ···,z:n). Since di=d1+j-l, l:=::;;j:=::;;p, Zj=z; for all j=l, ···,dp. 
The statement (2.2) yields that z;=l for all j>dp. Hence z=z'. Since Jlo(d)n 
Jl1(d) n F(fJ)=0 by (F. 4), we can see zEiJF(fJ). Thus n dE9J••cv' 1) n k=o ,Jl.k(d) coF(fJ). 
Similarly we can prove that cAo(d') coF(fJ), Jl1(d")coF(fJ) and U dEfP·cvl n k=o Jlk(d) 
cDF(fJ). Finally we show u dEUlCP-ll cJl(d)caF(fJ). Let z=(Zi, ... 'Zm)EJl(d) (d= 
(di..··, dp-i)E.fD(P-1)). We first prove that zEoF(C7) in case O<zd1 < · · · <zrlp_1 
<1. Takeanintegern1>0so that 2n;1<min(zdl'Zd2 -Zrtp ···,zdp_1-zrtp_2,l-zdv_J 
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Because of (F.6), the set S~=n1:UnWxj1([z<1k-n- 1 ,zdk+n- 1 ]); dk-i<i~dk}) is 
nonempty whenever n?::..n1. Choose an arbitrary OnES~ (n?::._n1). Note that limn 
F(On)=z. Since ,_A(d) n F(fJ)=0 by (F. 4), we can see zEoF(B). We prove zEoF(fJ) 
in the general case. There is a sequence {Zn= (Zni, · · ·, Znm)} in cA(d) such that 
0<znd1 < · · · <zndp-i <1 and limn Zn=Z. Since ZnEoF(B) for all n, we can choose a 
sequence {On} in fJ such that llzn-F(On)ll<l/(2n), where II II denotes the usual 
distance on !Rm. This yields limn F(On)=z. Hence zEoF(B). Now the converse 
relation cAtcoF(fJ) is proved. This comletes the proof. 

Remark 2.1. If c.:.; is a Hausdorff space and if F(O) is continuous on 8, then con­
dition (F. 3) implies condition (F. 1). 

Theorem 2.2. Let fJ be a Hausdorff space, F(O) be continuous on fJ and conditions 
(F. 2)-(F. 5) with P=l be satisfied. If sup {max1s;ks;m- 1 (F(xk 1 1i 0)-F(xk, 0)); OEfJ}<l, 
then oF(B)= {0, l}. 

Proof. To prove oF(fJ) c {0, 1} it suffices to show S=oF(fJ) n ( U demc2) n Lo dk(d))=O, 
since do((m))={O}, d1((m))={l} and oF(B)ccA't. In case m=l, .fV(2)=0 and hence 
S=0. Let m?::..2 and suppose S=F0. Then there exists d=(i, m)EfJJ(2) such that 

i 
,----"----.. 

cAo(d) n d1(d) =F0. Since ,Jl.o(d) n d1(d)= {(0, · · ·, 0, l, · · ·, 1)}, we can find a sequence 
{On} in fJ such that limn F(xi, On)= 0 and limn F(xi i, On)= 1. This implies that sup 
{F(xi c-i. 0)-F(xi, 0); OEfJ} = 1, which is a contradiction. Next we show the converse 
inclusion. Put Un= (1 +n)- 1 and u~=n- 1 (n ?::..2). From (F. 5), it follows that 
Fx-;:J[un, u~])=F0 for all n?::..2. Hence there exists a sequence Wn} in A such that 
limn F(On)=O. Because of (F. 4), OEoF(B). Similarly we can prove lEoF(fJ). Hence 
{0, 1} caF(fJ). This gives the desired relation. 

Choose a convergent subsequence of a sequence in A such that the induced 
sequence by F converges to a point of oF(G), and by the continuity of F, we have 

Theorem 2.3. Let A be an interval of IR. and F(O) be continuous on G. Then 
oF(fJ)c{zESR.m; z=limn F(On) for some sequence {fln} in fJ with its limit OoEB-fJ}. 

