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A COMBINED ESTIMATOR OF A COMMON PARAMETER 
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Dept. of Mathematics Keio University 
Yokohama 223, Japan 

(Received March 6, 1982) 

ABSTRACT 

Suppose that two probability distributions have parameters (0, ax) and (0, ay) respectively. 
To estimate the common parameter 0 based on independent samples from each distribution, 
a weighted mean of unbiased estimators Ox and Oy is used. 

In this paper, we give necessary and sufficient conditions for the combined estimator 
to have smaller variance than Ox. And we give those for the uniform distribution and the 
variance of the estimator for it is computed. Also we give those for the inverse gaussian 
distribution. 

1. Introduction 

Suppose that two probability distributions Px and Py on the real line have 
parameters (O, ax) and (8, ay) respectively. The common parameter () is estimated 
by a linear combination O* of unbiased estimators Ox and Oy of samples from Px 
and Py respectively. The weights for O* are determined by estimators of variances 
of Ox and Oy so that O* is unbiased and has small variance. If the estimators of 
the variances V(Ox) and V(Oy) are not accurate enough, the combined estimator O* 
is not necessarily better than Ox and Oy. 

In this paper, two cases are studied. Firstly Px and Py are identically distrib
uted and have their densities which are symmetric about 8, and ax and ay are 
their scale parameters. Independent random samples of sizes m and n are observed 
from Px and Py respectively. The estimator Ox is covariant with respect to the 
location-scale transformation, that is, 

(1.1) 

for every real a and every real b. The estimator ax is invariant and covariant with 
respect to the location and the scale transformation respectively, that is, 

(1.2) 

for every real a and every real b. The estimators Oy and ay have the correspond
ing properties. 

In the second case, the parameter () is a common mean value, not always a loca
tion parameter, of Px and Py. All the statistics Ox, Oy and the estimators of V(Ox) 
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and V(Oy) are assumed to be independently distributed. For a few families of 
distributions such an estimator of the variance is available from a single sample, 
otherwise the estimator is obtained from another independent sample. 

In both cases, we try to find good combined estimators and determine such 
limits on m and n that O* has smaller variance than Ox or than both Ox and Oy. 
The normal distributions and the two-parameter rectangular distributions belong to 
the both cases. 

In the first case, Cohen (1976), using Hogg's result (1960), gave necessary and 
sufficient conditions for his combined unbiased estimator to have smaller variance 
than Ox. He also showed situations when his estimator is better than both of the 
individual estimators for the uniform distribution. Bhattacharya (1981) improved 
the sufficient condition for Cohen's estimator to have smaller variance than the 
first sample's. The combined estimator of this paper is a slight modification of 
Cohen's and of the same type as Khatri and Shah's (197 4) of the normal case. 

In section 2, we give necessary and sufficient conditions for the combined 
estimator to have smaller variance than Ox for the first case. In section 3, we 
give a necessary and sufficient condition for the estimator to be better than Ox for 
the uniform distribution by applying the result of section 2. The condition is 
simpler than those by Cohen (1976) and Bhattacharya (1981): Our combined esti
mator is better than both of the individual estimators for all m~l9 if m=n. In 
section 4, the variance of the estimator for the uniform distribution is computed 
and a numerical table is shown. 

In section 5, in the second case, we give a necessary and sufficient condition 
for the combined estimator to be better than Ox. We give that for the uniform 
distribution. It is interesting to see the condition be applicable to the estimation 
of the common mean of two inverse gaussian distributions. 

2. A combined estimator of a common location 

In order to study our first case, put Tx=(Ox-0)/ax, Ty=(Oy-0)/ay, Sx=<lx/r1x, Sy= 
av/ay, W=S;,/St, K= V(Ox)/a~=E(T;,) and L= V(Oy)M=E(Tt). The distributions of 
Tx, Ty, Sx and Sy are independent of the unknown parameters. Kand L depend on 
the density and the sample sizes. Assume that E(l/St) < oo, which holds when 
n ~ 6 as shown by Cohen (1976). 

