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ABSTRACT

Structure of the boundary of the set of values of distribution functions at
each censored point of interval-censored data is analyzed. The results are
applied for many kinds of typical families of distributions to find sufficient
conditions under which a maximum likelihood estimate from interval-censored
data exists. The families are location parameter family, location-scale para-
meter family and so on.

1. Introduction.

Let X be a random variable and let the distribution of X belong to a family
P={P,;0e6} of probability measures on R=[—oco, co], which are not degenerate
at infinity. The parameter space © is an arbitrary nonempty set. Let (X, ---,
X,) be a random sample from the distribution of X, and assume that we observe
only the event that each X; 1<i<g, lies in an interval ¢; of R=(—o0,co) with
nonempty interior. The collection C={Ci, ---,Cq is called an interval-censored
data of size ¢g. Our problem is to find criteria which assure the existence of a
maximum likelihood estimate (MLE) from the interval-censored data (.

To solve this problem, structure of the boundary of the set of values of the
distribution functions at each censored point of ¢ plays an important role. This
set is called the probability contents inner boundary (p.c.i.b.) of ¢ (for ), whose
definition will be given in the next section. The notion of the p.c.i.b. of ¢ was
introduced in previous papers ([2], [3]), where, by means of this notion, a method
of finding critria for the existence of an MLE was presented.

The purpose of this paper is to seek a general method of specifying the
structure of the p.c.i.b. of ¢ and to find the p.c.i.b. of ¢ for many kinds of
typical families of distributions.

2. Probability contents inner boundary

We begin with the definition of the probability contents inner boundary of (¢
for . Throughout this paper we assume that:

*) Kawasaki Medical School
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(2.1) For any C Po(Ci)#0 and 1 on 6.
(2.2) For each k, 1<k<gq, there exist two points ax and by of R such that P,(Ck)
= Py(ax, b)) on 6.

Let F(z, 6)=Py[—oo, x)), zeR ; 06 and write F={F(x,#); 0€6} corresponding to

P={Py; 0eO}. Then intervals [ax, bx) generate a covering {[x;, x;:,); i=0, -« -, m}
such that
(1) —0=2y< <Ly =00,

(ii) ; and x; (i#j) are not equivalent (with respect to the family &), i.e., there
exists 0€0 such that F(z;, 0)+F(x;, 0),

(iii) each of ax and &, 1<k<g, is equivalent to some x;, 0<i<m+1 and each
x5, 1<i<m, is equivalent to some a; or by, 1<k<q.

Each x;, 1<i<m, is called a censored point of ¢. Define the mapping F: & —»>QR™
(Euclidean m-space) by

F@O)=(F(z\,0), -+, Flan, 0)),
and with the difference between the image F(©) and the closure F(@) by
OF(O)=F(©)—-F0).

The set 0F(0) is said to be the probability contents inner boundary(p.c.i.b.) of (.

Let ¢ be a mapping from O into some set @, T be a function from the set
{xy, «++, xzn} into R, and ¢={G(x, 0"); 0’€®’} be a family of distributions (d.f.’s) on
K. We say that ¢ is equivalent to & with respect to the pair (¢, 7') if

(1) ¢O)=0,
(ii) 7T is independent of ¢€® and of €@,
(iil) G(T(zy), p(0)=F(x;, ¢) for all €O and for all i=1, ..., m.

To emphasize that the p.c.i.b. 9F(@) depends on the set {z;}, we often write
6F,(0) instead of aF(0).
This equivalence means the following fact.

Proposition 21. Let ¢={G(x,0"); 0’'e®@’} be a family of d.f’s on R which is
equivalent to ¢ with respect to the pair (¢, ). Then 0F;,(0)=0G pu, ().

In order to determine the structure of JF(®), put
Fi'(u, w')=1{0€0; u<Fx, 0)<u'}

for each xe®R and for each pair (u,#’) with 0<wu<u’<1. Let p be an integer
with 1<p<m, let 9(p) denote the set of all p-tuples (i), - - -, ip) of integers with
1<i < ---<ip<m and put D(p)={d. ---,dp)ed(p); dp=m}. Each (d, - -, dpe€
PD(p) can be regarded as the division of the set {1, ---,m} into p parts {1, ---,d\},
coo, {dp-1+1, ---,dy}. To emphasize this fact we write d={d,, ---,dp> instead
of d=(d,, -+, dp). For each integer p, 1<p<m, and for each d=<{d,, - - -, dp) € D(p),
define the sets
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Ald)={(z1, -+, zm)€R™; 0<2=++ =24, <+ <2ap 1= =22,< 1},
_ ({0, -, 0)}, p=1,
J‘](d)“{{(zl,- yZIn)ER™; O=z,=- - =24, <+ <2ap_ =" =24,<1}, p=2,
o i, -, D), p=1,
u[Z‘(d)_{{(zl, o zm)e R 0Kz = =g < <2y =0 =2, =1, P22,

For convenience, we put 9(p)=_Ad)=A(d)=A(d)=0 for p=0 or p>m+1l.
For each integer p (>1) put

Ar=(Uageaw-1, A)) U(U geam Aold) U A(d)) U (U geapsry Aold) N Ai(d)) -
We use the convention that the union over a null index set is the empty set 0.

