T:41 -	
Title	On the rate of convergence of the invariance principle for stationary sequences
Sub Title	
Author	金川, 秀也(Kanagawa, Shuya)
Publisher	慶應義塾大学理工学部
Publication year	1982
Jtitle	Keio Science and Technology Reports Vol.35, No.3 (1982. 4) ,p.53- 61
JaLC DOI	
Abstract	In this paper, the author estimates the rate of convergence of the invariance principle for some strictly stationary sequences of random variables satisfying the φ -mixing condition.
Notes	
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00350003- 0053

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

ON THE RATE OF CONVERGENCE OF THE INVARIANCE PRINCIPLE FOR STATIONARY SEQUENCES

Shûya Kanagawa

Dept. of Mathematics, Keio University, Yokohama 223, Japan

(Received November 10, 1981)

ABSTRACT

In this paper, the author estimates the rate of convergence of the invariance principle for some strictly stationary sequences of random variables satisfying the ϕ -mixing condition.

1. Introduction and results

Let $\{X_i, i \ge 1\}$ be a strictly stationary sequence of random variables on a probability space (Ω, F, P) and suppose $EX_1=0$ and $E|X_1|^{2+\delta} < \infty$ for some $\delta > 0$. For positive integers a and b with 0 < a < b, let F_a^b denote the σ -field generateted by random variables $\{X_a, \dots, X_b\}$. Suppose that the sequence $\{X_i\}$ satisfies the ϕ -mixing condition in the sense that

$$\sup_{a \ge 1} \sup_{A \in F_1^a, B \in F_{a+n}^\infty} |P(A \cap B) - P(A)P(B)| / P(A) \equiv \phi(n) \rightarrow 0$$

as $n \rightarrow \infty$.

It is known that if

$$\phi(n) = 0(n^{-\beta})$$
 for some $\beta > (2+\delta)/(1+\delta)$

then the limit

(1.1)
$$\sigma^2 = \lim_{n \to \infty} n^{-1} E(\sum_{i=1}^n X_i)^2$$

exists. (See, e.g. [5].)

Let $S_n = \sum_{i=1}^n X_i$ and $S_0 = 0$. Suppose $\sigma^2 > 0$ and define a continuous polygonal line $\{X_n(t), 0 \le t \le 1\}$ by

$$X_n(t) = (\sigma^2 n)^{-1/2} S_{[nt]} + (nt - [n!]) (\sigma^2 n)^{-1/2} X_{[nt]+1}$$

where [b] denotes an integer part of b.

Let C=C[0,1] be the space of continuous functions on [0,1] with the uniform metric $d(x,y)=\sup_{0\le t\le 1}|x(t)-y(t)|$ and C be the smallest σ -field containing all open sets in C.

Let P_n be the distribution of $\{X_n(t)\}$ and W be the Wiener measure on (C, C). The Prokhorov-Lévy metric $\rho(\cdot, \cdot)$ on the space of probability measures on (C, C) is defined by

$$\begin{split} \rho(R,Q) &= \inf\{\varepsilon > 0 \ ; \ R(B) \leq \varepsilon + Q\{y \ ; \ d(x,y) < \varepsilon, \ x \varepsilon B\}, \\ Q(B) \leq \varepsilon + R\{y \ ; \ d(x,y) < \varepsilon, \ x \varepsilon B\} \ \text{ for all } B \varepsilon C\} \end{split}$$

where R and Q are probability measures on (C, C).

In this paper we shall show the following results concerning the rate of convergence of $\rho(P_n, W)$ to zero.