Cohen (1976) suggested the following unbiased estimator ; 

(2.1) 

where Z=aua;, and a~O is a constant to be suitably chosen. Since this estimator 
is not symmetric in Ox and Oy, the following modification is suggested; 

(2.2) 

where c1 and c2 are positive constants to be suitably chosen. The estimator is 
unbiased because of Theorem in Appendix by Hogg (1960). Note that Oa is a 
special form of &* if a= 1. 

Rewriting Theorem 2.2 of Cohen (1976), we can obtain the following ; 
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Theorem 2.1 Let c=c2/c1 and p=Ka?r/Lai. Suppose that 

(2.3) [d/dp]E[(T];/K + Ttpc2 W2/L)(l +pc Wt2J 
=E[d/dp][(T;,/K+ npc2 W2/L)(l+pc Wt 2J. 

Then a necessary condition for the estimator fJ* to have uniformly smaller variance 
than fJx is 

(2.4) c~2E(T;,W/K)/E(nW2/L). 

Note. The assumption (2.3) is equivalent to the following; Let f(Tx, Ty, Sx, Sy) 
denote the joint density of Tx, Ty, Sx and Sy and put 

We assume that g satisfies the following conditions: 
( i) g is integrable with respect to Tx, Ty, Sx and Sy. 
(ii) g is differential with respect to p. 
(iii) There exists an integrable function <jJ(Tx, Ty, Sx, Sy) such that 

where gr(Tx, Ty, Sx, Sy) denotes the partial derivative of g. 

Proof. The proof is essentially the same as given in Graybill and Deal (1959). 
The variance of fJ* is equal to 

E[(l +pc Wt 2(fJx-0) 2]+ E[2pc W(l +pc W)- 2(fJx-e)(fJy-O)] 

+ E[p2c2 W2(l +pc Wt 2(fJy-0)2]. 

Theorem in Appendix can be used to show that 

Therefore 

(2.5) V(fJ*) = Ka?i:E[(T;,/ K + TJpc 2 W 2
/ L)(l +pc W)- 2

]. 

The value of (2.5) is Ka~ at p=O. The derivative of (2.5) with respect to p at p=O 
must be equal to 0 or negative. Therefore we have (2.4). 

Next we give a sufficient condition for fJ* to be better than fJx. 

Theorem 2.2 Suppose that 

(2.6) E(T;,W2/K)E(T~ WJL) <5E(T;, WJK)E(Tt W2/L). 

Then a sufficient condition for &* to be uniformly better than Ox is 

c ~2E(T;, w; K)/ E(Tt W 2 
/ L) 

and 

c~5E(T;,W/K)/2E(TtW2/L) 

(2.7) - E(T'; W2 
/ K)E(Tt w; L)/2[E( rt W 2 

/ L)] 2
• 
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Note. The right hand side of (2.7) is positive under the condition (2.6). 

Proof. Let 

h1(W, p)=h1(W)=l/(l+pcW)2 

and 

hz( W, p) =hz(W)=pcz wz/(1 +pc W)z. 

Then 

h1(0) = 1, h1(l/cd) = 1/(1 + p/d)z, 

and 

lzz(O) = 0, lzz(l/cd) = (p/dz)/(1 + p/d)2, 

where d=E(TtW2/L)/E(Ti W2/K). 
We approximate the curve h1(W) by the parabola /1(W) passing at the point 

(0, 1) and touching at the point (l/cd, 1/(1 + p/d)2). The equation for the parabola is 

And we approximate similarly the curve lz2( W) by the parabola /2( W) : 

It can be easily shown that h1(W)~f1(W) and lz2(W)~/2(W) for all values of 
Wand p satisfying 0< W <oo and O<p~d. Thus from (2.5), we have 

(2.8) E{ TJ,/K+ ytpc
2

W
2

/L}:::;; pcd1 {t2 + 2( 1+ dz )t+l} +l 
(l+pcW)2 -(l+t)3 d1 

where 

di =cE(ytW2/L)-2E(T;,W/K), 

dz =E(Ti W 2/K)E(TtW/L)/E(TtW 2/L)-E(T;,W/K) 

and 

t=p/d. 

