Title	The mean derivatives and the absolute convergence of the Fourier series of a stochastic process
Sub Title	
Author	河田, 龍夫(Kawata, Tatsuo)
Publisher	慶應義塾大学理工学部
Publication year	1983
Jtitle	Keio Science and Technology Reports Vol.36, No.2 (1983. 2) ,p.11- 24
JaLC DOI	
Abstract	A criterion for the almost sure absolute convergence of the Fourier series of a peroidic stochastic process which has the mean derivatives is given and the result is applied to the sample properties of the process. A theorem on the mean derivative of a sine series is also given.
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00360002- 0011

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

THE MEAN DERIVATIVES AND THE ABSOLUTE CONVERGENCE OF THE FOURIER SERIES OF A STOCHASTIC PROCESS

Tatsuo KAWATA*

(Received January 24, 1983)

ABSTRACT

A criterion for the almost sure absolute convergence of the Fourier series of a peroidic stochastic process which has the mean derivatives is given and the result is applied to the sample properties of the process. A theorem on the mean derivative of a sine series is also given.

1. Introduction

Let $X(t, \omega), t \in \mathbb{R}^1$, be a complex valued stochastic process on a given probability space (Ω, F, P) . Suppose that $X(t, \omega)$ is measurable $L \times F$ on $\mathbb{R}^1 \times \Omega, L$ being the class of Lebesgue measurable sets on \mathbb{R}^1 , and that for $r \ge 1$,

(1.1) $E|X(t,\omega)|^r < \infty,$

for every t and $X(t, \omega)$ is 2π -periodic:

(1.2)
$$E|X(t+2\pi, \omega) - X(t, \omega)| = 0$$

for $t \in R^1$.

Furthermore we throughout assume that $(T = [-\pi, \pi])$

(1.3)
$$\int_{-\pi}^{\pi} E|X(t,\omega)|^r dt < \infty.$$

In case we write $X(t, \omega) \in L_P^r(T \times \Omega)$. Let

(1.4)
$$\sum_{n=-\infty}^{\infty} C_n(\omega) e^{int}$$

be the Fourier series of $X(t, \omega)$, where

(1.5)
$$C_n(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-int} dt, \quad n = 0, \pm 1, \pm 2, \cdots$$

^{*} Present address: 1-12-26-204 Shinohara-higashi, Kohoku-ku, Yokohama 222, Japan

In [1], the author has given some results on the almost sure convergence of the series

(1.6)
$$\sum_{n=-\infty}^{\infty} |n|^k \alpha_n |C_n(\omega)|$$

 $(\alpha_n > 0)$ for some nonnegative integer k, and applied them to sample continuity or differentiability or $X(t, \omega)$.

Write

(1.7)
$$M_r^{*(p)}(\delta) = M_r^{*(p)}(\delta, X) = \sup_{|h| \le \delta} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} E |\mathcal{A}_h^{(p)} X(t, \omega)|^r dt \right)^{1/r},$$

where p is a positive integer and $\mathcal{A}_{h}^{(p)}X(t,\omega)$ is the p-th difference of $X(t,\omega)$:

(1.8)
$$\Delta_{h}^{(p)}X(t,\omega) = \sum_{k=0}^{p} (-1)^{p-k} {p \choose k} X(t+kh,\omega).$$

Let $\phi(t)$ be a nondecreasing function on [0,1] such that either $\phi(0)=0$ and $\phi(t)/t$ is noninereasing on [0,1], or $\phi(t)$ is identically 1 on [0,1].

One of the resuls obtained in [1] is the following.

THEOREM A. Let $X(t, \omega)$ be of $L_P^r(T \times \Omega)$ for some r > 1. Let k be a given nonnegative integer. If there exists a positive integer p such that

(1.9)
$$\sum_{n=1}^{\infty} n^{k-1+1/r} \left[\phi\left(\frac{1}{n}\right) \right]^{-1} M_r^{*(p)}\left(\frac{1}{n}\right) < \infty,$$

then

(1.10)
$$\sum_{n=-\infty}^{\infty} |n|^{k} \left[\phi\left(\frac{1}{n}\right) \right]^{-1} |C_{n}(\omega)| < \infty,$$

almost surely.

In this paper we give a relationship between $M_r^{*(p)}(\delta)$ and the mean derivative of $X(t, \omega)$ and apply it to the absolute convergence of Fourier series and the sample properties of $X((t, \omega))$.

