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ON SOLUTIONS OF x/ = exitxl+a

Icniro TsukamoTo, TosHIRO MISHINA
and MaHiTO ONO

Department of Mathematics, Keio University,
Hiyoshi-cho, Kohoku-ku, Yokohama 223

(Received August, 11, 1981)

§0. Introduction

Asymptotic behavior of solutions of a second order nonlinear differential equa-
tion

g =ttt '=dldt

was discussed by Saito in the papers [1], [2]. Main tool used in those papers is a
certain change of variables which transforms this equation into a first order rational
differential equation or equivalently, into a two-dimensional automous system.

In this paper, we shall investigate a second order nonlinear differential equation
of the form

1 r=etplic  a>0,1>0,
in a domain
G: —o<t<o, 0<r<co

by using the same technique. Here x'** always represents its non-negative valued

branch. _
The solutions of (1) to be considered here are those which satisfy the initial

condition
x(t)=a, z'(t)=b, —co<ti<0,0<a<0, —colb<o0,

where £, is supposed to be arbitrarily fixed. Such solutions of (1) will be denoted
by &(¢,a,b) or simply ¢(¢, b) since @ is fixed in the course of our discussions.
As can easily be verified, (1) has a particular solution

p= g4t

This will be denoted by ¢(#).
In §1 we shall show the existence of a solution ¢(#) which is defined and
bounded for ¢ <¢<oco. Since 4(¢) is unique for fixed # and @, we shall denote
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1. TsukamoTo, T. MisuiNa and M. OnNo

#'(t,) by b. The solution (¢, a, b) with b>b will be considered in §2. In the last
section we consider the solution ¢(¢,a,b) with b<b. Thus we can get the infor-
mation about all kinds of solutions of (1).

§1. On bounded solutions as {—oo.

If z(¢) is a nontrivial solution of (1), then
2 (f)=e " "x(t)'** >0,

i.e. the solution curve of z(¢) is convex. Hence (1) does not have any nontrivial
solution which is defined and bounded for —co<f<oo. So in this section we discuss
the existence of the solution of (1) which remains bounded as #—co. The main
result of this section is as follows:

Theorem I. If a positive value ¢ and a real value £ are given, then the
equation (1):

x//___eallxl-ya, ([>0,1>0

has one and only one solution ¢(¢) such that
(A) &) is defined for w’<t<oo (—oo<w’<t,) Where o’ depends on «,
(B) ??(fo)';a,
(C) ¢(2) is bounded as ¢—co.
Moreover the following statements are valid :
(D) If 0<a<y(t,), then ¢(t) is defined for —co<t< o, i.e. @ =—co, and

limyo.. §@#)=0, lim,... ¢'#)=0,
lim;a,w é(t)—_—oo s lil"[‘l[a_oo é’(t)z — 0O,
In the neighborhood of #=co, (#) can be expressed as

@) d)=3 avexp (- vVIfa—1)2t, @>0.
n=0 .

(E) If a>d(t), then ¢(¢) is defined for w’<t<oco (—co<aw’<t,) and
lim;e ¢(0)=0, lim,... ¢'(£)=0
lim,., §(t)=0c0, lim,,. ¢'(t)=—o0.

In the neighborhood of ¢=co, ¢(¢) is expréssed as

@y $(t)= 3 anexp ((nl—vVITa)~Dit), @>0.

and in the neighborhood of f=w’, as



On Solusions of z''=e""xlte

. 2 2/a ,
® Jor=( 20/ %52) =)
X[+ Y ninso@mal(t — &’ *#=(Clog (t— ')+ B)}"]

where B and C are constants and C=0 if 4/« is not integer.

Proof will be carried out in the following order:

1) Uniqueness of the solution satisfying (A), (B) and (C).

2) Existence of the solution satisfying (D).

3) Existence of the solution satisfying (E).
Here we must notice that the existence of the solution of (1) satisfying (A), (B)
and (C) can be shown directly from 2), 3).

Let us start to show 1).

Suppose that (1) admits a nontrivial solution ¢(#) which is defined and bounded
for t,<t<oco. Since

q?”(t) = ealté(t)l—%a >0

in G by our assumption given at the outset, ¢’(f) is a nondecreasing function of ¢
Therefore we have

FH)>'(r) for t>z.
Then
$t)— () 2§/ ()t—7) for t=>7.

Then if ¢(z)>0 for some >0, this inequality contradicts the boundedness of ¢().
Thus we get the following proposition.

Proposition 1. If é(¢) is a nontrivial solution of (1) bounded as {—oco, then

¢®)<0.

Lemma 1. Let ¢(¢) be a solution of (1) defined for o’ <¢<w(—oo <o’ <t <w<Lo0),
then the following statements are valid :

(@) ¢(@) has a limit as t—»w or t—e’, including the infinity.

(b) limi.. ¢(#)=0 implies lim,.. ¢’(¢)=0.

(¢) limg,, ¢(t)=co implies lim,., ¢’(£)=o0.
(d) limg,,. ¢(f)=oc implies lim;.,.. ¢'(¢)=—oco.

Proof. (a) is obvious from the convexity of the solution curves of (1). If
lim,... (t)=0, then ¢(¢) is a bounded solution of (1) as ¢—oo, and hence from Pro-
position 1 we get

$'#)<0.
Therefore if lim,... ¢’(£)#0, then there exists a number ¢ such that
#'(#)<c<0.

Integrating both sides, we get
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SO <Pto)Fclt—t), >t
which implies
limy .. p)=—c0
in contradiction with
lim,.., ¢(#)=0.
Hence (b) is valid.

If —co<w’'<w<oo, (c) and (d) are evident.
If w=o00, there exists a number T, for an arbitrarily given positive number
R,, such that ¢>7T, implies

¢ B)=eg@) >R,
since lim,.., ¢(f)=co. Hence
$'O—¢"(T)>R(t—Tv), =T,
and so
limy.., ¢/'(t)=c0.

If w'=—o0, there exists a number T, for an arbitrarily given positive number
R, such that #<7T; implies

¢H(t>=eait¢(t)‘+a> eaztRz s

since lim,., ¢(f)=cc. Hence
R,
¢'(To)— ¢'@)> ﬁ(e"”z—e"“) , t<Ty,
and so
. R,
¢/(T2) - llmc_._m ¢’(t) > _23“1[2 .
al
Since R, is an arbitrary constant,

limy.,_, ¢'(F)=—00. QED.