Theorem 1. Let $\{X_i\}$ be a strictly stationary sequence, which is ϕ -mixing with coefficient $\phi(n)$ satisfying

$$(1.2) \qquad \qquad \phi(n) = 0(e^{-rn})$$

for some $\gamma > 0$ as $n \to \infty$. Suppose that $EX_1 = 0$ and $\sigma = 1$ in (1.1). If $E|X_1|^{2+\delta} < \infty$ for some $0 < \delta \leq 2$, then as $n \to \infty$

$$\rho(P_n, W) = 0(n^{-\delta/2(3+2\delta)} \log n).$$

Theorem 2. In Theorem 1, replace condition (1.2) by

$$\phi(n) = 0(n^{-\beta})$$

for some $\beta > 2(2+\delta)/(1+\delta)$. Then we have

$$\rho(P_n, W) = 0(n^{-\delta/(2(3+2\delta)+3(2+\delta)/\beta)} \log n).$$

It should be mentioned that Yoshihara [9] gave some results on the rate of convergence of $\rho(P_n, W)$ for an absolutely regular sequence under the moment condition $E|X_1|^{4+\epsilon} < \infty$ for some $\epsilon > 0$. Our moment condition is weaker than his, although his mixing condition is weaker than ours.

2. Preliminaries

The two lemmas are due to Ibragimov [6]. (As to Lemma 2, see also Yokoyama [8].)

Lemma 1. Suppose that f is F_1^{a} -measurable and g is F_{a+n}^{∞} -measurable and that $E|f|^r < \infty$ and $E|g|^s < \infty$ for r>1 and s>1 with $r^{-1}+s^{-1}=1$. Then

$$|E(fg) - E(f)E(g)| \leq 2(\phi(n))^{1/r} ||f||_r ||g||_s$$
.

Lemma 2. Under the assumptions in Theorem 1 or Theorem 2, for each $\delta > 0$,

On the Rate of Convergence of the Invariance Principle

as $n \rightarrow \infty$

$$E|S_n|^{2+\delta} = O((ES_n^2)^{1+\delta/2}).$$

For some $0 < \alpha < 1$, let $M = [n/[n^{\alpha}]] + 1$ and define $I_j = \{(j-1)[n^{\alpha}] + 1, (j-1)[n^{\alpha}] + 2, \dots, j[n^{\alpha}]\}$ for $j = 1, \dots, M-1$ and $I_M = \{(M-1)[n^{\alpha}] + 1, (M-1)[n^{\alpha}] + 2, \dots, n\}$. Let $y_j = \sum_{i \in I_j} n^{-1/2} X_i$ for $j = 1, \dots, M$. Moreover for positive θ , define $U_j = \{j[n^{\alpha}] - [\theta(\log n)] + 1, j[n^{\alpha}] - [\theta(\log n)] + 2, \dots, j[n^{\alpha}]\}$ and $v_j = \sum_{i \in U_j} n^{-1/2} X_i, i = 1, \dots, M-1$ and $v_M = 0$.

The basic idea of the proofs of Theorems 1 and 2 is using the following approximation theorem by Berkes and Philipp [1].

Lemma 3. Let $\{X_i, i \ge 1\}$ be a sequence of random variables and $\{L_i, i \ge 1\}$ be a sequence of σ -fields such that X_i is L_i -measurable for each i and for some $n_k \ge 0$

$$|P(A \cap B) - P(A)P(B)| \leq \eta_{k}P(A)$$

for all $A \in V_{i < k} L_i$ and $B \in L_k$. Then without changing its distribution we can redefine the sequence $\{X_i, i \ge 1\}$ on a probability space together with a sequence $\{Y_i\}$ of independent random variables such that Y_i has the same distribution as X_i for each i and

$$P\{|X_i - Y_i| \ge 6\eta_i\} \le 6\eta_i, i \ge 1.$$

The following lemma is due to Borovkov [2].

Lemma 4. Let $\{Y_i\}$ be a sequence of independent random variables with $EY_i=0$ and $E|Y_i|^{2+\delta} < \infty$ for some $\delta > 0$ for all $i \ge 1$. Then for each t > 0,

 $P\{\max_{1 \le k \le n} |\sum_{i=1}^{k} Y_i| > t\} \le C_1 \exp\{-C_2 t^2 / \sum_{i=1}^{n} E Y_i^2\}$ $+ \sum_{i=1}^{n} P(|Y_i| > t/4) + C_8 (t^{-(2+\delta)} \sum_{i=1}^{n} E |Y_i|^{2+\delta})^2,$

where C_1, C_2 and C_3 are positive constants depending only on δ .

