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KEIO SCIENCE AND TECHNOLOGY REPORTS 
VOL. 36, NO. 2, pp, 11-24, 1983 

THE MEAN DERIVATIVES AND THE ABSOLUTE 
CONVERGENCE OF THE FOURIER SERIES 

OF A STOCHASTIC PROCESS 

Tatsuo KAWATA* 

(Received January 24, 1983) 

ABSTRACT 

A criterion for the almost sure absolute convergence of the Fourier series of a peroidic 
stochastic process which has the mean derivatives is given and the result is applied to the 
sample properties of the process. A theorem on the mean derivative of a sine series is 
also given. 

1. Introduction 

Let X(t, w), tER 1
, be a complex valued stochastic process on a given probability 

space ([J,F,P). Suppose that X(t,w) is measurable LxF on R 1 xfJ,L being the 
class of Lebesgue measurable sets on R 1

, and that for r~ l, 

(1.1) EIX(t, w)lr <oo, 

for every t and X(t, w) is Zn-periodic: 

(1.2) EIX(t+2n, w)-X(t, w)I =0, 

for tER 1
• 

Furthermore we throughout assume that (T=[ -n, rr]) 

(1. 3) ~~"EIX(t, wW dt<oo. 

In case we write X(t, w)EL';,(Tx Q). 
Let 

(1.4) 

be the Fourier series of X(t, w), where 

(1. 5) n=O, ±1, ±2, · · · 

* Present address: 1-12-26-204 Shinohara-higashi, Kohoku-ku, Yokohama 222, Japan 
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The mean derivatives 

In [l], the author has given some results on the almost sure convergence of 
the series 

00 

(1.6) ,6 JnJkanlCn(w)I 
n=-oo 

(an>O) for some nonnegative integer k, and applied them to sample continuity or 
differentiability or X(t, w). 

Write 

(1. 7) 

where p is a positive integer and iJc,flX(t, w) is the p-th difference of X(t, w): 

(1.8) 

Let <jJ(t) be a nondecreasing function on [0, 1] such that either ¢(0)=0 and 
<jJ(t)/t is noninereasing on [0, l], or <jJ(t) is identically 1 on [O, l]. 

One of the resuls obtained in [1] is the following. 

THEOREM A. Let X(t, w) be of L[,(Tx fJ) for some r> 1. Let k be a given non­
negative integer. If there exists a positive integer P such that 

(1.9) 

then 

(1.10) 

almost surely. 

In this paper we give a relationship between M~<Pl(o) and the mean derivative 
of X(t, w) and apply it to the absolute convergence of Fourier series and the sample 
properties of X((t, w). 

2. Mean derivatives. 

Let X(t, w)EL[,(Tx Q) for some r~ 1. If there is a stochastic process X~(t, w) 
of L1;.(Tx Q) such that 

(2.1) __ _l_J" El X(t+h, w)-X(t, w) X~(t, w)lr dt-+0 
2n J_,. h 

as h-+0, then X~(t, w) is called the mean derivative in U(TxQ) of X(t, w). The 
p-th mean derivative X}.fl(t, w) is defined succesively in an obvious way. 

Write 
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T. KAWATA 

(2.2) ( 
1 C' ) l/T 

"Z;L, EJX(t, (J)Wdt =IJX(t, w)llr 

which is the norm of X(t, (I)) in U(Tx Q). 

We give two simple lemmas. 

LEMMA 1. If X(t, w)EU(TxQ) has the mean derivative XJ.t(t, (J)) in U(TxQ), 
then, as h-+0, 

(2.3) 

Proof. The left hand side of (2. 3) is not greater than 

ll ~ ~:[X(u+t, (J))-X(t, (J))-uX~(t, (J))]dullr + 1 ~ 1 jjx~(t, (J))llr 

2~:hJll X(u+t, u~-X(t, (I)) -X~(t. (J))l lrdu+ l~l llX~(t, w)llr =o(lhl)+O(Jhl)=O(Jhl). 

LEMMA 2. If X(t, w)EL7j,(TxQ) has the mean derivative X~(t, (I)) in U(TxQ), 
then 

(2.4) 
rt+h 

X(t+h, (J))-X(t, ()))= Jt X~(u, (J))du 

almost everywhere in Tx [},for each lz. 

Namely there is a subset G=G(/z) of Tx!J such that (2.4) holds for (t, (J))EG 
and µ(G)=2rr, µ being the mxP measure and m the Lebesgue measure. We note 
that we can easily see that (2.4) holds on G if tis replaced by t+h by periodicity, 
when h is fixed. The dependence of G on h makes the difference between the 
almost sure absolute continuity and the existence of mean derivative in L(Tx Q) 
of X(t, ())). 

