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KEIO SCIENCE AND TECHNOLOGY REPORTS 
VOL. 37. NO. 3, pp. 37-49, 1984 

ON THE STRUCTURE OF DYNAMICAL 
SYSTEMS SATISFYING A CERTAIN 

STABILITY CONDITION 

1. Introduction. 

Akira OsHIMI 

Department of Mathematics Faculty of Science 
and Technology Keio University 

(Received March, 1984) 

In this paper, we are going to classify in detail dynamical systems in locally 
compact spaces which have a global property called characteristic o+. Dynamical 
systems of characteristic 0 1

· are those in which the positive prolongation of each 
point coincides with the closure of positive semi-trajectory through it. Actually 
we can define a dynamical system of characteristic a+ for any ordinal number a 

by using the positive prolongation of order a, and the dynamical system of char
acteristic 0" is the simplest case of this definition. 

In [1] Ahrrad classified planar flows of characteristic Q+ co-, Q±) in terms of 
their critical points. This property is really interesting and his results are almost 
complete. Though Ahmad [2] also deals with dynamical systems of characteristic 
0' co-, Q±) in locally compact spaces, we work out this problem by using the me
thod different from his adopted in [2]. Although our classification is not so com
plete as that of planar flows, it shows clearly the global structure of such flows 
and is more detailed than the results in [2]. In our process of the proof, first we 
show that the flow of characteristic 0 ,_ doesn't have any non-compact and non
trivial minimal sets. From this assertion, we can classify the flows of character
istic Q+ in terms of the set F of all the points which belong to compact minimal 
sets. It is shown that if the set F is empty, then the flow is dispersive, if F is 
compact and X is connected, then F is globally positively asymptotically stable, 
and if F is non-compact, then F=X or F is positively asymptotically stable. 
Furthermore, if X satisfies second countability axiom, the region of positive attrac
tion A +CF) of F has a countable number of components. Those results are sum
marized as Theorem 3.24. In particular, the case when F is non-compact and 
F-::f:::.X is not treated in [2]. Finally. by making use of Knight's proof in [7], we 
give a necessary and sufficient condition for a flow in locally compact and connect
ed spaces to be characteristic Q+. Here the set F plays a very important role 
again. In short, each compact minimal set is positively stable and the set F is 
shown to be in one of three cases : F= cp and the flow is dispersive ; F is compact 
and is a global positive attractor; F is non-compact and the flow restricted to X 
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-A 1 (F) is dispersive. 

2. Definitions, Notations, and Preliminary Results. 

Throughout this paper R, R", and R- will denote the real numbers, non
negative real numbers, and non-positive real numbers, respectively. Given a to
pological space X and a mapping rr from the product space Xx R into X, the pair 
(X, rr) is called to define a dynamical system or (continuous) flow if the following 
axioms are satisfied. 

1. Identity axiom: rr(x, 0) = x. 
2. Homomorphism axiom: rr(rr(x, t), s)=rr(x, s+t) for each xEX and s, teR. 
3. Continuity axiom: rr is continuous on Xx R. 

In this paper X will always be Hausdorff. For brevity, we denote rr(x, t) by 
xt. For each xEX, xR, xR", and xR- are called the trajectory (or orbit), positive 
semi-trajectory, and negative semi-trajectory through x and will be denoted by C(x), 
C+(x), and C-(x), respectively. A point xEX is called a critical point or a rest 
point if xR=x. If x is not critical point and xt=x for some t>O. then xis called 
periodic. A subset M of X is said to be invariant if C(M) =M, and positively 
(negatively) invariant if C' (M) =M(C-(M) =M). A closed (positively) invariant set 
Mis (positively) minimal if it has no proper subset which is closed and (positively) 
invariant. Negative minimality is defined similarly. 

We denote the boundary, interior, and closure of a subset M of X by oM, 
int M, and M, respectipely. The sets C(x), C-r(x), and C-(x) will be denoted by 
K(x), K"(x), and K-(x), respectively. The uJ-limit set and a-limit set of x are de
noted by L +(x) and L-(x), respectively, i.e., 

L+(x)={yeX; xti---+ y for some net ti -++oo} 

L-(x)={yeX; xti---+ y for some net ti -+-oo}. 

