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THE MEAN DERIVATIVES AND THE ABSOLUTE
CONVERGENCE OF THE FOURIER SERIES
OF A STOCHASTIC PROCESS

Tatsuo KawaTa*

(Received January 24, 1983)

ABSTRACT

A criterion for the almost sure absolute convergence of the Fourier series of a peroidic
stochastic process which has the mean derivatives is given and the result is applied to the
sample properties of the process. A theorem on the mean derivative of a sine series is
also given.

1. Introduction

Let X(¢, w), teR', be a complex valued stochastic process on a given probability
space (2, F, P). Suppose that X(¢,w) is measurable LXF on R'xX,L being the
class of Lebesgue measurable sets on R!, and that for =1,

1.1 E|X(t, 0)|"<co,

for every ¢ and X(¢, w) is 2x-periodic:

1.2) E\X(t+2r, w)— X(¢, )| =0,
for teR'.

Furthermore we throughout assume that (7'=[—n=, n])
(1.3) S EIX(, 0)|dt <oo.
In case we write X(¢, w)eLp(TX Q).

Let
(1.4) 5T Culw)ei™

n=—oo

be the Fourier series of X{{, w), where

(1.5) Cn((u)=—217g X, w)e™dt, n=0, x1, 2, ---

* Present address: 1-12-26-204 Shinohara-higashi, Kohoku-ku, Yokohama 222, Japan

11



The mean derivatives

In [1], the author has given some results on the almost sure convergence of
the series

(1.6) 3 1nlkaal Calw)|

n=-—oo

(az>0) for some nonnegative integer &, and applied them to sample continuity or
differentiability or X(¢, ).
Write

1.7 ME®(5)=MF® (5, X)=lShl[1}?;<21 S E|4PX(¢, w)l’dt)‘”,

2
where p is a positive integer and 4P X(¢, w) is the p-th difference of X, w):
2 P
1.8) AP X, w)= . (—1)""‘<k>X(t+kh, o).
k=0
Let ¢(¢) be a nondecreasing function on [0,1] such that either ¢(0)=0 and
@(1)/t is noninereasing on [0,1], or ¢() is identically 1 on [0, 1].

One of the resuls obtained in [1] is the following.

THEOREM A. Let X(t, w) be of Ly(TX) for some vr>1. Let k be a given non-
negative integer. If there exists a positive integer p such that

R
then
(1.10) 5 i o(2) ] cu@i<oo,

almost surely.

In this paper we give a relationship between M} (5) and the mean derivative
of X(¢, w) and apply it to the absolute convergence of Fourier series and the sample
properties of X((¢, w).

2. Mean derivatives.

Let X(¢, 0)e Lpy(Tx ) for some r=1. If there is a stochastic process X%(¢, w)
of LT x) such that

Xt+h, 0)—- Xt o)

7 —Xu(t, v)| di—0

2.1) %S:‘E

as h—0, then X, (¢, ) is called the mean derivative in L(TX2) of X({, w). The
p-th mean derivative X{(¢, ») is defined succesively in an obvious way.
Write
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T. KAwATA

(2.2) 1 E|X(t, w)|"dt 1/T=||X(1,‘,a))\|T
2r ) .

which is the norm of X{¢,w) in L(TX ).
We give two simple lemmas.

Lemma 1. If X(t, 0)eL'(TX &) has the mean derivative Xy(t,0) in L (TX),
then, as h—0,

2.3) H%Si'xw o)du— X, w)“r:O(llzl).

Proof. The left hand side of (2.3) is not greater than
10"
HZ [X(u+t, w)— X(t, w) —uXy(t, 0)ldu )
Iy
=\,

LemMMmA 2. If X(¢, 0)e (T X 2) has the mean derivative Xy(t,w) in L'(TXQ2),
then

Xu+t, 0)— X, 0)
u

du+—

—0(1h|)+0(|hl) O(|A).

—Xu(t, 0

t+h

(2.4) X(t+h, 0)— X2, w):S Xyp(u, w)du
t

almost everywhere in T XS, for each h.

Namely there is a subset G=G(#) of TX such that (2.4) holds for (¢, w)eG
and p(G)=2z, ¢ being the m X P measure and m the Lebesgue measure. We note
that we can easily see that (2.4) holds on G if ¢ is replaced by ¢+4 by periodicity,
when /% is fixed. The dependence of G on % makes the difference between the
almost sure absolute continuity and the existence of mean derivative in L(TX2)
of X(t, w).