The next lemma will show the uniqueness of the solution $(#).

Lemma 2. Let x=4¢.(f), x=4¢(t) be two nontrivial solutions such that

(A) $u@) is defined for (w;/, o) (—oo<wi’ <to)

(B) () is bounded as t—co,

(C) Bi(s)>¢(s) for some s such that max (@, w,’)<s<oo, (i=1,2).
Then

61(t)> 2(t)

4
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for o’ <t<w, o' =max (u/, .’).

Proof. Suppose that
$i()>a(t), s<t<r<oo,
Pi(e)=6e(c) ,
then we get
$/(1)<'(x) .

If §/(z)=¢:'(z), then §,(f)=d.(t) since they both satisfy the same initial condi-
tion at t=7. Hence

{51’(7)<§$2’(T> .
Since @i/() (i=1,2) are continuous, ¢,'({)¢’(¢) and therefore
1By < da(8)

if #(>1) is sufficiently close to r.
Let us suppose that

)<delt), <t<zi,
$i(c) =) .

Then

@ $i(e) > (=),

since the case ¢,/(r:)=¢.'(r)) is excluded by the same reason as above. On the
other hand, we get

q?,”(t)———e““ﬁl(t)“ ag eau(ﬁz(t)wa:éz//(t) , t<t<rti,

since ¢,(t)<¢:(t), r<t<r. Integrating both sides of this inequality from 7 to #(<«z,),

®) . G/ O>b )+ ()4 (2) -
Since ¢'(r)>¢//(z), we obtain
$o/ (1) > (1)
in contradiction with (4).
Hence
$(B)<bult)

for r<t<oco. Then we find (5) is valid for r<t<oo. Integrating both sides of (5)
we obtain -

$o(t) = $2(c) > 1) = $1(2) +($' (@)~ (D)t —7), ¢<t.

5
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Since ¢,()>0, ¢.'(x)— ¢,/ (z) >0, ¢i(z)=as(r), this implies
lim, ge(t) =00 .
This contradicts with the boundedness of #.(£). Thus we get
$:6)>6:(2)

for s<¢<co.
If there exists ¢ such that

(1)< do(r), @'<7<s,

then we are led to contradiction by the same argument as above and hence Lemma
2 is proved. Q.ED.

If there exist two solutions ¢:(¢), @.(¢) satisfying the conditions (A), (B) and (C),
then for some s we must have

$i(8)#Bals) .
Hence we get from Lemma 2,
$B)#hu(t)
for all ¢ which contradicts with
Bilt)=6:t)=a .

Thus we could prove the uniqueness of a solution satisfying (A), (B) and (C) of
Theorem L

Now we shall show that (1) can be transformed into a first order rational
differential equation by a change of variables similar to that used in [1].

Lemma 3. Let ¢(¢) be a solution of (1) and we put
6 y=y(@)= &) p(t)"=2"e" p(2)"
O z=y'(f)
Then, (1) is transformed into the first order rational differential equation

dz _ (a—1)2%+2adyz— a®2*(y* — y*)
dy ayz

®

Proof is immediate if we substitute (6) into (1) and notice that z=y’(f) and
@'(8)=—24(2).

By investigating the equation (8) we prove the existence of a solution which
is bounded as #—oo.

Proposition 2. The equation (8) has one and only one solution such that
(@) z(¥)>0 for O0<y<1,
(b) limy.ez(y)=1lim,.,2(y)=0.
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Proof. Instead of (8), we consider an autonomous system

dy _
a5 YE
)
dz _ 2 292(,,2 3
s =(a—1)2°+2adyz— a*22(y*— y°)

whose critical points are
(y,2)=(0,0), (1,0).

If a=1, (0,2) (z is arbitrary) is also a critical point of (9).
If we put y=1+y, z={, then (9) turns into

dy
._S_ac+...
(10)
A
as p+2al+

where the unwritten part represents the terms whose degrees are greater than 1.
Since the eigenvalues of the matrix

a2 2al

‘ul=(1+«/1+a)a2>0

are

and
pe=(1—~v1+a)a1<0,

(,8=(0,0), i.e. (y,2)=(1,0) is a saddle point. A solution of (10) which tends to
(0,0) can be represented as

n=au(Ce"t*)+ ai(Ce"i')*+ -
{=bi(Ce"s®) + bin(Ce"#*)? + -
(i=1,2; C is an arbitrary constant; @i, and &, are constants)

where the power series in Ce*® in the right-hand members are convergent in the
neighborhood of s=—oco (i=1) or s=oco (1=2). Then we find

b Y

a; o

and so we get the power series expression of the orbit:

_ ba
ai

2

i
C a7]+ y

7]+...=
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or, returning to the original variables

(1) g=H 1)y
[24

which converges in the neighborhood of y=1. Since %—>0 and 2% <0, only the

[24
curve
(12) a=L2 (1) 4o
[44
intersects the domain
O<y<l, z>0.

Now we will show that this orbit tends to (0,0) as s—>—oco. We denote by C
the arc of a parabola

2=fly)=ally—y?)

lying between y=0 and y=1 and by D the domain bounded by C and the segment
0<y<1 on the y-axis. On the open segment 0<y<1, z=1, we have

Q—O dz

— L 22— ®) <0
s C s Wy —y%H <0,

On the arc C, we have

L = )= DRy =) >0

for 0<y<1. From those we find that orbits passing through the boundary of D
(except for (0,0), (1,0)) go out of D. as s increases. Therefore every orbit starting
from inside of D can never leave D as s decreases to —oo.

On the other hand,

21— VT T )= A

d
" 14_«/T;:;{>-a2—-;£;j1y)y: .

1

Hence the orbit belongs to D for —co<s<oo. Then, since

dy
I —ayz'>0

in D, Poincaré-Bendixson theory shows that the orbit tends to the critical point
0,0) as s—>—co. Q.E.D.
We denote by z,(y) a solution whose existence was just shown above.

