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ABSTRACT 

The oscillatory flow of a micropolar fiuid in a circular tube is investigated, taking 
couple stress and spin angular momentum into consideration. The exact solutions for 
velocity, micro-rotation, vorticity, shearing stress, flow rate and energy dissipation are 
obtained mathematically. Further the energy dissipation over the cross section is calculated 
numerically. These solutions are characterized by three parameters, i.e. dimensionless 
frequency W which is called W ornersley number, the ratio s of vortex viscosity to shear 
viscosity, and the size effect parameter .:l. The solutions are compared with those of 
Newtonian fluid and how to vary with s and .:l is discussed. Moreover the velocity profiles 
are compared with the experimental data observed in pulsatile blood flow by Bugliarello 
and Sevilla. 

1. Introduction 

Classical continuum approach is based on the idea that all material bodies 
possess continuous mass densities, and that the constitutive equations are 
valid for every part of the body regardless of its size. In other words, a continu­
ous mass density exists in a volume element that is infinitesimally small, and the 
symmetry of stress tensor can be assured. However, when fluids possess a sub­
structure, e.g. polymers, blood, fluid suspensions, etc., the macroscopic limitation of 
the material volume element exists. Then the stress tensor is no longer symmetric, 
and there arises distributed couple per unit area across internal surfaces, i.e. couple 
stress. 

For fluids which possess a substructure, there is another important loss of 
accuracy in classical continuum mechanics. When neutrally buoyant corpuscles 
are contained in fluid and velocity gradients in a flow field exist, corpuscles rotate, 
because of shearing stress. Hence, spin angular momentum is taken into account 
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in addition to the moment of linear momentum. (Spin angular momentum is also 
sometimes called intrinsic angular momentum.) Considering spin angular momentum, 
the symmetry of stress tensor is not assured, i.e. Cauchy's second law of motion 
for Newtonian fluids is no longer valid. 

Fluid which has couple stress and spin angular momentum is called polar fluid 
or micropolar fluid. The theory of micropolar fluid was developed by Eringen 
(1968)C 4

) and Allen and· DeSilva (1966)C 1
). The behaviors of the fluid have been 

studied from various viewpoints. Stokes (1966, 1971)C9l Clo) discussed a few funda­
mental steady flows in order to determine material constants of the fluid which 
has couples stresses and also discussed some effects of couple stresses in fluids. 
But he did not take spin angular momentum into account. Shliomis (1967)C 8

) 

investigated hydrodynamics of a liquid with intrinsic rotation. Ramkissoon and 
Majumdar (1975)C6

) considered a creeping flow past a sphere in micropolar fluids. 
They derived a simple formula for the drag in terms of the stream function. 
Ariman et al. (197 4)C2

l proposed a new spin boundary condition and investigated 
pulsatile flow of micropolar fluid by the method of Hankel transformation. They 
compared their theoretical results with the experimental data by Bugliarello and 
Sevilla (1970)C3

l for both steady and pulsatile blood flows. Sawada and Tanahashi 
(1981)C7

) analyzed a few basic flow patterns of micropolar fluid and discussed their 
apparent viscosities. 

In this paper, we consider the oscillatory flow of micropolar fluid in a circular 
tube, using the theory advanced by Eringen. The flow behavior is investigated 
in detail for three important parameters. Analytical results are compared with 
those of Newtonian fluid which are obtained by Womersley (1955)C 13

l and Uchida 
(1956) 02 l. Moreover the velocity profiles are compared with the analytical results 
of Ariman et al. and with the experirrental data of Bugliarello and Sevilla observed 
in pulsatile blood flows. 