By the assumption, it is clear that pcdif(l +t) 3 ~O. Hence from (2.8), it suffices to 
show that Y1(t)=t2 +2(1+d2/d1)t+l~O for any t with O<t~l under the conditions 
(2.4) and (2.7). If t=O, then Y1(0)=l. Therefore it is clear that Y1(t)~O for all t 
in the interval O<t~l if g1(l)~O. By the condition that Y1(l)~O, we have (2.7). 
Hence we can show that the conditions (2.4), (2.6) and (2.7) are sufficient for 
E[(T;/K+Ttpc2W2/L)(l+pcW)-2]~l for all O<p~d. 

Next we prove the case p~d. The curve h1(W) is nonincreasing in p. The 
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maximum value of h2(W) is equal to the value of f2(W) with p=d. Hence the 
proof for p=d implies that for p?;.d and the proof is complete. 

Corollary 2.3 Suppose that 

(2.9) E( n W 2 
/ K)E( T~ W/ L) ~ E( n W/ K)E( n W 2 

/ L ). 

Then a sufficient condition for B* to be uniformly better than Bx is 

c ~ 2E( n W/ K)/ E( n W 2 
/ L ). 

Proof. From (2.9), it is clear that d2 in the right hand side of (2.8) is negative 
or zero. Hence we have g1(t)?;.O for all O<p<oo and the proof is complete. 

Remark 2.1 In fact it can be easily shown that the inequality (2.9) in Corol
lary 2.3 holds for the estimation of a common location for the normal distribution 
which was discussed in Khatri and Shah (1974). By Theorem 2.1 and Corollary 
2.3, a necessary and sufficient condition for B* to be better than Bx is 

c ~2(m-l)(n-5)/(m+ l)(n-1). 

We can show that the inequality (2.9) holds for the estimation of a common loca
tion for the uniform distribution in section 3. 

3. The uniform distribution 

We estimate a common location for the two-parameter uniform distribution. 
we assume that the density is 

f(x; 0, <Tx)=l/ax, for O-ax/2<x<O+ax/2, 

=0, otherwise. 

The estimators of 0 and ax are 

Bx=(Xcm) +Xcl))/2,a~=Xcm)-Xcl) 

where Xcm) and Xo) are the maximum and the minimum of the random samples 
of sizes m from Px respectively. The estimators By and a~ are defined similarly. 
Also let a;=(m+2)(m+ l)a.i/m(m-1) and ai=(n+2)(n+ l)a~2/n(n-l), and note that 
a; and ai are the unbiased estimators of a; and ~ respectively. The purpose of 
this section is to evaluate a necessary and sufficient condition for the estimator 
(2.2) to be better than Bx using Theorem 2.1 and Corollary 2.3. 

Let Ui=(X-0)/ax and Vi=(Vi-0)/ay, then 

Tx=(Ucm) + U0 »/2, Ty=(Vcn) + Vcl))/2, Sx= Ucm)- Uo) 

and Sy= Ven)- Vcl)· For convenience, put Lx=2Tx and Ly=2Ty and note that the 
joint density of Lx and Sx is 
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P(Lx, Sx)=[m(m-1)/2JS~-2 , 

-l+S.1J<Lx<l-Sx, O<Sx<l. 

Using the joint density (3.1), it is easy to see that 

(3.2) 

and 

where 

K=l/2(m+2)(m+l), 

L = 1/2(n + 2)(n + 1), 

E(Ti:W2/K) Af2N(m+2)(m+l) 
(m+6)(m+5)(m+4)(m+3)(n-4)(n-5)' 

E(Ti:W/K)- (m+4)(m+~~-2)(n-3)' 
M 2N(n+2)(n+l) 

(m + 4)(m + 3)(n-2)(n-3)(n-4)(n- 5) 

MN(n + 2)(n + 1) 
E(TtW/L) (m+2)(m+l)n(n-l)(n-2)(n-3)' 

M= (m+2)(m+l)n(n-l) 
m(m-l)(n+2)(n+ 1) 

and N=m(m-l)n(n-1). Hence from (3.2), it can be easily shown that the inequality 
(2.9) holds. By Theorem 2.1 and Corollary 2.3, a necessary and sufficient condition 
for the estimator (2.2) to be better than Ox is 