3. Proof of Theorem 1

Let

$$\alpha = \partial/(3+2\partial),$$

$$\varepsilon_n = Kn^{-\partial/2(3+2\partial)} \log n, \ n \le 1,$$

$$\lambda_n = n^{-\partial/(3+2\partial)} \log n, \ n \ge 1,$$

where K is larger than $(\theta/C_2)^{1/2}$.

Using Lemmas 1 and 2, we can easily prove the following

Lemma 5. For $j=1, \dots, M-1$, as $n \rightarrow \infty$

$$Ey_{i}^{2}=n^{\alpha-1}+O(n^{-1}),$$

$$E|y_i|^{2+\delta} = 0(n^{(\alpha-1)(1+\delta/2)}),$$

$$Ev_i^2 = \theta(\log n)/n + 0(n^{-1})$$

and

$$E|v_i|^{2+\delta} = 0(n^{-(1+\delta/2)}(\log n)^{1+\delta/2}).$$

Also

$$Ey_{M}^{2} = (n - (M - 1)n^{\alpha})/n + 0(n^{-1})$$

and

$$E|y_{\boldsymbol{M}}|^{2+\delta} = 0(n^{(\alpha-1)(1+\delta/2)}).$$

By the same argument as in the proof of Theorem 1 in [3] (p. 213), if we construct the Brownian motion $\{B(t), 0 \le t \le 1\}$ on (Ω, F, P) such that

$$(3.1) P\{\sup_{0 \le t \le 1} | X_n(t) - B(t) | \ge \varepsilon_n\} = 0(\varepsilon_n)$$

as $n \rightarrow \infty$, the statement of the theorem is concluded. Hence first we have to define the Brownian motion.

Denote $\xi_j = y_j - v_j$, $j = 1, \dots, M$ and denote M_a^b the σ -field generated by the random variables $\{\xi_a, \dots, \xi_b\}$ for 0 < a < b. For any $A \in M_1^a$ and $B \in M_{a+1}^M$ we have

$$|P(A \cap B) - P(A)P(B)| \leq \phi([\theta \log n])P(A) = 0(n^{-\theta \gamma})P(A)$$

uniformly with respect to a with $1 \leq a \leq M-1$. Hence, by applying Lemma 3, we see that there exist a sequence $\{\bar{\xi}_1, \dots, \bar{\xi}_M\}$ and a sequence of independent random variables $\{\bar{Y}_1, \dots, \bar{Y}_M\}$ on a probability space $(\bar{\Omega}, \bar{F}, \bar{P})$ such that the joint distribution of $\{\bar{\xi}_1, \dots, \bar{\xi}_M\}$ is same as $\{\xi_1, \dots, \xi_M\}$ and $\bar{\xi}_i$ has the same distribution as Y_i with

$$(3.2) P\{|\bar{\xi}_i - \bar{Y}_i| \ge C_4 n^{-\theta_7}\} \le C_5 n^{-\theta_7}$$

for each $i=1, \dots, M$, where C_4 and C_5 are absolute positive constants.

On the other hand, using the Skorokhod embedding theorem (Theorem 7 in [7]) we construct the Brownian motion $\{B^*(t), 0 \le t \le 1\}$ and a sequence of independent and positive random variables $\{T_i^*, i=1, \dots, M\}$ on another probability space $(\mathcal{Q}^*, F^*, P^*)$ such that

$$\{(B^*(T_1^*), B^*(T_1^*+T_2^*)-B^*(T_1^*), \dots, B^*(\sum_{i=1}^{M}T_i^*)-B^*(\sum_{i=1}^{M-1}T_i^*)\} \in (Y_1, Y_2, \dots, Y_M),\}$$

and

$$(3.3) ET_i^* = E\overline{Y}_i^2 \quad \text{and} \quad E|T_i^*|^{1+\delta/2} \leq C_6 E|\overline{Y}_i|^{2+\delta}$$

for all $1 \leq i \leq M$, where " \underline{a} " means the equality of joint distributions and C_6 is a positive constant depending only on δ .