2. Mean derivatives.

Let $X(t, \omega) \in L_P^r(T \times \Omega)$ for some $r \ge 1$. If there is a stochastic process $X'_M(t, \omega)$ of $L_P^r(T \times \Omega)$ such that

(2.1)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} E \left| \frac{X(t+h,\omega) - X(t,\omega)}{h} - X'_{\mathcal{M}}(t,\omega) \right|^{r} dt \to 0$$

as $h\to 0$, then $X'_{\mathbf{M}}(t,\omega)$ is called the mean derivative in $L^r(T\times\Omega)$ of $X(t,\omega)$. The *p*-th mean derivative $X^{(p)}_{\mathbf{M}}(t,\omega)$ is defined successively in an obvious way.

Write

T. KAWATA

(2.2)
$$\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}E|X(t,\omega)|^{r}dt\right)^{1/r}=||X(t,\omega)||_{r}$$

which is the norm of $X(t, \omega)$ in $L^r(T \times \Omega)$.

We give two simple lemmas.

LEMMA 1. If $X(t, \omega) \in L^r(T \times \Omega)$ has the mean derivative $X'_M(t, \omega)$ in $L^r(T \times \Omega)$, then, as $h \to 0$,

(2.3)
$$\left\| \left| \frac{1}{h} \int_{t}^{t+h} X(u, \omega) du - X(t, \omega) \right| \right|_{\tau} = O(|h|).$$

Proof. The left hand side of (2.3) is not greater than

$$\left\| \frac{1}{h} \int_{0}^{h} [X(u+t,\omega) - X(t,\omega) - uX'_{M}(t,\omega)] du \right\|_{r} + \frac{|h|}{2} \left\| X'_{M}(t,\omega) \right\|_{r}$$

$$\leq \int_{0}^{|h|} \left\| \frac{X(u+t,\omega) - X(t,\omega)}{u} - X'_{M}(t,\omega) \right\|_{r} du + \frac{|h|}{2} \left\| X'_{M}(t,\omega) \right\|_{r} = o(|h|) + O(|h|) = O(|h|).$$

LEMMA 2. If $X(t, \omega) \in L_P^r(T \times \Omega)$ has the mean derivative $X_M(t, \omega)$ in $L^r(T \times \Omega)$, then

(2.4)
$$X(t+h,\omega) - X(t,\omega) = \int_{t}^{t+h} X'_{\mathcal{M}}(u,\omega) du$$

almost everywhere in $T \times \Omega$, for each h.

Namely there is a subset G = G(h) of $T \times \Omega$ such that (2.4) holds for $(t, \omega) \in G$ and $\mu(G) = 2\pi$, μ being the $m \times P$ measure and m the Lebesgue measure. We note that we can easily see that (2.4) holds on G if t is replaced by t+h by periodicity, when h is fixed. The dependence of G on h makes the difference between the almost sure absolute continuity and the existence of mean derivative in $L(T \times \Omega)$ of $X(t, \omega)$.

Proof. Let h > 0 without loss of generality and let |k| < h. Write

$$S_k = ||Y(t, \omega)||_r,$$

where

$$Y(t, \omega) = \int_{t}^{t+h} \left[\frac{X(u+k, \omega) - X(u, \omega)}{k} - X'_{\mathcal{M}}(u, \omega) \right] du.$$

Since

$$|Y(t,\omega)|^{r} \leq \int_{t}^{t+h} \left| \frac{X(u+k,\omega) - X(u,\omega)}{k} - X'_{M}(u,\omega) \right|^{r} du \cdot h^{r-1}$$
$$\leq \left| \left| \frac{X(u+k,\omega) - X(u,\omega)}{k} - X'_{M}(u,\omega) \right| \right|_{r}^{r} du \cdot h^{r-1}.$$

Hence

(2.5)
$$S_{k}^{r} = \frac{1}{2\pi} \int_{-\pi}^{\pi} E|Y(t,\omega)|^{r} dt \leq 2\pi h^{r-1} \cdot ||Y(t,\omega)||_{r}^{r} \to 0$$

as $k \rightarrow 0$ for a fixed h.

On the other hand,

$$S_{k} = \left| \left| \frac{1}{k} \int_{t+k}^{t+k+h} X(u, \omega) du - \frac{1}{k} \int_{t}^{t+h} X(u, \omega) du - \int_{t}^{t+h} X'_{M}(u, \omega) du \right| \right|_{r}$$
$$= \left| \left| \frac{1}{k} \int_{t+h}^{t+h+k} X(u, \omega) du - \frac{1}{k} \int_{t}^{t+k} X(u, \omega) du - \int_{t}^{t+h} X'_{M}(u, \omega) du \right| \right|_{r}.$$

By Lemma 1, this converges to

$$\left| \left| \mathbf{X}(t+h,\omega) - \mathbf{X}(t,\omega) - \int_{t}^{t+h} X'_{\mathbf{M}}(u,\omega) du \right| \right|_{r}$$

as $k \rightarrow 0$. Hence from (2.5) the last quantity should be zero. This gives us that (2.2) holds a.e. in $T \times \Omega$. for each h.