For each xtX, the (first) positive (negative) prolongation D+(x)(D-(x)) of x is de
fined by 

The (first) positive (negative) prolongational limit set J·(x)(J-(x)) of x is defined by 

]+(x)(J-(x))={yeX; xdi-+ y for some net Xi---+ x and ti-++oo (ti -+-oo)}. 

Equivalently, L+(x)=l\trn{Ki(xt)} (L-(x)=l\trn{K-(xt)}) and D+(x)=(\NE~<x>{K+(N)} 

(D-(x) = (\NE~<x>{K-(N)}) and J+(x) = l\trn{D+(xt)} (J-(x) = l\ 1rn{D-(xt)}), where r;(x) is 
the neighborhood filter of x. It follows that V-(x) c]-i-(x) cDT(x), D '(x) =C+(x) U 
f +-(x) and K+(x) =C+(x) U U(x) when X is Hausdorff. 

A point xEX or the trajectory C(x) is called positively (negatively) receding, if 
L- (x)(L-(x)) =¢; receding, if x is receding both positively and negatively; positively 
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(negatively) asympto:ic, if V(x)(L-(x))*-r/J but- U(x)nC(x)=<jJ(L-(x)nC(x)=<jJ); posi
tively (negatively) Poisson-stable, if V(x)nC(x)-:::/=<jJ(L-(x)nC(x)-:::/=<jJ); Poisson-stable, 
if x is both positively and negatively Poisson-stable. 

A set M eX is said to be positively orbitally stable or simply positively stable 
if for every neighborhood of U of M, there exists a neighborhood V of M such 
that cr(V)e U. Negative stability is defined similarly. Mis said to be bilaterally 
stable if it is positively and negatively stable. A closed positively (negatively) 
invariant set M is said to be positively (negatively) D-stable if D+(M) =M(D-(M) = 
M). The following theorem of Ura plays an important role in stability theory of 
compact sets. 

Theorem 2.1. Let (X, n) be a dynamical system on a locally compact space. 
Then a compact subset M is positively stable if and only if it is positively D-stable. 

The point xEX is said to be attracted to M if the net (xt) for tER+ is ulti
mately in every neighborhood of M. The set of all such points x is called the 
region of positive attraction of M and will be denoted by A' (M). If A +(M) is a 
neighborhood of M, then M is called a positive attractor. M is said to be positively 
asymptotically stable if it is both positively stable and a positive attractor. M is 
said to be globally positively asymptotically stable if it is positively asymptotically 
stable and A+(M)=X. We state some properties of A+(M) which will be used 
in this paper. 

Lemma 2.2. 

(1) A 1 (M) is open if M is a positive attractor. 
(2) If X is locally compact and M is compact, then it follows that xEA +(M) 

if and only if <jJ-:::/=L, (x) eM. 

Also, in case of M being closed, (2) holds under suitable conditions. 

Proposition 2.3. Let (X, n) be a flow where X is normal and let M be a closed 
positively stable set with <jJ-:::/=U(x) for each xEM. Then, yEA+(M) if and only if 
¢1-:::/=L+(y)eM. 

A point xEX is called dispersive if ]~(x)=<f>. A flow (X, n) is called dispersive 
if each point xEX is dispersive. A flow is called parallelizable if it is isomorphic 
to a parallel flow; that is, if there exists a set sex and a homeomorphism h: x 
~ SxR such that SR=X and h(xt)=(x, t) for every xES and tER. 

Theorem 2.4. (X, n) on a locally compact separable metric space X is parallel
izable if and only if it is dispersive. 

Now .we give the definition of dynamical systems of characteristic o+. 

Definition 2.5. A dynamical system (X, :r) is said to have characteristic o+ (O-) 

39 



A. OsHIMI 

if and only if D+(x)=K+(x) (D-(x)=K-(x)) for all xEX. It is said to have char
acteristic 0± if and only if flt(x) =Kt(x) and D-(x) =K-(x) for all xEX, i.e., it has 
characteristic o+ and characteristic o-. 