Using Lemma A1 in [1] we can redefine $(\{\xi_i\}, \{Y_i\}, \{T_i\}, \{B(t)\})$ on a common probability space (Ω, F, P) such that the distribution of $(\{\bar{\xi}_i\}, \{\bar{Y}_i\})$ and $(\{B^*(\sum_{k=1}^{i} T_k^*) - B^*(\sum_{k=1}^{i-1} T_k^*)\}, \{T_i^*\}, \{B^*(t)\})$ are same as those of $(\{\xi_i\}, \{Y_i\})$ and $(\{Y_i\}, \{T_i\}, \{B(t)\})$, respectively.

Define $\{a_0, a_1, \dots, a_M\}$ by $a_i = i[n^{\alpha}]/n$ for $i=0, 1, \dots, M-1$ and $a_M = 1$. Let $\{X_n(t), 0 \le t \le 1\}$ and $\{\tilde{B}_n(t), 0 \le t \le 1\}$ be continuous polygonal lines defined by

$$\bar{X}_n(t) = X_n(a_k) + (X_n(a_{k+1}) - X_n(a_k))(t - a_k)/(a_{k+1} - a_k),$$

for $t \in [a_k, a_{k+1}]$, $k = 0, 1, \dots, M-1$, and

$$B_n(t) = B(a_k) + (B(a_{k+1}) - B(a_k))(t - a_k)/(a_{k+1} - a_k)$$

for $t \in [a_k, a_{k+1}]$, k = 0, 1, M-1, respectively.

Lemma 6. As $n \rightarrow \infty$

$$P\{\sup_{0\leq t\leq 1}|\widetilde{X}_n(t)-\widetilde{B}_n(t)|\geq \varepsilon_n\}=o(\varepsilon_n).$$

Proof. We have

$$P\{\sup_{0 \le t \le 1} | \widetilde{X}_n(t) - \widetilde{B}_n(t)| \ge \varepsilon_n\}$$

= $P\{\max_{1 \le k \le M} | \sum_{i=1}^k y_i - B(a_k)| \ge \varepsilon_n\}$
 $\le P\{\max_{1 \le k \le M} | \sum_{i=1}^k (y_i - v_i) - B(a_k)| \ge \varepsilon_n/2\}$
+ $P\{\max_{1 \le k \le M} | \sum_{i=1}^k v_i| \ge \varepsilon_n/2\}$
 $\equiv A_1 + A_2,$

say. Applying Lemma 3 to A_2 , we see that there exist independent and identically distributed random variables $\{V_i\}$ such that V_i has the same distribution as v_i and

$$P\{|v_i-V_i|\geq C_7 e^{-\gamma n\alpha/2}\}\leq C_8 e^{-\gamma n\alpha/2},$$

where C_7 and C_8 are absolute positive constants. Thus by Lemmas 4 and 5 we have

$$\begin{aligned} A_{2} &\leq P\{\max_{1 \leq k \leq M-1} | \sum_{i=1}^{k} (v_{i} - V_{i}) | \geq \varepsilon_{n}/4 \} \\ &+ P\{\max_{1 \leq k \leq M-1} | \sum_{i=1}^{k} V_{i}| > \varepsilon_{n}/4 \} \\ &\leq (M-1)P\{|v_{i} - V_{i}| \geq \varepsilon_{n}/4(M-1)\} + C_{1} \exp\{-C_{2} \varepsilon_{n}^{2} / \sum_{i=1}^{M-1} E V_{i}^{2}\} \\ &+ \sum_{i=1}^{M-1} P\{|V_{i}| \geq \varepsilon_{n}/16\} + C_{3} (\sum_{i=1}^{M-1} E |V_{i}|^{2+\delta} \varepsilon_{n}^{-(2+\delta)})^{2} \\ &= o(\varepsilon_{n}), \end{aligned}$$

as $n \rightarrow \infty$.