3. Mean derivatives and continuity modulus.

Let $X(t, \omega)$ be of $L_P^r(T \times \Omega), r \ge 1$. Suppose $X_M^{(p)}(t, \omega)$, the mean derivative of order p of $X(t, \omega)$ in $L^r(T \times \Omega)$ exists, p being a positive integer.

Now let $G_l = G_l(h)$ be the set on which (2.4) with $X_M^{(l-1)}(t, \omega)$ in place of $X(t, \omega)$ $l=1, 2, \dots, p$, holds.

$$\Delta_h^{(2)}X(t,\omega) = \Delta_h^{(1)}X(t+h,\omega) - \Delta_h^{(1)}X(t,\omega)$$

is, by Lemma 2, equal in G_1 to

$$\int_{t+h}^{t+2h} X'_{M}(t_{1},\omega)dt_{1} - \int_{t}^{t+h} X'_{M}(t_{1},\omega)dt_{1} = \int_{t}^{t+h} [X'_{M}(t_{1}+h,\omega) - X'_{M}(t_{1},\omega)]dt$$

which is again by Lemma 2 equal in $G_1 \cap G_2$ to

$$= \int_{t}^{t+h} dt_1 \int_{t_1}^{t_1+h} X''_{\boldsymbol{M}}(t_2, \omega) dt_2.$$

Repeating this procedure, we have

(3.1)
$$\mathcal{A}_{h}^{(p)}X(t,\omega) = \int_{t}^{t+h} dt_{1} \int_{t_{1}}^{t_{1}+h} dt_{2} \cdots \int_{t_{p-1}}^{t_{p-1}+h} X_{M}^{(p)}(t_{p},\omega) dt_{p}$$

a.e. in $G_0 = \bigcap_{l=1}^{p} G_l, \mu(G_0) = 2\pi.$

We now prove

THEOREM 1. If $X(t, \omega)$ belongs to $L_P^r(T \times \Omega)$ and has $X_M^{(p)}(t, \omega)$ in $L^r(T \times \Omega)$, $r \ge 1$, p being a positive integer, then

(3.2)
$$M_r^{*(p)}(\delta) \leq 2^{p/r} ||X_M^{(p)}(t,\omega)||_r \cdot \delta^p.$$

Proof. From (3.1), we have, for any fixed h > 0, in G_0 ,

$$\begin{split} \mathcal{A}_{h}^{(p)}X(t,\omega)|^{r} &= \left[\int_{t}^{t+h} dt_{1}\cdots\int_{t_{p-1}}^{t_{p-1}+h} X_{M}^{(p)}(t_{p},\omega)|dt_{p}\right]^{r} \\ &\leq \int_{t}^{t+h} dt_{1}\cdots\int_{t_{p-1}}^{t_{p-1}+h} |X_{M}^{(p)}(t_{p},\omega)|^{r} dt_{p} \cdot \left[\int_{t}^{t+h} dt_{1}\cdots\int_{t_{p-1}}^{t_{p-1}+h} dt_{p}\right]^{r-1} \\ &= h^{p(r-1)} \int_{t}^{t+h} dt_{1}\cdots\int_{t_{p-1}}^{t_{p-1}+h} |X_{M}^{(p)}(t_{p},\omega)|^{r} dt_{p} \\ &= h^{p(r-1)} \int_{t}^{t+h} Y(t_{1},\omega) dt_{1}, \end{split}$$

where

$$Y(t_1, \omega) = \int_{t_1}^{t_1+h} dt_2 \cdots \int_{t_{p-1}}^{t_{p-1}+h} |X_M^{(p)}(t_p, \omega)^r dt_p.$$

Since for a 2π -periodic function $f(u) \in L^1(T)$,

$$\left|\int_{-\pi}^{\pi}\int_{t}^{t+h}f(u)du\right| \leq |h|\int_{-\pi-h}^{\pi+h}|f(u)|du \leq 2|h|\int_{-\pi}^{\pi}f(u)|du$$

for $|h| < \pi$, which is easily seen by the interchange of integration signs on the left hand side, we have, for small |h|,

$$\begin{split} ||\mathcal{A}_{h}^{(p)}X(t,\omega)||_{\tau}^{r} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} E |\mathcal{A}X_{h}^{(p)}(t,\omega)|^{r} dt \\ &\leq \frac{|h|^{p(r-1)}}{2\pi} \int_{-\pi}^{\pi} dt \int_{t}^{t+h} EY(t_{1},\omega) dt_{1} \\ &\leq \frac{1}{\pi} |h|^{p(r-1)} |h| \int_{-\pi}^{\pi} EY(t_{1},\omega) dt_{1}. \end{split}$$

Repeating the same arguments p-1 more times, we have

$$||\mathcal{A}_{h}^{(p)}X(t,\omega)\rangle||_{r}^{r} \leq 2^{p}|h|^{pr}\frac{1}{2\pi}\int_{-\pi}^{\pi}E|X_{M}^{(p)}(t_{p},\omega)|^{r}dt_{p} = 2^{p}|h|^{pr}||X_{M}^{(p)}(t,\omega)||_{r}^{r}.$$

This is no more than (3.2).