Proposition 3. Let y(#) be a solution of the equation

dy

717 =2(y)



On Solutions of z'’'=e**zlte

which satisfies an initial condition
y(to) =yo=¢(to)"a*
where
a=g(to) <¢P(lo) .
If we define ¢.(¢) by
hBO =gy,

then ¢,(f) is the only solution of (1) such that
(@) ¢4 is defined for —co<it< o0,
(b) limse ¢:(#)=0, lim,..., ¢."(£)=0,
© gilt)=a.

Proof. Since

dy _
W—Zx('y)
we get
a1
dy  z(y)

and hence ¢ is an increasing fuction of y. Consequently it is sufficient to show
limy #(y)=—oco, lim,.t(y)=00
for the proof of (a).
From (12)

aW)=L -+

in the neighborhood of y=1. Integrating from y, to %(#)

a3 Syw dy

 HT T :—2105; (y—1)+-=t—ts
when y(¢) is sufficiently close to 1. Hence
lim,.,, ¢=00.
As we know
2(y)<aiy—y*), 0<y<l

we get

1 S 1 N 1
a(y) © adly—v?) T aly

9
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for 0<y<1. Hence, if t<t, (i.e. y&<wo)
v 10)
he S < v
Therefore
limy_ot=—o00.
Since
0<limy. :(F) =1im; .o, 229~ %y(t)"* < lim, ., 2% % =0

we have

(14) lim, ... ¢:(2)=0.
Hence

lim,... ¢’(1)=0
by Lemma 1(b) and (b) was proved.
(c) is obvious from the definition of s.

QED.
Now we construct an analytical expression of ¢,(f) valid in the neighborhood
of t=co. From (13), we get

(y—1) 2 @aly—1"=etvot | =0,
n=0

in the neighborhood of y=1. Hence, solving it with respect to y, we obtain

Y=3, @ne"’"t= 3 d,exp (n(l—~1+a)it} .
n=0 n=0
Therefore

bit)= 3 anexp (n(l—vVIFQ)—DAt}, a>0.
n=0

This is the desired analytical expression of ¢:(¢) at ¢=co.

By putting

O)=p:(®)

we can prove that there exists a solution of (1) satisfying (A), (B), and (C) in
Theorem I if a<¢(t). Moreover (D) is also verified.

If a=¢(t), it is sufficient to put (&)= ¢(?).

Finally we must show that there exists a solution of (1) satisfying (A), (B),
and (C) even if a>¢(t).

Proposition 4. The equation (8) has one and only one solution such that
(@) z2(y)<0 for 1<y<oo,

(b) limy.. 2(y)=0, lim,.... 2(y)= —oo.

10
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Proof. We consider again (9), i.e.

dy
—d‘? =qyl
.g% =(a—1)2*+2adyz—a®2(y*—y?) .

This system has the only solution which tends to a critical point (1,0) and inter-
sects a domain

y>1, 2<0.
This solution can be expressed by
y—1=a:1(Ce"”*) + as(Ce" )P + -
2=by((Ce"?) + bay(Ce"?*) + -+

" where the power series in Ce"?* in the right-hand members converge in the neigh-
borhood of s=oo as us=(1—+1+a)ai<0. The same solution is also represented
as

24

where the right-hand member is a power series in y—1 convergent in the neigh-
borhood of y=1.
Now we will show that this orbit tends to (oo, —c0) as s——oco. If we put

z=f(y)=ally—vy"),
then
d i 292 3 4
—=(z2—fi(y)) =(a+Da* 2y’ —y*)<0
ds =11
for y>1. Also if we put

e=fult)=— 2 (1)

a+2
then
d al \? . B .
e ho| | >(5g) 0 Dieat w -y +He e -1 >0

for y>1. On the other hand, we have
D= —aa< 22 — (1 VTTFaae =% _ 7
D= —al< - 1—=V14a)< ) f'Q).
Consequently, this orbit is contained in a domain

11



I. TsukamoTo, T. Misuina and M. ONo

2 __a_'l_ —
y>1, adly—yH<z< a+2(?/ 1)

and hence tends to (co, —oo0) as s——oo, since

dy
—%—ayz<0

in this domain.
We denote this solution by z.(y).
Proposition 5. Let y(¥) be a solution of the equation

dy _
E =2,(y)

which satisfies an initial condition
y)=yo=¢(t)"a*, a>¢(ts).
If we define ¢,(f) by
Pa(t) =By ()"

then ¢,(¢) is the only solution of (1) such that
(@) @) is defined for o’ <t<oo (—oo<w' <t),

QED.

(B) 1My go(8)=0, limy-re s’ ($)=0, i gt =00, il o' (8)= — 00,

(€) galto)=a.

Proof. From
d
71;' :Zz(y) k)
we get
Yy d?j
——— =1, to)=1¥o .
Syo 2:(®) o, Yl)="o
Since
dt 1
15 ——=—=<0,
(19) dy  z(y)

t is a decreasing function of y and hence it is sufficient to show
lim,.#(y)=o0,

for the proof of (a). But this can be shown as in Proposition 3.
Since y—1 as t—oo, we get

0<1lim; e ¢2(f) =1im, . 2% %€~ ¥y ()« =1im;., 22**e~*=0,

ie.

12
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lim,.... ¢2(2)=0
and by Lemma 1(b)

lim,_... ¢'()=0.

On the other hand by Proposition 1 we know
¢2'(£) <0

and hence if o’> —oco, then

lim,..» ¢po(t) =0 .
If &’ =—o0, then we get

lim,.,q ¢o(t) =00,

since (1) does not have a solution bounded for —oco<¢<oco. Hence from Lemma
1(d) we obtain

limy-. ¢/(t)=0c0 . QED.

Just as above we get an analytecal expression (2)’ i.e.
Ge)= 3 awexp (Ml—vVIF@)—Dit}, a>0.
n=0

which converges in the neighborhood of #=co.

Now we have to discuss whether ’=—oc0 or not, and construct an analytical
expression of ¢,(f) valid in the neighborhood of ¢#=w’. For this purpose we shall
prove the following lemma, which will be also used in the following sections.