Actually, we can define a positive prolongation of order a, denoted by D~(x), 

for any ordinal number a (see [3]), and (X, rr) is said to have characteristic a' if 
and only if D;(x)=D:+i(x) for all xEX. (X, rr) having characteristic Qt is the 
simplest case of this definition, since D"/;(x)=K+(x) and D{(x)=D+(x). 

Lemma 2.6. Each of the following conditions is equivalent to (X, rr) having 
characteristic o+ : 

(1) U(x)=P(x) for all xEX. 
(2) Every closed positively invariant subset of X is positively D-stable. 

Thus, our main purpose is to study in detail the flows whose closed positively 
invariant set is always positively D-stable. 

Ahmad [l] gives a complete classification of planar flows having characteristic 
O+, Q±. The results are summarized in the following two theorems. Hereafter, 
we denote by S, P the set of critical points and the set of periodic points of a 
given flow (R2

, rr) respectively. 

Theorem 2.7. Let (R2
, rr) be a dynamical system of characteristic Qt. Then 

one of the following three assertions holds. 

(1) S=<jJ and (R2
, rr) is pararelizable. 

(2) Compactness of S implies one of the following. 
(a) S= {so} is a singleton and So is a global Poincare center. 
(b) S= {so} is a singleton and so is a local Poincare center. Further, the 

set N consisting of So and periodic orbits surrounding so, is a globally 
asymptotically positively stable simply connected continuum. 

(c) S is globally asymptotically stable and is a simply connected continuum. 
(3) If S is unbounded, then either 

(A) S=R2
, or 

(B) the following hold. 
(a) R 2 -S is unbounded. 
(b) S is positively asymptotically stable. 
(c) A +(S) has a countable number of components, each being homeomorphic 

to R 2 and unbounded. 
(d) S has a countable number of components, each being non-compact and 

simply connected. For each sEaS, there is a regular point y with L +(y) 
={s}. 

(e) A+(So) is a component of A+(S) if and only if So is a component of S. 
(f) For each xER2

, L +(x) is either empty or consists of a single critical 
point. Further, V(x)=</J for all x$A+(S) and L-(x)=</J for all xER2 

-S. 
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Theorem 2.8. Let (R2
, rr) be a dynamical system of characteristic 0±, then one 

of the fallowing holds. 

(1) S=rp and (R 2
, rr) is parallelizable. 

(2) S=R2
• 

(3) S= {so} is a singleton and So is a global Poincare center. 

Furthemore, for the dynamical systems of characteristic Q+ on S2
, the follow

ing alternative holds. 

(1) S=S 2
• 

(2) S={x, y}, P=S 2 -{x, y}, and x, y are both Poincare centers. 

Consequently, (S2
, rr) has characteristic Q± if it is of characteristic Qt. 

Successful results described in Theorem 2.7, 2.8 are due to the fact that phase 
space X is R 2 and in particular, to the validity of Jordan Curve Theorem. In 
more detail, they depend on the following two facts : 

(1) There exists a critical point inside every periodic orbit. 
(2) A point is positively (negatively) Poisson stable if and only if it is a 

critical point or a periodic point (see [9]). 

However, for more general topological spaces, these two theorems are not 
always true. For example, consider the following ft.ow illustrated in Fig. 1. 

X = {xy-plane and z-axis} , S= {(O, 0, O)}, 

z 

x 

Fig. 1. Evidently, this flow has characteristic O+, but the critical point is 
neither positively asymptotically stable nor a Poincare center. 
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3. Dynamical Systems of Characteristic 0 in Locally Compact Spaces. 

Ahmad [2] studied flows of characteristic O+- (0±) on locally compact spaces. 
The classification is based on three mutually exclusive and exhaustive cases; (1) 
L' (x) = 9 for all xEX. (II) there exists a compact invariant subset of X which is 
isolated from positively minimal sets. (Ill) neither one of the above two cases 
occurs. His result can be stated as follows. 

