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ON THE STRUCTURE OF DYNAMICAL
SYSTEMS SATISFYING A CERTAIN
STABILITY CONDITION
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Department of Mathematics Faculty of Science
and Technology Keio University

(Received March, 1984)

1. Introduction.

In this paper, we are going to classify in detail dynamical systems in locally
compact spaces which have a global property called characteristic 0*. Dynamical
systems of characteristic 0 are those in which the positive prolongation of each
point coincides with the closure of positive semi-trajectory through it. Actually
we can define a dynamical system of characteristic «* for any ordinal number «
by using the positive prolongation of order @, and the dynamical system of char-
acteristic 0+ is the simplest case of this definition.

In [1] Ahmrad classified planar flows of characteristic 0* (0-, 0*) in terms of
their critical points. This property is really interesting and his results are almost
complete. Though Ahmad [2] also deals with dynamical systems of characteristic
0+ (0, 0%) in locally compact spaces, we work out this problem by using the me-
thod different from his adopted in [2]. Although our classification is not so com-
plete as that of planar flows, it shows clearly the global structure of such flows
and is more detailed than the results in [2]. In our process of the proof, first we
show that the flow of characteristic 0- doesn’t have any non-compact and non-
trivial minimal sets. From this assertion, we can classify the flows of character-
istic 0* in terms of the set F of all the points which belong to compact minimal
sets. It is shown that if the set F is empty, then the flow is dispersive, if F is
compact and X is connected, then F is globally positively asymptotically stable,
and if F is non-compact, then F=X or F is positively asymptotically stable.
Furthermore, if X satisfies second countability axiom, the region of positive attrac-
tion A*(F) of F has a countable number of components. Those results are sum-
marized as Theorem 3.24. In particular, the case when F is non-compact and
F+X is not treated in [2]. Finally, by making use of Knight’s proof in [7], we
give a necessary and sufficient condition for a flow in locally compact and connect-
ed spaces to be characteristic 0*. Here the set F plays a very important role
again. In short, each compact minimal set is positively stable and the set F is
shown to be in one of three cases: F=¢ and the flow is dispersive; F is compact
and is a global positive attractor ; F is non-compact and the flow restricted to X
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A. OsHiMI

—A(F) is dispersive.

2. Definitions, Notations, and Preliminary Results.

Throughout this paper R, R*, and R~ will denote the real numbers, non-
negative real numbers, and non-positive real numbers, respectively. Given a to-
pological space X and a mapping = from the product space XX R into X, the pair
(X, n) is called to define a dvramical system or (continuous) flow if the following
axioms are satisfied.

1. Identity axiom: n(z,0)=x.
2. Homomorphism axiom: rn(n(x,t),s)=n(x,s+t) for each xeX and s, teR.
3. Continuity axiom: = is continuous on XX R.

In this paper X will always be Hausdorff. For brevity, we denote ={(x,¢) by
xzt. For each zeX, zR,xzR*, and xR~ are called the trajectory (or orbit), positive
semi-trajectory, and negative semi-trajectory through z and will be denoted by C(z),
C*(z), and C-(x), respectively. A point xeX is called a critical point or a rest
point if xR=z. If x is not critical point and x¢==x for some ¢>0, then x is called
periodic. A subset M of X is said to be invariant if C(M)=M, and positively
(negatively) invarviant if C'(M)=M(C-(M)=M). A closed (positively) invariant set
M is (positively) minimal if it has no proper subset which is closed and (positively)
invariant. Negative minimality is defined similarly.

We denote the boundary, interior, and closure of a subset M of X by oM,

K(z), K*(z), and K (z), respectively. The w-limit set and «-limit set of x are de-
noted by L*(x) and L-(z), respectively, i.e.,

L (z)={yeX; ati— y for some net t; > +oco}

L~(x)={yeX; xt;— y for some net t;—>—co} .

For each zeX, the (first) positive (negative) prolongation D*(x)(D-(x)) of x is de-
fined by

DH(x)(D~(x))={yeX; xiti —y for some net x; —> x and t,€R"({t;eR™)}.