Lemma 4. Let ¢(f) be a solution of (1) defined for (', ) where o’<w. Sup-
pose that

(@ limg.. @(t)=oo,

(b) lim,.. y(@)=lim,_.. ) ~p(#)* =00,
where =0’ or o, then the following statements are valid:

(©) lr]<oo,

(d) 2(y)=0(@y*?) as y—roo,

(e) If r=0’, then we get

(16) oB)= (%x/a-2|-2> ne“‘”’(t—wf)—z/u
X[1+ 2 ninso@malt — 0 )"{(t— ') ¢ (Clog (¢ — o)+ B)}"],

and if r=w, then we get

a7 ¢<t>=(§\/ “;2) ety
X[14 2 minsol@ma{o —)™{(w—£)+ ' (Clog (w—1)+ B)}"]

13
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where B and C are constants and C=0 if 4/a is not an integer.

verge in the neighborhood of ¢=rz.

Proof. From (6), (7), we get

_ ¢'#)
(18) Z(l/)—ay(t)<2+ o >
and hence
a9 im, 2=l v ) 5

But from the assumption and Lemma 1, we get
y@)—oo, ¢(t)—>oo and [¢'(#)|—>o0
as t—r. Hence by I'Hospital’s theorem

BB o'(8)°
(/5(t)2 = 2" lim,... ealt¢(t)a+2

lim,... y(#)~

2¢'(0)¢"" ()

(16) and (17) con-

= 22 limg_.f

2¢/(t)eall¢(t)l+u

alenlt¢(t)a+2 + (a +2)ealt¢(t)a+l¢l(t)

= 22 1im¢_.,
2

@) )
a2¢,(t) +a+2

But if we again use I'Hospital’s theorem, then we get

=22 lim;q,

. o' . B _
lim,... W =lim,..A 2y (f)=c0.
Hence we get ultimately

P _ 2
HOF  ate

lim, .. y(£)-

ie.
2
?:@_ a+2
O N
|—z«/m (if c=a).

(if r=w)
(20) lim,..y(&)~*"?

From (19), (20), we obtain

ah/a—iz- (if r=w)

—al _2_ (if r=0")

a+2

limll—owy_alzz(?/) =

14

alealtgb(t)a#—z "I' (a +2)ealt¢(t)a+l¢l(t)
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and we have proved (d).
Therefore if we put

y =y, zl=p(A+u), A== %\/agz ,
then we get from (8)
du _ 2(a+2) < i)
(21) vd"/ -«—Wn+ 2+ p u+

where the unwritten part is a polynomial of » and # beginning with the terms
of the second degree. What we need is a solution of (21) which tends to zero as

7—0. Since »=0 is a singularity of Briot-Bouquet type and 2+ % >0, such a solu-

tion can be expressed as

u= 2m+n>0umn7jm[7]2+ (‘/“)(C lOg 7+ B))”

. . . 4 . .
where B is an arbitrary constant and, if 2+ " is not an integer, C=0. Thus we

get
z(,y)—l=,y-8/2F(y—l/2)
where
F(ﬂ)=A+2m+n>0umnﬂm[7]2+(““)(c log 7]+B)]" .
Hence
v d,y 7
.___=_2$ Fn)d , — —1/2’ =g, V2,
Syo W) i (pdn, n=vy =%
From (7),
dy _
E =2(y)
and so

S” FQpdy=— %(f“‘ to) .

7

Since y—oo as t—r, we get

7
22) lim, S Flp)dy=— %limm(t—to)= - —;—(r—to)

70

But

n
1im,,4,g F(;y)d;yl <oo
70

15
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is valid since
Fp=01) (y—0).
Therefore we get
[z]|<oo.
This proves (c).

From (22), we get

S F(7]>d7] A77[1 +2m+n>ormn77 B/ (C log 77+B) = %(T'—l) .

If we put

L=—% 2((0 —t)—~ M/—(t o)

for r=w’ and

-1 2 (e
L= 5 al -m(w )

for t=w, then
YL+ Lnsofmny ™ ¢ (C log n+ B} 1=L.
By Smith’s lemma (See [2] Lemma 1, or [3]), we get
n=y " *=L{1+Xninsopma L™{L* /(Clog L+ B)}"].

Hence we obtain

Va_ 2 a+2 e —~2/a Py MY 24 (4/a) n
Y= -ﬁ —2 L [1+2m+n>0amnl4 {L (Cl()g L+Bl)}]

where

BI=B—Clog%\/a'2"2 .

Therefore if we notice that

HO)=¢By@)""
and that ¢(f) has an analytical expression of the form

0o

A" .
AVag* Z_ - (c—0" (Gf r=w)
¢,(t) — 12/ae—1(t—r+r) - n=0 )

l2/ae—1r Z

n=0

—(——ﬂ(t )" (if r=0’)

in the neighborhood of #=z. then we can obtain the desired analytical expression

16
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16), (17) of ¢(®. Q.ED.
Let us continue the discussion whether w’= —oco or not. From Proposition 5
we get

limtﬁwl ¢2(t)= oo, limng’ y(t) =00,

(Recall that ¢,(#) is constructed by z.(y), which is defined for 1<y<co.) There-
fore we can apply the last lemma, and hence we conclude

—OO<(1),<to .

Moreover we can obtain an analytical expression (16) i.e. (3).
Thus the proof of Theorem I was accomplished.

§2. The solution ¢(t,a, b) with b>g'(t).

In §1 it is proved that there exists one and only one solution ¢(#) of (1) bounded
as t—oco such that

é(to)=a>0 .

Consequently, if we fix £, and @, the value of b(=¢'(%)) for such a solution is
determined uniquely. We shall denote this value of b by &(t, @) or simply by b.
In this section we consider the case b>b(t, @)=b. The main result of this section
is as follows:

Theorem II. Let ¢(¢,2,b) be a solution of (1)

x//___eauxua s a,>0, Z>0
with an initial condition
bt a,b)=a, ¢'(t,a,b)=b, b>b,

and we assume ¢(¢, @, b) is defined for o' <t<w. Then the following statements
are valid : '
(A) o is finite, and

limt—w ¢(tv a, b) =00, 1im£—vm ¢’(t1 a, b) =00,

In the neighborhood of t=w

#(¢,a,b)= <‘Z‘\/ a—é—z > ae‘l"’(w_t)—z/a
XL+ T msamala— (0= 07 @ (C log (w—0)+ B)"]

4. )
where B and C are constants and C=0 if —is not an integer.