(3.3) 
2m(m-l)(n-4)(n-5) 

c< . 
-- (m+2)(m+l)n(n-1) 

Remark 3.1 By combining the above condition (3.3) with a necessary and 
sufficient condition for the estimator (2.2) to be better than Oy, a necessary and 
sufficient condition for the estimator (2.2) to be better than both Ox and Uy is 

(3.4) 
m(m-l)(n+2)(n+ 1) 2m(m-l)(n-4) (n-5) 
~~~~~~~-~c~ . 
2(m-4)(m-5)n(n-1) - -- (m+2)(m+l)n(n-1) 

Remark 3.2 The conditions on m and n that there exists c such that the 
inequality (3.4) holds are m=ll, n~164; m=12, n~60; m=l3, n~40; m=l4, n~32; 
m=15, n~27; m=l6, n~24; m=l7, n~22; m=l8, n~21; m~l9, n~l9; m~l64, n=ll; 
m~60, n=l2; m;:;40, n=l3; m~32, n=l4; m~27, n=15; m~24, n=l6; m~22, n=l7 
and m~21, n=l8. 

4. An approximation for the variance of O* 

Exact expressions and computation for variances in the normal distribution 
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were given in Khatri and Shah (197 4). In this section we give an appoximation 
of the variance of the estimator &*, given by (2.2), of the common location of two 
uniform populations and a numerical table for it. 

By (3.1), the conditional expectation of Li given Sx is (1-S.r) 2 /3 and that of Lt 
is (l-Sy)2/3. Put Sx= U and Sy= V and from (2.5), 

(4.1) V(U*)=Ka~{ n(n-l) E 1 + pc
2

m(m+l) E 1 } 
, (n+4)(n+3) (V2 +pcU 2

)
2 (m+4)(m+3) (V2 +pcU2) 2 

where U and V in the first term follow the Beta distributions with parameters 
(m-1, 4) and (n+3, 2) respectively, and those in the second term the Beta distri
butions with parameters (m+3, 2) and (n-1, 4) respectively. Rewrite the random 
variable as 

(4.2) 
1 1 

( V 2 + pcU2
)

2 (va pcu~) 2 [l +(( V 2 + pcU2)-(v~+ pcum/(va pcum2 

where uo and Vo are expectations of U and V respectively. Expanding the right 
hand side of (4.2) and using the central moments of Beta distributions, we get 

n(n-l) E 1 
(n+4)(n+3) (V2 +pcU2

)
2 

where 

and 

,..,, n(n- l) [l + 1 { 16(p4C 4U~ + p3c3uM + p2c2uM) 
(n+4)(n+3)(v~+pcu~) 2 (v~+pcuD2 (v~+pcuD 2 

2(3 2 2 2 2)} 1 { l6(p2c 2u~v~ + pcuM + v~) 
- p C Uo + pCVo U2 + ( 2 2) 2 ( 2 2)2 Vo+ pCUo V0 + pCU0 

2(3 2 2)} 4 { 2(3p4C4U~ + 4p3c 3u~v~ + p2c 2u0v~) 
- Vo+ pCUo V2 + ( 2 2)2 ( 2 2)2 Vo+ pCUo V0 + pCUo 

l6(p6c 6u~ + p3c3uM) 
(v~+pcu~)4 

16(v~+ p3c3uM) 
(v~ + pcu~) 4 

2 2 } 4 { 2(3v~ + 4pcu~v~ + p2c2u~v0 ) 
P c Vo Ua+--- · 

(v~+pcuD2 (v~+pcuD2 

Uo=E(U) =(m-1)/(m+3), Vo =E(V) =(n+3)/(n+5), 

U2 =E(U-uo)2 =4(m-1)/(m+4)(m+3)2, 

V2=E(V-vo)2=2(n+3)/(n+6)(n+5)2, 

U3=E(U-u0)3= -8(m-l)(m-5)/(m+5)(m+4)(m+3)3 

Va=E(V-v0 )
3 = -4(n+3)(n+l)/(n+7)(n+6)(n+5)3

• 

The second term is computed similarly, but the moments of Beta distributions are 
different. That is, 

Uo =E( U) =(m+3)/(m+5), Vo =E(V) =(n-1)/(n+3), 

U2 =E(U-uo)2 =2(m+ 3)/(m +6)(m+5)2, 
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Table 4 .1 Approximate values of the order 1/m3 and 1/n3 and of the order 1/m2 and 1/n2 

of variances for the estimator in (2.2) with c1 =1 and c2 =n/m. 