The (first) positive (negative) prolongational limit set J*(z)(J~(x)) of x is defined by
JH @) (T () ={yeX; xit; >y for some net x;— x and t; —+oo (t; —>—0o0)}.
Equivalently, L*(x)=Nwer{K (@)} (L7(x)=NeplK~(z£)}) and D'(2)=/\ye,{K"(N)}
(D(®)=Nwey!K~(N)}) and J* (@) =NerlD" (@)} (J7(@)=Nier(D (t)}), where yn(x) is

the neighborhood filter of x. It follows that L*(x)cJ*(z)cD(z), D' (x)=C*(z)U
Ji(z) and K*(x)=C*(z)UL"(z) when X is Hausdorff.

A point x€X or the trajectory C(z) is called positively (negatively) veceding, if
L (x)(L~(z))=¢; receding, if x is receding both positively and negatively ; positively
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(megatively) asymptolic, if L' (x)(L~(z))#¢ but- L*(x)NC(x)=¢(L~(x)NC(x)=9¢); posi-
tively (negatively) Poisson-stable, if L"(z)NC(x)#¢(L(x)NC(x)+¢); Poisson-stable,
if z is both positively and negatively Poisson-stable.

A set Mc X is said to be positively orbitally stable or simply positively stable
if for every mneighborhood of U of M, there exists a neighborhood V of M such
that C*(V)c U. Negative stability is defined similarly. M is said to be bilaterally
stable if it is positively and negatively stable. A closed positively (negatively)
invariant set M is said to be positively (negatively) D-stable if D*(M)=M(D-(M)=
M). The following theorem of Ura plays an important role in stability theory of
compact sets.

Theorem 2.1. Let (X,7) be a dynamical system on a locally compact space.
Then a compact subset M is positively stable if and only if it is positively D-stable.

The point zeX is said to be attracted to M if the net (xf) for teR* is ulti-
mately in every neighborhood of M. The set of all such points x is called the
vegion of positive attraction of M and will be denoted by A*(M). If A*(M) is a
neighborhood of M, then M is called a positive attvactor. M is said to be positively
asymptotically stable if it is both positively stable and a positive attractor. M is
said to be globally positively asymptotically stable if it is positively asymptotically
stable and A*(M)=X. We state some properties of A*(M) which will be used
in this paper.

Lemma 2.2.

(1) A'(M) is open if M is a positive attractor.
(2) If X is locally compact and M is compact, then it follows that xeA+(M)
if and only if ¢+L (x)CM.

Also, in case of M being closed, (2) holds under suitable conditions.

Proposition 2.3. Let (X, =) be a flow where X is normal and let M be a closed
positively stable set with ¢+L'(x) for each xeM. Then, ye A*(M) if and only if
o+L(y)c M. ‘

A point zeX is called dispersive if J*(x)=¢. A flow (X, r) is called dispersive
if each point xeX is dispersive. A flow is called parallelizable if it is isomorphic
to a parallel flow ; that is, if there exists a set SCcX and a homeomorphism /7%:X
— Sx R such that SR=X and A(xt)=(x,t) for every z€S and feR.

Theorem 2.4. (X, ) on a locally comﬁact separable metric space X is parallel-
izable if and only if it is dispersive.

Now .we give the definition of dynamical Vsystems of characteristic 0*.
Definition 2.5. A dynamical system (X, 7) is said to have characteristic 0+ (0™)
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if and only if D*(z)=K*(zx) (D-(z)=K-(z)) for all zeX. It is said to have char-
acteristic 0* if and only if D*(z)=K*(x) and D-(2)=K-(x) for all x€X, i.e., it has
characteristic 0* and characteristic 0-.

Actually, we can define a positive prolongation of order «, denoted by D;(z),
for any ordinal number a (see [3]), and (X, ) is said to have characteristic a* if
and only if D}(z)=D},(x) for all xeX. (X,7) having characteristic 0* is the
simplest case of this definition, since Df{(x)=K"(x) and D;(x)=D*(x).

Lemma 2.6. Each of the following conditions is equivalent to (X, r) having
characteristic 0 :

(1) L(z)=]*(z) for all xeX.
(2) Every closed positively invariant subset of X is positively D-stable.

Thus, our main purpose is to study in detail the flows whose closed positively
invariant set is always positively D-stable.

Ahmad [1] gives a complete classification of planar flows having characteristic
0+, 0. The results are summarized in the following two theorems. Hereafter,
we denote by S, P the set of critical points and the set of periodic points of a
given flow (R? ) respectively.

Theorem 2.7. Let (R% ) be a dynamical system of charactevistic 0. Then
one of the following three assertions holds.

(1) S=¢ and (R* ) is pararelizable.
(2) Compactness of S implies one of the following.