(B) If 0<a<¢(t), then there exists a number by(b< bs) satisfying the following
conditions :

17
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(@) If b<b<bs, then

and
Mmoo (2, @, b) =00, lim,.._..$'(¢, @, b)=—oo.
(b) If b=b,, then
' =—00
and
limy.-w ¢t @, b)=c (0<c<co), limy,_o¢'(¢,a,b)=0.

In the neighborhood of ¢=—oco
3, a,b)= 3] ane P, 0<a<co.
n=1

(¢) If b>b, then
—oo<L o' <ty
and
limeew ¢, @, 0)=0, lim,... ¢’ @, b)=d (0<d<co).
In the neighborhood of t=w’
$(t, a,b)=A(t— " )1+ Zninso@nn(t —0 )"t —0')")

where A is a constant.

(C) If a>¢(t), then there exist numbers by and b, (h<b,<bs) satisfying the
following conditions :

(@ If b<b<b,, then

- OO<(U’ <to
and
lim,.ur ¢(¢, @, b)=0c0, lim,., ¢'(¢, @, b)y=—co.

In the neighborhood of t=w’

s.00=( ) "
X[1+3mins0@mat— o)™ {({— ")+ ¢ (Clog (t— ')+ B)}"]

where B and C are constants and C=0 if % is not an integer.
(b) If b=b,, then

18
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and
limy.,—w ¢(t, @, b)=0c0, lim,, . ¢'(¢,a,b)=—oco.

In the neighborhood of ¢=—c0
o, a,b)y=3] a, exp {(nl+vV1+a)—=1)28}, a,>0.
n=0

(¢) If by<b<bs then (a) of (B) is valid.
(d) If b=bs, then (b) of (B) is valid.
(e) If b>bs, then (c) of (B) is valid.

In the neighborhood of #=w’

¢(t, a, b) = A(t— (0/)(1 +2m m>oamn(t_ w’)m(t "w,)‘m>

where A is constant.

The proof of this theorem will be accomplished by proving the following
propositions.

Let 4(t,a,b) be a solution of (1) satisfying an initial condition

olto,a,b)=a, ¢ (t,a,by=b, b>b
and put
y(O=¢@)"d(t, a,b)", 2(y,b)=vy'(?)

as in (6), (7). Then z=z(y, b) is a solution of (8), and from (18) we get

2(y, b) =ay(t)(2+ %ﬁ%‘) '
If ¢=4, then
2(yo, b)=“y°<“ %)
where

Yo=y(o) .
Hence, we have
z(y) i 0<a<g(to)
(23) 2y, b)>2(y,b)={ 0 if a=¢(t)
z(y) if a>¢(t)

in the neighborhood of y=v,. But from the uniqueness of the solution of (8) we
find (23) is valid as long as both solutions are defined and holomorphic. Therefore
in the domain

19
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{(y,2); z>z(y,b)}

we consider (8). In the remaining part of this section ¢(¢, @, b) and z(y,b) will be
denoted by ¢(¢,b), 2(y) respectively. As in the previous section we assume ¢(Z, b)
is defined for (o', ) (—oco<w’ <w<co).

First we prove property (A) in Theorem II about the behavior of ¢ @,b) as
t—o.

Proposition 6. If b>b, then ¢(4 b) is a solution of (1) such that

(@) ¢(¢,b) is defined for (o’,w) and @ is finite,

(b) lim., ¢(t, b)=co, lim,., ¢’(¢, b)=o0,

(c) (4 b) has an analytical expression of the form (17) in the neighborhood
of t=w.

Proof. We have the following four possibilities
(i) —oo<w<oo and lim,., ¢, b)=o0,

(ii) —oco<w< oo and lim,., ¢(¢, b)=0,

(ili) w=co and lim,., ¢(, b)=co,

(iv) w@=o0 and 0<lim,., ¢(¢t, b) < co.

In the case (ii) we get

lim,..,, y(¢)=lim,..,, ¢~ ") =0
and hence if ¢ is sufficiently close to ,
2(y)=y'(H)<0
is valid, since y(#)>0. But from (23) we have
2(y)>2(y,b)

in the neighborhood of y=v, and so the curve z=z(y) have to intersect the curve
z=2(y, b) in order that y(¢) reaches 0 as —w. But this contradicts the uniqueness
of the solution of the equation (8) and therefore the case (ii) can never take place.
In the case (iv) ¢(¢,b) is bounded as #—co. This implies b=>b since such a
solution is unique. Hence the case (iv) must be excluded.
Finally we consider the case (i) and (iii). From Lemma 1, we get

lim,., ¢'(¢, b)=00,
and we also get
lim,., y(¢)=lim,., ¢@) ¢, b)*=oc0.
Therefore we can apply Lemma 4 and we find that
—th<w<oo

and that ¢(, 5) has an analytical expression of the form (17) in the neighborhood
of t=w. Q.E.D.
Next we investigate the behavior of ¢, b) as {—w’.
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First we shall prove (B) in Theorem II and for this purpose we assume
a(=¢(t0)) <¢(to) -
Proposition 7. If a<¢(t), then

M y(8) =limenr G(B)-"63(2, B =0
for each b(>b).

Proof. If —oco<w’ <oo, then
lim,... ¢(t, 0)=0 or lim,.,. ¢{t,b)=0c0.

If lim,.., ¢(, b)=o0, then lim,.,, y(¢)=co. But from a<¢(t,) we get y(¥)<1 and from
(23) we get

)=y )>z2y)>0.
Hence y(#) is an increasing function and so we get
limy.. yE <1.
Therefore
lim;_. ¢(#)+o00.
Hence
lim;... ¢()=0
which implies
lim,.,, y(#)=0.
If w’=—o0, then
limg.. ¢E)=o00 or limg., ¢(f)<oco.
If lim,._. ¢(f)<oco, then we get
lim,,_., y(&)=lim;. ... ¢(#)~ ¢()*=0.
If lim,. . ¢p(¢)=0c0, then
limg, o ¢'(f)= —co0
by Lemma 1. Since we know that y(¢) is an increasing function and
0<y)<1,
we get

0<lim,.,_,, y(¥)=lim,__ 408 <1.