3. Structure of the p. c. i. b. 

In this section we shall determine the structure of the p. c. i. b. aF(fJ) for 
typical families. For some typical families which does not appear in this section, 
structure of the p. c. i. b. are determined in Nakamura [4]. Throughout this paper 
we assume that m?::..2 and F(x) is a distribution function (d. f.) on SR such that 
{xESR; O<F(x)<l}=(a, b) with -co~a<b~co and F(x) is continuous on !.R and 

k-1 m-k 
,----"----.. ,----"----.. 

is strictly increasing on (a, b). Define ak(u)= (0, · · ·, 0, u, 1, · · ·, 1), uE[O, 1]; 1 ~k~m. 
Note 0::::(0, · · ·, O)=am(O) and l=(l, · · ·, l)=a,(l). The proofs of results in this 
section will be given in the next section. 

3.1. Location parameter family. Let 9'= {F((x-0)/a); OEfJ}, where fJ=(-co, co) and 
a is a positive number. Structure of the p. c. i. b. for all possible cases are sum­
marized below. 
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Table 3.1. 

a=-=, b=co a=-=, b<= a>-=. b=co a>-=, b<co 

{O, 1) {O} {l} 0 

3.2. Scale parameter family. Let 9'={F((x-1i)/O); OEB}, where B=(O, co) and 11 

is a real number. Structure of the p. c. i. b. for all possible cases are summarized 
below with u=F(O). 

Table 3.2. 

~I µ<x1 ' 
xk<µ<xk+i for I Xm<µ some k, l::;;k::;;m-1 

! 

I I a=-co {l, ul} {ak(O), ul} {O, ul} b=co 
------

a=-co 
I 

{ul} I {ak(O), ul} I {O, ul} O<b<co 

a=-co ~ 

b=O {O, 1} 
----·--· -· ---~- ---

a=-co 
{O} b<O ~ -

---------
-------

-oo<a<O I 
I 

I 
b=co {l, ul} 

I 

{ak(O), ul} {ul} 

-oo<a<O I 
O<b<co {ul} 

- ------------~---~----- -

-co<a<O 
-~ --- {l} b=O 

-co<a<O 
0 b=O 

---------

-----------a=O {O, 1) 
~ 

b=co 

a=O {O} O<b<co 
---- - --- ----

a>O {l} b=co 

a>O 0 b<co 
---

I 
. 

! 

I 

X1=µ 
. 

Xt=µ for some I 
k, 2::;;k::;;m-1 

{ak(u), ul} 

{ul} 
I 

{ak(u), ul} 
I 

-------

~~'---
-~ -
~ ---

----------- ----------

{ak(u), ul} 
I 

-

-

I 

r 

----=~:-:::---I 
I 

{ul} ; 

------···-----1 
I 

-

~-~ 
I 

~ 

-----~-
- ----------- -----

-- -

---

Remark 3.1. By Proposition 2.1 and the above result, we can show that structure 
of the p. c. i. b. for power parameter family {F(x0

); OEB}, where O~a<b~co and 
B=(O, co), are summarized as in Table 3.2. 

3.3. Truncation parameter family. Let ;;:f={F(x, 0); OEB}, where A=(a, b) and 
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F(x, 8) (OEf)) is defind as follows: Left truncated case. F(x, ())=0 for x-::;,8, F(x, 8) 
=(F(x)-F(0))/(1-F(O)) for 8<x<b and F(x,O)=l for x?:.b. Right truncated case. 
F(x, 8)=0 for x::::;;a, F(x, O)=(F(O)-F(x))/F(O) for a<x<O and F(x, O)=l for x?:.8. 
Then DF(fJ)= {(F(x1), · · ·, F(xm))} if g is left truncated and DF(fJ)= {(l-F(x1), ... , 
1-F(xm))} if g is right truncated. 