Theorem 3.1. Let (X, rr) be a dynamical system of characteristic 0 on a locally 
compact space X. Then one of the following three assertions (A), (B) and (C) holds. 

(A) The flow is dispersive. 
(B) There exists a compact invariant subset Q satisfying following two 

conditions (Bl) and (B2). (Bl). Q is positively asymptotically stable. 
Furthermore, it is globally asymptotically stable if X is connected; (B2). 
For each xEA +(Q)-Q, L-(x) =<fa. 

(C) There exists xEX such that U(x)*rf>· For each such x, Q=L'(x) is a 
compact minimal set and the following alternative holds; (CJ). Q is bi
laterally stable and has a neighborhood V consisting of Poisson-stable 
points such that L-(x) n Q=L +(x) n Q=9) for all XE V-Q; (C2). Q is 
positively stable and negatively unstable. Furthermore, there exists y$Q 
with L +-(y) =Q, and each neighborhood V of Q contains a complete trajec
tory contained in V-Q. 

As can be seen from the example shown in Fig. 1, it seems insufficient to 
notice only the set S of critical points for the classification of flows of character
istic O+ in general phase spaces. But, in this example, the union of critical points 
and periodic points is positively asymptotically stable. Therefore, from Seibert 
and Tulley's theorem, it seems natural to replace the set of critical points by the 
set of all the points which belong to compact minimal sets for the classification 
of flows having characteristic o+ in locally compact spaces. Adopting such view
point, we shall try to classify flows of characteristic 0" in locally compact spaces 
as minutely as possible following the rrethod of Ahmad successfully developed in 
[1]. 

To begin with, we state some properties of dynamical systems of character
istic o+. 

Lemma 3.2. Let (X, rr) be any flow. If xEX and Yi, Y2EV(x), then Y1ED 1(y2) 
and Y2ED+(Y1). 

Lemma 3.3. Let (X, rr) be a flow of characteristic o+-. If L-(x)*¢, then x is 
negatively Poisson-stable. 

Proposition 3.4. Let (X, rr) be a flow of characteristic 0 + on a connected locally 
compact space X. If M is a compact positively invariant subset of X and M is a 
positive attractor, then M is globally positively asymptotically stable. 
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Also, the following properties of minimal sets are necessary for our discussion. 

Definition 3.5. A minimal set is called trivial if it consists of only one trajec
tory. A minimal set which is not trivial is called non-trivial. 

Therefore, a trivial minimal set is a receding orbit, or a periodic orbit, or a 
critical point. The structure of a compact minimal set is completely determined 
by Birkhoff [6] and recently Kono [8] discovered an intrinsic property of motions 
in a non-compact and non-trivial minimal set. The following proposition of non
compact and non-trivial minimal sets holds also in case of X being locally compact 
Hausdorff. 

Proposition 3.6. Let X be locally compact and McX be a non-compact and 
non-trivial minimal set. Then a trajectory in M is either Poisson-stable, or posi
tively Poisson-stable and negatively receding, or negatively Poisson-stable and posi
tively receding. 

Proof. See [8]. 

From the structure of non-compact and non-trivial minimal sets, we get the 
following theorem. 

Theorem 3.7. Let (X, rr) be a dynamical system of characteristic o+ in a locally 
compact space. Then there do not exist any non-compact and non-trivial minimal 
sets. 

Before proving this theorem, we show some lemmas with respect to limit 
sets on dynamical systems of characteristic 0 t-. 

Lemma 3.8. Let (X, rr) be any dynamical system and McX be nonempty. Then 
the following assertions are equivalent. 

(1) M is positively (negatively) minimal. 
(2) K+(x)=M(K-(x)=M) for all xEM. 
(3) U(x)=M(L-(x)=M) for all xEM. 

Lemma 3.9. Let (X, n) be a dynamical system of characteristic o+. If L +(x), 
L-(x)=/=rp, then they both positively minimal. 