We next estimate A_i . Denote $Z_k = \sum_{i=1}^k (T_i - ET_i)$. Recall $y_i - v_i = \xi_i$. Since $\sum_{i=1}^k Y_i = B(\sum_{i=1}^k T_i)$ by the construction of $\{Y_i\}$, we have

$$\begin{aligned} A_{1} &\leq P\{\max_{1 \leq k \leq M} |\sum_{i=1}^{k} (\xi_{i} - Y_{i})| \geq \varepsilon_{n}/4\} \\ &+ P\{\max_{1 \leq k \leq M} |\sum_{i=1}^{k} Y_{i} - B(a_{k})| \geq \varepsilon_{n}/4\} \\ &\leq P\{\sum_{i=1}^{M} |\xi_{i} - Y_{i}| \geq \varepsilon_{n}/4\} \\ &+ P\{\max_{1 \leq k \leq M} |B(Z_{k} + \sum_{i=1}^{k} ET_{i}) - B(a_{k})| \geq \varepsilon_{n}/4\} \\ &\leq \sum_{i=1}^{M} P\{|\xi_{i} - Y_{i}| \geq \varepsilon_{n}/4M\} \\ &+ P\{\max_{1 \leq k \leq M} |B(Z_{k} + \sum_{i=1}^{k} ET_{i}) - B(a_{k})| \geq \varepsilon_{n}/4, \\ &\max_{1 \leq k \leq M} |Z_{k}| \geq \varepsilon_{n}\} \\ &+ P\{\max_{1 \leq k \leq M} |Z_{k}| > \varepsilon_{n}\} \\ &\equiv L_{1} + L_{2} + L_{3}, \end{aligned}$$

57

say. By (3.2) we have for any sufficiently large θ

$$L_1 = O(n^{1-\alpha-\theta_1}) = o(\varepsilon_n).$$

Since $ET_i = EY_i^2$ and Y_i has the same distribution as $\xi_i = y_i - v_i$, we have $ET_i = E(y_i - v_i)^2$, thus

$$\max_{1 \le k \le M} |\sum_{i=1}^{k} ET_i - a_k|$$

$$\leq \max_{1 \le k \le M} |\sum_{i=1}^{k} Ey_i^2 - a_k| + 2\sum_{i=1}^{M} |E(y_i v_i)| + \sum_{i=1}^{M} Ev_i^2.$$

By Lemmas 1 and 5 we have

$$\begin{split} |E(y_1v_1)| &\leq |E\{(\sum_{i=1}^{\lfloor n^{\alpha} \rfloor - \lfloor \theta(\log n) \rfloor} n^{-1/2} X_i) v_i\}| + Ev_1^2 \\ &\leq \sum_{i=1}^{\lfloor n^{\alpha} \rfloor - \lfloor \theta(\log n) \rfloor} 2(\phi(\lfloor n^{\alpha} \rfloor - \lfloor \theta(\log n) + 1 - i))^{(1+\delta)/(2+\delta)} \\ &\times ||n^{-1/2} X_i||_{(2+\delta)/(1+\delta)} ||v_1||_{2+\delta} + Ev_1^2 \\ &= O(n^{-1}(\log n)), \end{split}$$

thus

 $\sum_{i=1}^{M} |E(y_i v_i)| = O(\lambda_n).$

And also we have from Lemma 5

 $\max_{1 \leq k \leq M} \left| \sum_{i=1}^{k} E y_i^2 - a_k \right| = o(\lambda_n)$

and

$$\sum_{i=1}^{M} E v_i^2 = o(\lambda_n).$$

Hence there exists a positive constant C_9 such that

$$\max_{1 \leq k \leq M} \left| \sum_{i=1}^{k} ET_i - a_k \right| \leq C_9 \lambda_n.$$