(@) S={so} is a singleton and s, is a global Poincaré center.

(b) S={so} is a singleton and s, is a local Poincaré center. Further, the
set N consisting of so and perviodic orbits survounding so, is a globally
asymptotically positively stable simply connected continuum.

(¢) S is globally asymptotically stable and is a simply connected continuum.

3) If S is unbounded, then either
(A) S=R? or
(B) the following hold.

@) R*—S is unbounded.

(b) S is positively asymptotically stable.

(¢) A*S) has a countable number of components, each being homeomorphic
to R* and unbounded.

(d) S has a countable number of components, each being non-compact and
simply connected. For each s€oS, there is a regular point y with L*(y)
={s}.

(e) A*(Sy) is a component of A*(S) if and only if S, is a component of S.

(f) For each xzcR? L*(x) is either empty or comsists of a single cvitical
point. Further, L*(x)=¢ for all z¢A*(S) and L~(z)=¢ for all xeR*
-S.
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Theorem 2.8. Let (R% ) be a dynamical system of characteristic 0%, then one
of the following holds.

(1) S=¢ and (R% r) is parallelizable.
(2) S=R*
(3) S={so} is a singleton and s, is a global Poincaré center.

Furthemore, for the dynamical systems of characteristic 0+ on S? the follow-
ing alternative holds.

1) S=S.

(2) S={z,y}, P=S>—{x, vy}, and x, y are both Poincaré centers.

Consequently, (S?, =) has characteristic 0* if it is of characteristic 0*.

Successful results described in Theorem 2.7, 2.8 are due to the fact that phase
space X is R? and in particular, to the validity of Jordan Curve Theorem. In
more detail, they depend on the following two facts:

(1) There exists a critical point inside every periodic orbit.
(2) A point is positively (negatively) Poisson stable if and only if it is a
critical point or a periodic point (see [9)).

However, for more general topological spaces, these two theorems are not
always true. For example, consider the following flow illustrated in Fig. 1.

X={zy-plane and z-axis} , S={(0,0,0)}, P={(z,v,0); z>+y*<1}

Fig. 1. Evidently, this flow has characteristic 0+, but the critical point is
neither positively asymptotically stable nor a Poincaré center.
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3. Dynamical Systems of Characteristic 0 in Locally Compact Spaces.

Ahmad [2] studied flows of characteristic 0+ (0*) on locally compact spaces.
The classification is based on three mutually exclusive and exhaustive cases; (I)
L' (z)=¢ for all xzeX. (II) there exists a compact invariant subset of X which is
isolated from positively minimal sets. (III) neither one of the above two cases
occurs. His result can be stated as follows.

Theorem 3.1. Let (X, x) be a dynamical system of charactevistic O on a locally
compact space X. Then one of the following three assertions (A), (B) and (C) holds.

(A) The flow is dispersive.

(B) There exists a compact invaviant subsel Q satisfying following two
conditions (BI) and (B2). (BIl). Q is positively asymptotically stable.
Furthermore, it is globally asymptotically stable if X is connected; (B2).
For each x€e A" (Q)—Q, L~ (x)=¢.

(C) There exists x€X such that L' (x)+¢. For each such x, Q=L*(z) is a
compact wminimal set and the following alternative holds; (CI1). Q is bi-
laterally stable and has a neighborhood V consisting of Poisson-stable
points such that L-(x)NQ=L"(x)NQ=¢ for all xeV-Q; (C2). Q is
positively steble and mnegatively unstable. Furthermore, theve exists y¢Q
with L*(y)=Q, and each neighborhood V of Q contains a complete trajec-
tory contained in V—Q.

As can be seen from the example shown in Fig. 1, it seems insufficient to
notice only the set S of critical points for the classification of flows of character-
istic Ot in general phase spaces. But, in this example, the union of critical points
and periodic points is positively asymptotically stable. Therefore, from Seibert
and Tulley’s theorem, it seems natural to replace the set of critical points by the
set of all the points which belong to compact minimal sets for the classification
of flows having characteristic 0 in locally compact spaces. Adopting such view-
point, we shall try to classify flows of characteristic 0" in locally compact spaces
as minutely as possible following the method of Ahmad successfully developed in

[1].

To begin with, we state some properties of dynamical systems of character-
istic 0+.