Proof. Let y be any point of U-(x). If zEU(x), then zEDt-(y)=K+(y) by 
Lemma 3.2. Hence V-(x)cK+-(y). Also, K+(y)cL+(x) since U(x) is a closed in
variant set. Hence K,_(y)=U(x) for all yEU(x). By (2) of Lemma 3.8, U(x) is 
positively minimal. Similarly, by the dual result of Lemma 3.2, L-(x) is positively 
minimal. 

Here, we make use of the result due to Hajek concerning positively minimal 
sets. 
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Theorem 3.10. A subset of a locally compact phase space is positively (nega
tively) minimal if and only if it is compact minimal. 

Consequently, if X is locally compact and L+(x), L-(x) are nonempty sets in 
a dynan:ical system of characteristic 0 ', they are compact minimal sets. Further
more, either L-(x)=</> or L-(x)=L'(x)=K(x) by Lemma 3.3. 

Proof of Theorem 3.7. Suppose that there exists a non-compact and non-trivial 
minin:al set M. If there exists a positively Poisson-stable point x in M, then 
L "(x)=M. But this contradicts to the non-compactness of Mas L +(x) is compact 
minimal. Hence, from Proposition 3.6, every point in M is negatively Poisson
stable and positively receding. Then L-(x) =M for every xEM. Hence by (3) of 
Lemma 3.8, M =L-(x) is negatively minimal, i.e., compact minimal, which is a 
contradiction. Therefore a dynamical system of characteristic 0 1- doesn't have any 
non-compact and non-trivial minimal sets. 

From Theorem 3.7, we can classify the structure of flows of characteristic O+ 
only by noticing the set of all the points belonging to compact minimal sets. In 
this section, hereafter we assume that X is locally compact and (X, n) has charac
teristic Q+. 

Define a set F by ; 

F={xEX: xEM, Mis any compact minimal set} 

Theorem 3.11. If F=<j>, then the flow (X, n) is dispersive. Furthermore, (X, n) 

is parallelizable if X is a separable metric space. 

Proof. U(x)=9 for all xEX as F=<j>. It is obvious from Lemma 2.6 that the 
flow is dispersive. Latter assertion follows from Theorem 2.4. 

Theorem 3.12. If F has a compact component Fo which is isolated from (F -
Fo), then Fo is positively asymptotically stable. Furthermore, Fo is globally positively 
asymptotically stable and F=Fo if X is connected. 

Proof. From the assumption, there exists a compact neighborhood U of Fo 
such that Un (F-Fo)=<j>. Since D+(Fo)=Fo, Fo is positively stable. Then there 
exists a neighborhood V of Fo such that C+(V)= VcU. Since efr*-LL(x) for all 
xE V, we get L+(x)cFoc V because L+(x) is compact minimal. Therefore, Fo is 
a positive attractor by Lemma 2.2. If X is connected, Fo is globally positively 
asymptotically stable by Proposition 3.4. Hence F=Fo. 

Theorem 3.13. If F is compact, then F is positively asymptotically stable. 
Furthermore, it is globally positively asymptotically stable if X is connected. 

Theorem 3.14. If F is non-compact, then the following assertions hold. 

44 



On the Structure of Dynamical Systems Satisfying 

(1) Either F=X, or Fis closed and X-F is non-compact. 
(2) If F-=t-X, then F is positively asymptotically stable. 
(3) U(x)=</J for all xEX-A+(F). 

