
Title An interactive support system for constructing programs in SIMPL
Sub Title
Author 永田, 守男(Nagata, Morio)

三嶋, 良武(Mishima, Yoshitake)
鹿野, 芳之(Shikano, Yoshiyuki)
原田, 賢一(Harada, Kenichi)

Publisher 慶應義塾大学理工学部
Publication year 1982

Jtitle Keio Science and Technology Reports Vol.35, No.9 (1982. 8) ,p.153- 167
JaLC DOI
Abstract This paper proposes an approach to provide inter-module and inter-procedural information to

programmers who are working together in a program development project. This approach is based
on the following idea: such information can be easily obtained by modifying some components of
the existing compiler to output key information of source programs and implementing the module
information manager and analyzer. The SIP (SIMPL Interactive Programming) system on the basis
of this approach has been designed and implemented as a tool for supporting SIMPL program
construction. The effectiveness of the approach is described here by giving the actual output from
this system. Our approach is also useful to create and modify programs written in the procedure-
oriented language with the separate compilation facility.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00350009-

0153

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

KEIO SCIENCE AND TECHNOLOGY REPORTS
VOL. 35, NO. 9, pp. 153-167, 1982

AN INTERACTIVE SUPPORT SYSTEM FOR
CONSTRUCTING PROGRAMS IN SIMPL

Morio NAGATA, Yoshitake M1sHIMA* and Yoshiyuki SHIKANO

Department of Administration Engineering, Keio University
3-14-1 Hiyoshi, Yokohama 223, Japan

Ken'ichi HARADA

Institute of Information Science, Keio University
4-1-1 Hiyoshi, Yokohama 223, Japan

(Received July 1982)

ABSTRACT

This paper proposes an approach to provide inter-module and inter-procedural informa­
tion to programmers who are working together in a program development project. This
approach is based on the following idea: such information can be easily obtained by modify­
ing some components of the existing compiler to output key information of source programs
and implementing the module information manager and analyzer. The SIP (SIMPL Inter­
active Programming) system on the basis of this approach has been designed and imple­
mented as a tool for supporting SIMPL program construction. The effectiveness of the
approach is described here by giving the actual output from this system. Our approach is
also useful to create and modify programs written in the procedure-oriented language with
the separate compilation facility.

1. Introduction

As one of programming methodologies, it has been proposed that the program
should be divided into modules as sets of logical and functional units. Moreover,
incremental programming has come to be recognized as a promising methodology.
Here, term of " incremental programming " means a program development process
with taking advantage of separate compilation facility for each module in an inter­
active environment. Combining these notions, this paper presents an inter-module
analysis tool for definition and use of identifiers (variables, procedures and

* Present address: Mitsubishi Research Institute, Inc., Time and Life Building, 2-3-6 Ohte­
machi, Chiyoda-ku, Tokyo 100, Japan

153

M. NAt;.\TA, Y. M1sH1MA, Y. SIIm.ANO and K. l-IA1~ADA

functions) which works cooperating with a compiler.
Really to construct a procedure by using the structured programming language

in the incremental programming environmentc3
\ inter-procedural information at

that state of programming is useful. For example, global variables used in other
procedures are important to construct a new procedure. But it is difficult to
obtain such information, and as the state of programming progresses, the con­
figuration of a program always changes. Thus, our attention is concentrated upon
inter-procedural and/or inter-module information at any stage of the program con­
struction process. Notice that the word 'procedure' is used to mean both a pro­
cedure and a function in this paper. Every module consists of a sequence of
procedures and functions that can access any set of global variables, parameters or
local variables.

Our system, called the SIP (SIMPL C5) Interactive Programming) system, pro­
vides the following inter-procedural information in accordance with programmer's
request: attributes and cross reference lists of all identifiers in each module or
over modules, data binding list on global variables, a call graph representing invoca­
tion relationships between each module to the other modules, statistical informa­
tion of programs, and check list of interface of a module and the other modules.
Whenever a programmer wants to get such information, he will use the SIP
system interactively.

The main design policy is to provide useful facilities by a little modification
to the existing compiler. The SIP system has been implemented by adding only
a function for producing Line Reference Table (LRT) to the SIMPL compiler.