Lemma 3.2. Let (X, =) be any flow. If xeX and y,,y:€L"(x), then y,€D (y2)
and y.€D*(yy).

Lemma 3.3. Let (X,x) be a flow of characteristic 0. If L~ (x)+¢, then x is
negatively Poisson-stable.

Proposition 3.4. Letf (X, ) be a flow of characteristic O on a connected locally
compact space X. If M is a compact positively invariant subset of X and M is a
positive attractor, then M is globally positively asymptotically stable.

42



On the Structure of Dynamical Systems Satisfying
Also, the following properties of minimal sets are necessary for our discussion.

Definition 3.5. A minimal set is called #7ivial if it consists of only one trajec-
tory. A minimal set which is not trivial is called non-trivial.

Therefore, a trivial minimal set is a receding orbit, or a periodic orbit, or a
critical point. The structure of a compact minimal set is completely determined
by Birkhoff [6] and recently Kono [8] discovered an intrinsic property of motions
in a non-compact and non-trivial minimal set. The following proposition of non-
compact and non-trivial minimal sets holds also in case of X being locally compact
Hausdorff.

Proposition 3.6. Let X be locally compact and McX be a non-compact and
non-trivial minimal set. Then a trajectory in M is either Poisson-stable, or posi-
tively Poisson-stable and negatively receding, or mnegatively Poisson-stable and posi-
tively receding.

Proof. See [8].

From the structure of non-compact and non-trivial minimal sets, we get the
following theorem.

Theorem 3.7. Let (X, x) be a dynamical system of characteristic O in a locally
compact space. Then there do not exist any non-compact and non-trivial minimal
sets.

Before proving this theorem, we show some lemmas with respect to limit
sets on dynamical systems of characteristic 0*.

Lemma 3.8. Let (X, r) be any dynamical system and Mc X be nonempty. Then
the following assertions arve equivalent.

(1) M is positively (negatively) minimal.
@) K'(x)=MEK-(x)=M) for all zel.
Q) L*(x)=M(L-(x)=M) for all zeM.

Lemma 3.9. Let (X, 7) be a dynamical system of characteristic 0*. If L*(x),
L-(x)+¢, then they both positively minimal.

Proof. Let y be any point of L*(z). If zeL*(x), then zeD*(y)=K*(y) by
Lemma 3.2. Hence L‘'(x)cK'(y). Also, K*(y)cL*(z) since L*(x) is a closed in-
variant set. Hence K (y)=L*'(x) for all yeL*(x). By (2) of Lemma 3.8, L*(z) is
positively minimal. Similarly, by the dual result of Lemma 3.2, L~(x) is positively
minimal.

Here, we make use of the result due to Hajek concerning positively minimal
sets.
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Theorem 3.10. A subset of a locally compact phase space is positively (nega-
tively) minimal if and only if it is compact minimal.

Consequently, if X is locally compact and L*(x), L-(x) are nonempty sets in
a dynamical system of characteristic 0+, they are compact minimal sets. Further-
more, either L~(x)=¢ or L~ (z)=L*(x)=K(z) by Lemma 3.3.

Proof of Theorem 3.7. Suppose that there exists a non-compact and non-trivial
minimal set M. If there exists a positively Poisson-stable point x in M, then
L*(x)=M. But this contradicts to the non-compactness of M as L*(x) is compact
minimal. Hence, from Proposition 3.6, every point in M is negatively Poisson-
stable and positively receding. Then L-(x)=M for every xeM. Hence by (3) of
Lemma 3.8, M=L-(x) is negatively minimal, i.e., compact minimal, which is a
contradiction. Therefore a dynamical system of characteristic 0" doesn’t have any
non-compact and non-trivial minimal sets.

From Theorem 3.7, we can classify the structure of flows of characteristic 0~
only by noticing the set of all the points belonging to compact minimal sets. In
this section, hereafter we assume that X is locally compact and (X, =) has charac-
teristic 0*.

Define a set F by;

F={zxeX:zeM, M is any compact minimal set}

Theorem 3.11. If F=¢, then the flow (X, =) is dispersive. Furthermore, (X, )
is parallelizable if X is a separable metric space.

Proof. L (x)=¢ for all zeX as F=¢. Itisobvious from Lemma 2.6 that the
flow is dispersive. Latter assertion follows from Theorem 2.4.

Theorem 3.12. If F has a compact component Fo which is isolated from (F—
Fy), then F, is positively asymptotically stable. Furthermore, F, is globally positively
asymptotically stable and F=F, if X is connected.

