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ABSTRACT

Suppose that two probability distributions have parameters (0, o) and (0, oy) respectively.
To estimate the common parameter # based on independent samples from each distribution,
a weighted mean of unbiased estimators f; and 8y is used.

In this paper, we give necessary and sufficient conditions for the combined estimator
to have smaller variance than §,. And we give those for the uniform distribution and the
variance of the estimator for it is computed. Also we give those for the inverse gaussian
distribution.

1. Introduction

Suppose that two probability distributions P, and P, on the real line have
parameters (0, 6,) and (0, g,) respectively. The common parameter ¢ is estimated
by a linear combination #* of unbiased estimators . and 4, of samples from P,
and P, respectively. The weights for * are determined by estimators of variances
of §, and 6, so that §* is unbiased and has small variance. If the estimators of
the variances V(d,) and V(4,) are not accurate enough, the combined estimator 6*
is not necessarily better than 4, and 4,

In this paper, two cases are studied. Firstly P, and P, are identically distrib-
uted and have their densities which are symmetric about 6, and o, and ¢, are
their scale parameters. Independent random samples of sizes m and # are observed
from P, and P, respectively. The estimator §, is covariant with respect to the
location-scale transformation, that is,

(1.1) Oaz,+b, -+, axm+b)=al(x,, -, xn)+b

for every real ¢ and every real b. The estimator ¢, is invariant and covariant with
respect to the location and the scale transformation respectively, that is,

(1.2) ds(axi+b, -, azm+b)=|alé=(@1, - - -, Tm)

for every real a and every real b. The estimators 4, and 4, have the correspond-
ing properties.

In the second case, the parameter 6 is a common mean value, not always a loca-
tion parameter, of P, and P,. All the statistics ,,0, and the estimators of V(d,)
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and V(f,) are assumed to be independently distributed. For a few families of
distributions such an estimator of the variance is available from a single sample,
otherwise the estimator is obtained from another independent sample.

In both cases, we try to find good combined estimators and determine such
limits on m and % that 0* has smaller variance than §, or than both 4, and 4,.
The normal distributions and the two-parameter rectangular distributions belong to
the both cases.

In the first case, Cohen (1976), using Hogg’s result (1960), gave necessary and
sufficient conditions for his combined unbiased estimator to have smaller variance
than .. He also showed situations when his estimator is better than both of the
individual estimators for the uniform distribution. Bhattacharya (1981) improved
the sufficient condition for Cohen’s estimator to have smaller variance than the
first sample’s. The combined estimator of this paper is a slight modification of
Cohen’s and of the same type as Khatri and Shah’s (1974) of the normal case.

In section 2, we give necessary and sufficient conditions for the combined
estimator to have smaller variance than #, for the first case. In section 3, we
give a necessary and sufficient condition for the estimator to be better than 4, for
the uniform distribution by applying the result of section 2. The condition is
simpler than those by Cohen (1976) and Bhattacharya (1981): Our combined esti-
mator is better than both of the individual estimators for all m=19 if m=n. In
section 4, the variance of the estimator for the uniform distribution is computed
and a numerical table is shown.

In section 5, in the second case, we give a necessary and sufficient condition
for the combined estimator to be better than §,. We give that for the uniform
distribution. It is interesting to see the condition be applicable to the estimation
of the common mean of two inverse gaussian distributions.

2. A combined estimator of a common location

In order to study our first case, put To={(0z—0)/0z, Ty=0y— 0|0y, Se =62/02, S,=
G40y, W=S2S;, K=V(0,)/ot=E(T% and L=V(0,)/d,=E(T;). The distributions of
Tz, Ty, Sz and S, are independent of the unknown parameters. K and L depend on
the density and the sample sizes. Assume that E(1/S})<oco, which holds when
n=6 as shown by Cohen (1976).