2. Fundamental Equations 

The equations which express the conservations of mass and linear momentum 
for micropolar fluids have the same form as they do for classical viscous fluids. 
Thus if we define the velocity vector v, the stress tensor T, the body force vector 
b and the density p of the incompressible fluid which is considered here, the equa­
tions of continuity and momentum are expressed as follows: 

f7·v=O, ( 1) 

dv 
p dt =17· T+pb. ( 2) 

The stress tensor is related to the velocity fields as in classical viscous fluid theory. 
For micropolar fluids, however, there is an additional contribution to the stress 
arising from the difference between micro-rotation !J and one-half of vorticity 
(I). If the stress tensor T is divided into two parts, i.e. the symmetric part T 8 

and antisymmetric part Ta, the constitutive equations for the stress tensor are 
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T 8 = -pl+K(tr D)l+2µD, 

Ta= -p.i/X ((1)-2/J), 

( 3) 

( 4) 

where p denotes the pressure, Dis the rate of deformation tensor which represents 
the symmetric part of the velocity gradient, and I is the idemfactor. Further K 

is the second coefficient of viscosity, fl the shear viscosity and p1 the vortex 
viscosity. 

The second equation of Cauchy which expresses the conservation of angular 
momentum is 

where M is the couple stress tensor, l the body couple, r the material constant 
and e is the antisymmetric tensor of the third order. The constitutive equation 
of couple stress tensor M is as follows : 

M =a tr (grad !J)J + p grad !J + r (grad JJY, ( 6) 

where the material coefficients a, p and r have the dimension of momentum 
(namely, [ML/T]), which are called spin viscosity by Kline et al. (1972)C5). 

Using Eq. (1), the substitution of Eqs. (3) and (4) into Eq. (2), and of Eq. (6) 
into Eq. (5) yields the following basic equations: 

dv 
p dt = -f7P-(tt+ ft1){1X (fix v)+2p1f7X !J+ pb, ( 7) 

Pr· dd!J =(a+ /Hr)/7/7· JJ-rf7x (f7x !J)+2111f7x v-4rt1!J+ pl. ( 8) 
fl t 

3. Oscillatory Flow in Circular Tube 

Oscillatory flow of incompressible fluid in a rectilinear tube of circular section 
is considered here. It will be convenient to take the cylindrical coordinates whose x 
axis is identified with the center line of the ture. We assume that neither body 
force nor body couple is present. We restric ourselves to the case 

Vr =0, Vo =0, Vx =v(r, t), ( 9) 

(10) 

Here the equation of continuity (1) is automatically satisfied. On the restriction 
of Eqs. (9) and (10), Eqs. (7) and (8) are written as in cylindrical coordinates 

(11) 

(12) 
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In the investigation of Ariman et al. the mathematical technique devised to 
obtain analytical solutions to the governing partial differential equations consists 
of application of consecutive transformations: a finite Hankel transform is made 
on the space variable (i.e. radial position, r) followed by a Laplace transform on 
time. This method is very complicated and calculation of the solutions cannot be 
performed easily. Then, we solve directly Eqs. (11) and (12) more easily. 

The fundamental oscillating pressure gradient is expressed by 

up A (" ) - U:t = exp Uoof , (13) 

where A is the amplitude of sinusoidal pressure gradient and z 1s the imaginary 
unit. If wo----+ 0, it gives the steady flow solution. The solutions of Eqs. (11) and 
(12) should be of the form 

v(r, t) =fJ(r) exp (iwot), 

Q(r, t) = Q(r) exp (iwot). 

(14) 

(15) 

Only the real parts of these equations have the physical meaning. Substituting 
Eqs. (14) and (15) into Eqs. (11) and (12) leads simultaneous ordinary differential 
equations for v(r) and Q(r), that is, 

(16) 

(17) 

The general solutions for this system, which are finite at the tube axis r=O, are 
expressed by 

where C1 and C2 are arbitrary integration constants. a, b and m are given by 

a2 = - ( 4µµ1 + ipwor) Jr(µ+ µ1),} 
b2 = - ipwo/ µ, 

m2 = ipwo/(µ + f11). 