3.4. Location parameter family with truncation. Let g={F(x, 0); OEfJ}, where 
fJ=(b'-b,a'-a) with a<a'<b'<b, and F(x,O) (OEfJ) is defined by F(x,0)=0 for 
x::::;;a', by F(x, 0)= (F(x -{})-F(a' -8))/(F(b' -8)-F(a' -0)) for a'< x <b' and by F(x, 8) 
=1 for x?:.b'. Assume that: 

( i) For each i, l::::;;i-::;,m, ti=limo--+b'-bF(xi,O) and si=limo--+a'-aF(xi,O) exist. 
(ii) F(xi, 8) is strictly monotone in fJ for some i, 1::::;; i::::;; m. 

Then aF(fJ)= {(t1i ... 'tm), (s1i ... 'Sm)}. 

Remark 3.2. By Proposition 2.1 and the above result, we can determine the struc­
ture of the p. c. i. b. for scale parameter family with truncation {F(x, 0); fJEfJ}, 
where fJ=(b'/b, a'/a) with O::::;;a<a' <b' <b, and F(x, 8) (OEfJ) is defined by F(x, 8) 
=0 for x::::;;a', by F(x, O)=(F(x/0)-F(a'/8))/(F(b'/O)-F(a'/8)) for a' <x<b' and by 
F(x, 8)= 1 for x ?:.b'. 

3.5. Family with mean and variance. Let g = {F(x, 0); OEfJ}, where fJ is an in­
terval or a discrete set of "IR, and F(x, O) (OEfJ) _is a d. f. on !R with the mean µ(8) 
and the variance a2(0) and is continuous on fJ for every fixed xE!R. 

Let 8-fJc{a, 19} with -co::::;;a<p::::;;co and consider the following conditions: 

( i) For each 8EfJ, there exists i, l::::;;i-::;,m, with F(xi, O)<l. 
( i )' For each 8EfJ, there exists i, l::::;;i-::;,m, with F(xi, O)>O. 
(ii) limo--+a p(O) < X1. 

(ii)' Xm < limo--+p µ(O). 
(iii) limo--+a a(8)2/(µ(0)-t) 2 =0 for every t with limo--+a µ(8) <t. 
(iii)' limHa(fJ)2/(µ(0)-t) 2 =0 for every t with t<limo-+pµ(O). 

Then aF(fJ)= {0, 1} if conditions (i)-(iii) and (i)'-(iii)' are satisfied, DF(fJ)= {0} if 
conditions (i)'-(iii)' are satisfied and aF(fJ) = {1} if conditions (i)-(iii) are satisfied. 

3.6. Family of Wald distributions. Let g={F(x, 0); OEfJ}, where 8=(0, co) and 
F(x, 0) (OEfJ) is defined by F(x, 8)=0 for x::::;;O and by 

F(x, 0)= ~~ (8/2rrv3
)

112 exp (-O(v-l)2/(2v))dv 

for x >0. Structure of the p. c. i. b. for all possible cases are summarized below. 

{l} 

Table 3.3. 

xk<l <xk ci for 
some k, 1-::;.k-::;.m-1 

{ak(O), l} {O, l} 

7 

Xk=l for 
some k, 1-::;.k-::;.m 

{ak(l/2), l} 
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3.7. Location-scale parameter family. Let g = {F((x-11)/a); (f1, a)EB}, where 8= 
~ x (0, oo ). Structure of the p. c. i. b. for all possible cases are summarized below. 

Table 3.4. 
--- ----------~-- ----------

a= - =, b== j a=-=, b<= I a>-=. b== I a>-=. b<= I 

__ JI,_{ __ I ui;-{a,(u); O<u:<:l} I u!!-~u);O-:,<~l {ul~<u<;-

JI,{=( U f~ 1 {ai(u); Os us l}) U {ul; O <u< l}. 