Proof. Let h>0 without loss of generality and let |k| <A Write

Se=|Y(¢, w)llr,
where
Yt 0)= SZ*” [X(u+k, w;—X(u, Q))—X}u(%, w)]du
Since
R b
g[ Xutk, “Z'X(“' ) Xy, )| -t
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The mean derivatives

Hence
(2.5) Sz=—21”—8 E|Y(¢, )| dt<2zh"™'-||Y (¢, )|[i—0

as k—0 for a fixed A.
On the other hand,

¢t

1 Likth 1 +h t+h
Se= ‘ ’?S X, w)du—;gt X, w)du—g Xiplat, 0)d
14

t+k

"
t+k

G 1
—Hkg X(u, w)du ?S

t+h

t+h
X(u, w)du— S Xy(u, o)du
t

t 7

By Lemma 1, this converges to

t+h
‘ ’X(t+h, ) =X, w)—S X, w)du
¢

r

as k—0. Hence from (2.5) the last quantity should be zero. This gives us that
(2.2) holds a.e. in T'X£. for each #.

3. Mean derivatives and continuity modulus.

Let X(¢, ) be of Lp(TX2),r=1. Suppose XP({, w), the mean derivative of
order p of X(¢, w) in L"(TX Q) exists, p being a positive integer.

Now let G,;=G(%) be the set on which (2.4) with X} (¢, ) in place of X(¢, »)
1=1,2, -, p, holds.

AR X, )= AP X+ h, 0)— 4P X, )

is, by Lemma 2, equal in G, to

tth

t+2h
S Xyt w)dt, —S

t+h

tih
Xyt )ty = S (Xt ) — Xt )]dt
I3

t

which is again by Lemma 2 equal in G,NG; to

tih ti+h
=S dtlS Xla/{(tz,w)dtz

¢ t
Repeating this procedure, we have

tith t

p-1!

t+h L
3.1 AP X, w):S dtls dty- - - S XP(tp, @)dty.
t

4 Jt

p—1
V4

ae. in Go=N Gy, p(Go)=2x.
=1

We now prove

THEOREM 1. If X(¢, w) belongs to LT X Q) and has XP, w) in L'(TX2),r=1,
D being a positive integer, then
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T. KAwWATA
(3.2) MFP@)=27"|| X5P(t, o)l 07,

Proof. From (3.1), we have, for any fixed £2>0, in G,,

t+h tp_th 4
4P X, w)l”=[S dty- S Xir'(tp, w)ldtp]
13

tpi
t+h lp_l+h t+h [p,l+h r—1
gs d¢,~--g |X;;J>(tp,m)rdzp-[g a’z‘l---g dtp]
¢ tpo ¢ et }
tin tp_yth
=/lw*'>8 b - S \XP(t, )|"dt,
t

tp—1

t+h
=m<f-'>g Yit,, w)dts,
t
where

Y, (u)=gtl

3t

+h tp_yth
dts- - S | XP(tp, @) dty.

zpl

Since for a 2r-periodic function f(u)eL(T),

T4
-1

U8 sl ={ " riausain s

for |4| <=, which is easily seen by the interchange of integration signs on the left
hand side, we have, for small |%|,

14X D=5\ BlaXPE ol

p(r-1)
_ 1|

% t+n
= S dtS EY(t, w)dt,
2r —r Jt

-1
4

lhl”‘"”!hlg EY(t,, w)dt,.
Repeating the same arguments p—1 more times, we have
142 X6, M =22 7 Bt )7ty =2 I -

This is no more than (3.2).

4. Absolute convergence of the Fourier series of a periodic stochastic process.

Let ¢(¢) be the function in 1. The combination of Theorem 1 and Theorem A
immediately gives us the following theorem.

THEOREM 2. If X(t, w)e Lp(T X 2) and for some nonnegative integer k, X (¢, w)
exists in L'(TX2),1<r=2, and
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The mean derivatives

“4.1) Z: "2“”[ <%)]_1<00,

then

4.2) % | o(%) | cuan <eo,

n=—co

almost surely.