(18) 

(19) 

(20) 

The arbitrary integration constans C1 and C2 are determined by the boundary 
conditions on the wall of the tube. Though various arguments have been made 
for spin boundary conditions, a clear conclusion has not been obtained yet. The 
typical conditions are no-spin condition and constant-spin condition on the wall. 
The no-spin condition, which is suggested by Eringen, corresponds to the no-slip 
condition of velocity. This boundary condition is expressed by 

v=O, D=O at r=R. (21) 
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The analytical solutions under this condition were already reported in Ref. (11). 
The constant-spin condition is used by Ariman et al., which is based on the ex­
perimental results that corpuscles rotate on the wall. Here we use the constant­
spin condition, which is written as 

1 a 
v=O, -·-(r.0)=0 at r=R. 

r or 
(22) 

Applying this condition to Eqs. (18), (19), (14) and (15) yields the desired solutions 
for v and n as follows : 

_ _ _JT(~) __ __!__ _ fo(o)]o(</>~)+}.2(1.+i)]o(r/J)fo(a~) . l ~ qh J 
v(~)- AR2/4µ - 92 1 { r/J2c } . exp (zwot), (23) 

1 + A2(l +c) !o(a)fo(<p) 

Q(~)=-Q(~) ·=-~· (</J/a)fo(r/J)]1(i5~)-fo(i5)f1(</J~) exp(iwot), (24) 
AR/4µ rp { 1 _!!!!___ }1 (o)J ( ) 

+ _{2(l+c) o o </> 

where the bar means dimensionless quantity, and 

W=Rv pwo/µ, <fi= Wi312
, 

These solutions are characterized by three dimensionless parameters W, A and c, 
which are called Womersley number, the size effect parameter and the viscosity 
ratio, respectively. 

Though both solutions of the authors and Ariman et al. are the same essenti­
ally, the representation of Eqs. (23) and (24) is much simpler than that obtained 
by Ariman et al. They slightly discussed about theoretical results of velocity and 
micro-rotation. Then we minutely investigate vorticity, shearing stress, flow rate 
and energy dissipation in addition to velocity and micro-rotation, and devote our­
selves to get the clear influence of the dimensionless parameters. 

3.1 Velocity Profiles 

Velocity profiles at rr/8 intervals during one half cycle are shown in Fig. 1. They 
are compared with velocity profiles of Newtonian fluid. When W is large, the 
amplitude of the velocity decreases in proportion to l/W2

, which is verified by 
expanding Eq. (23) asymptotically. And the fluid flows with the phase lag of rr/2 
behind the pressure gradient. In the rapid oscillation it is found that the velocity 
profile becomes fiat near the center of the cross section and the maximum velocity 
exists in the neighborhood of the wall, which is called the annular effect of 
oscillatory flow. 
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Newtonian fluid 

W=l W=3 W=5 

Fig. 1. Velocity profiles with .:l= 1.0 and c= 1.0 

Figure 2 shows the variation of the velocity profiles for c and A.. As c becomes 
small, the velocity profile goes to that of Newtonian fluid. In general the micro­
rotation of micropolar fluid is not equal to one-half of the vorticity which the 
velocity gradient produces. This difference yields the antisymmetric part of stress 
tensor. Vortex viscosity is a proportional constant in the antisymmetric part of 
stress tensor. c going to zero corresponds to the decrease of vortex viscosity. 
Then the antisymmetric part of stress tensor will be vanished in the limit. The 
micropolar effect does not appear in such a case. 

While the parameter A. indicates the size relation between corpuscle and tube 
radius. In the theory of micropolar fluid, it must be considered that corpuscles 
rotate because of shearing stresses. These rotations produce the micro-rotation, 
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---Newtonian fluid 

---e:=O.S ---A=l.O 

----e:=l.O ----).=5.0 

0 

1 0 

>-= 1 • 0 e: = 1 . 0 

Fig. 2. Velocity profiles with W=l.0 

--no-spin 

---constant-spin 

wot 
if T--------1 

0 

Fig. 3. Comparisons of velocity 
profiles between no-spin 
condition and constant­
spin condition 
(W=l.0.A=l.0, ~=1.0) 

which has a relation with the volume averaged radius of gyration. If the radius 
of the circular tube changes, then the velocity profile varies. In Newtonian fluids 
the velocity profile does not depend on the tube radius. Now let A--+ oo, i.e. the 
ratio of a tube radius to a corpuscle one be very large, then the velocity profile 
approaches that of Newtonian fluid. 