Then by the same argument as in the proof of Lemma 5 in [7], we have

$$L_{2} \leq \sum_{k=1}^{M} P\{\sup_{|t| \leq (1+C_{9})\lambda_{n}} | B(t+a_{k}) - B(a_{k})| \geq \varepsilon/4\}$$

$$\leq 2M P\{\sup_{0 \leq t \leq (1+C_{9})\lambda_{n}} | B(t)| \geq \varepsilon_{n}/4\}$$

$$\leq 8M P\{|B(1)| \geq \varepsilon_{n}/4((1+C_{9})\lambda_{n})^{1/2}\}$$

$$= o(\varepsilon_{n}).$$

On the other hand by the Kolmogorov inequlity and the Marcinkiewicz-Zygmund inequlity we have

$$L_{3} \leq \lambda_{n}^{-(1+\delta/2)} E|Z_{M}|^{1+\delta/2} \leq C_{10} \lambda_{n}^{-(1+\delta/2)} \sum_{i=1}^{M} E|T_{i} - ET_{i}|^{1+\delta/2},$$

where C_{10} is a positive constant depending only on δ . Since Y_i has the same distribution as ξ_i , using (3.3) and Lemma 5, we have

$$L_3 \leq C_{11} \lambda_n^{-(1+\delta/2)} \sum_{i=1}^M E |\xi_i|^{2+\delta} = o(\varepsilon_n),$$

where C_{11} is an absolute constant. Thus we have $A_1 = o(\varepsilon_n)$, which concludes the lemma.

The following lemma is due to Borovkov (Lemma 2 in [3]).

Lemma 7. As $n \rightarrow \infty$

$$P\{\sup_{0\leq t\leq 1}|\widetilde{B}_n(t)-B(t)|\geq \varepsilon_n\}=o(\varepsilon_n).$$

Finally we shall prove

Lemma 8. As $n \rightarrow \infty$

$$P\{\sup_{0\leq t\leq 1}|X_n(t)-\widetilde{X}_n(t)|\geq \varepsilon_n\}=o(\varepsilon_n).$$

Proof. Let q be a real number such that $\phi(q) < 1/10$ and define

$$\chi(j,k) = \begin{cases} 0 & \text{if } [k/q]q + j > k, \\ 1 & \text{if } [k/q]q + j \leq k. \end{cases}$$

By the definition of $\{X_n(t)\}$ and $\{\widetilde{X}_n(t)\}$ we have

$$P\{\sup_{0 \le t \le 1} |X_n(t) - \widetilde{X}_n(t)| \ge \varepsilon_n\}$$

$$\le \sum_{i=1}^{M} P\{\sup_{a_{i-1} \le t \le a_i} |X_n(t) - \widetilde{X}_n(t)| \ge \varepsilon_n\}$$

$$\le M P\{\max_{1 \le k \le [n^{\alpha}]} |\sum_{i=1}^{k} n^{-1/2} X_i - (k/[n^{\alpha}]) \sum_{i=1}^{[n^{\alpha}]} n^{-1/2} X_i| \ge \varepsilon_n\}$$

$$\le M P\{\max_{1 \le k \le [n^{\alpha}]} |\sum_{i=1}^{k} n^{-1/2} X_i| \ge \varepsilon_n/2\}$$

$$\le M P\{\max_{1 \le k \le [n^{\alpha}]} |\sum_{j=1}^{q} \sum_{i=1}^{[k/q] + \chi(j,k)} n^{-1/2} X_{(i-1)q+j}| \ge \varepsilon_n/2\}$$

$$\le (Mq) P\{\max_{1 \le k \le [[n^{\alpha}]/q] + 1} |\sum_{i=1}^{k} n^{-1/2} X_{(i-1)q+1}| \ge \varepsilon_n/2q\}$$

Let $m = [[n^{\alpha}]/q] + 1$. Using Theorem 1.2 in [4] and lemma 3 we have as $n \to \infty$

(3.4)
$$(Mq)P\{\max_{1 \le k \le m} | \sum_{i=1}^{k} n^{-1/2} X_{(i-1)q+1} | \ge \epsilon_n/2q\} \\ \le \frac{(Mq)(\epsilon_n/4q)^{-(2+\delta)} E| \sum_{i=1}^{m} n^{-1/2} X_{(i-1)q+1} |^{2+\delta}}{1 - \phi(q) - (\epsilon_n/4q)^{-(2+\delta)} \max_{1 \le k \le m-1} E| \sum_{i=k}^{m} n^{-1/2} X_{(i-1)q+1} |^{2+\delta}}.$$