Proof. Let h>O without loss of generality and let lkl <lz. Write 

where 

Since 

13 



The mean derivatives 

Hence 

(2. 5) 

as k~O for a fixed h. 
On the other hand, 

11

1rt1kth 1rtfh rt+h, II 

Sk= k)t+k X(u, w)du-fi)t X(u, w)du- )t XM(u, w)du r 

11

1rt+htk 1rt+k rt+h II 

= k L1i X(u, w)du-k )t X(u, w)du- )t X~(u, w)du r. 

By Lemma 1, this converges to 

\ \x(t+h, w)-X(t, w)- ~:+ti X~(u, w)dul Ir 

as k~O. Hence from (2. 5) the last quantity should be zero. This gives us that 
(2. 2) holds a.e. in TX Q. for each h. 

3. Mean derivatives and continuity modulus. 

Let X(t, w) be of Vj,(TXD), r~l. Suppose X<JJ.>(t, w), the mean derivative of 
order p of X(t, w) in U(Tx Q) exists, p being a positive integer. 

Now let Gi=Gi(h) be the set on which (2.4) with X1i- 0 (t, w) in place of X(t, w) 
l=l, 2, ···,ft, holds. 

is, by Lemma 2, equal in G 1 to 

which is again by Lemma 2 equal in G1 n G2 to 

Repeating this procedure, we have 

(3.1) 

p 

a.e. in Go= n Ci, µ(Go) =2rr. 
l=l 

We now prove 

THEOREM 1. If X(t, w) belongs to Vj,(Tx Q) and has X<jj_)(t, w) in U(Tx Q), r?;; 1, 
p being a positive integer, then 
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(3.2) 

Proof. From (3.1), we have, for any fixed h>O, in G0 , 

where 

Since for a 2n-periodic function f(u)EL1(T), 

for lhl <n, which is easily seen by the interchange of integration signs on the left 
hand side, we have, for small I h I, 

llJ)i'X(t, w)ll~= 2
1
7r ~~" EIJX)i>(t, wWdt 

lhlP(T-1) ~" ~t+h 
:=:: 

2 
dt EY(ti, w)dt1 

7r -1' t 

~ ~ lhlw-i)lh{" EY(ti, w)dt1. 

Repeating the same arguments p-1 more times, we have 

This is no more than (3. 2). 

4. Absolute convergence of the Fourier series of a periodic stochastic process. 

Let cp(t) be the function in 1. The combination of Theorem 1 and Theorem A 
immediately gives us the following theorem. 

THEOREM 2. If X(t, w)ED;,(TX Q) and for some nonnegative integer k, X<jj+1l(t, w) 
exists in U(TX Q), 1 <r;=:;;2, and 

15 



The mean derivatives 

(4 .1) 

then 

(4. 2) 

almost surely. 

In particular, taking ¢(t)=r, we have the following collorary. For nonrandom 
case, this is thought of as a version of a known result on the absolute convergence 
of an absolutely continuous function which has the derivative belonging to U(T). 
([1] Cor. 2. p. 161, [ 4] Theorem 3. 8, p. 242) 

CoLLORARY 1. If X(t, w)EL~(TX Q) and for some nonnegative k, X<j;+ll(t, w) exists 
in U(Tx [2), and 

(4. 3) 

then 

(4.4) 

almost surely. 

co 

1 
O~a<l--, 

r 

~ lnlk+"ICn(w)I <oo, 

The condition ( 4. 3) is of the best kind in some sense. Actually if a= 1-1/r, 
there is an X(t, w)EL~( TX Q) which has X<J;+ 1l(t, w) in U( TX Q) and is such that 
the series in (4.4) diverges almost surely. 

We show this for simplicity when k=O. Let 

(4.5) 
00 sin nx 

f(x)= ~2 n"+11og n' O~a<l. 

This is abolutely continuous and f(x)= ~:g(u)du, where 

(4.6) 
00 cos nx 

g(x)= ~2 na log n 

which is defined for all -n~x~n except at x=O. We can show that g(x)EU(T) 
and is the mean derivative of f(x) in U(T) for r>l, if a~l-l/r. More precisely 

(4. 7) 
(" lf(x+h)- f(x) _ Ir < lhlC"'-J)r+i 
J_,, h g(x) dx=C llog lhW ' 

as h--+0, where C is a constant independent of h. 
The proof of this fact will be shown in a more general form in 6. 
Let r>l and a=l-l/r. Then from (4.7), g(x) is the mean derivative of f(x) 
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in U(T) and 

where bn=n-a-i (log nt1 is the sine coefficient of f(x). 
Theorem 2 and Collorary 1 seem to be new, even for nonrandom case. The 

above example shows that Collorary 1 with k=O for nonrandom case is no more 
true if a=l-1/r. 