Figure 3 shows the difference of velocity profiles between the constant-spin 
and no-spin conditions expressed by Eqs. (21) and (22), respectively. As may be 
seen from this figure, the velocity obtained by the no-spin condition is smaller 
than that obtained by the constant-spin condition near the center of the tube. 
Because the no-spin condition increases the resistance of the flow on the wall. 
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£ 
W=l 

---no-spin 

~~~constant-spin 

't/=3 W=5 

Fig. 1. Comparisons of micro-rotation between no-spin condition and 
constant-spin condition (1.=5.0, c.=1.0) 

3.2 Micro-rotation and Vorticity 

Distributions of micro-rotation at 1r/4 intervals over a half cycle are shown in 
Fig. 4. They are compared with those obtained by the no-spin condition. When 
W increases, the amplitude of micro-rotation expressed by Eq. (24) diminishes in 
proportion to 1/ W and [] ---+ 0 in the limit of W---+ oo. The variation of micro­
rotation for c. is no significant, but !2 is sensitive for ,{ (see Fig. 5). 

The vorticity vector °' is defined as curl of the velocity vector. Then the 
nonzero component of vorticity vector is 

av 
Wo=--.._-. 

or 

Let us set w=wo for simplicity. Substituting Eq. (23) into Eq. (25) yields 

·exp (iwot). 
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----1..=l.O 

---e:=O.S ---1..=2.0 

--e:=l.O --A.=5.0 
Wot 'IT..___ ___ _ 

_,_'IT .l------~ 
2 

o~ 
s 0 1 

>..=2.0 

0 
e: = 1 . 0 

Fig. 5. Distributions of micro-rotation with 
W=l.0 

Lf') 

---n 
1----(J 

w0 t 2 
l 'IT r-----="'4 
4 

_l_ 'IT +------=~ 
4 ·jc T'"" 

1:3 
N -T'"" 

o-----~ o 

1 s 0 

Fig. 6. Comparisons of distribu­
tions between micro­
rotation and one-half of 
vorticity (W=l.0, A=l.0, 
s=l.0) 

The antisymmetric part of stress tensor mainly consists of the difference of micro­
rotation and one-half of vorticity. So comparison between them is shown in Fig. 6. 
When oscillation is extremely low, this difference becomes 

(27) 

Then micro-rotation is smaller than one-half of vorticity in the case of W - 0. 
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3.3 Shearing Stress 

The component of shearing stress Tr.x will be obtained as follows : 

(28) 

Let us set r= Trx· Substituting Eqs. (23) and (24) into Eq. (28) leads to 

_ ,_ r(~) 2 
r(.;;)=---=--· 

AR/2 rf> 
exp (iwot). (29) 

Figure 7 shows the distributions of shearing stress. 
shearing stress is given by 

The dimensionless wall 

(30) 

---Newtonian fluid 

---£=0.5 
---).=1.0 

---->.=2.0 

Wot 

0 1 0 
A= 1 . 0 

Fig· 7. Distributions of shearing stress with W=3.0 
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1 • 0 

0.5 

0. 0 0 

-0.5 

-1 . 0 

1T 

-------no-spin 
~~~constant-spin 

Fig. 8. Comparisons of wall shearing stress between no-spin condition and 
co~stant-spin condition (J= 1.0, c = 1.0) 

The wall shearing stress in the no-spin condition is expressed only by the vorticity 
because Q(~=l)=O. But the micro-rotation in the constant-spin condition is neces­
sary in addition to the vorticity. In Fig. 8, the variations of the wall shearing 
stress for W are shown over one cycle. If the boundary conditions are different 
on the wall, it may be expected that some change occurs in the wall shearing 
stress. But we observe a slight variation between the wall shearing stresses 
obtained by the two boundary conditions. The reason is considered to be the fact 
that the micro-rotation [} offsets the increase of the vorticity on the wall. 