2. An Overview of the SIP System

2. 1 Structure of the SIP System

The SIP system consists of the SIMPL compiler and the inter-module analyzer.
Although the SIP system does not allow any dynamic editing or compiling, a user
can get a great many static information from the SIP system. At each time of a
compilation, the SIP system collects the internal information of a program given by
the compiler. As a result, the SIP system can respond to the user's query on his
programs interactively. Figure 1 shows a structure of the SIP system.

2.2 Example

Using a small SIMPL program, we illustrate the effectiveness of information
in the process of the program construction. The program (COMPEXP) computes
A**B under the restriction that the addition (ADD) and multiplication (MULT)
operations for given integers are only allowed with operations of successor
(SUCC) and predecessor (PRED). The procedure EXPS(A, B, C) to return a value
of A**B in C is called by the main procedure COMPEXP. Let us assume that all
6 procedures are separately compiled. The whole program COMPEXP is shown in
Figure 2.

154

An Interactive Support System for Constructing Programs in SIMPL

SIMPL
program

Interactive

Intermodule

Analyzer

Interprocedural Information

CJ--{-=:J-----Q
windows

summary listing window listing

Intermodule Information

Fig. 1. Structure of the SIP System.

In the process of program construction, the previous procedures are treated as
if all of them were the internal procedures in one module. That is, the SIP system
gives a programming environment that above programs can be considered as one
program illustrated in Figure 3.

Note that another example of COMPEXP (i.e. Figure 3) is compiled as a real
program, and the SIP system can process above 6 internal ones, because of analyzing
the complete ft.ow of control using the merged call graph shown in Figure 4.

2. 3 Output from the Compiler

On the contrary to a normal compilation, the compiler gives some useful
information independently on the other separately compiled modules. The output
information with some typical examples is as follows:
1. Cross reference list: The attributes and cross reference list of all identifiers

in one program module are generated.

155

M. NAGATA, Y. M1sHIMA, Y. S111KAN0 and K. HARADA

l ENTRY PROC SUCC(REF INT P)
2 P:=P+l

4 ENTRY PROC PRED(REF INT Q)
5 Q:=Q-1

7 ENTRY PROC ADD(INT X,INT Y,REF INT Z)
8 EXT PROC ?RED(REF INT), SUCC{REF INT)
9 Z:=X

10 WHILE Y DO
11 CALL SUCC(Z)
12 CALL PRED(Y)
13 END

15 ENTRY PROC MULT(INT N,INT M,REF INT S)
16 EXT PROC ADD(INT, INT, REF INT) / PRED(REF INT)
17 INT T
18 S:=O
19 WHILE M DO
20 CALL ADD(S,N,T)
21 S: =T
22 CALL PRED(M)
23 END

25 ENTRY PROC EXPS(INT E,INT F,REF INT G)
26 EXT PROC MULT(INT,INT,REF INT), PRED(REF INT)
27 INT H
28 G:=l
29 WHILE F DO
30 CALL MULT(G,E,H)
31 G:=H
32 CALL PRED(F)
33 END

35 PROC COMPEXP
36 EXT PROC EXPS(I~T,INT,REf INT)
37 INT A,B,C
38 READ(A,B)
39 CALL EXPS(A,B,C)
40 WRITE(A,B,C,SKIP)

42 START

Fig. 2. COMPEXP (external).

2 Global data binding 0 l list: The data binding information on global variables
is produced by inter-procedural analysis for one program module. As the
invocation relationships between procedures have been made clear in a form
of internal representations, a binding analysis can determine a point, where a
global variable is defined, and where the global is referenced to. Through
these analyses, some logical errors such as side-effects with no care can be
easily detected. Figure 5 gives an example of global data bindings. For
instance, a global variable SYMT AB is referenced in procedures PROCFUN­
CATTR, GENCALLEDCHAIN and PRTCALLGRAPH, while it is not modified
in PROCFUNCA TTR. This means that PROCFUNCATTR may use a value
of SYMTAB after modified in GENCALLEDCHAIN, and we can find a data
binding for variable SYMT AB in these three procedures.