Proof. From the assumption, there exists a compact neighborhood U of F,
such that Un(F—Fy))=¢. Since D*(Fy)=F,, F, is positively stable. Then there
exists a neighborhood V of F, such that C*(V)=VcU. Since ¢+L"(z) for all
zeV, we get L*(x)cF,CV because L*(x) is compact minimal. Therefore, F, is
a positive attractor by Lemma 2.2. If X is connected, F, is globally positively
asymptotically stable by Proposition 3.4. Hence F=F,.

Theorem 3.13. If F is compact, then F is positively asymptotically stable.
Furthermore, it is globally positively asymptotically stable if X is connected.

Theorem 3.14. If F is non-compact, then the following assertions hold.
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(1) Either F=X, or F is closed and X—F is non-compact.
(2) If F+X, then F is positively asymptotically stable.
3) L*(x)=¢ for all zeX—A*(F).

Proof. In statement (1), we first show that F is closed when F+X. If F is
not closed, then there exists a point xe¢(@F—F). Here, for some ¢>0, we take the
sequence of open neighborhoods (U,) of x(—#) such that U,DU,., for each »# and
NnUp=2x(—1t). Since there exists a net (x,) such that x,€F for each n and z, —
x, we can assume that z,(—t)eU, for each » by continuity of the flow. Further,
for each fixed #, there exists a net (¢,,) such that £,,>0 and xut., — z.(—f) as
zo(—t)eF. For n=1, we can select ¢,, such that z,¢,,€U,. Discarding the sequence
{t:;; j<k} from the original one, we may consider that x,f,, €U, without loss of
generality. Also in case of #=2, we can select £, so that xsf,,€U,. Similarly we
can assert that x.f,,€ Uy for each #. Then obviously x.t., converges to x(—¢). Hence
z(—0)eD*(x)=K"(z). If x(—t)eC'(z), then x(—¢)==(s) for some s>0. Hence z is
periodic because x=z(s+¢). And, if x<L"(x), then x belongs to some compact
minimal set. But each case contradicts the assumption that x4¢F. Therefore F is
closed. Suppose that F+X and X—F is compact. Then, for all x:X—F, L-(2)=
L*(z)=K(x) is compact minimal, which is a contradiction. Therefore (1) holds.
Since each compact minimal set McoF is positively stable, for all neighborhood
U of F there exists a neighborhood Vy of M such that C*(Vy)cU. Let a neigh-
borhood Vr of F be defined to be (int F)U{\Uycor(Vi)}, then C(Vy)cU. Hence
I is positively stable. For some compact neighborhood Uy of each McCoF, let
Wy be a neighborhood of M such that C*(Wxy)cUy. Then ¢+L*(xz)CF for all
z€Wy. Therefore we select (int F)U{\Uy-sx(Wux)} as a neighborhood Wz of F,
then ¢+#L*(z)cF for all ze Wp. This implies the net (xf) must be ultimately in
any neighborhood U of F for all zeWpr. Since F is positively stable, this shows
that F' is positively asymptotically stable. The last assertion is obvious from
Lemma 3.9 and Theorem 3.10. The proof is complete.

Corollary 3.15. Let X be connected. If F+X and F is non-compact, then an
isolated compact component F, doesw't exist. Furthermorve if X is normal, then

each component of F is non-compact.

Remark. F is not always globally asymptotically stable even if X is connected
and F is connected.

Corollary 3.16. (Y, ny) is dispersive wheve Y=X—A*(F) and ny=rx|Y.

Proof. Let zeY. DHx)=Ciz)UJHz)cCi@)U(J ()N Y )=CHx)U(L*(z)NY)
=C#(x)U Ly(x)=K3(x). Hence (Y, zy) has characteristic 0*. Since there doesn’t
exist a compact minimal set in Y, (Y, zy) is dispersive.

The following two theorems hold independent of the compactness of F.