3.4 Flow Rate 

The volume flow rate is given by 

Q(t)= ~: 2nrv(r)dr. (31) 

Hence the dimensionless flow rate is defined by 

- Q(t) 
Q(t) = nAR4/8µ 

[ 

2<fh ] 8 (2/<jJ)fo(a)J1(</J)+ a.< 2(l+s) li(a)lo(<jJ) . 

--2 1- { 
02 

} exp (zwot). (32) 
</J l+·.<2(l:s) fo(o)]o(</J) 

Variations of the flow rate with .< and s are shown in Figs. 9 and 10. Curves 
representing the flow rate is similar to those of the volocity. The influence of 
.< and s on Q is quite analogous to that on the velocity profile. 
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0.6 --- - e:=0.5 
---·e:=l.O 

JO' 0. 4 ~=---- fluid 

0. 2 

Fig. 9. Variations of flow rate withe (W=3.0, A=l.0) 

---.\=2.0 
0.6 ----.\=5.0 

0.4 --~ --Newtonian fluid --- ·~ 10' 
0.2 

0.0 

- 0. 2 
0 _1_7T 

4 
__l_ 7T 
2 

1T 

Fig. 10. Variations of flow rate with,{ (W=3.0, z=l.0) 

3.5 Energy Dissipation 

wot 

The dissipation of energy per unit volume due to internal friction is given by 
the dissipation function 

(33) 

In cylindrical coordinates this function is written by 

(34) 

Both the third and forth terms of the right-hand side of this equation can be 
neglected since their effects are small in comparison with the first and second 
terms. Substituting the solutions of the velocity and the micro-rotation into Eq. 
(34), we obtain 

(35) 

116 



Oscillatory Flow of a Micropolar Fluid 

When W omersley number W is not large, the maximum of energy dissipations 
occurs on the wall of the tube. In the rapid oscillation, the ma >Cimum of energy 
dissipations takes place at a location slightly inside the wall, depending on the 
phase as shown in Figs. 11 and 12. The energy dissipations over the cross section 
are plotted in Fig. 13. The analytical expression for energy dissipation over the 
cross section cannot be explicitly obtained because of difficulty of the intergration 
of Bessel functions. These curves are calculated numerically by means of Simpson's 
rule. Here the dimensionless form is expressed as follows : 

w0 t=O 
0. 5 

0 . ..i 
1T 

0. 3 4 
1-e- 3 1T 

0. 2 4 

0 .1 ;r 

2 
o.oo.o 0. 2 0.4 0.6 0.8 1. 0 

Fig. 11. Distributions of enery dissipation (W=l.0, ii=l.0, z=l.0) 

1.D '" t = _::r_ 
J 4 

0.10 
0 

1"::;" 

0.05 TI 

2 

0. 0 3/4iT 

o.o 0.2 0.4 0.6 0.8 1. 0 

Fig. 12. Distributions of energy dissipation (W=l.0, ii=l.0, .o=l.0) 
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Newtonian fluid 

_l_ TT 
2 

E:=O .1 

E:=O. 5 

TT 

w0 t 

]_TT 
2 

Fig. 13. Variations of energy dissipations overy the cross section (W = 1.0, A.= 1.0) 