3. Call graph : By analyzing the invocation relationships between procedures,

156

An Interactive Support System for Constructing Programs in SIMPL

1 PROC SUCC(REF INT P)
2 1 1 P:=P+l

4 PROC PRED(REF INT Q)
5 2 1 Q:=Q-1

7 PROC ADD (INT X,INT Y,REF INT z)

8 3 1 Z:=X
9 4 l WHILE y DO

10 s 2 CALL SUCC (Z)
11 6 2 CALL PRED(Y)
12 END

14 PROC MULT {INT N,INT 1'1, REF INT S)
15 INT T
16 7 1 S:=O
17 8 l WHILE M DO
18 9 2 CALL ADD(S,N,T)
19 10 2 S:=T
20 11 2 CALL PRED(M}
21 END

23 PROC EXPS (INT E,INT F,REF INT G)
24 INT u

"
25 12 1 G·=l
26 13

, WHILE F DO .L

27 14 2 CALL MULT(G,E,H)
28 15 2 G:=H
29 16 2 CALL PRED(f')
30 END

32 PROC COMP EXP
33 nJ"._' A,B,C
34 17 1 RE8.D (A, B)
35 18 1 CALL EXPS(l\,B,C)
36 19 1 WkITE(A,B,C,SKIP)

38 START COMP EXP

Fig. 3. COMPEXP (internal).

Merged Call Graph

0 1 2 3 4

COMPEXP **Main-Proc**

EXPS{int,int,ref int) **Ext-Proc**

MULT(int,int,ref int) **Ext-Proc**

ADD(int,int,ref int) **Ext-Proc**

SUCC(ref int) **Ext-Proc**

PRED(ref int) **Ext-Proc**

PRED(ref int) **Ext-Proc**

PRED(ref int) **Ext-Proc**

Fig. 4. Merged Call Graph for COMPEXP.

157

M. NAGATA, Y. M1smMA, Y. SHIKANO and K. HARADA

Global Data Bindings List

PROC/FUNC Globals/Bindings Line Numbers

PROCFUNCATTR
SEGNO

[Accessed] 69, 118
PLINE

[Modified] 71, 72, 75, 77, 78, 83 t 91, 96, 101, 106
[Accessed] 115

BLANK
[Accessed] 71

CALLTBL
{Accessed] 73

SYMTAB
[Accessed] 74, 78, 80, 99, 104

PROCTBL
[Accessed] 77

PROCFLAG
{Accessed] 81

ENTRY FLAG
[Accessed] 94

FWD FLAG
(Accessed] 109

GENCALLEDCHA!N
SEGNO

[Accessed] 130
CALLTBL

[Accessed]. 132, 158
REFS

[Accessed] 136
SY MT AB

{Modif iedj 139, 159
[Accessed] 137, 139

PROCFUNC
(Accessed] 137

PROCTBL
[Modified] 149, 157
[Accessed] 142

CALLED
{Modified] 147, 151
{Accessed] 143, 145·

GAV AL
{Modified} 152
{Accessed] 147, 149, 151, 152

PRTCALLGRAPH
SYMTAB

[Modified] 202, 207
[Accessed] 171, 173, 188

PLINE
[Modified] 172, 174, 180 I 182, 190
[Accessed} 174, 180 ,· 182, 185, 190, 192

COLN
{Accessed] 184, 187

EXT FLAG
(Accessed} 188

BLANK
[Accessed] 192

PROCTBL
[Accessed] 197

CALLED

Fig. 5. An Example of Global Binding List.

158

An Interactive Support System for Constructing Programs in SIMPL

No.

l
2
3

" 5
G
7
s
9

10
11
12
13

Listing of Procedures and Functions

Na.me Calls Called Attribute

PROCFUNCATTR 1 1
GENCALLEDCHAIN 0 1
PRTCALLGRAPB 2 3
CALLINGLEVEL 1 2
CALLGRAPB 3 1
DUMP 0 0
CALLGRAPBGEN 3 0
PUTGLINE 0 2
MANYG LOBALS 0 2
PRTGLOBALB IND " 1
GLOBALSOFSEG 2 l
GLOBALDATA 2 l
GLOBALBIND l 0

C A L L GRAPH

0 l 2 3

CALLGRAPBG EN (316) **Entry**

GENCALLEDCHAIN(l23)

PROCFUNCATTR(56)

NAME(20) **Ext**

CALLGRAPH { 241)

PROC
PROC
PROC, REC
PROC, REC
PROC
PROC
PROC, ENTRY
PROC
PROC
PROC
PROC
PROC, FWD
PROC, ENTRY

CALLINGLEVEL(213)

CALLINGLEVEL(213)

PRTCALLGRAPH(l66)

NAME{20) **Ext**
PRTCALLGRAPH(l66)

PRTCALLGRAPH(l66}

GLOBALBIND{534) **Entry**

GLOBALSOFSEG(474}

GLOBALDATA{Sl)

MANYGLOBALS { 431)

MANYGLOBALS { 431)

PR'1'GLOBALBIND(442)

NAME{20) **Ext**
NAME{20} **Ext**
PUTGLINE(382)

PUTGLINE(382}

Fig. 6. An Example of Call Graph.