4. Absolute convergence of the Fourier series of a periodic stochastic process.

Let $\phi(t)$ be the function in 1. The combination of Theorem 1 and Theorem A immediately gives us the following theorem.

THEOREM 2. If $X(t, \omega) \in L_P^r(T \times \Omega)$ and for some nonnegative integer k, $X_M^{(k+1)}(t, \omega)$ exists in $L^r(T \times \Omega)$, $1 < r \leq 2$, and

(4.1)
$$\sum_{n=1}^{\infty} n^{-2+1/r} \left[\phi\left(\frac{1}{n}\right) \right]^{-1} < \infty,$$

then

(4.2)
$$\sum_{n=-\infty}^{\infty} |n|^k \left[\phi\left(\frac{1}{n}\right) \right]^{-1} |C_n(\omega)| < \infty,$$

almost surely.

In particular, taking $\phi(t)=t^{*}$, we have the following collorary. For nonrandom case, this is thought of as a version of a known result on the absolute convergence of an absolutely continuous function which has the derivative belonging to $L^{r}(T)$. ([1] Cor. 2. p. 161, [4] Theorem 3.8, p. 242)

COLLORARY 1. If $X(t, \omega) \in L_P^r(T \times \Omega)$ and for some nonnegative $k, X_M^{(k+1)}(t, \omega)$ exists in $L^r(T \times \Omega)$, and

$$(4.3) 0 \leq \alpha < 1 - \frac{1}{r},$$

then

(4.4)
$$\sum_{n=-\infty}^{\infty} |n|^{k+\alpha} |C_n(\omega)| < \infty,$$

almost surely.

The condition (4.3) is of the best kind in some sense. Actually if $\alpha = 1 - 1/r$, there is an $X(t, \omega) \in L_P^r(T \times \Omega)$ which has $X_M^{(k+1)}(t, \omega)$ in $L^r(T \times \Omega)$ and is such that the series in (4.4) diverges almost surely.

We show this for simplicity when k=0. Let

(4.5)
$$f(x) = \sum_{n=2}^{\infty} \frac{\sin nx}{n^{\alpha+1} \log n}, \quad 0 \leq \alpha < 1.$$

This is abolutely continuous and $f(x) = \int_{0}^{x} g(u) du$, where

(4.6)
$$g(x) = \sum_{n=2}^{\infty} \frac{\cos nx}{n^{\alpha} \log n}$$

which is defined for all $-\pi \leq x \leq \pi$ except at x=0. We can show that $g(x) \in L^r(T)$ and is the mean derivative of f(x) in $L^r(T)$ for r>1, if $\alpha \geq 1-1/r$. More precisely

(4.7)
$$\int_{-\pi}^{\pi} \left| \frac{f(x+h) - f(x)}{h} - g(x) \right|^r dx \leq C \frac{|h|^{(\alpha-1)^{r+1}}}{|\log |h||^r},$$

as $h \rightarrow 0$, where C is a constant independent of h.

The proof of this fact will be shown in a more general form in 6.

Let r>1 and $\alpha=1-1/r$. Then from (4.7), g(x) is the mean derivative of f(x)

in $L^{r}(T)$ and

$$\sum_{n=2}^{\infty} n^{\alpha} b_n = \infty$$

where $b_n = n^{-\alpha-1} (\log n)^{-1}$ is the sine coefficient of f(x).

Theorem 2 and Collorary 1 seem to be new, even for nonrandom case. The above example shows that Collorary 1 with k=0 for nonrandom case is no more true if $\alpha=1-1/r$.

(4.9) $X(t, \omega) = X(\omega)f(t),$

where f(t) is the function (4.5) and $X(\omega)$ is any random variable of $L^{r}(\Omega)$, gives a counter example for Collorary 1 with $k=0, \alpha=1-1/r$.

5. Sample properties of a periodic stochastic process

The author has shown the following theorem.

THEORFM B. Let $X(t, \omega) \in L_P^r$, $1 < r \le 2$. Let k be a given nonnegative integer. Suppose there exists a positive integer p such that

(5.1)
$$\sum_{n=1}^{\infty} n^{k-1+1/r} \left[\phi\left(\frac{1}{n}\right) \right]^{-1} M_r^{*(p)}\left(\frac{1}{n}\right) < \infty.$$

If $X(t, \omega)$ is stochastically continuous, then there is a modification $X_0(t, \omega)$ of $X(t, \omega)$ with the property that $X_0(t, \omega)$ has almost surely the k-th derivative belonging to the Lipschitz class Λ_{ϕ} .