~I 
m I n I c I .1 .2 .5 1 2 5 10 

0.971 0.925 0.780 0.595 0.390 0.185 0.097 
C1 (0. 966) (0. 923) (0. 780) (0. 595) (0. 390) (0 .185) (0. 097) 

20 -- ----- - -----

0.971 0.925 0.780 0.595 0.390 0.185 0.097 
C2 (0. 966) (0. 923) (0.780) (0. 595) (0. 390) (0.185) (0. 097) 

-- - - -- --

0.961 0.911 0.767 0.586 0.386 0.184 0.097 
C1 (0. 978) (0.934) (0.783) (0.589) (0. 382) (0 .180) (0.095) 

20 25 
0.980 0.935 0.782 0.588 0.381 0.181 0.096 

C2 (0. 978) (0.934) (0. 783) (0. 589) (0. 382) (0 .180) (0.095) 

0.955 0.903 0.759 0.581 0.384 0.184 0.097 
C1 (0.993) (0. 952) (0. 792) (0. 589) (0. 378) (0 .179) (0.094) 

30 

C2 
0.995 0.952 0.791 0.589 0.378 0.179 0.095 

(0. 993) (0. 952) (0. 792) (0. 589) (0.378) (0.179) (0.094) 

0.969 0.921 0.772 0.586 0.383 0.182 0.096 
C1 (0. 950) (0. 902) (0. 763) (0.589) (0.391) (0 .187) (0. 098) 

20 
0.955 0.905 0.763 0.588 0.391 0.187 0.098 

C2 (0.950) (0. 902) (0. 763) (0. 589) (0.391) (0.187) (0. 098) 

0.958 0.907 0.758 0.577 0.379 0.181 0.096 
C1 (0. 955) (0. 905) (0. 759) (0. 577) (0. 379) (0.181) (0. 096) 

25 25 
0.958 0.907 0.758 0.577 0.379 0.181 0.096 

Cz (O. 955) (0.905) (0•759) (0. 577) (0.379) (0.181) (0. 096) 
---

0.952 0.898 0.750 0.571 0.376 0.181 0.096 
C1 (0. 963) (0. 914) (0.761) (0. 573) (0. 373) (0.178) (0. 094) 

30 
0.965 0.914 0.760 0.573 0.373 0.179 0.095 

C2 (0.963) (0. 914) (0. 761) (0.573) (0. 373) (0.178) (0.094) 
----- - - - - ----··-- - ------ --------

0.968 0.919 0.767 0.581 0.379 0.181 0.095 
C1 (0. 943) (0. 893) (0. 757) (0. 589) (0. 396) (0 .190) (0.099) 

20 ----- ----

0.949 0.896 0.757 0.589 0.396 0.190 0.099 
C2 (0.943) (0.893) (0.757) (0. 589) (0. 396) (0 .190) (0. 099) 

--- -----------

0.956 0.903 0.753 0.571 0.375 0.180 0.095 
C1 (0. 945) (0.891) (0. 747) (0.573) (0. 380) (0.183) (0. 096) 

30 25 
0.948 0.893 0•747 0.573 0.380 0.183 0.096 

C2 (0. 945) (0.891) (0. 747) (0. 573) (0. 380) (0 .183) (0.096) 
---- -

0.950 0.894 0.743 0.565 0.372 0.179 0.095 
C1 (0. 948) (0. 894) (0. 744) (0. 565) (0. 372) (0.179) (0. 095) 

30 
0.950 0.894 0.743 0.565 0.372 0.179 0.095 

C2 (0.948) (0.894) (0. 744) (0. 565) (0. 372) (0.179) (0. 095) 
- ---------------
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V2 =E(V-vo)2 =4(n-1)/(n+4)(n +3)2
, 

Ua = E( U - Uo) 3 = -4(m + 3)(m + 1)/(m + 7)(m + 6)(m + 5) 3 

and 

Va =E(V-vo)3 = -8(n-l)(n-5)/(n+5)(n+4)(n +3) 3
• 

Table 4.1 shows the variance of the combined estimator of the common loca
tion () of two uniform populations U(O-ax/2, O+ax/2) and U(O-av/2, O+av/2) on the 
basis of samples of sizes m and n respectively. We consider estimators iJ* with 
(i) c=l and (ii) c=n/m. Table 4.1 was computed by approximations of the order 
1/m3 and 1/n3 and of the order l/m2 and l/n2 in the parenthesis for 

2(m + 2)(m+ 1) V(iJ*)/a~ 

for m=20,25,30,n=20,25,30 and r=(n+2)(n+l)a~/(m+2)(m+1M. In fact it is 