159

M. NAGATA, Y. M1sHIMA, Y. SHIKANO and K. HARADA

Entry variables defined ---

NOFPARAM
PARM!STR
PARAMVAR ~

\

variable name

- attribute of var Lab le

108 INT, ENTRY ¥_..

117 STRING[20] (20), ENTRY
114 INT(20), ENTRY
+
1---line number ~here the variable is declared

Information for module - PSTAT4.SPL.12(02/08/82-13:49:03)

Entry ~ariables defined ---

None.

Information for module - PSTATS.SPL.12(02/08/82-14:09:07)

Entry variables defined ---

None.

Information for module - PSTATM.SPL.18(01/27/82-21:33:32)

Entry variables defined ---

BLANKS 36 STRING [13 2] , ENTRY
CELL 69 INT (1024) , ENTRY
CU RRi'!ODNO 31 INT, ENTRY
DUMMYl 51 INT(97) I ENTRY
ENTRYDEFC 72 INT, ENTRY
EXTREFC 73 INT, ENTRY
FUNCNO 65 INTr ENTRY
IDSYM 67 STRING[8J (1024) I EN'I'RY
INFPSIZE 30 INT, ENTRY
LIB FU PDT 32 INT, ENTRY
LINE NO 62 INT, ENTRY
MODDVl 58 INT, ENTRY
MODDV2 59 INT, ENTRY
MOD NAME 61 STRING [80 J I ENTRY
MODPTR 50 INT(SO) I EN'I't\Y
MODULES 49 STRING[20] (SO) I ENTRY
NOFENTPF 74 INT, ENTRY
NOFENTV 75 INT, ENTRY
NOFEXTPF 76 INT, ENTRY
NOFEXTV 77 INT, ENTRY
NOFMODULE 47 INT, ENTRY
NXTAVAIL 48 INT, ENTRY
PFCHAIN 71 INT, 2:NTRY
PROGNAME 46 STRING [20] , Et-: TRY
REFS 70 INT (4000) I ENTRY
SEGNO 64 INT, ENTRY
STMTCNT 63 INT, ENTRY
SYMTAB 68 INT(3038) I ENTRY
TEXT 35 STRING [80] , ENTRY
TOPPTR 66 INT, ENTRY

Fig. 7. An Example of "LIST" Command.

160

An Interactive Support System for Constructing Programs in SIMPL

Rererenced in

ID NAME
\.

\
\

\

PARSEQUADS.SPL.9(02/03/82-18:09:53)

STRING+----- - type of identifier
459* +-- --- - - value is assigned at line 459.

"*" denotes an assignment.
identifier to be searched

Rererenced in SCANDECL.SPL.5(02/03/82-18:07:19)

IDNAME STRING
139, 142, 144, 267, 269, 422*, 428, 432*, 432, 434,
638*, 667, 671*, 671, 675, 677*, 677, 682, 687, 849,
1050

Rererenced in SCANt1ACRO.SPL.7(02/03/82-18:06:05)

ID NAME STRING
115*, 124*, 126*, 131*, 136, 138, 143, 145, 147, 181,
183, 184, 187, 198, 206, 208, 218, 220, 230, 232, 236*,
236, 236, 266, 399*, 401*, 405, 408*, 408, 413, 414

Rererenced in SCANMAIN.SPL.8(02/03/82-18:08:27)

IDNA.i.'1.E STRING
110, 119, 214, 215*, 232, 233*, 251, 261*, 268, 285*,
355, 382, 391, 400, 409, 430, 438, 446, 463, 472, 513,
678, 734, 746, 751, 928, 946

Rererenced in SCANTOKS.SPL.20(02/03/82-18:05:14)

IDNAME STRING
423*, 425, 445*, 1144, 1146, 1151, 1166, 1188, 1274,
1286, 1289~ 1327*, 1338*, 1338, 1348*, 1348, 1376*,
1376, 1406*, 1406, 1430, 1434, 1436, 1446*, 1446, 1499,
1568, 1771, 1773

Defined in SYMTAB2.SPL.3(02/03/82-17:59:36)

IONA.ME 13 STRING [256], EN'I'RY
48, 49,· 52, 55, 70, 74.