Cohen (1976) suggested the following unbiased estimator ;

(21) 6a=9x+a(9y—9x)/(l+z>

where Z=¢}/6% and ¢=0 is a constant to be suitably chosen. Since this estimator
is not symmetric in #, and ,, the following modification is suggested ;

¢, Lé} ~ . K% ~

)% = x ¥
2:2) 4 ¢ Ké%+c,Lé}, + c. K62 +c,Lé}, Oy

where ¢; and ¢, are positive constants to be suitably chosen. The estimator is
unbiased because of Theorem in Appendix by Hogg (1960). Note that 8, is a
special form of #* if a=1.

Rewriting Theorem 2.2 of Cohen (1976), we can obtain the following ;
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'Theorem 2.1 Let c=c;/c, and p=Ko%/Lo}. Suppose that
(2.3) (d]dplEL(T3 K+ Thoc* WP L)1+ pc W)™?]
=Ed|dp](TH K+ Tipc* W LY1+pcW)].

Then a necessary condition for the estimator 6* to have uniformly smaller variance
than 6, is

(2.4) cZ2E(TE:WIK)|E(TEW?/L).
Note. The assumption (2.3) is equivalent to the following ; Let f(T%, Ty, Sz, Sy)
denote the joint density of T4, Ty, S: and S, and put
KT, Ty, Sz, Sy, p) = (T KA+ Tipc* WALY14pc W) 2 f (T, Ty, Sz, Sy)-

We assume that ¢ satisfies the following conditions:

(i) g¢ is integrable with respect to T4, Ty, Sz and S,.

(ii) ¢ is differential with respect to p.

(iii) There exists an integrable function ¢(Tz, Ty, Sz, Sy) such that

|gp(Tl'? Tﬁ/a S‘T?y S?l)l §¢(T$1 Ty, S&L‘) Sy),
where ¢,(Ts, Ty, Sz, Sy) denotes the partial derivative of g.
Proof. The proof is essentially the same as given in Graybill and Deal (1959).
The variance of #* is equal to
E[(1+pc W) (05— 0)*1+ E[20c W1+ pc W) (B, — 0)(6y— 0)]
+E[*E W1+ pc W) ™2(0,— 0)2].

Theorem in Appendix can be used to show that

ERpcW(1+pc W) (0s— 0)(0y— 0)]=0.
‘Therefore
(2.5) V(0*)=Ke E[(T} K+ Tioc* W L)1+ pc W) 2.

The value of (2.5) is Ko} at p=0. The derivative of (2.5) with respect to p at p=0
must be equal to 0 or negative. Therefore we have (2.4).
Next we give a sufficient condition for #* to be better than 4.

Theorem 2.2 Suppose that
(2.6) E(T:WeEKYE(TEW]L)<S5E(T:W]K)E(T:W?/L).
Then a sufficient condition for #* to be uniformly better than 4, is

c=2E(TEWIK)|E(TW?/L)
and
CESE(TEIWIK)2E(T3WEIL)
2.7) —E(TEWH K)E(T W L) [2LEXTy WP L) .
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Note. The right hand side of (2.7) is positive under the condition (2.6).

Proof. Let
(W, p)=(W)=1/1+pcW)?
and
(W, 0)=ho(W)=pc* W? (14 pc W )2
Then
m(0)=1, hljed)=1/(1+p/d)*,
and

1:(0)=0, ho(1fcd)=(p/d®)[(1+p|d)*,

where d=FE(Ti;W?/L)|EXT:W? K).
We approximate the curve %,(W) by the parabola f,(W) passing at the point
(0,1) and touching at the point (1/cd, 1/(1+p/d)*). The equation for the parabola is

2 2
(”7+3p>c2 W2—2<—p~ +3—p+1)cW

__P
fW)= e+

d+pld)? 1

And we approximate similarly the curve A,(W) by the parabola f(W):

FO0= gyt (1= e e

It can be easily shown that Z,(W)= (W) and /(W)= f(W) for all values of
W and p satisfying 0< W< and 0<p=d. Thus from (2.5), we have

(2.8) E Ti/ﬁiﬁ”;ﬁv L }; (fi‘ga { t2+z<1+fl—j>t+1} +1
where
di=cE(T3W*|L)-2E(T;W|K),
do=E(TiW?3K)E(T;W|L)| EXTW*| L)~ EXT; WIK)
and

t=pld.