Proof. In statement (1), we first show that F is closed when F-=t-X. If F is 
not closed, then there exists a point xE(uF-F). Here, for some t>O, we take the 
sequence of open neighborhoods (Un) of x(-t) such that Un-:JUn,1 for each n and 
nnUn=x(-t). Since there exists a net (xn) such that XnEF for each n and Xn----+ 
x, we can assume that xn(-t)E Un for each n by continuity of the flow. Further, 
for each fixed n, there exists a net (tnk) such that tnk ~ 0 and Xntnk ----+ Xn( -t) as 
Xn(-t)EF. For n= 1, we can select t1k such that xit1kE U1. Discarding the sequence 
{t1i;j<k} from the original one, we may consider that xit1 1EU1 without loss of 
generality. Also in case of n=2, we can select t2 2 so that xd22 E Uz. Similarly we 
can assert that XntnnE Un for each n. Then obviously x,itnn converges to x(-t). Hence 
x(-t) ED+(x)=K+(x). If x( -t)EC' (x), then x( -t) =x(s) for some s~O. Hence x is 
periodic because x=x(s+t). And, if xEL'(x), then x belongs to some compact 
minimal set. But each case contradicts the assumption that x$F. Therefore F is 
closed. Suppose that F-::/=X and X-F is compact. Then, for all x~X-F, L-(x)= 
L+(x)=K(x) is compact minimal, which is a contradiction. Therefore (1) holds. 
Since each compact minimal set McoF is positively stable, for all neighborhood 
U of F there exists a neighborhood V M of M such that C+( V M) c U. Let a neigh
borhood VF of F be defined to be (intF)U{UMcap(VM)}, then C (VF)cU. Hence 
F is positively stable. For some compact neighborhood UM of each McoF, let 
WM be a neighborhood of M such that C-(WM)c UM. Then ¢r:/=L+(x)cF for all 
xEWM. Therefore we select (intF)U{UMr0F(WM)} as a neighborhood WF of F, 
then ¢r:t-L+(x)cF for all xE WF. This implies the net (xt) must be ultimately in 
any neighborhood u of F for all XE wp. Since F is positively stable, this shows 
that F is positively asymptotically stable. The last assertion is obvious from 
Lemma 3.9 and Theorem 3.10. The proof is complete. 

Corollary 3.15. Let X be connected. If F*X and Fis non-compact, then an 
isolated compact component Fo doesn't exist. Furthermore if X is normal, then 
each component of F is non-compact. 

Remark. F is not always globally asymptotically stable even if Xis connected 
and F is connected. 

Corollary 3.16. ( Y, rry) is dispersive where Y = X-A +(F) and rrv = rr I Y. 

Proof. Let xE Y. DY.(x)=Ct(x) U]Y.(x)cCY.(x) U (J+(x) n Y)=CY.(x) U (L+(x) n Y) 
=CY.(x)ULY.(x)=KY.(x). Hence (Y, rrv) has characteristic Q+. Since there doesn't 
exist a compact minimal set in Y, ( Y, rrv) is dispersive. 

The following two theorems hold independent of the compactness of F. 

Theorem 3.17. Let <P*Fc;f:.X. For each rompact minimal set McoF, there is 
a point y$F with L +(y) = M. 

45 



A. OsmMI 

Proof. We note that L-(x) =</>for all x$F. Since F is positively asymptotically 
stable and A" (F) is open, there exists a compact neighborhood V of M such that 
VcA (F). We can find nets (xn) in X and (tn) in R- respectively such that Xn 
--+ 1\1, Xn E V - F and xntn Ea V - F. Since o V is compact, we can find a subnet (xn j) 
of (xn) and (tnj) of (tn) and a point yEiJ V satisfying Xnj--+ Mand Xnjtnj--+ y. This 
implies that yED-(M). Thus there is a point mEM such that yED-(m) and we 
get mED 1 (y)=K'(y). If yEF. then there exists a compact mini111al set M' such 
that M'nM=rp and yEM' as yEiJV. Hence K•(y)=M' and mEM', but this is a 
contradiction. Therefore mEL 1 (y), i.e., M=L (y) as y$F and mEL'(y). 

Theorem 3.18. If int F-::f:-<j>, every compact minimal set Mcint F is bilaterally 
stable. 

Proof. Suppose that M is not negatively stable. Then there exists a compact 
neighborhood V of M in int F and nets (xn), (tn) such that Xn converges to some 
point mEM, tn~O and xntnEaV. We may assume, if necessary by taking subnets, 
.rntn--+ yEa V. Hence yED--(m), or equivalently mED 1 (y) =K' (y). This is obviously 
a contradiction since y belongs to a compact minimal set disjoint from M. There
fore M is bilaterally stable. 