Remark 3.3. By Proposition 2.1 (see Section 2) and the above result, we can show 
that structure of the p. c. i. b. for each of the following families are summarized 
as in Table 3.4 : 

( i ) {F((g1(x)- µ)fa); (µ, a)E~ X (0, oo )}, where -oo:::;: a< b:::;: oo. 
(ii) {F(~g 1(x)+a); (a,p)E~X(O,oo)}, where -oo:::;:a<b:::;:oo. 
(iii) {F((g2(x)/a) 11fl); (a, p)E(O, oo)X(O, oo)}, where O:::;:a<b:::;:oo. 
(iv) {F(ag2(x) 11fl): (a, p)E(O, oo)x(O, oo)}, where O:::;:a<b:::;:oo. 

Here g1(x) and Q2(x) are strictly increasing functions on an interval (a', b') of ~ 
such that {g1(x); xE(a', b')}=(-oo, oo) and {g2(x); .rE(a1

, b1)}=(0, oo). 

3.8. Scale-power-shift parameter family. Let 9'= {F(log ((x-J.)/(r) 11 fl); (a, 1s, J.)E(-J}, 

where A=(O,oo)x(O,oo)X[Ai.J.2], -oo<J.1:::;:J.2<x1 and (a,b)=(-00,00). Then oF((-J) 
=JI}. 

Remark 3.4. By Proposition 2.1 (see Section 2) and the above result, we can show 
that the structure of the p. c. i. b. for the family {F(a(.r-J.) 11.l); (n, p, J.)E(O, oo)x 

(0, oo)x[J. 17 J.2]} is J/}·. Here we assume that (a, b)=(O, oo) and -oo<J.1 <J.2<x1. 

3.9. Gamma distribution with shape, scale and shift parameters. Let 9'= {F(:x:, 0): 
OEB}, where 8=(0, oo)x(O, oo)X[Ai. A2], -oo<J.1:::;:J.2<x1 and F(x, 0) (O=(rr, 13, A)E(-J) 
is defined by F(x, 0)=0 for x:::;:A and by 

F(x, 0)= ~: (J'(a)1S")- 1(v-J.)"- 1 exp (-(v-J.)//3)dv 

for x>A. Then oF(B)=J/}. 

3.10. Polynomial distribution. Let 9'= {F(L:i=i (aix)i); (ai. · · ·, ar)EB}, where r is a 
positive integer, B={(ai. · · ·, ar)E[O, ooy; L:i=i ai=FO} and (a, b)=(O, oo). Then oF(B) 
={0, l}. 

3.11. Multinomial distribution. Let 9'= {F(x, 0); OEB}, where B= {(ai. · · ·, am)E 

(0, 1r; I:f=1 ai<l} and F(x, 0) (O=(ai. · · ·, am)E!9) is defined by F(x, 0)=0 for x:::;:yi. 

by F(x,O)=l for x>Ymc1 and by F(x,O)=L:t=1ll'k for Yi<x:::;:yic1, l:s;:i:::;:m. Here 
the y/s are numbers such that -oo<Y1<x1<···<Ym<xm<Ym11<00. Then oF(B) 
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= cA~ (see (2.1) for ()l~). 

3.12. Histogram distribution. Let g= {F(x, 0); BEFJ}, where B= {(ai. · · ·, am)ESRm; 

0< a1 <···<am< 1} and F(x, 0) (0= (ai. ··.,am) EB) is the histogram d. f., that is, 
F(x,B)=O for x~yo, F(x,fJ)=l for x>Ym 1 and F(x,O)=(ai-1-ai)x/(Yi11-Yi)+ 

(aiYi 1-ai"1Yi)/(Yi+1-Yi) for Yi<x~yi, i. O~i~m. Here we assume that -oo<Yo< 

Y1=x1<···<Ym=xm<Ym11<00. Then oF(8)=cA'!. 

4. Proofs 

In this section we shall give proofs of results in Section 3. Before givmg 
these proofs, we state some definitions. We write P-lim Zn=Z if a sequence {Zn} 

of random variables converges in measure to a random variable Z, and P-lim Zn 
= oo (resp. -oo) if there exists an open interval () containing Xm (resp. x1) such 
that for each tE(J, limn Pr (Zn~t)=O (resp. limn Pr (Zn~t)=O), where the symbol 
"limn" denotes "limn-oo ". Note that P-lim Zn= oo (resp. P-lim Zn= -oo) implies 
that limn Pr (Zn<xi)=O (resp. limn Pr (Zn<xi)=l) for all i, l~i~m. 

