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ABSTRACT

In this paper, the author estimates the rate of convergence of the invariance principle
for some strictly stationary sequences of random variables satisfying the ¢-mixing condi-
tion.

1. Introduction and results

Let {X;,i=1} be a strictly stationary sequence of random variables on a
probability space (@2, F,P) and suppose EX;=0 and E|X;|***<cc for some 6>0.
For positive integers @ and b with 0<a<b, let F? denote the o-field generateted
by random variables {X,, -, Xs}. Suppose that the sequence {X;} satisfies the
¢-mixing condition in the sense that

sup  sup |P(ANB)—-PAP(B)I[P(A)=¢(n)—0

azl a ol
AFYBFG, ,

as n—co.
It is known that if

d(n)=0(n"#) for some j5>(2-+6)/(L+03)
then the limit
1.1 ot =lim,..n ' E(T{-, Xo)

exists. (See, e.g. [5].)
Let S,=37%,X; and So=0. Supnose ¢*>0 and deine a continuous polygonal
line {X,.(#),0=¢=<1} by

Xa(t)=(0"n) """ Sy + (et — [t ]) (0°) ™" Xy

where [/] denotes an integer part of 4.
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Sulvya KaNnacawa

Let C=C([0,1] be the space of continuous functions on [0, 1] with the uniform
metric d(x, y)=supes«|x(#)—y({)| and C be the smallest s-field containing all open
sets in C.

Let P, be the distribution of {X,(#)} and W be the Wiener measure on (C, C).

The Prokhorov-Lévy metric p(-, -) on the space of probability measures on (C,C)
is defined by

o(R, Q)=inf{e>0; R(B)=:+Qly; d(x, v)<e, xeB},
Q(B)=e+ Ry ; d(z, y)<e, zeB} for all BeC}

where R and @ are probability measures on (C,C).
In this paper we shall show the following results concerning the rate of
convergence of p(P,, W) to zero.

Theorem 1. Let {X;} be a strictly stationary sequence, which is ¢-mixing with
coefficient ¢(n) satisfying

1.2) d(#)=0(e""")

for some y>0 as n—oo. Suppose that EX,=0 and o=1 i (1.1). If E|X\|*""<co
for some 0<6=2, then as n—oo

p(Pn, LV) =0(n~§/2(3;25) log n)

Theorem 2. 7n Theorem 1, replace condition (1.2) by
P(n)=0(n"?)
Sfor some B>2(2+06)/(1+5). Then we have
p(Pn’ W):0(n76/I2(3+Zd)+3(2+6)/ﬂl log n).

It should be mentioned that Yoshihara [9] gave some results on the rate of
convergence of (P, W) for an absolutely regular sequence under the moment
condition £|X;[*'¢<oco for some ¢>0. Qur moment condition is weaker than his,
although his mixing condition is weaker than ours.

2. Preliminaries

The two lemmas are due to Ibragimov [6]. (As to Lemma 2, see also Yoko-
yama [8].)

Lemma 1. Suppose that f is F*-measurable and g is Fg,-measurable and that
E|f|"<co and Elg|°<co for ¥>1 and s>1 with v'+s'=1. Then

|E(fg)— E()E@) =2(pm) "1 f1l+]lalls -
Lemma 2. Under the assumptions in Theorem 1 or Theorem 2, for each 6>0,
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as n—»oo
E|Sn|2+" =0((ES§)”5/2).

For some 0<a<l, let M=[n/[n"]]+1 and define [;={(j—L)(»*]1+1, (j—D)[»n"]+
2, .-, j[n"]} for j=1, ---,M—l and Ly={(M-1)[n"]+1, (M-1)[n"]+2,---,n}. Let y;=
D ;n X, for j=1,.--, M. Moreover for positive ¢, define U;={j[n"]—[6(logn)]+
1, jin"1—[6(log n)]+2, -- ,][n"]} and v;=w,;n X, i=1, -, M—1 and vy =0.

The basic idea of the proofs of Theorems 1 and 2 is using the following
approximation theorem by Berkes and Philipp [1].

Lemma 3. Let {X;,i=1} be a sequence of random variables and {Li,i=1} be a
sequence of o-fields such that X; is L;-measurable for each i and for some nix=0

|P(ANB)—P(A)P(B)|=nP(A)

for all AeVixLs and BeLy. Then without changing its distribution we can redefine
the sequence {X;,i=1} on a probability space together with a sequence {Yi} of inde-
pendent random variables such that Y; has the same distribution as X; for each i
and

P{|X,— Yilz6y) =6p,, i=1.

The following lemma is due to Borovkov [2].

Lemma 4. Let |Yi} be a sequence of independent random variables with EY;=0
and E|Y;|**°< oo for some 6>0 for all i=1. Then for each t>0,

Pmaxciga| 551 Yi| >t} =Crexp{—Cot?/ 33 EY
+ 2 P Y >4+ Gt @2 B0 E Y|P 40)F,

where C,,C, and Cs are positive constants depending only on o.