Fig. 8. An Example of "SEARCH" Command.

161

M. NAGATA, Y. M1s111MA, Y. S111K.\NO and K. HARADA

procedure invocations are represented in a call graph. In general, the structured
programs consist of many logical components expressed by procedures. It is
very powerful to debug and maintain a relatively large size program that the
procedure invocations are exactly examined in their relationships. In addition,
after all call graphs of program modules compiled separately are collected, the
call graph for the executable (absolute) program would be acceptable by
merging all graphs into one. Nothing is more accurate in the invocation
order than this complete merged call graph. A call graph shown in Figure 6
tells us following facts ;
1) This module has two entry procedures CALLGRAPHGEN and GLOB­
ALBIND.
2) Through these two procedures there are two program control paths in
the invocation order given by the procedures defined in this module.
3) Every procedure which is directly called from a procedure is listed on
higher invocation level than the caller's. For example, GENCALLEDCHAIN,
PROCFUNCATTR and CALLGRAPH with level number 1 are directly called
by CALLGRAPHGEN with level number 0.

4. Program statistics analysis : The general grogram statistics information such
as the number of each statement type, the number of significant tokens, or
maximum and an average of nesting levels are printed in a chart.

2. 4 Inter-module Information

If the following commands are given by the user, the SIP system provides
inter-module information by using LRT from the compiler. Some commands have
several subcommands.
1. APPEND : adds current program information created by the SIMPL compiler

to the SIP system. If the SIP system has information for the same module,
it is replaced by a new one.

2. GET: specifies the module name to which the following commands are to be
applied.

3 LIST: outputs statistical information of the module specified by the GET
command. Any combination of the following information is available.
• global variables and/or procedures defined
• entry variables and/or procedures defined
• external variables and/or procedures referenced
• number of source lines, statements, proc/func and etc.

Above statistics can also be obtained for every module collected in the SIP
system instead of the specified one.

Figure 7 shows a result of executing the command which specifies "list all
entry variables declared in each module in the program library." This listing
contains for each module in the SIP library; names of modules, names of
variables, types of variables and line numbers where the variables are declared.

4. SEARCH: searches for definition and/or reference points of specified iden­
tifiers of the module. This function can be extended over all modules.

Figure 8 is the part of a result of executing "SEARCH" command. In this
case, variable "IDNAME" is searched over all modules and the following

162

An Interactive Support System for Constructing Programs in SIMPL

Interface consistency check for --- PSTATS.SPL.12(02/08/82-14:09:07)

! Inconsistent with module -- PSTATM.SPL.18(01/27/82-21:33:32)

GETPAGE2
t

procedlire name

PROC EXT

extern~l procedure

(INT, INT)< - - - -- ----- -- - 1
~, I

', I
parameter list

Interface consistency check for --- PSTATM.SPL.18(01/27/82-21:33:32)

Inconsistent with module -- PSTATS.SPL.12(02/08/82-14:09:07)

GETPAGE2 225 PROC ENTRY
,,.-" +

line ~umber entry procedure

I

I
(INT, n~T ARR.l\Y)~------

'1

formal parameter list

Undefined Identifiers t#

AF?ECT PROC EXT+-········· used as external procedure

S$SIGN STRING FUNC EXT~·-used as external string· function

SHOW PROC EXT

#t Unused Identifiers ##

.DUMMYl

.MODDVl

.MODDV2

51 INT (97) , ENTRY-'··- entry integer array with
97 elements

58 INT, ENTRY

St9 INT, .ENTRY

~---line number where the variable declared

Int~rface consistency check for --- PSTATU.SPL.7(02/01/82-21:27:22)

ft Undefined Identifiers ##

U$CLFL INT FUNC EXT

U$WTFL INT FUNC EXT

Fig. 9. An Example of " CHECK ,. Command.

163

M. NAGATA, Y. M1smMA, Y. SHJKANo and K. HARADA

results are printed out: a name of the module where the variable is declared
and/or referenced, and line numbers referring to the variable. The asterisk
following a line number shows an assignment for that variable.