The following result gives a method of specifying the structure of the p.c.ib.
of C.

Proposition 2.2 (cf. [2; Theorem 3.3]). The relation 6F(®)c i, holds if the follow-

ing condition is satisfied for a positive integer p (<m):

(F.1) For every set of pairs (u;, u5), 1<j<p, with 0<u;<u;<wu;.,<land (i, -, ip)
€9(p), F(NG F7)([ug, ui])) CF(O).

For each integer p (>1), define
DHp)= <d1, o dpeD(p); dpr<di+p—1},

*¥( A — p=1
D)= {<d,, e dYeD(D); dpr=di+D—2), P22,
2.1) ¥ =(U geamp-n Ad)) U Ao(d")U Ji(d”)

U (U gegrpy Aold) N A(d)) U(U gearripin Aold) N A(d)),

where d'=d”’=(n) for p=1, and d'=m—p+1,---,m> and d"={, ---,p—1,m)
for p>2. It should be noted that _4¥=_4, and JFc 4, for p>2.

Proposition 2.3. The relation dF(@)c ¥ holds if condition (F.1) and the follow-

ing condition are satisfied :

(F.2) For every set of a p-tuple (i,i+1, ---,i+p—1)€94(p) and a set {vo, -+, Vp-1}
with 0<wvx<1 for each &, there exist a pair (#,#’) with 0<u<#’<1 and a
set {do, - - -, 0p-1} such that 0<dy<min (vx, 1 —24) for each & and NE; Fg',
(lox—0k, Ve +0:]) CFa (u, ' )N Fi([oe, '),

Proof. In case p=1, the relation dF(@)c _iF¥ follows from the definition of _i*
and Theorem 2.1. Consider the case p>2. We show the following fact:

(2.2) For every z=(z,---,2s)€F(O®) with z,=0 or z,=1, there is no p-tuple
G, i+1,---,i+p—1)€9(p) such that 0<z;<z4p- <1

In fact, assume the contrary. Then there exist z=(z,, - - -, 2n)€F(0) with 2,=0 or
zm=1 and a p-tuple (3, i+1, ---,i+p—1)e 9(p) such that 0<z;<2;.,-,<1. Since z¢
F(0), there is a sequence {#,} in © such that lim, F(#,)=z. Because of (F.2),
there exists a pair (#,#') with 0<u<#’<1 such that 0.€F; (u, w' DNF; ((u, w'])
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for infinitely many #. This yields that u<z,=lim, F(x,, 0.)< zm=1m, F(xm, 0,)<u’,
which is a contradiction. We prove

(2.3) (U geam Add))NIFO)C Ao(d") U (U gearmy Ni=o Ax(d)).

Let d={d,, -+, dped(p) and z=(z,, - -, Zn)€ A(d) N A:(d ) NF(O), where A (d)
denotes the complement of (7,(d). Then 24, =0 and 0<z,<1. Since dedD(p), di<
m—p+1. Assume d,<m—p+1. Then we can find (5,i+1, ---,i+p—1)eJ(p) with
i=d,+1. This contradicts the statement (2.2). Thus di=m—p+1, ie, d=d'.
Namely 4,(d)N A(d)NoF(@)=0 implies d=d’. Next let z2=(z,, - - -, zn)e A(d) N
A(d)NIF(O). Then O=z,="- =24, <2sy1 = =24,< - <2z 1= - =2n=1. By
(2.2), we see that dp_,<d,+p—1, i.e., deDP*(p). Namely A(d)N A (d)NIF(O)+0
implies de $*(p). Thus ze Ao(d)NoF(®) implies that z€ Jo(d’) or z€ N}, Ax(d) with
de 9*(p) and hence the relation (2.3) holds. Similarly we can prove that

(2.4) (U geapy A1 @) NFO)C A(d”) U(U gegrmy Ni=o Aw(d)) ,
2.5) (Udeam+n Ni=o Ax(d)NOF(O)C U gegrep ey Ni=o Ax(d) .

Hence we have 0F(OQ)c i} by Proposition 2.2 and (2.3)-(2.5).

We prove

Theorem 2.1. Let p>2, © be a Hausdorff space and F() be continuous on 6.
Then oF(©)=_4} if condition (F.2) and the following conditions are satisfied :

(F.3) For every set of pairs (u;, u}), 1 <j<p, with 0<u;<wuj<u; ;<1 and (@, ---,7,)
€J(p), the set N7, F,;.‘([uj, #j]) is compact.