0]
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On the other hand, we have

M— ) ¢t . ¢(t)1+a
o) e gy =M s

by I'Hospital’s theorem. This shows that

lim,_

. B(#)
=lim, =0 or 1
)
and
limf‘._w Z/(t):Ca .
Since

limg., . ¥y <1,
we must have
c=0,
and in this case we also get

lim;. . y(#)=0. QE.D.
Proposition 8. There exists one and only one solution z=zs(y) of (8) such that
(@) limy.e 25(y)=0,
@)mmw%?=u+m

Proof. If we put

v=y'z—al

then we get
dv a2y —0?

24 il A
@) dy ay@+tal)
or a two-dimensional autonomous system

dy

s =a®Ay+ayv

(25)

v _
& ey —o?
ds o«

[ atl 0 ]
a2 0

of the linear terms of right-hand members of (25) has eigenvalues 0, a®2. Hence

The coefficient matrix
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(25) has a solution represented as
y=(Ce"‘2“)—|—ag(Ce“2”)2+---
v=A(Ce*) + by(Ce*15)2 4- ...

convergent in the neighborhood of s=—co. Hence we get

v=2y+0(y?).
Since
v=y"'z—ai
we get
(26) 2=aly+ 2y + 0w =ady +2y*(1+0Q)) .

Therefore, if we define z(y) by (26), we obtain
25(y) > ady

in the neighborhood of y=0, and 2s(y) satisfies the conditions (a), (b).
Next we shall prove the uniqueness of such a solution. We assume that z=
zo(y) is a solution of (8) which satisfies the conditions (a), (b). If we put

Z)=’y_'zo—0d y

then v=wv(y) is a solution of (25) and v tends to 0 as y—0.

From (25) we get
dv . VP
d—y—(al a,{ )/(v+a2)

and so

dv ar?
dy - vtai’

Hence if y>0 is sufficiently close to 0, we get

and so
v<Ay
Since we get
il —0
Y

as y—0 from this, we obtain
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. dv
llmy_‘o % =2
and
v
lim,_., —=2.
"y
If we put
w=y 'v-2,
then w tends to 0 as y—0 and we get
@7) flﬂ _ —(a+Dy(w+1)*—a®iw
dy ay(yw+2y +al)
or
2 =a*ly +ady® + ay*w
ds
(28)
dw
F (a+ 1A%y —a?2w—2(a+1)Ayw— (e +1yw? .
The matrix

[ a’d 0 }
—(a+1)22 —a?i

has eigenvalue +ea?2, and hence (y,w)=(0,0) is a saddle point. Therefore there
exists only two solutions which tend to (0,0) and these are represented as

y=0
(29) {
w=Ce '
and
y=a:(Ce™*) 4 ap(Ce™ ) + -
30)
w=b,(Ce"*) + by(Ce**%)2+ -+
But (29) is not a solution of (27). From (30) we get

_ (at1) S
w= o y+nZ:]2cny,

where ) c,y™ is a convergent power series and ¢, are uniquely determined con-
n=2

stants. Since
w=y w—A=y (¥ 'z—al)—2

is valid
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(a+1)2
2at

(31) Zo=aldy+Ay*— Y4 D Cuay” .
n=2

25(y) is also represented by the right-hand member of (31) and hence

20(y) =25(y)

which shows the uniqueness of zs(y). QED.

Proposition 9. Let y(¢) be a solution of

d:
73‘ =24(y)

with an initial condition

y(to) =¢(to) "a"
and put

$s() =By@®)"* .

Then the following statements are valid :
(@) ¢s(?) is defined for —co<i<w (fo<w< o)
() lim,. . gs(t) =c (0<c<00), lim;, .. ¢’ () =0,
(c) &s(ty)=a.

Moreover in the neighborhood of ¢=—o0,

Pa(t)= 2, @pe” "D, q,>0.
n=1

Proof. (c) is evident. Since

ﬂ=23(y)=aly+2y2+~- ,

at
we get
y=§]ldne‘“"‘, a,>0.
Therefore
(32) $s(t) = i}l @™ Ol >0

where converges in the neighborhood of f=—co. Hence
@' (8)= Z AnaA(n—1)e=3m=t_()
n=2

as t——oo. Q.E.D.
The last proposition implies (b) of (B) in Theorem IL
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The value ¢,'(¢,) will be denoted by bs(>b) hereafter. For further discussion,
we have to examine the critical point (0,0) of (9) in more detail.

Lemma 5. If z(y) is a solution of (8) which tends to 0 as y—0, then

2v) =al Or =oo.

limy.o
Proof. First we shall show the existence of the limit of % as y—0. For

that purpose we consider the autonomous system (9).
If we put

f=rv,
then

setay| | —er(v- 2.

Hence if y=a2, then

>0

z=J(

d
a5 (z—f(v)

and if y+a4, then

<0

2=/(p

d
s &= s)

2(y)

when y is sufficiently close to 0. Therefore the slope o can not oscillate and

the limit of -Z—SI—) as y—oo exists.

Now we put

d=lim, 2% .
Y

From (8) we get

dz ol 2 pcar Lan Yy,
dy a Yy z z

Hence if —oco<d< oo, then

. dz  a-—1 al®
llmy_o Ey_ = p d+21— —d—

ie. limyﬂo—dcf’—; exists. Therefore I’Hospital's theorem shows

. d
hmy_.o 7;3 :d s
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which implies

a—1 ai?

d= d+2i— v ie d=al. QED.

o

Proposition 10 and Proposition 11 will show how the solution ¢(t, b) behaves
as t—o’ when b satisfies either b<b<bs or b>bs.

Proposition 10. If 5<b<bs, then ¢(t,b) is a solution of (1) such that
(@) ¢, b) is defined for —oo<t<w(ty<m< o),
(b) lim,._. ¢, b)y=00, lim,._., ¢'(¢, b)= — 0.

Proof. 1f for this ¢(t,b) we define y(¢t) and z(y) by (6), (7), then z(y) is a solution
of (8) and, since b<b<b;, we get

z1(y) <z(y) <2s(y)
if y<1, which shows
lim,o 2()=0.

But from Lemma 5 and the uniqueness of z;(y) we get

Hence if v is sufficiently close to 0, then
(33) 2(y@®) < ady(t) .
From (33) and (18) i.e.