Proofs of 3.1-3.4. With simple calculation, structure of the p. c. i. b. are derived 
from Theorem 2.3. 

Proof of 3.5. Consider the case where conditions (i)-(iii) and (i)' -(iii)' are satisfied. 
Because of Theorem 2.3, it suffices to show that limo-a F(O)=O and limo_,iS F(O) = 1. 
This follows from Lemma 4.1 below. Before stating Lemma 4.1, we prepare 

Proposition 4.1 (cf. [1; Theorem 14.4]). Let Z be a random variable, g(v) be a 
nonnegative, even, Borel measurable function on IR which is nondecreasing on 
(0, oo), and O<g(v)<oo for all vE(O, oo). Then Pr (!ZI ~t)~E(g(Z))/g(t) for all tE 
(0, oo). 

Lemma 4.1. Let Yn, n~l, be a random variable which has the d. f. F(x, Bn). If 
limn On= a (resp. 13), then P-limYn= -oo (resp. oo). 

Proof. Let tE(limo-a µ(O), limo-iS µ(O)) and {On} be a sequence in A such that limn On 
=a. We may assume that µ(On)<t for all n. It is easy to see that {Yn~t}c 

{!Yn-f1(Bn)l~t-µ(On)}. By Proposition 4.1, 

From this and (iii) in 3.5, it follows that P-limYn= -oo. Similarly we can prove, 
for the case limnBn=p, that P-limYn=oo. 

The argument in the proof of Lemma 4.1 also derives the desired structure 
of the p. c. i. b. for the rest cases. 

Proof of 3.6. The structure of the p. c. i. b. follows from Theorem 2.3 and Lemmas 
4.2 and 4.3 below. 
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Lemma 4.2. Let Yn, n~l, be a random variable which has the Wald d. f. F(x, On). 
If limn On=O (resp. co), then P-limYn=O (resp. 1). 

Proof. Note that E(Yn)=l and Var (Yn)=0;;1 (cf. [6]). Suppose limn On=co and 
let t>O. By Proposition 4.1, 

This implies P-limYn=l. Suppose that limnOn=O and On<l for all n. Let t>O 
and let f(v, O) be the Wald density function, i.e., f(v, 0)=(0/2nv3

)
112 exp (-O(v-1)2/ 

2v). Since v-:i 2 is integrable on (t, co) and since f(v, On) s (1/2rrv3
)

112, limn Pr (I Ynl ~t) 

=~~limn f(v, On)dv=O by Lebesgue's dominated convergence theorem. Hence 

P-limYn=O. 

Lemma 4.3. If F(x, 0) is the Wald d. f., then limo~00 F(l, 0)=1/2. 

Proof. The Wald d. f. can be expressed as 

F(x, (/)=G((fJ/x)112(x-l))+G(-(O/x) 1
/
2(x+l)) exp (2tJ), 

where G is the standard normal d. f. (cf. [5]). From this expression, 

F(l, O)=l/2+G(-(40) 112) exp (20). 

To establish our assertion, it suffices to show limo~°" G(-(20) 112) exp (0)=0. Since 
dG(-(20) 112)/dO = - (2(:rO)u2 exp (0))-1, limo~00 G(-(20) 112) exp (0) = limo~00 G(-(20) 112)/ 
exp ( -0) = limo~oo (l/4dl) 112 = 0. 

Proof of 3.7. We show oF(fJ)cclt}. Because of Proposition 2.3 and Remark 2.1, 
it suffices to show that conditions (F. 2) and (F. 3) with P=2 are satisfied. To see 
that condition (F. 3) is satisfied, let O<u1sui<u2su~<l and lsisjsm. It is easy 
to see that (µ, a)EFx~1([Ui, uiJ) n F;:/([U2, urn if and only if for some (u, v)E[ul! uiJ x 
[u2, u~], 

a=aiJ(U, v)=(xJ-Xi)/(F-1(v)-F-1(u)), 
11=/liJ(U, v)=xi-F-1(u)aiJ(U, v), 

where F-1(u) is the inverse function of F(x). This implies that condition (F. 3) is 
satisfied, since aiJ(u, v) and /liJ(u, v) are continuous on the compact set [ui. ui] x 
[u2, u~]. 