 Λ_{ϕ} is the class of functions f with continuity modulus ϕ .

This theorem is applied to the case where the mean derivative of (k+1)-th order of $X(t, \omega)$ exists in $L^r(T \times \Omega)$ and the following theorem is immediately obtained, p=k+1 being taken, which corresponds to the critical case in some sense.

THEOREM 3. If the conditions in Theorem 2 are satisfied for $1 < r \le 2$ and $X(t, \omega)$ is stochastically continuous, then there is a modification $X_0(t, \omega)$ of $X(t, \omega)$, of $X(t, \omega)$, which has almost surely the k-th derivative belonging to Λ_{ϕ} .

6. A theorem on a sine series.

We shall prove a theorem on a sine series which implies (4.7) as a particular case.

Consider two series

(6.1)
$$f(x) = \sum_{n=1}^{\infty} \frac{a_n}{n} \sin nx$$

and

(6.2)
$$g(x) = \sum_{n=1}^{\infty} a_n \cos nx.$$

Let r > 1 and suppose

where $\Delta_n = a_n - a_{n+1}, \Delta^2 a_n = \Delta(\Delta a_n).$

It is noted that (6.3) implies $\Delta a_n \ge 0$. It is well known that (6.2) is convergent except at x=0 and g(x) is of $L^1(T)$. f(x) is then absolutely continuous and f'(x)=g(x) almost everywhere. We shall give a condition which assures that f(x) has the mean derivative g(x) in $L^r(T)$.

1

.

We begin with

LEMMA 3. Let p>1 and β be a real number >-1. For any $b_n \ge 0, n=1,2,\cdots$,

(6.4)
$$\sum_{n=1}^{\infty} \left(n^{-\beta-1} \sum_{k=1}^{n} k^{\beta} b_{k} \right)^{p} \leq C_{p} \sum_{n=1}^{\infty} b_{n}^{p},$$

where C_p is a constant depending only on p.

This is a particular case of the following inequality with $a_n = \lambda_n^{-1/p} b_n$, $\lambda_n = n^{\beta p/(p-1)}$.

$$\sum_{n=1}^{\infty} \lambda_n \left(\frac{1}{\Lambda_n} \sum_{k=1}^n \lambda_k a_k \right)^p \leq \left(\frac{p}{p-1} \right)^p \sum_{n=1}^{\infty} \lambda_n a_n^p,$$

for $p>1, a_n \ge 0, \lambda_n > 0$, where $\Lambda_n = \lambda_1 + \lambda_2 + \cdots + \lambda_n$. (See [2] p. 247, Theorem 332)

LEMMA 4. Let $b_n \ge 0, p > 1$. Then

(6.5)
$$\sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{b_k}{k} \right)^p \leq C_p \sum_{n=1}^{\infty} n^{p-2} b_n^p,$$

and if b_n is nonincreasing, then we moreover have

(6.6)
$$\sum_{n=1}^{\infty} n^{p-2} b_n^p \leq C_p' \sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{b_k}{k} \right)^p,$$

where C_p and C'_p are constants depending only on p.

Proof. For any
$$a_n \ge 0$$
 with $\sum_{n=1}^{\infty} a_n^{p'} < \infty, 1/p + 1/p' = 1$,
 $\sum_{k=1}^{\infty} \left(k^{1-2/p} \sum_{n=k}^{\infty} \frac{b_n}{n} \right) a_k = \sum_{n=1}^{\infty} \frac{b_n}{n} \sum_{k=1}^n k^{1-2/p} a_k$

which is by the Hölder inequality not greater than

$$\left(\sum_{n=1}^{\infty} b_n^p n^{p-2}\right)^{1/p} \left[\sum_{n=1}^{\infty} \left(n^{-2(1-1/p)} \sum_{k=1}^n k^{1-2/p} a_k\right)^{p'}\right]^{1/p'}.$$

The second factor is, by Lemma 3, not greater then

$$\left(C_p\sum_{n=1}^{\infty}a_n^{p'}\right)^{1/p'}.$$

Therefore by the converse of the Hölder inequality we have (6.5). C_p may differ from each other.

(6.6) is easy to show. Actually

$$\sum_{k=n}^{\infty} \frac{b_k}{k} \geq \sum_{k=n}^{2n} \frac{b_k}{k} \geq b_{2n} \sum_{k=n}^{2n} \frac{1}{k} \geq Cb_{2n},$$

where C is an absolute constant. Hence

$$\sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{b_k}{k} \right)^p \ge C \sum_{n=1}^{\infty} n^{p-2} b_{2n}^p \ge C_p \sum_{n=1}^{\infty} (2n)^{p-2} b_{2n}^p,$$

Similarly

$$\sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{b_k}{k} \right)^p \ge C_p \sum_{n=1}^{\infty} (2n+1)^{p-2} b_{2n+1}^p.$$

From both relations, we have (6.6).