By the assumption, it is clear that pcd:/(1+¢£)°=0. Hence from (2.8), it suffices to
show that ¢,()=#*+2(14+d,/d\)t+1=0 for any ¢ with 0<#=1 under the conditions
(2.4) and (2.7). If #=0, then ¢,(0)=1. Therefore it is clear that ¢,(#)=0 for all ¢
in the interval 0<¢=<1 if ¢,(1)=0. By the condition that ¢,(1)=0, we have (2.7).
Hence we can show that the conditions (2.4), (2.6) and (2.7) are sufficient for
E[(T: K+ Thoc W3 LY1+pc W) ?]=1 for all 0<p=d.

Next we prove the case p=d. The curve 4,(W) is nonincreasing in p. The
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A combined estimator of a common parameter

maximum value of 4,(W) is equal to the value of f(W) with p=d. Hence the
proof for p=d implies that for ¢=d and the proof is complete.

Corollary 2.3 Suppose that
(2.9) E(TWK)E(TyWIL) = EXT; W K)E(TyW?[L).
Then a sufficient condition for #* to be uniformly better than 4, is
¢ <2E(TWIK) E(T:W?/L).

Proof. From (2.9), it is clear that d. in the right hand side of (2.8) is negative
or zero. Hence we have ¢,(1)=0 for all 0<p<oco and the proof is complete.

Remark 2.1 In fact it can be easily shown that the inequality (2.9) in Corol-
lary 2.3 holds for the estimation of a common location for the normal distribution
which was discussed in Khatri and Shah (1974). By Theorem 2.1 and Corollary
2.3, a necessary and sufficient condition for #* to be better than 4, is

c=2m—1)(n—5)(m+1)(n—1).

We can show that the inequality (2.9) holds for the estimation of a common loca-
tion for the uniform distribution in section 3.

3. The uniform distribution

We estimate a common location for the two-parameter uniform distribution.
we assume that the density is

flx; 8,02)=1]os, for 0—o:/2<x<0+04/2,
=0, otherwise.

The estimators of ¢ and o, are
O =(Xmy+X15)/2,65=Xemy— X

where Xy, and X, are the maximum and the minimum of the random samples
of sizes m from P, respectively. The estimators 8, and 6, are defined similarly.
Also let ¢2=(m+2)m+1)6¢m(im—1) and 6;=(n+2)(n+1)é}/n(r—1), and note that
& and g% are the unbiased estimators of ¢% and ¢} respectively. The purpose of
this section is to evaluate a necessary and sufficient condition for the estimator
(2.2) to be better than d, using Theorem 2.1 and Corollary 2.3.

Let U;=(X;—6)/o» and V;=(Y;—0)/s,, then

To=(Um+Uw)/2, T,=(V(") + V(.))/Z, Se=Uqm— Uy,

and Sy=Vu,—Vu,. For convenience, put L,=2T, and L,=2T, and note that the
joint density of L, and S, is

97



Tovoakr AKAI
B.1) D(La, Sz)=[m(m—1)/2)537%,
—14S,<L;<1-S,;,0<S,<1.
Using the joint density (3.1), it is easy to see that

K=1/2m+2)m+1),
L=1/2n+2)(n+1),

N M2NGm+2)m+1) B
W )= 6 mt 5 m+ A m+ 3 —D)n—5) "
N MN
3.2) ) = B+ 3) =2 =3)"
e M*N(n+2)(n+1)
W ) = Bm + 3 (=2 (n—n—n—5)
and
— MN@+2)(n+1)
W D= o 3 om+ Dl — L (n— 2 —3)
where