To see that condition (F. 2) is satisfied, let O<vJ<l,j=O, 1, and let lsism. 
In the case where Vo< V1 or Vo> vi! the assertion follows from the above argument. 
Assume Vo=V1=v. Take u and u' so that O<usvsu'<l and u=Fu'. Then (xk­
fli i 1(u, u'))/ai i c1(u, u') = (xk -xi)( xi, 1 -xi)-1(F-- 1(u')- F-1(u)) + F-1(u). This implies 
that condition (F. 2) is satisfied. 

To determine presicely the structure of oF(fJ), let O<u<l and lsism, and 
put O(t)=(xi-F-1(u)t, t). Then limt~o F(O(t))=ai(u) and limt~oo F(O(t))=ul. Consider 
the case a= -co and b<co. It can be easily seen that a1(v)EF(O) for all vE(O, l], 
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{a1(0), ···,am(O),a2(u), ···,am(u),ul}nF((--J)=0. Hence 0F(B)='-/l{-{a 1(v); O<v~l}. 
The rest of the proof can be carried out by the same argument as above. 

Proof of 3.8. Because of Theorem 2.1, it suffices to show that conditions (F. 2)­
(F. 6) with P=2 are satisfied. Let O<uj~uj<l, }=1, 2, let (ii. iz)E3(2) (see Section 
2 for 3(2)) and let fH(u) be the inverse function of F(x). Put tj=F- 1(uj) and 
tj=F- 1(uj), }=1, 2. It is easy to see that (a, 13, J.)ES= n J=i Fx~ 1.([uj, uj]) if and only if 

.I 

).=).(t, t', ~)=~' 
f3={3(t, t', ~)=(t' -t)- 1 log ((xi2 -;)/(xi1 -rn, 
a=a(t, t', ;) =exp [(t' -t)- 1(t' log (xi

1 
-;)-t log (xi

2 
-;))] 

for some (t, t', .;)E[ti. t:J x [t2, t~] x CAi. J.2] with t<t'. 
To see that condition (F. 2) is satisfied, put f(x, O)=log ((x-J.)/a) 1'f3 (O=(a, (3, ).) 

EB) and O(t, t', ;)=(a(t, t', .;), p(t, t', .;), J.(t, t', rn. Then 

f(xti, O(t, t', ~))=(l-7J(~))t+r;(~)t', 

where 7J(~)=log [(xh -;)/(xi1 -.;)]/log [(xi2 -~)/(xi 1 -rn. Since 7J(~) is continuous on 
[Ai. A2] and since t and t' are bounded, f(xti, O(t, t', rn is bounded on [ti, t:Jx[t2, t~]X 
[J.i. J.2] for all h= 1, · · ·, m. 

To see that condition (F. 3) is satisfied, let u: < u2. Then S is compact, since 
O(t, t', ~)is continuous on [ti. t:J x [t2, t~] x [Ai. A2] and since S= {O(t, t', ~); (t, t', ~)E[ti. ti] 
X [t2, t~] x [Ai. J.2]}. 

The proof for condition (F. 2) also shows that condition (F. 5) is satisfied. 
Condition (F. 5) implies condition (F. 6). It is easy to see that condition (F. 4) is 
satisfied. 

Proof of 3.9. Because of Theorem 2.1, it suffices to show that conditions (F. 2)­
(F. 6) with P= 2 are satisfied. 

To do this we prepare 

Lemma 4.4. Let Yn, nzl, be a random variable which has the gamma d. f. F(x, On) 

with On=(an, f3n, An) EB, and let limn an= a, limn (3n=f3, limn An=A and limn E(Yn)=M. 