3. Proof of Theorem 1

Let
=4d/(3-+24),
en=Kn-07¢ 2 Jogn, n=1,
Ia=n"Jogpn, nz1,

where K is larger than (0/C,)'2.
Using Lemmas 1 and 2, we can easily prove the following

Lemma 5. For j=1,---, M—1, as n—oo

Eyi=n—"4+0n""),
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E‘yj|2+6 :0(71(“"1)(“"5/2)),

Evi=0(log n)[n+0(n"")

and :
E‘vaZnLJ=’0(n~(1+6/2)(log n)l+5/2).
Also , .
Eyyy=mn—(M—-1)n")n+0(mn"")
and

E[yM l 248 =0(n(u—l)(l+5/2))'

By the same argument as in the proof of Theorem 1 in [3] (p. 213), if we
construct the Brownian motion {B{#),0=¢=1} on (2, F, P) such that

3.1 Plsuposisi| Xa(t)— Bt)| = en} =0(en)

as n—oo, the statement of the theorem is concluded. Hence first we have to
define the Brownian mation. . :

Denote &;,=y;—v;, j=1,---, M and denote M the o-field generated by the random
variables {&,, -+, &} for 0<a<b. For any AcM® and BeM¥., we have

|P(ANB)—P(A)P(B)|=¢((0 log n)) P(A)=0(n"")P(A)

uniformly with respect to @ with 1=e<M—1. Hence, by applying Lemma 3, we

see that there exist a sequence {£,,---,&x} and a sequence of independent random
variables (¥, ---,¥»} on a probability space (2, F, P) such that the joint distribu-
tion of {&, -, &y} is same as {&,, ---, £y} and & has the same distribution as Y; with
(3.2) Pl|&~Yi|=Cin "} =Cn""

for each i=1, ---, M, where C, and C; are absolute positive constants.

On the other hand, using the Skorokhod embedding theorem (Theorem 7 in
[7]) we construct the Brownian motion {B*(#), 0=/=1} and a sequence of inde-
pendent and positive random variables {TF¥,i=1, ---, M} on another probability space
(Q*, F*, P*) such that

{(BYTH), B(T¥+TH)—BXT¥), -, BNEL TH-BXEL THLY, Ys, -, Yi),
and
3.3) ET¥=FEY: and E|T¥"*=CE|Y;|>**

for all 1=i=M, where “%” means the equality of joint distributions and C; is a
positive constant depending only on 4.

Using Lemma Al in [1] we can redefine ({&}, {Y3), {73}, {B{)}) on a common
probability space (2, F, P) such that the distribution of ({&}, {¥3}) and ({BXZi-, T
—BYZiS THLTH, (B*®)}) are same as those of ({&}, {Y3}) and ({Yi}, {73}, {B@D,
respectively. .

Define {0, @\, -+, an} by as=iln")n for i=0,1,--,M—1 and ax=1. Let {X.(),
0=¢=1} and {B.(#),0=<¢=1} be continuous polygonal lines defined by

Xn(t) =Xn(alc) + (Xn(ak+ 1) - Xn(ak))(t_ ak)/(akﬂ — alc);
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for telax, ar1], k=0,1,---, M—1, and
Bo(t)=B(ax) + (Blax1) — Blaw)(t— an)(@u1—a),
for telax, ar+1), £=0,1, M—1, respectively.
Lemma 6. As n—oo
Plsupozisi| X ult) — But)] Zea} =0(en).

Proof.' We have
Plsubosest] Xu(t) = But) Zen)
= P(maXzesn| Th-vi— Blax)| Z e}
= Pma; sk | Lh-i(vi—00) — Blaw)| Zen/2)
+ Plmaxisisul S5, vl Zea/2)
=A,+A,,

say. Applying Lemma 3 to A, we see that there exist independent and identically
distributed random variables {V;} such that V; has the same distribution as »; and

Plloi— Vi|=Cremms) <Cyem,
where C; and C; are absolute positive constants. Thus by Lemmas 4 and 5 we
have
Ay = Pmax cism—1| Zh-i(i— Vi) Zea/4}
+Plmaxsksm 1] N5, Vil > eafd}
=(M-1DP{joi— Vilzea/A (M-} +C exp{—Co &/ ¥ EV 3}

+ 25 P Vil Z /16 + Co( 151 E Vil 0= 40)°
-—‘O(En),

as n—oo.
We next estimate A,. ‘Denote Zy=3% (T;—ET;). Recall y;—v;=¢&;. Since
Sk Y;=B(3%., T:) by the construction of {Y;}, we have

Ar=P{maxcesn| DE-1(6i— Vi) = en/4}
+Pmax;cien| N5, Yi— Blaw)| = eq/4)
=P{BL|Ei—Yi|=eafb)
+ Pimaxgesu| B(Ze+ 5=y ET:) — Blax)| Z eaf4}
=2E Pll&— Yilz e /AM)
+Pmaxizrsu| B(Zx+ 2%, ET) — Blar)| = en/4,
. maxisesu|Zi| Sen}
+ Pimaxisesa| Zi| > en) '
=L,+L,+Ls, i
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say. By (3.2) we have for any sufficiently large 6
L,=0n'"""""")=0(c,).