(4. 9) X(t, w)=X(w)f(t), 

where f(t) is the function (4.5) and X(w) is any random variable of U(Q), gives 
a counter example for Collorary 1 with k=O,a=l-l/r. 

5. Sample properties of a periodic stochastic process 

The author has shown the following theorem. 

THEORFM B. Let X(t, w)EL1;,, 1 <r~2. Let k be a given nonnegative integer. 
Suppose there exists a positive integer p such that 

(5.1) 

If X(t, w) is stochastically continuous, then there is a modification Xo(t, w) of X(t, w) 
with the property that Xo(t, w) has almost surely the k-th derivative belonging to the 
Lipschitz class Aip. 

Aip is the class of functions f with continuity modulus ¢. 
This theorem is applied to the case where the mean derivative of (k+ 1)-th 

order of X(t, w) exists in U(TXD) and the following theorem is immediately ob­
tained, p = k + 1 being taken, which corresponds to the critical case in some sense. 

THEOREM 3. If the conditions in Theorem 2 are satisfied for 1 <r~2 and 
X(t, w) is stochastically continuous, then there is a modification Xo(t, w) of X(t, w), 
of X(t,w ), which has almost surely the k-th derivative belonging to Aip. 

6. A theorem on a sine series. 

We shall prove a theorem on a sine series which implies ( 4. 7) as a particular 
case. 

Consider two series 

(6.1) f(x)= f: an sin nx 
n=l n 

and 
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The mean derivatives 

co 

(6 .2) g(x)= I: an cos nx. 
n=l 

Let r> 1 and suppose 

(6.3) 

It is noted that (6.3) implies Llan~O. It is well known that (6.2) is convergent 
except at x=O and g(x) is of V(T). f(x) is then absolutely continuous and 
f'(x)=g(x) almost everywhere. We shall give a condition which assures that f(x) 
has the mean derivative g(x) in U(T). 

We begin with 

LEMMA 3. Let P>l and (3 be a real number >-1. For any bn?;O, n=l,2, · ·., 

(6.4) 

where Cp is a constant depending only on p. 

This is a particular case of the following inequality with an =X:;;11Pbn, J.n =n~P1 cP-I). 

for P> 1, an~O, J.n>O, where An=J.1 +J.2+ · · · +J.n. (See [2] p. 247, Theorem 332) 

LEMMA 4. Let bn~O, P> 1. Then 

(6.5) 

and if bn is nonincreasing, then we moreover have 

(6.6) 

where Cp and C~ are constants depending only on p. 

Proof. For any an~O with f: a~' <oo, 1/P+l/P'=l, 
71=1 

~ (k 1- 21 p £ bn )ak = ~ bn t k1-21pak 
k=I n=k n n=I n k=I 

which is by the Htilder inequality not greater than 

The second factor is, by Lemma 3, not greater then 
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( 

oo ) l!P' CpL: a~' 
71=1 

Therefore by the converse of the HOlder inequality we have (6.5). Cp may differ 
from each other. 

(6.6) is easy to show. Actually 

cob 2nb 2nl 

"' ~ > "' ~ > b "' - > Cb L.J, k = L.J k = 2n L.J. k = 2n, 
k=n k=n k~n 

where C is an absolute constant. Hence 

Similarly 

From both relations, we have (6. 6). 
We shall prove the following theorem. 

THEOREM 4. Consider the series (6.1) and (6.2) with the condition (6.3). Suppose 
r> 1 and nan is nondecreasing. If 

00 

(6. 7) L: nr-2a~ < oo, 
n=l 

then f(x) has the mean derivative g(x) in U(T). 
More precisely 

(6.8) \" I f(x+h)- f(x) 
J_" h 

Before proving this theorem we give some notations and elementary facts we 
use. The proof of the fact that g(x)EU(T) under the conditions in the theorem 
is contained in the course of the proof of the theorem. 

and 

Denote by Dn(x) and Dn(x) the Dirichlet and the conjugate Dirichlet kernel 

sin(n+l)x 1 n 2 
Dn(x)=-+ L: cos kx- , 

2 k=l • x sm-
2 

. nx . n+l 
n sm2sm-2-x 

Dn(x)= L: sin kx 
k=l 

19 
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(6 .10) 

The mean derivatives 

fn(h)=.d(an(l-cos nh)/n), 

Hn(h) =fl( an (sin nh-nh)/n). 