Then: 

( i) If (a, {3)$(0, co)X(O, co)U[O, co)x{co}, then P-limYn=M. 
(ii) If an> 1 for all n and if 1 ~a< p=co, then P-limYn= co. 
(iii) If an~l for all n, if p=co and if limnF(v',On) exists for some v'E(A2,co), 

then limn F(v, On)=limn F(v', On) for all VE(A2, co). 

Proof. (i) Note that E(Yn)=an/3n+An and Var (Yn)=anp;. In order to prove the 
assertion (i), it suffices to show that limnYn=M in case M<co and limn Var(Yn) 
=0, and that P-limYn=co in case a=M=co. Let t>O. Then, by Proposition 4.1, 
limnPr(IYn-Mlzt)~limn Var(Yn)/(t-1E(Yn)-Ml)2=0 for the first case and limn 
Pr(IYnl~t)~limna- 1 (E(Yn)-An) 2(E(Yn)-t)- 2 =0 for the second case. 
(ii) Put f(x,O)=(I'(~)7J')- 1 (x-'J))Hexp(-(x-'J.J)/r;) with 0=(;,7),'J.J) and let t>O. 

Noting that f(/3n(an-l)+An, On)=max {f(x, On); xE(A2, co)}, we have 
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Pr (I Ynl :=:;;t):=:;;Pr (min (-t, An):::;; Yn:::;;max (t, An)) 
:::;;(max (t, An)-min (-t, An))f(pn(an-l)+An, On) 
::::;; 2(t+ IAnl)(an -1rn- 1(1'(an)/3n)- 1 exp (1-an). 

This leads to the assertion (ii). 
(iii) Note that limn f(x, On)=O for all xE(A2, co) and that /(x, On) is strictly de­
creasing on (An, co). Let vE().2, co). Then 

IF(v', On)-F(v, On)I =I [ f(x, On)dxl:::;; Iv' -vj(f(v', On)+ f(v, On)). 

This completes the proof. 

Let O<u1:::::uj<l, J=l, 2, let VE(A2, co) and let (ii, i2)E3(2). Put S= n~=I F;:/ 
.7 

([Uj, U_j]). 
To see that condition (F. 2) is satisfied, it suffices to show that there is a pair 

(u, u') with O<u<u' <1 such that u~F(v, O)~u' for all OES. Suppose that there 
is a sequence {On= (an, ,3n, An)} in S such that limn F(v, On)=O or 1, and let Yn be 
a random variable having the gamma d. f. F(x, On). Without loss of generality we 
may assume that limn F(xi 1, On)=s1i limn an=a, limn f3n=p, limn An=A and limn (rrnpn 
+2n)=M. Suppose (a, ,S)E(O, co) X (0, co). Then limn F(v, On)=F(v, 0) with 0=(a,f3, A), 
which is a contradiction. Suppose (a, p)E[O, co) x {co}. Then, by (ii) or (iii) in Lem­
ma 4.4, we can derive a contradiction. Therefore P-limYn=M by (i) in Lemma 
4.4. This is impossible since {On} cs. 

To see that condition (F. 3) is satisfied, let ui < U2. Assume that {On= (an, /3n, An)} 
is a sequence in S such that limn an=a, limn 13n= 13, limn An= A and limn F(xil' On)= 
s1. By the same argument as above we see (a, (3, A)E(O, co)x(O, co)X[Ai, A2]. 