2 m+Du(n—1)
T omim—1Dn+2)(n+1)

and N=m(m—1)n(n—1). Hence from (3.2), it can be easily shown that the inequality
(2.9) holds. By Theorem 2.1 and Corollary 2.3, a necessary and sufficient condition
for the estimator (2.2) to be better than 4, is

_ 2mm—1)(n—4)(n—5)
Tt 2)m+ Dun—1)

(3.3)

Remark 3.1 By combining the above condition (3.3) with a necessary and
sufficient condition for the estimator (2.2) to be better than #,, a necessary and
sufficient condition for the estimator (2.2) to be better than both 4, and 4, is

mim—1)(n+2)(n+1) - 2m(m—1)(n—4)(n—>5)

(84) 2m—Bm—bmn—1)  mt2)m+tlmmn—1)

Remark 3.2 The conditions on » and # that there exists ¢ such that the
inequality (3.4) holds are m=11,#=164; m=12,#=60;m=13,n=40;m=14,n=32;
m=15,n=27 ;m=16,n=24;m=17, n=22 ; m=18, n=21;m=19,n=19; m=164, n=11;
m=60,n=12; m=40,n=13; m=32,n=14; m=27,n=15; m=24,n=16; m=22, n=17
and m=21,n=18.

4. An approximation for the variance of /*

Exact expressions and computation for variances in the normal distribution
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were given in Khatri and Shah (1974). In this section we give an appoximation
of the variance of the estimator #*, given by (2.2), of the common location of two
uniform populations and a numerical table for it.

By (3.1), the conditional expectation of L? given S, is (1—S,)*/3 and that of L:
is 1—S,)%3. Put S;=U and S,=V and from (2.5),

i o] mr=1) 1 pc'm(m+1) 1
1) V) =Ka n+Dn+3) (ViocU? " m+4)m+3)" (Vi+pcU?)?

where U and V in the first term follow the Beta distributions with parameters
(m—1,4) and (n+3, 2) respectively, and those in the second term the Beta distri-
butions with parameters (m+3,2) and (—1,4) respectively. Rewrite the random
variable as

1 1

42) (VE+pcU?)? = Wi+ pcud)* [1+((V2 4 pc U?) — (05 + pcud) [(03+ pcuz) ]2

where #, and v, are expectations of U and V respectively. Expanding the right
hand side of (4.2) and using the central moments of Beta distributions, we get

nn—1) 1
(n+4)(n+3) (Vi+pcU?)?
_ n(n—1) 1 16(p*c*us+ p°c*uivi+ p*c*uivy)
T+ 4dn+3)wi+ pcuﬁ)z[ (Vi pcut)? (V5 + pcut)?
1 16(p%c uivi+ pcuvi+vl)
5+ pcu)* (v + pcup)*
4 2(3p'ctuy+4p°cPuivi+ pPcuv)
Wi+ pcuy)? (v3+ pcus)?
16(0%c%us -+ pcuiv?) 4 2(3v5+4dpcetvi+ pictuivy)
T @t pc) @itocu)| @i+ pc)?
16(v3+ p*c*uvs)
O (@ecw)t

—2(3p%c*ut + pcvh) } Uy +

—2(3vi+ pcud) ]v2 +

—p%c*v,

Uz +

vo}v3+0(m‘4)+0(n‘4)]

where

uo=E(U)=m—1)[(m~+3), v,=E(V)=n+3)/(n+5),

uy=E(U—up) =4(m—1)[(m+4)(m +3)?,

v, =E(V—00)*=2(n+3)/(n+6)(n+5)?,

us=F(U—u,)*=—8m—1)(m—5)/(m~+5)(m+4)(m+3)*
and

v5=E(V—00)}=—4n+3)n+1)/(n+7)(n+6)(n+5).