Similarly as in the proof of Lemma 5, we have by Lemmas 1 and 2

$$E|\sum_{i=1}^{m} n^{-1/2} X_{(i-1)q+1}|^{2+\delta} = O(n^{(\alpha-1)(1+\delta/2)}),$$

and also we have from the stationarity of $\{X_i\}$

 $\max_{1 \le k \le m-1} E |\sum_{i=k}^{m} n^{-1/2} X_{(i-1)q+1}|^{2+\delta}$ $= \max_{2 \le k \le m} E |\sum_{i=1}^{k} n^{-1/2} X_{(i-1)q+1}|^{2+\delta},$

which is $O(n^{(\alpha-1)/(1+\delta/2)})$ because

 $E|\sum_{i=1}^{k} n^{-1/2} X_{(i-1)q+1}|^{2+\delta} = O(n^{(\alpha-1)/(1+\delta/2)})$

Shûya Kanagawa

uniformly with respect to k, $2 \le k \le m$. Thus the right hand side of (3.4) is the order of $o(\varepsilon_n)$ as $n \to \infty$. Hence the lemma is proved.

By Lemmas 6, 7 and 8 we obtain (3.1) and thus conclude the proof of Theorem 1.

4. Proof of Theorem 2

It is sufficient to modify some definitions in the proof of Theorem 1. We first define U_j by $U_j = \{j[n^{\alpha}] - [n^{(2-\alpha)/(1+2\beta)}] + 1, j[n^{\alpha}] - [n^{(2-\alpha)/(1+2\beta)}] + 2, \dots, j[n^{\alpha}]\}, j=1, \dots, M-1 \text{ and put}$

 $\alpha = \{2\delta\beta + 3(2+\delta)\}/\{2(3+2\delta)\beta + 3(2+\delta)\},$ $\varepsilon_n = K n^{-\delta/(2(3+2\delta)+3(2+\delta)/\beta)} (\log n),$ $\lambda_n = n^{-2\delta/(2(3+2\delta)+3(2+\delta)/\beta)} (\log n).$

We note that for $\beta > 2(2+\delta)/(1+\delta)$

$$Ey_1^2 = n^{-1+(2-\alpha)/(1+2\beta)} + O(n^{-1})$$

and

$$\max_{1 \le k \le M} \left| \sum_{i=1}^{k} ET_i - a_k \right| = O(n^{-\alpha + (2-\alpha)/(1+2\beta)}) = o(\lambda_n),$$

as $n \rightarrow \infty$. The rest of the proof is the same as that of Theorem 1 and so is omitted.

Acknowledgment

I wish to thank Professors T. Kawata and M. Maejima for many detailed and helpful comments on this paper.

REFERENCES

- [1] BERKS, I. and PHLIPP, W. (1979): Approximation theorems for independent and weakly dependent random variables, Ann. Prob. Appl. 7, 29-54.
- [2] BOROVKOV, A.A. (1972): Notes on equalities for sums of independent variables, Theor. Prob. Appl. 17, 556–557.
- [4] COHN, H. (1965): On a class of dependent random variables, Rev. Roum. Math. Pures et Appl. 10, 1593-1606.
- [5] GORDIN, M. I. (1969): The central limit theorem for stationary processes, Soviet Math. Doklady, 10, 1174-1176.
- [6] IBRAGIMOV, I.A. (1962): Some limit theorems for stationary processes, Theor. prob. Appl. 7, 349-382.

On the Rate of Convergence of the Invariance Principle

- [7] ROSENKRANTZ, W.A. (1967): On rates of convergence for the invariance principle, Trans. Amer. Math. Soc. 192, 542-552.
- [8] YOKOYAMA, R. (1980): Moments bounds for stationary mixing sequences, Z. Wahrscheinlichkeitstheorie verw. Gebiete. 52, 45-57.
- [9] YOSHIHARA, K. (1979): Convergence rates of the invariance principle for absolutely regular sequences, Yokohama Math. J. 27, 49-55.