In particular, taking ¢(/)=¢, we have the following collorary. For nonrandom
case, this is thought of as a version of a known result on the absolute convergence
of an absolutely continuous function which has the derivative belonging to L™(T).
({1] Cor. 2. p. 161, [4] Theorem 3.8, p. 242)

CoLLorRARY 1. If X(¢, 0)e L'y(T' X Q) and for some nonnegative k, X§V(t, ) exists
in L'(TX2), and

then
.4 31 1[E|Calw)| <00,

n=—oo

almost surely.

The condition (4.3) is of the best kind in some sense. Actually if a=1-1/r,
there is an X({¢, w)e (T X Q) which has XE"W(¢, w) in L'(TX %) and is such that
the series in (4.4) diverges almost surely.

We show this for simplicity when £=0. Let

sin nx

@.5) f@=% e

, 0=a«1.

This is abolutely continuous and f| (:c)=goxg(u)du, where

(46) g(x):i Cos nx

e nlogn

which is defined for all —z=x=r except at x=0. We can show that ¢(x)eL’(T)
and is the mean derivative of f(x) in L(T) for r>1, if a=1—1/r. More precisely

fe+h)—f(x) ¢
h

~o(a)| lTog [T

w

as 4—0, where C is a constant independent of Z.
The proof of this fact will be shown in a more general form in 6.
Let »>1 and a=1-1/r. Then from (4.7), g(x) is the mean derivative of f(x)
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in L'(T) and

Mz

#by=00

n

2

—a—

where b,=n"""' (log #)™' is the sine coefficient of f(z).

Theorem 2 and Collorary 1 seem to be new, even for nonrandom case. . The
above example shows that Collorary 1 with 2=0 for nonrandom case is no more
true if a=1-1/r.

4.9) X, 0)=X(0)f @),
where f(#) is the function (4.5) and X(w) is any random variable of L’(2), gives
a counter example for Collorary 1 with £=0,a=1—1/r.

5. Sample properties of a periodic stochastic process

The author has shown the following theorem.

THEORFM B. Let X(t,w)elp, 1<r=<2. Let k be a given nonnegative integer.
Suppose there exists a positive integer p such that

(5.1) niilnk_l H/’[¢(l>]“lM;k<m<l> <oo.

n n

If X(l, w) is stochastically continuous, then there is a modification Xo(t, w) of X(¢, )
with the property that Xi(t, w) has almost surely the k-th derivative belonging to the
Lipschitz class A,.

Ay is the class of functions f with continuity modulus ¢.

This theorem is applied to the case where the mean derivative of (k+1)-th
order of X(¢, w) exists in L'(T'X2) and the following theorem is immediately ob-
tained, p=k+1 being taken, which corresponds to the critical case in some sense.

THEOREM 3. If the conditions in Theorem 2 are satisfied for 1<r=2 and
X(t, w) is stochastically continuous, then there is a modification Xo(t,w) of X, w),
of X(t,w), which has almost surely the k-th derivative belonging to A,.

6. A theorem on a sine series.

We shall prove a theorem on a sine series which implies (4.7) as a particular
case.
Consider two series

6.1) Flz)= i %sin nw
and
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The mean derivatives

(6.2) g(x)= i dn COS NI .

n=1
Let #>1 and suppose
6.3) an>0, an—0, £a,=0,
where do=a0n—aQn.1, Lan=4(4a,).

It is noted that (6.3) implies da,=0. It is well known that (6.2) is convergent
except at x=0 and ¢(x) is of LYT). f(x) is then absolutely continuous and
f'(x)=¢g(x) almost everywhere. We shall give a condition which assures that f(x)
has the mean derivative g(x) in L(T).

We begin with

LeMMA 3. Let p>1 and j8 be a real number > —1. For any b,=0,n=1,2,---,

oo n » oo
6.4) 5 (nﬂ 3" kﬁbk> =G, 3,
n=1 k=1 n=1

where Cp is a constant depending only on p.

This is a particular case of the following inequality with @»=21;'%bs, ln=nf?’' D,

£ a( L S =(L)  aet
n=1 " An k=1 Kk = ﬁ"l n=1 i

for p>1,2,=0,2,>0, where Ap=21+ 2+ - +2. (See (2] p. 247, Theorem 332)

LemMA 4. Let 0,=0,p>1. Then

o oo Y4 o
6.5) 5 n”‘2< 5 ﬁ) =C, 3 n-,
n=1 k=n k n=1
and if b, is nonincreasing, then we moreover have
oo 5 o i o bk v4
6.6) =y 3 (2 °F)
n=1 n=1 k=n

where Cp and Cp are constants depending only on p.