5. CHECK : checks the interface consistency of the module against all other
program modules. For each external and entry objects, following items are
checked by this command.
· types of variables
· procedure or function type (with type of return value for the function)
· number and types of parameters for procedure/function

This command provides the error detection capability for module interface
which can not be gained by the conventional linkage editor and prevents
disastrous results at run time caused from erroneous declarations.

Figure 9 represents a result of the interface consistency checking over all
modules. This example shows that inconsistent parameter lists for the pro­
cedure "GETPAGE2" have been specified in the module "PSTATM" which
has 2 integer parameters and "PSTAT5" which has the integer and integer
array parameters. It also shows undefined (unused) identifiers which are used
(defined) in one module but not declared (used) anywhere in other modules.

6. AFFECT: points out all module names coming under the influence of a
modification to specific variables and/or procedures in other module. This
function takes advantage of the invocation analysis and is especially useful for
checking the affect of modification to be made in the maintenance process. In
addition, an analysis on the global data bindings for all modules can be acom­
plished by applying a data flow analysis based on the merged call graph.

3. Design and Implementation

3.1 A View of Our Design

In the bootstrapping processc2
) for the compiler enhancement, several useful

facilities to support programming activities were thought to be added to compiler
itself, if they can be developed with a little modifications to the compiler. The
straightforward approach to this problem is to obtain information on the definition
and reference of variables reflected with their line numbers in the source program.

Characterizing the overall design of this system, there are a minimal number
of the modifications in order to create a skeletal information. The design policies
in the modifications are as follows :
1. It is programmed so that the necessary information should be collected only

when the compile option is specified.
2. Every information on data items should be packed in a relatively small table,

and should reflect all accesses to variables with the line numbers where they
appeared.

3. Such a table including the symbol table should be easily separated independently
from the compiler.

4. All SIP functions work with the program information library file which

164

An Interactive Support System for Constructing Programs in SIMPL

contains the set of tables created by the compiler mentioned above. The
SIMPL compiler and the analyzer should be loosely connected only by a
temporary file containing such tables.

3. 2 Line Reference Table

We define a line reference table (LRT) that contains the source line numbers
with all definitions and references of variables. This LRT is designed to give
skeletal data for the debugging and analyzing facilities. The data items registered
in LRT are identifiers (e.g. variable or procedure and function names) and the
intrinsic procedures used in a program. Every item includes the line number in
a source program where it appears and the indicator whether its value is defined
or referenced to. In addition, every procedure binds its scope in LRT.

3. 3 Implementation

(1) Inter-procedural analysis
The compiler at the first stage have already had a variety of testing, debug­

ging and program analysis facilities. These are 1) attributes and cross reference
listing, 2) traces available for line numbers, calls and returns, and variable values,
3) subscript and case range checking, 4) statistics at compile time. In generating
a cross reference listing, especially, the line references have been managed in an
LRT-like table. Therefore, we reconstructed this table as the LRT in order to
facilitate a generation of cross reference listing and a call graph, and a computa­
tion of global bindings.

Call graph: The scanning for procedure names are done inter-procedurally only
in the LRT, and the invocation relationships are represented in a directed­
graph. A node involves both procedure name and referenced line number.
While the graph listing can be provided for every compiled module, this graph
is also a subgraph of whole call graph for all separately compiled modules.

Global bindings: The items in the LRT are also scanned inter-procedurally with
respect to global variables. Definitions and references of variables are listed
with line numbers. The globals include both internal and external variables.
As the local ones, a reference preceding to an assignment of value can be
checked if the flow of control is accurately analyzed through the call graph.

Module interface: As for a program consisting of several modules, the internal
LRT and call graph for one module are written on the library file together
with the symbol table. This interface facility automatically generates a call
graph, and rearranges the LRT into another LRT which disables an access to
local variables and represents the global or external ones in a linear list with
lexicographical order.

(2) Inter-module analysis
The SIP system consists of many separate functionsc 4

). Some of them cor­
respond to SIP commands on the top level. After a certain function is invoked, con­
trol goes into the subcommand mode of the function and the execution continues.

For the purpose of the inter-communication of these functions, the system
work area (SW A) is prepared in SIP. The SWA contains LRT, inter-module call

165

M. NAGATA, Y. M1smMA, Y. S111KANO and K. HARADA

graph and related information only for one module at a time. Inter-module analysis
is done using SWA. Some analysis which requires inter-module information should
get information of each module from the library file into SW A and create internal
table over modules successively.