Theorem 3.17. Let ¢+FSX. For each compact minimal set MCOF, theve is
a point y&F with L*(y)=M.
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Proof. We note that L~(x)=¢ for all x¢F. Since F is positively asymptotically
stable and A'(F) is open, there exists a compact neighborhood V of M such that
VcA (F). We can find nets (z,) in X and (¢,) in R~ respectively such that x,.
— M, z,€ V—F and zutp,edV—F. Since ¢V is compact, we can find a subnet (x,))
of (z.) and (t.,) of (f,) and a point yedV satisfying x.; > M and zn;tn; —>y. This
implies that yeD~-(M). Thus there is a point meM such that yeD-(m) and we
get meD'(y)=K '(y). If yeF, then there exists a compact minimal set M such
that M'NM=¢ and yeM’ as yeaV. Hence K'(y)=M" and melM’, but this is a
contradiction. Therefore meL'(y), i.e., M=L (y) as y¢F and meL"(y).

Theorem 3.18. If int F+¢, every compact minimal set Mcint F is bilatevally
stable.

Proof. Suppose that M is not negatively stable. Then there exists a compact
neighborhood V' of M in int ' and nets (x,), ({,) such that x, converges to some
point meM, #,<0 and z.,t,€0V. We may assume, if necessary by taking subnets,
., —ye€adV. Hence yeD (m), or equivalently meD'(y)=K"(y). This is obviously
a contradiction since y belongs to a compact minimal set disjoint from M. There-
fore M is bilaterally stable.

Theorem 3.19. If F+X and F is non-compact, then the boundary of each
component of A (F') consists of trvajectovies such that L*(x)=¢. Furthermore, if X
satisfies second countability axiom, then A*(F) has a countable number of compo-
nents.

Proof. Since F is positively asymptotically stable, A*(F) is open. Let K be
any component of A~(F'). Then, 6KNF=¢. Therefore, L*(x)=¢ for all xedK be-
cause oK is a closed invariant set. Suppose that K=K for some component K
of A*(F). (X—C(x)) is an open neighborhood of F' as x€dK. But this contradicts
with ze Kc A*(F). Therefore int K#¢. The second assertion follows immediately
from this.

Lemma 3.20. Let (X, n) be a flow on a normal connected space. If a closed
invariant subset M of X with ¢=+L*(x) for all xeM is globally positively asmptoti-
cally stable, then M is connected.

Theorem 3.21. Let X be normal. If F+X and F is non-compact, F, is a com-
ponent of F if and only if A*(F,) is a component of A*(F).

Proof. Let K, be any component of A*(F'). Let Fo=FNK,. Then we shall
show that F, is connected and hence is a component of F. Since 0K,NF=¢ by
Theorem 3.19, the component of F containg F, is contained in K,. However, since
F, is globally positively asymptotically stable in K,, it follows from Lemma 3.20
that F, is connected. Conversely let F, be a component of F. Since F' is positively
asymptotically stable, it follows from the proof of Lemma 3.20 [1] that F, is posi-
tively asymptotically stable. Hence A*(F,) is open. Suppose that A*(F,) is dis-
connected. Then there exist two nonempty disjoint open sets A,, A; such that
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A (Fy)=A,UA,. Thus F, must be contained only in one of A; (i=1,2) as F, is
closed and connected, which is obviously a contradiction. The proof is complete.

The followings are immediate consequences of the above theorem and Corol-
lary 3.15.

Corollary 3.22. If X is normal and connected. F+X and F is non-compact,
then the closure of each component of A*(F) is non-compact.

Corollary 3.23. If X is normal and satisfies second counta’ility axiom and F
+X, then F has a countable number of components.

Now we summarize the results.

Theorem 3.24. Let (X,x) be of characteristic 0. Then one of the following
properties holds.

(1) F=¢ and the flow is dispersive.
(2) F has an isolated compact component F, and the following holds.
(@) F, is positively asymptotically stable. Furthermore it is globally positively
asymptotically stable and F=F, is X is connected.

Moreover, in both cases we have the following two properties.

(bl) For each compact minimal set MCOF, theve exists a point y&F such
that L*(y)=M.
(b2) If int F+¢, then each compact minimal set M cCint F is bilaterally stable.
(3) F is non-compact and either F=X or the following hold.

(@) F is closed and X—F is non-compact.

(b) F is positively asymptotically stable.

(¢c) For each compact minimal set MCOF, there exist a point y&F such that
L+ (y)=M.

(d) If int F+¢, then each compact minimal set McCint F is bilaterally stable.

(e) Foreach xeX, L*(x), or L~(x) is either empty or a compact minimal set.
Further, L*(z)=¢ for all xe X—A*(F') and L~(x)=¢ for all x¢F.

(f) The boundary of each component of A*(F) comsists of trajectories of
C(x) such that L*(x)=4¢.