checked by numerical integration that at least two digits of the approximation of 
(4.1) are accurate. If c=n/m does not satisfy with the condition (3.4), that is, 
m=20, n=25; m=20, n=30; m=25, n=20 and m=30, n=20 in Table 4.1, c=n/m will 
not give V(iJ*)~ min (a~/2(m+2)(m+l), a1/2(n+2)(n+l)), while c=l will give iJ* with 
that property, unless both m and n are less than 18. 

The pattern of the values in Table 4.1 is similar to that for the normal distri
bution in Khatri and Shah (1974). 

5. The case where variance estimators are independent 

Let &x be the unbiased estimator of a common mean and V x be the estimator 
of r;(O) V(iJx) which is independent of iJ.r: and the parameter 0, where r;(O) is a func
tion of 0. Let &v and V v be defined similarly. 

We consider the following estimator ; 

(5.1) 

where c1 and c2 are positive constants to be suitably chosen. A necessary and 
sufficient condition for iJ** to have smaller variance than &x is given. 

Proposition 5.1 Let c=c2/Ci,p=Vx/Vy,SJ,=Vx/Vx,St=Vy/Vy and W=SJ,/Sb. 
Suppose that 

(5.2) [d/dp]E[(l + pc2 W 2)(l +pc W)- 2
] 

=E[d/dp][(l + pc2 W2)(l +pc W) 2
]. 

Then a necessary and sufficient condition for iJ** to be uniformly better then &x is 

c ~2E( W)/ E( W2
). 

Note. The assumption (5.2) is equivalent to the following; Let /( W) denote 
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the density of Wand put a2(W,p)=(l+pc2 W2)(l+pcWt 2/(W). We assume that 
az satisfies the following conditions: 

( i) gz is integrable with respect to W. 
(ii) gz is differential with respect to p. 
(iii) There exists an integrable function ¢1(W) such that lgz/W, p)l~9'>1(W), 

where az/ W, p) denotes the partial derivative of gz. 

Proof. This proposition can be proved along the same line as in the proof of 
Theorem 2.1 and 2.2. 

Remark 5.1 A necessary and sufficient condition for O** to have smaller than 
both Ox and Uy is 

E( w-2)/2E(W- 1 )~c ;£2£( W)/E( W 2
). 

At first we estimate a common location for the uniform distribution. Let 
Ox=X, 0y= Y, a;,=Xcm)-X(I)• 8~= Ycn)-Y(I), V.x=(m+2)(m+l)a~/m(m-1) and Vy= 
(n+2)(n+l)a~2/n(n-l). A necessary and sufficient condition for &** to be better 
than Ox is given. Using the density (3.1), it is easy to see that 

and 

E(W) 

where 

M 

M 2N 
(m + 4)(m + 3)(n-4)(n-5) 

MN 
(m+2)(m+ l)(n-2)(n-3) 

(m+2)(m+ l)n(n-1) 
m(m-l)(n+2)(n+l) 

and N =m(m-l)n(n-1). By Proposition 5.1, a necessary and sufficient condition 
for &** to be better than [J x is 

_ 2(m +4)(m+3)m(m-l)(n+2)(n+ l)(n-4)(n-5) 
( ~ -------------'---------'---------'---------'-----
" -- (m+2)2(m+1)2n(n-l)(n-2)(n-3) · 

Remark 5.2 A necessary and sufficient condition for O** to have smaller 
variance than both Ox and [JY is 

m(m-l)(m-2)(m-3)(n+2)2(n+l) 2 

2(m +2)(m+ l)(m-4)(m-5)(n+4)(n+3)n(n-1) 

_ ~ 2(m+4)(m+3)m(m-l)(n+2)(n+ l)(n-4)(n-5) 
:<'ccC'--------------------
- - --- (m+2) 2(m+1)2n(n-l)(n-2)(n-3) 