The second term is computed similarly, but the moments of Beta distributions are
different. That is,

wo=EU)=m+3)/(m~+5), vo=EV)=n—1)/(n+3),
Uy =FE(U—uy)?=2(m+ 3)[(m+6)(m~+5)?,
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Table 4.1 Approximate values of the order 1/m?and 1/#* and of the order 1/m? and 1/n?
of variances for the estimator in (2.2) with ¢,;=1 and c,=n/m.

\ T
m | n ‘ ¢ 1 2 5 1 2 5 10
| oom | 0925 | o780 | 0595 | 0300 | o0.185 | 0.007
1| (0.966) | (0.923) | (0.780) | (0.595) | (0.390) | (0.185) | (0.097)
20
.| 0971 | 0925 | 0.780 | 0.595 | 0.390 | 0.18 | 0.097
2 | (0.966) | (0.923) | (0.780) | (0.595) | (0.390) | (0.185) | (0.097)
.| 0961 | 0911 | 0767 | 0.58 | 0.38 | 0.8 | 0.097
| 9 | 98 | 0783) | (0589) | (0:382) | (0180 | (0.095)
20
.| 098 | 0935 | 078 | 0.58 | 0381 | 0.181 | 0.09
2 | (0.978) | (0.934) | (0.783) | (0.589) | (0.382) | (0.180) | (0.095)
.| 095 | 00903 | 0759 | 0581 | 0.381 | 0.8 | 0.097
o 0999 | 09 | ©792) | ©589) | 037) | ©179) | 0.090)
.| 0995 | 0952 | 0791 | 058 | 0378 | 0.179 | 0.0
2 | (0.993) | (0.952) | (0.792) | (0.589) | (0.378) | (0.179) | (0.094)
.| 0969 | 0921 | 0772 | 0.58 | 0.383 | 0.182 | 0.09
1| (0,950) | (0.902) | (0.763) | (0.589) | (0.391) | (0.187) | (0.098)
20
.| 095 | 0905 | 0763 | 0.588 | 0391 | 0.187 | 0.098
2 | (0.950) | (0.902) | (0.763) | (0.589) | (0.391) | (0.187) | (0.098)
.| 0958 | 00907 | 0758 | 0577 | 0.379 | 0.181 | 0.09
| | @) | 0905 | ©759) | @57 | ©:379) | 0181 | (0.096)
25 5
.| 0958 | 0907 | 0758 | 0577 | 0379 | 0.181 | 0.09
2| (0.955) | (0.905) | (0°759) | (0.577) | (0.379) | (0.181) | (0.096)
0.952 | 0.88 | 0.750 | o0.571 | 0.376 | 0.181 | 0.096
€| (0.963) | (0.914) | (0.761) | (0.573) | (0.373) | (0.178) | (0.094)
30
0.965 | 0.914 | 0.760 | 0.573 | 0.373 | 0.179 | 0.095
@ | (0.963) | (0.914) | (0.761) | (0.573) | (0.373) | (0.178) | (0.094)
.| 0968 | 0019 | 0767 | 0.581 | 0.379 | 0.181 | 0.0
v | 00943) | (0.893) | (0.757) | (0.589) | (0.396) | (0.190) | (0.099)
20 D i , R T
.| 0919 | o086 | 0757 | 058 | 0396 | 0.19 | 0.09
| (0.043) | (0893) | (0.757) | (0.589) | (0.396) | (0.190) | (0.099)
0.956 | 0.903 | 0.753 | 0.571 | 0.375 | 0.180 | 0.095
e | (0.945) | (0.891) | (0.747) | (0.573) | (0.380) | (0.183) | (0.096)
30 25
.| 0.948 | 0.893 | 0747 | 0.573 | 0.380 | 0.18 | 0.096
2| (0,945 | (0.891) | (0.747) | (0.573) | (0.380) | (0.183) | (0.096)
0.950 | 0.804 | 0.743 | 0.565 | 0.372 | 0.179 | 0.095
¢l (0.948) | (0.894) | (0.744) | (0.565) | (0.372) | (0.179) | (0.095)
30
0.950 | 0.894 | 0.743 | 0.565 | 0.372 | 0.179 | 0.095
| (0.948) | (0.894) | (0.744) | (0.565) | (0.372) | (0.179) | (0.095)
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V.= E(V—0)=4n—1)/(n+4)(n+3)?,
uy=E(U—uo)*=—4(m~+3)m+1)/m+7)m+6)(m+5)°
and

vs=FE(V—00)*=—8mn—1)n—5)/(n+5)n+4)(n+3)>.