(F.4) For each 0e@, there exists (i, ---,ip)eJ(p) such that O<F(x:, )< - <
Fas, 0)<1.

(F.5) For every set of pairs (u;, u}), 1<j<p, with 0<wu;<w)<wu; <l and (i, ---,i,)

€J(p), the set N7, Fri([u; uj]) is nonempty.
(F.6) For every set of pairs (u;, u}), 1<j<p, with 0<w;<uj<u; <1 and {d,, ---,
dp-0€D(p—1), the set NFZ (N{Fz(uy, u)); dj-1<k<d;}) is noempty.

Proof. The relation 6F(©)c 4} follows from Proposition 2.3 and Remark 2.1 (see
below). To show the converse relation, we prove U gegwmpin Ni=o Ar(d)CIF(6).
Let z=(z,, -+, zn)e A(d)N A(d) (d=Ld\, -+, dp-DeD* (p+1)). Then 0=2z¢ <2y,
<o <z,<zn=1. Take an integer s, so that 2ny'<min (2, 2e,—24,, -+, 2a,—
za,_,, 1 —24,). Because of (F.6), the set SnzFx;‘l([(l +n)~, n DO (NE=. Fry ((2a,—n7,
24,+n7'])) is nonempty whenever n>n,. Choose an arbitrary 0,€S,(n>n,).
Without loss of generality, we may assume that {F(0,)} is a convergent sequence
with limit z'=(z], - -+, zn). Since d;=d,+j—1, 1<j<p, z;=2; for all j=1,---,d).
The statement (2.2) yields that zj=1 for all j>d,. Hence z=2’. Since A(d)N
J(d)NF(©)=0 by (F.4), we can see z€aF(@). Thus N gegwmpin Niwo Ax(d)CIF(O).
Similarly we can prove that A(d")CoF(0), JA(d")CoF(@) and U gegepy Ni=o Ax(d)
coF(©). Finally we show U geop, AM)CIF(O). Let z=(z,, -+, zm)e Ald) (d=
{dyy -+ dp-1peD(p—1)). We first prove that zedF(0) in case 0<zq, < - <2q,_,
<1. Take an integer »,>0 so that 2n;' <min (24,, Za,—2a,, ** *» Zap_, —Zdp_y L —Za,_,)-
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Because of (F.6), the set $h=nN{(N{F (20—, 20, +07]); dies <j<di}) is
nonempty whenever n>#%,. Choose an arbitrary 0,€S, (#>n,). Note that lim,
F(#.)=z. Since A(d)NF(O)=0 by (F.4), we can see zeoF(®). We prove z¢dF(®)

in the general case. There is a sequence {z,=(zu1, ** -, Zsm)} in A(d) such that
0<2zne, <+ <2na,_, <1 and lim, z,=z. Since z,€3F(0) for all n, we can choose a
sequence {f,} in O such that ||z,—F(0,)||<1/2nr), where || || denotes the usual

distance on QR™. This yields lim, F(#,)=z. Hence zeoF(®). Now the converse
relation ¥ CoF(0) is proved. This comletes the proof.

Remark 2.1. If @ is a Hausdorff space and if F(0) is continuous on @, then con-
dition (F.3) implies condition (F.1).

Theorem 2.2. Let © be a Hausdorff space, F(#) be continuous on © and conditions
(F.2)-(F.5) with p=1 be satisfied. If sup {maxXici<m-1 (F@r:1, ) —F(xi, 0); 0660} <1,
then oF(@)={0, 1}.

Proof. To prove aF(@)c{0, 1} it suffices to show S=0F(O)N (U geaen N ieo Axld))=0,
since A({m))={0}, A, ({my)={1} and dF(O)c ¥ In case m=1, P(2)=0 and hence
S=0. Let m>2 and suppose S+0. Then there exists d=<{i, mye(2) such that

Aold)N A:(d)+#0. Since A(d)N A, (d)={0, --+,0,1, ---, 1)}, we can find a sequence
{#,} in @ such that lim, F(x;, 6,)=0 and lim, F{x; ,, 0,)=1. This implies that sup
{F(zs:1, 0)—F(x;, 0); #€0}=1, which is a contradiction. Next we show the converse
inclusion. Put #,=1+»n)"' and wu,=n"'(n>2). From (F.5), it follows that
F\([#n, ;)0 for all #>2. Hence there exists a sequence {¢,} in © such that
lim, F(#,)=0. Because of (F.4), 0¢dF(0). Similarly we can prove 1€3F(®). Hence
{0,1}coF(®). This gives the desired relation.

Choose a convergent subsequence of a sequence in @ such that the induced
sequence by F converges to a point of 3F(@), and by the continuity of F, we have

Theorem 2.3. Let @ be an interval of ® and F(©®) be continuous on 6. _Then
dFO)c{ze R™; z=Ilim, F(0,) for some sequence {#,} in @ with its limit 0,€0—06)}.