Table 1 shows the current program size of the SIP system created by the
SIP system itself. Currently, as the program size of each SIP function is relatively
small and DEC-20 has 256 kw (36 bits/w) virtual address space, SIP function pro­
grams are linked together in the same address space. In the case when the number
of functions is increased or each function becomes more complex and larger,
segmentation or creation of another address space for each function is required.

2

3

4

5

6

7

Table 1. Program Module Statistics for -PST AT-

--- --------------

. PSTATl SPL

I . PSTAT2 SPL

. PSTAT3 SPL
I

. PSTAT4 SPL I

!

. PSTAT5 SPL
i

. PSTATM SPL I

. PSTATU SPL
I

Total:

1 ~10~61 ~~; 1 :;J 1-~n tN
--------------------------0- ------0 _1 ___ 2 ____ 21 ____ 5_

22

49

4

11

7

17

7

325 113

993 403

203 32

251 90

396 138

226 54

133 36

4/
12/

1/

2/

5/

5/

6/

4 0 7 24 7

o 3 I 2 4

0 0 12 10

2 0 7 8

0 30 3

0 0 6
3

3

12

3

_/_25_2_1~/ _s_6_6_1 _3_5_/6 ___ 33 ___ 21 ___ 12_-_-l49--

4. Discussion

The SIP system has been in use by our collegues and ourselves only a few
weeks. However, we conclude that this kind of system is useful for SIMPL or
other procedure-oriented program construction.

During the development of the SIP system, we have been able to detect some
errors by using facilities providing inter-procedural information. The traditional
compiler or linkage editor can not support incremental programming. On the other
hand, the programmer can use the SIP system interactively during the incremental
programming process.

This system is written in the SIMPL language ; therefore the user can modify
the SIP system with a little efforts. Consequently, this system is flexible in its
user's modification.

In contrast to other independent programming support tools, the SIP system
effectively uses information obtained by the SIMPL compiler.

Besides the internal form and size of the library file, trade-off between response
time for query and memory space plays an important role. Under the time sharing
environment, response time have an influence on the system load. Process time
for each command should be minimized. For instance, definition and reference
list for identifier of each module can not be affected when other modules are
modified. On the other, a call graph over modules should be reorganized each time

166

An Interactive Support System for Constructing Programs in SIMPL

when invocation of external procedure in a certain module is changed.
In the latter case, when speed is important, all analyses should be done at each

time of modification of modules prior to the next query. In contrast, as it takes
time and space, creating call graph at each query is reasonable when such kind of
query is in rare.

Only mutable information used by current commands is an inter-module call
graph. Because of the low frequency of query using a call graph, we decided that
it is recreated on each time of receiving the query. In future, it is preferable that
a user can specify the trade-off between time and space for each command. In
such a case, system generates internal information required for the commands
prior to the query which is classified as time critical by the user.

5. Conclusion

We have constructed the support system for writing SIMPL programs which
consist of a number of modules. However, our approach can be applied to other
procedure-oriented languages and their processors with separate compilation facilities.

Finally, the SIP system supports an aspect of human programming activities,
and there are tools which also support other aspects. Thus, for the construction
of comfortable programming environment, the compiler, the SIP system, a structure
editor, an automatic verifier and a dynamic program analyzer should be effectively
combined.

REFERENCES

[1] K\SILI, V.R. and TuRNEI~. A.J., "Interactive Enhancement: A Practical Technique
for Software Development," IEEE Trans. on Software Engineering, Vol. SE-1, No. 1
(Dec. 1975), 390-396.

l 2] BASIL!, V.R. and PERRY, Jr. JG., "Transporting Up: A Case Study," The Journal of
Systems and Software 1, Elsevier North Holland, Inc., 1980, 123-129.

[3] MEDINA-MORA, R. and FEILER, P.H., " An Incremental Programming Environment,"
IEEE Trans. on Software Engineering, Vol. SE-7, No. 5 (Sept. 1981), 472-481.

[4] OsTERWEIL, L.J., "Draft TOOLPACK Architectural Design," Dept. of Computer Science,
Univ. of Colorade at Boulder, 1981.

[5] SHIKANO Y., et al., "System Implementation Language: SIMPL on DEC System-20,"
Proc. of DECUS Japan, Vol. 1, No. 1 (Oct. 1980), 1-27.

167