Theorem 3.19. If F-::F-X and F is non-compact, then the boundary of each 
component of A (F) consists of trajectories such that L±(x)=<f>. Furthermore, if X 
satisfies second countability axiom, then A +(F) has a countable number of compo
nents. 

Proof. Since F is positively asymptotically stable, A(F) is open. Let K be 
any component of A(F). Then, aKn F=<jJ. Therefore, U(x)=</J for all xEaK be
cause aK is a closed invariant set. Suppose that aK = K for some component K 
of A'(F). (X-C(x)) is an open neighborhood of F as xEoK. But this contradicts 
with xEKcA "(F). Therefore int K-::f:-<jJ. The second assertion follows immediately 
from this. 

Lemma 3.20. Let (X, rr) be a flow on a normal connected space. If a closed 
invariant subset M of X with <jJ-::f:-L" (x) for all xEM is globally positively asmptoti
cally stable, then M is connected. 

Theorem 3.21. Let X be normal. If F*X and Fis non-compact, Fo is a com
ponent of F if and only if A+(Fo) is a component of A+(F). 

Proof. Let Ko be any component of A~(F). Let Fo=FnKo. Then we shall 
show that Fo is connected and hence is a component of F. Since aKo n F=<jJ by 
Theorem 3.19, the component of F containg Fo is contained in Ko. However, since 
Fo is globally positively asymptotically stable in Ko, it follows from Lemma 3.20 
that Fo is connected. Conversely let Fo be a component of F. Since F is positively 
asymptotically stable, it follows from the proof of Lemma 3.20 [1] that Fo is posi
tively asymptotically stable. Hence A +(Fo) is open. Suppose that A +(Fo) is dis
connected. Then there exist two nonempty disjoint open sets A,, Az such that 
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A' (Fo) =A1 U A2. Thus Fo must be contained only in one of A (i = 1, 2) as Fo is 
closed and connected, which is obviously a contradiction. The proof is complete. 

The followings are immediate consequences of the above theorem and Corol
lary 3.15. 

Corollary 3.22. If Xis normal and connected. F*X and F is non-compact, 
then the closure of each component of A (F) is non-compact. 

Corollary 3.23. If X is normal and satisfies second counta'>ility axiom and F 
*X, then F has a countable number of components. 

Now we summarize the results. 

Theorem 3.24. Let (X, rr) be of characteristic 0 ·. Then one of the following 
properties holds. 

(1) F=<jJ and the flow is dispersive. 
(2) F has an isolated compact component Fo and the following holds. 

(a) Fo is positively asymptotically stable. Furthermore it is globally positively 
asymptotically stable and F=Fo is X is connected. 

Moreover, in both cases we have the fallowing two properties. 

(bl) For each compact minimal set McaF, there exists a point y$F such 
that U(y)=M. 

(b2) If int F*</J, then each compact minimal set Mc int Fis bilaterally stable. 
(3) F is non-compact and either F=X or the following hold. 

(a) F is closed and X __:_F is non-compact. 
(b) F is positively asymptotically stable. 
(c) For each compact minimal set McaF, there exist a point y$F such that 

U(y)=M. 
(d) If int F*</J, then each compact minimal set Mcint F is bilaterally stable. 
(e) For each xEX, V-(x), or L-(x) is either empty or a compact minimal set. 

Further, U(x)=</J for all xEX-A+(F) and L-(x)=</J for all x$F. 
(£) The boundary of each component of A+(F) consists of trajectories of 

C(x) such that U(x)=</J. 

Adding further conditions to X, we get; 

(g) If X satisfies second countability axiom, then AL(F) has a countable 
number of components. 

If Xis normal, then 

(hl) AT(F0 ) is component of N (F) if and only if Fo is a component of F. 
(h2) If X is connected, each component of F is non-compact and the closure 

of A +(F) is non-compact. 
(h3) If X satisfies second countability axiom, F has a countable number of 

components. 
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Clearly, this theorem is an extension of the results obtained by Ahmad in 
Theorem 2.7. 