Adding further conditions to X, we get;

(g) If X satisfies second countability axiom, then A*(F) has a countable
number of components.

If X is normal, then

(hl) A+~(Fy) is component of A'(F) if and only if Fo is a component of F.

(h2) If X is connected, each component of F is non-compact and the closure
of AY(F) is non-compact.

(h3) If X satisfies second countability axiom, F has a countable number of
components.
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Clearly, this theorem is an extension of the results obtained by Ahmad in
Theorem 2.7.

Remark. In (B) of Theorem 3.1, a compact invariant set @ consists of com-
ract minimal sets, because each point of @ belongs to some compact minimal set
from Lemn-a 33. Comparing (B) of Theorem 3.1 with (2), our assertion is more
detailed because (3)-(e) holds also in case of F' having an isolated compact compo-
nent.

Suppose that int F+¢. Then each compact minimal set M in int F' is bilaterally
stable, and by (2)-(bl) or (3)-(d) there exists a neighborhood ¥V such that each
point in V—M belongs to some compact minimal set. Moreover, for a compact
minimal set McoF, we get (C2) of Theorem 3.1. Therefore our classification of
flows of characteristic 0 is more detailed than Theorem 3.1.

We note that for a flow of characteristic 0%, L (z)=L~(z) if either L-(x)=¢
or L (z)#¢. Thus we get imn ediately the following assertion from Theorem 3.24.

Theorem 3.25. Let (X, 7) be a flow of charactervistic 0%, Let Y be any com-
ponent of X, then one of the following holds.

1) (Y, =v) is dispersive.
(2) Fy=Y.

4. Necessary and Sufficient Conditions for a Flow to Be of Characteristic 0-.

The purpose of this section is to give a necessary and sufficient condition for
a flow to be of characteristic 0. The condition given in Theorem 3.24 is neces-
sary but not sufficient (see [7]).

The following theorem shows a necessary and sufficient condition for a flow
to have characteristic 0* in general spaces.

Theorem 4.1. Let X be a locally compact and connected normal space. Then
the flow (X, r) is of characteristic O* if and only if either (1) or (2) is satisfied.

1) F is compact and one of the following holds.
(@) (X, n) is dispersive.
(b) Each compact minimal set is positively stable and F is a global positive
attractor.
(2) F is non-compact and each of the following holds.
(@) F is closed.
(b) Each compact minimal set is positively stable.
(c) Each x€dA*(F) is dispersive.
(d) The flow restricted to X—A'(F) is dispersive.

Proof. The necessity of case (1) follows from Theorem 3.24. If the flow is
dispersive, then J*(x)=L"*(x)=¢ for all ze X. So (1)-(a) is sufficient. Next, suppose
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that (1)-(b) holds. Since there is a compact minimal set M such that xeM for
each xeF, we get D (x)cD"(M)=M=K(x). Furthermore, for each reX—F=
A(F)—F, ¢+L"(x)cF as X is locally compact and F is compact. Therefore,
there exists a compact minimal set M’ such that M’ cL'(x). Let zeM’, then it
follows from Lemma 3.2 that yeD (z2)cD*(M)=M for all yeL*(x). Hence L*(x)
=M. Since M'=L (z)cJ (x)cJ (2)cD*(2)cD (M)=M (see [4], 6.15), ] (x)=L"(x).
The proof of case (1) is complete.

The necessity of case (2) follows from Theorem 3.24. Assume that (2) holds.
For each point zeF, D (z)cD"(Q)=Q=K"'(x) where @ is a compact minimal set.
JAT(F)NF=¢. Actually, if not, there is a compact minimal set Q' CdA (F'). Since
there exists a point x€dA'(F) such that J (x)#¢, it contradicts the condition (c).
Therefore F' is a positive attractor by (a). Since F is closed and positively stable
from (a), (b), ¢=L*(z)CF for each zeA*(F)—F by Proposition 2.3. By an argu-
ment similar to the one used to prove the sufficiency of (1)-(b), we obtain J'(z)=
L*(x) for all x€A*(F)—F. For each zedA*(F), D(x)=C'(x)=K (x) as J'(z)=¢.
For each xeX—-A*(F)=Y, Jy(x)=¢. However, since Jj(x)=/ (z) for all zeX—
AXF), J"(x)=¢ for all zeX—A'(F). The proof of Theorem 4.1 is complete.
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