4. Comparison with theoretical and experimental results 

Bugliarello and Sevilla (1970) made high-speed microcinematographical measure­
ments of velocity profiles for steady and pulsatile flows of human blood in glass 
tubes, between 40 and 70 µm in nominal diameter. Now we shall compare the 
theoretical results with the experimental data obtained by Bugliarello and Sevilla 
using blood flow. In their experiment the frequency is 8.4 Hz and the oscillating 
component of the pressure wave has a half amplitude of the average pressure. 
The theoretical pulsatile velocity is obtained by superposing the velocity of steady 
flow on Eq. (23). The steady velocity is given by as follows: 

-(-)-l- ,.2 ~~-. lo(J.~)-lo(J.) 
v <; - c; + J. 2(1+.s) Io(J.) . (36) 

To accomplish the comparison, it is necessary to determine the values of the 
material constants µ, µ1 and r as functions of hematocrit. Since Ariman et al. 
(197 4) compared their theoretical analysis with experimental results of Bugliarello 
and Sevilla, we use the same values used by Ariman et al. These material con­
stants and dimensionless parameters used in the calculation are shown in Table 1. 

H % I __ ~ 
10 

20 

40 

20 

20 

20 

Table 1 Material constants and dimensionless parameters 

µm µ mPa·s 

1. 2 

1. 2 

1. 2 
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'TT 

4 
0 • 0 '-----'--~-~----

0 5 10 15 

VELOCITY mm/s 

-----Ariman et al. 

---present work 

Fig. 14. Comparisons of theoretical 
velocity profiles with experi­
mental pulsatile blood flow 
data of Bugliarello and Sevilla 

0. 0 0 
3 6 

VELOCITY 

9 12 

mm/s 

2-rr 
2 

'IT 

4 

-----Ariman et al. 

---present work 

Fig. 15. Comparisons of theoretical 
velocity profiles with the ex­
perimental pulsatile blood 
flow data of Bugliarello and 
Sevilla 

In Figs. 14, 15 and 16, the experimental velocity profiles measured in the 40 /tm 

tube at 6 points in the pressure cycle are shown for three hematocrits. 
From Figs. 14, 15 and 16, we have a favorable agreement between the theoretical 

results and the experimental pulsatile blood flow data of Bugliarello and Sevilla. 
But as for the amplitude, our results are a little larger than the results of Ariman 
et al. and the experimental data. Because the ambiguity of the data for pressure 
gradients may be considered to make a little error. 
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Fig. 16. Comparisons of theoretical velocity profiles with the experimental 
pulsatile blood flow data of Bugliarello and Sevilla 

5. Conclusions 

In this present paper, the oscillatory flow of a micropolar fluid has been studied 
mathematically on the basis of the theory advanced by Eringen. Exact solutions 
of the first and second Cauchy's equations, i.e. velocity, micro-rotation, vorticity, 
shearing stress, flow rate and energy dissipation, are obtained. They are characterized 
by three parameters, i.e. the dimensionless frequency W (Womersley number), the 
size effect parameter A and the viscosity ratio s. The latter two parameters present 
the characteristics of micropolar fluid. For high frequencies, the amplitude of 
velocity is inversely in proportion to the second power of Womersley number, 
while that of micro-rotation is inversely in proportion to the first power of 
Womersley number. For low frequencies, the flow of fluid becomes quasi-steady. 
The phase lag of velocity behind pressure diminishes gradually. A large value of 
size effect parameter makes the micropolar fluid approach the Newtonian behavior, 
then micro-rotation becomes equal to one-half of vorticity. When the ratio of 
viscosities becomes small, the polarity of fluid diminishes and micro-rotation reduces 
to zero. The difference of the boundary conditions adopted here causes the follow-
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ing conclusions : in the no-spin condition the wall shearing stress is given by only 
the vorticity whereas in the constant-spin condition by the micro-rotation in addi­
tion to the vorticity, but this difference hardly influences the wall shearing stress; 
the velocity obtained from the no-spin condition is smaller than that obtained from 
the constant-spin condition. The comparison with the theoretical resuluts and the 
experimental pulsatile blood flow of Bngliarello and Sevilla seems to have a good 
agreement. 
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