3. Structure of the p.c.i.b.

In this section we shall determine the structure of the p.c.i.b. 9F(®) for
typical families. For some typical families which does not appear in this section,
structure of the p.c.i.b. are determined in Nakamura [4]. Throughout this paper
we assume that m>2 and F(z) is a distribution function(d.f.) on QR such that
(zeR; 0<Fx)<l}=(a,b) with —co<a<b<oco and F(x) is continuous on R and

k-1 m—k
is strictly increasing on (a, b). Define ay(#)=(0, ---,0,2,1, ---,1), #€[0,1]; 1<k<m.
Note 0=(0, - --,0)=a(0) and 1=(1, ---,1)=a,(1). The proofs of results in this
section will be given in the next section.

3.1. Location parameter family. Let & ={F(x—0)/0); 0€6}, where @=(—o0, c0) and
¢ is a positive number. Structure of the p.c.i. b. for all possible cases are sum-
marized below.
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Table 3.1.

a=—oo, b=co

a=—o0, b<loo

a>—oo, b=o00

{0, 1

{0}

{1

3.2. Scale parameter family. Let &={F((x—1)/0); 0€0}, where @=(0,c0) and

is a real number.
below with z=F0).

Structure of the p.c.i.b. for all possible cases are summarized

Table 3.2.
< p<lry,y for _ rr=p for some _
\ P<T | some K l<k<m—1 | Tn<# | B= | pTockem—1 | TmTH ]
— \
b oo 1, ul} {ax(0), 1} {0, u1} {ax(w), ul) }
g
0<b< oo (2% {@x(0), w1} 0,21 | {ul} ’ {ai(w), ul) i
a—= —oco \ 0.1 \ |
b=0 {0, 1} e 1
a= —oo \\ {0} o \\ |
b<0 \\\ “7”‘7 —
1
g0l | faw0), fut) (@), 11} \ 1)
—oco<la<0
0<b<co {21}
. - _ _
_:oo<a <0 -~ i
—oco<a<0 0 -
- . — i
hco 0.1 e
a=0 -
0<b< oo {0}
7o m
a>0 ‘
b< oo 0
Remark 3.1. By Proposition 2.1 and the above result, we can show that structure

of the p.c.i.b. for power parameter family {F(z?); #€0}, where 0<a<b<co and

©=(0, o), are summarized as in Table 3.2.

3.3. Truncation parameter family. Let F={F(x,0); 0€6}, where ©@=(e,b) and

6
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Flz,0) (#e0) is defind as follows: Left truncated case. F(z,#)=0 for x<0, F(z, )
=)= F0)/(1-F©)) for A<z <b and F(x,0)=1 for z>b. Right truncated case.
Fz,0)=0 for z<a, F(z, 0)=(F0)—Fz))/F0) for a<xz<6 and Fz,0)=1 for z>0.
Then dF(@)={(F(xy), -+, Flxn)} if F is left truncated and 8F(O)={1—F(xz,), ---,
1—F(xn)} if & is right truncated.

34. Location parameter family with truncation. Let F={F(z,0); 0€6O}, where
O=('—b,a’'—a) with a<a’<b'<b, and F(z,0) (#€O) is defined by F(z,d)=0 for
x<a, by Flz, )=z —0)—Fa' —0)|(FY —0)—Fa' —0)) for @’ <x<b' and by F(z, 0)
=1 for x>b’. Assume that:

(i) For each i, 1<i<m, t;=1im, ,_, F(x;, 0) and s;=1lim,_q _q F(xi, 6) exist.
(ii) F(x; #) is strictly monotone in # for some i, 1<i<m.

Then aF(©)={#,, - -+, tn), (S1, ", Sw)}.

Remark 3.2. By Proposition 2.1 and the above result, we can determine the struc-
ture of the p.c.i.b. for scale parameter family with truncation {F{x,0); 0¢6},
where ©=(0'/b, @’|a) with 0<a<a’<b'<b, and F(x,0) (0€®) is defined by F(x,0)
=0 for z<a’, by Flz,0)=(F(x/0)—F(a |9)/F0)—F(a'|9)) for &’ <x<b' and by
F(x,6)=1 for z>b'.

3.5. Family with mean and variance. Let F={F(z,0); #€6}, where @ is an in-
terval or a discrete set of R, and F(x,0) (0€0) is a d.f. on R with the mean p(¢)
and the variance ¢*(#) and is continuous on @ for every fixed zeQR.

Let O—OcCl{a, 8} with —co<a<f<oco and consider the following conditions :

(i) For each #€0, there exists i, 1<i<m, with F(x; 0)<1.
(i) For each 0e€B, there exists i, 1<i<m, with F(x; 6)>0.
(i) limg., p(0)< 2:.

(1) zm<limg_; p(0).

(ii1) lims_. 6(0)*/((0)—1)*=0 for every ¢ with lim,_. u(8)<¢.