Proof. For any a,=0 with 3 a?' <oo,1/p+1/p’ =1,

o o0 bn
p1-2/P n
o Cags

© b n
)ak:Z hii3 Z k\=¥Pq,
n=k n n=1 N k=1

which is by the Holder inequality not greater than

o 1/P[ o n /P
<Z bﬁn”*) I:Z <n—2(1‘1/p) Z kl—z/pak> ] .
1 k=1 _

n= n=1

The second factor is, by Lemma 3, not greater then

18
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oo vy
<CPZ ah ) .
n=1

Therefore by the converse of the Hélder inequality we have (6.5). C, may differ
from each other.
(6.6) is easy to show. Actually

2n

£l 1
Wk ik

bn

1|M8

”M:

?rla?“
I\

= Chsn,

where C is an absolute constant. Hence

i - 2<Z b}:) >Can 2P >CPZ (2n)P2p2,,

Similarly

i np_2<i bT:') CPZ @Cn+1)P7"05 1.
n=1 k=n
From both relations, we have (6.6).
We shall prove the following theorem.

THEOREM 4. Consider the series (6.1) and (6.2) with the condition (6.3). Suppose
r>1 and nan is nondecreasing. If

6.7) 1l < 0o,

1

ilMs

then f(x) has the mean derivative ¢(x) in L'(T).
More precisely

f_(x_'l‘_h})#_g(x) deécr

nz|h|—t

w

Before proving this theorem we give some notations and elementary facts we
use. The proof of the fact that g(x)eL”(T) under the conditions in the theorem
is contained in the course of the proof of the theorem.

Denote by D.(z) and D,(x) the Dirichlet and the conjugate Dirichlet kernel

. 1
1 n sSin n+§ x
Du(x)=—+ )Y, coskhr =————"—
2 k= sin =
2

sin 22 sin ntl
2 2

x

Du(x)=3 sinkx=
k=1 . x
Sin —é—

and
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The mean derivatives
6.9) Tn(h)=d(an(1—cos nh)/n),
(6.10) H,.(h)=4(a, (sin nh—nh)[n).
Let 2>0 without loss of generality. In what follows C’s are constants which
may be different on each occurrence. Note that @, is nonincreasing.

Write

(611) b7z=an+ndany n:ly 2y e
We see, for nh<1,

l]n(h)|<C[ ( ) 2h2+ank2]<C(an+nAan)lz2—Cbn}ﬁ

and for nh=1,
Ifn(h)I§C[< )+ h]<c@

We also see that the same estimates for F.(%) hold. Namely

(6.12) |Ja(B)| =Cboh2,  for nh=1,
=Cbyh/n, for nh>1,
(6.13) |Ho(B)| <Cboh?,  for nh=<1,

=Cbph/n, for nh>1.
In this section we denote by ||| the norm in L'(T), (S“ |-|’)W (diffenent from
those in 1~4). We obviously have
(6.14) D)l =Cnt=7, D)l = Cr =177

Finally we note that if (6.5) is true with @, in place of b,, then it is, with b,
in (6.11). Because

o bk _ co ax = k
;«Z=:n A _;f;"(k +Aak) —éﬂ A +an

and hence

oo oo » o = v =

Z np—z(z b_ﬁ) écz n:n—z(z ‘ﬁ) +CZ np—zap

n=1 k=n k n=1 k=n k n=1
6.15) =y np-za:;( =Cy n"‘zb£>.

n=1 n=1

The similar thing is also true for (6.6), namely

=y oo ¥4 =3
Z ZéCZ ne- 2(2 %) +C > nP %k
n=1 n=1

k=n
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(6.16)

lIA

co oo ¥4
cy np—z( 5 ﬂ) ,
n=1 n=k k
by (6.6) with a, in place of b,.
We now proceed to prove the theorem.

Proof of Theorem 4.

flz+h)—f(x) 2 . cosnh—1 & sin nh—nh
P g(x)= :é'lan sin nz —— 52— + nZ:lan COS N~ 2

|M8

Aulz, )+ 3 Bz, h),
1 n=1

n=

i

say. We have

=51+5;,

”r

6.17) H—f @AN=TD gy

where

Si=S:(h)=

21 Aue, h)‘ ‘ Sy =Si(h)=

5 Bulw, )

We shall prove the theorem by direct computations of S; and S..
Let >0 and write N=[A"'). we first deal with S,.