To see that condition (F. 5) is satisfied, let O<u<l, let v<v' <co and fix rtE 
(0, co). Because of Lemma 4.4, limi3~o F(v, (a, 13, A2))=1 and limi3_,oo F(v, (a, f3, A2))=0. 
Hence for each aE(O, co) there exists a number (3(a) such that F(v, (a, f3(a), A2))=u. 
We show {F(v',(a,f3(a),A2)); aE(O,co)}=(u,1). Choose a sequence {an} in (O,co) 
such that limn an=O and limn f3(rrn)=f3. Suppose f3<co and let Yn be a random 
variable having the gamma d. f. F(x, On) with On= (an, f>n, A2). Then, by (i) in 
Lemma 4.4, P-limYn=limn (anp(an)+A2)=A2. This implies that limn F(v, On)=l, which 
is a contradiction. Hence p=co and limn F(v, On)=u by (iii) in Lemma 4.4. Choose 
a sequence {an} in (1, co) such that limn an= co and that limn f3(an)= 13 and limn 
an;S(an)+A2)=111. By the same argument as above, we have f3=0. Since F(v, On)= 
u with On=(an, ,S(an), A2), we conclude M~v by (i) in Lemma 4.4. This yields limn 
F(v', On)=l. It is easy to see that condition (F. 5) implies condition (F. 6) and that 
condition (F. 4) is satisfied. 

Proof of 3.10. Because of Theorem 2.2, is suffices to show that conditions (F. 2)­
(F. 5) with P=l are satisfied and that s=sup {max1sksm-1 (F(.L:f=1 (aiXk 1)i)-F(.L:f=1 

(aixk)i)); (ai, · · ·, ar)E6l} < 1. It is easy to see that condition (F. 4) is satisfied. 
To see that conditions (F. 2) and (F. 3) are satisfied, let 0< U1::::;; ui < 1 and let 

l:::;;j~m. It can be easily seen that (ai, · · ·, ar)EFx-/([ui, ui]) if and only if F-1(u 1) 

::::;; .L:f=1 (aix1)i:::;;F- 1(ui), where F- 1(u) is the inverse function of F(x). This implies 
that Fx-j1([ui, ui)J is nonempty and compact. 
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From limca1,. . .,a7Ho.···,o) F("£[~1 (aiXj)i)=O and lim"1~oo F("£r=1 (aiXj)i)=1, it follows 
that condition (F. 5) is satisfied. 

To see s<l, assume that there exist an integer k, l::;;k::;;m-1, and a sequence 
{(ain, ... 'lrrn)} in fJ such that limn F("£[=1(ainXkn)i)=1 and limn F("£i=1 (ainXk)i)=O. 
The former implies that at least one of sequences {a1n}, · · ·, {arn} is unbounded, 
and the latter implies that limn ain = 0 for all i = 1, · · ·, r. This is impossible. 

Proof of 3.11. Noting that F(xi, fJ)= "££=1 ak with O=(ai, ···,am), i=l, · · ·, m, we 
see that conditions (F. 2)-(F. 6) with P=m are satisfied. By Theorem 2.1, iJF(f)) = 
cA!. 

Proof of 3.12. Noting that F(xi, O)=lri with O=(ai, ···,am), i=l, · · ·, m, we see 
that conditions (F. 2)-(F. 6) with P=m are satisfied. By Theorem 2.1, iJF(('1)=cA!. 

Acknowledgements 

The author is indebted to Professor M. Sibuya for his valuable advices and 
useful comments. He also wishes to thank the referee for his constructive com­
ments. 

REFERENCES 

[ 1] Kawada, T. (1961). Kakuritsu to tokei (in Japanese), Asakura shoten, Tokyo. 
[ 2 J Nakamura, T. (1984). Existence theorems of a maximum likelihood estimate from a 

generalized censored data sample, Ann. Inst. Statist. Math. 36, 375-393. 
[ 3 J Nakamura, T. (1984). The probability contents boundary analysis, in: K. Mathushita 

ed., Pacific Area Statistical Conference (North-Holland), 485-497. 
[ 4] Nakamura, T. (1983). The probability contents inner boundary of an interval-censored 

data sample for families of distributions, Okayama Statisticians Group, Tech. Rep. 
No. 1. 

[ 5] Shuster, J. (1968). On the inverse Gaussian distribution function, J. Amer. Statist. 
Assoc. 63, 1514-1516. 

[ 6] Tweedie, M. C. K. (1957). Statistical properties of inverse Gaussian distributions, Ann. 
Math. Statist. 28, 362-377. 

13 