2(0)=au(®)(2+ %—g)

we find that there exists r and ¢>0 such that
¢'(zr, b)< —e<0.
Since ¢’’(t, 5)>0, we get
', b)< —¢
if t<r. Integrating both sides,
Bz, b)—p(t, b)< —e(t—71), t<t

¢(t» b)>¢(‘[’, b)+E(T—t), i<z
which shows the existence of an «’ such that

lim;.,, ¢, B)=00 (—oco<o'<t).
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But if —oco<w’<#, then
lim,... 6@, b)=1lim,_.,.. ¢@&)y(#)""*=0.
Hence

o' =—o00,

The Lemma 1 shows

limy._., ¢'(¢, b)=—oo. QED.

Proposition 11. If 5>b,, then ¢(¢ b) is a solution of (1) such that
(@) ¢, b) is defined for o’ <t<w where —oo<a’ <t,<w< oo,
(b) lim... ¢, b)=0, 0<lim,.,. ¢'(¢, b) <co.

Moreover in the neighborhood of ¢=w’,

9’5(t, b)=A{t— o1+ 2m i n>e@nnlt —0" )" E—0")*"].

Proof. For this ¢(¢,b) we define y(¢) and z(y) by (6), (7). From Proposition 7,
we get

lim,.,.. y(&)=0.
Since b>b;, we get
2(y)>za(y) .

Hence we have the following alternative;

(i) limyeo 2(s)=0, lim,._, ZS’) oo

(i) limy.o 2(y)=c, 0<c<Lco.
(Notice Lemma 5.) In any of these two cases we get

limy o 2% — oo
y
and hence from (18)
'
(34) fimy... 9;((1{ Z)) —oo
Since
#(,0)=20,

we get

limy.,. ¢'(t, 5)=>0 .
Hence if we observe that ¢’/(f) is positive, then

1My, ¢/(t, b)=co .
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Therefore from (34) we have
lim;..q (¢, 5)=0.
If we assume
lim,..,. ¢’(¢, 5)=0,

we obtain

, &'(t, b)? . 2¢/(t, b)p'' (¢, b)
e By = MM S D007, B)

in contradiction with (34), and hence

=lim,.... e"g(t, b)*=0

0<limy..os ¢(¢, b)< oo .

Consequently o’ must be finite.
We can construct an analytical expression of this ¢(,b) (where b>b;) in the
neighborhood of t=«’. In (8) we put

w=yz(y)™
and we get

2
Y dy

= % — 2200 + (1 —)u” .
Since this equation is of Briot-Bouquet type, we obtain

w=2m+n>0wmnym(Byva)" y, Wos =1
where B is an arbitrary constant and hence

2(y) " =By YO (L + S oWmny ™ (By)™) >0,

Therefore we obtain

y
t—o'= g ByVo - (14 2 nsoWmay ™ (By" )" dy
Jo
=Bay"(1 + ZninscWmny™(By")"™) .
Now put

y=Bye, C=—(=a)

then
1+ 2m+n>oﬁ/mn(B_l7))ma7}n] ={.
By applying Smith’s lemma we get

Ui =14 Zmin>olmal"(B~10)™]
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ie.
1/a P ’ 1) 7 /
yo= ; (=" )14 2 nsoWmn(t — )™t —w' )]

where I'=B"'. Since

(t)= 2ot = g-ag-in 5 1), 2 t—aryr
n=0 W
we obtain
(35) B(t, b) =gy~
= §22/”e‘1“’(t* a)’)[l + Zminsolmn(t — w’)m(t_ o))
which is desired analytical expression. QED.

Thus we could prove (a) and (c) of (A) in the Theorem IIL
Finally we must verify (B), where a>¢(%) is assumed.

Proposition 12. There exists one and only one solution z=2z,(y) of (8) such that
(@) 2z4(y) is defined for 1<y<co,

(®) 2(y)>0,

(¢) limg.i024(y)=+0.

Proof. We consider the autonomous system (9) again. From (11) we find that
a solution of (9) which tends to the saddle point (1,0) can be represented as

Z=%?@—D+“n (i=1,2).
If we put

a)=Lo@-D+, @>D)

then z,(y) satisfies (c). Since (1,0) is a saddle point, a solution satisfying (c) is
unique.

On the line ¥>1, 2z=0, we have
ﬂ___o, dz

R 222(2 — 8
s 75 Ay —y*) >0

from (9). Hence the orbit of z=2z,(y) cannot pass through the line
y>1, z=0

and so (b) is valid.
1

If we put z=Z, then (8) is transformed into

(36) %z_ (@—1)C+2ay20?— a? 22 (Y2 —y*) '
Y ay
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Suppose that there exists a number » such that
1<p< oo, limy.,,-o2s(y)=00,

then {=0 if y=% Since ({,0) is a nonsingular point of (36) and {=0 is a solution
of (36), then the uniqueness of the solution of (8) shows

2(y)=o0

which is a contradiction. Therefore (a) is valid. QE.D.

Proposition 13. Let y(#) be a solution of

%%(y), vt =g(t)as,  (a>¢(t))
and put

Pa()=¢@B)y@®)"

then ¢4(¢) is a solution of (1) such that
(@) ¢4(2) is defined for —co<i<w(to << o),
(b) lim;._o@s(t) =00, lim,,_o ¢ (#) =— 00,
(©) ¢t)=a.

Moreover in the neighborhood of #=—oc0
Bu(t) = i anexp (nl—vI+a)—1Dit}, a>0.
n=0

Proof. Since

ig- 2 ) =1+ VIF DAy =1+
we get
(37 log (y—1)+-+C=(1+vVIFta)it

where C is a constant and the unwritten part represents a power series of y—1.
Hence

{—>—o0
as y—1. Since
d
_EJ—Z/{ =Z¢(y) > 0 ]
we find
y—1

as {——oo, which implies (a).
Since
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y®)>1,
we get
iMoo gu(f) =lim,._ A%~y (8) /2 = 00
and from Lemma 1
lime, o ¢/(t)=—oc0.

From (37) we get

y=14 3 auexp 1+ vVITa)it)

n=1

and
Gut) = f} anexp n(l+VI+a)=)at}, wy=22<>0
n=0

in the neighborhood of #=—oo, which is a desired analytical expression of ¢.(Z).
Q.ED.
The last proposition implies (b) of (C). ¢,/(ft,) will be denoted b, (b<b,<by)
hereafter. The solution z(y, b) of (8) with b>b, is sure to pour into the domain

0<y<l, 2z>0

and hence the behavior of ¢(f,b) has been already investigated in Proposition 9,
10 and 11. Therefore we shall discuss only the case when b<b<b, is valid.