We shall prove the following theorem.

THEOREM 4. Consider the series (6.1) and (6.2) with the condition (6.3). Suppose r>1 and na_n is nondecreasing. If

$$(6.7) \qquad \qquad \sum_{n=1}^{\infty} n^{r-2} a_n^r < \infty,$$

then f(x) has the mean derivative g(x) in $L^{r}(T)$. More precisely

(6.8)
$$\int_{-\pi}^{\pi} \left| \frac{f(x+h) - f(x)}{h} - g(x) \right|^{r} dx \leq C_{r} \sum_{n \geq |h| = 1} n^{r-2} a_{n}^{r}.$$

Before proving this theorem we give some notations and elementary facts we use. The proof of the fact that $g(x) \in L^r(T)$ under the conditions in the theorem is contained in the course of the proof of the theorem.

Denote by $D_n(x)$ and $\overline{D}_n(x)$ the Dirichlet and the conjugate Dirichlet kernel

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx = \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\frac{x}{2}},$$
$$\bar{D}_n(x) = \sum_{k=1}^n \sin kx = \frac{\sin\frac{nx}{2}\sin\frac{n+1}{2}x}{\sin\frac{x}{2}}$$

and

(6.9)
$$J_n(h) = \Delta(a_n(1 - \cos nh)/n),$$

(6.10)
$$H_n(h) = \Delta(a_n (\sin nh - nh)/n)$$

Let h>0 without loss of generality. In what follows C's are constants which may be different on each occurrence. Note that a_n is nonincreasing.

Write

$$(6.11) b_n = a_n + n \varDelta a_n, \quad n = 1, 2, \cdots$$

We see, for nh < 1,

$$|J_n(h)| \leq C \bigg[\varDelta \bigg(\frac{a_n}{n} \bigg) n^2 h^2 + a_n h^2 \bigg] \leq C(a_n + n \varDelta a_n) h^2 = C b_n h^2,$$

and for $nh \ge 1$,

$$|J_n(h)| \leq C \bigg[\Delta \bigg(\frac{a_n}{n} \bigg) + \frac{a_n}{n} h \bigg] \leq C \frac{b_n h}{n}.$$

We also see that the same estimates for $H_n(h)$ hold. Namely

(6.12)
$$|J_n(h)| \leq C b_n h^2, \quad \text{for } nh \leq 1,$$
$$\leq C b_n h/n, \quad \text{for } nh > 1.$$

(6.13)
$$\begin{aligned} &= C b_n h(h), & \text{for } nh \ge 1, \\ &|H_n(h)| \le C b_n h^2, & \text{for } nh \le 1, \\ &\le C b_n h/n, & \text{for } nh > 1. \end{aligned}$$

In this section we denote by $||\cdot||_r$ the norm in $L^r(T)$, $\left(\int_{-\pi}^{\pi} |\cdot|^r\right)^{1/r}$ (different from those in 1~4). We obviously have

(6.14)
$$||D_n(x)||_r \leq C n^{1-1/r}, ||\bar{D}_n(n)||_r \leq C n^{1-1/r}.$$

Finally we note that if (6.5) is true with a_n in place of b_n , then it is, with b_n in (6.11). Because

$$\sum_{k=n}^{\infty} \frac{b_k}{k} = \sum_{k=n}^{\infty} \left(\frac{a_k}{k} + \Delta a_k \right) = \sum_{k=n}^{\infty} \frac{a^k}{k} + a_n$$

and hence

(6.15)
$$\sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{b_k}{k} \right)^p \leq C \sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{a_k}{k} \right)^p + C \sum_{n=1}^{\infty} n^{p-2} a_n^p \leq C \sum_{n=1}^{\infty} n^{p-2} a_n^p \left(\leq C \sum_{n=1}^{\infty} n^{p-2} b_n^p \right).$$

The similar thing is also true for (6.6), namely

$$\sum_{n=1}^{\infty} n^{p-2} b_n^p \leq C \sum_{n=1}^{\infty} n^{p-2} \left(\sum_{k=n}^{\infty} \frac{a_k}{k} \right)^p + C \sum_{n=1}^{\infty} n^{p-2} a_n^p$$

(6.16)
$$\leq C \sum_{n=1}^{\infty} n^{p-2} \left(\sum_{n=k}^{\infty} \frac{a_k}{k} \right)^p,$$

by (6.6) with a_n in place of b_n .

We now proceed to prove the theorem.