(1ii)" limg_s 0(8)%/(x(0)—2)2=0 for every ¢ with ¢<lim.,s p(6).

Then 0F(©)={0,1} if conditions (i)-(iii) and (@i)’-(iii)’ are satisfied, oF(©)={0} if
conditions (i)’-(iii)" are satisfied and oF(@)={1} if conditions (i)-(iii) are satisfied.

3.6. Family of Wald distributions. Let &F={F(x,0); 6€0}, where ©=(0, co) and
F(x,0) (0€6) is defined by F(x,#)=0 for £<0 and by

F(z,0)= Sx (6/270%)"2 exp (—0(v —1)¥/(20))dv

for 2>0. Structure of the p.c.i.b. for all possible cases are summarized below.

Table 3.3.
xp<l<axg., for xr=1 for
1<z, some £, lgkgm—l xm <1 some k, 1<k<m
1 {ax(0), 1} {0, 1} {ax(1/2), 1}
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3.7. Location-scale parameter family. Let F={F({(x—p)/o); (n,0)€0}, where 6=
RX(0,00). Structure of the p.c.i.b. for all possible cases are summarized below.

Table 3.4.
a=—o00, b=co a=—oo, b<lco l a>—oo, b=co i a> —oo, bl §
) ]
1 Ar Ar —ay(u); 0<u<1} ldz"—{am(u);osud} {ul; 0<u<1) i

A =(UR {aie); 0<u<1) U {ul 5 0<ee < 1}.

Remark 3.3. By Proposition 2.1 (see Section 2) and the above result, we can show
that structure of the p.c.i.b. for each of the following families are summarized
as in Table 34:

(1) {Flg:(x)—plo); (1, 0)e RX(0, o)}, where —oco<a<b<oo.
(it) {(Flpgi(x)+a); (@, e R X (0, )}, where —oo<a<b<oo.
(i) {Flgo(2)])!?); (a, )€(0, 00) X (0, 00)}, where 0<a<b<oo.
(iv) {Fags(z)"?): (a, )€(0,00)x (0, co)}, where 0<a<b<co.

Here g¢,(x) and g,(x) are strictly increasing functions on an interval (a’,d") of ®
such that {g.(x); xe(@’, b')}=(—o00, 00) and {gs(x); xe(@’, b)}=(0, o0).

3.8. Scale-power-shift parameter family. Let F={F(log (z—2)/a)'"?); (a, 3, DO},
where ©=(0, 00) X (0, c0) X[4y, 2;], —co<A; <2<z, and (g, b)=(—o0,c0). Then F(O)
=

Remark 3.4. By Proposition 2.1 (see Section 2) and the above result, we can show
that the structure of the p.c.i.b. for the family {F(a(z—2)"%); («, 8, 1)€(0, co) X
(0, ©)X[4y, 2.0} is A¥. Here we assume that (@, b)=(0,c0) and —co< <2< x,.

3.9. Gamma distribution with shape, scale and shift parameters. Let F={F(x,0):
0e®}, where 6=(0, 00)Xx (0, 00)X[4y, A2), —00<2, <<z, and Flz,0) (1=(«, B, )€O)
is defined by F(x, =0 for <2 and by

Flx, 0)= gl (M) Mv—2)"'exp (—(v—2)/p)dv

for z>2. Then oF(0)=_i}.

3.10. Polynomial distribution. Let F={F(%, (@:x)); (ay, - - -, a,)€O}, where 7 is a
positive integer, @={(a,, - - -, a,)€[0, )" ; 217_, a;+0} and (@, b)=(0, c0). Then 5F(@)
=10, 1}.

3.11. Multinomial distribution. Let F={F(x,0); 0€6}, where O={(ay, ---, an)€
O,D)™; ¥™, a;<1} and F(zx,0) 0=(ay, - -+, an)€O) is defined by F(z, #)=0 for x <y,
by Fz,#)=1 for x>ym-: and by F(z, 0)=Yi, ar for y;<zx<y;.,, 1<i<m. Here
the y;'s are numbers such that —co<y, <z, <+ <Yn<Tn<ym:1<oo. Then 3F(O)

8
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= A% (see (2.1) for . i¥).

3.12. Histogram distribution. Let F={F(x,0); 0€@}, where O@={(ay, -, an)€R™;
0<a < - <an<l} and Fx,0) (0=(a;, ---,an)€0) is the histogram d.f., that is,
Hax,0)=0 for z<y, Faz,0)=1 for z>ym., and Flz,)=(a;-;—a)x/(ir1—yi)+
(asyi v — i1 ¥)] Wi —yi) for i<z <y, 0<i<m. Here we assume that —co<y,<
N=2:<+ <Yn=2m<ym.1<oo. Then 3F(@)=J,’5

4. Proofs

In this section we shall give proofs of results in Section 3. Before giving
these proofs, we state some definitions. We write P-lim Z,=Z2 if a sequence {Z,}
of random variables converges in measure to a random variable Z, and P-lim Z,
=oo (resp. —oo) if there exists an open interval ¢ containing xm (resp. x;) such
that for each te@®, lim, Pr(Z,<#)=0 (resp. lim, Pr (Z,>t)=0), where the symbol
“lim,” denotes *“lim,_..”. Note that P-limZ,=oco (resp. P-lim Z,= —co) implies
that lim, Pr (Z,<x;)=0 (resp. lim, Pr (Z,<z,)=1) for all 7, 1<i<m.