Since ET:;=FEY? and Y; has the same distribution as &=w;—v; we have
ET;=F(y;—v:)?, thus

maXigesu| L¥-y ETi— axl
=maXizezn| D Byi—ae| + 250, Elyw)| + L Ev}.
By Lemmas 1 and 5 we have
|E(y:0)| < | E{(ZEE00s PIn = 2 X o} | + B}
= piEi-raesm2(g([n"]—[6(log 1) +1 7))+ e+
X172 Xl ovar el [0lle4s + EV
=0(n""(log n)),
thus
L Eww) | =0Q0).
And also we have from Lemma 5
maXigksa | Di-1 Byl —ar| =0(4n)
and
L Evi=0(2).
Hence there exists a positive constant C, such that
maXicksy| Nk ETi—ai| =Coln .
Then by the same argument as in the proof of Lemma 5 in [7], we have
L,=3#% P{supisasog iy | Bt +ax) — Blax)| Z¢/4)
=2M P{SUPosts 14042, BlE)| Z €n/4}
=8M P{| B(1)| Zen/4((1+Co)a)"'?}
=0(en).

On the other hand by the Kolmogorov inequlity and the Marcinkiewicz-
Zygmund inequlity we have

Lsél;(l+612)ElZM|l+d/2§Cm ];(1+d/2) Zﬁl E|Ti_ETi|l+J/2’

where C,, is a positive constant depending only on 4. Since Y; has the same
distribution as &;, using (3.3) and Lemma 5, we have

Ly=Cui 25949 R EN&il* 2 =0(en),
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where Cy; is an absolute constant. Thus we have A,=o(s,), which concludes the
lemma.

The following lemma is due to Borovkov (Lemma 2 in [3]).

Lemma 7. As n—ooco
P(suposisi| Bult) — Bi)| Z e} =0(ey).

Finally we shall prove

Lemma 8. As n—oo

P{suposisi| Xa(t) — X n(t)| Z et =0(cn).

Proof. Let q be a real number such that ¢(g)<1/10 and define
0 if [%/qlg+j>F,
{1 if [k/qlg+i=k.
By the definition of {X,(#)} and {X.(#)} we have
P{supoges:| Xa() — )?n(t)l Zen)
= T X, P(SuDa;_, stsai] Xalt)— Xn(t)| Z 0}
=M P{maXigkstnn| D502 Xi— (R[[n") LEIn~ 2 X Z e}

17, k)=

A

M P{maXigisinayl %oy #72 X;| Zq/2)

A

=M P{maxsismnal 251 DO IRR X gl Zenf2)
=(M @) Pimaxsksinaygr| D5= 27 Xio1yg+1| Z enf2q}
Let m=[[n"]/g]+1. Using Theorem 1.2 in [4] and lemma 3 we have as n—co

(3.4) (Mq)P{maXlsksm] Z:;l n—l/2X(i_1)q+1| 25,,/2(]}
(M g)(en/Adq)~ * P E| BFuy #7 " X (11341 |*7?

A

B 1—-¢(g)— (en/49)~ P max; cegm—1 £ D Tg 572 X i1y q41] 7.
Similarly as in the proof of Lemma 5, we have by Lemmas 1 and 2

EIZ’i';l n-—llzX(i_])q“lz+a:0(n(a—l)(1+5/2))’
and also we have from the stationarity of {Xi}
maXigksm-1E| Dier 87 Xci-nyqe1|*?
=maXesksmB| Dk 872 X (1 1yq+1]217,
which is O(n~b/1+/) hecause

El Z’i‘=1 n_llzX(i~!)q+l |2+6 zo(n(a—l)/(l +6l2))
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uniformly with respect to k£, 2=k=m. Thus the right hand side of (3.4) is the
order of o(e;) as n—oo. Hence the lemma is proved.

By Lemmas 6, 7 and 8 we obtain (3.1) and thus conclude the proof of Theo-
rem 1.

4. Proof of Theorem 2

It is sufficient to modify some definitions in the proof of Theorem 1. We
first define U; by U;={jn"]—[n® /2041, jn']—[n@ /0] 2, - jln'l}, 7=1,
-+, M—1 and put

a={205+3(2+6)}/{2(3+23)8+3(2+0)},
en:Kn—6/12(3+26) +3(2+d)/,9](10g n),
zn:n—ZJ/(2(8+26)+3(2+§)/ﬂ)(10g n).

We note that for 3>2(2+0)/(1+06)

Ey% — n—l+ @2-a)/+2p) +O(n—1)
and
maxisksu| D5-) ETi—axl =0(n /AR =0(2y),

as n—oo. The rest of the proof is the same as that of Theorem 1 and so is
omitted.
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