Let h>O without loss of generality. In what follows C's are constants which 
may be different on each occurrence. Note that an is nonincreasing. 

Write 

(6.11) 

We see, for nh<l, 

and for nh~l, 

We also see that the same estimates for Hn(h) hold. Namely 

(6.12) J]n(h)I ;£.Cbnh2
, for nh;£.l, 

;£.Cbnh/n, for nh> l, 

(6.13) IHn(h)I ;;:;.Cbnh2
, for nh;£.l, 

;£.Cbnh/n, for nh>l. 

In this section we denote by II· llr the norm in U(T), 

those in 1 '"'"'4). We obviously have 

(6.14) 

(\'' )l/T J_) ·Ir (diffenent from 

Finally we note that if (6. 5) is true with an in place of bn, then it is, with bn 
in (6.11). Because 

and hence 

(6.15) 

The similar thing is also true for (6. 6), namely 
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(6.16) ~CL: nP-2 L: ak ' 
00 (00 )p 

n=l n=k k 

by (6.6) with an in place of bn. 
We now proceed to prove the theorem. 

Proof of Theorem 4. 

f(x+h)- f(x) 

h 

00 . cos nh-1 00 sin nh-nh 
g(x)= f

1 
an sm nx nh + f

1 
an cos nx nh 

00 00 
=I; An(X, h)+ I; Bn(X, h), 

71=1 71=1 

say. We have 

(6.17) 

where 

We shall prove the theorem by direct computations of S1 and S2. 
Let h>O and write N=[h- 1]. we first deal with S1. 

say. By summation by parts, we see that 

N-1 

~NL; IJn(h)l llDn(x)llr+aNllDn(x)llr· 
n=l 

Using the first inequalities of (6.12) and (6.14), we have 

N-1 

l1~CN- 1 I; bnn1- 11r +aNN1- 11r 
n=l 
N-1 N-1 

=CN-1 I; anni-ur +CN- 1 I; L1ann2-ur +aNNi-iir 
n=l n=l 
N-1 

~CN-1 I; ann1-11r +aNN1-11r 
n=l 

which is not greater than CaNNi-ur, since na is nondecreasing. 
We thus have 

(6.18) 

for 
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= 2N 

.L; a~nr- 2 ~a~ .L; nr- 2 ~Ca~Nr- 1 . 
n=N n=N 

For /2, we apply the summation by parts, and we have 

!2 ~NI ln.L;N Dn(x)fn(h)l Ir +NllDN-1aN(l-cos Nh)/Nli 1 

?CN(l _ , .L; Dn(x)fn(h)lr dx) 
11

r 
J1x1<N 1 n N 

+ (l _ , .L; Dn(x)fn(h)lr dx)
11

r 
J1x1;;;N 1 n N 

+NJIDN-1(x)aN(l-cos Nh)/Nllr 

=l21 +l22+f23, 

say. VVe see as before 

(6.19) ( 
= ) 11r I ~a N1-11r~c " arnr-2 23 -- N _ L.J n , 

n=N 

and 

=1211 +!212' 

say. Since IDn(x)J~Cn2 JxJ, we have, using the second relation of (6.12) and noting 
r>l, 

'i>ince 

we have 
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As to Im, we have, using the second estimate of (6.12) and IDn(x)l~lxl- 1 , 

Because of (6.5), the last one is not greater than C(~k=N kr- 2akr) 11r. 
Hence we have obtained 

(6. 20) 

For 12, we have, using the second of (6.12) and IDn(.r)l~lxl- 1 , 

(6.21) 
( ) 

11r 

~C _2: a~nr-z . 
n=N 

From (6.9), (6.20) and (6.21) we have 

(g. 22) 

Putting (6 .18) and (6. 22) together, we finally have obtained 

(6. 23) 

Finally since fn(h) and Hn(h) have the same estimates (6.12) and (6.13), and 
Dn(x) and Dn(x) also have the similar estimates (6.14) and IDn(x)I ~ lxl- 1

, IDn(x)I ~Cn, 
we see that just the same manipulation gives us that 

(6. 24) 

(6. 23) and (6. 24) now complete the proof of the theorem. 
Now let an=(na log (n+l)t 1 and 1-1/r~a<l we easily see that all the condi­

tions for an in Theorem 4 is satisfied for r> 1. This shows (4. 7). 
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