Table 4.1 shows the variance of the combined estimator of the common loca-
tion # of two uniform populations U(0—64/2, 0+04/2) and U(0—0,/2,0+0,/2) on the
basis of samples of sizes m and # respectively. We consider estimators 4* with
(i) ¢=1 and (ii) c=n/m. Table 4.1 was computed by approximations of the order
1/m® and 1/#* and of the order 1/m? and 1/#? in the parenthesis for

20m+2)(m+1)V(0%)|d%,

for m=20,25,30,%2=20,25,30 and r=(n+2)n+1)d%/(m+2)m+1)d. In fact it is
checked by numerical integration that at least two digits of the approximation of
(4.1) are accurate. If c=#n/m does not satisfy with the condition (3.4), that is,
m=20,n=25;m=20,n=30; m=25,72=20 and m=30,%2=20 in Table 4.1, c=n/m will
not give V(6*) = min (63/2(m+2)(m+1), 63/2(n+2)(n+1)), while ¢ =1 will give §* with
that property, unless both » and # are less than 18.

The pattern of the values in Table 4.1 is similar to that for the normal distri-
bution in Khatri and Shah (1974).

5. The case where variance estimators are independent

Let 6, be the unbiased estimator of a common mean and V., be the estimator
of 5(0)V(f.) which is independent of 4, and the parameter ¢, where »(#) is a func-
tion of 0. Let 4, and V, be defined similarly.

We consider the following estimator ;

<

C1Vy A~ szx ~
=—= =0, + = /8
CzV1-+6‘1Vy o Csz+CIVy Y

(6.1) G**

where ¢, and ¢, are positive constants to be suitably chosen. A necessary and
sufficient condition for §** to have smaller variance than 6, is given.

Proposition 5.1 Let c=cufci, p="Va/Vy Si=V Vs, Si=V,/V, and W=S¥S;.
Suppose that

(5.2) (d]dplET(1+pc* W2)(1+pc W) ™2
=E[d|doT(1+pc* W21+ pc W) 1.

Then a necessary and sufficient condition for 6** to be uniformly better then 4, is
cZ2E(W)|E(W?).
Note. The assumption (5.2) is equivalent to the following; Let f(W) denote

101



Toyoakl AKAIL

the density of W and put g.(W, p)=1+pc*WH(1+pc W) *f(W). We assume that
g. satisfies the following conditions :

(i) g¢. is integrable with respect to W.

(ii) g, is differential with respect to p.
(iii) There exists an integrable function ¢(W) such that |g:.,(W, p)|=¢:(W),

where g¢.,(W, p) denotes the partial derivative of ge.

Proof. This proposition can be proved along the same line as in the proof of

Theorem 2.1 and 2.2.

Remark 5.1 A necessary and sufficient condition for §** to have smaller than

both #, and @, is
E(W ) 2E(W ) =<c=2E(W)[E(W?).