Proofs of 3.1-34. With simple calculation, structure of the p.c.i.b. are derived
from Theorem 2.3.

Proof of 3.5. Consider the case where conditions (i)-(iii) and (i)’-(iii)’ are satisfied.
secause of Theorem 2.3, it suffices to show that lim,_., F(0)=0 and lim,.; F(0)=1.
This follows from Lemma 4.1 below. Before stating Lemma 4.1, we prepare

Proposition 4.1 (cf. [1; Theorem 14.4]). Let Z be a random variable, g(») be a
nonnegative, even, Borel measurable function on R which is nondecreasing on
(0, 00), and 0<g(»)<oo for all ve(0,c0). Then Pr(|Z|>H)<E(g(Z))])g(t) for all te
(0, 00).

Lemma 4.1. Let Y,, >1, be a random variable which has the d.f. F(x, #,). If
lim, #,=a (resp. f), then P-limY,= —oco (resp. co).

Proof. Let te(lim,_, p(0), limy_s p(0)) and {0} be a sequence in @ such that lim, 0,
=a. We may assume that p(f.)<? for all n. It is easy to see that {Y,>f}C
{| Yn—(0,)) >t —p(6)}). By Proposition 4.1,

Pr (Y, >8)<Pr (|Yo—p(0a)| 2t — p(02)) < 0(00)/(t — pe(a2))* .

From this and (iii) in 3.5, it follows that P-limY,= —oco. Similarly we can prove,
for the case lim, #,=p, that P-limY,=co.

The argument in the proof of Lemma 4.1 also derives the desired structure
of the p.c.i.b. for the rest cases.

Proof of 3.6. The structure of the p.c.i. b. follows from Theorem 2.3 and Lemmas
4.2 and 4.3 below.



T. NAKAMURA

Lemma 4.2. Let Y, n>1, be a random variable which has the Wald d.f. F(x, 0.).
If lim, #,=0 (resp. co0), then P-limY, =0 (resp. 1).

Proof. Note that E(Y,)=1 and Var(Y,)=#0;' (cf. [6]). Suppose lim, #,=co and
let t>0. By Proposition 4.1,

Pr(|Yo—1l>8)<Var (Y,)/t*=(t,)" .

This implies P-limY,=1. Suppose that lim,#,=0 and #,<1 for all n. Let £>0
and let f(»,#) be the Wald density function, i.e., f(v,#)=(0/2z0°)"? exp (—6(v—1)?¥/
2v). Since v~*? is integrable on (£, o0) and since f(, 0.)<(1/270%)"?, lim, Pr (|Y,|>¢)

=S lim, f(v, 0,)dv=0 by Lebesgue’s dominated convergence theorem. Hence
13
P-limY,=0.

Lemma 4.3. If F{z,0) is the Wald d. f,, then lim,_.. F(1,8)=1/2.

Proof. The Wald d. f. can be expressed as
Kz, 0)=G((0]2) (2 —1)) + G(— (0] =) "*(z +1)) exp (20)
where G is the standard normal d.f. (cf. [5]). From this expression,
F(1,0)=1/2+G(—(40)"%) exp (20) .

To establish our assertion, it suffices to show lim,_., G(—(20)"2) exp (0)=0. Since
dG(—(20)V))[df = — (2(z0)'* exp (1)), limy_... G(—(20)""*) exp () = limy._... G (—(20)""?)/
exp (—#)=limy_... (1/4z0)""2=0.

Proof of 3.7. We show JF(O)c iFf. Because of Proposition 2.3 and Remark 2.1,
it suffices to show that conditions (F.2) and (F.3) with p=2 are satisfied. To see
that condition (F. 3) is satisfied, let 0<wu, <#u|<wu.<u;<1 and 1<i<j<m. It is easy
to see that (g, o)eF,?il([u,,u{])DF;j‘([uz, u,)) if and only if for some (u, v)e[u,, %)) X
(ete, us,

o=0i(u, V)= (x;— )T (0) —F(w)) ,
= pii(ut, V)= 2 —F - (w)aij(u, v),

where F-'(u) is the inverse function of F(x). This implies that condition (F.3) is
satisfied, since oq;(z, v) and yu;(u, v) are continuous on the compact set [u,,#]]X
(et2, %3]

To see that condition (F.2) is satisfied, let 0<v;<1,7=0,1, and let 1<i<m.
In the case where v,<v, or v,>v,, the assertion follows from the above argument.
Assume v,=v,=v. Take u» and #’ so that 0<u<v<wu'<1 and u+#u’. Then (xz—
i (o, w'))]os i (v, )y =(xe—x) (@i — ) (F @' )—F-'(w))+ F'(u). This implies
that condition (F.2) is satisfied.