The conditions on m and n that there exists c such that the above inequality 
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holds are m=6, n~20; m~20, n=6; m~7, n~8 and m~8, n~7. Comparing it with 
the result in section 3, the latter has a wider range on m and n. 

Now we consider the problem of estimating the common mean of the inverse 
gaussian distribution by using Proposition 5.1. We assume that the density is 

f(x; (), Ax)=exp (-Ax(x-0)2/202x)CAx/2rrx 3
)

112
, if x>O, 

=0, otherwise, 

where 0 and Ax are both positive. The estimators are 

A - 1 1 7n -

Bx=X, ~ =c-·-l) 1: (X-X- 1
). 

Ax m t=l 

The estimators Bv and l/~v are defined similarly. It is shown that Ax~~~ 1(X-X- 1 ) 
is distributed as a chi-square variable with m-1 degrees of freedom and that X 
is independent of l/~x in Folks and Chhihara (1978). And note that the variance 
of Ox is 03/mAx. 

It is natural to construct the following estimator ; 

(5.4) 

where c, and c2 are positive constants to be suitably chosen. A necessary and 
sufficient condition for the estimator (5.4) to have smaller variance than Ox is given. 
Let 

• - Ax rn - -1 ' - Ay n - -1 

Sx-( -l)_L:(X-X ),Sy-( -l)·l:(Vi-Y) m i=1 n i=1 

W =Sx/Sv and p=nAv/mAx, and note that Wis distributed as Snedecor's F with m-1 
degrees of freedom in the numerator and n-1 degrees of freedom in the denomi
nator. Therefore we get 

and 

E(W2)- (m+l)(n-1)2 
(m-l)(n-3)(n-5) 

E( W) = (n-1)/(n- 3). 

By Proposition 5.1, a necessary and sufficient condition for the estimator (5.4) to 
be better than Ox is 

c ~2(m-l)(n-5)/(m+ l)(n-1). 
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Appendix 

We state a version of Hogg's theorem (1960) for completeness. The proof is 

similar to Hogg's (1960) and omitted. Let X1, X2, · · ·, Xn be a random sample from 

a distribution. The statistic T(X,, X2, · · ·, Xn) is an odd location statistic in the 

sense that, for all real x1i x2, · · ·, Xn, 

(a) 

(b) 

T(x1 +lz, · · ·, Xn +lz) = T(x,, · · ., Xn) +h, for every h, and 

T(-xi, · · ·, -xn)= -T(xi, · · ·, Xn). 

The statistic S(X,, X2, · · ·, Xn) is an even location-free statistic in the sense that, 

for all real xi. x2, · · ·, Xn, 

(c) 

(d) 

And put 

and 

S(x1+h, ... ,xn+lz)=S(xi. ... ,xn), for every /z, and 

S(-Xi, · · ·, -:x:n)=S(xi, · · ·,Xn). 

T=t(Xi. X2, · · ·, Xn), 

S=s(Xi, X2, · · ·, Xn) 

Ui=ui(X1iX2, ···,.Xn), i=l,2, ···,n-2. 

In this terminology, we state the following theorem. 

Theorem. Let X1i X2, · · ·, Xn be a random sample from a distribution that is 

symmetric about a point 0. If T(Xi. X2, · ·., Xn) is an odd location statistic and 

S(Xi. X2, · · · Xn) is an even location-free statistic, and if they are regular in the 

sense that there exist statistics Ui. U2, · · ·, Un-2 such that Jacobian 

is not zere almost surely, then the conditional distribution of T given S=s is 

symmetric about the parameter 0. 
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