Remark. In (B) of Theorem 3.1, a compact invariant set Q consists of com
i=act minimal sets, because each point of Q belongs to some compact minimal set 
from Lemff a 3.3. Comparing (B) of Theorem 3.1 with (2), our assertion is more 
detailed because (3)-(e) holds also in case of F having an isolated compact compo
nent. 

Suppose that int F*s'>. Then each compact minimal set Min int Fis bilaterally 
stable, and by (2)-(bl) or (3)-(d) there exists a neighborhood V such that each 
point in V -A1 belongs to some co,npact minimal set. Moreover, for a compact 
minimal set Mc uF, we get (C2) of Theorem 3.1. Therefore our classification of 
flows of characteristic 0 is more detailed than Theorem 3.1. 

We note that for a flow of characteristic Q±, L (x) = L -(x) if either L -(x) ~<fa 
or L -(x) *s~- Thus we get imrr ediately the following assertion from Theorem 3.24. 

Theorem 3.25. Let (X, rr) be a flow of characteristic 0±, Let Y be any com
ponent of X, then one of the following holds. 

(1) ( Y, rry) is dispersive. 
(2) Fy= Y. 

4. Necessary and Sufficient Conditions for a Flow to Be of Characteristic 0 -. 

The purpose of this section is to give a necessary and sufficient condition for 
a flow to be of characteristic 0 f. The condition given in Theorem 3.24 is neces
sary but not sufficient (see [7]). 

The following theorem shows a necessary and sufficient condition for a flow 
to have characteristic 0 ! in general spaces. 

Theorem 4.1. Let X be a locally compact and connected normal space. Then 
the flow (X, rr) is of characteristic 0" if and only if either (1) or (2) is satisfied. 

(1) F is compact and one of the fallowing holds. 
(a) (X, TC) is dispersive. 
(b) Each compact minimal set is positively stable and F is a global positive 

attractor. 
(2) F is non-compact and each of the fallowing holds. 

(a) F is closed. 
(b) Each compact minimal set is positively stable. 
(c) Each xEaA +(F) is dispersive. 
(d) The flow restricted to X-A+(F) is dispersive. 

Proof. The necessity of case (1) follows from Theorem 3.24. If the flow is 
dispersive, then f+(x) =L'(x) =<fa for all xEX. So (1)-(a) is sufficient. Next, suppose 
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that (1)-(b) holds. Since there is a compact minimal set M such that xEM for 
each xEF, we get Dc(x)cD'(M)=M=K(x). Furthermore, for each xEX-F= 
A +(F)-F, <fri=U(x)cF as X is locally compact and F is compact. Therefore, 
there exists a compact minimal set M' such that M'cL:(x). Let zEM', then it 
follows from Lemma 3.2 that yED (z)cD'(M')=M' for all yEU(x). Hence L'(x) 
=M'. Since M'=L·(x)cf'(x)c]'(z)cD~(z)cD (M')=M' (see [4], 6.15),f"(x)=L'(x). 
The proof of case (1) is complete. 

The necessity of case (2) follows from Theorem 3.24. Assume that (2) holds. 
For each point xEF, D~(x)cD 1 (Q)=Q=K"-(x) where Q is a compact minimal set. 
aA+(F)nF=<jJ. Actually, if not, there is a compact minimal set Q'caA(F). Since 
there exists a point xEaA (F) such that J (x) *-</J, it contradicts the condition (c). 
Therefore F is a positive attractor by (a). Since F is closed and positively stable 
from (a), (b), <fJ*-L+(x)cF for each xEA+(F)-F by Proposition 2.3. By an argu
ment similar to the one used to prove the sufficiency of (1)-(b), we obtain f'(x)= 
L+(x) for all xEA +(F)-F. For each xEoA +(F), D c(x) =CI (x) =K (x) as J (x) =<jJ. 
For each xEX-A+(F)= Y, ft(x)=</J. However, since fy(x)=f(x) for all xEX
A+(F), JT(x)=9 for all xEX-)F(F'). The proof of Theorem 4.1 is complete. 
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