To determine presicely the structure of dF(@), let 0<#<1 and 1<i<m, and
put #()=(x;—F'(w)t, t). Then lim; ., F{0(f))=aiu) and lim,_,, FO#)=u1. Consider
the case g=—oco and b<co. It can be easily seen that a,(v)e F(¢) for all ve(0, 1],

10
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{a,(0), - - -, an(0), ax(w), - - -, an(u), ul} N F(©)=0. Hence oF(O)=_IF—{a,(v); 0<v<1)}.
The rest of the proof can be carried out by the same argument as above.

Proof of 3.8. Because of Theorem 2.1, it suffices to show that conditions (F.2)-
(F.6) with p=2 are satisfied. Let 0<u;<#;<1, j=1,2, let (i,, ;)€ J(2) (see Section
2 for 9(2)) and let F~'(x) be the inverse function of F(x). Put #;=F-'(u;) and
t;=F"(u)), j=1,2. ltis easy tosee that (a, 5 HES=N, F;i;([uj, u}]) if and only if

A=t 8)=¢,
B=pe, 1, )=t =)' log (wi,—)/(wi,— ),
a=a(t, ', &)=exp (' —1)7'(¢' log (x:, —&) —t log (x:,—2))]

for some (¢, ¢/, £)€[t,, 1] X [t2, 1] X [41, A2) with £<2.
To see that condition (F.2) is satisfied, put f(z, 0)=log ((x —A)/a)'"? (I=(a, B3, )
€0) and 0t ¢, &)= (at, ¥, &), 5, ', ), 2¢, ', £). Then

S, 0,8, )=A=nENt+7&,

where y(&)=log [(x, —&)/(x;, —£))/log [(xs,—E)/(w:,—&)]. Since (&) is continuous on
(4., 2] and since ¢ and ¢’ are bounded, f(x,, 8 ¢, &)) is bounded on [¢,, #]]1X[f, £;]1X
[44, A2] for all 2=1, ---, m.

To see that condition (F.3) is satisfied, let #;<wu,. Then S is compact, since
Ot ¢, &) is continuous on [#, £ X [t., £, X[ 41, 42] and since S={0(, ¢, &); (& ', &)elt,, t]]
X[t2, 85X [41, 220}

The proof for condition (F.2) also shows that condition (F.5) is satisfied.
Condition (F.5) implies condition (F.6). It is easy to see that condition (F.4) is
satisfied.

Proof of 3.9. Because of Theorem 2.1, it suffices to show that conditions (F.2)-
(F.6) with p=2 are satisfied.
To do this we prepare

Lemma 44. Let Y, #>1, be a random variable which has the gamma d. f. F{(z, 0,)
with 0,=(an, fn, 4)€0, and let lim, an=a, lim, 8,= 4§, lim, ,=2 and lim, E(Y,)=M.
Then:

(i) If (a, B)&(0, o) X (0, 00) U[0, o) X {co}, then P-limY, =M.

(ii) If ax>1 for all # and if 1<a<f=oco, then P-limY,=oo0.

(1) If an<1 for all n, if f=oco and if lim, F(?’,6,) exists for some v’€(2, o),
then lim, F(v, #,)=lim, F@’, 0,) for all ve(1,, oo).

Proof. (i) Note that E(Yy)=anfn+4, and Var (Y,)=a,f;. In order to prove the
assertion (i), it suffices to show that lim,Y,=M in case M<co and lim, Var (¥5)
=0, and that P-limY,=co in case a=M=oco. Let ¢£>0. Then, by Proposition 4.1,
lim, Pr (| Y, — M| >#)<lim, Var (¥,)/¢—|E(Y,)—M|)*=0 for the first case and lim,
Pr (| Y. <t)<lim, a '(E(Y ) — 2,)*(E(Yn)—#)72=0 for the second case.

(i) Put f(z, 0)='(E)rf) (z—v)texp(—(x—v)/p) with =(¢, »,v) and let £>0.
Noting that f(Bu(an—1)+2r, On)=max {f(x, 0,); x€(4, o)}, we have

11
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Pr(|Y,|<8)<Pr (min (—¢, 4,) < Y, <max (¢, 1))
<(max (¢, 2z) —min (—¢, 4,)) f(Balcn — 1)+ An, 0n)
L2+ 2a)an—1) """ (I (an)Bn) " €xp (1 —an) -

This leads to the assertion (ii).
(iii) Note that lim, f(z, #,)=0 for all x€(l,, o0) and that f(x,0,) is strictly de-
creasing on (,,c0). Let ve(2,, c0). Then

]F(T)/, ()n)—F<U, ()'ﬂ)‘ =

|, S0z |< o =ol(F@, 0.+ F0,00).
This completes the proof.