Slé =[l+12’

r

> A, )

+|| 25 Anlz, B)
nsN 7 n>N
say. By summation by parts, we see that

L=N

”z:bnw)w)] +NIDs(z)ax(1~cos NI

N-1 - —_
=N W Dn(@)lr+anl| Du(2)llr -
n=1
Using the first inequalities of (6.12) and (6.14), we have

N-1
L=CN-'Y byn'~""+ayN'""

n=1

N—-1 N-1
=CN—1 Z annl—l/T+CN—1 Z Aa"nZ—]/T_l_aNNl—l/T
n=1 n=

1

N-1
éCN—lZ ann1—1/1+aNN1—1/r

n=1
which is not greater than CayN'"'", since na is nondecreasing.
We thus have

o vr
(6.18) L§CaNN““’§C< 5 a;nf-z) ,

n=N

for

21



The mean derivatives
0 2N
San i zan 3, = CayNT.
n=N n=N
For I,, we apply the summation by parts, and we have
zngH %, Do) | +N11Dx-av(1-cos NiIN]
n N r

=en({ | = Do) az)”

n N
T 1wr
+ <S dx)
|zjzN !

ZNDn(x)f (h)
+N||Dy_i(x)ax(l—cos Nh)/N||»
=1L+ Lo+ Ly,

say. We see as before

oo /7
6.19) lzagaNN1~W§c( 5 a;nf~z) ,
n=>N
and
T wr
[2|§CN(S dx)
1z1<N 7 Nonsix) -t
T\ /7
+CN<S >
1Zl<N 7 1z ten
=[211+[z12 ,
say. Since |Du(x)|<Cn? x|, we have, using the second relation of (6.12) and noting
r>1,
r /7
[211§CN[S ( Z hlxmbn) dx]
1z1<N "I \N<ag ||
T vr
gc[g |x|’< 5 nb,,) dx] .
jzi<y ! n<lx|~1
Since
> mba= Y, man+ ), #n'dan,
n<irl L nglr| ™! nsiz| !
we have

1211 éc[g

_l(lxl_‘aml—l])’dx‘l

N

|

A

wr
(|| —1ﬂtsm|—'l)rd$_]
(k+1)—1 _
/7
y
4 I

22
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As to /.15, we have, using the second estimate of (6.12) and |D.(x)|=|x|"!,

T 1/r
[212§CN|:S <N“‘|xl“ 5 nb> dx]
1z|sN7! |zl n
[ r vr
C S |‘77|_T< h an”71+a[1x1—11) d.r]
L 1z<N ! n>z|—1

co gT! r 7
x S |x\"(2 ann“+ak> dx]
k=NJ(k+1)1 nZk

oo T}/ oo /7
—¢ Zk"2<2ann*‘>] +c< 5 kr-mk> .
n=k

| k=N k=N

IIA

lIA
—

Because of (6.5), the last one is not greater than C(X .-~ £ 2ai”)'"".
Hence we have obtained

/7
(6.20) IzéC(Z n"205> .
k=N
For I, we have, using the second of (6.12) and |D.(2)|=|z|™",
= T1/7
s, (o 5
|Z|>N-1 n=N
=CN-17 S bm“'éCN‘*“’(i ann*1+aN)
n=N n=N

o0 /T / oo 1-1/7
éC 1—1/7‘< Z a:lnr—2> <Z n_2$2/7‘>
n=N

n=N

+CN""ay
(6.21) gC(ngva;n"2>m.
From (6.9), (6.20) and (6.21) we have
(9.22) r=c( £ am) "

Putting (6.18) and (6.22) together, we finally have obtained

/7
(6.23) SI§C< > n7‘2a5> .
n>h1
Finally since J.(#) and H,(%) have the same estimates (6.12) and (6.13), and
D.(z) and D,(z) also have the similar estimates (6.14) and |D.(x)| =|z| 7", |Da(z)| =Cn,
we see that just the same manipulation gives us that

T
(6.24) SZ§C< 5 1n"za§,> :
n>h™

(6.23) and (6.24) now complete the proof of the theorem.
Now let a,=(n"log (n+1))"! and 1—-1/r=a<1 we easily see that all the condi-
tions for @, in Theorem 4 is satisfied for »>1. This shows (4.7).
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