Proposition 14. 1If 5<b<b,, then ¢, b) is a solution of (1) such that
(@) ¢, b) is defined for o' <t<w (—oo<w’ <t <w< o),
() 1My ¢, b) =00, limya ¢'(t, b) = — co.

Proof. 1If we define y(f) and z(y) by (6) and (7) for the &(t,b) with b<b<bs,
then z(y) is a solution of (8) and from b<b<b, we get
z(y)<z@)<zu) .
Hence z(y) is defined only for y>1. Since y is defined by (6), we get
B, 0)>(t) .
But since ¢(¢) tends to oo as {—>—oco, we get
limse. ¢, b)=00, —oco<e' <io.
From Lemma 1 we get also
lim., ¢'(t, b)=—o0.
If o’ >—o0, then we get directly

limo y(f) =00
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from (6) and if @’ =—oco, then we get
lim,., y(¢)=c0

by I'Hospital’'s theorem. Hence we can apply Lemma 4 and find o’>—co and
that ¢, b) is represented as (16) in the neighborhood of {=e’. Q.E.D.
Thus the proof of Theorem II was completed.

§3. The solution g(t, a,b) with b<@’(t,).

Let ¢(¢, @, b) be a solution of (1) with an initial condition
o(to, a,b)=a, ¢'(t,a,b)=b, —colt<oo

where b<b. As in the previous sections we assume ¢(¢, @, b) is defined for o’ <t<.
Then the following theorem is valid.

Theorem III. (A) If b<b, then o is finite and
limi.eg (¢, @, 0)=0, lim,., ¢’(t, a,b)=d (—oo<d<0).
In the neighborhood of {=w,
¢(t, @, b)=Alo—[14 Lninsot@mn(@—1)"(@—1)""]
where A is constant.
(B) If 0<a<¢(ty), then there exists a number b; satisfying the following con-
ditions : )
(@) If b;<b<b, then
o' =—00
and
lim,,_. ¢, a,b)=c0, lim,, . ¢'(t, a,b)=—co.
(b) If b=b; then
' =—00
and

Mo ¢t @, b) =00, lim,._.. '(t, @, b)=—co.

In the neighborhood of ¢=—co
6, a, )= 3 anexp {(nQ+VIFD—DA), @>0.
n=0

(¢) If b<bs, then

—Oo<wl<to
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and
lime., ¢, @, b)=co, lim,., ¢'(¢, @, b)=—c0.

In the neighborhood of t=0w’

_ E a+2>2/a i (p__ o \—2/a
s/»(t,a,b)—<a\/ 5 e (t—o')

X[+ ins0@mn(t— )" {(t —0’)** @' 2(Clog (t— ')+ B)}"]

where B and C are constants and C=0 if % is not an integer.
(C) If a>¢(t), then, for an arbitrary b(<b), (c) of (B) is valid.
) Proof. For simplicity ¢(, @, b) will be denoted Aby o, b). For ¢, b) with b<
b we define y(t) and 2(y) by (6) and (7). Since b<b, we get
aly) G 0<y<l)
(38) 2y)<a(y,b)=1 0 Gf y=1)
z(y) Gf y>1).

On the other hand, we have the following four possibilities :
(i) —oo<w<oo and lim,., ¢, b)=0,

(ii) —oo<w<co and lim;.., ¢(t, b)=co,

(iii) @=o0 and lim,., ¢(t, b)<co,

(iv) o=co and lim,., ¢(¢, b)=co.

In the cases (ii) and (iv), we get

limt_,u, ’!/(t) =00,
But from (38) we get
z2(y)=y'(")<0

for the sufficiently large y. Hence (ii) and (iv) cannot take place.

(iii) can be excluded by the uniqueness of a bounded solution of (1) as #—oo
which is showed in §1.

Consequently (i) does take place.

In this case we get

limy_.o @ =Cco

from Lemma 5. Hence we obtain a desired analytical expression
&L, b)=Alw—O)[1+ Znin>@mn(w—8)" (0—1)*"]

by following the process of constructing (35).
By the uniqueness of the solution of (1) we get also

lim., ¢'(¢, b)=d, —o00<d<0
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and (A) was proved.

We shall show (B) where 0<a< (%) is assumed. For this purpose we consider
the autonomous system (9). Since (1,0) is a saddle point of (9), we get a unique
solution zs(y) of (8) such that

(@) zs(y) is defined for O0<y<1,

(b)  25(y)<0,

() limy.;_ezs(y)=—0.

In fact we obtain

@) =1+vVIFta)ily—1)+--
from (11). If we define
o) =gBy)*,  be=ds' (o)

where y(¢) is a solution of

B — ey, =gty e,
then the same argument as in Proposition 13 shows that ¢s(¢) satisfies the conclusion
of (b) of (B). ;

Here we consider the following four possibilities :

(i) —oco<e’'<co and limy., ¢, b)=0,

(ii) —oo<e’ <o and lim,.,. ¢(¢, b) =00,

({ii) o' =—oc0 and lim,... ¢(¢, b) < oo,

(iv) o' =—co and limy.. (¢, b)=o0.

In the case (iv), 'Hospital’s theorem shows

L I X N
) e Sy =My

= 1M (£

lim_, y(£)"*=lim

and hence we get
lim;~, (#)=0, 1 or co.
On the other hand, in the cases (i) and (iii) we get
lim.. y(#)=0
and in the case (ii) we get
lim,., y(¢)=co.
Therefore if b;<b<b i.e. z;(y)<z(y), then we get
limg.,. =0,
and if b<b; i.e. 2(y)<zs(y), then we get

lim;., y() =00,
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since the uniquenessﬁ of the solution of the equation (8) is valid.
Hence if b;<b<b, then we get

limy_.o iy) :(XZ—O
Y

from Lemma 5 and the uniqueness of z;(y), and the same argument as in Proposition
10 shows (a) of (B).

If 5<b;, then we can apply Lemma 4, which implies (c) of (B).

If a>¢(to), b<b, then

lim,.. y() 20

which implies that the cases (i) and (iii) cannot take place. Hence we can apply
Lemma 4 and (C) was proved. Q.E.D.
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