Let O0<u;<uj<1, j=1,2, let ve(d, 00) and let (i, i)ed(2). Put S=nN3, F_{i’i
(Lat, u3)). '

To see that condition (F.2) is satisfied, it suffices to show that there is a pair
(u,u’) with 0<u<wu'<1 such that u<F(»,0)<#’ for all #eS. Suppose that there
is a sequence {#,=(w,, 3, 42)} in S such that lim, F(»,#,)=0 or 1, and let Y, be
a random variable having the gamma d.f. F(x,#,). Without loss of generality we
may assume that lim, F(z:, fn)=5, lim, ax=a, lim, 8,=3, lim, 4,=2 and lim, (@S,
+2,)=M. Suppose (a, 3)€(0, 00) X (0, c0). Then lim, F(v, 0,)=F(v, 6) with 0=(«, 8, 2),
which is a contradiction. Suppose (a, 5)€[0, o0) X {oo}. Then, by (ii) or (iii) in Lem-
ma 4.4, we can derive a contradiction. Therefore P-limY,=M by (i) in Lemma
4.4. This is impossible since {0,}CS.

To see that condition (F.3) is satisfied, let #]<ws. Assume that {#,={(as, 5, in)}
is a sequence in § such that lim, a,=a, lim, 8,=3, lim, ,=1 and lim, Flzip, 02)=
s;. By the same argument as above we see (a, 3, 2)€(0, 00) X (0, c0) X [4,, ;).

To see that condition (F.5) is satisfied, let 0<u<1, let v<v'<oco and fix «e
(0,00). Because of Lemma 4.4, lim,., F(», (a, 5, 22))=1 and lims.., F(v, (a, B, 12))=0.
Hence for each a€(0, 00) there exists a number f(a) such that F(o, (@, 5a), 42))=u.
We show {F(v/, (a, f(@), 22)); a€(0, c0)}=(u,1). Choose a sequence {a,} in (0, o)
such that lim, a,=0 and lim, faz)=p. Suppose f<oco and let ¥, be a random
variable having the gamma d.f. F(x,#,.) with 0,=(an, s, 4:). Then, by (i) in
Lemma 4.4, P-limY,=1im, (ay5(@n)+42)=4:.. This implies that lim, F(», §,)=1, which
is a contradiction. Hence S=oo and lim, F(v, #,)=u by (iii) in Lemma 4.4. Choose
a sequence {a,} in (1,00) such that lim,ay,=co and that lim, f(e,)=4 and lim,
a,Blan)+2:)=M. By the same argument as above, we have §=0. Since F(v,0,)=
u with 0,=(an, 3(an), 42), we conclude M<w» by (i) in Lemma 4.4. This yields lim,
F@w',0,)=1. It is easy to see that condition (F.5) implies condition (F.6) and that
condition (F.4) is satisfied.

Proof of 3.10. Because of Theorem 2.2, is suffices to show that conditions (F.2)-
(F.5) with p=1 are satisfied and that s=sup {max,crcm—1 F(0, (ixs. 1)) ~F(37,

(a;zp)?)); (ay, -+ -, a,)€O}<1. It is easy to see that condition (F.4) is satisfied.
To see that conditions (F.2) and (F.3) are satisfied, let 0<#u,<#/<1 and let
1<j<m. It can be easily seen that (a, ~-~,a,)eF;j1([u1, uy)) if and only if F-'(u,)

< T (x)i<F-'(u)), where F~'(u) is the inverse function of F(z). This implies
that F;jl([ul, u;)] is nonempty and compact.

12
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From lime,,...«y-c0.....0 F(Z 7 (@iz;))=0 and lim, .. (51, (asz;)?)=1, it follows
that condition (F.5) is satisfied.

To see s<1, assume that there exist an integer %, 1<%<m—1, and a sequence
{(@n, + + -, arn)} in @ such that lim, F(X7, (@mzr.1))=1 and lim, F(Z, (aiz))=0.
The former implies that at least one of sequences {ai}, ---, lara} is unbounded,
and the latter implies that lim, a;,=0 for all i=1, --.,». This is impossible.

Proof of 3.11. Noting that Flz:, 6)=Xi_, ar with 0=(ay, -+, am), i=1, -+ -, m, we
see that conditions (F.2)-(F.6) with p=m are satisfied. By Theorem 2.1, 0F(0)=
Ak

Proof of 3.12. Noting that F(x; ()=a; with O=(a,, -+, am), i=1, ---,m, We see
that conditions (F.2)-(F.6) with p=m are satisfied. By Theorem 2.1, 0F(©®)=_i*.
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