At first we estimate a common location for the uniform distribution. ALet
0:.=X,0,=Y,61=Xmy—Xay, 3%=Ymy— Yo, Voa=(m+2)(m+1)6%/m(m—1) and V,=
(n+2)n+1)d2n(n—1). A necessary and sufficient condition for #** to be better
than 4, is given. Using the density (3.1), it is easy to see that

M:N
E(W?=
W5 (m+4)(m+3)n—4)n—>5)

and
MN

where
(m+2)m+1)n(n—1)

M= mm— D+ 2)n+1)

and N=m(m—1)n(n—1). By Proposition 5.1, a necessary and sufficient condition

for #** to be better than 4, is

2(m~+4)(m+3ymim—L)(n+2)(n+1)(n—4)(n—5)
m+2*m+1)2n(n—1)(n—2)(n—23) '

A

¢

Remark 5.2 A necessary and sufficient condition for #** to have smaller

variance than both 4, and 8, is
m(m—1)(m—2)m—3)n+2)x(n+1)*
2m+2)m+1)(m—4)Ym—5)n+4)n+3)nn—1)
o= 2m+4)m+3)mim—1)(n+2)n+1)(n—4)(n—>5)
o (m+2)(m+1)n(n—1)n—2)(n—3) ’

A

The conditions on m and » that there exists ¢ such that the above inequality
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holds are m=6,n=20;m=20,n=6;m=7,7n=8 and m=8,#=7. Comparing it with
the result in section 3, the latter has a wider range on s and .

Now we consider the problem of estimating the common mean of the inverse
gaussian distribution by using Proposition 5.1. We assume that the density is

S 8, Az)=exp (— Aol —0)*/20°0)(22/272°) "2, if x>0,
=0, otherwise,

where ¢ and A, are both positive. The estimators are

S1 1 »

5.7:2
The estimators §, and 1/4, are defined similarly. It is shown that 1,27 (X;—X ")
is distributed as a chi-square variable with m—1 degrees of freedom and that X
is independent of 1/, in Folks and Chhihara (1978). And note that the variance
of 8, is 0*/ma.
It is natural to construct the following estimator ;

A Clmz\z A 02n2 A
54 O =—— 0z Skt S
64 C1MAz+Candy cimiiz+condy ¥

where ¢, and ¢, are positive constants to be suitably chosen. A necessary and
sufficient condition for the estimator (5.4) to have smaller variance than 4, is given.
Let

m x " n

W=S5:/S, and p=n2,/mi;, and note that W is distributed as Snedecor’s F with m—1
degrees of freedom in the numerator and #—1 degrees of freedom in the denomi-
nator. Therefore we get

(m+1)(n—1)*

W = D=3 —5)

and
EW)=mn—-1)/(n-3).

By Proposition 5.1, a necessary and sufficient condition for the estimator (5.4) to
be better than 4, is

c=2(m—1)(n—5)/(m+1)(n—1).
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Appendix

We state a version of Hogg’s theorem (1960) for completeness. The proof is
similar to Hogg’s (1960) and omitted. Let X, Xs, ---, X,, be a random sample from
a distribution. The statistic T(X,, X3, ---, X,) is an odd location. statistic in the

sense that, for all real xy, 22, -+, za

(a) T +n, - xn+)=T(x\, -, xy)+h, for every /i, and

(b) (=i, oy —zn)=—T(®1, -+, Zn).

The statistic S(X,, X,, ---, X,) is an even location-free statistic in the sense that,
for all real x;, 25, -+, 2,

(©) S@i+h, -, xnt+h)=S(xy, -+, xs), for every £, and

(d) S(_xl: Ty _l'n)ZS(xl: "',xn)-

And pUt T:t(le XZv ] Xn)!

S=s(Xi, Xz, -+, X0)
and

Ui=uil( X\, X, -+, Xa), i=1,2,---,n—2.
In this terminology, we state the following theorem.

Theorem. Let X, X, -+, X, be a random sample from a distribution that is
symmetric about a point #. If T(X,, X, ---,X,) is an odd location statistic and
S(X,, X, -+ X,) is an even location-free statistic, and if they are regular in the
sense that there exist statistics Uy, Us, -« -, Un_; such that Jacobian

ot s, 1, -+ -, Un_2)[0(w1, @2, + -+, Ta)l

is not zere almost surely, then the conditional distribution of 7 given S=s is
symmetric about the parameter ¢.
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