Proof of Theorem 4.

$$\frac{f(x+h)-f(x)}{h}-g(x)=\sum_{n=1}^{\infty}a_n\sin nx\frac{\cos nh-1}{nh}+\sum_{n=1}^{\infty}a_n\cos nx\frac{\sin nh-nh}{nh}$$
$$=\sum_{n=1}^{\infty}A_n(x,h)+\sum_{n=1}^{\infty}B_n(x,h),$$

say. We have

(6.17)
$$\left\| \frac{f(x+h) - f(x)}{h} - g(x) \right\|_r \leq S_1 + S_2,$$

where

$$S_1 = S_1(h) = \left| \left| \sum_{n=1}^{\infty} A_n(x, h) \right| \right|_r, S_2 = S_2(h) = \left| \left| \sum_{n=1}^{\infty} B_n(x, h) \right| \right|_r.$$

We shall prove the theorem by direct computations of S_1 and S_2 . Let h>0 and write $N=[h^{-1}]$. we first deal with S_1 .

$$S_1 \leq \left| \left| \sum_{n \leq N} A_n(x, h) \right| \right|_r + \left| \left| \sum_{n > N} A_n(x, h) \right| \right|_r = I_1 + I_2,$$

say. By summation by parts, we see that

$$I_{1} \leq N \left| \left| \sum_{n=1}^{N-1} \bar{D}_{n}(x) J_{n}(h) \right| \right|_{r} + N ||\bar{D}_{N}(x) a_{N}(1 - \cos Nh)/N||_{r} \\ \leq N \sum_{n=1}^{N-1} |J_{n}(h)|||\bar{D}_{n}(x)||_{r} + a_{N}||\bar{D}_{n}(x)||_{r}.$$

Using the first inequalities of (6.12) and (6.14), we have

$$I_{1} \leq CN^{-1} \sum_{n=1}^{N-1} b_{n} n^{1-1/r} + a_{N} N^{1-1/r}$$

= $CN^{-1} \sum_{n=1}^{N-1} a_{n} n^{1-1/r} + CN^{-1} \sum_{n=1}^{N-1} \Delta a_{n} n^{2-1/r} + a_{N} N^{1-1/r}$
 $\leq CN^{-1} \sum_{n=1}^{N-1} a_{n} n^{1-1/r} + a_{N} N^{1-1/r}$

which is not greater than $Ca_N N^{1-1/r}$, since *na* is nondecreasing. We thus have

(6.18)
$$I_1 \leq C a_N N^{1-1/r} \leq C \left(\sum_{n=N}^{\infty} a_n^r n^{r-2} \right)^{1/r},$$

for

$$\sum_{n=N}^{\infty} a_n^r n^{r-2} \ge a_n^r \sum_{n=N}^{2N} n^{r-2} \ge C a_N^r N^{r-1}.$$

For I_2 , we apply the summation by parts, and we have

$$I_{2} \leq N \left| \left| \sum_{n \leq N} \overline{D}_{n}(x) J_{n}(h) \right| \right|_{r} + N ||\overline{D}_{N-1} a_{N}(1 - \cos Nh)/N||_{r}$$

$$\leq CN \left(\int_{|x| < N^{-1}} \left| \sum_{n \leq N} \overline{D}_{n}(x) J_{n}(h) \right|^{r} dx \right)^{1/r}$$

$$+ \left(\int_{|x| \geq N^{-1}} \left| \sum_{n \leq N} \overline{D}_{n}(x) J_{n}(h) \right|^{r} dx \right)^{1/r}$$

$$+ N ||\overline{D}_{N-1}(x) a_{N}(1 - \cos Nh)/N||_{r}$$

$$= I_{21} + I_{22} + I_{23},$$

say. We see as before

(6.19)
$$I_{23} \leq a_N N^{1-1/r} \leq C \left(\sum_{n=N}^{\infty} a_n^r n^{r-2} \right)^{1/r},$$

and

$$I_{21} \leq CN \left(\int_{|x| < N^{-1}} \left| \sum_{N \leq n \leq |x|^{-1}} \left|^{r} dx \right)^{1/r} + CN \left(\int_{|x| < N^{-1}} \left| \sum_{|x|^{-1} < n} \left|^{r} \right)^{1/r} \right| = I_{211} + I_{212},$$

say. Since $|\overline{D}_n(x)| \leq Cn^2 |x|$, we have, using the second relation of (6.12) and noting r > 1,

$$I_{211} \leq CN \left[\int_{|x| < N^{-1}} \left(\sum_{N \leq n \leq |x|^{-1}} h|x| n b_n \right)^r dx \right]^{1/r} \\ \leq C \left[\int_{|x| < N^{-1}} |x|^r \left(\sum_{n \leq |x|^{-1}} n b_n \right)^r dx \right]^{1/r}.$$

Since

$$\sum_{n \le |x|^{-1}} n b_n = \sum_{n \le |x|^{-1}} n a_n + \sum_{n \le |x|^{-1}} n^2 \Delta a_n ,$$

we have

$$I_{211} \leq C \left[\int_{|x| \leq N^{-1}} (|x|^{-1} a_{[|x|^{-1}]})^r dx \right]^{1/r}$$

= $C \left[\sum_{k=N}^{\infty} \int_{(k+1)^{-1}}^{k^{-1}} (|x|^{-1} a_{[|x|^{-1}]})^r dx \right]^{1/r}$
= $C \left(\sum_{k=N}^{\infty} k^{r-2} a_k^r \right)^{1/r}.$

As to I_{212} , we have, using the second estimate of (6.12) and $|\bar{D}_n(x)| \leq |x|^{-1}$,

$$I_{212} \leq CN \left[\int_{|x| \leq N^{-1}} \left(N^{-1} |x|^{-1} \sum_{|x|^{-1} > n} n^{-1} b_n \right)^r dx \right]^{1/r} \\ \leq C \left[\int_{|x| < N^{-1}} |x|^{-r} \left(\sum_{n > |x|^{-1}} a_n n^{-1} + a_{\lfloor |x|^{-1} \rfloor} \right)^r dx \right]^{1/r} \\ \leq \left[\sum_{k=N}^{\infty} \int_{(k+1)^{-1}}^{k^{-1}} |x|^{-r} \left(\sum_{n \geq k} a_n n^{-1} + a_k \right)^r dx \right]^{1/r} \\ = C \left[\sum_{k=N}^{\infty} k^{r-2} \left(\sum_{n=k} a_n n^{-1} \right)^r \right]^{1/r} + C \left(\sum_{k=N}^{\infty} k^{r-2} a_k \right)^{1/r}.$$

Because of (6.5), the last one is not greater than $C(\sum_{k=N} k^{r-2} a_k^r)^{1/r}$. Hence we have obtained

(6.20)
$$I_{21} \leq C \left(\sum_{k=N} n^{r-2} a_n^r \right)^{1/r}.$$

For I_2 , we have, using the second of (6.12) and $|\overline{D}_n(x)| \leq |x|^{-1}$,

$$I_{2} \leq C \left[\int_{|x| > N^{-1}} \left(|x|^{-1} \sum_{n=N}^{\infty} b_{n} n^{-1} \right)^{r} \right]^{1/r}$$

$$\leq C N^{1-1/r} \sum_{n=N}^{\infty} b_{n} n^{-1} \leq C N^{1-1/r} \left(\sum_{n=N}^{\infty} a_{n} n^{-1} + a_{N} \right)$$

$$\leq C N^{1-1/r} \left(\sum_{n=N}^{\infty} a_{n}^{r} n^{r-2} \right)^{1/r} \left(\sum_{n=N}^{\infty} n^{-2+2/r} \right)^{1-1/r}$$

$$+ C N^{1-1/r} a_{N}$$

(6.21) $\leq C \left(\sum_{n=N} a_n^r n^{r-2} \right)^{1/r}.$

From (6.9), (6.20) and (6.21) we have

(9.22)
$$I_2 \leq C \left(\sum_{n=N}^{\infty} a_n^r n^{r-2} \right)^{1/r}.$$

Putting (6.18) and (6.22) together, we finally have obtained

(6.23)
$$S_1 \leq C \left(\sum_{n > h^{-1}} n^{r-2} a_n^r \right)^{1/r}.$$

Finally since $J_n(h)$ and $H_n(h)$ have the same estimates (6.12) and (6.13), and $\overline{D}_n(x)$ and $D_n(x)$ also have the similar estimates (6.14) and $|D_n(x)| \leq |x|^{-1}$, $|D_n(x)| \leq Cn$, we see that just the same manipulation gives us that

(6.24)
$$S_2 \leq C \left(\sum_{n > h^{-1}} n^{r-2} a_n^r \right)^{1/r}$$

(6.23) and (6.24) now complete the proof of the theorem.

Now let $a_n = (n^{\alpha} \log (n+1))^{-1}$ and $1-1/r \le \alpha < 1$ we easily see that all the conditions for a_n in Theorem 4 is satisfied for r > 1. This shows (4.7).

REFERENCES

- [1] N. Bary, A treatise on trigonometric series. (Engl. transl.), Pergamon, Oxford, 1964.
- [2] G. H. Hardy-J. E. Littlewood-G. Pólya, Inequalities. Cambridge, 1952.
- [3] T. Kawata, Absolute convergence of Fourier series of periodic stochastic processes and its applications. (to appear in Tohoku Math. Jour.)
- [4] A. Zygmund, Trigonometric series, I, Cambridge Univ. Press, London, 1959.